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Abstract

Since the introduction of the famous Black-Scholes model (1973), several
attempts have been made to construct option pricing models that allow for
non-gaussian return distributions as well as varying volatilities. In this the-
sis, we examine the robustness of two of these models in terms of the time
consistency, or possibly inconsistency, of the model parameters. We restrict
our attention to the stochastic volatility model provided by Heston (1993)
and the local volatility model introduced by Dupire (1994). We estimate
the models daily in order to �nd parameters that match the current market
prices as closely as possible, hence the calibration process constitutes a ma-
jor part of the thesis. Our results show that both models are succesful in
explaining important characteristics of the implied volatility surface, when
the market conditions are fairly stable. On the other hand, when the market
is heavily �uctuating, both models reveal a high degree of time inconsistency,
as they are unable to capture the current market conditions without large
parameter variations. In addition, the use of principal component analysis
shows that variations of the local volatility surface, to a large extent can be
explained by three distinct movements.
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Chapter 1

Introduction

Since the introduction of the famous Black-Scholes model (1973), several
attempts have been made to construct alternative option pricing models that
allow for non-gaussian return distributions as well as non-constant volatility.
Models that allow negative correlation between the underlying stock price
and its volatility are examples of such models that are commonly found in
the literature.

The development of more sophisticated models however comes at the
cost of increased complexity. While the Black-Scholes model only have one
unknown parameter, stochastic volatility models typically have between �ve
and �fteen parameters that have to be estimated. Consequently, the calibra-
tion of such models is in general far more troublesome than calibrating the
original model proposed by Black and Scholes.

The performance of stochastic volatility models, in terms of pricing and
hedging performance, has been investigated in a large number of papers (see
for example Bakshi, Cao and Chen (1997), Christo�ersen, Heston and Jacobs
(2009) or Shoutens, Simons and Tistaert (2003)). What remains unexamined
however is the time consistency, or possibly inconsistency, of these models in
terms of parameter variations over time. From a theoretical point of view,
a robust model would allow �uctuations in the underlying asset with the
parameters remaining fairly constant. Large variations in daily parameter
estimates would reduce the usefulness of these models as daily recalibrations
are both time consuming and may lead to large daily variations in more
exotic contracts (Schoutens, Simons and Tistaert (2003)).

In this thesis we aim to investigate the time consistency of alternative op-
tion pricing models. We restrict our attention to the single factor stochastic
volatility model proposed by Heston (1993) and the local volatility function
introduced by Dupire (1994). The models are applied to a number of put
and call options written on the Euro Stoxx 50 index between June 23rd and
December 31st 2008.

In Chapter 2 we introduce the two models and provide the theoretical
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framework needed to proceed with the calibration problem. Since calibration
of stochastic volatility models is quite complex, a thorough discussion of
di�erent approaches is provided in Chapter 3. In Chapter 4 we present the
main results from the empirical study and discuss some of the implications
on option pricing theory. In the last chapter we summarize the material
covered in the thesis and suggest topics for further studies.
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Chapter 2

Model Introduction and Data

2.1 The Heston Model: Stochastic volatility

Assume that the spot price follows the di�usion

dS(t) = µS(t)dt+
√
v(t)S(t)dW1(t), S(0) = S0,

where W1(t) is a Wiener process. If the volatility follows an Ornstein-
Uhlenbeck process,

d
√
v(t) = −β

√
v(t)dt+ δdW2(t),

where W2(t) has correlation ρ with W1(t), then Itô's lemma shows that the
variance v(t) follows the process,

dv(t) = [δ2 − 2βv(t)]dt+ 2δ
√
v(t)dW2(t), V (0) = V0.

This process may be rewritten as

dv(t) = κ[θ − v(t)]dt+ σ
√
v(t)dW2(t),

which is known as a square root mean reverting process, �rst used by Cox,
Ingersoll and Ross (1985), with long-run mean θ, and rate of reversion κ. σ
is referred to as the volatility of the volatility.

For κ, θ > 0, this corresponds to a process where the randomly moving
volatility is elastically pulled toward a long-term value, θ. The parameter κ
determines the speed of adjustment. In addition, if 2κθ ≥ 0, the volatility
process is always larger than zero (see Cox, Ingersoll and Ross (1985) or
Feller (1951)).

Earlier research shows that there are both economical as well as em-
pirical reasons for a model of this structure. Firstly, implied Black-Scholes
volatilities vary both with time to maturity and with strike price, so modeling
volatility as a random variable is a rather natural approach. Secondly, empir-
ical studies indicate that an asset's log-return distribution is non-Gaussian,
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characterized by heavy tails. This behavior is captured in the Heston model
by the parameter ρ. Intuitively, if ρ > 0, the volatility will increase as the
asset return increases. This will spread the right tail and squeeze the left tail
of the distribution creating a distribution with a fat right tail. The opposite
is of course true. In fact, there is evidence that the correlation between asset
returns and implied volatility is negative, also known as the 'leverage e�ect'.
ρ, therefore, a�ects the skewness of the distribution. Finally, a phenomena
known as 'volatility clustering' has been readily observed in the market. Ba-
sically, it means that large price variations are more likely to be followed
by large price variations and vice versa. In the Heston model, the mean
reversion parameter κ can also be interpreted as representing the degree of
'volatility clustering'.

Thus, there are several economical as well as theoretical arguments for
this choice of model. The main advantage of the Heston model, however, is
the closed-form solution for European call options. In the next section, we
derive the general valuation equation and apply it to the Heston model in
order to obtain a pricing formula for European calls.

2.1.1 Derivation of the Valuation Equation

In this section, we follow the work of Gatheral (2006) closely. We begin by
assuming that the spot price and the volatility follow the di�usions

dS(t) = µS(t)dt+
√
v(t)S(t)dW1(t), (2.1)

dv(t) = α(S(t), v(t), t)dt+ ηβ(S(t), v(t), t)
√
v(t)dW2(t), (2.2)

where

〈dW1(t), dW2(t)〉 = ρdt.

In contrast with the Black-Scholes model there are two sources of random-
ness, the stock price and the volatility. Thus, in order to form a riskless
portfolio we set up a portfolio Π containing the option being priced, whose
value we denote by V (S, v, t), a quantity −∆ of the stock and a quantity
−∆1 of another asset whose value V1 depends on volatility. We have

Π = V −∆S −∆1V1.

For the next step we need the following proposition (see Björk (2004), p.
56):

Proposition 2.1. Take a vector Wiener process W = (W1, ...,Wn) with

correlation matrix ρ as given, and assume that the vector process X =
(X1, ..., Xk) has a stochastic di�erential. Then the following hold:
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For any C1,2 function f , the stochastic di�erential of the process f(t,X(t))
is given by

df(t,X(t)) =
∂f

∂t
dt+

n∑
i=1

∂f

∂xi
dXi +

1
2

n∑
i,j=1

∂2f

∂xi∂xj
dXidXj ,

with the formal multiplication table
(dt)2 = 0,
dt · dWi = 0, i = 1, ..., n,
dWi · dWj = ρijdt.

Applying this proposition shows that the change in Π in a time dt is
given by

dΠ =

{
∂V

∂t
dt+

1
2
vS2∂

2V

∂S2
+ ρηvβS

∂2V

∂v∂S
+

1
2
η2vβ2∂

2V

∂v2

}
dt

−∆1

{
∂V1

∂t
+

1
2
vS2 ∂V1

∂S2
+ ρηvβS

∂2V1

∂v∂S
+

1
2
η2β2v

∂2V1

∂v2

}
dt

+
{
∂V

∂S
−∆1

∂V1

∂S
−∆

}
dS

+
{
∂V

∂v
−∆1

∂V1

∂v

}
dv

To make the portfolio instantaneously risk-free, we must choose

∂V

∂S
−∆1

∂V1

∂S
−∆ = 0

∂V

∂v
−∆1

∂V1

∂v
= 0

to eliminate dS terms and dv terms respectively. This leaves us with

dΠ =

{
∂V

∂t
dt+

1
2
vS2∂

2V

∂S2
+ ρηvβS

∂2V

∂v∂S
+

1
2
η2vβ2∂

2V

∂v2

}
dt

−∆1

{
∂V1

∂t
+

1
2
vS2 ∂V1

∂S2
+ ρηvβS

∂2V1

∂v∂S
+

1
2
η2β2v

∂2V1

∂v2

}
dt

= rΠdt
= r(V −∆S −∆1V1)dt,

where we have used the fact that the return on a risk-free portfolio must
equal the risk-free rate r. Collecting all V terms on the left-hand side and
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all V1 terms on the right-hand side, we get

∂V
∂t + 1

2vS
2 ∂2V
∂S2 + ρηvβS ∂V

∂v∂S + 1
2η

2vβ2 ∂2V
∂v2

+ rS ∂V∂S − rV
∂V
∂v

=
∂V1
∂t + 1

2vS
2 ∂2V1
∂S2 + ρηvβS ∂V1

∂v∂S + 1
2η

2vβ2 ∂2V1
∂v2

+ rS ∂V1
∂S − rV1

∂V1
∂v

.

The left-hand side is a function of V only and the right-hand side is a function
of V1 only. Thus, we conclude that both sides must be equal to some function
f of the independent variables S, v and t. We deduce that

∂V

∂t
+

1
2
vS2∂

2V

∂S2
+ ρηvβS

∂V

∂v∂S
+

1
2
η2vβ2∂

2V

∂v2
+ rS

∂V

∂S
− rV

= −
(
α− φβ

√
v
) ∂V
∂v

(2.3)

where, without loss of generality, we have written the arbitrary function f of
S, v and t as (α−φβ

√
v)∂V∂v . φ(S, v, t) is called the market price of volatility

risk. Now, de�ning the risk-neutral drift as

α′ = α− β
√
vdZ2

we see that, as far as pricing of options is concerned, we could have started
with the risk-neutral SDE for v,

dv = α′dt+ β
√
vdZ2 (2.4)

and got identical results with no explicit price of risk term because we are
in the risk-neutral world. In what follows, we assume that the SDEs for S
and v are in risk-neutral terms because we are invariably interested in �tting
models to option prices.

2.2 Heston Continued

The Heston model corresponds to choosing α(S(t), v(t), t) = κ(θ − v(t))
and β(S(t), v(t), t) = 1 in equations (2.1) and (2.2). These equations then
become

dS(t) = µS(t)dt+
√
v(t)S(t)dW1(t)

and

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)dW2(t)

with

〈dW1(t), dW2(t)〉 = ρdt
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where κ is the speed of reversion of v(t) to its long-term mean θ. We now
substitute the above values for α(S(t), v(t), t) and β(S(t), v(t), t) into the
general valuation equation. We obtain

∂V

∂t
+

1
2
vS2∂

2V

∂S2
+ ρσvS

∂2V

∂v∂S
+

1
2
σ2v

∂2V

∂v2
+ rS

∂V

∂S
− rV

= −κ(θ − v)
∂V

∂v
(2.5)

In Heston's original paper, the price of risk is assumed to be linear in the
variance v. In contrast, we assume that the Heston process, with parameters
�tted to option prices, generates the risk-neutral measure so the market price
of volatility risk φ in the general valuation equation (2.3) is set to zero. Since
we are only interested in pricing, and we assume that the pricing measure is
recoverable from European option prices, we are indi�erent to the statistical
measure.

2.2.1 The Heston Solution for European Options

A European call option with strike price K and maturing at time T satis-
�es the partial di�erential equation (2.5) subject to the following boundary
conditions:

V (S, v, T ) = max(S −K, 0),
V (0, v, t) = 0,

∂V

∂S
(∞, v, t) = 1, (2.6)

rS
∂V

∂S
(S, 0, t) + κθ

∂V

∂v
(S, 0, t)− rV (S, 0, t) +

∂V

∂t
(S, 0, t) = 0,

V (S,∞, t) = S

In analogy with the Black-Scholes formula, for the European call option,
whose value we denote C(S, v, t) we guess a solution of the form

C(S, v, t) = SP1 −KP (t, T )P2, (2.7)

where the �rst term is the present value of the spot price upon optimal
exercise, and the second term is the present value of the strike-price payment.
P (t, T ) is the price at time t of a zero-coupon bond maturing at time T with
face value 1. Both of these terms must satisfy the original PDE (2.5). If we
de�ne x = lnS and substitute the proposed solution (2.7) into the original
PDE (2.5) we see that P1 and P2 must satisfy the PDEs

1
2
v
∂2Pj
∂x2

+ ρσv
∂2Pj
∂x∂v

+
1
2
σ2v

∂2Pj
∂v2

+ (r + ujv)
∂Pj
∂x

+ (aj − bjv)
∂Pj
∂v

+
∂Pj
∂t

= 0, (2.8)
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for j = 1, 2, where

u1 = 1/2, u2 = −1/2, a = κθ, b1 = κ− ρσ, b2 = κ.

Given the boundary conditions for the option price in equation (2.6), these
PDEs (2.8) are subject to the terminal condition

Pj(x, v, T ; lnK) = 1{x≥lnK}.

Thus, they may be interpreted as "adjusted" or "risk-neutralized" proba-
bilities (see Cox and Ross (1976)). To see why, assume that x(t) and v(t)
follows the stochastic process

dx(t) = (r + ujv)dt+
√
v(t)dz1(t),

dv(t) = (aj − bjv)dt+ σ
√
v(t)dz2(t),

where the parameters uj , aj , and bj are de�ned as before. Further, consider
any twice-di�erentiable function f(x, v, t) that is a conditional expectation
of some function of x and v at a later date, T , g(x(T ), v(T )):

f(x, v, t) = E[g(x(T ), v(T ))|x(t) = x, v(t) = v]. (2.9)

Using Itô's lemma we get

df =

(
1
2
v
∂2f

∂x2
+ ρσv

∂2f

∂x∂v
+

1
2
σ2v

∂2f

∂v2
+ (r + ujv)

∂f

∂x
+ (a− bjv)

∂f

∂v
+
∂f

∂t

)
dt

+ (r + ujv)
∂f

∂x
dz1 + (a− bjv)

∂f

∂v
dz2. (2.10)

By iterated expectations, we know that f must be a martingale, in par-
ticular, E[df ] = 0. Applying this to equation (2.10) yields the well-known
Fokker-Planck forward equation:

1
2
v
∂2f

∂x2
+ ρσv

∂2f

∂x∂v
+

1
2
σ2v

∂2f

∂v2

(r + ujv)
∂f

∂x
+ (a− bjv)

∂f

∂v
+
∂f

∂t
= 0

Equation (2.9) imposes the terminal condition

f(x, v, T ) = g(x, v).

Now, if g(x, v) = 1{x≥lnK}, then the solution is the conditional probability

at time t that x(T ) is greater than lnK. In addition, if g(x, v) = eiφx, then
the solution is the characteristic function E[eiφx(T )|x(t) = x, v(t) = v]. The
probabilities are not immediately available in closed form. However, Hes-
ton shows that their characteristic functions, f1(x, v, T ;φ) and f2(x, v, T, φ)
respectively, satisfy the same PDEs (2.8), subject to the terminal condition

fj(x, v, T ;φ) = eiφx.
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The characteristic function solution is

fj(x, v, T ;φ) = eC(T−t;φ)+D(T−t;φ)v+iφx, (2.11)

where

C(τ ;φ) = rφiτ +
a

σ2

(bj − ρσφi+ d)τ − 2ln

[
1− gedτ)

1− g

] ,

D(τ ;φ) =
bj − ρσφi+ d

σ2

[
1− edτ

1− gedτ

]
,

and

g =
bj − ρσφi+ d

bj − ρσφi− d
,

d =
√

(ρσφi− bj)2 − σ2(2ujφi− φ2).

One can invert the characteristic functions to get the desired probabilities:

Pj(x, v, T ; lnK) =
1
2

+
1
π

∫ ∞
0

Re

[
e−iφlnKfj(x, v, t;φ)

iφ
dφ

]
. (2.12)

The integrand in equation (2.12) is a smooth function that decays rapidly.
Equations (2.7), (2.11), and (2.12) give the solution for European call op-
tions.

2.3 The Dupire Model - Local Volatility

Given the computational complexity of stochastic volatility models and the
di�culty of parameter �tting to plain vanilla options, practitioners sought
a simpler way of pricing options consistently with the volatility skew. The
breakthrough came when Dupire (1994) and Derman and Kani (1994) noted
that under risk neutrality, there was a unique di�usion process consistent
with the risk-neutral density derived from the market prices of European
options. The corresponding unique di�usion coe�cient σL(S, t) is known as
the local volatility function. In the next section we review the original work
of Dupire and derive an explicit expression for the local volatility function.

2.3.1 Derivation of the Dupire Equation

Suppose the stock price di�uses with risk-neutral drift µ(t) = r(t) − D(t)
and local volatility σ(S, t) according to the equation

dS(t)
S(t)

= µ(t)dt+ σ(S(t), t)dW (t),
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where r(t) is the risk-free interest rate, D(t) is the dividend yield and W (t)
is a Wiener process. The risk-neutral expected value C∗(S0,K, T ) of a Eu-
ropean option payo� with strike K and expiration T is given by

C∗(S0,K, T ) =
∫ ∞

0
ϕ(ST , T ;S0)(ST −K)+dST , (2.13)

where ϕ(ST , T ;S0) is the probability density of the �nal spot at time T .
For a process with drift D1(x, t) and di�usion D2(x, t) the probability den-
sity function evolves over time according to the Fokker-Planck equation (or
Forward Kolmogorov equation) (see Gatheral (2006)):

∂

∂t
= − ∂

∂x
[D1(x, t)ϕ(x, t)] +

∂2

∂x2
[D2(x, t)ϕ(x, t)].

Thus, in the Dupire model the probability density evolves according to the
equation

∂ϕ

∂T
=

1
2
∂2

∂S2
T

(
σ2S2

Tϕ
)
− ∂

∂ST
(µSTϕ)

Di�erentiating (2.13) with respect to K gives

∂C∗

∂K
= −

∫ ∞
K

ϕ(ST , T ;S0)dST

∂2C∗

∂K2
= ϕ(K,T ;S0)

Now, di�erentiating (2.13) with respect to time gives

∂C∗

∂T
=
∫ ∞
K

{
∂

∂T
ϕ(ST , T ;S0)

}
(ST −K)dST

=
∫ ∞
K

{
1
2
∂2

∂S2
T

(
σ2S2

Tϕ
)
− ∂

∂ST
(µSTϕ)

}
(ST −K)dST

Integrating by parts twice gives:

∂C∗

∂T
=
σ2K2

2
ϕ+

∫ ∞
K

µSTϕdST

=
σ2K2

2
∂2C∗

∂K2
+ µ(T )

(
−K∂C∗

∂K

)
,

which is the Dupire equation when the underlying stock has risk-neutral drift
µ. Formally, we can solve for the volatility to get

σ2(S, t) =
∂C∗

∂T + µ(T )K ∂C∗

∂K
1
2K

2 ∂2C∗

∂K2

∣∣∣∣∣
K=S,T=t

(2.14)
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The right-hand side of equation (2.14) can be computed from known Euro-
pean option prices. So, given a complete set or European option prices for
all strikes and expirations, local volatilities are given uniquely by equation
(2.14). Alternatively, assuming that the call price is a function of the implied
Black and Scholes volatility, i.e. C = CBS(S0, t, T,K, σI), we may calculate
the derivatives using the chain-rule and obtain an expression for the local
volatility in terms of implied volatilies (see Elder (2002)):

σ2(S, T ) =
σ2
I + 2σI(T − t)

(
∂σI

∂T + (r −D)K ∂σI

∂K

)
(

1 +Kd1
∂σI

∂K

√
T − t

)2

+ σ2
IK

2(T − t)
(
∂2σI

∂K2 − d1

(
∂σI

∂K

)2√
T − t

)∣∣∣∣∣
K=S,T=t

where

d1 =
ln(S0/K) + (r + σ2/2)(T − t0)

σ
√
T − t0

.

Thus, we have established the theoretical framework needed to proceed with
the calibration problem. Before that, however, we present the market data
used in the calibration process and discuss some of the di�culties with real
market data.

2.4 Data description

The data used for the analysis are European style put and call options written
on the Euro Stoxx 50 index during the period June 23rd to December 30th

2008. The chosen time period is interesting for a number of reasons. During
the �rst three months, the market is stable with only small �uctuations in
the underlying asset. However, the last three months constitute a period of
extreme movements on the stock market due to the �nancial crisis last year.
Thus, the robustness of the models in terms of parameter variations will be
tested in a period when market conditions vary signi�cantly.

The initial data set consists of four put and twenty call options on the
index during the time period speci�ed above. For all options we extract
information about maturity, strike price and current index level. The con-
tracts chosen are the most frequently traded options on the index during
the time period, making them reliable for the calibration procedure. All in
all the set of options consists of contracts with �ve di�erent strikes (ranging
from 2500 to 3500) and four di�erent maturities where, on the �rst date,
the option maturities range from 1 year to 2.5 years. Then, as we monitor
these options over time, the maturities decrease continuously, hopefully en-
abling us to capture the dependence of changes in market expectations on
the parameter estimates of the two models.

The yield curve is constructed by a cubic spline interpolation between
Euribor quotes of maturities ranging from 1 month to 2 years. All interest
rates are assumed to be continuously compounded. The dividend yields are
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Figure 2.1: The left plot shows the Euro Stoxx 50 index during the sample
period and the right plot shows the corresponding log returns. Note the
large �uctuations in the spot prices during the last quarter of 2008.

then obtained using the put-call parity (see Section 3.2), where we make use
of the fact that on each day we have both put and call prices for the same
strike and maturity, which enables us to solve for the implied dividend yield.
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Chapter 3

The Calibration Problem

3.1 Calibrating Heston in Theory

We analyze the model in terms of the risk-neutral volatility process described
in equation (2.4), because the risk-neutral process exclusively determines
prices. Calibrating the Heston model is equivalent to �nding the parameters
κ, θ, σ, ρ and the spot variances V0 which produce the correct market prices.
Option pricing models are usually calibrated to market data by minimization
of an error functional, i.e. by solving an optimization problem of the form

Θ̂ = arg min
Θ
L[{C}n, {C(Θ,Λ)}n],

where Θ is the parameter vector and Λ is the vector of spot variances.{
C(Θ,Λ)

}n
is a set of n option prices obtained from the model, {C}n is

the corresponding set of observed option prices in the market and L is some
loss function. From an economic viewpoint, there are several possibilities
to measure the error between the market and the model. These di�erent
speci�cations of the error lead to di�erent sets of calibrated model parame-
ters and the resulting pricing performance may vary signi�cantly (Shoutens,
Simons and Tistaert (2003)).

3.1.1 The Choice of Loss Function

The most frequently used loss functions in the literature are the dollar mean
squared error ($ MSE), the percentage mean squared error (% MSE), and
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the implied volatility mean squared error (IV MSE):

$MSE(Θ,Λ) =
n∑
i=1

wi(Ci − Ci(Θ,Λ))2;

%MSE(Θ,Λ) =
n∑
i=1

wi

(
Ci − Ci(Θ,Λ)

Ci

)2

;

IV MSE(Θ,Λ) =
n∑
i=1

wi(σi − σi(Θ,Λ))2,

where σi is the Black-Scholes implied volatility of option i, and σi(Θ,Λ)
denotes the corresponding Black-Scholes implied volatility obtained using
the model price as input. wi is an appropriately chosen weight, which will
be discussed in more detail below.

The choice of loss function is important and has many implications. The
$ MSE function minimizes the squared dollar error between model prices and
market prices and will thus favor parameters that correctly price expensive
options. In contrast, the % MSE function adjusts for price level, and will
instead focus on options with prices close to zero. The IV MSE function
on the other hand minimizes implied volatility errors, and will therefore
favor options with high implied volatilities. Detlefsen and Härdle (2006)
has studied four di�erent error functionals and suggest that once a suitable
model has been chosen the IV MSE function is best suited for calibrating
the model parameters. On the other hand, if there is uncertainty about the
correctness of the model, the authors suggests using the $ MSE function.

Since we are interested in the parameter variations over time, all three
loss function will be used during the calibration process. Hopefully, this will
lead to a more profound understanding of the dynamics contained in the
Heston model.

3.1.2 The Choice of Weights

Earlier research (e.g. Mikhailov and Nögel (2003)) has shown that the choice
of weighting wi has a large in�uence on the error functional, and therefore
on the parameter estimates. Two common methods are to either use the
bid-ask spread of the options or to choose weights according to the number
of options within di�erent maturity categories. Using wi = 1

|bidi−aski| is a
rather intuitive approach. If the bid-ask spread is large, there is a great
uncertainty about the true price of the option and we assign it less weight.
Since bid and ask prices may be hard to come by, this method is sometimes
di�cult to use. An alternative approach is to choose weights so that on
each day all maturities have the same in�uence on the objective function.
Moreover, the same weight is assigned to all points of the same maturity.
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This leads to the weights

wi =
1

nmatnistr

where nmat denotes the number of maturities, and nistr denotes the number
of strikes with the same maturity as observation i.

3.1.3 Regularization

In addition to the objective function that is minimized we add a regular-
ization term. Regularization can be necessary for two reasons: Most com-
monly proposed error functionals may have several global minima (Cont and
Hamida (2005)) and thus the regularization term is needed to get a unique
minimum. Also, it is important to �nd parameters on subsequent days that
lead to similar prices of exotic options. This is essential for the practical
applicability of the model. Moreover, adding a regularization term may pro-
vide additional stability to the calibration. In accordance with Mikhailov
and Nögel we add a regularization term and minimize the following function

L({C}n, {C(Θ,Λ)}n) + α|Θ−Θ0|,

where Θ0 is the initial parameter vector. The choice of α is important and
may have severe implications on the pricing performance of the model. If
α is chosen large, the di�erence between market and model prices has little
impact on the total value of the error functional, and over time the pricing
performance may decrease. On the other hand, if α is chosen small, the
parameters may exhibit rough oscillations leading to large �uctuations in
exotic option prices (see Schoutens, Simons and Tistaert (2003)).

3.2 Calibrating Heston in Practice

To calculate model prices in practice we note that the call price is not only
a function of the parameters κ, θ, σ, ρ, and V0, but also of the strike price K,
the time to maturity T , the risk-free interest rate r and the dividend yield δ.
The strike price and the time to maturity is uniquely speci�ed by the contract
in question, but the risk-free interest rate and the dividend yield have to be
approximated in some way. Firstly, we approximate the yield curve using
the Euribor. These are given for six di�erent maturities (1 month, 2 months,
3 months, 6 months, 1 year, and 2 years). Then, for any maturity between
these values we can �nd the corresponding interest rate by some suitable
interpolation technique. To approximate the dividend yield we assume that
the dividends of the Euro Stoxx 50 index are paid continuously. Then, using
the next proposition we may solve for the corresponding dividend yield.

Proposition 3.1. (Put-Call Parity when the Underlying pays a Continuous
Dividend) Let Cδ(Pδ) denote the price of a European call (put) and let r
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denote the risk-free interest rate, δ denote the dividend yield, S be the price

of the underlying, and K be the strike price. Then, the following relation

holds:

Pδ = Cδ − Se−δ(T−t) +Ke−r(T−t)

Proof. Consider a portfolio Π1 that consists of one long position in a call
option and Ke−r(T−t) long positions in zero coupon bonds, i.e.

Π1 = Cδ +Ke−r(T−t).

The value of this portfolio at time T is given by{
S −K +K = S, if S ≥ K

0 +K = K, if S ≤ K

Next, consider a portfolio Π2 that consists of one long position in a put
option and Se−δ(T−t) long positions in the underlying stock, i.e.

Π2 = P + Se−δ(T−t)

The value of this portfolio at time T is given by{
0 + S = S, if S ≥ K

K − S + S = K, if S ≤ K

Since we assume the absence of arbitrage, the present value of the two port-
folios must be equal, and this completes the proof.

Now, for each date we have prices for four call options and four put
options on the same underlying asset, with the same strike price and the
same time to maturity. Thus, using the proposition above we may solve for
the dividend yield to get

δ =
−1
T − t

ln

(
Cδ − Pδ +Ke−r(T−t)

S

)

Then, we know the risk-neutral drift µ(t) = r(t) − δ(t) for four di�erent
maturities. Using a smooth cubic spline we interpolate from these values to
obtain the drift term for all maturities. Thus, we have obtained all input
parameters needed to calculate the model prices. The next step is to solve
the optimization problem.
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3.2.1 The Optimization Problem

As mentioned earlier, most commonly proposed loss functions are non-convex
and may exhibit several local (and perhaps global) minima, making standard
optimization techniques unquali�ed (Cont and Hamida (2005)). Gradient
based optimizers, for example, are likely to get stuck in a local minima
and are in addition dependent on the initial parameter guess. Thus, option
pricing models are often calibrated using some stochastic global optimization
routine. Cont and Hamida successfully used an optimization technique called
di�erential evolution when calibrating an option pricing model to real data.

Figure 3.1: The left plot shows the behavior of the % MSE function when
κ and ρ are altered. The right plot shows the same loss function when the
values of θ and σ are altered.

Consider a search space Θ and a continuous function G : Θ 7→ [0,∞) to
be minimized on Θ. An evolutionary algorithm with objective function G
is based on the evolution of a population of candidate solutions, denoted by
XN
n = (θin, i = 1, ..., N). The basic idea is to 'evolve' the population through

cycles of modi�cation (mutation) and selection in order to improve the per-
formance of its individuals. At each iteration the population undergoes three
transformations:

XN
n 7−→ V N

n 7−→WN
n 7−→ XN

n+1

During the mutation stage, individuals undergo independent random trans-
formations, as if performing independent random walks in Θ, resulting in a
randomly modi�ed population V N

n . In the crossover stage, pairs of individ-
uals are chosen from the population to "reproduce": each pair gives birth to

17



a new individual, which is then added to the population. This new popula-
tion, WN

n is now evaluated using the objective function G(·). Elements of
the population are now selected for survival according to their �tness: those
with a lower value of G have a higher probability of being selected. The
N individuals thus selected then form the new population XN

n+1. The role
of mutation is to explore the parameter space and the optimization is done
through selection.

There is no proof of convergence for algorithms based on di�erential evo-
lution. However, several comparisons have shown that DE is more accurate
and more e�cient than several other optimisation techniques including simu-
lated annealing and evolutionary programming. On the downside, stochastic
optimization techniques are generally much more time consuming than for
example gradient based optimizers. Therefore, we will make use of both al-
ternatives. We use the DE algorithm for the �rst date to get reliable results.
After that we will solve the optimization problem using Matlab's algorithm
lsqnonlin, which is a gradient based optimizer. On one hand, we risk getting
stuck in a local minima. On the other hand, unless the market has changed
dramatically we do not expect the parameters to change very much. In
periods when the stock price �uctuates heavily we will again use the DE
algorithm to obtain reliable parameter estimates.

The Matlab code needed to calibrate the Heston model is included in the
Appendix. Despite the fact that the formulae look quite complicated, the cal-
ibration of the model is rather straightforward. In this thesis, the integrand
in equation (2.12) was calculated using the Matlab function quadl. Carr and
Madan (1999) present another approach for numerically determining option
values, provided that the characteristic function of the risk-neutral density
is known. The scheme uses the Fast Fourier Transform (FFT), leading to
much faster calculations compared to other numerical integration schemes.
Thus, when a large number of options is used in the calibration, the FFT
may lead to large reductions in computation time. Because we only used
25 options in the calibration, and also because the Matlab function is more
easily implemented, we chose not to use FFT in the calculations.

3.3 Calibrating Dupire

At �rst glance, the calibration of the local volatility function seems straight-
forward. Given a complete set of European option prices for all strikes and
all expirations, local volatilities are given uniquely by

σ2(S, T ) =
∂C
∂T + µ(T )K ∂C

∂K
1
2K

2 ∂2C
∂K2

∣∣∣∣∣
K=S,T=t

(3.1)

In practice, however, this approach has several shortcomings. Firstly, �nan-
cial markets typically allow a limited number of pre�xed maturity dates, and
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only a �nite number of strikes are on sell, too. Thus, some kind of numerical
di�erentiation method is required to compute the derivatives in the equation
above. Secondly, real option prices (for �xed t0 and S0) are typically mono-
tonically decreasing in K, and monotonically increasing in T (Hanke and
Rösler (2006)). In particular, this implies that the denominator of (3.1) is
usually positive. However, positivity of the numerator may not be an obvi-
ous property for real data. Therefore, it can easily happen that the fraction
changes sign, and taking the square root to obtain σ is prohibited. Finally,
interpolation from known data points as well as extrapolation to boundaries
outside of the data set may easily result in arbitrage (see Brecher (2006) or
Gatheral (2006)).

An alternative approach is to apply the same method used in the calibra-
tion of the Heston model parameters. Assume, for now, that given a local
volatility function we can calculate the corresponding option prices using the
Dupire equation. Then, we can apply the same technique used above and
solve an optimization problem of the form

σ̂(S, T ) = arg min
σ
L[{C}n, {C(σ)}n], (3.2)

where, again,
{
C(σ)

}n
is a set of n option prices obtained from the model,

{C}n is the corresponding set of observed option prices in the market and L
is some loss function. Since we already have a working algorithm for solving
problems of this form we turn to the problem of calculating option prices
using the Dupire model.

3.3.1 Calculating Option Prices using the Dupire Model

Unlike the Heston Model, the local volatility model does not provide a closed-
form solution for the prices of plain vanilla options. However, using some
�nite di�erence method we can solve the partial di�erential equation

∂C

∂T
=

1
2
σ2K2∂

2C

∂T 2
− µ(T )K

∂C

∂K

to obtain prices consistent with the local volatility function. Two di�erent
methods are commonly used: the explicit �nite di�erence method and the
implicit �nite di�erence method.

3.3.2 The Explicit Finite Di�erence Method

Let Ci,j = C(i∆T, j∆K), i, j = 0, ..., N be the price of a call option with
maturity at T = i∆T and strike price K = j∆K. Using a forward di�erence
at time T = i∆T we get the recurrence equation

Ci+1,j − Ci,j
∆T

=
1
2
σ2
i,j(j∆K)2Ci,j+1 − 2Ci,j + Ci,j−1

(∆K)2
− µij∆K

Ci,j+1 − Ci,j
∆K

,
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where µi is the drift term at T = i∆T . Rearranging, we can obtain Ci+1,j

from the other values by

Ci+1,j =Ci,j +
1
2
σ2
i,j(j∆K)2 ∆T

(∆K)2
(Ci,j+1 − 2Ci,j + Ci,j−1)

− µi(j∆K)
∆T
∆K

(Ci,j+1 − Ci,j).

Thus, knowing the prices at time i we can obtain the corresponding ones at
time i + 1 using this recurrence relation. However, in order to calculate all
prices we need to �nd suitable boundary conditions. Firstly, we note that

Co,j = max(S − j∆K, 0) = (S − j∆K)+,

which is the de�nition of a European call option. This gives us all prices at
T = 0. In addition, we know that as the strike price approaches in�nity, the
value of a call option goes towards zero. Thus, if we choose KN large we
might use the approximate boundary condition

Ci,N = 0.

Finally, we note that when K = 0 the value of the option will be equal to
the price of the underlying for all T , so

Ci,0 = S0.

This explicit method is known to be numerically stable and convergent when-
ever ∆T

(∆K)2
≤ 1

2 . Thus, to obtain reliable results, we need to interpolate from

known data points to a large number of di�erent maturities. Alternatively,
we may use the implicit di�erence method, which always is numerically stable
and convergent.

3.3.3 The Implicit Finite Di�erence Method

If we instead use the backward di�erence at time T = (i+ 1)∆T we get the
recurrence equation

Ci+1,j − Ci,j
∆T

=
1
2
σ2
i+1,j(j∆K)2Ci+1,j+1 − 2Ci+1,j + Ci+1,j

(∆K)2

− µi+1(j∆K)
Ci+1,j+1 − Ci+1,j

∆K
.

This is an implicit method for solving the Dupire equation (3.1). In each
time step we can obtain Ci+1,j from solving a system of linear equations

Ci,j =
(
µi+1(j∆K)

∆T
∆K

− 1
2
σ2
i+1,j(j∆K)2 ∆T

(∆K)2

)
Ci+1,j+1

+
(

1 + σ2
i+1,j(j∆K)2 ∆K

(∆T )2
− µi+1(j∆K)

∆T
∆K

)
Ci+1,j

−
(

1
2
σ2
i+1,j(j∆K)2 ∆T

(∆K)2

)
Ci+1,j−1
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subject to the boundary conditions used in the explicit method. The scheme
is always numerically stable, but usually more numerically intensive than
the explicit method as it requires solving a system of numerical equations on
each time step.

3.3.4 Regularization of the Local Volatility Function

In contrast with the Heston model, there is no common practice in regular-
izing the local volatility function. However, earlier research (e.g. Gatheral
(2006) or Brecher (2006)) shows that in order to obtain a smooth volatility
surface, some kind of regularization is needed. In this thesis we add a penalty
for the curvature of the surface. In particular, when solving the optimization
proposed in (3.2) we add two regularization terms and minimize the function

σ̂(S, T ) = arg min
σ

{
L[{Ci}n, {Ci(σ)}n] + αK

∑∣∣∣∣∣ ∂2σ

∂K2

∣∣∣∣∣+ αT
∑∣∣∣∣∣ ∂2σ

∂2T

∣∣∣∣∣
}
.

The choice of the regularization parameters αK and αT are important
as they a�ect both the smoothness of the local volatility function as well
as the pricing performance of the model. The second derivatives are calcu-
lated numerically using �nite di�erences. The Matlab code needed for the
calibration of the Dupire model is included in the Appendix.

3.3.5 Analysing the Dupire Model - Principal Component

Analysis

In contrast to the Heston model, the Dupire model does not provide pa-
rameters that are easily extracted and interpreted. Instead, every point on
the volatility surface is in itself a parameter, which means that, depend-
ing on the partition, there are a large number of parameters that have to
be analysed. To simplify the analysis we use a variable reduction procedure
called principle component analysis (PCA). PCA is suitable when we believe
that there is substantial redundancy among the parameters in the sense that
they are highly correlated. Thus, since it is likely that adjacent points on the
volatility surface move together, PCA should be able to reduce the number
of observed variables into a few principal components which are more easily
interpreted.

Essentially, principle component analysis is an application of basic lin-
ear algebra that provides a representation for a high dimensional random
vector with correlated components in terms of a factor model with fewer
uncorrelated factors. Assume that we have n observations of m parameters,
where the parameters are the di�erences between daily observations of the
volatility surface. Write f = (f1, ..., fm)T and Σf = Cov(f). Recall that
the symmetric and positive semide�nite matrix Σf may be expressed as the
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product Σf = ODOT , where D is a diagonal matrix with the (nonnegative)
eigenvalues λ1, ..., λm of Σf as diagonal elements and O is an orthogonal
matrix whose columns o1, ...,om are eigenvectors of Σf , orthogonal and of
length one. These columns are the principal components, which means that
the number of principal components is equal to the number of observed vari-
ables. However, in most analyses, only the �rst few components account
for meaningful amounts of variance, which is why the method is commonly
used. The principal component analysis can either be performed by �nding
the matrices O and D, or by the Matlab command princomp, which return
the columns of O as well as the diagonal elements of D in descending order.
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Chapter 4

Calibration Results

In this section, we present the main results of the empirical study. We start
out by presenting the estimated model parameters of the Heston model and
discuss their validity. Secondly, we discuss the parameter variations over
time. Thirdly, we present the results from the calibration of the Dupire
model. In particular, we discuss the results from the principal component
analysis, to illustrate how the local volatility surface varies over time.

4.1 The Heston Model

4.1.1 Parameter Estimates

The average parameter estimates from the 134 daily estimations are shown
in Table 4.1. Firstly, we note that the choice of loss function has a signi�cant
impact on the parameter estimates. For obvious reasons, this constitutes a
major problem when calibrating the Heston model, as there are no general
guidelines for choosing the loss function. As mentioned earlier, Detlefssen
and Härdle suggest using the IV MSE loss function, when we are fairly
certain that the underlying model is correct. On the other hand, if there is
uncertainty about the correctness of the model, the $ MSE loss function is
preferable.

Table 4.1: Average parameter estimates

Loss function κ θ σ ρ V0

% MSE 2.2319 0.0515 0.4829 -0.8960 0.1515
$ MSE 3.8676 0.0829 0.3257 -0.9985 0.0790
IV MSE 4.4741 0.0686 0.3296 -0.9992 0.0891

Moving on to the validity of the parameters, several interesting char-
acteristics can be observed. Firstly, the spot volatilities for the three loss
functions all lie in the range of 28-39 %, which is slightly higher than for
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example Christo�ersen, Heston and Jacobs (2009). These higher values can
probably be explained by the �nancial crisis last year, leading to large �uc-
tuations in the stock market. Furthermore, we note that the correlation
between return and volatility is negative for all loss functions, which indi-
cates that the Heston model is able to generate the observed smirk shape in
volatility skew. It is worth noticing that the correlation coe�cient is very
close to -1 for all error functionals. This suggests that the volatility may be
modeled as a deterministic function of the underlying asset price, and the
assumption of stochastic volatility might in fact be unnecessary.

The estimated long-run mean of the stochastic variance process is also
in accordance with earlier studies, with an average long-run mean volatility
in the interval 22-29 % (note that the long-run mean volatility is de�ned as√
θ). The value of the average long-run mean volatility is also fairly constant,

independent of the choice of loss function. Turning to the di�erent estimates
of the mean reversion parameter κ, the values vary between 2.2 and 4.5.
These values coincide with the estimates obtained by Christo�ersen, Heston
and Jacobs (2009) as well as with Bakshi, Cao and Zen (1997).

All-in-all, the parameter estimates of the Heston model are in line with
our expectations as well as the results of earlier empirical studies. Thus, we
proceed to investigate the parameter variations over time to determine the
robustness of the Heston model with respect to market conditions.

4.1.2 Parameter Variations over Time

Despite the fact that the choice of loss function seems to have a large impact
on the parameter estimates, the parameter variations over time follow a sim-
ilar pattern independent of the error functional. Therefore, while presenting
the results for all three loss functions, we restrict our analysis mainly to the
% MSE loss function. Looking at the plots presented in �gure 4.1, several in-
teresting characteristics are revealed. Firstly, we note that the observed time
period may be divided into two di�erent periods where the behavior of the
parameter estimates di�er signi�cantly. In particular, this partition seem to
coincide with the partition of the market into one part of stable movements
(�rst 60 days) and a second part of larger �uctuations in the underlying asset
(last 70 days). Beginning with the �rst period of time, we note that when
the price of the underlying asset is fairly stable, the parameter estimates are
rather stable as well. The 20-day period of higher values of θ and ρ might
be caused by the calibration process. Overall, this indicates that at times
when there are only small �uctuations in the market, the stochastic part of
the Heston model (i.e. the two Wiener processes) are su�cient in explain-
ing these movements, while the parameters remain almost constant. On the
other hand, we note that in the second period when the market becomes
more volatile, the parameter estimates �uctuate heavily. Thus, there are in-
dications that the stochastic part is insu�cient in explaining large variations
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Figure 4.1: Variations in parameter estimates using the % MSE loss function.

in the market.

To develop a more thorough understanding of the parameter dynamics we
take a closer look at the parameter variations. Firstly, we observe that when
the market becomes more volatile, the value of the mean reversion parameter
κ decreases. Thus, the volatility process becomes less mean reverting, allow-
ing the volatility to deviate more from its long-run mean. Looking at the
graph of the spot volatilities, we see that this is exactly what occurs. A high
degree of mean reversion (i.e. higher value of κ) means that the volatility is
rapidly mean reverting, leading to fast oscillations around its long-run mean
value. This is captured by fairly low and stable spot volatilities in the �rst
period, while the second time period presents both higher values and larger
�uctuations in the spot volatilities.

Moving on to the long-run mean volatility, we note that as the volatility
of the market increases, so does the value of θ. Perhaps this is not surprising,
but since θ is a long-run mean parameter we would expect a robust model
to allow �uctuations in the underlying asset without changing the value of
θ. In addition, it seems plausible to assume that changes in the long-run
mean volatility occur slowly over time, and not instantaneously as market
conditions change. However, this assumption is contradicted by the fact
that the behavior of θ follow the behavior of the parameter σ, which is the
volatility of the volatility. The fact that the values of σ tend to increase
when the underlying asset price �uctuates heavily is naturally in accordance
with prior expectations.

Finally, we turn to the value of the correlation between return and volatil-
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ity. Having noted earlier that the value of ρ a�ects the skewness distribution,
we would expect the correlation coe�cient to become more negative when
markets are volatile. Looking at the graph of ρ we note that the actual
outcome is in line with our expectations. When the underlying asset price
�uctuate the value of ρ decreases, thus creating a fat left-tailed distribution.
All in all, the Heston model is consistent in the sense that the parameter
variations can be readily explained by the current market conditions.

Figure 4.2: Variations in parameter estimates using the $ MSE loss function.

Figure 4.3: Variations in parameter estimates using the IV MSE loss func-
tion.

If we brie�y consider the variations of the parameter estimates from the
$ MSE function and the IV MSE function (see �gures 4.2 and 4.3) we note
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that the patterns are very similar. This indicates that the time inconsistency
present in the Heston model is not due to the calibration method, but rather
an inherent feature of the model. In the next section, we look closer at the
robustness of the Dupire model, and in particular the results obtained from
the principal component analysis.

4.2 The Dupire Model

Unlike the Heston model, where there are a large number of papers on the cal-
ibration process, the calibration of the Dupire model required several steps of
trial and error. Since the implicit method is known to give more stable solu-
tions, the explicit method was never implemented in practice. Furthermore,
the $ MSE loss function was used during the calibrations. The appropriate
values of the regularization parameters αK and αT were also determined
using trial and error. It turns out that for the given market data αK = 107

and αT = 10 give good prices and su�ciently smooth volatility surfaces.
The large di�erence between the two parameters is simply due to the fact
that the value of the second derivative with respect to K is in general much
smaller than the corresponding second derivative with respect to T . The
e�ects of adding the regularization terms are illustrated in �gures 4.4 and
4.5 below.

Figure 4.4: Local volatility function on June 23rd when no regularization
term is added.
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Figure 4.5: Local volatility function on June 23rd when a regularization term
is added.

Care should be taken not to confuse the local volatilies with implied
volatilities. However, the two are closely connected. Gatheral (2006) shows
that there is a quite intuitive picture for the meaning of Black-Scholes im-
plied variance of a European option with a given strike and expiration: It is
approximately the integral from today to expiration of local variances along
the most probable path for the stock price conditional on the stock price at
expiration being the strike price of the option. This mental picture should
be kept in mind as we analyse the dynamics of the local volatility function.

Moving on to the variation of the local volatility function over time, we
note that in accordance with the Heston model, there are two distinct time
periods where the properties of the model vary signi�cantly. During the �rst
period (�rst 60 days), when the price of the underlying asset is quite stable,
the shape of the volatility surface is fairly constant. We also note that the
model is able to capture the volatility smirk that has been readily observed
in the market. The volatility function is also fairly stable with respect to the
time to maturity, which is in line with prior expectations.

In the second period, when the �uctuations in the market increase in
amplitude, the shape of the volatility surface is heavily distorted (see �gure
4.7), with out-of-the-money volatilities approaching zero. Essentially, this
is equivalent to saying that the market's expectations of a rise in the price
of underlying are very low. Consequently, the prices of out-of-the-money
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Figure 4.6: Local volatility function on September 11th

calls will drop as well as the corresponding volatilities. Moreover, the fact
that the shape of the local volatility function varies considerably over time,
provides a �rst indicator of time inconsistency in the Dupire model.

A more thorough understanding of the underlying dynamics of the volatil-
ity surface is provided by the principal component analysis. The Matlab
function princomp was used to calculate the principal components of the
surface variations, and the cumulative variances of the �rst six components
are shown in table 4.2 below. Consequently, we establish that the three �rst

Table 4.2: Cumulative variances of the �rst six principal components.

Principal component Cumulative variance

1 0.44629
2 0.8002
3 0.88821
4 0.94017
5 0.96703
6 0.98439

principal components account for almost 90 % of the total variance in the
local volatility function. A closer look at these principal components (see
Appendix A) reveals that the variance of the volatility surface to a large
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Figure 4.7: Local volatility function on September 16th

extent can be explained by three distinct movements. The �rst principal
component shows that over 40 % of the variance is due to vertical shifts of
the volatility surface. Moreover, the local volatilities at low spot prices tend
to shift slightly more than volatilities for high spot prices. This suggests
than volatilities of out-of-the-money options are more stable than the corre-
sponding in-the-money options. This phenomenon can partly be explained
by the fact that, in the second time period, volatilities of out-of-the-money
options are stable and close to zero. In addition, short maturity volatilities
seem to shift slightly more than long maturity volatilities.

The second principal component indicates that another 36 % of the vari-
ance can be explained by the fact that when volatilities of in-the-money in-
crease, the corresponding volatilities of out-of-the-money decrease, and vice
versa. This movement of the volatility surface a�ects the volatility smirk,
making it more or less prominent. The phenomenon is readily seen during
the second part of the time period, when the price of the underlying asset
decreases.

Finally, the third component shows that almost 10 % of the variability is
due to the fact that when volatilities of in-the-money and out-of-the-money
options increase, the corresponding volatilities of at-the-money options de-
crease, and vice versa. Basically, this means that when the market expects
large �uctuations in the underlying asset price, volatilities of in-the-money
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and out-of-the-money options will increase as the corresponding option prices
go up. In a volatile market, the demand for at-the-money options is likely
to decrease, thus leading to a reduction of at-the-money volatilities.

So, in accordance with the results obtained from the Heston model, the
Dupire model is robust in the sense that the observed surface variations
can be readily explained by the underlying asset and the current market
conditions. On the other hand, the model shows a high degree of time
inconsistency, as the shape of the local volatility function tends to �uctuate
heavily when the market is volatile. Moreover, the principal component
analysis turns out to be an extremely useful tool in reducing the noise in
parameter variations and explaining, in a self-consistent way, the dynamics
of the Dupire model.
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Chapter 5

Conclusions

This paper investigates the time consistency of two structural option pricing
models, in terms of variations in daily parameter estimates. Our results
show that the parameter variations can be readily explained by the current
market conditions, while the fact that they vary indicate an inherent time
inconsistency of the models. This is interesting for several reasons.

The models investigated are constructed based on the assumption that
the long-term evolution of the underlying spot price and its volatility can
be described using suitable di�usion processes. At some time t we calibrate
the models to market data, expecting to �nd parameters that are consistent
with the market's expectations of the future evolution of the underlying asset
price, in the sense that they are able to recover option prices as accurately as
possible. In a time consistent model, these parameter estimates completely
specify the set of possible structures for any t > 0. Since the parameter
estimates vary over time, we conclude that the main assumptions of true
underlying di�usion processes are inaccurate, partly agreeing with earlier
research conducted by for example Christo�ersen and Jacobs (2004).

In summary, this thesis provides valuable insights regarding the dynamics
of current option pricing models. At the same time, the inconsistencies
arising from the varying parameter estimates, as well as the di�culties in
calibrating the models, shows that much of the option pricing theory is yet
to be discovered, both regarding model speci�cation and implementation.
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Appendix A

Results

A.1 Principal Component Analyis

PrincipalComponents =

-0.2212 0.1028 0.2083

-0.1891 0.1211 -0.1601

-0.1350 0.0688 -0.3604

-0.1111 -0.0275 -0.2220

-0.1293 -0.0800 0.0995

-0.2386 0.1266 0.1500

-0.1862 0.1172 -0.1644

-0.1355 0.0526 -0.3235

-0.1181 -0.0438 -0.1958

-0.1349 -0.0949 0.1011

-0.2416 0.1419 0.1040

-0.1727 0.1059 -0.1495

-0.1284 0.0292 -0.2678

-0.1217 -0.0640 -0.1566

-0.1382 -0.1111 0.1113

-0.2335 0.1494 0.0763

-0.1514 0.0893 -0.1206

-0.1148 0.0021 -0.2073

-0.1207 -0.0866 -0.1166

-0.1388 -0.1284 0.1222

-0.2182 0.1508 0.0668

-0.1263 0.0705 -0.0848

-0.0976 -0.0253 -0.1525

-0.1159 -0.1097 -0.0838

-0.1366 -0.1465 0.1290

-0.1994 0.1482 0.0719

-0.1015 0.0524 -0.0492

-0.0799 -0.0500 -0.1095

-0.1084 -0.1315 -0.0614
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-0.1323 -0.1648 0.1299

-0.1803 0.1436 0.0864

-0.0798 0.0368 -0.0183

-0.0641 -0.0702 -0.0798

-0.0998 -0.1509 -0.0492

-0.1268 -0.1830 0.1250

-0.1629 0.1384 0.1050

-0.0629 0.0247 0.0058

-0.0514 -0.0857 -0.0614

-0.0909 -0.1672 -0.0448

-0.1208 -0.2007 0.1155

-0.1482 0.1334 0.1243

-0.0509 0.0158 0.0237

-0.0420 -0.0969 -0.0509

-0.0823 -0.1808 -0.0449

-0.1149 -0.2178 0.1033

-0.1361 0.1288 0.1422

-0.0428 0.0095 0.0370

-0.0351 -0.1053 -0.0449

-0.0741 -0.1925 -0.0472

-0.1095 -0.2343 0.0897

-0.1257 0.1245 0.1587

-0.0372 0.0046 0.0480

-0.0295 -0.1121 -0.0408

-0.0662 -0.2033 -0.0500

-0.1044 -0.2504 0.0757

-0.1161 0.1204 0.1744

-0.0325 0.0002 0.0582

-0.0244 -0.1184 -0.0371

-0.0582 -0.2137 -0.0526

-0.0995 -0.2663 0.0617
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Appendix B

Matlab code

B.1 Calibrating the Heston model using Di�er-

ential Evolution

%%HestonDECalibration uses a Differential Evolution Algorithm to fit the

%%parameters of the Heston model to market option prices.

%%The optimization scheme can be downloaded from

%%http://www.mathworks.com/matlabcentral/fileexchange/18593

clear, close all

clc

global OptionData; global NoOfOptions; global PriceDifference;

global ImplBSVol; global InitialParameters;

load RawOptionData.m; %% r - D, T, S0, K, C, r, D

%CALCULATE THE NUMBER OF DATES AND THE NUMBER OF OPTIONS FOR EACH DATE

[B,I,J] = unique(RawOptionData(:,3),'first');

Index = sort(I); Index(length(Index) + 1) = length(RawOptionData(:,3));

for i=1:length(Index)-1

NoOptions(i) = Index(i+1)-Index(i);

end

NoOptions(length(NoOptions)) = NoOptions(length(NoOptions))+1;

NoOfDates = length(NoOptions);

NUsed = 1;

%SET INITIAL PARAMETERS: [Kappa;Theta;Sigma;Rho;V0]

InitialParameters = [2.3846;0.02522;0.33714;-0.64819;0.09163];

Results = [];

for j=1:NoOfDates
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NoOfOptions = NoOptions(j);

OptionData = RawOptionData([NUsed:NUsed+NoOfOptions-1],:);

%%IF WE USE THE IV MSE LOSS FUNCTION, CALCULATE THE IMPLIED

%%BLACK-SCHOLES VEGA: OTHERWISE, THIS SECTION MAY BE

%%IGNORED

%for k=1:NoOfOptions

%y = OptionData(k,:);

%ImplBSVol(k) = fzero(@(x) bsvolatility(x,y),0.2);

%end

%for l=1:NoOfOptions

%OptionData(l,8) = blsvega(OptionData(l,3),OptionData(l,4),...,

%OptionData(l,6),OptionData(l,2),ImplBSVol(l),OptionData(l,7));

%end

%SPECIFY PARAMETERS FOR THE DIFFERENTIAL EVOLUTION OPTIMIZATION

optimInfo.title = 'Heston Differential Evolution Calibration';

objFctHandle = @HestonCostFunc;

paramDefCell = {'',[0.5 7;0.001 1;0.001 1;-1 1;0.001 0.5],...,

[1e-5*ones(5,1)],InitialParameters};

objFctSettings = {};

objFctParams = [];

DEParams = getdefaultparams;

DEParams.NP = 100;

DEParams.feedSlaveProc = 0;

DEParams.validChkHandle = @HestonConstraint; %2*Kappa*Theta>=0

DEParams.maxiter = 1e5;

DEParams.maxtime = 600; %Maximum optimization time (in secs)

DEParams.maxclock = [];

DEParams.refreshiter = 1;

DEParams.refreshtime = 10;

DEParams.refreshtime2 = 600;

DEParams.refreshtime3 = 1200;

emailParams = [];

rand('state',1);

%bestmem = PARAMETER ESTIMATES, bestval = LOSS FUNCTION VALUE

[bestmem,bestval] = differentialevolution(DEParams,paramDefCell,...,

objFctHandle,objFctSettings,objFctParams,emailParams,optimInfo);

NUsed = NUsed + NoOfOptions;

InitialParameters = bestmem;

Results = [Results;bestmem' bestval];

end
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function val = HestonCostFunc(x, noPause)

global OptionData;

global NoOfOptions;

global PriceDifference;

global ImplBSVol;

global InitialParameters;

%% CHOOSE THE LOSS FUNCTION TO BE USED AND THE REGULARIZATION PARAMETER

%% IV-MSE LOSS FUNCTION

% for i = 1:NoOfOptions

% PriceDifference(i) = (OptionData(i,5) - ...,

% HestonCallQuad(x(1),x(2),x(3),x(4),x(5),OptionData(i,1),...,

% OptionData(i,2),OptionData(i,3),OptionData(i,4)))/...,

% ((blsvega(OptionData(i,3),OptionData(i,4),OptionData(i,6),...,

% OptionData(i,2),ImplBSVol(i),OptionData(i,7))));

% end

% RegularizationParameter = 1;

% val = sqrt(1/NoOfOptions^2*sum(PriceDifference.^2)) + ...,

% RegularizationParameter*sum((InitialParameters-x).^2);

%% $-MSE LOSS FUNCTION

% for i = 1:NoOfOptions

% PriceDifference(i) = (OptionData(i,5) - ...,

% HestonCallQuad(x(1),x(2),x(3),x(4),x(5),OptionData(i,1),...,

% OptionData(i,2),OptionData(i,3),OptionData(i,4)));

% end

% RegularizationParameter = 1;

% val = sqrt(1/NoOfOptions^2*sum(PriceDifference.^2)) + ...,

% RegularizationParameter*sum((InitialParameters-x).^2);

%% %-MSE LOSS FUNCTION

for i = 1:NoOfOptions

PriceDifference(i) = (OptionData(i,5) - ...,

HestonCallPrice(x(1),x(2),x(3),x(4),x(5),OptionData(i,1),...,

OptionData(i,2),OptionData(i,3),OptionData(i,4)))/OptionData(i,5);

end

RegularizationParameter = 1;

val = sqrt(1/NoOfOptions^2*sum(PriceDifference.^2)) + ...,

RegularizationParameter*sum((InitialParameters-x).^2);

function call = HestonCallPrice(kappa,theta,sigma,rho,v0,r,T,s0,K)

warning off;

call = s0*HestonProbabilities(kappa,theta,sigma,rho,v0,r,T,s0,K,1)- ...,

K*exp(-r*T)*HestonProbabilities(kappa,theta,sigma,rho,v0,r,T,s0,K,2);
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function ret = HestonProbabilities(kappa,theta,sigma,rho,v0,r,T,s0,K,type)

ret = 0.5 + 1/pi*quadl(@HestonIntegrand,0,100,[],[],kappa,theta,sigma,...,

rho,v0,r,T,s0,K,type);

function ret = HestonIntegrand(phi,kappa,theta,sigma,rho,v0,r,T,s0,K,type)

ret = real(exp(-i*phi*log(K)).*HestonCharFunc(phi,kappa,theta,sigma,...,

rho,v0,r,T,s0,type)./(i*phi));

function f = HestonCharFunc(phi,kappa,theta,sigma,rho,v0,r,T,s0,type);

if type == 1

u = 0.5;

b = kappa - rho*sigma;

else

u = -0.5;

b = kappa;

end

a = kappa*theta;

x = log(s0);

d = sqrt((rho*sigma*phi.*i-b).^2 - sigma^2*(2*u*phi.*i-phi.^2));

g = (b - rho*sigma*phi*i + d)./(b - rho*sigma*phi*i - d);

C = r*phi.*i*T + a/sigma^2.*((b - rho*sigma*phi*i + d)*T - ...,

2*log((1-g.*exp(d*T))./(1-g)));

D = (b - rho*sigma*phi*i + d)./sigma^2.*((1-exp(d*T))./(1-g.*exp(d*T)));

f = exp(C + D*v0 + i*phi*x);

B.2 Calibrating the Heston model using

lsqnonlin

clear, close all

clc

global NoOfOptions; global OptionData;

global InitialParameters;

load RawOptionData.m; %% r - D, T, S0, K, C, r, D

%CALCULATE THE NUMBER OF DATES AND THE NUMBER OF OPTIONS FOR EACH DATE

[B,I,J] = unique(RawOptionData(:,3),'first');

Index = sort(I); Index(length(Index) + 1) = length(RawOptionData(:,3));
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for i=1:length(Index)-1

NoOptions(i) = Index(i+1)-Index(i);

end

NoOptions(length(NoOptions)) = NoOptions(length(NoOptions))+1;

NoOfDates = length(NoOptions);

NUsed = 1;

%SET INITIAL PARAMETERS: [Kappa;Theta;Sigma;Rho;V0]

InitialParameters = [2.3846;0.02522;0.33714;-0.64819;0.09163];

Results = [];

for j=1:NoOfDates

NoOfOptions = NoOptions(j);

OptionData = RawOptionData([NUsed:NUsed+NoOfOptions-1],:);

%%IF WE USE THE IV MSE LOSS FUNCTION, CALCULATE THE IMPLIED

%%BLACK-SCHOLES VEGA: OTHERWISE, THIS SECTION MAY BE

%%IGNORED

%for k=1:NoOfOptions

%y = OptionData(k,:);

%ImplBSVol(k) = fzero(@(x) bsvolatility(x,y),0.2);

%end

%for l=1:NoOfOptions

%OptionData(l,8) = blsvega(OptionData(l,3),OptionData(l,4),...,

%OptionData(l,6),OptionData(l,2),ImplBSVol(l),OptionData(l,7));

%end

bestmem = lsqnonlin(@(x) HestonDifferences(x),...,

InitialParameters,[0.5 7;0.001 1;0.001 1;-1 1;0.001 0.5]);

Results = [Results;bestmem'];

NUsed = NUsed + NoOfOptions;

InitialParameters = bestmem;

end

function ret = HestonDifferences(x)

global NoOfOptions; global OptionData;

global InitialParameters;

%% CHOOSE THE LOSS FUNCTION TO BE USED AND THE REGULARIZATION PARAMETER

%% IV-MSE LOSS FUNCTION

% for i = 1:NoOfOptions

% PriceDifference(i) = (OptionData(i,5) - ...,

% HestonCallQuad(x(1),x(2),x(3),x(4),x(5),OptionData(i,1),...,

% OptionData(i,2),OptionData(i,3),OptionData(i,4)))/...,

% ((blsvega(OptionData(i,3),OptionData(i,4),OptionData(i,6),...,

% OptionData(i,2),ImplBSVol(i),OptionData(i,7))));

% end
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% RegularizationParameter = 1;

% for j=1:5

% PriceDifference(NoOfOptions+j) = sqrt(RegularizationParameter)*...

%(InitialParameters(j)-x(j));

% end

% ret = PriceDifference;

%% $-MSE LOSS FUNCTION

% for i = 1:NoOfOptions

% PriceDifference(i) = (OptionData(i,5) - ...,

% HestonCallQuad(x(1),x(2),x(3),x(4),x(5),OptionData(i,1),...,

% OptionData(i,2),OptionData(i,3),OptionData(i,4)));

% end

% RegularizationParameter = 1;

% for j=1:5

% PriceDifference(NoOfOptions+j) = sqrt(RegularizationParameter)*...

%(InitialParameters(j)-x(j));

% end

% ret = PriceDifference;

%% %-MSE LOSS FUNCTION

for i = 1:NoOfOptions

PriceDifference(i) = (OptionData(i,5) - ...,

HestonCallPrice(x(1),x(2),x(3),x(4),x(5),OptionData(i,1),...,

OptionData(i,2),OptionData(i,3),OptionData(i,4)))/OptionData(i,5);

end

RegularizationParameter = 1;

for j=1:5

PriceDifference(NoOfOptions+j) = sqrt(RegularizationParameter)*...

(InitialParameters(j)-x(j));

end

ret = PriceDifference;

B.3 Calibrating the Dupire model using

lsqnonlin

clear, close all

clc

global S0; global K; global NPartition; global dT; global dK;

global u; global AlphaK; global AlphaT; global CallObservations;

load RawOptionData.m;

[B,I,J] = unique(RawOptionData(:,3),'first');

Index = sort(I); Index(length(Index) + 1) = length(RawOptionData(:,3));

for i = 1:length(Index)-1
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NoOfOptions(i) = Index(i+1)-Index(i);

end

NoOfOptions(length(NoOfOptions)) = NoOfOptions(length(NoOfOptions)) + 1;

NoOfDates = length(NoOfOptions); NUsed = 1;

NPartition = 20;

InitialVol = 0.2*ones(NPartition-1,NPartition-2); %INITIAL PARAMETERS

Results = []; TVec = []; KVec = [];

AlphaK = 10^7; AlphaT = 10;

for i=1:NoOfDates

OptionData = RawOptionData([NUsed:NUsed+NoOfOptions(i)-1],:);

S0 = OptionData(1,3);

Tmin = min(OptionData(:,2)); Tmax = max(OptionData(:,2));

dT = Tmax/(NPartition-1); T = 0:dT:Tmax;

Kmin = 0; Kmax = 2*S0; %Note that the value of Kmax may vary between

dK = Kmax/(NPartition-1);%different dates. Choose Kmax sufficiently

K = 0:dK:Kmax; %large, so that we may set the value of

%options with K = Kmax to 0.

t1 = OptionData(:,2); k1 = OptionData(:,4); c1 = OptionData(:,5);

TUnique = unique(t1); KUnique = unique(k1);

k2 = zeros(length(TUnique),1); k3 = Kmax*ones(length(TUnique),1);

tk_initial = [t1 k1 c1;

TUnique k2 S0*ones(length(TUnique),1);

TUnique k3 zeros(length(TUnique),1)];

tk = tk_initial(:,[1:2]); c = tk_initial(:,3);

calls = tpaps(tk',c');

for j=1:length(T)

for k=1:length(K)

CallObservations(j,k) = max(fnval(calls,[T(j);K(k)]),0);

end

end

r_D = [OptionData(:,2) OptionData(:,1)];

rates = sortrows(unique(r_D,'rows'));

u = interp1(rates(:,1),rates(:,2),T,'pchip');

LVFunc = lsqnonlin(@(v) ImplicitDupire(v),InitialVol,zeros(NPartition-1,...

,NPartition-2),ones(NPartition-1,NPartition-2));

Results = [Results;LVFunc]; TVec = [TVec;T]; KVec = [KVec;K];

InitialVol = LVFunc;

NUsed = NUsed + NoOfOptions(i);

end
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function ret = ImplicitDupire(Vol)

global S0; global K; global NPartition; global dT; global dK;

global u; global AlphaK; global AlphaT; global CallObservations;

C(1,1) = S0; C(1,NPartition) = 0;

for i=2:NPartition-1

C(1,i) = max(S0-K(i),0);

end

for t=2:NPartition

A(1,1)=1; A(NPartition,NPartition)=1;

for k=2:NPartition-1

A(k,k-1) = -0.5*Vol(t-1,k-1)^2*K(k)^2*dT/dK^2;

A(k,k) = 1 + Vol(t-1,k-1)^2*K(k)^2*dT/dK^2 - u(t)*K(k)*dT/dK;

A(k,k+1) = u(t)*K(k)*dT/dK - 0.5*Vol(t-1,k-1)^2*K(k)^2*dT/dK^2;

end

B = sparse(A);

b = [S0;C(t-1,[2:NPartition-1])';0];

c = B\b;

C(t,:) = c';

end

PriceDifference = CallObservations([2:NPartition],[2:NPartition-1])-...

C([2:NPartition],[2:NPartition-1]);

for i=1:NPartition-1

for j=1:NPartition-4

VolKK(i,j) = (Vol(i,j+2)-2*Vol(i,j+1)+Vol(i,j))/dK^2;

end

end

for i=1:NPartition-2

for j=1:NPartition-3

VolTT(i,j) = (Vol(j+2,i)-2*Vol(j+1,i)+Vol(j,i))/dT^2;

end

VolTT(NPartition-1,:) = 0;

end

ret = [PriceDifference AlphaK*VolKK AlphaT*VolTT];
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