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Abstract

Synthetic variance swap rates, computed from currency option implied volatility quotes

using the vanna-volga method, are compared to realized exchange rate variance in an effort

to determine the existence of a variance risk premium. Due to conflicting results for different

time periods and different currency pairs, no conclusion is reached. The variance swap rate

consistent with vanna-volga prices is found to be given by a simple expression, but may

significantly underestimate the true variance swap rate. Since for currency variance swaps

the notional amount could be given in either of the two involved currencies there are two

variance swap rates. The difference between the two rates is explored and is found to be

small and determined by the slope of the implied volatility smile.
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1 Introduction

A variance swap is a contract which pays the difference between the realized variance of price

movements of an underlying financial asset, and a fixed variance swap rate, times a notional

amount. Thus it is a forward contract on the realized variance. Since the realized variance can

be replicated using European options of the same maturity, the variance swap rate is more or less

uniquely determined by option prices. This variance swap rate is the risk neutral expectation

of the realized variance. It is interesting to investigate whether this risk neutral expectation

is equal to the “real world” expectation. If not, a variance risk premium can be said to exist

(assuming investors have rational expectations).

In this study synthetic variance swap rates computed from implied volatility data on cur-

rency options are compared to realized variance, in order to determine the existence of variance

risk premium in currency options.

For exchange rates there are two notions of risk neutral expected variance. A variance swap

could be denominated in either of the two involved currencies. Hence there are two variance

swap rates, one where the notional amount is in the domestic currency and one where it is

in the foreign currency. The difference between the two rates is captured by the slope of

the implied volatility smile. For example, options on the usdjpy exchange rate often exhibit

a steep downward sloping implied volatility smile; (out-of-the-money) usd calls have lower

implied volatility than usd puts. It is showed that this implies that the variance swap rate of

a dollar denominated variance swap is lower than that of a yen denominated variance swap. It

is therefore interesting to investigate variance swap return from both the foreign and domestic

perspective and to study the difference between the two rates.

Synthetic variance swap returns have previously been used to quantify the variance risk

premium in index options and options on individual stocks. Strongly significant negative risk

premiums have been found, particularly in index options, by Petersson and Šarić (2008), Carr

and Wu (2007) and Bondarenko (2007) among others.

In other work evidence of a variance/volatility risk premium in currency options have been

found using other methods. Jorion (1995) investigates the predictive power of Black-Scholes

implied volatilities in futures options on the German mark, Japanese yen and Swiss franc and

finds that implied volatility is a biased estimate of realized volatility. Guo (1998) uses a para-

metric approach where parameters of the Heston (1993) model are estimated from options on

the usddem exchange rate between 1987 and 1992. Evidence of a negative variance risk pre-

mium is found. Sarwar (2001) investigates the volatility risk premium in options traded on the

Philadelphia Stock Exchange, using a parametric specification based on the Heston model. No

significant volatility risk premium is found in options on the British pound. Low and Zhang

(2005) calculate the returns from delta hedged straddles. They find that these returns are re-

lated to the volatility risk premium. Evidence of negative risk premiums is found in options on
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the British pound, the euro, the Japanese yen and the Swiss franc against the u.s. dollar.

The synthetic variance swap approach has the advantage of not relying on a particular model

of the underlying price process. (This also applies to the method used by Low and Zhang.)

Moreover the returns on variance swaps are independent of the sign of price movements and of

the underlying price level.

It is also important to consider how variance swap returns are related to returns on other

investment opportunities. A possible explanation for the variance risk premium found in stock

and index options is the negative correlation between variance and stock market returns. In

the capital asset pricing model this means that long variance swaps have negative beta and

therefore a negative excess return should be expected (since the expected return of the market

portfolio is assumed to be positive). This explanation is tested by Petersson and Šarić (2008)

and Carr and Wu (2007) in a capm framework. It is found that the capm beta only partially

explains the variance risk premium, meaning that variance swap returns have negative alpha.

If currency volatility too is negatively correlated with stock market returns this could be an

explanation of the variance risk premium, if there is one. In other words, the premium earned

by sellers of currency variance is in this model compensation for bearing systematic risk.

The paper is organized as follows. Section 2 deals with the theory of the variance risk

premium. In section 3 the replication of variance swaps is described and some properties of

the foreign variance swap rate are derived. Section 4 outlines the methodology of the empirical

analysis. Section 5 reports the results. In section 6 the accuracy of the method is investigated

and section 7 concludes the paper.

2 The Variance Risk Premium

The variance risk premium of a time period [t, T ] is the difference between the time t expectation

of the realized variance with respect to the risk neutral measure and the expectation with respect

to the objective probability measure.

As shown by Carr and Wu (2007) the variance risk premium can be expressed in terms of

the covariance with a pricing kernel. Let EQ
t denote the expectation with respect to the measure

Q conditional on the filtration Ft. Absence of arbitrage implies the existence of a martingale

measure Q with respect to which the expected value of any time T payoff is its forward price

(Björk, 2004).1 The variance swap rate KVt,T (which is the forward price of realized variance,

determined by vanilla option prices) can therefore be written

KVt,T = EQ
t [RVt,T ] .

Define LT as the Radon-Nikodym derivative of Q with respect to the objective probability

1This is the T -forward measure, with the price of a zero-coupon bond as numeraire.
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measure P on FT ,

LT =
dQ
dP

on FT .

Using Bayes’ formula this can be rewritten as

KVt,T =
EP
t [LTRVt,T ]
EP
t [LT ]

. (1)

This can be decomposed into

KVt,T = EP
t [RVt,T ] + CovP

t

[
LT

EP
t [LT ]

,RVt,T

]
.

Thus the variance swap rate is the expected realized variance plus the covariance with the

pricing kernel. Carr and Wu define the negative of the covariance term as the variance risk

premium and note that the sample average of the difference between the realized variance and

the variance swap rate is an estimate of the average risk premium.

Dividing by KVt,T and rearranging

EP
t

[
RVt,T

KVt,T
− 1
]

= −CovP
t

[
LT

EP
t [LT ]

,
RVt,T

KVt,T
− 1
]
.

This captures the variance excess return since the cost of the realized variance is the discounted

variance swap rate. In line with Bondarenko (2007), in this investigation the variance risk

premium is measured as the sample average of variance swap excess returns defined by

R̂Pt,T =
RVt,T

KVt,T
− 1.

The null-hypothesis to be tested states that the market is indifferent to variance risk in which

case the covariance terms would be zero and the sample average of R̂Pt,T for a large number of

observations would be close to zero.

Alternatively it could be measured as the average of RVt,T − KVt,T as in Carr and Wu

(2007) and Petersson and Šarić (2008). But as Bondarenko points out the magnitude of this

difference is positively related to the variance swap rate. And because the variance swap rate

tend to vary, this quantity is much more heteroskedastic. This estimate puts greater weight on

observations where the swap rate is high.

Both Carr and Wu (2007) and Petersson and Šarić (2008) also measure the log variance risk

premium, defined as

ln
rvt,T
kvt,T

.

But this quantity cannot be used to test the hypothesis of indifference to variance risk since,

even if KVt,T = EP
t [RVt,T ], by Jensen’s inequality

EP
t

[
ln RVt,T

KVt,T

]
≤ ln EP

t

[
RVt,T

KVt,T

]
= 0.
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The capital asset pricing model is the special case where the pricing kernel is a linear function

of the return on the market portfolio. The expected excess return of an asset is the product of

its market portfolio beta and the expected excess return of the market portfolio. Hence

EP
t

[
RVt,T

KVt,T
− 1
]

=
CovP

t

[
ERm

t,T ,
RVt,T

KVt,T
− 1
]

VarP
t ERm

t,T

EP
t ERm

t,T ,

where ERm
t,T is the excess return of the market portfolio. If σ is the relative risk aversion,

EP
t ERm

t,T = σVarP
t ERm

t,T (Smith and Wickens, 2002). Therefore the above is equivalent to

equation 1 with
LT

EP
t [LT ]

= 1 + EP
t

[
σERm

t,T

]
− σERm

t,T .

3 Replicating the Realized Variance Using Options

The realized variance in a variance swap is defined as

RV =
Ny

N

N∑
i=1

ln
(

Si
Si−1

)2

. (2)

where N is the number of business days between inception and expiry, Ny is the number of

business days in a year and Si is the price of the underlying asset on day i. Let Fi be the

forward price of the underlying on day i for delivery at the time of maturity. Define

Ri = ln
Si
Si−1

, Yi = ln
Fi
Fi−1

.

Consider the following payoff

f(FN ) = − ln
FN
F0

+
FN − F0

F0
. (3)

at maturity and the terminal value of a dynamic strategy consisting of on day day i− 1 holding

forwards contracts to buy 1
Fi−1
− 1

F0
units of the underlying. This approximately replicates the
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realized variance since

− ln
FN
F0

+
FN − F0

F0
+

N∑
i=1

(
1

Fi−i
− 1
F0

)
(Fi − Fi−i)

=
N∑
i=1

[(
1

Fi−i
− 1
F0

)
(Fi − Fi−i)− ln

Fi
Fi−1

]
+
FN − F0

F0

=
N∑
i=1

[
Fi − Fi−1

Fi−1
− ln

Fi
Fi−1

]

=
N∑
i=1

[
eYi − 1− Yi

]
=

N∑
i=1

1
2
Y 2
i +

N∑
i=1

∞∑
j=3

Y j
i

j!

=
N∑
i=1

1
2
R2
i +

N∑
i=1

Ri(Yi −Ri) +
1
2

(Ri − Yi)2 +
∞∑
j=3

Y j
i

j!

 .

This follows from Taylor expansion of the exponential function. The first term is the desired

sum of squared relative price movements. The second term is a replication error which is related

to the difference between movements of the spot price and of the forward price and to the higher

moments of the price movements. The approximation is better when price movements are small

(volatility is low), when the distribution of price movements is symmetric and platykurtic and

when the difference between the variance of the forward price and of the spot price is small.

By differentiating the pay off f(F ) it can be seen that the dynamic forward strategy amounts

to delta hedging of the (forward) intrinsic value of the payoff, or equivalently delta hedging at

zero volatility. Differentiating again reveals that the gamma of the payoff at zero volatility is

proportional to 1
F 2 which explains why the leading term of the daily profit or loss is proportional

to the square of relative price movements, as intended.

As is shown in Carr and Madan (1998), in continuous time, assuming diffusion dynamics

for the price process, when the realized variance is the quadratic variation of the logarithm

of the price and interest rates are deterministic, and the replicating strategy is carried out

continuously, the replication error is exactly zero.

Ignoring the replication error, the variance swap rate should equal the forward price of the

payoff f(FN ). Carr and Madan (1998) also show that this payoff can be constructed by a

continuum of European out of the money put and call options with strikes between zero and
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infinity, weighted by the square of the inverse of the strike since2∫ F0

0

1
K2

(K − FN )+dK +
∫ ∞
F0

1
K2

(FN −K)+dK

=


∫ F0

FN

K−FN
K2 dK if FN < F0,∫ FN

F0

FN−K
K2 dK if FN > F0

=
∫ FN

F0

FN −K
K2

dK

= − ln
FN
F0

+
FN − F0

F0
.

(4)

And so, the forward price of realized variance as defined in (2) should equal

KV = 2
Ny

N

(∫ F0

0

1
K2

P (K)dK +
∫ ∞
F0

1
K2

C(K)dK
)
, (5)

where P (K) and C(K) are the forward prices of put and call options with strike K.

3.1 The foreign variance swap rate

If the underlying is an exchange rate the variance swap rate defined in (5) is the price of the

realized variance in the domestic currency. This is the variance swap rate when the notional

amount is in the domestic currency. What is the variance swap rate when the notional amount

is in the foreign currency? The replicating portfolio will contain a different set of options.

To simplify things, let us consider a variance swap on the eurusd exchange rate. Let F0

denote the forward price of one euro in dollars. Let P (K) be the (forward) price in dollars of an

option to sell one euro for K dollars and let C(K) be the price in dollars of an option to buy one

euro for K dollars. The dollar denominated variance swap rate is then given by (suppressing

the normalization factor 2Ny/N)

KV =
∫ F0

0

1
K2

P (K)dK +
∫ ∞
F0

1
K2

C(K)dK. (6)

Let F̃0 denote the inverted (forward) exchange rate, the price of a dollar in euro. And define

the prices in euro of options to buy or sell a dollar for L euro as P̃ (L) and C̃(L), respectively.

The euro denominated variance swap rate is then given by

K̃V =
∫ F̃0

0

1
L2
P̃ (L)dL+

∫ ∞
F̃0

1
L2
C̃(L)dL. (7)

Now, an option to sell one dollar for L euro is the same as L options to buy one euro. If

L = 1/K the option prices are therefore related by

P̃ (L) =
1

F0K
C(K), C̃(L) =

1
F0K

P (K).

2(FN −K)+ is shorthand for max(FN −K, 0)
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Inserting into (7) and changing variables we have

K̃V =
∫ F0

∞
K2 1

F0K
C(K)

(
− 1
K2

dK
)

+
∫ 0

F0

K2 1
F0K

P (K)
(
− 1
K2

dK
)

=
∫ F0

0

1
F0K

P (K)dK +
∫ ∞
F0

1
F0K

C(K)dK.
(8)

This is the foreign variance swap rate in terms of option prices in the domestic currency. In-

terestingly, this turns out to be equal to the gamma swap rate.3 A gamma swap is a variance

swap where the realized variance is defined as the average of the squared daily returns weighted

by the price level of the underlying (Lee, 2008):

RVΓ =
Ny

N

N∑
i=1

Si
S0

ln
(

Si
Si−1

)2

.

Entering into a foreign denominated variance swap with a notional amount of 1/F0 units of the

foreign currency, and simultaneously entering into a forward contract to buy K̃V/F0 units of

the foreign currency, the profit or loss at expiry (in the domestic currency at the then prevailing

exchange rate FN = SN ) will be

RV
FN
F0
− K̃V,

which is similar to the gamma swap payoff. Since the variance swap rates can also be expressed

as the time 0 risk neutral expected variance this also implies that the difference between the

foreign and domestic variance swap rates is

K̃V−KV = EQ
0

[
RV

FN
F0
− RV

]
= EQ

0

[
RV
(
FN
F0
− 1
)]

= CovQ
0

[
RV,

FN
F0
− 1
]

+ EQ
0 [RV] EQ

0

[
FN
F0
− 1
]

= CovQ
0

[
RV,

FN
F0

]
.

Thus the difference is proportional to the risk neutral covariance between the realized variance

and the underlying exchange rate.

If the implied volatility is symmetric in log moneyness, defined as ln K
F0

, it is easily shown

that

C(K) = K
F0
P
(
F 2

0
K

)
.

3To be precise, it is the gamma swap rate when the underlying is the forward price (or futures price assuming

deterministic interest rates).
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This, (6) and (8) imply

K̃V−KV =
∫ F0

0

(
1

F0K
− 1
K2

)
P (K)dK +

∫ ∞
F0

(
1

F0K
− 1
K2

)
K

F0
P
(
F 2

0
K

)
dK

=
∫ F0

0

(
1

F0K
− 1
K2

)
P (K)dK +

∫ 0

F0

(
X

F 3
0

− X2

F 4
0

)
F0

X
P (X)

(
− F 2

0
X2 dX

)
= 0.

Thus, when the smile is symmetric the foreign and domestic variance swap rates are equal. If

the smile is not symmetric the difference is then

K̃V−KV =
∫ ∞
F0

(
1

F0K
− 1
K2

)(
C(K)− K

F0
P
(
F 2

0
K

))
dK.

Since the first factor of the integrand is strictly positive, this means that if out-of-the-money

calls have lower (higher) implied volatility than the corresponding out-of-the-money puts, the

foreign variance swap rate is lower (higher) than the domestic.

4 Methodology

The principal purpose of this paper is to determine whether there exists a negative variance risk

premium in currency options, or more precisely, whether the average expected returns of long

variance swaps on exchange rates are negative. The hypothesis that such a premium exists will

be accepted if the null hypothesis, that the average expected return of variance swap is zero,

is rejected and the sign of the average return is negative. Attributing the average difference

between the price and the (objective probability measure) expected value entirely to a risk

premium implicitly assumes that investors have rational expectations, that their expectations

are not systematically biased.

Another objective is to examine whether currency volatility is negatively correlated with

stock market returns, as is the case with equity volatility. If it is, the capital asset pricing

model predicts that there will exist a negative risk premium (if the stock market is taken to

mean “the market portfolio”). A related objective is therefore to determine to what extent the

capital asset pricing model can account for currency variance swap returns.

A third objective is to quantify the difference between the foreign and domestic variance

swap rates.

In section 3 it was showed that the variance swap rate can be calculated as a function of

option prices of every conceivable strike between zero and infinity. In practice such data are

not available, and assumptions about the prices of options with strikes far from the money have

to made. However, as the strike goes to zero or infinity the value of out-of-the-money options

quickly goes to zero. The price of deep out-of-the-money options therefore constitute a small

part of the variance swap rate and need not be estimated with great accuracy.
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In this paper three implied volatility quotes are used to infer an implied volatility smile

using the vanna-volga-method. Below these quotes and the vanna-volga method are described.

It is shown that assuming vanna-volga prices for options, the variance swap rate is given as a

closed form expression.

4.1 Market quotes

In the foreign exchange market, options are referred to by their Black-Scholes delta and implied

volatility. Moreover instead of giving the implied volatility of individual options, the prices of

instruments that are combinations of options are quoted. This section tries to describe these

quotes.

4.1.1 Delta conventions

Using the implied volatility and the delta of an option, the strike and the premium can be

found. There are however many definitions of delta. Therefore “the entire fx quotation story

generally becomes a mess” (Wystup, 2006).

Delta is the derivative of the premium with respect to the underlying exchange rate. It is

the amount of the foreign currency to sell in order to make the overall position locally risk free

(in the Black-Scholes sense) if one option is bought.

The Black-Scholes price of a call option C and a put option P is given by

C = e−rdt [FΦ(d1)−KΦ(d2)] ,

P = e−rdt [−FΦ(−d1) +KΦ(−d2)] ,

d1 =
log(F/K) + 1

2σ
2t

σ
√
t

,

d2 =
log(F/K)− 1

2σ
2t

σ
√
t

,

(9)

where rd and rf are the domestic and foreign interest rates, t is the time to maturity and

F = Se(rd−rf )t is the forward price, S is the spot price, and K is the strike. Φ is the standard

normal cumulative distribution function.

For example, in the eurusd and gbpusd cases the normal Black-Scholes delta is used

according to Bossens et al. (2009), that is

∆call =
∂C

∂S
= e−rf tΦ(d1), ∆put =

∂P

∂S
= −e−rf tΦ(−d1) (10)

These cases are straight forward because usd is the domestic currency.4

In the usdjpy case on the other hand, where usd is the foreign currency, a different notion

of delta is used. In this case S is the price of one dollar in yen, and C is the price in yen of an

4eurusd refers to the price of one euro in dollars. Therefore, usd is referred to as the domestic currency, and

eur as the foreign.
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option to buy one dollar. One long option with a notional amount of one dollar and −∆ dollars

has a (locally) constant yen value. The regular Black-Scholes delta is thus the amount of dollars

to sell in order to make the combined position insensitive to exchange rate movements, in yen

terms. This amount is expressed as dollars per dollar of notional, a dimensionless quantity.

What usually is referred to in the usdjpy case is instead, according to Bossens et al. (2009),

the premium included delta. In order for the position to have a constant dollar value an amount

of yen y should be bought. This yen amount is then expressed in dollars to get the premium

included delta ∆̃call = y/S. So for every dollar of notional ∆̃ dollars should be sold in order to

make the position delta neutral in dollar terms.5 The dollar value of the usd call option is C/S

and the dollar value of the yen amount is y/S. y is therefore given by

0 =
d

dS

(
C

S
+
y

S

)
=

1
S

∂C

∂S
− C

S2
− y

S2
.

Accordingly the premium included delta is defined as

∆̃call = ∆call −
C

S
=
K

S
e−rdtΦ(d2). (11)

Similarly the premium included delta of a put is

∆̃put = ∆put −
P

S
= −K

S
e−rdtΦ(−d2). (12)

Different currency pairs use different conventions for delta. According to Wystup (2006) “in

the professional interbank market there is one notion of delta per currency pair”. Beneder

and Elkenbracht-Huizing (2003) assert that for all currency pairs except eurusd the premium

included convention is used, whereas Bossens et al. (2009) claim the standard Black-Scholes

delta is used for gbpusd too. Fortunately for out-of-the-money options (which are used in the

volatility quotes described below) the difference is “not huge” as stated by Wystup.

There is another aspect of the definition of delta. Instead of the spot delta defined above

sometimes the forward delta is used. This is the derivative of the forward premium with respect

to the underlying forward price which is

∆F
call = Φ(d1), ∆F

put = −Φ(−d1), (13)

∆̃F
call = K

F Φ(d2), ∆̃F
put = −K

F Φ(−d2). (14)

The difference between the definitions is greater when the time to maturity is longer and for

short maturities it should make little difference.
5The usd call is also a jpy put. Let rd as before refer to the jpy interest rate and d′1 be given by (9) with

F replaced by 1/F and K by 1/K. The regular Black-Scholes delta of this put is then ∆′ = −e−rdtΦ(−d′1) =

−e−rdtΦ(d2). This is the amount of yen to sell per yen of notional to make the position delta neutral in dollar

terms.
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4.1.2 Volatility quotes

Three main price quotes describe the implied volatility smile on the foreign exchange options

market, the delta neutral straddle, the 25 delta risk reversal and the 25 delta butterfly (Bis-

esti et al., 2005; Castagna and Mercurio, 2005). The quotes are related to the prices of the

instruments with the same name. When trying to estimate an implied volatility smile the smile

should correctly price these instruments. Below a call option with delta 0.25 will be referred to

as a 25 delta call option and a 25 delta put option will mean a put option with delta −0.25.

The delta neutral straddle is a combination of a put an call option with the same strike

such that the combined delta is zero. Its price is quoted as the volatility of the options. This

is referred to as the at-the-money (atm) volatility, hereafter denoted by σATM. Using the

appropriate delta and premium convention, the atm strike can be found.6

A strangle is a combination of long out of the money put and call options. Its price is

quoted as the difference between the strangle volatility and the atm volatility. The butterfly

quote refers to this difference. Let σ25∆BF denote the 25 delta butterfly quote. The strikes of

the involved options and the premium of the strangle should be calculated so that delta of the

put option is −0.25 and the delta of the call option is 0.25 using the strangle volatility for both

options (Bossens et al., 2009). Thus the strikes, KBF
put and KBF

call, are given by

∆put(KBF
put, σATM + σ25∆BF) = −0.25,

∆call(KBF
call, σATM + σ25∆BF) = 0.25,

(15)

and the price of the strangle is

P25∆STR = Pcall(KBF
call, σATM + σ25∆BF) + Pput(KBF

put, σATM + σ25∆BF). (16)

Here Pcall(K,σ) and ∆call(K,σ) refers to the Black-Scholes price and delta of a call option with

strike K and volatility σ. The interpolated smile, hereafter denoted by σ(K) should price this

strangle correctly so that

Pcall(KBF
call, σ(KBF

call)) + Pput(KBF
put, σ(KBF

put)) = P25∆STR. (17)

However, it will not necessarily match the price of the individual put and call options in the

strangle in (16), since it also has to take into account the risk reversal.

A risk reversal is a combination of a short out of the money put option and a long out of

the money call option. Its price is quoted as the difference in implied volatility between the

two options. Let σ25∆RR denote the 25 delta risk reversal quote. It is not entirely clear how

the risk reversal quote should best be incorporated as a constraint on the smile. One method,

described in Bossens et al. (2009), is to require that the difference between the volatility of the

6There are other slightly different definitions of “at the money”.
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25 delta call and 25 delta put options be equal to the risk reversal quote, so that

σ(K25∆Call)− σ(K25∆put) = σ25∆RR,

∆put(K25∆put, σ(K25∆put)) = −0.25,

∆call(K25∆call, σ(K25∆call)) = 0.25.

(18)

Another method is to calculate the strikes of the quoted risk reversal as

∆put(KRR
put , σATM + σ25∆BF − 1

2σ25∆RR) = −0.25,

∆call(KRR
call , σATM + σ25∆BF + 1

2σ25∆RR) = 0.25,

and the price as

P25∆RR = Pcall(KBF
call, σATM + σ25∆BF − 1

2σ25∆RR)− Pput(KRR
put , σATM + σ25∆RR + 1

2σ25∆RR),

and require that the interpolated smile prices this risk reversal correctly, i.e.

Pcall(KRR
call , σ(KRR

call))− Pput(KRR
put , σ(KRR

put)) = P25∆RR. (19)

In practice it makes little difference which of the two methods is used.

It is sometimes assumed as a simplification that the 25 delta risk reversal quote is simply

the difference between the 25 delta call volatility, σ25∆C, and the 25 delta put volatility, σ25∆P,

and similarly that the 25 delta butterfly is the average of the 25 delta call and put volatilities

less the atm-volatility, so that

σ25∆RR = σ25∆C − σ25∆P, (20)

σ25∆BF =
σ25∆C + σ25∆P

2
− σATM. (21)

Using this assumption the volatilities for three strikes (including the atm-volatility) can be

found by

σ25∆P = σATM − 1
2σ25∆RR + σ25∆BF, (22)

σ25∆C = σATM + 1
2σ25∆RR + σ25∆BF. (23)

and the problem of finding the volatility of other strikes is a problem of interpolation and

extrapolation. In practice using (22) and (23) is a good approximation if the smile is not very

steep, but it can lead to substantial errors for currency pairs with steep smiles such as usdjpy.

4.2 The vanna-volga method

Using the known implied volatilities of three strikes—typically the at-the-money (atm) volatil-

ity, the 25 delta put and call volatilities—the vanna-volga method infers the entire volatility

smile (at least in the 5 delta put to 5 delta call range, according to Castagna and Mercurio

12



(2005)). It is not a consistent model of the underlying price process but a valuation method

that is commonly used in the foreign exchange options market (Castagna and Mercurio, 2007).

Castagna and Mercurio (2007) gives a theoretical justification which is based on a hedging

argument. The idea is to form a portfolio of the three options with known volatilities and an

option with an unknown volatility that is to be calculated, which is locally risk free in a model

where options are valued with a volatility that is independent of strike but stochastic.

Since we are interested in the forward price of the realized variance and therefore in the

forward prices of the options in the replicating portfolio, let us consider only forward prices of

options. A hedging argument similar to that found in Castagna and Mercurio (2005) is presented

below using forward prices of options. The resulting price is equivalent to the standard vanna-

volga price.

Let the three strikes with known volatilities σi be denoted by Ki for i = 1, 2, 3. where

K1 < K2 < K3 and K2 is the atm strike. Assume that call options for all three strikes are

traded and let CBS
t (K) denote the Black-Scholes forward price of a call option with strike K

and a volatility σt which is equal to the atm volatility. In the Black and Scholes (1973) model

the forward price of an option is given by

CBS(K) = FΦ(d1)−KΦ(d2),

d1 =
log(F/K) + 1

2σ
2(T − t)

σ
√
T − t

,

d2 =
log(F/K)− 1

2σ
2(T − t)

σ
√
T − t

,

(24)

where T − t is the time to maturity, σ is the implied volatility, K is and F is the underlying

forward exchange rate.

Now let K denote the strike of the option with unknown implied volatility and let Ft the be

the underlying forward exchange rate. Consider a strategy where, at time t, it is agreed to buy

one unit of the option with unknown value, and −∆t units of the underlying and −xit units of

the call option with strike Ki, i = 1, 2, 3. In a world where options are valued with a common

but stochastic volatility, the resulting profit or loss at the time of maturity is then

V =
∫ T

0

(
dCBS

t (K)−∆tdFt −
3∑
i=1

xitdC
BS
t (Ki)

)
. (25)
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By Itô’s lemma

dCBS
t (K)−∆tdFt −

3∑
i=1

xitdC
BS
t (Ki)

=

(
∂

∂t
CBS
t (K)−

3∑
i=1

xit
∂

∂t
CBS
t (Ki)

)
dt+

(
∂

∂F
CBS
t (K)−∆t −

3∑
i=1

xit
∂

∂F
CBS
t (Ki)

)
dFt

+
1
2

(
∂2

∂F 2
CBS
t (K)−

3∑
i=1

xit
∂2

∂F 2
CBS
t (Ki)

)
d〈F 〉t +

(
∂

∂σ
CBS
t (K)−

3∑
i=1

xit
∂

∂σ
CBS
t (Ki)

)
dσt

+
1
2

(
∂2

∂σ2
CBS
t (K)−

3∑
i=1

xit
∂2

∂σ2
CBS
t (Ki)

)
d〈σ〉t+

(
∂2

∂F∂σ
CBS
t (K)−

3∑
i=1

xit
∂2

∂F∂σ
CBS
t (Ki)

)
d〈σt, Ft〉.

(26)

By letting xi be the solution to the following system of equations

∂

∂σ
CBS
t (K) =

3∑
i=1

xit
∂

∂σ
CBS
t (Ki),

∂2

∂F∂σ
CBS
t (K) =

3∑
i=1

xit
∂2

∂F∂σ
CBS
t (Ki),

∂2

∂σ2
CBS
t (K) =

3∑
i=1

xit
∂2

∂σ2
CBS
t (Ki),

(27)

the last three terms in (26) become equal to zero. The three partial derivatives in (27) are the

forward counterparts of the sensitivities known respectively as vega, vanna and volga. Since

in the Black-Scholes formula the ratio between vega and gamma—the second derivative with

respect to the underlying price—is independent of the strike, the third term too becomes equal

to zero. If ∆t matches the combined delta7 of the options only the first term is left. Now, the

forward price of an option as defined in (24) satisfies the following partial differential equation:8

∂CBS

∂t
+

1
2
σ2F 2∂

2CBS

∂F 2
= 0. (28)

Using this and the fact that the combined gamma is equal to zero we have

V =
∫ T

0

(
∂

∂t
CBS
t (K)−

3∑
i=1

xit
∂

∂t
CBS
t (Ki)

)
dt = 0. (29)

Rearranging (25) and using that the value of an option at maturity is its intrinsic value yields

CBS
0 (K) = (FT −K)+ −

∫ T

0
∆tdFt −

∫ T

0

3∑
i=1

xitdC
BS
t (Ki). (30)

7The first derivative of the forward options price with respect to the underlying forward price.
8Compare this to ∂C

∂t
+ 1

2
σ2F 2 ∂2C

∂F2 −rC = 0 which is the partial differential equation used to derive the “Black

76” price which is just (24) with a discount factor (Black, 1976).
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Thus, in a model where the smile is flat but stochastic, an option can be perfectly replicated

at a cost of CBS
0 (K). Let CMKT

t (Ki) denote the market prices of the options, that is (24) with

σ = σi. Consider what happens when the strategy is applied in reality. Using (30) we have

(FT −K)+ −
∫ T

0
∆tdFt −

∫ T

0

3∑
i=1

xitdC
MKT
t (Ki)

= CBS
0 (K)−

∫ T

0

3∑
i=1

xit
[
dCMKT

t (Ki)− dCBS
t (Ki)

]
= CBS

0 (K) +
3∑
i=1

xit
[
CMKT
t (Ki)− CBS

t (Ki)
]
−
∫ T

0

3∑
i=1

[
CMKT
t (Ki)− CBS

t (Ki)
]

dxit. (31)

If the last term can be considered negligible the option can be replicated at a cost of

C(K) = CBS
0 (K) +

3∑
i=1

xit
[
CMKT
t (Ki)− CBS

t (Ki)
]
. (32)

This is defined as the vanna-volga price. Vega, vanna and volga (or rather their forward coun-

terparts) can be found by differentiating (24) to be

Vega(K) = F
√
Tϕ(d1(K)), (33)

Vanna(K) = −Vega(K)
d2(K)
Fσ
√
T
, (34)

Volga(K) =
d1(K)d2(K)

σ
Vega(K). (35)

Castagna and Mercurio (2005) show that the system (27) always has a unique solution.

If the implied volatility for three strikes are known, the vanna-volga method is particularly

simple because the entire smile is then given as a closed-form expression of the implied volatil-

ities. But when trying to fit the smile to the risk reversal and butterfly quotes described in

section 4.1 numerical methods must be used.

Since the vanna-volga method is not a consistent model of the underlying price there is no

guarantee that the method will produce arbitrage free prices. In fact, when the risk reversal

is large the smile is steep the method produces negative premiums for some out-of-the-money

options (Bossens et al., 2009).

4.3 The vanna-volga price of realized variance

In section 3 the variance swap rate was found to be related to the forward price of the payoff

f(FT ) = − ln
FT
F0

+
FT − F0

F0
(36)
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at maturity where F0, FT are the forward prices of the underlying at inception and expiry. In

this section the vanna-volga price of this contract is derived. Defining

V =


Vega(K1) Vega(K2) Vega(K3)

Vanna(K1) Vanna(K2) Vanna(K3)

Volga(K1) Volga(K2) Volga(K3)

 , ∂∂∂ =


∂
∂σ
∂2

∂F∂σ
∂2

∂σ2

 , y =


CMKT(K1)− CBS(K1)

CMKT(K2)− CBS(K2)

CMKT(K3)− CBS(K3)

 ,
the vanna-volga (forward) price (32) of call, C(K), and put, P (K), options can be expressed as

C(K) = (1 + y>V −1∂∂∂)CBS(K), P (K) = (1 + y>V −1∂∂∂)PBS(K).

The generalization of the vanna-volga method to put options is trivial since puts and calls with

the same strike has the same vega, vanna and volga. Let V f denote the forward price of the

payoff f(FT ). Using (4) we get

V f =
∫ F0

0

1
K2

P (K)dK +
∫ ∞
F0

1
K2

C(K)dK

=
∫ F0

0

1
K2

(1 + y>V −1∂∂∂)PBS(K)dK +
∫ ∞
F0

1
K2

(1 + y>V −1∂∂∂)CBS(K)dK

= (1 + y>V −1∂∂∂)
(∫ F0

0

1
K2

PBS(K)dK +
∫ ∞
F0

1
K2

CBS(K)dK
)
.

(37)

The Black-Scholes forward price defined in (24) can be expressed as a risk neutral expected

value:

CBS(K) = E
[
(X −K)+

]
.

where X is a stochastic variable in the Black-Scholes model defined by

X = F exp
(
σ
√
Tz − 1

2Tσ
2
)
, z ∼ N(0, 1).

Of course, the Black-Scholes price of the portfolio of options replicating the payoff f(FT ) is

simply the expected value of the payoff:∫ F0

0

1
K2

PBS(K)dK +
∫ ∞
F0

1
K2

CBS(K)dK

=
∫ F0

0

1
K2

E
[
(K −X)+

]
dK +

∫ ∞
F0

1
K2

E
[
(X −K)+

]
dK

= E

[ ∫ F0

0

1
K2

(K −X)+dK +
∫ ∞
F0

1
K2

(X −K)+dK
]

= E [f(X)] .

(38)

This expected value can be calculated as

E [f(X)] = E

[
− ln

X

F0
+
X − F0

F0

]
= E

[
− ln

X

F
− ln

F

F0
+
X − F0

F0

]
= 1

2Tσ
2 − ln

F

F0
+
F − F0

F0
.

(39)
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The Black-Scholes price of realized variance is therefore the volatility squared, which is expected

because the volatility is a constant in the model. By (37), (38) and (39) the vanna-volga price

of the replicating portfolio is9

V f = (1 + y>V −1∂∂∂)
(

1
2Tσ

2 − ln
F

F0
+
F − F0

F0

)

= 1
2T

σ2 + y>V −1


2σ

0

2


 .

Since σ = σ2 it follows that

CMKT(K2)− CBS(K2) = 0.

Let ki = ln(Ki/F0). By the definitions of vanna, volga and vega and by Cramers rule, the

variance swap rate as defined in (5), consistent with vanna-volga option prices is10

σ2+y>V −1


2σ

0

2

 = σ2+
2Tσ3(k2 + k3) + 4σk2k3 + 4Tσ3 + T 2σ5

−2(k1 − k2)(k3 − k1)Vega(K1)
(
CMKT(K1)− CBS(K1)

)

+
2Tσ3(k1 + k2) + 4σk1k2 + 4Tσ3 + T 2σ5

−2(k3 − k1)(k2 − k3)Vega(K3)
(
CMKT(K3)− CBS(K3)

)
. (40)

The denominators are never zero since Ki are distinct and the vega of an option is never zero.

The expression depends on Ki/F but not on Ki or F . If the driftless definition of delta is used

and the strikes Ki are given in terms of delta, the vanna-volga price of realized variance can be

calculated without considering interest rates.

4.4 Data

The data used are quotes on one month atm straddles, 25 delta risk reversals and 25 delta

butterflies from British Bankers Association (bba)11 and from Bloomberg. The Bloomberg

data covers 2003–2009 and the bba data covers 2001–2008. Combined these datasets give daily

implied volatility quotes between August, 2001 and January, 2009, roughly 1800 observations

per currency pair. The following currency pairs are included:

• gbpusd, pound sterling/u.s. dollar

• eurusd, euro/u.s. dollar

9Although F and F0 are equal they represent different quantities, so in principle it is important to distinguish

between them. The differential operator ∂∂∂ does not operate on F0 which is a parameter in the definition of the

payoff f(FT ), whereas F is a parameter of the Black-Scholes forward price formula.
10It is assumed here that T in the Black-Scholes price of the options and N

Ny
in the definition of the realized

variance (2) are equal.
11Available at http://www.bba.org.uk/
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• eurgbp, euro/pound sterling

• eursek, euro/Swedish krona

• usdjpy, u.s. dollar/Japanese yen

• usdcad, u.s. dollar/Canadian dollar

• audusd, Australian dollar/u.s. dollar

Data on the spot exchange rate for the currency pairs from Bloomberg are also used.

4.5 Estimating variance swap returns

At every day for which there are options data for a currency pair a variance swap rate and the

corresponding realized variance are calculated. The time of maturity is set to the first “business

day” that is more than 30 calendar days away. A business day is defined as a day for which

there is a spot price. The realized variance is calculated as defined in section 3,

RV =
Ny

N

N∑
i=1

ln
(

Si
Si−1

)2

, (41)

where N is the number of business days between inception and expiry. Ny, the number of

business days in a year, is found to be approximately 260. Si is the spot exchange rate on the

i:th day.

The variance swap rate is calculated using (40), with the volatility of 25 delta put and

calls and the atm volatility as input. These inputs are obtained by fitting vanna-volga prices

to the atm volatility and the 25 delta risk reversal and butterfly quotes. The risk reversal

quote is incorporated as a constraint on the smile according to (18) as advocated by Bossens

et al. (2009). The butterfly quote constrains the smile according to (17). The time-to-maturity

parameter t in the Black-Scholes formula is defined as the factor N/Ny in (41) for simplicity.

Delta is interpreted as driftless delta, as defined in (14). As noted above, in this way interest

rates do not have to be taken into account. The premium included delta definition is used for

the following currency pairs.

• eurgbp

• eursek

• usdjpy

• usdcad

The vanna-volga method is not guaranteed to produce arbitrage free prices, especially not far

from the money. As noted earlier, for very large risk reversals the method sometimes produces

negative out-of-the-money option prices, though for typical market data this does not happen.

To check whether this happens in the sample, the actual vanna-volga prices that are implicitly

integrated in (40), are computed for each day. It is found that in the usdjpy case the method
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failed in this manner frequently between the summer of 2007 and 2009, when the smile was very

steep. It is concluded that the vanna-volga method is not suitable for these conditions. To get

an estimate of the variance swap rate, data on 10 delta risk reversals and butterflies which are

available between 2003 and 2009 are also used for this currency pair. Natural cubic splines are

used to interpolate between 10 and 25 delta puts and calls and the atm volatility and then a

constant volatility beyond these strikes are assumed.12 This is in line with Petersson and Šarić

(2008). The variance swap rate is then calculated by numerical integration of (5) with the

iterpolated smile. Before 2003 when 10 delta quotes are not available the vanna-volga method

is used as the interpolated smile is reasonable. None of the other currency pairs are affected by

this with the exception of audusd which exhibited negative option prices on a few days.

The absence of option prices for deep out-of-the-money strikes, and sparsity of available

prices is a problem when estimating the variance swap rate. Some assumptions always have

to made about the prices of options with strikes for which there are no available quotes. As

described above, the data provide three constraints on the volatility smile. As an approximation

this is equivalent to prices of three options: the 25 delta put, the 25 delta call and atm put

or call. This could seem like very little information to extrapolate from. However, the three

instruments are commonly traded and are said “to characterize the fx options market” (Bisesti

et al., 2005). The vanna-volga method for extrapolating is constructed for use with these quotes,

has a theoretical justification, is commonly used in the market and is thought to be accurate in

a wide range of strikes (Castagna and Mercurio, 2007).

This is also in line with Carr and Wu (2007), who use a minimum of three prices (for

individual stocks) and Petersson and Šarić (2008) who use a minimum of four prices. Both then

interpolate implied volatility and use a constant implied volatility beyond available strikes.13

Since exchange traded index and stock options have fixed monthly expiries, Carr and Wu

and Petersson and Šarić interpolate between the two closest maturities to achieve synthetic

variance swap rates with a constant time to maturity. otc foreign exchange option quotes, on

the other hand, already refer to options that have a constant time to maturity so this problem

is avoided. Overall therefore it can be argued that this method is of comparable accuracy to

previously employed methods.

Using the realized variance and the estimated variance swap rate, the excess return is cal-

culated for each day as defined in section 2:

R̂Pt,T =
RVt,T

KVt,T
− 1.

12This shape of the smile sometimes violates another no-arbitrage condition; because of the discontinuity in

the derivative of the implied volatility with respect to strike, the price is not always convex in strike. However

this is deemed less serious than negative prices, and the result is anyway a more conservative estimate of the

variance swap rate.
13Carr and Wu interpolate linearly in log-strike and Petersson and Šarić use natural cubic splines.
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4.6 Hypothesis testing

The null-hypothesis of indifference to variance risk should be rejected if the observed data is

sufficiently improbable under the hypothesis. The null-hypothesis states that the average (con-

ditional) expected excess return of variance swaps during the period was zero. Let θ̂ denote the

estimated average excess return on variance swaps during the period. Under the hypothesis θ̂ has

zero expected value. Since the estimated variance swap returns are calculated over overlapping

periods, consecutive estimates will be strongly autocorrelated. Moreover heteroskedasticity can

be expected. In order to estimate the variance of θ̂ the heteroskedasticity and autocorrelation

consistent estimator of Newey and West (1987) is used. Using this an asymptotically normally

distributed t-statistic is calculated for testing the hypothesis. The number of lags is set to 25.

In order to test the hypothesis of correlation with stock market returns and to determine

whether the capm beta can account for variance swap returns, the following regression on u.s.

dollar denominated variance swaps is estimated

R̂Pt,T = α+ β ERm
t,T + εt,T

where ERm is the excess return of the market portfolio. The msci World Index,14 in u.s.

dollars with dividends included, is used as a proxy for the market portfolio. Excess returns

are calculated using the yield on one month treasury bills.15 The msci data is monthly so the

observations are from non-overlapping periods and are found not to be autocorrelated. Therefore

an ordinary least squares regression can be used. Heteroskedasticity is expected, however, and

there are only about 85 observations. This needs to be taken into account when testing the

coefficients for significance. Long and Ervin (2000) recommend the use of a heteroskedasticity

consistent estimator of the covariance matrix known as “hc3” for small samples.16 Consequently

this estimator is used for significance tests of the coefficients.

5 Results and further analysis

In table 1 the results of the hypothesis tests of zero average risk premium are reported. The

average risk premium is estimated to less than zero for all currency pairs, but audusd. However

they are mostly insignificantly less than zero.

There are three explanations for why the null-hypothesis could not be rejected in most cases.

First, the average expected return could indeed be zero or even positive; the hypothesis may be

wrong.

14Available at http://www.mscibarra.com/
15Available at http://www.ustreas.gov/
16To achieve consistent significance tests Long and Ervin recommend not basing the decision to use the esti-

mator on a test for heteroskedasticity.
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Estimate Std. Error t value Pr(>|t|)
gbpusd -0.050 0.035 -1.410 0.159

eurusd -0.073 0.030 -2.435 0.015*

eurgbp -0.053 0.033 -1.588 0.113

eursek -0.163 0.063 -2.578 0.010*

usdjpy -0.071 0.052 -1.353 0.176

usdcad -0.055 0.056 -0.977 0.328

audusd 0.109 0.098 1.115 0.265

Table 1: The estimated average risk premium and tests of the null-hypothesis of zero average

for the domestic variance swap rate. (*** p < .001,** p < .01,* p < .05)

Estimate Std. Error t value Pr(>|t|)
gbpusd -0.049 0.035 -1.391 0.164

eurusd -0.073 0.030 -2.445 0.015*

eurgbp -0.054 0.033 -1.628 0.104

eursek -0.164 0.063 -2.599 0.009**

usdjpy -0.066 0.053 -1.254 0.210

usdcad -0.055 0.056 -0.979 0.328

audusd 0.113 0.099 1.142 0.254

Table 2: The estimated average risk premium and tests of the null-hypothesis of zero average

for the foreign variance swap rate. (*** p < .001,** p < .01,* p < .05)
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Second, the sample period might not be representative, meaning that there is a negative

variance risk premium in currency options, but due to some unusual influential events it could

not be observed. If an extraordinary negative event happens during the sample period it can

be argued that it is likely investors appear not to properly take into account the possibility of

such events, because the likelihood of them occurring appear greater than it actually is.

In figures 1–7 on pages 30–36 historic variance swap returns are illustrated. As can be

seen all currency pairs experienced sudden exchange rate movements and consequently sudden

increases in volatility during the fall of 2008. In many cases this led to positive returns on

variance swaps. For example the Australian dollar lost almost 40 percent of its value against

the u.s. dollar in a matter of months, causing realized variance 10 times greater than the

variance swap rate.

These recent high levels of realized variance caused by sudden large exchange rate movements

can be considered to constitute such unlikely adverse events for sellers of variance. Based on

the seven years of data the apparent frequency of exchange rate movements of this magnitude is

once every seven years, but it is possible that this frequency is much lower and that in the long

run the expected return of long variance swaps is indeed negative. The large positive returns not

only affect the estimate itself but also cause the variance of the estimate to be greater thereby

reducing the significance.

In order to gauge the impact of the recent turbulence on the hypothesis tests the sample is

divided into two periods of equal length and the variance risk premium is estimated in each. The

results are reported in table 3. For the first period between 2001 and 2005 the estimated variance

risk premium is less than zero for all currency pairs, in some cases with a high significance. In

the latter period, on the other hand, none of the currency pairs have significant variance risk

premiums. It is difficult to tell which of the two periods is more representative without more

data.

The third explanation, is that the there is a negative risk premium and the sample is

representative but there were not enough observations to make it statistically significant. This

means that if more observations were available the null-hypothesis might have been rejected.

5.1 Extending the dataset using an approximation

Intuitively, the most important of the three inputs determining the variance swap rate is the atm

volatility. It controls the overall level of the implied volatility smile and it directly determines

the prices of near-the-money options which have most influence on the variance swap rate since

they are the most expensive. As shown in section 4.3 if the smile is flat the variance swap rate

is the volatility squared.

Table 4 reports the results of regressions of the variance swap rate on the atm volatility

squared. As can be seen the slope of the regressions are above one, reflecting the convexity

of the smile. The intercepts are very close to zero. As is evident from the coefficients of
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Estimate Std. Error t value Pr(>|t|)
2001-08-30–2005-05-14

gbpusd -0.106 0.042 -2.524 0.012*

eurusd -0.086 0.040 -2.170 0.030*

eurgbp -0.078 0.048 -1.639 0.102

eursek -0.351 0.059 -5.938 0.000***

usdjpy -0.183 0.042 -4.325 0.000***

usdcad -0.121 0.052 -2.309 0.021*

audusd -0.105 0.056 -1.871 0.062

2005-05-14–2009-01-27

gbpusd 0.002 0.055 0.043 0.966

eurusd -0.060 0.044 -1.356 0.176

eurgbp -0.029 0.046 -0.639 0.523

eursek -0.013 0.096 -0.139 0.889

usdjpy 0.029 0.089 0.330 0.742

usdcad 0.008 0.096 0.088 0.930

audusd 0.314 0.177 1.773 0.077

Table 3: The estimated average risk premium and tests of the null-hypothesis of zero average

for the domestic variance swap rate for the subsamples. (*** p < .001,** p < .01,* p < .05)

(a) (b) (c)

gbpusd -0.000 1.133 0.999 05-Jan-1998

eurusd -0.000 1.131 0.999 04-Jan-1999

eurgbp 0.000 1.095 0.999 04-Jan-1999

eursek 0.000 1.105 0.999 04-Jan-1999

usdjpy -0.000 1.164 0.997 05-Jan-1998

usdcad 0.000 1.083 1.000 08-Feb-1999

audusd -0.000 1.102 1.000 05-Jan-1998

Table 4: (a): the intercept and the slope of the regression of the variance swap rate on the

atm volatility squared. (b): Coefficient of determination (R2) of the regression. (c): date from

which atm quotes are available.
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determination the regressions account for almost all of the variation in the variance swap rate.

This suggests that the atm volatility alone can be used to compute a very good approximation

of the variance swap rate. The table also reports the dates after which atm volatility quotes are

available. The sample period can be extended by about three years if the estimated regressions

for each currency pair are used to construct approximate variance swap rates for the period

where butterfly and risk reversal quotes are unavailable. In reality the average convexity of the

smile during this period may have been lower than during the period for which the coefficients

were calculated, but it may also have been higher.

A very conservative estimate can be obtained using the lowest observed ratio between the

variance swap rate and the atm volatility squared. This ratio is found to be 1.041. Conse-

quently the series of estimated variance swap rates is extended by using the atm volatility

squared multiplied by this number. Using this longer series of estimates the hypothesis tests

are repeated. The results are reported in table 5. For most currency pairs the results are similar

with somewhat higher significance, but for the pound against the euro and against the dollar

the difference is considerable.

Estimate Std. Error t value Pr(>|t|)
gbpusd -0.110 0.030 -3.686 0.000***

eurusd -0.100 0.024 -4.110 0.000***

eurgbp -0.085 0.028 -2.998 0.003**

eursek -0.126 0.051 -2.472 0.014*

usdjpy -0.071 0.045 -1.580 0.114

usdcad -0.085 0.047 -1.824 0.068

audusd 0.039 0.072 0.551 0.582

Table 5: The estimated average risk premium and tests of the null-hypothesis of zero average

for the domestic variance swap rate where the sample is extended using the atm approximation.

(*** p < .001,** p < .01,* p < .05)

The currency pairs for which there were highly significant variance risk premiums are those

that did not experience large positive returns on variance swaps during the sample period,

suggesting that perhaps they may be affected by the peso problem (see figures 8-14). Bondarenko

(2003) discusses the peso problem as a possible explanation for why index put options appear

to be overvalued and describes it as “a situation when a rare and influential event could have

reasonably happened but did not happen in the sample”. This means that if investors correctly

estimate the probability of rare negative events, it is likely that they appear to overprice put

options if such an event did not actually happen in the sample.

The problem is with the method of statistical inference which relies on assumptions about
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the asymptotic distribution of the estimate that may not be sound when the distribution whose

expected value is to be estimated, is very skewed. As stated by Bekaert et al. (1997) the peso

problem is an issue when catastrophic events are possible but unlikely. Because the events

are improbable, they are unlikely to be observed. Because they are catastrophic they, have a

substantial effect on equilibrium prices and returns.

In this case this means that the significance of the results for eurusd, gbpusd and eurgbp

may be exaggerated because there were no extreme positive returns, which are clearly possible.

This lowers the estimated variance of the estimate and the estimate itself, thereby inflating

significance. From the histograms it is clear that the distributions of variance swap returns is

very skewed and is characterized by infrequent large positive values.

Looking at returns on variance swaps on usdjpy and audusd in the extended sample period

it appears the recent large positive returns are not so uncommon as the original seven years of

data suggest, giving less credence to the second explanation of why no significant premium was

observed.

Given the conflicting results of tests of the null-hypothesis for different sample periods and

different currency pairs it is difficult to reach a definite conclusion on the existence of a variance

risk premium in currency options. Do the differing results between currency pairs reflect some

intrinsic qualities or are they merely due to chance? Should we conclude that there is a variance

risk premium in eurusd and gbpusd options but not in audusd options?

5.2 Correlation with stock market returns

In table 6 the results of the regressions of u.s. dollar denominated variance swap returns on msci

world excess returns are reported. For all currencies negative beta coefficients are estimated.

However they are insignificant with the exception of eurusd and usdjpy, where the hypothesis

of zero correlation (and zero beta) can be rejected at the .05 level. Because the average market

excess return was negative during the sample period and the beta coefficients are negative the

alpha coefficients are lower than the average returns. However neither the alpha coefficients nor

the average returns are significantly different from zero.

5.3 The foreign variance swap rate

Table 2 reports the hypothesis test of zero average variance risk premium for the foreign variance

swap rate; e.g. for eursek the notional amount is in euro and not in sek. The results are nearly

identical to those for the domestic rate in table 1, because the difference between the two rates

is very small. Table 7 reports some summary statistics for the relative difference. As noted

in section 3 the difference is determined by the slope of the smile. As can be seen from the

table the difference is greatest for usdjpy for which the smile is often steep; usd calls have

lower volatility meaning that the risk reversal is negative. Indeed, the risk reversal accounts for
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α β R̂P

gbpusd

Estimate -0.021 -2.175 -0.019

P(>|t|) 0.654 0.268 0.687

eurusd

Estimate -0.054 -2.272 -0.054

P(>|t|) 0.129 0.013* 0.145

usdjpy

Estimate -0.071 -4.505 -0.065

P(>|t|) 0.211 0.019* 0.283

usdcad

Estimate -0.045 -4.997 -0.040

P(>|t|) 0.483 0.241 0.542

audusd

Estimate 0.096 -11.738 0.121

P(>|t|) 0.382 0.200 0.334

Table 6: Regression of u.s. dollar denominated variance swap returns on the msci World Index.

Values under R̂P are sample averages of variance swap returns. Significance tests are performed

using the heteroskedasticity consistent estimator of the standard errors suggested by Long and

Ervin (2000), (*** p < .001,** p < .01,* p < .05).
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(a) (b) (c)

gbpusd -0.063 -0.483 0.200 0.999

eurusd 0.045 -0.237 0.322 0.999

eurgbp 0.132 -0.030 0.403 0.999

eursek 0.121 -0.070 0.581 0.998

usdjpy -0.512 -1.714 0.037 0.995

usdcad 0.006 -0.172 0.164 0.999

audusd -0.264 -0.960 0.100 0.999

Table 7: (a): the average relative difference between the foreign and domestic variance swap

rates in percent. (b): 5 and 95 percentiles of the difference. (c): Coefficients of determination

(R2) of regressions of the relative difference on the 25 delta risk reversal.

almost all of the variation in the relative difference.

6 Robustness of the estimated variance swap rate

One peculiar feature of the vanna-volga smile is that the implied volatility starts to decrease

far from the money. In fact, it can be shown that the limits at zero and infinity is the atm

volatility (Castagna and Mercurio, 2007). One might expect that to put a downward bias on

the variance swap rate if this phenomenon does not reflect reality, but as noted earlier, since

deep-out-of-the money options are cheap, they have little impact on the variance swap rate.

Nevertheless, the magnitude of this possible bias should be quantified. In order to accomplish

this the vanna-volga method is assumed to produce accurate volatilities in the 10 delta put to

10 delta call range and the svi parametrization is fitted to these volatilities.

In the svi (Stochastic Volatility Inspired) parametrization due to Gatheral (2004), the total

implied variance, defined as the volatility squared multiplied by the time to maturity, v = tσ2

is given by

v(k) = a+ b
(

(k −m)ρ+
√

(k −m)2 + s2
)

where k = ln K
F . a, b, ρ, m and s are parameters that determine the shape of the smile. It can

be shown that the variance increases asymptotically linearly in k. As shown by Lee (2004), the

implied volatility cannot grow faster than this if the risk neutral distribution is to have finite

variance.

10 and 25 delta put and call volatilities and the atm volatility are extracted from the vanna-

volga smile, and the svi parametrization is fitted to them. Using the svi smile the variance swap

rate is computed from (5). Sometimes, when the smile is very steep, the svi fit gives negative

implied volatilities far from the money. These observations are excluded. The difference between

the two methods for the remaining observations are reported in 8. Clearly the difference is not
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(a) (b) (c)

gbpusd 1.88 0.78 3.66 0.00

eurusd 1.78 0.70 3.52 0.00

eurgbp 2.14 1.04 3.93 2.40

eursek 2.49 1.00 4.64 3.74

usdcad 1.86 0.98 3.66 0.00

audusd 1.80 0.95 3.46 4.35

Table 8: (a): average relative difference between the variance swap rate using the svi smile and

using the vanna-volga smile in percent, KVSVI
KVVV

− 1. (b): the 5 and 95 percentiles of the relative

difference. (c): the percentage of observations where there was no successful fit.

negligible. The relative error in the estimated variance swap rate due to inaccuracy in the

prices of options beyond 10 delta may be as much as a few percent. The proposed method may

considerably underestimate the variance swap rate.

In light of this finding, the estimated average variance swap returns may be underestimated

too. Consequently the hypothesis tests are repeated using this higher estimate of the variance

swap rate. The results are reported in table 9. There are no major differences in the conclusions.

Estimate Std. Error t value Pr(>|t|)
gbpusd -0.067 0.035 -1.905 0.057

eurusd -0.089 0.029 -3.017 0.003**

eurgbp -0.072 0.034 -2.153 0.031*

eursek -0.181 0.064 -2.815 0.005**

usdcad -0.071 0.055 -1.292 0.197

audusd 0.092 0.095 0.966 0.334

Table 9: The estimated average risk premium and tests of the null-hypothesis of zero average

using the the svi estimate (*** p < .001,** p < .01,* p < .05)

7 Conclusion

The vanna-volga method is used to estimate variance swap rates on exchange rates from 25

delta risk reversal and butterfly quotes. It is shown that the variance swap rate consistent with

vanna-volga prices is given as a closed form expression.

The estimated variance swap rates are then compared to realized variance in an attempt to

determine the existence of a variance risk premium. The null-hypothesis of zero variance risk

premium cannot be rejected in most cases. Conflicting results of hypothesis tests are obtained
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in two sub-samples investigated. By extending the sample using a conservative approximation

of the variance swap rate highly significant negative variance risk premiums are found in a few

currency pairs.

It is found that the proposed method possibly underestimates the variance swap rate by as

much as a few percent even if the vanna-volga method is accurate in the 10 delta put to 10

delta call range.

It is shown that the variance swap rate of a foreign denominated variance swap is propor-

tional to the domestic gamma swap rate, and that the difference between the two variance swap

rates is determined by the slope of the smile. In practice the difference is found to be very

small.

Furthermore, currency variance swap returns are found to be correlated with stock market

returns in a few cases.
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Figure 1: gbpusd. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP.
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Figure 2: eurusd. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP.
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Figure 3: eurgbp. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP.
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Figure 4: eursek. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP.
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Figure 5: usdjpy. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP.
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Figure 6: usdcad. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP.
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Figure 7: audusd. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP.
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Figure 8: gbpusd. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP. In the shaded area the approximation based

on the ATM volatility is used.
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Figure 9: eurusd. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP. In the shaded area the approximation based

on the ATM volatility is used.
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Figure 10: eurgbp. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP. In the shaded area the approximation based

on the ATM volatility is used.
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Figure 11: eursek. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP. In the shaded area the approximation based

on the ATM volatility is used.

40



RP

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
−1

0

1

2

3

4

RV,KV

 

 

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0

0.05

0.1

0.15

0.2

spot

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
80

100

120

140

160

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

RV
KV

Figure 12: usdjpy. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP. In the shaded area the approximation based

on the ATM volatility is used.
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Figure 13: usdcad. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP. In the shaded area the approximation based

on the ATM volatility is used.
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Figure 14: audusd. Variance swap returns (RP), variance swap rates (KV), realized variance

(RV), the spot exchange rate and histogram of RP. In the shaded area the approximation based

on the ATM volatility is used.
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