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1. Dynamic Programming
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• Deriving the HJB equation.
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• The linear quadratic regulator.
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Problem Formulation

max
u

E

[∫ T

0

F (t, Xt, ut)dt + Φ(XT )

]
subject to

dXt = µ (t, Xt, ut) dt + σ (t, Xt, ut) dWt

X0 = x0,

ut ∈ U(t, Xt), ∀t.

We will only consider feedback control laws, i.e.
controls of the form

ut = u(t, Xt)

Terminology:

X = state variable

u = control variable

U = control constraint

Note: No state space constraints.
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Main idea

• Embedd the problem above in a family of problems
indexed by starting point in time and space.

• Tie all these problems together by a PDE–the
Hamilton Jacobi Bellman equation.

• The control problem is reduced to the problem of
solving the deterministic HJB equation.

NOTE:
For simplicity of notation we assume that X, W , and
u are scalar.
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Some notation

• For any fixed number u ∈ R, the functions µu and
σu are defined by

µu(t, x) = µ(t, x, u),

σu(t, x) = σ(t, x, u),

• For any control law u, the functions µu, σu, and
F u(t, x) are defined by

µu(t, x) = µ(t, x,u(t, x)),

σu(t, x) = σ(t, x,u(t, x)),

F u(t, x) = F (t, x,u(t, x)).
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More notation

• For any fixed number u ∈ R, the partial differential
operator Au is defined by

Au = Au = µu(t, x)
∂

∂x
+

1
2

[σu(t, x)]2
∂2

∂x2
.

• For any control law u, the partial differential
operator Au is defined by

Au = µu(t, x)
∂

∂x
+

1
2

[σu(t, x)]2
∂2

∂x2
.

• For any control law u, the process Xu is the solution
of the SDE

dXu
t = µ (t, Xu

t ,ut) dt + σ (t, Xu
t ,ut) dWt,

where
ut = u(t, Xu

t )
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Embedding the problem

For every fixed (t, x) the control problem P(t, x) is
defined as the problem to maximize

Et,x

[∫ T

t

F (s,Xu
s , us)ds + Φ (Xu

T )

]
,

given the dynamics

dXu
s = µ (s,Xu

s ,us) ds + σ (s,Xu
s ,us) dWs,

Xt = x,

and the constraints

u(s, y) ∈ U, ∀(s, y) ∈ [t, T ]×R.

The original problem was P(0, x0).
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The optimal value function

• The value function

J : R+ ×R× U → R

is defined by

J (t, x,u) = E

[∫ T

t

F (s,Xu
s ,us)ds + Φ (Xu

T )

]

given the dynamics above.

• The optimal value function

V : R+ ×R → R

is defined by

V (t, x) = sup
u∈U

J (t, x,u).

• We want to derive a PDE for V .

Tomas Björk, 2015 9



Assumptions

We assume:

• There exists an optimal control law û.

• The optimal value function V is regular in the sense
that V ∈ C1,2.

• A number of limiting procedures in the following
arguments can be justified.
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The Bellman Optimality Principle

Dynamic programming relies heavily on the following
basic result.

Proposition: If û is optimal on the time interval [t, T ]
then it is also optimal on every subinterval [s, T ] with
t ≤ s ≤ T .

Proof: Iterated expectations.
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Basic strategy

To derive the PDE do as follows:

• Fix (t, x) ∈ (0, T )×Rn.

• Choose a real number h (interpreted as a “small”
time increment).

• Choose an arbitrary control law u.

Now define the control law u? by

u?(s, y) =
{

u(s, y), (s, y) ∈ [t, t + h]×R
û(s, y), (s, y) ∈ (t + h, T ]×R.

In other words, if we use u? then we use the arbitrary
control u during the time interval [t, t + h], and then
we switch to the optimal control law during the rest of
the time period.
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Basic idea

The whole idea of DynP boils down to the following
procedure.

• Given the point (t, x) above, we consider the
following two strategies over the time interval [t, T ]:

I: Use the optimal law û.
II: Use the control law u? defined above.

• Compute the expected utilities obtained by the
respective strategies.

• Using the obvious fact that Strategy I is least as
good as Strategy II, and letting h tend to zero, we
obtain our fundamental PDE.
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Strategy values

Expected utility for strategy I:

J (t, x, û) = V (t, x)

Expected utility for strategy II:

• The expected utility for [t, t + h) is given by

Et,x

[∫ t+h

t

F (s,Xu
s ,us) ds

]
.

• Conditional expected utility over [t + h, T ], given
(t, x):

Et,x

[
V (t + h, Xu

t+h)
]
.

• Total expected utility for Strategy II is

Et,x

[∫ t+h

t

F (s,Xu
s ,us) ds + V (t + h, Xu

t+h)

]
.
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Comparing strategies

We have trivially

V (t, x) ≥ Et,x

[∫ t+h

t

F (s,Xu
s ,us) ds + V (t + h, Xu

t+h)

]
.

Remark
We have equality above if and only if the control law
u is an optimal law û.

Now use Itô to obtain

V (t + h, Xu
t+h) = V (t, x)

+
∫ t+h

t

{
∂V

∂t
(s,Xu

s ) +AuV (s,Xu
s )
}

ds

+
∫ t+h

t

∂V

∂x
(s,Xu

s )σudWs,

and plug into the formula above.
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We obtain

Et,x

[∫ t+h

t

[
F (s,Xu

s ,us) +
∂V

∂t
(s,Xu

s ) +AuV (s,Xu
s )
]

ds

]
≤ 0.

Going to the limit:
Divide by h, move h within the expectation and let h tend to zero.
We get

F (t, x, u) +
∂V

∂t
(t, x) +AuV (t, x) ≤ 0,
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Recall

F (t, x, u) +
∂V

∂t
(t, x) +AuV (t, x) ≤ 0,

This holds for all u = u(t, x), with equality if and only
if u = û.

We thus obtain the HJB equation

∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuV (t, x)} = 0.
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The HJB equation

Theorem:
Under suitable regularity assumptions the follwing hold:

I: V satisfies the Hamilton–Jacobi–Bellman equation

∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuV (t, x)} = 0,

V (T, x) = Φ(x),

II: For each (t, x) ∈ [0, T ] × R the supremum in the
HJB equation above is attained by u = û(t, x).
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Notation for the multi-dimensional case

• For any fixed vector u ∈ Rk, the functions µu, σu

and Cu are defined by

µu(t, x) = µ(t, x, u),

σu(t, x) = σ(t, x, u),

Cu(t, x) = σ(t, x, u)σ(t, x, u)′.

• For any control law u, the functions µu, σu, Cu(t, x)
and F u(t, x) are defined by

µu(t, x) = µ(t, x,u(t, x)),

σu(t, x) = σ(t, x,u(t, x)),

Cu(t, x) = σ(t, x,u(t, x))σ(t, x,u(t, x))′,

F u(t, x) = F (t, x,u(t, x)).
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Notation continued

• For any fixed vector u ∈ Rk, the partial differential
operator Au is defined by

Au =
n∑

i=1

µu
i (t, x)

∂

∂xi
+

1
2

n∑
i,j=1

Cu
ij(t, x)

∂2

∂xi∂xj
.

• For any control law u, the partial differential
operator Au is defined by

Au =
n∑

i=1

µu
i (t, x)

∂

∂xi
+

1
2

n∑
i,j=1

Cu
ij(t, x)

∂2

∂xi∂xj
.

• For any control law u, the process Xu is the solution
of the SDE

dXu
t = µ (t, Xu

t ,ut) dt + σ (t, Xu
t ,ut) dWt,

where
ut = u(t, Xu

t )
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Logic and problem

Note: We have shown that if V is the optimal value
function, and if V is regular enough, then V satisfies
the HJB equation. The HJB eqn is thus derived as
a necessary condition, and requires strong ad hoc
regularity assumptions.

Problem: Suppose we have solved the HJB equation.
Have we then found the optimal value function and
the optimal control law?

Answer: Yes! This follows from the Verification
tehorem.
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The Verification Theorem

Suppose that we have two functions H(t, x) and g(t, x), such

that

• H is sufficiently integrable, and solves the HJB equation8><>:
∂H

∂t
(t, x) + sup

u∈U
{F (t, x, u) +Au

H(t, x)} = 0,

H(T, x) = Φ(x),

• For each fixed (t, x), the supremum in the expression

sup
u∈U

{F (t, x, u) +Au
H(t, x)}

is attained by the choice u = g(t, x).

Then the following hold.

1. The optimal value function V to the control problem is given

by

V (t, x) = H(t, x).

2. There exists an optimal control law û, and in fact

û(t, x) = g(t, x)

.
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Handling the HJB equation

1. Consider the HJB equation for V .

2. Fix (t, x) ∈ [0, T ] × Rn and solve, the static optimization

problem

max
u∈U

[F (t, x, u) +Au
V (t, x)] .

Here u is the only variable, whereas t and x are fixed

parameters. The functions F , µ, σ and V are considered as

given.

3. The optimal û, will depend on t and x, and on the function

V and its partial derivatives. We thus write û as

û = û (t, x; V ) . (1)

4. The function û (t, x; V ) is our candidate for the optimal

control law, but since we do not know V this description is

incomplete. Therefore we substitute the expression for û into

the PDE , giving us the PDE

∂V

∂t
(t, x) + F

û
(t, x) +Aû

(t, x) V (t, x) = 0,

V (T, x) = Φ(x).

5. Now we solve the PDE above! Then we put the solution V

into expression (1). Using the verification theorem we can

identify V as the optimal value function, and û as the optimal

control law.
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Making an Ansatz

• The hard work of dynamic programming consists in
solving the highly nonlinear HJB equation

• There are no general analytic methods available
for this, so the number of known optimal control
problems with an analytic solution is very small
indeed.

• In an actual case one usually tries to guess a
solution, i.e. we typically make a parameterized
Ansatz for V then use the PDE in order to identify
the parameters.

• Hint: V often inherits some structural properties
from the boundary function Φ as well as from the
instantaneous utility function F .

• Most of the known solved control problems have,
to some extent, been “rigged” in order to be
analytically solvable.
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The Linear Quadratic Regulator

min
u∈Rk

E

[∫ T

0

{X ′
tQXt + u′tRut} dt + X ′

THXT

]
,

with dynamics

dXt = {AXt + But} dt + CdWt.

We want to control a vehicle in such a way that it stays
close to the origin (the terms x′Qx and x′Hx) while
at the same time keeping the “energy” u′Ru small.

Here Xt ∈ Rn and ut ∈ Rk, and we impose no control
constraints on u.

The matrices Q, R, H, A, B and C are assumed to be
known. We may WLOG assume that Q, R and H are
symmetric, and we assume that R is positive definite
(and thus invertible).
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Handling the Problem

The HJB equation becomes
∂V

∂t
(t, x) + infu∈Rk {x′Qx + u′Ru + [∇xV ](t, x) [Ax + Bu]}

+ 1
2

∑
i,j

∂2V
∂xi∂xj

(t, x) [CC ′]i,j = 0,

V (T, x) = x′Hx.

For each fixed choice of (t, x) we now have to solve the static unconstrained
optimization problem to minimize

u′Ru + [∇xV ](t, x) [Ax + Bu] .
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The problem was:

min
u

u′Ru + [∇xV ](t, x) [Ax + Bu] .

Since R > 0 we set the gradient to zero and obtain

2u′R = −(∇xV )B,

which gives us the optimal u as

û = −1
2
R−1B′(∇xV )′.

Note: This is our candidate of optimal control law,
but it depends on the unkown function V .

We now make an educated guess about the shape of
V .
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From the boundary function x′Hx and the term x′Qx
in the cost function we make the Ansatz

V (t, x) = x′P (t)x + q(t),

where P (t) is a symmetric matrix function, and q(t) is
a scalar function.

With this trial solution we have,

∂V

∂t
(t, x) = x′Ṗ x + q̇,

∇xV (t, x) = 2x′P,

∇xxV (t, x) = 2P

û = −R−1B′Px.

Inserting these expressions into the HJB equation we
get

x′
{

Ṗ + Q− PBR−1B′P + A′P + PA
}

x

+q̇ + tr[C ′PC] = 0.

Tomas Björk, 2015 28



We thus get the following matrix ODE for P{
Ṗ = PBR−1B′P −A′P − PA−Q,

P (T ) = H.

and we can integrate directly for q:{
q̇ = −tr[C ′PC],

q(T ) = 0.

The matrix equation is a Riccati equation. The
equation for q can then be integrated directly.

Final Result for LQ:

V (t, x) = x′P (t)x +
∫ T

t

tr[C ′P (s)C]ds,

û(t, x) = −R−1B′P (t)x.
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2. Portfolio Theory

• Problem formulation.

• An extension of HJB.

• The simplest consutmption-investment problem.

• The Merton fund separation results.
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Recap of Basic Facts

We consider a market with n assets.

Si
t = price of asset No i,

hi
t = units of asset No i in portfolio

wi
t = portfolio weight on asset No i

Xt = portfolio value

ct = consumption rate

We have the relations

Xt =
n∑

i=1

hi
tS

i
t, wi

t =
hi

tS
i
t

Xt
,

n∑
i=1

ui
t = 1.

Basic equation:
Dynamics of self financing portfolio in terms of relative
weights

dXt = Xt

n∑
i=1

wi
t

dSi
t

Si
t

− ctdt
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Simplest model
Assume a scalar risky asset and a constant short rate.

dSt = αStdt + σStdWt

dBt = rBtdt

We want to maximize expected utility over time

max
w0,w1,c

E

[∫ T

0

F (t, ct)dt

]
Dynamics

dXt = Xt

[
w0

t r + w1
t α
]
dt− ctdt + w1

t σXtdWt,

Constraints

ct ≥ 0, ∀t ≥ 0,

w0
t + w1

t = 1, ∀t ≥ 0.

Nonsense!
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What are the problems?

• We can obtain umlimited uttility by simply
consuming arbitrary large amounts.

• The wealth will go negative, but there is nothing in
the problem formulations which prohibits this.

• We would like to impose a constratin of type Xt ≥ 0
but this is a state constraint and DynP does not
allow this.

Good News:
DynP can be generalized to handle (some) problems
of this kind.
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Generalized problem

Let D be a nice open subset of [0, T ]×Rn and consider
the following problem.

max
u∈U

E

[∫ τ

0

F (s,Xu
s ,us)ds + Φ (τ,Xu

τ )
]

.

Dynamics:

dXt = µ (t, Xt, ut) dt + σ (t, Xt, ut) dWt,

X0 = x0,

The stopping time τ is defined by

τ = inf {t ≥ 0 |(t, Xt) ∈ ∂D} ∧ T.
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Generalized HJB

Theorem: Given enough regularity the follwing hold.

1. The optimal value function satisfies
∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuV (t, x)} = 0, ∀(t, x) ∈ D

V (t, x) = Φ(t, x), ∀(t, x) ∈ ∂D.

2. We have an obvious verification theorem.
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Reformulated problem

max
c≥0, w∈R

E

[∫ τ

0

F (t, ct)dt + Φ(XT )
]

where
τ = inf {t ≥ 0 |Xt = 0} ∧ T.

with notation:

w1 = w,

w0 = 1− w

Thus no constraint on w.

Dynamics

dXt = wt [α− r]Xtdt + (rXt − ct) dt + wσXtdWt,

Tomas Björk, 2015 36



HJB Equation

∂V

∂t
+ sup

c≥0,w∈R

(
F (t, c) + wx(α− r)

∂V

∂x
+ (rx− c)

∂V

∂x
+

1

2
x

2
w

2
σ

2∂2V

∂x2

)
= 0,

V (T, x) = 0,

V (t, 0) = 0.

We now specialize (why?) to

F (t, c) = e
−δt

c
γ
,

so we have to maximize

e
−δt

c
γ
+ wx(α− r)

∂V

∂x
+ (rx− c)

∂V

∂x
+

1

2
x

2
w

2
σ

2∂2V

∂x2
,
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Analysis of the HJB Equation

In the embedde static problem we maximize, over c
and w,

e−δtcγ +wx(α− r)
∂V

∂x
+(rx− c)

∂V

∂x
+

1
2
x2w2σ2∂

2V

∂x2
,

First order conditions:

γcγ−1 = eδtVx,

w =
−Vx

x · Vxx
· α− r

σ2
,

Ansatz:
V (t, x) = e−δth(t)xγ,

Because of the boundary conditions, we must demand
that

h(T ) = 0. (2)
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Given a V of this form we have (using · to denote the
time derivative)

∂V

∂t
= e−δtḣxγ − δe−δthxγ,

∂V

∂x
= γe−δthxγ−1,

∂2V

∂x2
= γ(γ − 1)e−δthxγ−2.

giving us

ŵ(t, x) =
α− r

σ2(1− γ)
,

ĉ(t, x) = xh(t)−1/(1−γ).

Plug all this into HJB!
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After rearrangements we obtain

xγ
{

ḣ(t) + Ah(t) + Bh(t)−γ/(1−γ)
}

= 0,

where the constants A and B are given by

A =
γ(α− r)2

σ2(1− γ)
+ rγ − 1

2
γ(α− r)2

σ2(1− γ)
− δ

B = 1− γ.

If this equation is to hold for all x and all t, then we
see that h must solve the ODE

ḣ(t) + Ah(t) + Bh(t)−γ/(1−γ) = 0,

h(T ) = 0.

An equation of this kind is known as a Bernoulli
equation, and it can be solved explicitly.

We are done.
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Merton’s Mutal Fund Theorems

1. The case with no risk free asset

We consider n risky assets with dynamics

dSi = Siαidt + SiσidW, i = 1, . . . , n

where W is Wiener in Rk. On vector form:

dS = D(S)αdt + D(S)σdW.

where

α =

 α1
...

αn

 σ =

 σ1
...

σn


D(S) is the diagonal matrix

D(S) = diag[S1, . . . , Sn].

Wealth dynamics

dX = Xw′αdt− cdt + Xw′σdW.
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Formal problem

max
c,w

E

[∫ τ

0

F (t, ct)dt

]
given the dynamics

dX = Xw′αdt− cdt + Xw′σdW.

and constraints

e′w = 1, c ≥ 0.

Assumptions:

• The vector α and the matrix σ are constant and
deterministic.

• The volatility matrix σ has full rank so σσ′ is positive
definite and invertible.

Note: S does not turn up in the X-dynamics so V is
of the form

V (t, x, s) = V (t, x)
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The HJB equation is
∂V

∂t
(t, x) + sup

e′w=1, c≥0

{F (t, c) +Ac,wV (t, x)} = 0,

V (T, x) = 0,

V (t, 0) = 0.

where

Ac,wV = xw′α
∂V

∂x
− c

∂V

∂x
+

1
2
x2w′Σw

∂2V

∂x2
,

and where the matrix Σ is given by

Σ = σσ′.

Tomas Björk, 2015 43



The HJB equation is8>>>><>>>>:
Vt(t, x) + sup

w′e=1, c≥0


F (t, c) + (xw

′
α− c)Vx(t, x) +

1

2
x

2
w
′
ΣwVxx(t, x)

ff
= 0,

V (T, x) = 0,

V (t, 0) = 0.

where Σ = σσ′.

If we relax the constraint w′e = 1, the Lagrange function for the static
optimization problem is given by

L = F (t, c) + (xw′α− c)Vx(t, x) +
1
2
x2w′ΣwVxx(t, x) + λ (1− w′e) .
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L = F (t, c) + (xw′α− c)Vx(t, x)

+
1
2
x2w′ΣwVxx(t, x) + λ (1− w′e) .

The first order condition for c is

∂F

∂c
(t, c) = Vx(t, x).

The first order condition for w is

xα′Vx + x2Vxxw′Σ = λe′,

so we can solve for w in order to obtain

ŵ = Σ−1

[
λ

x2Vxx
e− xVx

x2Vxx
α

]
.

Using the relation e′w = 1 this gives λ as

λ =
x2Vxx + xVxe′Σ−1α

e′Σ−1e
,
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Inserting λ gives us, after some manipulation,

ŵ =
1

e′Σ−1e
Σ−1e +

Vx

xVxx
Σ−1

[
e′Σ−1α

e′Σ−1e
e− α

]
.

We can write this as

ŵ(t) = g + Y (t)h,

where the fixed vectors g and h are given by

g =
1

e′Σ−1e
Σ−1e,

h = Σ−1

[
e′Σ−1α

e′Σ−1e
e− α

]
,

whereas Y is given by

Y (t) =
Vx(t, X(t))

X(t)Vxx(t, X(t))
.
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We had
ŵ(t) = g + Y (t)h,

Thus we see that the optimal portfolio is moving
stochastically along the one-dimensional “optimal
portfolio line”

g + sh,

in the (n − 1)-dimensional “portfolio hyperplane” ∆,
where

∆ = {w ∈ Rn |e′w = 1} .

If we fix two points on the optimal portfolio line, say
wa = g + ah and wb = g + bh, then any point w on
the line can be written as an affine combination of the
basis points wa and wb. An easy calculation shows
that if ws = g + sh then we can write

ws = µwa + (1− µ)wb,

where

µ =
s− b

a− b
.
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Mutual Fund Theorem

There exists a family of mutual funds, given by
ws = g + sh, such that

1. For each fixed s the portfolio ws stays fixed over
time.

2. For fixed a, b with a 6= b the optimal portfolio ŵ(t)
is, obtained by allocating all resources between the
fixed funds wa and wb, i.e.

ŵ(t) = µa(t)wa + µb(t)wb,

3. The relative proportions (µa, µb) of wealth allocated
to wa and wbare given by

µa(t) =
Y (t)− b

a− b
,

µb(t) =
a− Y (t)

a− b
.
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The case with a risk free asset

Again we consider the standard model

dS = D(S)αdt + D(S)σdW (t),

We also assume the risk free asset B with dynamics

dB = rBdt.

We denote B = S0 and consider portfolio weights
(w0, w1, . . . , wn)′ where

∑n
0 wi = 1. We then

eliminate w0 by the relation

w0 = 1−
n∑
1

wi,

and use the letter w to denote the portfolio weight
vector for the risky assets only. Thus we use the
notation

w = (w1, . . . , wn)′,

Note: w ∈ Rn without constraints.
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HJB

We obtain

dX = X · w′(α− re)dt + (rX − c)dt + X · w′σdW,

where e = (1, 1, . . . , 1)′.

The HJB equation now becomes
Vt(t, x) + sup

c≥0,w∈Rn
{F (t, c) +Ac,wV (t, x)} = 0,

V (T, x) = 0,

V (t, 0) = 0,

where

AcV = xw′(α− re)Vx(t, x) + (rx− c)Vx(t, x)

+
1
2
x2w′ΣwVxx(t, x).
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First order conditions

We maximize

F (t, c) + xw′(α− re)Vx + (rx− c)Vx +
1
2
x2w′ΣwVxx

with c ≥ 0 and w ∈ Rn.

The first order conditions are

∂F

∂c
(t, c) = Vx(t, x),

ŵ = − Vx

xVxx
Σ−1(α− re),

with geometrically obvious economic interpretation.
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Mutual Fund Separation Theorem

1. The optimal portfolio consists of an allocation
between two fixed mutual funds w0 and wf .

2. The fund w0 consists only of the risk free asset.

3. The fund wf consists only of the risky assets, and
is given by

wf = Σ−1(α− re).

4. At each t the optimal relative allocation of wealth
between the funds is given by

µf(t) = − Vx(t, X(t))
X(t)Vxx(t, X(t))

,

µ0(t) = 1− µf(t).
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3. The Martingale Approach

• Decoupling the wealth profile from the portfolio
choice.

• Lagrange relaxation.

• Solving the general wealth problem.

• Example: Log utility.

• Example: The numeraire portfolio.

• Computing the optimal portfolio.

• The Merton fund separation theorems from a
martingale perspective..
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Problem Formulation

Standard model with internal filtration

dSt = D(St)αtdt + D(St)σtdWt,

dBt = rBtdt.

Assumptions:

• Drift and diffusion terms are allowed to be arbitrary
adapted processes.

• The market is complete.

• We have a given initial wealth x0

Problem:
max
h∈H

EP [Φ(XT )]

where
H = {self financing portfolios}

given the initial wealth X0 = x0.
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Some observations

• In a complete market, there is a unique martingale
measure Q.

• Every claim Z satisfying the budget constraint

e−rTEQ [Z] = x0,

is attainable by an h ∈ H and vice versa.

• We can thus write our problem as

max
Z

EP [Φ(Z)]

subject to the constraint

e−rTEQ [Z] = x0.

• We can forget the wealth dynamics!
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Basic Ideas

Our problem was

max
Z

EP [Φ(Z)]

subject to
e−rTEQ [Z] = x0.

Idea I:

We can decouple the optimal portfolio problem:

• Finding the optimal wealth profile Ẑ.

• Given Ẑ, find the replicating portfolio.

Idea II:

• Rewrite the constraint under the measure P .

• Use Lagrangian techniques to relax the constraint.
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Lagrange formulation

Problem:
max

Z
EP [Φ(Z)]

subject to
e−rTEP [LTZ] = x0.

Here L is the likelihood process, i.e.

LT =
dQ

dP
, on FT

The Lagrangian of this is

L = EP [Φ(Z)] + λ
{
x0 − e−rTEP [LTZ]

}
i.e.

L = EP
[
Φ(Z)− λe−rTLTZ

]
+ λx0

Tomas Björk, 2015 57



The optimal wealth profile

Given enough convexity and regularity we now expect,
given the dual variable λ, to find the optimal Z by
maximizing

L = EP
[
Φ(Z)− λe−rTLTZ

]
+ λx0

over unconstrained Z, i.e. to maximize∫
Ω

{
Φ(Z(ω))− λe−rTLT (ω)Z(ω)

}
dP (ω)

This is a trivial problem!

We can simply maximize Z(ω) for each ω separately.

max
z

{
Φ(z)− λe−rTLTz

}
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The optimal wealth profile

Our problem:

max
z

{
Φ(z)− λe−rTLTz

}
First order condition

Φ′(z) = λe−rTLT

The optimal Z is thus given by

Ẑ = G
(
λe−rTLT

)
where

G(y) = [Φ′]−1 (y).

The dual varaiable λ is determined by the constraint

e−rTEP
[
LT Ẑ

]
= x0.
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Example – log utility

Assume that
Φ(x) = ln(x)

Then

g(y) =
1
y

Thus

Ẑ = G
(
λe−rTLT

)
=

1
λ
erTL−1

T

Finally λ is determined by

e−rTEP
[
LT Ẑ

]
= x0.

i.e.

e−rTEP

[
LT

1
λ
erTL−1

T

]
= x0.

so λ = x−1
0 and

Ẑ = x0e
rTL−1

T
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The Numeraire Portfolio

Standard approach:

• Choose a fixed numeraire (portfolio) N .

• Find the corresponding martingale measure, i.e. find QN s.t.

B

N
, and

S

N

are QN -martingales.

Alternative approach:

• Choose a fixed measure Q.

• Find numeraire N such that Q = QN .

Special case:

• Set Q = P

• Find numeraire N such that QN = P i.e. such that

B

N
, and

S

N

are QN -martingales under the objective measure P .

• This N is the numeraire portfolio.
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Log utility and the numeraire portfolio

Definition:
The growth optimal portfolio (GOP) is the portfolio
which is optimal for log utility (for arbitrary terminal
date T .

Theorem:
Assume that X is GOP. Then X is the numeraire
portfolio.

Proof:
We have to show that the process

Yt =
St

Xt

is a P martingale. From above we know that

XT = x0e
rTL−1

T .

We also have (why?)

Xt = e−r(T−t)EQ [XT | Ft] = e−r(T−t)EP

[
XTLT

Lt

∣∣∣∣Ft

]
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Thus

Xt = e−r(T−t)EP

[
XTLT

Lt

∣∣∣∣Ft

]
= e−r(T−t)EQ

[
x0e

rTLT

LTLt

∣∣∣∣Ft

]
= x0e

rtL−1
t .

as expected.

Thus

St

Xt
= x−1

0 e−rtStLt

which is a P martingale, since x−1
0 e−rtSt is a Q

martingale.
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Back to general case: Computing LT

We recall
Ẑ = G

(
λe−rTLT

)
.

The likelihood process L is computed by using
Girsanov. We recall

dSt = D(St)αtdt + D(St)σtdWt,

We know from Girsanov that

dLt = Ltϕ
?
tdWt

so
dWt = ϕtdt + dWQ

t

where WQ is Q-Wiener.

Thus

dSt = D(St) {αt + σtϕt} dt + D(St)σtdWQ
t ,
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Computing LT , continued

Recall

dSt = D(St) {αt + σtϕt} dt + D(St)σtdWQ
t ,

The kernel ϕ is determined by the martingale measure
condition

αt + σtϕt = r
where

r =

 r
...
r


Market completeness implies that σt is invertible so

ϕt = σ−1
t {r− αt}

and

LT = exp

(∫ T

0

ϕtdWt −
1
2

∫ T

0

‖ϕt‖2dt

)
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Finding the optimal portfolio

• We can easily compute the optimal wealth profile.

• How do we compute the optimal portfolio?

Recall:

dSt = D(St)αtdt + D(St)σtdWt,

wealth dynamics

dXt = hB
t dBt + hS

t dSt

or
dXt = Xtu

B
t rdt + Xtu

S
t D(St)−1dSt

where

hS = (h1, . . . , hn), uS = (u1, . . . , un)

Assume for simplicity that r = 0 or consider normalized
prices.
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Recall wealth dynamics

dXt = hS
t dSt

alternatively

dXt = hS
t D(St)σtdWQ

t

alternatively
dXt = Xtu

S
t σtdWQ

t

Obvious facts:

• X is a Q martingale.

• XT = Ẑ

Thus the optimal wealth process is determined by

Xt = EQ
[
Ẑ
∣∣∣Ft

]

Tomas Björk, 2015 67



Recall
Xt = EQ

[
Ẑ
∣∣∣Ft

]
Martingale representation theorem gives us

dXt = ξtdWQ
t ,

but also

dXt = Xtu
S
t σtdWQ

t

dXt = hS
t D(St)σtdWQ

t

Thus uS and hS
t are determined by

uS
t =

1
Xt

ξtσ
−1
t

hS
t = ξtσ

−1
t D(St)−1.

and
uB

t = 1− uS
t e, hB

t = Xt − hS
t St
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How do we find ξ?

Recall

Xt = EQ
[
Ẑ
∣∣∣Ft

]
dXt = ξtdWQ

t ,

We need to compute ξ.

In a Markovian framework this follows direcetly from
the Itô formula.

Recall
Ẑ = H(LT ) = G (λLT )

where
G = [Φ′]−1

and

dLt = Ltϕ
?
tdWt,

dW = ϕdt + dWQ
t

so
dLt = Lt‖ϕt‖2dt + Ltϕ

?
tdWQ

t
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Finding ξ

If the model is Markovian we have

αt = α(St), σt = σ(St), ϕt = σ(St)−1 {α(St)− r}

so

Xt = EQ [H(LT )| Ft]

dSt = D(St)σ(St)dWQ
t ,

dLt = Lt‖ϕ(St)‖2dt + Ltϕ(St)?dWQ
t

Thus we have

Xt = F (t, St, Lt)

where, by the Kolmogorov backward equation

Ft + L‖ϕ‖2FL +
1
2
L2‖ϕ‖2FLL +

1
2
tr {σFssσ

?} = 0,

F (T, s, L) = H(L)
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Finding ξ, contd.

We had

Xt = F (t, St, Lt)

and Itô gives us

dXt = {FSD(St)σ(St) + FLLtϕ
?(St)} dWt

Thus

ξt = FSD(St)σ(St) + FLLtϕ
?(St).

and

uS
t =

1
Xt

ξtσ(St)−1

hS
t = ξtσ(St)−1D(St)−1.
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Mutual Funds – Martingale Version

We now assume constant parameters

α(s) = α, σ(s) = σ, ϕ(s) = ϕ

We recall

Xt = EQ [H(LT )| Ft]

dLt = Lt‖ϕ‖2dt + Ltϕ
?dWQ

t

Now L is Markov so we have (without any S)

Xt = F (t, Lt)

Thus

ξt = FLLtϕ
?, uS

t =
FLLt

Xt
ϕ?σ−1

and we have fund separation with the fixed risky fund
given by

w = ϕ?σ−1 = {r? − α?} {σσ?}−1
.
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3. Filtering theory

• Motivational problem.

• The Innovations process.

• The non-linear FKK filtering equations.

• The Wonham filter.

• The Kalman filter.
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An investment problem with stochastic
rate of return

Model:

dSt = Stα(Yt)dt + StσdWt

W is scalar and Y is some factor process. We assume
that (S, Y ) is Markov and adapted to the filtration F.

Wealth dynamics

dXt = Xt [r + ut (α− r)] dt + utXtσdWt

Objective:
max

u
EP [Φ(XT )]

Information structure:

• Complete information: We observe S and Y , so
u ∈ F

• Incomplete information: We only observe S, so
u ∈ FS. We need filtering theory.
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Filtering Theory – Setup

Given some filtration F :

dYt = atdt + dMt

dZT = btdt + dWt

Here all processes are F adapted and

Y = signal process,

Z = observation process,

M = martingale w.r.t. F

W = Wiener w.r.t. F

We assume (for the moment) that M and W are
independent.

Problem:
Compute (recursively) the filter estimate

Ŷt = Πt [Y ] = E
[
Yt| FZ

t

]
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The innovations process

Recall:
dZT = btdt + dWt

Our best guess of bt is b̂t, so the genuinely new
information should be

dZt − b̂tdt

The innovations process ν is defined by

νt = dZt − b̂tdt

Theorem: The process ν is FZ-Wiener.

Proof: By Levy it is enough to show that

• ν is an FZ martingale.

• ν2
t − t is an FZ martingale.
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I. ν is an FZ martingale:

From definition we have

dνt =
(
bt − b̂t

)
dt + dWt (3)

so

EZ
s [νt − νs] =

∫ t

s

EZ
s

[
bu − b̂u

]
du + EZ

s [Wt −Ws]

=
∫ t

s

EZ
s

[
EZ

u

[
bu − b̂u

]]
du + EZ

s [Es [Wt −Ws]] = 0

I. ν2
t − t is an FZ martingale:

From Itô we have

dν2
t = 2νtdνt + (dνt)

2

Here dν is a martingale increment and from (3) it
follows that (dνt)

2 = dt.
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Remark 1:
The innovations process gives us a Gram-Schmidt
orthogonalization of the increasing family of Hilbert
spaces

L2(FZ
t ); t ≥ 0.

Remark 2:
The use of Itô above requires general semimartingale
integration theory, since we do not know a priori that
ν is Wiener.
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Filter dynamics

From the Y dynamics we guess that

dŶt = âtdt + martingale

Definition: dmt = dŶt − âtdt.

Proposition: m is an FZ
t martingale.

Proof:

EZ
s [mt −ms] = EZ

s

[
Ŷt − Ŷs

]
− EZ

s

[∫ t

s

âudu

]
= EZ

s [Yt − Ys]− EZ
s

[∫ t

s

âudu

]
= EZ

s [Mt −Ms]− EZ
s

[∫ t

s

(au − âu) du

]
= EZ

s [Es [Mt −Ms]]− EZ
s

[∫ t

s

EZ
u [au − âu] du

]
= 0
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Filter dynamics

We now have the filter dynamics

dŶt = âtdt + dmt

where m is an FZ
t martingale.

If the innovations hypothesis

FZ
t = Fν

t

is true, then the martingale representation theorem
would give us an FZ

t adapted process h such that

dmt = htdνt (4)

The innovations hypothesis is not generally correct but
FKK have proved that in fact (4) is always true.
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Filter dynamics

We thus have the filter dynamics

dŶt = âtdt + htdνt

and it remains to determine the gain process h.

Proposition: The process h is given by

ht = Ŷtbt − Ŷtb̂t

We give a slighty heuristic proof.
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Proof scetch

From Itô we have

d (YtZt) = Ytbtdt + YtdWt + Ztatdt + ZtdMt

using
dŶt = âtdt + htdνt

and
dZt = b̂tdt + dνt

we have

d
(
ŶtZt

)
= Ŷtb̂tdt + Ŷtdνt + Ztâtdt + Zthtdνt + htdt

Formally we also should have

E
[
d (YtZt)− d

(
ŶtZt

)∣∣∣FZ
t

]
= 0

which gives us(
Ŷtbt − Ŷtb̂t − ht

)
dt = 0.
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The filter equations

For the model

dYt = atdt + dMt

dZT = btdt + dWt

where M and W are independent, we have the FKK
non-linear filter equations

dŶt = âtdt +
{

Ŷtbt − Ŷtb̂t

}
dνt

dνt = dZt − b̂tdt

Remark: It is easy to see that

ht = E
[(

Yt − Ŷt

)(
bt − b̂t

)∣∣∣FZ
t

]
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The general filter equations

For the model

dYt = atdt + dMt

dZT = btdt + σtdWt

where

• The process σ is FZ
t adapted and positive.

• There is no assumption of independence between
M and W .

we have the filter

dŶt = âtdt +
[
D̂t +

1
σt

{
Ŷtbt − Ŷtb̂t

}]
dνt

dνt =
1
σt

{
dZt − b̂tdt

}
dDt =

d〈M,W 〉t
dt
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Comment on 〈M,W 〉

This requires semimartingale theory but there are two
simple cases

• If M is Wiener then

d〈M,W 〉t = dMtdWt

with usual multiplication rules.

• If M is a pure jump process then

d〈M,W 〉t = 0.
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Filtering a Markov process

Assume that Y is Markov with generator G. We
want to compute Πt [f(Yt)], for some nice function f .
Dynkin’s formula gives us

df(Yt) = (Gf) (Yt)dt + dMt

Assume that the observations are

dZt = b(Yt)dt + dWt

where W is independent of Y .

The filter equations are now

dΠt [f ] = Πt [Gf ] dt + {Πt [fb]−Πt [f ] Πt [b]} dνt

dνt = dZt −Πt [b] dt

Remark: To obtain dΠt [f ] we need Πt [fb] and Πt [b].
This leads generically to an infinite dimensional system
of filter equations.
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On the filter dimension

dΠt [f ] = Πt [Gf ] dt + {Πt [fb]−Πt [f ] Πt [b]} dνt

• To obtain dΠt [f ] we need Πt [fb] and Πt [b].

• Thus we apply the FKK equations to Gf and b.

• This leads to new filter estimates to determine and
generically to an infinite dimensional system of
filter equations.

• The filter equations are really equations for the
entire conditional distribution of Y .

• You can only expect the filter to be finite
when the conditional distribution of Y is finitely
parameterized.

• There are only very few examples of finite
dimensional filters.

• The most well known finite filters are the Wonham
and the Kalman filters.
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The Wonham filter

Assume that Y is a continuous time Markov chain on
the state space {1, . . . , n} with (constant) generator
matrix H. Define the indicator processes by

δi(t) = I {Yt = i} , i = 1, . . . , n.

Dynkin’s formula gives us

dδi
t =

∑
j

H(j, i)δjdt + dM i
t , i = 1, . . . , n.

Observations are

dZt = b(Yt)dt + dWt.

Filter equations:

dΠt [δi] =
∑

j

H(j, i)Πt [δj] dt+{Πt [δib]−Πt [δi] Πt [b]} dνt

dνt = dZt −Πt [b] dt
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We note that

b(Yt) =
∑

i

b(i)δi(t)

so

Πt [δib] = b(i)Πt [δi] ,

Πt [b] =
∑

j

b(j)Πt [δj]

We finally have the Wonham filter

dδ̂i =
∑

j

H(j, i)δ̂jdt +

b(i)δ̂i − δ̂i

∑
j

b(j)δ̂j

 dνt,

dνt = dZt −
∑

j

b(j)δ̂jdt
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The Kalman filter

dYt = aYtdt + cdVt,

dZt = Ytdt + dWt

W and V are independent Wiener

FKK gives us

dΠt [Y ] = aΠt [Y ] dt +
{

Πt

[
Y 2
]
− (Πt [Y ])2

}
dνt

dνt = dZt −Πt [Y ] dt

We need Πt

[
Y 2
]
, so use Itô to get write

dY 2
t =

{
2aY 2

t + c2
}

dt + 2cYtdVt

From FKK:

dΠt

[
Y 2
]

=
{
2aΠt

[
Y 2
]
+ c2

}
dt

+
{
Πt

[
Y 3
]
−Πt

[
Y 2
]
Πt [Y ]

}
dνt

Now we need Πt

[
Y 3
]
! Etc!
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Define the conditional error variance by

Ht = Πt

[
(Yt −Πt [Y ])2

]
= Πt

[
Y 2
]
− (Πt [Y ])2

Itô gives us

d (Πt [Y ])2 =
[
2a (Πt [Y ])2 + H2

]
dt + 2Πt [Y ]Hdνt

and Itô again

dHt =
{
2aHt + c2 −H2

t

}
dt

+
{

Πt

[
Y 3
]
− 3Πt

[
Y 2
]
Πt [Y ] + 2 (Πt [Y ])3

}
dνt

In this particular case we know (why?) that the
distribution of Y conditional on Z is Gaussian!

Thus we have

Πt

[
Y 3
]

= 3Πt

[
Y 2
]
Πt [Y ]− 2 (Πt [Y ])3

so H is deterministic (as expected).
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The Kalman filter

Model:

dYt = aYtdt + cdVt,

dZt = Ytdt + dWt

Filter:

dΠt [Y ] = aΠt [Y ] dt + Htdνt

Ḣt = 2aHt + c2 −H2
t

dνt = dZt −Πt [Y ] dt

Ht = Πt

[
(Πt [Yt]−Πt [Y ])2

]

Remark: Because of the Gaussian structure, the
conditional distribution evolves on a two dimensional
submanifold. Hence a two dimensional filter.
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Optimal investment with stochastic rate
of return

• A market model with a stochastic rate of return.

• Optimal portolios under complete information.

• Optimal portfolios under partial information.
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An investment problem with stochastic
rate of return

Model:

dSt = Stα(Yt)dt + StσdWt

W is scalar and Y is some factor process. We assume
that (S, Y ) is Markov and adapted to the filtration F.

Wealth dynamics

dXt = Xt {r + ut [α(Yt)− r]} dt + utXtσdWt

Objective:
max

u
EP [Xγ

T ]

We assume that Y is a Markov process. with generator
A. We will treat several cases.
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A. Full information, Y and W

independent.

The HJB equation for F (t, x, y) becomes

Ft+sup
u

{
u [α− r]xFx + rxFx +

1
2
u2x2σ2Fxx

}
+AF = 0

where A operates on the y-variable. Obvious boundary
condition

F (t, x, y) = xγ

First order condition gives us:

û =
r − α

xσ2
· Fx

Fxx

Plug into HJB:

Ft −
(α− r)2

2σ2

F 2
x

Fxx
+ rxFx +AF = 0
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Ansatz:
F (T, x, y) = xγG(t, y)

Ft = xγGt, Fx = γxγ−1G, Fxx = γ(γ − 1)xγ−2G

Plug into HJB:

xγGt + xγ (α− r)2

2σ2
βG + rγxγG + xγAG = 0

where β = γ/(γ − 1).

Gt(t, y) + H(y)G(t, y) +AG(t, y) = 0,

G(T, y) = 1.

here

H(y) = rγ − [α(y)− r]2

2σ2
β

Kolmogorov gives us

H(y) = Et,y

[
e

R T
t H(Ys)ds

]
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B. Full information, Y and W dependent.

Now we allow for dependence but restrict Y to
dynamics of the form.

dSt = Stα(Yt)dt + StσdWt

dXt = Xt {r + ut [α(Yt)− r]} dt + utXtσdWt

dYt = a(Yt)dt + b(Yt)dWt

with the same Wiener process W driving both S and
Y . The imperfectly correlated case is a bit more messy
but can also be handled.

HJB Equation for F (t, x, y):

Ft + aFy +
1

2
b
2
Fyy + rxFx

+ sup
u


u [α− r] xFx +

1

2
u

2
x

2
σ

2
Fxx + uxbσFxy

ff
= 0.
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Ansatz.

HJB:

Ft + aFy +
1
2
b2Fyy + rxFx

+sup
u

{
u [α− r]xFx +

1
2
u2x2σ2Fxx + uxbσFxy

}
= 0.

After a lot of thinking we make the Ansatz

F (t, x, y) = xγh1−γ(t, y)

and then it is not hard to see that h satisfies a standard
parabolic PDE. (Plug Ansatz into HJB).

See Zariphopoulou for details and more complicated
cases. See Björk-Davis-Landn for a different approach.
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C. Partial information.

Model:

dSt = Stα(Yt)dt + StσdWt

Assumption: Y cannot be observed directly.

Reruirement: The control u must be FS
t adapted.

We thus have a partially observed system.

Idea: Project the S dynamics onto the smaller FS
t

filtration and add filter equations in order to reduce
the problem to the completely observable case.

Define Z by

dZt =
dSt

σSt

and note (why?) that FZ
t = FS

t . We have

dZt =
α(Yt)

σ
dt + dWt
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Projecting onto the S-filtration

Recall that

dZt =
αYt

σ
dt + σdWt

From filtering theory we know that

dZt =
α̂t

σ
dt + σdνt

where ν is FS
t -Wiener and

α̂t = E
[
α(Yt)| FS

t

]
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Projecting onto the S-filtration ct’d

Recall

dZt =
dSt

σSt

dZt =
α̂t

σ
dt + σdνt

From these equations we have have the following S
dynamics on the S filtration

dSt = Stα̂tdt + Stσdνt

and wealth dynamics

dXt = Xt {r + ut (α̂t − r)} dt + utXtσdνt
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Reformulated problem

We now have the problem

max
u

E [Xγ
T ]

for Z-adapted controls given wealth dynamics

dXt = Xt {r + ut (α̂t − r)} dt + utXtσdνt

If we now can model Y such that the (linear!)
observation dynamics for Z will produce a finite
filter for α̂, then we are back in the completely
observable case with α(Yt) replaced by α̂t.

We neeed a finite dimensional filter!

Two choices for Y

• Linear Y dynamics. This will give us the Kalman
filter. See Brendle

• Y as a Markov chain. This will give us the Wonham
filter. See Bäuerle and Rieder.
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Kalman case (Brendle)

Assume that

dSt = YtStdt + StσdWt

with Y dynamics

dYt = aYtdt + cdVt

where W and V are independent. Observations:

dZt =
Yt

σ
dt + dWt

We have a standard Kalman filter.

Wealth dynamics

dXt = Xt

{
r + ut

(
Ŷt − r

)}
dt + utXtσdνt
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Kalman case, solution.

max
u

E [Xγ
T ]

dXt = Xt

{
r + ut

(
Ŷt − r

)}
dt + utXtσdνt

dŶt = aŶtdt + Htσdνt

where H is deterministic and given by a Riccatti
equation.

We are back in standard completly observable case
with state variables X and Ŷ .

Thus the optimal value function is of the form

F (t, x, ŷ) = xγh1−γ(t, ŷ)

where h solves a parabolic PDE and can be computed
explicitly.
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