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Abstract

This paper attempts to shed further light on price formation in the EU ETS carbon
credits market. It explores relationships between credits and energy complex assets,
including electrical power, coal, natural gas, and oil. Relationships are analyzed using
various statistical tools and methods, and explored in terms of fundamental economic
relationships, correlation, and cointegration. Furthermore, the applicability of certain
statistical tools, specifically correlation and multivariate regression, are examined. The
switching price, according to the fundamentals theory, is found to be a poor indicator
for valuing EUAs. Further, pairwise correlations between carbon credits, specifically
EUAs and energy complex assets, are mostly found to be very noisy and weak. Power is
found to be the the only asset with significant correlation to EUAs. Weak correlations
lead to weak multivariate regressions. Given these results, it is questionable whether
correlation is a relevant tool for measuring relationships in the EU energy complex. To
that end, cointegration is explored as a more relevant and robust measure. It is found
that EUAs are cointegrated with natural gas and oil, but, surprisingly, not with power.

Price forecasters should observe that day-to-day EUA prices move in sync with elec-
trical power. In the longer term, the EUA price is linked to oil, and, to a lesser extent,
to natural gas.
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Chapter 1

Introduction

Since the industrial revolution, anthropogenic activity has caused the atmospheric con-
tent of greenhouse gases to rise steadily, breaking new highs yearly. It is widely believed
that a 4 ◦C average temperature increase in the Earth’s climate above today’s average
would have catastrophic effects and may lead to shifts in steady environmental patterns.
There is much debate as to whether higher atmospheric greenhouse gas concentrations
cause global warming, but few doubt that anthropogenic activity is causing the world
around us to change.

General consensus led to the 1997 ratification of the Kyoto protocol by 174 countries,
amongst which were all the EU countries (notably, however, the USA did not ratify
the treaty). The protocol requires participating countries to reduce their yearly CO2

(or CO2 equivalent) emissions to 5% below 1990 levels. The treaty is intended to
achieve “stabilization of concentrations in the atmosphere at a level that would pre-
vent dangerous anthropogenic interference with the climate system.”1 As part of the
agreement, a group of fifteen EU countries agreed to meet their reduction targets collec-
tively through a so-called cap-and-trade scheme dubbed the European Union Emissions
Trading Scheme (EU ETS).

With the new presidential administration in the USA having CO2 reductions as a
policy cornerstone, tentative steps towards a full-scale emissions trading scheme are
being taken. Thus it appears that, with the USA finally on board, emissions trading
is here to stay. Some sources estimate that the market size of emissions could be up to
e3 trillion by 2020.2 The EU ETS is currently the largest emissions trading scheme in
the world and will set the standard in years to come, as well as be imitated as further
emissions markets blossom worldwide.

Building a fundamental understanding of the functioning of the market is essential in
planning large scale investment decisions that will be needed in order to meet emissions
reduction targets. This paper is a step in the direction of getting a clearer view of
what drives prices within the EU ETS. In the business of carbon credit trading the
ultimate tool would be able to predict prices based on market conditions. Since accurate
prediction in this (and indeed any) free market is fundamentally impossible, it is the
author’s opinion that the closest one can get is by having a deep understanding of
market forces and thereby an ability to act appropriately on new information.

1UNFCCC website
2Gardner (2008)
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The aim of this paper is to provide insight into the structure of market forces active
in the EU market for CO2 emissions, and to test which statistical methodologies are
meaningful and applicable to the energy complex price processes presented here. This
is done through empirical analysis of the price processes of various CO2 emissions
contracts, and of their connection to the price processes of other commodities in the
energy complex through fundamental economic relationships. As the market has only
been up-and-running since February 2005, still little is known about the price setting
forces that are active in the market. Whereas the behavior of individual market players
can in certain cases be analyzed for patterns, the market in aggregate is much harder
to analyze. The focus is on the German market where it is perceived that there is a
high degree of fuel switching capacity.

Much effort has been put into keeping this paper as understandable and readable as
possible. We will proceed in a stepwise manner and mostly build from basic principles.
Chapter 2 presents the basics of how the EU ETS functions. Chapter 3 discusses
the fundamentals theory that underlies the approach in this report. Chapter 4 briefly
reviews previous studies on this subject. Chapter 5 thoroughly examines the relevant
mathematics that will be used in the analysis. Before the analysis, the data that will
be used is briefly presented and discussed in Chapter 6. Finally, in Chapter 7, the
analysis is performed and conclusions are drawn. Chapter 8 summarizes and discusses
the material covered in the thesis and suggests topics for further work in the area.
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Chapter 2

A crash course in the
workings of the EU ETS

The EU ETS covers over 11,000 industrial installations in 15 EU member states that
together are responsible for 40% of the EU’s greenhouse gas emissions. It is thus
currently the largest emissions trading scheme in the world. The ETS is a highly
complex market, and a basic understanding of how it works is needed before it is
possible to proceed with the analysis.

2.1 Cap-and-trade

The EU ETS is a so called cap-and-trade scheme. A cap-and-trade scheme, in short,
designates a set of central authorities that control the total yearly allowed emissions (the
cap). The cap is then tightened year-on-year in order to meet reduction targets. Those
companies that manage to reduce emissions below their individual cap are allowed to
sell their unused emission allowances to other companies that don’t meet their caps.

In the EU ETS, the central authority is the United Nations Framework Convention
on Climate Change (UNFCCC).1 The UNFCCC allocates certificates for units of CO2

emissions allowances, or carbon credits, to polluting industries. These industries must
at the end of each year return a number of credits corresponding to the total amount
of verified emissions produced from operations during that year. Credits come in units
of one ton of CO2 equivalent (CO2e) emissions. Thus, a company covered by the
ETS that pollutes with 1000 tons of CO2e emissions during one year must return 1000
carbon credits at the end of that year, regardless of how many credits the company
was allocated at the beginning of that year.

A company that is allocated fewer credits than it expects to produce must either a)
reduce production in order to reduce emissions, b) buy additional credits from the
market, or c) acquire new technology which allows the company to pollute less per unit
of production. The course of action that a company chooses depends on the economics
of that company. A company that can reduce emissions cheaply may sell surplus credits
thus gained, and in addition thereby turn a profit on te allocated credits. Credits can
be freely traded, and market forces set prices.

1This is highly simplified. In fact, in addition to the UNFCCC, there are several regulatory
institutions included at the EU and national levels. A good description can be found at http://ec.

europa.eu/environment/impel/pdf/good_practice.pdf
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Each year the UNFCCC reduces the total number of freely allocated credits. This
eventually forces all industries covered by the scheme to reduce emissions. The hope
of the scheme is that the emissions reduction should come through technological im-
provements rather than reduction of production. Only technological improvement will,
as a whole, cause less pollution per unit of produced goods.

The alternative to a cap-and-trade scheme is a flat tax on pollution. In a flat-tax
scheme, the central authority would be able to control the price of pollution, but have
no influence over the amount that is actually polluted. Since in a cap-and-trade scheme
the total emissions is controlled, market forces set the price of pollution, which, on the
whole, leads to emission reduction occurring where it is the most economical. This
in turn leads to emissions reduction at the lowest cost to society. The situation is
illustrated in figure 2.1 by the marginal emissions abatement curves of two companies.

Company B faces a higher marginal cost of compliance compared with company A.
Here the advantage of the cap-and-trade scheme is clearly visualized. The UNFCCC
sets the cap which creates differing costs of compliance for the two market players. A
is able to reduce emissions, creating an allowance surplus. For B it is cheaper to buy
credits than to abate internally. A thus sells its surplus emissions allowances to B and
turns a profit. In the long run, however, B has an incentive to reduce anyway since the
overall cap will be tightened year-on-year leading to ever rising costs of compliance. In
a flat tax scheme, the price of emissions would be fixed, but the actual emissions for
each company would be dictated by the marginal abatement curve for each company.

The ETS significantly alters the competitive landscape in the EU. Opponents argue
that EU industries are put at a competitive disadvantage to the same industries abroad
and therefore outside the ETS. This could cause companies to either move produc-
tion abroad or increase production in plants based abroad, and thereby never actually
achieve emissions abatement. Time will tell if this is the case, but the EU has clearly
chosen to take this risk, citing that the risk of climate change is much higher. Also, op-
ponents argue that poorer countries within the EU are placed at a disadvantage, which
can severely hamper economic development. While this naturally is the case, others
argue that these countries are, as members of the EU, recipients of other economic aid
which on the whole offset the higher production costs.

As a side note, the EU ETS is based on the experience gained from a previous cap-
and-trade system, namely the NO2 and SO2 market developed during the 1990s in the
USA as a way of tackling problems associated with acid rain. The system was highly
successful, giving proponents of the EU ETS faith in the capacity for a cap-and-trade
scheme to actually produce significant emissions abatement.

2.2 Projects - increasing the supply of carbon credits

An essential aspect of the EU ETS is the increase in supply of carbon credits through
emissions reductions in developing countries not covered by the ETS. The idea is that
reducing emissions in developing countries is cheaper, and since global warming is
indeed a global problem, emissions reduction should be incentivized regardless of geo-
graphic location. For example, a hydropower dam constructed in China (thus outside
the EU ETS and Europe) ‘saves’ the global atmosphere from CO2 that would other-
wise have been created from a polluting coal fired power plant, and is thus granted a
corresponding number of carbon credits.
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Figure 2.1: The marginal emissions abatement curves of two polluting companies
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These credits which come from abatement in developing countries are called Certified
Emission Reductions (CERs). CERs act as a supply increase on top of the free credits
allocated to polluting industries by the UNFCCC. They may, however, only partly
be used by industries in the ETS to offset emissions above the cap. The system of
incorporating CERs into the ETS is called the Clean Development Mechanism (CDM)
and is a part of the so called Kyoto Linking Directive. A simplified schematic of the
above presentation is given in figure 2.2.

Figure 2.2: A simplified schematic of a part of the EU ETS

2.3 Market players

Market players can broadly be divided into three categories - energy sector, industrial
sector, and speculators. The energy sector needs carbon credits to cover emissions that
come from burning fossil fuels for producing power and heating. The industrial sector
consumes power to produce goods. The industrial sector doesn’t just implicitly pollute
through power consumption, but can directly pollute as well. The energy and industrial
sectors are thus ‘compliance buyers’, buying credits to cover emissions. Speculators of
all varieties buy (or produce in the case of generating projects) in the hope of rising
prices. The bullish view is that since the carbon credit quota is reduced year-on-year,
prices should tend to rise in the medium term until technological development, leading
to higher output per unit CO2 produced, catches up.

2.4 The three phases

The establishment of the ETS is a dynamic process and has been set up in three phases.
The regulatory framework is continually being revised as various systems are found to
be effective or not, and future regulations are by no means set in stone. Since the
market is an artificial one with no natural demand for carbon credits, the playing field
depends entirely on the legal and regulatory framework. It is thus up to the UNFCCC
and EU to provide stability and build faith in the system in order for the large scale
private investments necessary to tackle climate change to take place.

Phase I from 2005-2007 may be considered the ‘trial phase’ in which administrative
and regulatory bodies were put on-line. In phase I, all installations included in the
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scheme were given carbon credits corresponding to 100% of their respective emissions.
Unfortunately, after a year of operation, it was found out that most installations had
been oversupplied with carbon credits on the basis of falsely calculated operating ‘base-
lines’. Naturally, the market then collapsed making credits worthless. However, since
the credits from phase I couldn’t be carried over, or ‘banked’, to phase II, the futures
market for phase II credits still maintained high prices. This was because the market
belief was that there would be adjustments made so as to not oversupply installations
in phase II. Phase I is a prime example of policy failure leading to a market crash in this
artificial environment, but also a vindication of the cap-and-trade system as providing
economic transparency and thus a speedy signal to policy makers.

Phase II is the phase we are currently in, and runs from 2008-2012. Freely allocated
credits are marginally fewer than forecasted operating baselines. Credits from this
phase are bankable to phase III, meaning that no price fall is expected. However, the
recent global financial crisis has caused industrial production to slow down, decreasing
the demand for power. This in turn means that less emissions are produced and, given
that the annual quota of free carbon credits is fixed, has caused carbon credit demand
to collapse. An interesting development during this phase has been that carbon credits
have been used as a form of financing. Many actors have chosen to sell EUAs on the spot
market while compensating by buying long futures. This has led to a ‘super contango’
market, where futures are priced higher than they would have been using cost-of-
carry calculations. This demonstrates that market forces can be far disconnected from
economic equilibrium relationships, and that carbon credits must be seen as their own
asset class with their own dynamics. Finally, traded volumes during this phase have
been many times higher than the volume needed to even out short and long allocations,
indicating a high degree of speculation.

Phase III is set to run from 2013-2020. It is widely believed that the demand for
carbon credits will pick up as the economy recovers from the financial crisis. The
preliminary plan is that by 2020 there will be a 21% reduction in allowances compared
with 2005. If, however, international agreement (with non-EU countries) is reached on
definite reductions, this number could increase to 30%. The idea is that if all dominant
industrial actors are subject to ETS-like constraints, the relative competitiveness of EU
industry will not be harmed. Another change set to come during this phase is that a
large portion of what were previously free allowances is to be auctioned. Market forces
will thus guarantee a more effective allocation of allowances. Those companies that
previously made windfall profits by selling oversupplied credits will no longer be able
to do so. Past 2020, the EU ETS is set to expire if no further agreement is reached
following the next ‘Kyoto’ conference in December 2009 in Copenhagen.
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Chapter 3

The fundamentals theory of
the EU ETS price formation

The price of carbon credits is determined by supply and demand. Total supply is
dictated by the UNFCCC allocation quota which is lowered every year (with a small
amount of additional supply created by carbon credit generating projects), and demand
is determined by industrial1 and energy sector production. However, individual Euro-
pean governments, acting somewhat protectively towards the industry sector, tend to
oversupply the industry sector and undersupply the energy sector with carbon credits.
Furthermore, power and heating represent about 50% of all installations covered by
the ETS. In fact, the power sector accounted for about 60% of emissions in phase I.2

The energy sector effectively becomes the most dominant demand side player, and
thus sets the market dynamics. In order to further analyze market dynamics, it is
crucial to ask the question “how does the energy sector fundamentally behave with
respect to carbon credits?”. In this section the economic relationships governing power
production are shown. These concepts will be revisited in more detail in the analysis
section.

3.1 Dark spread and spark spread

The energy sector produces electrical power3 and heating. Heating can be disregarded
for the following discussion since it is commonly a by product of power production.
Power is generally produced by burning fossil fuel in order to heat water to steam that
drives turbines to produce electricity. The economic equation of power production is
thus (somewhat simplified)

Profit = Electricity price− Fuel price

All terms are per mega watt hour (MWh) of electricity. The two major types of fuel
used in Europe today are coal and natural gas. When the fuel is coal, the above profit
is called the ‘dark spread’, and when the fuel is gas, it is called ‘spark spread’. The
dark and spark spread must cover operating expenses for power production as a whole
to be profitable.

1So far, a number of industrial sectors are included in the ETS. The EU plans, however, to include
transportation - notably airlines - in phase III.

2Sikorski (2009)
3In this paper, ‘power’ denotes electrical power.
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In order to refine this crude equation, we note that the fuel price per MWh will depend
on the thermal efficiency of the power plant. If we let ρ represent the thermal efficiency
of a power plant,

Dark spread = Pelectricity − Pcoal ·
1

ρcoal

Spark spread = Pelectricity − Pgas ·
1
ρgas

The values of ρcoal and ρgas will in reality vary from plant to plant, but the values
will fall between 30%-40% for coal and between 50%-60% for gas. It can generally be
said that gas fired power plants have higher thermal efficiency but a higher price of
fuel per MWh. A power producing company that has both a coal fired and a gas fired
power plant in its portfolio will (disregarding operating costs) choose to run the plant
that has better economics during the foreseeable future4. As mentioned previously, the
introduction of the ETS has drastically altered the competitive landscape in the EU.
For power production, the effect has been to alter the economic equation. This will be
treated in the next section.

3.2 Clean dark spread and clean spark spread

The new equations governing power production are dubbed clean dark spread and clean
spark spread, and are given by

Clean dark spread = Pelectricity − [Pcoal ·
1

ρcoal
+ PCO2 · Ecoal]

Clean spark spread = Pelectricity − [Pgas ·
1
ρgas

+ PCO2 · Egas]

Here E stands for emissions and is given in terms of tons of CO2 emitted per MWh
of electricity produced, and PCO2 stands for the price of CO2 per ton. Since coal is
known to be twice as polluting per MWh of electricity produced as gas, gas fired power
production begins to look much more attractive in a carbon constrained economy.

3.3 Switching price

Given a dark spread and a spark spread, it is possible to calculate the necessary implicit
CO2 price that would cause gas fired power production to be as profitable as coal fired
power production. The formula for calculating the implicit switching price is given by

Switching price =
Pcoal

ρcoal
− Pgas

ρgas

Egas − Ecoal

The switching price is fundamental to carbon credit pricing in that the marginal cost
of a credit should in theory follow the switching price. The argument goes as follows:
with increasing carbon credit prices, more and more power producers will start to face
negative clean dark spreads and will decide to switch (assuming that they have both
types of plants in their portfolio, or have the capacity to switch). With a high degree of
switching to cleaner gas, demand for carbon credits decreases, creating downward pres-
sure that causes carbon prices to stabilize at or somewhat above the implicit switching
price.

4Some modern fossil fuel power plants can switch between coal and gas, burning whichever gives
the best economic profit.
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A central assumption in the argument above is that power prices are stable. In reality,
it appears that many power producers seek to maintain fixed clean dark and spark
spreads and choose to pass on the cost of carbon credits to the consumers through a
higher power price. Furthermore, there is debate as to whether rising carbon prices
cause power prices to increase (i.e. passing on the price), or conversely whether rising
power prices (i.e. rising power demand and increased total power output) cause carbon
prices to increase. This is a chicken-and-egg argument which is ultimately decided by
each individual power producer.
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Chapter 4

Literature study

While there is a myriad of companies that produce carbon credit analyses, there have
only been a limited number of research articles published.

Benz et al. (2007) investigated the the use of various GARCH models in an a-theoretical
approach, in an attempt at capturing the price volatility dynamics of carbon credits.
GARCH models were found to be effective in modeling short term behavior.

Kanamura (2009) examined whether carbon credits should be classified as commodi-
ties or securities. It was found that carbon credits in many ways do not behave like
commodities since they did not exhibit mean-reversion and contained no seasonality
component. Carbon credits are, however, called commodities in the common sense of
the word.

Mansanet-Bataller et al. (2006) performed a correlation analysis similar to the one
performed in this paper, but with a somewhat different approach. Correlations were
found to be much higher than what is found in this report, and is a point that will
be challenged here. In fact, the applicability of correlation in general as a measure of
links in the EU ETS will be challenged.

Mansanet-Bataller et al. (2008) analyzed whether EUAs significantly contributed to
diversification in the Markowitz portfolio framework. It was found that significant
diversification effects could be achieved by including carbon credits in a portfolio.

POMAR (2007) was a large joint venture project between the University of Helsinki
and the Helsinki University of Technology with the goal of predicting carbon credit
prices, as well as how to effectively analyze risk. This study makes the point that
switching price is a relevant variable, a further point that will be challenged in this
report. Finally, there have been multiple papers on how to price options on carbon
credits or various carbon credit spreads.

This paper explores various price processes for market structure and, as mentioned,
challenges a few preconceptions about the market behavior. Furthermore, presented
methodologies are tested for applicability and usefulness in extracting information
about the market. With the rise of the asset class, many attempts have been made
at price forecasting. A common approach has been to examine various sorts of cor-
relations with other assets or indexes. However, very little work has been done using
‘cointegration’. This is one of the methodologies that will be studied in this report,
and constitutes a cornerstone of the analysis.
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Chapter 5

The math

This section will treat the mathematics that will be used in the analysis. The less
mathematically interested reader can skip the formulas but should nonetheless read
the section as these tools will be the foundation of the coming analysis. The goal,
somewhat vaguely stated, is to gain an understanding for market structures. To this
end, several mathematical tools will be used. These are: correlation, multivariate
regression, and cointegration.

Correlation is a look at to what degree sample data, in our case a price time series,
moves synchronously. Multivariate regression investigates how a time series varies as
a function of several other time series. Finally, cointegration is a way of establishing
if there exists a long term link between price processes that is not exposed using
univariate or multivariate regression. In order to fully understand how these are applied
to financial data, it is important to first have an understanding for basic time series
analysis, as well as how correlation on sample data works. This is the topic of the first
section.

5.1 Basic time series analysis

Financial data has the price of asset as the starting point. From price data, the returns
are calculated as the percent change in price from one time period to the next,

∆St ≡
St − St−1

St−1

A commonly used approximation for small returns is

∆St ≈ lnSt − lnSt−1,

which is exact for continuously compounded returns. Price and returns data are fun-
damentally different, and to understand why, we need to understand the concept of
stationarity. The logarithm of most financial data can be described as autoregressive,
meaning that the current price is a coefficient α times the previous period’s price with
a stochastic adjustment

lnSt = α lnSt−1 + εt,

where ε is the adjustment term. More precisely, this process is called autoregressive, or
integrated, of order one, and is written AR(1), or I(1) in shorthand. When ε for each
time period is independent of other periods and identically distributed with distribution
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εt ∼ N(0, σ2), it is dubbed white noise. This is often taken as an assumption in financial
data analysis.

An AR(1) process is generally only stable for |α| ≤ 1. For α = 0 the process is just
white noise centered around zero. For |α| = 1 the process is a random walk that does
not exhibit ‘mean reversion’, meaning that it does not center around a long run mean.
For |α| increasing from zero to one, the level of mean reversion decreases. A process is
called stationary when it exhibits mean reversion, i.e. for |α| < 1.

The logarithm of price data usually has α = 1. Further, we see from the above formulas
that returns data are of the form

∆St ≈ lnSt − lnSt−1 = εt

Returns data are thus stationary - the ∆St center around a common point, namely
zero.

The reason that the formulas above work for financial time series is the efficient market
hypothesis, and comes from basic option pricing models. In an efficient market, asset
prices reflect all information available to that point. Future movements are therefore
the result of new information or news, which is unpredictable. Expressed differently, the
best prediction of tomorrow’s price is just today’s price. The fundamental assumption
in this theory is that asset prices (under the risk neutral probability measure) follow
the geometric Brownian motion (GBM)

dSt/St = rdt+ σdBt

where r an σ are constants that define the drift and volatility of the asset prices, and Bt
is a Wiener process. Increments dBt are thus normally distributed N(0, dt). Applying
Itô’s formula to this yields

d lnSt = (r − σ2/2)dt+ σdBt

Expressing this in discrete time yields

lnSt = c+ lnSt−1 + εt,

meaning that asset returns are modeled as ∆St ≈ lnSt − lnSt−1 = c + εt, where
c = r − σ2/2 and ε ∼ IID N(0, σ2). With c = 0 we obtain the random walk process
which is used to model log prices in efficient financial markets, and we recover our above
formulas for asset returns. If c > 0 the price trends upwards, and vice versa. In less
than efficient markets, log returns may still be modeled as above, but the increments
ε may be autocorrelated and therefore not IID.

5.2 Correlation

Correlation is a measure of the degree to which two variables move in sync. Corre-
lation lies at the heart of multivariate regressions, which will be treated in the next
section. The correlation between the random stochastic variables X and Y is denoted
by Corr(X,Y ), or often just ρX,Y , and is defined as follows

ρX,Y =
Cov(X,Y )√

V ar(X)
√
V ar(Y )

=
E[XY ]− E[X]E[Y ]√

E[X2]− E[X]2
√
E[Y 2]− E[Y ]2
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When taken on a sample, the Pearson correlation coefficient is the most commonly
used and is defined as

rx,y =
∑

(xi − x̄)(yi − ȳ)
(n− 1)sxsy

If the data column vectors x and y are normed, i.e. the mean is subtracted and the data
is divided by the sample standard deviation, the sample correlation can be calculated
as

rx,y =
x · y
‖x‖‖y‖

If the normed sample data is put in a T × k matrix X, the correlation matrix V of
several normed time series can be written compactly as

V = XTX/T

where T denotes the sample size.

Correlation has a very nice geometric interpretation which we will use later. If we define
~X and ~Y as the ‘vectors’ of two stochastic variables with squared lengths by V ar(X)
and V ar(Y ), and their mutual projections given by Cov(X,Y ), then the correlation
coefficient will be the cosine of the angle between them.

ρX,Y =
Cov(X,Y )√

V ar(X)
√
V ar(Y )

= cos(θ)

The smaller the angle, the higher the correlation. For normed sample data x and y,
the interpretation is that the closer the column vectors are to each other in terms of
angle, the higher the correlation.

The square of the sample correlation coefficient, called the coefficient of determination
and denoted R2, is the fraction of the variance in Y that is explained by a linear fit of
X to Y ,

R2 = r2x,y

This should be read as “R2 percent of the variation of Y is explained by the variation
of X”.

Having established how to calculate the (Pearson) correlation of a sample, it is now
time to turn to how to measure correlation for the types of financial time series that we
are interested in - namely price processes. When calculating the correlation between
two financial time series, we are asking to what degree the changes in price data co-
vary. If we read the word ‘changes’ as ‘returns’, we immediately see that it is crucial to
perform the above correlation calculations on the returns data´, and not the original
price data. Let S1 denote the price of asset 1 and S2 denote the price of asset 2, and
let them be defined as

∆S1 = lnS1
t − lnS1

t−1 = c1 + εt

∆S2 = lnS2
t − lnS2

t−1 = c2 + et

The correlation between two asset price time series is thus

Corr(∆S1,∆S2) = Corr(lnS1
t − lnS1

t−1, lnS
2
t − lnS2

t−1) = Corr(εt, et)

From this we see that it the degree to which the stochastic increments ε and e move
synchronously that defines the correlation. Calculating correlations on raw price data
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is a common error and can lead to the appearance of high correlation where there in
truth is none - this phenomenon is called spurious regression. We will illustrate the
point further in the following example.

Consider two discrete-time fictional assets S1 and S2 that are defined as discrete geo-
metric Brownian motions (GBM) with correlation ρ1,2. Simulating asset returns with
low correlation, ρ1,2 = 0.3, but that have a common trend c1 = c2 = c, figure 5.1
is obtained.1 Since the price processes have a common trend one might be fooled to
think that the correlation should be high where there in fact is very little. Further-
more, if the correlation is computed on the raw price data, we get spurious correlation
Corr(S1, S2) = 0.98, which is entirely false. When calculated on the returns data,
we get the real correlation Corr(ε, e) = 0.29. The discrepancy from the fixed ρ1,2 is
accounted for by statistical variation, and goes to zero as the sample size increases.
Similarly, diverging time series (for example where the trends are of opposite sign) can
still be highly correlated. This situation is illustrated in figure 5.2 where the correlation
is set to ρ1,2 = 0.7.

Figure 5.1: GBM time series simulation with low correlation

A final note on correlation is that the formula for calculating correlation gives equal
weight to all observations. In dynamic financial data it would make more sense to place
larger weight on recent data points. One common way of doing this is through expo-
nentially weighted moving average correlation (EWMA correlation) which is defined as
follows,

rx,y =
∑
λi(xi − x̄)(yi − ȳ)√∑

λi(xi − x̄)2 ·
∑
λi(yi − ȳ)2

Here λ ∈ (0, 1) is a factor which sets the rate of decay (of importance). High λ means
that distant points are still weighed heavily, and vice versa. We will use λ = 0.94 in
this paper.

1For a full discussion on how to simulate correlated asset prices see the appendix
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Figure 5.2: GBM time series simulation with high correlation

5.3 Linear regression

Linear regression is a test of whether, and how, a variable (called the dependent vari-
able) is related to one or several other variables (called the independent variables). A
linear regression is characterized by the way the dependent variable is seen as a function
of the independent. Note that ‘linear’ does not refer to this straight line, but rather to
the way in which the regression coefficients occur in the regression equation.

It is important to make the distinction between a linear relationship and a linear
regression. In a linear relationship, the dependent variable does in fact vary linearly
with the independent variables. In a linear regression, a linear model is fitted to sample
data. Oftentimes the situation to which a linear regression is applied is not derived
from a linear model. The power of a linear regression lies in its simplicity, and in some
cases much can be said by applying a linear regression to a non-linear relationship.
It is impossible to establish causality using linear regression, but knowing how two
processes depend on each other is relevant none the less.

5.3.1 Definition

A linear relationship between X1, X2, . . . , Xk and Y is defined as

Y = β0 + β1X1 + β2X2 + ...+ βkXk

where β1, β2, . . . , βk are coefficients that measure the effect that the associated inde-
pendent variable has on Y . Generally, a linear relationship isn’t perfectly linear, so an
error term ε is added:

Y = β0 + β1X1 + β2X2 + ...+ βkXk + ε

In the multivariate case there are several independent variables, and in the univariate
case there is only one (not counting the constant).
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When sample data in a linear model is time series data, it is indexed with t. A whole
sample data set can be written compactly using matrix notation. We let the vector y
denote all samples of the variable being regressed y = (Y1,Y2, . . . ,YT), and row j
of the matrix X corresponds to a single observation of all explanatory variables. The
task thus becomes finding the β values that fit all samples Yt and Xt in a linear model
in the “best” possible way. Given that we have found the ‘best’ parameters β̂, we can
predict outcomes of Y based on new X’s. The predicted Yt’s are denoted Ŷt, and are
calculated as Ŷt = β̂Xt. The difference between the true Yt and the predicted Ŷt is
called the error (or residual) et, et = Yt − Ŷt.

The best parameters would logically in some way minimize the error et, and the most
common way this is done is through ordinary least squares (OLS). OLS estimators
minimize the sum of the square error terms, SSE =

∑
e2t = eTe. One way of obtaining

OLS estimators b (when using OLS the estimators β̂ are denoted b) is by solving a
quadratic optimization problem, resulting in

b = (XTX)−1XTy

The result can also be obtained geometrically by noting that the parameter vector b
that minimizes the euclidean norm of the vector of error terms, e, must be orthogonal
to the plane spanned by the column vectors in X.

In the univariate case the result reduces to

b =
σ̂X,y
σ̂2
X

=
ρσ̂y
σ̂X

where the hat denotes that the variable is an estimate based on sample data. A
univariate linear regression is thus based almost entirely on the concept of correlation,
and the multivariate case is an extension thereof.

5.3.2 Confidence level

Further calculations reveal that the estimated covariance matrix V (b) for the compo-
nents of b is calculated as

V̂ (b) = s2(XTX)−1, s2 =
eTe

T− k
,

where T is the sample size (the number of samples of t) and k is the number of variables
in the regression including the constant. This estimation can be used for calculating

confidence bounds on the components of b,

bi − βi√
σ2
bi

∼ tν , ν = T − k (5.1)

⇒ P (bi − tν,λσbi < βi < bi + tν,λσbi) , λ = (1− α)/2

It is common to just want to know if a bi value could statistically be zero at a set
confidence level α (this is in fact a two sided hypothesis test with H0 : β = 0 and
H1 : β 6= 0). To do this a t score can be calculated as

t∗ = (bi − 0)/
√
σ2
bi
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If the t score is smaller than the critical values of the t distribution, i.e. tν,λ, then the
null hypothesis is rejected and vice versa.

Equation 5.1 is only valid under the assumptions that the explanatory variables are
non-stochastic and the errors e are stationary, homoscedastic (constant variance), and
not autocorrelated. The conditions can be lowered if the regressors X are uncorrelated
with the errors e (since then the explanatory variables can be stochastic), and if the
errors have the same distribution.

Note that one of the problems with linear regressions applied to financial data is that
financial structures are prone to regime switching. A relationship that is found to be
true during a certain period may be entirely different during another. This means that
even if a multivariate linear relationship is found between a combination of independent
variables and the dependent variable, it may be short-lived.

5.3.3 Goodness of fit

Using linear regression is possible to determine how much a set of chosen explanatory
variables affects a chosen dependent variable. As mentioned previously, it is not neces-
sary that the data are in fact based on an underlying linear model. After performing
a regression, it is interesting to know how well a regression fits the observed data. In
other words, how far does the regression go to explain variation in the observed y’s,
and how much of the variation must be absorbed by the residual errors e? To that end
there are a number of metrics. We will here consider three metrics: R2, adjusted R2,
and Bayesian information criterion (BIC).

In linear regressions, as in correlation, it is possible to calculate the coefficient of
determination R2. In order to do so for a linear regression, it is necessary to understand
the concept of analysis of variance (ANOVA). In an ANOVA analysis, there are three
basic concepts, the total sum of squares (TSS), the explained sum of squares (ESS),
and the residual sum of squares (RSS). These are mathematically given by TSS =
(y − ȳ)T(y − ȳ), ESS = (ŷ − ȳ)T(ŷ − ȳ) and RSS = eT e. Through calculations one
can see that TSS = ESS + RSS. Now R2 is simply the explained sum of squares
divided by the total sum of squares:

R2 =
ESS

TSS
= 1− RSS

TSS

Thus we can tell how much variation of y is explained by the variation of the whole
regression bX

Adjusted R2, R2
adj , is a modification of regular R2 that takes into account the number

of explanatory variables included. Unlike R2, R2
adj increases only if the new term

improves the model more than would be expected by chance. R2
adj can be negative,

and will always be less than or equal to regular R2. It is defined as

R2
adj = 1− RSS/(T − k − 2)

TSS/(T − 1)

R2
adj does not have the same interpretation as regular R2, and is mainly useful for

deciding if an explanatory variable improves the results to such an extent that it should
be included in the regression.
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The Bayesian information criterion, or BIC, is similar to adjusted R2 in that it is used
for selecting appropriate variables to use in a regression. The lower the BIC, the better
the regression. For each new variable that is added, there is a penalty function that
increases the BIC. Variables can thus be added and removed until the lowest BIC is
found. For approximately normally distributed errors, BIC is defined as

BIC = T ln(RSS/T ) + k ln(T )

5.4 Cointegration

Cointegration is a way of testing whether there exists a long term linear relationship
between two processes. “It is unfortunate that many market practitioners still base
their analysis of the relationships between markets on the very limited concept of cor-
relation. Trying to model the complex interdependencies between financial assets with
so restrictive a tool is like trying to surf the internet with an IBM AT.” This is the
opening remark of the chapter treating cointegration in Alexander (2001). As men-
tioned previously, correlation is the degree to which asset returns move synchronously.
However, if there is a long term relationship between two assets, this will by defini-
tion be lost when differencing to obtain returns. Correlation will miss this relationship
entirely. For this kind of dependency, cointegration is needed.

Whereas correlation treats asset returns, cointegration examines asset prices directly
(although the logarithm of the prices is taken first). If two time series x and y are
integrated of the same order, but a linear combination of them g = x−αy is stationary
(i.e. integrated of order zero), then the two are cointegrated. Stationarity implies
that the combination g exhibits mean reversion. Cointegration remedies the intuitive
problem that co-trending series should be correlated - even if they have zero correlation
they may be cointegrated. The analogy commonly used for explaining cointegration is
of a man walking his dog with a bundgy-cord leash. At times the two will be closer,
at times further away, and at times they may even cross, but generally they hold an
average distance from each other.

In testing whether two time series are cointegrated, it must first be verified that both
series are integrated of the same order. As we have seen, financial data are generally
integrated of order one (I(1)), so in our case this will not present a problem. After this,
α must be determined such that g is stationary, and in doing so g must be tested for
stationarity. The most common way of finding α is by performing an Engle-Granger
test.

The Engle-Granger test is a two step process. First an univariate OLS regression is
performed on the log-price data, then the residuals are tested for stationarity. Note
that it is not common to regress price data on each other since this leads to spurious
regression. The only time this is valid is if the series are cointegrated. If the residuals
et are stationary, α will result from the regression

yt = c+ αxt + et

How, then, is it determined if the residuals are stationary? One common test for
stationarity in a time series is the Dickey-Fuller test (DF). The DF test is relatively
straight forward. We know that financial data are generally AR(1) due to the efficient
market hypothesis, and are thus not stationary (α = 1 in lnSt = c + α lnSt−1 + εt).

20



To test if α = 1 for sample data we could perform a regular OLS regression of the
lagged variable yt−1 on the non-lagged variable yt and use a simple t-test to test if the
resulting α is significantly different than one. Using this α directly, however, would
cause severe bias in the case of a unit root. Instead we difference once, resulting in

∆yt = c+ (α− 1)yt−1 + εt

and, after performing a regression, test if the coefficient of yt−1 is significantly different
than zero.

A refinement of the DF test is the augmented Dickey-Fuller test (ADF). In the ADF
test, lagged variables are added in order to remove any autocorrelation in the errors,
so that the OLS regression gives an unbiased estimate of the coefficient of yt−1.2 The
mathematical formulation of the ADF is

∆yt = c+ βyt + α1δyt−1 + ..+ αm∆yt−m + εt

with the hypothesis test
H0 : β = 0, H1 : β < 0

As before, the coefficient normed by its standard deviation is tν distributed with ν =
T − k degrees of freedom. We will use two lags in performing the ADF in this paper,
and a significance level of 95%.

There are many more advantages to using cointegration analysis rather than correlation
analysis. For example, if data is sampled frequently in one series and infrequently in
another, as is often the case with economic data, it is impossible to calculate correlation,
but it is still possible to examine cointegration.

Once it is established that two variables are cointegrated, this information could be
used practically in trading in what is called ‘pairs trading’. The idea is that if the
spread between two variables is shown to exhibit a long-run mean, the spread can be
purchased when it is lower than average, and sold when it is higher than average. This
is done by going long on the higher priced asset and shorting the lower priced asset
when the spread is low, and vice versa when the spread is high.

Note, however, that just like for multivariate regressions, cointegrated relationships in
financial data are prone to regime switching. This means that if a cointegrated rela-
tionship between two assets is established using historical prices, there is no guarantee
that it will stay cointegrated in the future. Furthermore, even if two assets are cointe-
grated, the variables can drift apart for a long time before the spread reverts back to
the long term mean.

5.5 Data problems - multicollinearity

In analyzing time series data, there are often many practical and theoretical prob-
lems, especially with data. One such problem which is prominent in this analysis is
multicollinearity in explanatory variables when performing a linear regression. Mul-
ticollinearity means that sample data between two or more explanatory variables are
significantly correlated. A rule of thumb is that if inter-correlations between explana-
tory variables are higher than the R2 of the entire regression, multicollinearity will
cause a problem.

2For a more thorough explanation see for example Alexander (2001)

21



The reason is that if two variables are highly correlated, the OLS regression has ‘trouble’
determining on which variable to place the coefficient weight that ‘rightfully’ belongs
entirely to one of the variables. The formal description of this is that the OLS estimates
of the coefficients lack robustness.

There are several ways of overcoming multicollinearity, and one of the most powerful is
through principal component analysis (PCA). PCA has many uses and can be a highly
effective tool for overcoming many data problems. PCA transforms correlated data
series into uncorrelated data series, and orders them in terms of the total variability
in the data. For a short mathematical description see the appendix. We will assume a
certain familiarity with PCA in the following discussion.

The way we use PCA in overcoming multicollinearity is by transforming our original
correlated data series into uncorrelated data series (the PCA algorithm), performing
our multivariate linear regression on the uncorrelated data, and then converting the
estimated OLS coefficients back in order to match our original data. The reason this
works for correlated data is because, when performing the regression using uncorrelated
data the OLS estimates are much more robust. To see this intuitively, we remind
ourselves of the discussion above on the geometric interpretation of correlation as the
angle between two sample data vectors. When the angle is small (i.e. highly correlated
data), the plane that contains both vectors is ‘unstable’, resulting in non-robust OLS
estimates. When the angle is large (i.e. for uncorrelated data), the plane becomes
much more ‘stable’.

In mathematical terms, we see that for the normed sample data X∗

X∗ = PWT

where P is the matrix of uncorrelated (i.e. orthogonal) principal components, and W is
the matrix of factor weights. Next, a regular multivariate OLS regression is performed
using the (uncorrelated) principal components:

y = a + Pb + e

The OLS estimate of the vector b is

b = (PTP)−1PTy = Λ−1PTy,

since PTP = Λ which is the diagonal eigenvalue matrix of X∗TX. We will now trans-
form this result into the corresponding regression coefficients for our original correlated
data. Substituting P = X∗W into this, we obtain

y = a + X∗Wb + e

If we now define

Σ =


1
σP1

1
σP2

. . .


where σPi

denotes the sample standard deviation of principal component i, then we
can write

y = (a− µTΣWb) + X∗ΣWb + e

We have now recovered the regression coefficients that we are looking for, based on the
results of the regression on the uncorrelated principal components.
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5.6 A note on other analyses

A modern and powerful way of measuring dependence between random variables is
through copulas. In our context, however, the market is much too young for any stable
dependence structures to have been established, and a copula analysis would not reveal
anything. Furthermore, if the options market were more mature and liquid it could
be possible to calculate implicit correlations - i.e. the correlation that is perceived by
market players. But this is again not the case.
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Chapter 6

Data discussion

6.1 Datasets

Before proceeding with an analysis using the mathematical tools presented above, we
must first choose relevant data to analyze. Choosing relevant data is far from trivial,
especially in such a young market. The fundamentals theory dictates the basic market
mechanism, the assets of interest are: carbon credit price, wholesale power price, coal
price, natural gas price. These are essentially all commodities.

Commodities generally have the characteristic that they are difficult to store (as com-
pared with corporate bonds, for example). They are therefore generally traded on
futures markets, and not on spot markets. Gas, for example, is virtually impossible
to store in large volumes and is delivered continuously through a large network of gas
pipes directly from the source. In most commodities markets, purchasing (intended
for delivery) and hedging is performed on a month ahead or year ahead basis. Spot
markets (where they exist) are only used for final adjustments. The effect is that far
ahead futures prices are relatively stable, whereas spot market data are extremely noisy
and don’t reflect market mechanisms.

It can generally be said that power companies purchase and hedge on a year ahead
basis. Therefore, in this paper, front year futures contracts are used. We will examine
the German energy market, and will therefore use price data relevant to Germany.
Table 6.1 states the relevant commodities and their contracts. The data were obtained
from SKM SYSPower (a Norwegian power and commodities market data provider) and
Bloomberg.

Carbon credit EUA
Power European Energy Exchange (EEX) Peak Load
Coal CIF API2 Index
Natural gas Zeebrugge
Oil Sullom Voe Brent Crude

Table 6.1: Relevant commodities contracts

EEX peak load power is used as it is perceived that fuel switching occurs on the
marginal unit of power produced, and that fuel mix for base power is relatively constant.
Other data that will be used are the DAX index and the seasonally adjusted industrial
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production index for the eurozone, as found under the ticker ‘ECST ’ on Bloomberg.
These will be used as indicators for the state of the economy and aggregate industrial
output, respectively.

6.2 Getting familiar with EUAs

The EUA carbon credit is the de facto trendsetter for EU carbon credits. EUAs are
the most ‘useful’ credit type in terms of covering emissions. The correlation coefficient
between this EUA data and the corresponding CER data for all periods is >0.9. For
these reasons, and because CER futures data are only available since mid 2008, we
choose to let the EUA credit be representative of all EU ETS credits. In order to get
a feel for EUAs, we begin by plotting the historical Y+1 data in figure 6.1. (In this
context Y+1 future refers to the future that is valid until the end of that year. During
2008, for example, the 2008 future, that started trading in 2005, will be used until it
expires in Dec 2008, and the new 2009 contract takes over.)

Figure 6.1: A plot of the prices of year ahead EUA futures contracts

Note the gap during mid 2006 - this was the market collapse observed during the end of
phase I. As discussed previously, since EUAs from phase I weren’t bankable into phase
II there was still faith in the phase II market. Thus, the 2008 EUA future (the first
year-end future in phase II) still maintained high prices. For our data, we will therefore
let the 2008 EUA future be representative of EUA prices for the entire phase I and the
first year of phase II. This concatenated data series without the gap is plotted in figure
6.2.

Table 6.2 below summarizes the descriptive statistics of EUA price returns, figure 6.3
shows a histogram of EUA returns, and figure 6.4 gives us an indication as to the
distribution of EUA returns data.
From this we see that the returns data of our selected EUA futures contracts are
relatively symmetric and approximately t5 distributed.
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Figure 6.2: A plot of the chosen EUA data series

Std. Dev Excess Skewness Excess Kurtosis
0.0283 -0.1604 7.6807

Table 6.2: A table of descriptive statistics for the selected EUA futures returns data

Figure 6.3: Histogram of EUA futures returns with fitted normal PDF
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Figure 6.4: QQ plots of EUA futures returns

6.3 Other data

We will not delve deep into the other data series that we have selected, and will be
content plotting the data series and examining box plots. Note that all prices have
been converted to Euro, and for power, coal, and natural gas prices are stated per
MWh equivalent. Coal prices (quoted as $/ton) have been converted to e/MWh using
the USDEUR spot rate and a conversion factor of 0.12286 MWh/ton coal, and natural
gas prices (quoted as GBpence/therm) have been converted to e/MWh using the
GBPEUR spot rate and a conversion factor of 0.02931 MWh/therm gas. Furthermore,
in concatenating time series data for subsequent year ahead futures, the connection
point represents a discontinuity, and the corresponding return data point is removed.

Figure 6.5 shows the original data series, and figure 6.6 shows the corresponding box-
plots. We note that returns are generally not very skewed, but that there are a large
number of outliers that could bias our results.
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Figure 6.5: Plots of other data series

Figure 6.6: Box plots of other data series
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Chapter 7

Analysis

Having discussed the mathematical tools as well as the data that will be used, we are
now ready to proceed with the analysis. To begin with, the fundamentals approach to
valuing carbon credits is revisited and examined for price signals. After that, this chap-
ter is organized much like the mathematics chapter - pairwise correlations, multivariate
regression, and cointegration are examined in order.

7.1 Fundamentals theory revisited

The first step is to look at dark and spark spreads. A plot of the dark and spark
spreads for the period 2005-2009 is given in figure 7.1. The thermal efficiencies ρcoal
and ρgas are set to 36% and 50% respectively, and are widely used industry averages.

Figure 7.1: Year ahead dark and spark spreads on the German power market

Using this data, these plots show that gas fired plants are generally less lucrative
than coal fired plants when polluting is free. Both spreads are positive meaning that,
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disregarding operational costs, both types of power production are profitable. Since
gas was relatively more expensive than coal during 2005-2006, the spread was higher
during this period.

Factoring in the price of carbon leads to the clean dark and spark spreads. Figure 7.2
shows the clean dark and spark spreads for the period 2005-2009. For these plots the
emissions factors Ecoal and Egas are set to 0.86 tCO2/MWh and 0.36 tCO2/MWh,
respectively.

Figure 7.2: Year ahead clean dark and spark spreads on the German power market

From this plot it is seen that in a carbon constrained economy it is still generally more
profitable to run a coal fired power plant than a gas fired one. The difference, however,
is significantly reduced.

Finally, the implicit switching price can be calculated from the spreads above. Figure
7.3 is a plot of the switching price. Considering the clean dark and spark spreads,
it is not entirely surprising that the switching price is positive and higher than EUA
price. The huge differences during significant periods of time, however, are surprising.
During most of 2007 it could be argued that, while it was not more economic to produce
natural gas fired power, there was at least a degree of equality which may have led to
higher gas fired power generation, and thereby lower total emissions.

The question at hand is whether switching price reflects actual carbon credit prices
well. A glance at the plot reveals that switching price is a very poor indicator of EUA
price. With different data sets and sources, this plot will look a little bit different.
In any case, we see that switching price is of little help in determining a fundamental
value of EUAs. EUA carbon credits must therefore be seen as an independent asset
class, and are not priced according to the fundamentals theory.

Another observation is that EUA prices are relatively stable compared with the fluctu-
ating switching price. One reason for this is that switching price is much too simple a
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Figure 7.3: Implicit EUA switch price necessary for fuel switching from coal to gas
fired power generation

model for interpreting such a complex market as carbon credits. There are many more
market forces at play which can severely impact price, than what are presented in this
model.

7.2 Correlation analysis

Having examined switching price as an indicator of EUA price and found it to be rather
poor, we proceed with more advanced analyses in the search for market structure.

From the mathematical presentation, we know that the correlation coefficient is the
determining factor of the univariate regression. We will begin by looking at pure cor-
relations, and will extend this analysis in the next section on multivariate regressions.
Table 7.1 gives the correlation matrix of the relevant data for the full dataset using
standard Pearson correlation.

EUA Power Nat Gas Oil Coal DAX Switch
EUA 1 0.56 0.00 0.21 0.25 0.17 -0.11
Power 1 0.03 0.25 0.48 0.19 -0.19
Nat Gas 1 0.15 0.14 0.03 0.86
Oil 1 0.33 0.26 0.00
Coal 1 0.24 -0.32
DAX 1 -0.09
Switch 1

Table 7.1: Correlation matrix for full data set
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Correlations are thus not particularly high, especially considering that R2 = ρ2 is the
total variability explained. It is really only power that has a significant correlation to
EUA prices. The fundamentals theory states that there should be a direct link between
EUA price and power price. The correlation can therefore even be considered surpris-
ingly low. But, as we have seen, the switching price is not a particularly instructive
metric - it even has a negative correlation with EUA price.

Furthermore, the table reveals that natural gas has virtually no correlation with EUAs.
Also, since pairwise correlations between variables other than EUAs are quite high, we
note that there is a high degree of multicollinearity in the data as a whole. We will
return to this when performing multivariate regressions in the next section.

Since a full data set analysis does not reveal much with regard to the correlations to
EUA returns, a moving window approach is applied to see if there are significant corre-
lations present during short time intervals. A 60 day moving window of exponentially
weighted moving average (EWMA) correlations is calculated. Shortening the sample
data increases the confidence interval for the correlation coefficient. At the same time,
however, having too long data series wouldn’t reveal the dynamic behavior of the cor-
relation (if such is present). 60 days is chosen as a compromise. Figures 7.4 and 7.5
show 60 day moving window correlations calculated against EUA prices.

Figure 7.4: 60 day moving window correlations against EUA returns

It is seen that power and sometimes oil are the only variables with significant correla-
tion, and during H2 2008 and H1 2009 coal was somewhat correlated. Natural gas and
the DAX index show a very weak (but noisy) correlation. We conclude that correla-
tion, both full period and EWMA, reveal little other than that power is correlated with
EUAs. The lack of correlation is not entirely uninteresting, however, since it tells us
that correlation is perhaps not the best tool for detecting and measuring links between
these chosen energy complex variables.
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Figure 7.5: 60 day moving window correlations against EUA returns

7.3 Multivariate regression analysis

Having looked at pairwise correlations, we will now extend the analysis to multivariate
regression. We will examine the degree to which a linear combination of multiple inde-
pendent variables (power, nat gas, oil, coal, DAX) can explain the dependent variable
(EUA returns), and draw conclusions from this. As a final analysis, the multivariate
regression deemed to be the ‘best’ is used for a simple prediction analysis in order to
see if any further conclusions can be drawn.

7.3.1 Regression

We begin by performing multivariate regression using all variables as independent vari-
ables. Due to the level of correlations that was shown to exist in the correlation analysis,
we will use PCA regression in the following in order to obtain robust results despite
the multicollinearity. The regressions will be performed on the full data set. The table
below shows the regression coefficients (the β values) and a 95% confidence interval of
the regression of all variables with respect to EUA price.

Const Power Nat Gas Oil Coal Dax
β -0.0002 1.1251 -0.0245 0.0911 -0.0975 0.0954

β0.95+ 0.001 1.24 0.05 0.16 0.005 0.20
β0.95− -0.002 1.01 -0.10 0.03 -0.20 -0.003

For this regression R2 = 0.3198 and R2
adj = 0.3165. We see that power and oil are the

only variables with significant coefficients at the 95% significance level.

We will now eliminate variables in order to maximize R2
adj . The maximum is obtained

when only natural gas is removed. The regression coefficient for natural gas is very low,
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and the correlation in the previous section was seen to be insignificant. The following
table shows the regression results with natural gas removed.

Const Power Oil Coal Dax
β -0.0002 1.1270 0.0884 -0.1012 0.0962

β0.95+ 0.001 1.24 0.15 0.00 0.19
β0.95− -0.002 1.01 0.02 -0.20 -0.002

In this case R2 = 0.0.3195, R2
adj = 0.3168 for the full data set. As expected R2 is

lower, but the important metric is R2
adj which is indeed somewhat higher. Since natural

gas had insignificant correlation with EUAs, and was detrimental to the multivariate
regression, we can safely rule out natural gas as a variable that is linked to EUAs in
terms of correlation.

Since the correlation coefficient for power is high, we try regressing with only power
and constant. The result is R2 = 0.3100, R2

adj = 0.3094, and the correlation coefficients
are given in the table below. Although all other variables are removed, the result is
only a small reduction in R2

adj . We therefore conclude that power is by far the most
telling variable in terms of correlation, although the correlation is still low.

Const Power
β -0.0002 1.1267

β0.95+ 0.001 1.23
β0.95− -0.002 1.03

7.3.2 Prediction

As a further analysis using multivariate regression we will attempt to use our R2
adj

maximizing result to perform price prediction on in-sample data, i.e. the regression
with all variables except natural gas, as shown in the previous section. While it may be
considered false to perform in-sample prediction, a deep prediction analysis is beyond
the scope of this paper as we are only interested in analyzing market data for structure.
For in-sample data, figure 7.6 shows the predicted versus actual EUA price. The results
are quite positive, and prediction is seen to work surprisingly well on in-sample data,
despite correlations being low.

Here it makes sense to consider the Bayesian information criterion (BIC, see mathe-
matics section) in order to choose the variables that are the ‘best’ for prediction. When
using all variables, we obtain BIC = 2.9997 · 103. Using only power, we again obtain
the BIC minimizing result with BIC = 2.7036 · 103. Even considering BIC, we can
conclude that power price is the only useful variable in terms of correlation. When
using all other variables except power, we get BIC = 2.8104 · 103 which is in between,
but the plot of predicted versus actual EUA price is rather poor as seen in figure 7.7.

As a final comment, recall that linear regression applied to financial data is prone to
regime switching. A multivariate linear relationship that has been found to hold may
be short-lived. A full prediction analysis should calibrate the model to recent historical
data and measure the predictive power on future out-of-sample data.
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Figure 7.6: Multivariate regression prediction using all variables

Figure 7.7: Multivariate regression prediction using all variables except power
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7.3.3 Regression conclusions

What we have been able to conclude using multivariate regression in this section is that
power is the only variable with a significant link to EUA prices in terms of correlation.
Natural gas is found to be insignificant in terms of correlation. This is not surprising
given market participants’ strong belief in the fundamentals theory.1 One possible
explanation for power price’s dominance as a signal is that natural gas and coal markets
are much less liquid than the power market.

Even with correction for multicorrelation using PCA, the results of the regression
analysis were quite poor. There may be several reasons for this. First and foremost,
it is appropriate to question whether the data should obey a linear relationship at all,
i.e. whether data is ‘generated’ according to a linear relationship. Furthermore, even
if a linear relationship is appropriate, the assets may not be linked on the daily-closing
basis that would be necessary to cause correlation and thus meaningful regression.
Since correlation based analysis did not reveal much, the natural question is whether
there is any longer term relationship between the assets. This is the topic of the next
section.

A final comment is that no lagged variables have been included in the regression above.
The reason is that, in a separate analysis, the coefficients of the lagged variables were
found to be insignificant. This was also reflected in the fact that residuals for the
standard multivariate regression with all variables was found to be white noise. This
means that little or no further information can be extracted using variable lags.

7.4 Cointegration - truths revealed

A quick recap of cointegration as explained in the mathematics section tells us that
we must test for stationarity of the residual (the difference) between two logged and
scaled time series. The hypothesis in the Augmented Dickey-Fuller (ADF) test of
stationarity is H0 : β = 0, H1 : β < 0. Not rejecting the null hypothesis (at a certain
significance level) is equivalent to the time series having a unit root. This means that
the difference between the scaled time series is non-stationary, and no cointegrating
relationship exists.

Table 7.2 shows a cointegration hypothesis-test matrix. A ‘1’ indicates that the null
hypothesis is rejected at the 5% significance level, meaning that there is a statistically
significant cointegrated relationship between the two variables. The number in paren-
thesis indicates the t-score of the ADF test for those variables where the null hypothesis
is rejected. At the 5% significance level the critical value is given by tcritical = −2.865,
and at the 1% significance level tcritical = −3.4378. Finally, since cointegration anal-
ysis is able to handle infrequently sampled data sets, total industrial output has been
included as a variable as it may reveal interesting results.

To begin with, we examine relationships with regard to EUAs. Natural gas and oil are
both cointegrated with EUAs at the 5% level, but only oil is cointegrated at the 1%
level. The regression residuals for the pairwise relationships are plotted in figure 7.8.

These plots do seem to exhibit stationarity and mean reversion. This shows that even
though natural gas and, to a large extent, oil had low correlation with EUAs, they do

1Sikorski (2009)
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EUA Power Nat Gas Oil Coal DAX Ind. Prod.
EUA 0 1 (-2.94) 1 (-3.77) 0 0 0
Power 0 0 1 (-3.24) 0 0
Nat Gas 0 0 0 0
Oil 0 0 0
Coal 0 0
Dax 1 (-2.98)
Ind. Prod.

Table 7.2: Cointegration hypothesis-test matrix

Figure 7.8: Pairwise residuals for natural gas and oil to EUA
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exhibit a cointegrating relationship. This is an example of the situation of uncorrelated
but co-trending time series, as illustrated in the mathematics section. The conclusion
of this is that, in attempting to predict future EUA prices, oil and natural gas are
the determining variables. Though its own asset class, EUAs are indeed shown to be
linked to these commodities. Oil is the leading proxy for energy consumption, and it is
therefore not entirely surprising that EUAs should be linked to this proxy in the long
run.

In continuing the analysis, it is very interesting to note that, although EUAs and
power are highly correlated, there is no cointegrated relationship. Although daily
closing prices move more or less in sync, there is nothing to suggest that prices follow
each other. This is an example of correlated but divergent time series. A plot of the
residuals is shown in figure 7.9, and does indeed look non-stationary.

Figure 7.9: Residuals for power and EUA

The fact that power and coal are cointegrated is noteworthy since it means that, in
terms of long run equilibrium, power and coal are linked, and both are disconnected
from the separate carbon credit ‘complex’ consisting of EUAs, natural gas, and oil. It
is easy to speculate that there is a causality between coal and power, i.e. that coal
prices to a large extent dictate power prices.

Finally, it is less surprising that the DAX and industrial production indexes are coin-
tegrated since the DAX to a large degree represents industrial production.

A critique of the analyses above is that H2 2008 and H1 2009 data represent points
during the recent financial crisis. It is well known that during crises, many assets
become highly correlated. From the moving window correlation plot in the correlation
section, there was no reason to believe that correlations had increased significantly.
This, however, does not preclude that assets become highly cointegrated, which could
bias the above results. At the worst, it has been shown here that there is insight to be
gained from performing a cointegration analysis.
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Chapter 8

Summary and conclusions

This report is a step in the direction of understanding the market forces active in the
EU ETS, and, more specifically, the carbon constrained energy complex. Through
empirical statistical analyses, we have been able to draw several conclusions as to the
nature of these forces, as well as to the applicability of various statistical methods to
energy complex data in general. We have, in order, examined the fundamentals theory,
correlation, multivariate regression, and cointegration in the German energy complex.

The fundamentals theory dictates that switching price should be of relevance in de-
termining the price of EUAs. It was found, however, that switching price is a very
poor indicator of EUA price, and that the fundamentals theory is a far too simple
mechanism to capture the complex workings of this new asset class.

Next, since many authors before believed correlation to be an appropriate tool in the
context of the energy complex, we examined both pure correlation and multivariate
regression. Contrary to several authors, however, we find that hardly any significant
correlations and linear relationships exist. The analysis revealed that correlations with
EUAs are in general very low for most chosen assets. Power was the only asset shown
to have any substantial correlation. Multivariate regression mostly reinforced the con-
clusions of the correlation analysis.

Cointegration applied to EUAs is, however, relatively unexplored territory. Being a
tool for examining longer term links, and not just the degree to which daily closing
prices move in sync, as is the case with correlation, it revealed much more of the market
structure. EUAs were found to be cointegrated with both natural gas and oil, and,
surprisingly, not at all with power.

We have thus picked apart what variables are important, and why. In the short run,
day-to-day closing prices of EUAs are linked to power prices, but in the long run EUAs
are cointegrated with natural gas and oil.

A suggestion for future work is to conduct a similar analysis, but with UK market
data using UK relevant commodities, or, alternatively, conducting an EU wide analysis
using EU wide indexes. Further it would be interesting to examine optimal hedging
of EUAs (or other energy complex commodities) with a basket of commodities using
cointegration rather than correlation, as is common practice.

The EU ETS is a dynamic system that may have an entirely different structure years
from now. The up-coming climate summit in Copenhagen in December 2009 may
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drastically alter the system’s future outlook. It will therefore be interesting to see how
the market forces change with the evolution and proliferation of cap-and-trade systems
around the globe - in the US, Japan, Canada, Australia and other countries - and how
these will influence each other and possibly become linked.

As with all free markets, however, asset prices appear chaotic, and it will always be
necessary to pick apart market data in order to build an understanding for their func-
tioning. The exploration of statistical tools and approaches in this report is thus a
contribution to market practitioners seeking a deeper understanding.
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Appendix

Generating correlated discrete-time geometric Brow-
nian motions

Consider two discrete-time fictional assets S1 and S2 that are defined as discrete geo-
metric Brownian motions,

dS1
t /S

1
t = µ1dt+ σ1dB

1
t , S

1
0 = S1(0)

dS1
t /S

1
t = µ2dt+ σ2dB

2
t , S

2
0 = S2(0)

We know that it is the correlation between the Brownian motions dB1 and dB2 that
defines the correlation of the price processes. When simulating discrete price processes,
it is possible to hard-code the correlation between the two by simulating σ2

1δB
1 and

σ2
2δB

2 that have a fixed correlation ρ1,2. Let Σ denote the covariance matrix,

Σ =
[

σ2
1 ρ1,2σ1σ2

ρ1,2σ1σ2 σ2
2

]
We can then use the fact that multiplying a 2 × 1 vector of two independent N(0, 1)
variables by the lower triangular Cholesky factorization of Σ, gives us correlated nor-
mally distributed Brownian motion increments multiplied by their respective standard
deviations. Mathematically this is given by[

Z1

Z2

]
∼ N

(
0,
[

1 0
0 1

])
Chol(Σ) = ATA[

σ1δB1

σ2δB2

]
= A ·

[
Z1

Z2

]
The reason that this works is as follows. If Z ∼ N(0, I) then CTZ ∼ N(0, CTC).
Thus, our problem reduces to finding C such that Σ = CTC. Since Σ is symmetric
and positive definite, it can be written as Σ = UTDU where U is an upper diagonal
matrix, and D is a diagonal matrix. From this it follows that

Σ = UTDU

= (UT
√
D)(
√
DU)

= (
√
DUT )(

√
DU)

= ATA
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Principal component analysis

Principal component analysis has many uses, and is based on the idea of transforming
correlated data series into uncorrelated data series - i.e. they are orthogonalized. Each
‘principal component’ refers one transformed data series. Assuming X is a matrix
whose column vectors are the normed original data, the correlation matrix is given
by V = XTX/T. Let W represent the matrix containing the eigenvectors of V, and
Λ represent the matrix with the eigenvalues in the diagonal. By the definition of
eigenvectors and eigenvalues it is easy to see that

VW = WΛ

Now let the m columns in W be ordered such that column wi corresponds to eigenvalue
λi, and λ1 > λ2 > . . . > λm. Call this new ordered matrix W̃ . The ith principal
component of the system is given by

Pi = Xwi

This results in a matrix P with the principal components as column vectors, and is
given by

P = XW̃

P is the matrix of transformed uncorrelated data series as its column vectors. It is
easy to prove that the matrix P is orthogonal

PTP = W̃TXXW̃
= TW̃TW̃Λ
= (W̃ is orthogonal ⇒ W̃T = W̃−1)
= TΛ

which is diagonal. The proportion of the total variation in X that is explained by Pm
is

λm∑
λi

=
λm
k

(tr(Λ) = tr(V) = k)

In a highly correlated system λ1 >> λ2 > λ3 > . . ., meaning that the first principal
component alone will explain much of the variation in the system. Finally, an essential
aspect of PCA is that the original data matrix X can be written as a linear combination
of the principal components as

X = PW̃
T

This is the so called ‘principal component representation’ of the original data series.
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