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Abstract 

This paper is the report of a Master’s Degree project carried out at Royal Institute of Technology and in this paper 
we mainly apply the estimators and methods derived by P. Glasserman and J. Li (2003, 2005) of importance 
sampling methods in portfolio credit risk models. By using the exponential twisting method we will be able to 
compute the probability beyond one certain loss level (P(L>X)). We use the search method and a ‘direct’ method 
derived by Peter W. Glynn to estimate the Value-at-Risk (VaR) from the probability and Expected Shortfall (ES) in 
two portfolio credit risk models, and estimate a convex risk measure Shortfall Risk (SR) with the estimator given by 
J. Dunkel and S. Weber (2007) in the two models as well. We provide numerical simulation to show the good 
performance of importance sampling comparing with the plain Monte Carlo. 
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Chapter 1 
Introduction 
 

1.1     Background 

 
Credit risk can be defined as the risk of loss due to a debtor's non-payment of a loan or other line 

of credit. The goal of credit risk management is to maximize an institution's risk-adjusted rate of 

return by maintaining credit risk exposure within acceptable limits. Financial institutions need to 

manage the credit risk inherent in the entire portfolio as well as the risk in individual credits or 

transactions. The effective management of credit risk is a critical component of a comprehensive 

approach to risk management and essential to the long-term success of any financial organization. 

A firm measurement of credit default risk is one of the key issues for financial institutions, and 

it’s the driving force leading the financial industry to develop new models to measure and 

manage this risk. An important feature of modern credit risk management models is that it tries 

to capture the effect of dependence across sources of credit risk to which a bank or financial 

institution is exposed. These models are now in widespread use, e.g. CreditMetrics (Gupton et 

al.,1997), originally developed by JP Morgan, and CreditRisk+ (Cre,1997), Credit Suisse 

Financial Products, which take into account dependence structure between obligors. Capturing 

dependence adds complexity both to the models used and to the computational methods required 

to calculate outputs of a model. 

Monte Carlo simulation is widely used in financial institutions and is easy to implement on a 

computer. The Monte Carlo method relies on repeated replication scenarios that determine which 

obligors default and the losses given default. For trusty obligors, default is a rare event 

associated. The computation cost may become large for the rare-event simulation with complex 
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dependence between obligors. Hence, importance sampling, a variance reduction technique 

could improve the simulation process efficiency. 

During the past decade, P. Glasserman and J. Li had made intense efforts to develop a 

general approach of importance sampling (IS) based on applying a change of the distribution to 

the factors and a change of distribution to the default indicators conditional on the factors, see P. 

Glasserman and J. Li (2003,2005). We are going to combine this approach with numerical 

method to estimate the industry standard of risk measurement, Value-at-Risk (VaR). Due to the 

inherent deficiencies of VaR, we are going to estimate two additional risk measures, Expected 

Shortfall (ES) and utility-based Shortfall Risk (SR).  

 

1.2     Outline 

 
The paper is organized as follows. In the Chapter 2 we give definition and properties of risk 

measures and credit risk models. Chapter 3 is dedicated to show how risk measures are estimated 

by plain MC and importance sampling method in Normal Copulas Model. Chapter 4 introduced 

the estimation of risk measures in Mixed Poisson Model. We give the numerical simulations in 

Chapter 5. The conclusion is given in Chapter 6. 
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Chapter 2 
Risk Measures and Portfolio Credit Risk Models 
 

2.1     Risk Measures 
 

Normal distributions are widely used in the traditional tools for assessing and optimizing 

portfolio risk. In that case two statistical quantities, the mean and the standard deviation, could 

be used to estimate the return and risk. However, often, the distributions of losses are far from 

normal; for instance, heavily tailed, skewed, high kurtosis. A measure of risk is needed to 

compare the riskiness of different portfolios. A scalar value is important for the sake of risk 

comparison. 

Here we give definitions of three scalar risk measures, Value-at-risk, Expected-shortfall and 

Shortfall-Risk. 

2.1.1     Value-at-Risk 

Value-at-Risk is by far the most popular and most accepted risk measure among financial 

institution. But it suffers from two severe deficiencies if considered as a measure of downside 

risk: 

(i) VaR penalizes diversification which means it is not subadditive 

(ii) VaR is insensitive to the size of loss beyond the pre-specified threshold level 

First we recall the definition of VaR. We denote L as the potential loss of a credit portfolio over 

a fixed time horizon T. Assuming that L is random variable on some probability space (Ω, F, P). 

The VaRαሺLሻ is defined by the smallest number l such that the probability that the loss L exceeds 

l is no larger than 1-α, i.e. 

VaRαሺLሻ ؔ infሺ݈ א R: PሺL ൐ ݈ሻ ൑ 1 െ αሻ ൌ infሺ݈ א R: EሾILவ௟ሿ ൑ 1 െ αሻ           ሺ2.1ሻ 
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Here, E denote the expected value with respect to the probability measure P, and ILவ௟ is the 

indicator function of the event {L>l}. Thus, VaR corresponds to the quantile of the losses at 

level α. Typical value for α which are used in practice are α = 0.95 or α = 0.99, but higher value 

may also be of interest. 

As we told VaR suffers from two drawbacks. Firstly, VaR is not a subadditive measures, it 

means VaR does not assess portfolio diversification as being beneficial which violates common 

sense. Secondly, VaR does not take into account the size of very large losses that might occur 

over the certain threshold. This defect can be illustrated by a simple example. Consider two 

portfolios with loss Lଵ and Lଶ respectively, where Lଵ equals to -1 with probability 99% and +1 

with probability 1%, which means portfolio 1 has 99% probability to earn 1 unit of money and 1% 

to loss 1 unit of money, and Lଶ equals to -1 with 99% probability and +1000 with probability 1%, 

which means portfolio 2 has 99% probability to earn 1 unit of money and 1% to loss 1000 unit of 

money. It is easy to find out that VaR଴.ଽଽሺLଵሻ ൌ VaR଴.ଽଽሺLଶሻ ൌ െ1. Hence, according to typical 

95% or 99% VaR, both portfolios are equal risk. However, we could easily see the portfolio 1 is 

preferable.  

Although VaR has these severe drawbacks, it is still the most widely used risk measures, and 

efficient method to compute VaR is meaningful in the industry.  

2.1.2     Expected-Shortfall (ES) 

As VaR has two serious limitations, we also consider an alternative risk measure called 

Expected-Shortfall (ES). This measure is also known as Mean Excess Loss, Conditional Value-

at-Risk (CVaR) or Tail VaR. However, for discrete distributions, Expected-Shortfall may differ 

from CVaR. By definition, the ES is the expected loss exceeding VaR at α level, i.e. 

ESαሺLሻ ؔ EሾL|L ൐ VaRαሺLሻሿ 

ൌ
1

1 െ α
න VaR୮

ଵ

୮
ሺLሻdp                                               ሺ2.2ሻ 

We could easily show several reasons why ES is preferred risk measure to VaR. Firstly, ES is a 

sub-additive measure which VaR is not. Secondly, ES provides information about the amount of 

loss exceed VaR which acts as an upper bound of VaR. Therefore, portfolio with a low ES 
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should also have a low VaR. Thirdly, under general conditions, ES is a convex function and it is 

a coherent measure of risk as well (Föllmer and Schied, 2008). 

2.1.3     Shortfall-Risk (SR) 

Another alternative to VaR is provided by the convex risk measure called Utility-based Shortfall 

Risk (SR). The definition is as follow: take a convex loss function ƒ: R→R, and let λ be a point 

in the interior of the range of ƒ. Assuming the expectation of ƒ(L) is well defined and finite, we 

define SR with function ƒ at level λ as 

SRƒ,λሺLሻ ؔ infሼs א R|EሾƒሺL െ sሻሿ ൑ λሽ ,    λ ൐ 0;                                    ሺ2.3ሻ 

We will use typical convex loss functions piecewise polynomial and exponential functions, i.e. 

ƒγ
୮୭୪୷ሺxሻ ൌ  γିଵxγ૚ሼ୶வ଴ሽ,      γ ൐ 1;                                              ሺ2.4ܽሻ 

ƒβ
ୣ୶୮ሺxሻ ൌ  exp ሺβxሻ,      β ൐ 0;                                                 ሺ2.4ܾሻ 

We see that the SR definition (2.3) is obtained by replacing the indicator function in VaR 

definition (2.1) with the convex loss function ƒ, which makes SR be affected by large losses, as 

the loss L exceeds a certain threshold s with a probability of at least λ. Hence SR might take into 

account the risk of unexpected large losses, which may ignored by VaR.  

Why we say SR is utility-based? That’s because SR is related to the von Neumann-

Morgenstern theory of expected utility. If we set u(x) = -ƒ(-x), we can get a concave Bernoulli 

utility function u, representing the central object in the von Neumann-Morgenstern theory 

(Föllmer and Schied, 2004). Defining the utility function U(X) := E[u(X)] where X = -L, we can 

rewrite the (2.3) into    

SRƒ,λሺLሻ ؔ infሼs א R|UሺെL ൅ sሻ ൒ െλሽ ,    λ ൐ 0; 

We could calculate the SR within the two steps (Dunkel and Weber, 2007) as follows: 

(i) SR equals to the solution s* of EሾƒሺL െ sሻሿ ൌ λ. Employ a recursive procedure in 

order to obtain a sequence of s୩ that convergence to s*. To generate this sequence we 

need to have the knowledge of EሾƒሺL െ sሻሿ 

(ii)  Given a model or a certain statistics of Ls, have a initial guess for s*, calculate 

EሾƒሺL െ sሻሿ. For this purpose we need to use the MC method to estimate the 

expectation. 

We could use this recursive method to generate the sequence as  
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s୩ାଵ ൌ ଵ
ଶ

ቂs୩ ൅ s୩ିଵ െ ሺs୩ െ s୩ିଵሻ EሾƒሺLିୱౡሻሿାEሾƒሺLିୱౡషభሻሿିଶλ
EሾƒሺLିୱౡሻሿିEሾƒሺLିୱౡషభሻሿ ቃ ;                        ሺ2.5ሻ   

where  s୩ ՜ sכ, as k ՜ ∞. 

 

2.2     Credit Risk Models 

 
We consider a portfolio with m obligors over a fixed time horizon T (e.g. one year); Let Y୧ 

denote the default indicator (or counter) of the ith obligor. When Y୧ ൌ 1, it means this obligor 

defaults within the horizon and Y୧ ൌ 0 otherwise. The net loss associated with the default of the 

ith obligor is given by c୧ which is positive constant, c୧ ൐ 0. In some models c୧s are modeled as 

random variables, but here we take the simple approach. The portfolio loss over the horizon T is  

L ൌ  ෍ c୧ כ Y୧

୫

୧ୀଵ

                                                                       ሺ2.6ሻ 

The marginal default probabilities p୧ ൌ PሺY୧ ൌ 1ሻ may be obtained from published credit ratings 

(e.g. S&P). Different models have different mechanisms in capturing dependence among c୧s. In 

the following sections we give a brief description of two models. 

2.2.1     Normal Copula Model 

In the normal copula model (NCM), the dependence is modeled through a multivariate normal 

vector ሺXଵ, … , X୫ሻ of latent variables. The threshold x୧ is determined such that each latent 

variable is chosen to match the marginal default probability p୧. Each default indicator is 

represented as follow: 

Y୧ ൌ IሼX୧ ൐ x୧ሽ, i ൌ 1, … , m                                             (2.7) 

and x୧ ൌ Φିଵሺ1 െ p୧ሻ. Thus, 

PሺY୧ ൌ 1ሻ ൌ PሺX୧ ൐ x୧ሻ ൌ 1 െ Φ ቀΦିଵሺ1 െ p୧ሻቁ ൌ p୧,     i ൌ 1, … , m 

Through the construction, the dependence among Y୧s is determined by the correlation among 

the X୧s. The underlying correlations of X୧s are often specified through a factor model of the form: 

X୧ ൌ ෍ A୧୩Z୩

ୢ

୩ୀଵ

൅ A୧଴ε୧,    i ൌ 1, … , m                                             ሺ2.8ሻ 
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෍ A୧୩
ଶ

ୢ

୩ୀ଴

ൌ 1,    A୧଴ ൐ 0, A୧୩ ൒ 0                                                 ሺ2.9ሻ 

Zଵ, … , Zୢ are the systematic risk variables with independent standard normal distribution. 

And the idiosyncratic risks variables εଵ, … , εୢ are chosen as standard normal as well and 

independent from the systematic risk variables. As we assume the factors A୧୩ are nonnegative. 

This condition simplifies our discussion by ensuring that larger values of the factors Z୩s lead to a 

larger number of defaults. Nonnegative of the A୧୩ is often imposed in practice as a conservative 

assumption ensuring that all the default indicators are positively correlated. The constraint (2.9) 

ensures that X୧s are standard normal distribution.  

Conditionally on the common factors Z ൌ ሺZଵ, … , Zୢሻ, the default indicators Y୧s are 

independent. It is easy to prove that conditioned on the systematic vector Z, the default event 

ሼY୧ ൌ 1ሽ occurs with the probability: 

                   p୧ሺZሻ ؔ PሺY୧ ൌ 1|Zሻ ൌ PሺX୧ ൐ x୧|Zሻ 

ൌ P ቌ෍ A୧୩Z୩

ୢ

୩ୀଵ

൅ A୧଴ε୧ ൐ Φିଵሺ1 െ p୧ሻቮZቍ ൌ Φቆ
∑ A୧୩Z୩

ୢ
୩ୀଵ ൅ Φିଵሺp୧ሻ

A୧଴
ቇ  ሺ2.10ሻ 

2.2.2     Mixed Poisson Model 

In CSFP’s (1997) CreditRisk+ model, an alternative way to introduce the dependence is 

provided by using a mixed Poisson model. This implies that each default counter Y୧ is 

conditionally Poisson distributed. This may be viewed as a Poisson approximation to a Bernoulli 

random variable (based on the fact that a Poisson random variable with a very small mean that 

has a very small probability of taking value larger than 1); or it can be viewed as the loss L will 

in general not be bounded anymore, each i represents a class of obligors, and all obligors from 

class i cause the same potential net losses c୧. In this interpretation, values of Y୧ greater than 1 are 

meaningful.  

The distributions of counter variables Y୧s are specified as follows. Given some random 

vectors Y ൌ ሺYଵ, … , Y୫ሻ, the variables Y୧s are independent and conditionally Poisson distributed: 

PሺY୧ ൌ k|Zሻ ൌ
X୧

୩

k! eିX౟, k א N଴, i ൌ 1, … , m                                     ሺ2.11ሻ 
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We choose independent Gamma-distributed random variables Z ൌ ሺZଵ, … , Zୢሻ as the 

common risk factors in this model. Additionally it is assumed that the random vector X is 

specified through a factor model as follows: 

X୧ ൌ A୧଴ ൅ ෍ A୧୩Z୩

ୢ

୩ୀଵ

, i ൌ 1, … , m                                                    ሺ2.12ሻ 

with the constraints: 

A୧଴ ൒ 0, A୧୩ ൒ 0, ෍ A୧୩

୫

୧ୀଵ

ൌ 1, ෍ A୧୩

ୢ

୩ୀଵ

൐ 0     i ൌ 1, … , m k ൌ 1, … , d 

For the risk factor vector Z, the probability density function is as below: 

fሺzሻ ൌ ෑ f୩ሺz୩ሻ
ୢ

୩ୀଵ

,     f୩ሺz୩ሻ ൌ
z୩
αౡିଵ

β୩
αౡΓሺα୩ሻ exp ቆെ

z୩

β୩
ቇ,   z୩ ൐ 0 

We impose the normalization: 

α୩ ൌ
1
σ୩

ଶ , β୩ ൌ σ୩
ଶ,         k ൌ 1, … , d 

Then the risk factors Zଵ, … , Zୢ have the mean 1 and variance σଵ
ଶ, … , σୢ

ଶ. With these constraints, 

we have: 

p୧ ؔ EሺX୧ሻ ൌ A୧଴ ൅ ෍ A୧୩

ୢ

୩ୀଵ

 

Then we can evaluate the portfolio loss by generating Y୧ from Poisson(X୧).  

 

2.3     Monte Carlo Method 

 
The Monte Carlo method has been widely used in several industries and academic research. It’s 

the method which solves a problem by generating suitable random numbers and observing the 

fraction of the numbers obeying some property or properties. The method is useful for obtaining 
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numerical solutions to problems which are too complicated to solve analytically. It was named 

by S. Ulam, who in 1946 became the first mathematician to dignify this approach with a name, 

in honor of a relative having a propensity to gamble (Hoffman 1998, p. 239). Nicolas Metropolis 

also made important contributions to the development of such methods.  

The Monte Carlo Method encompasses any technique of statistical sampling employed to 

approximate solutions to quantitative problems. Essentially, the Monte Carlo method solves a 

problem by directly simulating the underlying physical process and then calculating the (average) 

result of the process. This very general approach is valid in areas such as physics, chemistry, 

computer science etc. Monte Carlo methods were first introduced to finance in 1964 by David B. 

Hertz in "Risk Analysis in Capital Investment" (Harvard Business Review), discussing their 

application in Corporate Finance. In 1977, Phelim Boyle pioneered the use of simulation in 

derivative valuation in his seminal paper "Options: A Monte Carlo Approach". In finance and 

mathematical finance, Monte Carlo methods are used to value and analyze complex instruments, 

portfolios and investments by simulating the various sources of uncertainty affecting their value, 

and then determining their average value over the range of resultant outcomes. The advantage of 

Monte Carlo methods over other techniques increases as the dimensions (sources of uncertainty) 

of the problem increase. 

Although Monte Carlo methods provide flexibility, and can handle multiple sources of 

uncertainty, the use of these techniques is nevertheless not always appropriate. In general, 

simulation methods are preferred to other valuation techniques only when there are several state 

variables (i.e. several sources of uncertainty).  

We give detailed algorithm of Monte Carlo method in solving the risk measures under 

assumption of the two credit risk models which we mentioned.  
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Chapter 3 
Estimate risk measures in the Normal Copula Model 
 
As we mentioned in Chapter 2, plain Monte Carlo method is widely used in risk management. 

Due to high dimensional uncertainty, it would take too much computation time in industry if we 

want to get a result with high accuracy. We first show the algorithm of calculate the risk 

measures by using the MC method under the assumption of the Normal Copula Model. Later, we 

introduce two efficient Monte Carlo method based on importance sampling. Then we would 

compare the efficiency between importance sampling and the MC method. 

 

3. 1     Plain Monte Carlo method in NCM 

 
In the Normal Copula Model, the indicator Y୧ is related to a multivariate normal vector X, 

according to (2.8) and (2.9). We can implement the MC method as follows: 

1. Generate Z~N(0,I) which is a d-vector of independent normal random variables. 

2. Generate ε~N(0,I) which is m-vector of independent normal random variable. 

3. Calculate X ൌ ሺXଵ, … , X୫ሻ via (2.8) and calculate threshold x୧ of each latent variable by the 

function  x୧ ൌ Φିଵሺ1 െ p୧ሻ. 

4. Generate indicator Y୧ by Y୧ ൌ 1 if X୧ ൐ x୧ and Y୧ ൌ 0 otherwise 

5. Compute the loss by using the (2.6) and repeat the procedure N times. N should be relative 

large to protect the accuracy. 

6. Sort the N losses by descending order, and output as vector L. L୧ is the ith largest loss value 

in the repeated MC simulations. 

We could get the α-VaR and α-ES estimator according to empirical function: 
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VaR෢ αሺLሻ ൌ LሾNሺଵିαሻሿାଵ 

ES෢αሺLሻ ൌ  
1

ሾNሺ1 െ αሻሿ ൅ 1 ෍ L୩

ሾNሺଵିαሻሿାଵ

୩ୀଵ

 

From these two empirical functions, we can tell that an efficient Monte Carlo method should also 

get the VaR and ES estimators by using same simulation output N-vector L, otherwise the 

method would not be considered as efficient. So we simulate VaR and ES together in the future. 

We could get SR by the recursive procedure given by (2.5), it’s easy to tell that the 

efficiency and accuracy of estimating EሾƒሺL െ cሻሿ would have great effect on the result of SR. 

By inserting the (2.4a) and (2.4b), we are interested in estimation of   

ሺܿሻ݌ ൌ EൣγିଵሺL െ cሻγ૚ሼሺLିୡሻவ଴ሽ൧ 

and  

݁ሺܿሻ ൌ Eሾexp ሺβሺL െ cሻሻሿ 

Here is the MC algorithm for these two functions: 

1. Generate N losses by descending order in one vector L (same method as for VaR and ES) 

2. For p(c) we have the estimator: 

ሺܿሻ̂݌ ൌ
1
n ෍ γିଵሺL୩ െ cሻγ

୬

୩ୀଵ

 

Where L୬ is the minimal loss in vector L which is larger than c. 

And for e(c) we have the estimator: 

݁̂ሺܿሻ ൌ
1
N ෍ exp ሺβሺL୩ െ cሻሻ

N

୩ୀଵ

 

 

3.2     Two-step importance sampling for estimate risk measures in NCM 
 

3.2.1     Search Method based on two-step IS for VaR and ES 

Importance sampling is a variance reduction technique that can be used in the Monte Carlo 

method. The idea behind importance sampling is that certain values of the input random 

variables in a simulation have more impact on the parameter being estimated than others. If these 

"important" values are emphasized by sampling more frequently, then the estimator variance can 

be reduced. Hence, the basic methodology in importance sampling is to choose a distribution 
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which "encourages" the important values. This use of "biased" distributions will result in a 

biased estimator if it is applied directly in the simulation. However, the simulation outputs are 

weighted to correct for the use of the biased distribution, and this ensures that the new 

importance sampling estimator is unbiased. The weight is given by the likelihood ratio, that is, 

the Radon-Nikodym derivative of the true underlying distribution with respect to the biased 

simulation distribution. We give an example to illustrate the method. 

Consider a random variable X on some probability space (Ω, F, P), and f is the probability 

density function of X. Take h(•) as some function of random variable X. Then the expectation of 

h(X) can be written as: 

θ ൌ Eሾ݄ሺXሻሿ ൌ  න ݄ሺxሻ݂ሺxሻdx
ା∞

ିஶ
                                                  ሺ3.1ሻ 

Then we can easily get the MC estimator θ෠୬
MC

 as follow: 

θ෠୬
MC ൌ

1
n ෍ ݄ሺX୧ሻ

୬

୧ୀଵ

 

where  X୧s are generated from density f independently. Now we consider a second probability 

density g and define the likelihood ratio r(x) by r(x):= f(x)/g(x) whenever g(x)>0, and r(x)=0 

otherwise. The integral (3.1) can be written as: 

θ ൌ  න ݄ሺxሻ݃ሺxሻݎሺxሻdx
ା∞

ିஶ
ൌ E୥ሾ݄ሺXሻݎሺXሻሿ 

where E୥ denote the expectation with respect to density g. Then we can have the IS estimator: 

θ෠୬
IS ൌ

1
n ෍ ݄ሺX୧ሻ

୬

୧ୀଵ

 ሺX୧ሻݎ

Here  X୧s are generated from density g independently. The density g is the biased distribution. 

The fundamental issue in implementing importance sampling simulation is the choice of the 

biased distribution which encourages the important regions of the input variables. Choosing or 

designing a good biased distribution is the "art" of importance sampling. The rewards for a good 

distribution can be huge run-time savings; the penalty for a bad distribution can be longer run 

times than for a plain Monte Carlo simulation without importance sampling. 

To estimate Value-at-Risk in NCM, we based on the algorithm of P. Glasserman and J. Li 

(2005) which used IS method exponential twisting to get the estimator of P(L>x). As the VaR 

can be taken as a quantile, we use the search method to get the quantile from the probability.  
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Under a simplified setting of NCM where the obligors are independent, we improve our 

estimate efficiency of a tail probability P(L>x) with a well established approach. We try to 

replace each default probability p୧ by some other default probability q୧. Here is the unbiased 

estimate of P(L>x) if the default indicators are sampled using the new default probabilities. 

PሺL ൐ ሻݔ ൌ E୯౟ ൥IሼL ൐ ሽݔ ෑ ൬
p୧

q୧
൰

Y౟
൬

1 െ p୧

1 െ q୧
൰

ଵିY౟
୫

୧ୀଵ

൩ 

where the product inside the expectation taken new probabilities is the likelihood ratio relating 

the original distribution to new one.      

                                    

3.2.1.1     Exponential twisting to estimate probability 

We choose a parameter θ and set:  

q୧ ൌ p୧,θ ൌ
p୧ሺZሻeθୡ౟

1 ൅ p୧ሺZሻሺeθୡ౟ െ 1ሻ 

If θ ൐ 0, this does increase the default probabilities; a larger exposure c୧ result in a greater 

increase in the default probability. If θ ൌ 0, then it comes back to the original probabilities. 

With the choice of probabilities, straightforward calculation of likelihood ratio simplifies to: 

ෑ ൬
p୧

q୧
൰

Y౟
൬

1 െ p୧

1 െ q୧
൰

ଵିY౟

ൌ exp൫െθL ൅ ψሺθሻ൯                         ሺ3.2ሻ
୫

୧ୀଵ

 

where  

ψሺθሻ ൌ log EൣeθL൧ ൌ ෍ log ቀ1 ൅ p୧ሺZሻ൫eθୡ౟ െ 1൯ቁ                   ሺ3.3ሻ
୫

୧ୀଵ

 

is the cumulant generating function (CGF) of L. For any θ, the unbiased estimator of P(L>x) is: 

P෡ሺL ൐ ሻݔ ൌ
1
n ෍ I൛L୨ ൐ ൟݔ

୬

୨ୀଵ

eିθLౠାψሺθሻ 

where n is the number of simulation, L୨ stands for the total loss at jth simulation. 

It remains to discuss how to determine the parameter θ. A good importance sampling density 

should be, for fixed n, the variance of the IS estimator is considerably smaller than that of the 

standard Monte Carlo estimator. We can find the upper bound of second moment: 

Mଶሺx, θሻ ൌ E୮౟,θൣIሼL ൐ ሽeିଶθLାଶψሺθሻ൧ݔ ൑ eିଶθ୶ାଶψሺθሻ                       ሺ3.4ሻ 
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where the upper bound holds for all θ ൐ 0. Minimizing the second moment is difficult, but 

minimizing the upper bound is same as maximize θx െ ψሺθሻ over θ ൐ 0. As the function ψ is 

strictly convex and passes through the origin point, the maximum is attained at 

θ୶ ൌ ቊunique solution of ψ′ሺθሻ ൌ x,   x ൐ ψ′ሺ0ሻ 
0,                                                       x ൑ ψ′ሺ0ሻ

                             ሺ3.5ሻ 

So we twist by θ୶ to estimate P(L>x). 

Now we come for applying IS for a more complicated setting, where the obligors are 

dependent. Due to the obligors are dependent, we need to shift the mean value of distribution of 

the factor vector Z from 0 א Rୢ to μ ൌ ሺμଵ, … , μୢሻ א Rୢ. It means we need to do an importance 

sampling step with respect to Z. We use the arguments from P. Glasserman and J. Li (2005) to 

our setting. For any estimator pො୶ of P(L>x), there is a decomposition: 

Varሾpො୶ሿ ൌ EൣVarሾpො୶|Zሿ൧ ൅ VarൣEሾpො୶|Zሿ൧                                    ሺ3.6ሻ 

The exponential twisting of the Bernoulli random variables reduces the first contribution of (3.6), 

and exponential twisting with respect to Z minimize the second contribution of (3.6). Through 

the tail bound approximation method (P. Glasserman and J. Li, 2005), we can get the mean 

value μ: 

μ ൌ arg max
୸

൜F୶ሺzሻ െ
1
2 zTzൠ                                                   ሺ3.7ሻ 

where  

F୶ሺzሻ ൌ  െθ୶ሺzሻx ൅ ψሺθ୶ሺzሻ, zሻ 

This is the logarithm of the likelihood ratio in (3.2) evaluated at L=x.  

We can conclude that the importance sampling algorithm procedure for estimating the loss 

probability in a NCM with dependent obligors is as follow: 

1. Take x  

2. Generate Z~Nሺμ, Iሻ, a d-vector of independent normal random variables, where μ is the 

solution of (3.7). 

3. Calculate the new conditional default probabilities  

q୧ሺθ୶ሺZሻ, Zሻ ൌ
p୧ሺZሻeθ౮ሺZሻୡ౟

1 ൅ p୧ሺZሻሺeθ౮ሺZሻୡ౟ െ 1ሻ 

with θ୶ሺZሻ given by (3.5) and p୧ሺZሻ given by (2.10). 
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4. Generate the default indicator Yଵ, … , Y୫ from Bernoulli random numbers Bin(1,p) with the 

probability q୧ሺθ୶ሺZሻ, Zሻ. 

5. Calculate the loss L from the (2.6) and return the estimator of P(L>x) 

1
n ෍ IሼL୩ ൐ ሽݔ

୬

୩ୀଵ

eିθ౮ሺZሻLౡାψሺθ౮ሺZሻ,ZሻeିμTZାμ
Tμ
ଶ                                    ሺ3.8ሻ 

The factor eିμTZାμTμ
మ  is the likelihood ratio for the change from density of the N(0,I) distribution 

to that of N(μ,I) distribution. 

 

3.2.1.2     Estimator for VaR 

α-VaR is equivalent to  α-quantile, which is clear from the definition. From the two-step IS 

procedure, we can obtain an estimator of P(L>x), as follows, let: 

݂ሺݔሻ ൌ  ܲሺܮ ൐ ሻݔ െ ሺ1 െ  ሻ                                              ሺ3.9ሻߙ

The α-VaR (α-quantile) is the unique solution xכ of ݂ሺݔሻ ൌ 0. We could have xିଵ ൌ 0 and 

x଴ ൌ ∑ c୧ as the initial guess. We can easily prove that ݂ሺିݔଵሻ ൐ 0 and ݂ሺݔ଴ሻ ൐ 0, we can 

employ a recursive procedure in order to obtain a sequence ݔଵ, ,ଶݔ … , ௞ݔ ௞ such thatݔ ՜  when כݔ

k ՜ ∞. Here ݔଵ ൌ 0.5 כ ሺିݔଵ ൅ ଵሻݔ଴ሻ, if ݂ሺݔ ൐ 0, then ିݔଵ ൌ ଵሻݔଵ, else if ݂ሺݔ ൏ 0, then 

଴ݔ ൌ  :ଵand we can have the recursion rule asݔ

௞ାଵݔ ൌ
1
2

ሺିݔଵ ൅ ଵିݔ ݁ݎ݄݁ݓ    ,଴ሻݔ ൌ maxሺݔ௞|݂ሺݔ௞ሻ ൐ 0ሻ, ଴ݔ ൌ minሺݔ௞|݂ሺݔ௞ሻ ൏ 0ሻ     ሺ3.10ሻ 

This is the basic idea of search method. It’s an easy iterative method, and it could be 

efficient if we can set the iteration terminate condition properly. The two-step IS estimator of the 

ܲሺܮ ൐  ሻ is asymptotically optimal (P. Glasserman and J. Li (2005). From the numericalݔ

simulations showing later, we can see search method convergent quickly if the terminate 

condition has been properly set (less than 10 times).  

In principle, further improvements are possible, such as we could add stratified sampling 

during the process (P. Glasserman, P. Heidelberger and P. Shahabuddin (2000a), and other 

iterative procedure may be more efficient in some occasions. 

 

3.2.1.3     Estimator for ES 

We would like to estimate the ES by using the information of the sequence ݔଵ, ,ଶݔ … ,  ௄ whereݔ

ܮ௄ is a good estimator of VaR and the relative probability ܲሺݔ ൐  ௜ሻ for each element inݔ
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sequence. From figure 1, ES is the graphic area from α to 1 under the curve. It can be easily 

proved by the definition of ES.  

 
Figure 1 Inverse of Probability function 

 

The point on the graph is the α-quantile or VaR.  

We would like to employ the rectangle element approach to estimate the area under the 

curve from α to 1. So we sort the vector x according to descend order. Refer to the figure 2, it 

enlarges the graph from α to 1 and shows one way of estimation by rectangle element. Suppose 

the ݔ௧ is the smallest value larger than the VaR. 1 െ Fሺݔ௧ሻ equals to ܲሺܮ ൐   .ሻݔ

We can have the estimator as: 

ES෢ଵ ൌ
1
α

ሺVaR ൈ ∆p୲ ൅ ௧ݔ ൈ ∆p୲ିଵ ൅ ڮ ൅ ଵݔ ൈ ∆p଴ሻ                             ሺ3.11ሻ 

where ∆p଴ ൌ 1 െ ܲሺܮ ൐ ,ଵሻݔ ∆pଵ ൌ  ܲሺܮ ൐ ଵሻݔ െ ܲሺܮ ൐ ,ଶሻݔ … , ∆p୲ ൌ  ܲሺܮ ൐ ௧ሻݔ െ α, and 

we can have another way of estimation as follow: 

ES෢ଶ ൌ
1
α

൭ݔ௧ ൈ ∆p୲ ൅ ڮ ൅ ଵݔ ൈ ∆pଵ ൅ ෍ ܿ௜

௠

௜ୀଵ

ൈ ∆p଴൱ 

where ∆p୩ as same as in (3.11). 
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It’s easy to see that ES෢ଶ ൐ ܵܧ ൐ ES෢ଵ, ES෢ଵ and ES෢ଶ are the lower and upper bound of the 

estimation of ES by the rectangle element approach. We could take 

ES෢ ൌ
1
2 ൫ES෢ଵ ൅ ES෢ଶ൯ 

as a better estimation or choose ݔሾ௧ ଶ⁄ ሿାଵ as a demarcation point, and use the function below: 

ES෢ଷ ൌ
1
α

ሺVaR ൈ ∆p୲ ൅ ڮ ൅ ሾ௧ݔ ଶ⁄ ሿିଵ ൈ ∆pሾ௧ ଶ⁄ ሿ ൅ ሾ௧ݔ ଶ⁄ ሿାଵ ൈ ∆pሾ௧ ଶ⁄ ሿାଵ … ൅ ෍ ܿ௜

௠

௜ୀଵ

ൈ ∆p଴ሻ 

We are going to use ES෢ଷ as ES estimator in our paper, it’s more suitable in the situation which 

the inverse probability function grows faster in the tail part.  

 
Figure 2 one approach for estimate ES 

 

3.2.2     Search Method for SR 

3.2.2.1     Piecewise polynomial loss function  

As described in Section 2.1.3, one can apply the recursive algorithm based on (2.5) to estimate s. 

It remains to discuss how to estimate EሾƒሺL െ sሻሿ for fixed value sא ሺ0, ∑ ܿ௜
௠
௜ୀଵ ሻ. Plain MC 

method does not yield reliable estimator for EሾƒሺL െ sሻሿ, unless very large sample size are 
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considered. Follow J.Dunkel and S.Weber (2007), we employ the exponential twisting 

importance sampling method to construct estimators for EሾƒሺL െ sሻሿ.  

As the same exponential twisting procedure described in Section 3.2 and the (2.4a), we can 

have the estimator of EሾγିଵሺL െ sሻγ૚ሼ௅ି௦வ଴ሽሿ as: 

E෡ሾγିଵሺL െ sሻγ૚ሼ௅ି௦வ଴ሽሿ ൌ
1
ܰ ෍ γିଵሺL୧ െ sሻγ૚ሼ௅೔ି௦வ଴ሽ expሾെθL୧ ൅ ψሺθሻሿ

ே

௜ୀଵ

       ሺ3.12ሻ 

where N is the number of simulations and ψሺθሻ is the cumulant generating function (3.3). 

Similar to (3.4), we should have that the variance of the estimators based on (3.12) is 

significantly smaller than the variance of the corresponding plain MC estimator. Since the 

estimator is unbiased, it’s equivalent to consider the second moment, 

Mଶሺs, θሻ ൌ
1
γଶ E୮౟,θൣሺL െ sሻଶγIሼL ൐ ሽeିଶθLାଶψሺθሻ൧ݏ ൑ Mଶሺs, 0ሻeିଶθ୶ାଶψሺθሻ      ሺ3.13ሻ 

Here Mଶሺs, 0ሻ ൌ EሾሺL െ sሻଶγIሼL ൐  .ሽሿ is the second moment without exponential twistingݏ

Consequently, instead of directly minimize Mଶሺs, θሻ, we can generally minimize the upper bound 

on the rhs. of inequality (3.13). The choice for the twisting parameter is given by:  

θୱ ൌ ቊunique solution of ψ′ሺθሻ ൌ s,   s ൐ ψ′ሺ0ሻ 
0,                                                       s ൑ ψ′ሺ0ሻ

                             ሺ3.14ሻ 

Similar to the Search Method for VaR, we can have the Search Method procedure based on two-

step importance sampling as follow: 

1. Take s 

2. Generate Z~Nሺμ, Iሻ, a d-vector of independent normal random variables shift from N(0,I) 

3. Calculate the new conditional default probabilities  

q୧ሺθୱሺZሻ, Zሻ ൌ
p୧ሺZሻeθ౩ሺZሻୡ౟

1 ൅ p୧ሺZሻሺeθ౩ሺZሻୡ౟ െ 1ሻ 

with θୱሺZሻ given by (3.14) and p୧ሺZሻ given by (2.10). 

4. Generate the default indicator Yଵ, … , Y୫ from Bernoulli random numbers Bin(1,p) with the 

probability q୧ሺθୱሺZሻ, Zሻ. 

5. Calculate the loss L from the (2.6) and return the estimator of EሾγିଵሺL െ sሻγ૚ሼ௅ି௦வ଴ሽሿ 

1
ܰ ෍ ௜ܮଵሺିߛ െ ሻఊ૚ሼ௅೔ି௦வ଴ሽݏ ௜ܮߠሾെ݌ݔ݁ ൅ ߰ሺߠሻሿ

ே

௜ୀଵ

்ܼߤሺെ ݌ݔ݁ ൅
ߤ்ߤ

2 ሻ 
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where the factor eିμTZାμTμ
మ  is the likelihood ratio for the change from density of the N(0,I) 

distribution to that of N(μ,I) distribution. 

6. Employ the recursive algorithm (2.5) get the estimator of SR୮ 

Now we need to discuss how to determine the shift vector µ. Similar as the Glasserman and Li 

(2005) did, we have 

μ ൎ arg max
୸

൜Fୱሺzሻ െ
1
2 zTzൠ 

In simulations given in Chapter 5, μ is obtained by modified Newton’s Method. 

 

3.2.2.2     Exponential loss function  

As another example of SR, we use the (2.4b). Luckily, the corresponding SR measure can be 

explicitly be calculated, i.e. 

ܴܵఒሺܮሻ ൌ
1
ߚ log ቆ

ఉ௅൧݁ൣܧ
ߣ ቇ,                                                       ሺ3.15ሻ 

It is therefore not necessary to apply (2.5) when calculating this particular risk measure. 

In the case of dependent defaults, (3.15) can be rewritten as 

ܴܵఒሺܮሻ ൌ
1
ߚ ൤න ݁టሺఉ,௭ሻ݀ܨሺݖሻ െ  ൨,                                          ሺ3.16ሻߣ݃݋݈

where  

߰ሺߚ, ሻݖ ൌ logሺܧሾexpሺܮߚሻ |ܼ ൌ ሿሻݖ ൌ ෍ logൣ1 ൅ ሻ൫݁ఉ௖೔ݖ௜ሺ݌ െ 1൯൧ ,
௠

௜ୀଵ

 

߰ሺߚ,  ሻ is the conditional cumulant generating function, and the distribution F of the factorݖ
variables Z is given by the d-dimensional standard normal distribution. 

The estimator for the risk measure (3.16) can be obtained by sampling from N Gaussian 
random vector Z ൌ  ሺZଵ, … , Zୢሻ and returning the value 

ܵ෢ܴఒሺܮሻ ൌ
1
ߚ log ൭

1
ܰ ෍ ൝ෑൣ1 ൅ ௞ሻ൫݁ఉ௖೔ݖ௜ሺ݌ െ 1൯൧

௠

௜ୀଵ

ൡ
ே

௞ୀଵ

൱ െ
1
ߚ ,ߣ݃݋݈ ,௞~ܰሺ0ݖ  ሻܫ

Variance reduction can be achieved by importance sampling with respect to the factor vector 
Z. If we restrict attention to measure changes that shift only the mean of Z, a suitable choice 
of μ can be obtained as a solution of the maximization problem 

μ ൎ arg max
୸

൜߰ሺߚ, ሻݖ െ
1
2 zTzൠ 

The likelihood ratio of the measure change from N(0, I) to N(μ, I) modifies the MC estimator. 
The importance sampling estimator is thus given by 
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ܵ෢ܴఒሺܮሻ ൌ
1
ߚ log ൭

1
ܰ ෍ ൝exp ሺെߤTݖ௞ ൅

μTμ
2 ሻ ෑൣ1 ൅ ௞ሻ൫݁ఉ௖೔ݖ௜ሺ݌ െ 1൯൧

௠

௜ୀଵ

ൡ
ே

௞ୀଵ

൱

െ
1
ߚ ,ߣ݃݋݈ ,ߤ௞~ܰሺݖ           ሻܫ

 

 3.3     Direct method for estimate risk measures in NCM 
 

3.3.1     Direct Approximation Method based on IS for VaR and ES 

As we showed, the key for applying IS method to calculate VaR is how to get quantile from 

probability, as α-VaR equals the α-quantile. We develop this direct approximation method from 

the work of Peter W. Glynn in 1996.  

Our goal is to compute the quantile ିܨଵሺߙሻ ൌ inf ሼݔ: ሻݔሺܨ ൒  ሽ. We would like to use theߙ

empirical distribution function ܨ௡ሺݔሻ ൌ ଵ
௡

∑ 1ሼ௑೔ஸ௫ሽ
௡
௜ୀଵ  represent the F(x). And estimator of 

quantile ܨ௡
ିଵሺߙሻ ൌ inf ሼܨ :ݔ௡ሺݔሻ ൒  .ሽߙ

As the definition of the importance sampling, we insert a known function g, and get the 

likelihood ratio. We can rewrite the density as follow: 

ሻݔሺ݀ܨ ൌ ݃ሺݔሻܨ෨ሺ݀ݔሻ, 

ܲሺ ௜ܺ ൐ ሻݔ ൌ  ,௜1ሼ௑೔வ௫ሽ൧ݎ෨ൣܧ

where  ݎ௜ is the likelihood ratio associated with ௜ܺ. The two above equalities motivate the 

following approximation of F: 

෨௡ܨ ൌ 1 െ
1
݊ ෍ ௜1ሼ௑೔வ௫ሽݎ

௡

௜ୀଵ

 

valid in tail where ௜ܺ is generated from ܨ෨ rather than F. The corresponding quantile estimator is 

then defined by: 

ሻߙ෨௡ିଵሺܨ ൌ ݂݅݊൛ܨ :ݔ௡෩ ሺݔሻ ൒  ൟߙ

According to the large deviations theory, the tail approximation 

ܲሺܺ ൐ ሻݔ ൎ exp൫െߠݔ௫ ൅ ߰ሺߠ௫ሻ൯                                                ሺ3.17ሻ 

is valid for x ب Eሺxሻ, where the ߠ௫ is same as (3.5) in Section 3.2.1, and ψ is the cumulant 

generating function of X. Not surprisingly, the tail approximation (3.17) suggests a quantile 

approximation.  
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Let  ߠ෨௣ be the root of the equation  

െ߰′൫ߠ෨௣ ൯ߠ෨௣ ൅ ߰൫ߠ෨௣൯ ൌ logሺ1 െ  ሻ                                   ሺ3.18ሻ݌

for p close to 1, it implies x ب Eሺxሻ, 

ܲ ቀܺ ൐ ߰′൫ߠ෨௣ ൯ቁ ൎ 1 െ  ሺ3.19ሻ                                           ݌

(3.19) suggests that ߰′൫ߠ෨௣ ൯ can be used as an approximation to the quantile ܨ෨௡ିଵሺ݌ሻ. Of course, 

this approximation is crude. 

If we set gሺxሻ ൌ exp ቀെߠݔ෨௣ ൅ ߰൫ߠ෨௣൯ቁ, the relation (3.19) indicates that, under ܨ෨, sampling 

from the appropriate tail event associated with the quantile ିܨଵሺ݌ሻ is no longer a rare event, 

suggesting the possibility of a variance reduction. 

Now we could apply the tail approximation importance sampling method into the NCM. 

Here we only employ the one-step importance procedure as follows: 

1. Set vector p = α, 

2. Generate Z~Nሺ0, Iሻ, a d-vector of independent normal random variables, 

3. Generate ߠ෨௣ from (3.18), where ߰ is refer to (3.3), 

4. Calculate the new conditional default probabilities with ߠ෨௣ 

q୧൫ߠ෨௣, Z൯ ൌ
p୧ሺZሻeఏ෩೛ୡ౟

1 ൅ p୧ሺZሻቀeఏ෩೛ୡ౟ െ 1ቁ
 

p୧ሺZሻ given by (2.10), 

5. Generate the default indicator Yଵ, … , Y୫ from Bernoulli random numbers Bin(1,p) with the 

probability q୧൫ߠ෨௣, Z൯, 

6. Calculate the loss vector L by (2.6) and likelihood ratio vector r by exp ቀെߠݔ෨௣ ൅ ߰൫ߠ෨௣൯ቁ. 

Replicate the procedure for n times, we get a set of simulated values ሺLଵ, rଵሻ, … , ሺL୬, r୬ሻ. We 

sort the L୧s in descending order, which thereby forming the ordered sample ሺLሺଵሻ, … , Lሺ୬ሻሻ. We 

could get the α quantile by the value Lሺ୲ሻ associated with the first integer t for which  

෍ rሺ୨ሻ

୲

୨ୀଵ

൒ ሺ1 െ pሻn                                                               ሺ3.20ሻ 

where rሺ୨ሻ ൌ exp ቀെܮሺ௝ሻߠ෨௣ሺ௝ሻ ൅ ߰൫ߠ෨௣ሺ௝ሻ൯ቁ. 

Similar to the empirical function, we could have the α-VaR and α-ES estimator as  
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VaR෢ ஑ሺLሻ ൌ L୲ 

ES෢஑ሺLሻ ൌ  
1

Nሺ1 െ pሻ ෍ L୩r୩

୲

୩ୀଵ
 

where t is from the VaR estimator. 

We should mention that we only employ one step importance sampling estimator for the 

Direct Method. For the model with high underlying correlation, the two-step importance 

estimator (3.8) is more reasonable. But the tail bound approximation affects the efficiency very 

much, and we demonstrate this in the numerical part. It’s obviously that this direct method would 

be faster to get the result of the VaR and ES. In Section 3.2, the Search Method based on 

importance sampling is a two-stage method. In the first stage, it gets the estimator of probability 

ܲሺܮ ൐  ሻ, then the VaR could be calculated by iteration procedure by (3.10), and ES isݔ

calculated by the information of the VaR. Due to the high computation cost of the MC method, 

so the direct method is more efficient than the two-stage procedure.   

 

3.3.2     Direct Approximation Method based on IS for Shortfall Risk 

3.3.2.1     Piecewise polynomial loss function  

Similar to plain Monte Carlo method, a sequence of loss value L could be get by Direct Method 

without setting the threshold value x or s. We prefer this one stage algorithm rather than the two-

stage method, Search Method. Combine the Direct Method procedure with the recursive 

procedure (2.5) to calculate s୩, the algorithm procedure is as follow: 

1. Set vector p from ݌ଵ~݌ଶ with n elements, where ݌ଵ is relative small, and ݌ଶ is close to 1, 

2. Generate Z~Nሺ0, Iሻ, a d-vector of independent normal random variables, 

3. Generate ߠ෨௣ from (3.18), where ߰ is refer to (3.3), 

4. Calculate the new conditional default probabilities with ߠ෨௣ 

q୧൫ߠ෨௣, Z൯ ൌ
p୧ሺZሻeఏ෩೛ୡ౟

1 ൅ p୧ሺZሻቀeఏ෩೛ୡ౟ െ 1ቁ
 

p୧ሺZሻ given by (2.10), 

5. Generate the default indicator Yଵ, … , Y୫ from Bernoulli random numbers Bin(1,p) with the 

probability q୧൫ߠ෨௣, Z൯, 

6. Calculate the loss vector L by (2.6) and likelihood ratio vector r by exp ቀെߠݔ෨௣ ൅ ߰൫ߠ෨௣൯ቁ 
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7. Set initial guess s଴ and sଵ, calculate the expected value EሾγିଵሺL െ sሻஓ૚ሼ௅ି௦வ଴ሽሿ by  

1
ܰ ෍ ௜ܮଵሺିߛ െ ௞ሻఊ૚ሼ௅೔ି௦ೖவ଴ሽݏ ௜ܮ෨௣ߠെൣ݌ݔ݁ ൅ ߰൫ߠ෨௣൯൧

ே

௜ୀଵ

                    ሺ3.21ሻ 

8. Insert (3.21) into the recursive procedure (2.5), stop the recursive when error between 

EሾγିଵሺL െ sሻஓ૚ሼ௅ି௦வ଴ሽሿ and parameter λ is smaller enough, the value sכ is take as the 

estimator of utility based Shortfall Risk with piecewise polynomial loss function 

Only one step importance sampling method is employed, and the defects have been discussed in 

Section 3.3.1. 

3.3.2.2     Exponential loss function  

As we mentioned in 3.2.2.2, we can get SR with exponential loss function explicitly. No need 

Direct Method estimator. 
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Chapter 4 
Estimate risk measures in Mixed Poisson Model 
 

4. 1     Plain Monte Carlo method in MPM 

 
In the Mixed Poisson Model, the counter Y୧ is conditionally Poisson distributed; this could be 

seen as a Poisson approximation to a Bernoulli random variable. The approximation is based on 

the fact that a Poisson random variable with a very small mean has a very small probability of 

taking a value other than 0 or 1. According to (2.11) and (2.12), we have the MC procedure as 

follows: 

1. Generate Z୩~Gammaሺα୩, β୩ሻ which α୩ ൌ 1 σ୩
ଶ⁄ , β୩ ൌ σ୩

ଶ, k ൌ 1,2, … , d; 

2. Calculate the X ൌ ሺXଵ, … , X୫ሻ via (2.12) ; 

3. Generate indicator Y୧ from Poisson(X୧) with X୧ calculated in step 2; 

4. Compute the loss by using the (2.6) and repeat the procedure N times. N should be relative 

large to protect the accuracy. 

5. Sort the N losses by descending order, and output as vector L. L୧ is the ith largest loss value 

in the repeated MC simulations. 

We could get the α-VaR and α-ES estimator according to empirical function: 

VaR෢ ஑ሺLሻ ൌ LሾNሺଵି஑ሻሿାଵ 

ES෢஑ሺLሻ ൌ  
1

ሾNሺ1 െ αሻሿ ൅ 1 ෍ L୩

ሾNሺଵି஑ሻሿାଵ

୩ୀଵ

 

Same as in NCM, we simulate VaR and ES together in this chapter. 
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Also same as in NCM, we focus on estimating EሾƒሺL െ cሻሿ for piecewise polynomial loss 

function. And we could get explicit solution for exponential loss function which would be 

introduced later.  

Insert (2.4a), we have     

ሺܿሻ݌ ൌ EൣγିଵሺL െ cሻஓ૚ሼሺLିୡሻவ଴ሽ൧ 

Here is the MC algorithm for piecewise polynomial loss functions: 

1. Generate N losses by descending order in one vector L (same as for VaR and ES) 

2. For p(c) we have the estimator: 

ሺܿሻ̂݌ ൌ
1
n ෍ γିଵሺL୩ െ cሻஓ

୬

୩ୀଵ

 

Where L୬ is the minimal loss in vector L which is larger than c. 

 

4.2     Two-step importance sampling for estimate risk measures in MPM 
 

We consider the estimation of risk measures for the Mixed Poisson Model. As in the Normal 

Copulas Model, we firstly use two-step IS method to get the probability (P. Glasserman and J. Li 

(2003), then we use the search method to get VaR and ES based on the information of VaR. 

Then we would show the two-step importance sampling estimator for SR. Due to the special 

structure of the mixed Poisson model, we can easily combine two-step IS method conveniently 

and efficiently.  Last, we would employ the direct method again to estimate VaR and ES, as this 

two risk measures are most popular in industry. 

 

4.2.1     Search Method based on two-step IS for VaR and ES 

The first step of the algorithm is given by the conditional exponential twisting of L, using the 

likelihood ratio 

rଵሺθ, Xሻ ൌ exp൫െθL ൅ ψሺθ, Xሻ൯                                             ሺ4.1ሻ 

where 

ψሺθ, Xሻ ൌ log൫Eൣe஘LหX൧൯ ൌ ෍ X୧൫e஘ୡ౟ െ 1൯
୫

୧ୀଵ
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is the conditional cumulant generating function of L with respect to X. Y୧s are independent 

conditional on X ൌ ሺXଵ, … , X୫ሻ. Under the changed measure Y୧s are independent Poisson 

random variables with  

E஘ሾY୧|Xሿ ൌ X୧e஘ୡ౟ 

Obviously, choosing θ ൐ 0 increase the conditional mean of the default indicator Y୧. Thus, 

the default events are more likely to occur under the new measure as desired. Now we employ 

exponential twisting of the independent factor variables Z୩ in order to achieve further variance 

reduction. We have the likelihood ratio  

rଶሺz, Zሻ ൌ exp ቌെ ෍ሼz୩Z୩ ൅ α୩ logሺ1 െ β୩z୩ሻሽ
ୢ

୩ୀଵ

ቍ                              ሺ4.2ሻ 

Here z୩ denotes the parameter of the second measure change, where 

ψ୩ሺz୩ሻ ൌ log൫Eൣe஘ౡ୸ౡ൧൯ ൌ െα୩ logሺ1 െ β୩z୩ሻ 

is the cumulant generating function of original Gammaሺα୩, β୩ሻ distributed variable Z୩. With 

respect to new measure, each of the factor variables Z୩ are again independent and Z୩ obeys 

Gammaሺα୩, β୩/ሺ1 െ β୩z୩ሻሻ. 

Combine the two measure change from (4.1) and (4.2). The likelihood ratio is given by the 

product of the two equations 

rଷሺθ, z, Zሻ ൌ rଵሺθ, Xሻrଶሺz, Zሻ ൌ exp ቀെθL ൅ ψሺଵሻሺθሻ ൅ ψሺଶሻሺzሻ ൅ ψሺଷሻሺθ, z, Zሻቁ     ሺ4.3ሻ 

where 

ψሺଵሻሺθሻ ൌ ෍ A୧଴൫e஘ୡ౟ െ 1൯
୫

୧ୀଵ

                                                   ሺ4.3aሻ 

ψሺଶሻሺzሻ ൌ െ ෍ α୩ logሺ1 െ β୩z୩ሻ
ୢ

୩ୀଵ

                                            ሺ4.3bሻ 

ψሺଷሻሺzሻ ൌ ෍ Z୩ሾെz୩ ൅ ෍ A୧୩൫e஘ୡ౟ െ 1൯
୫

୧ୀଵ

ሿ
ୢ

୩ୀଵ

                                   ሺ4.3cሻ 

For simplicity, we could choose the z୩ and θ such that (4.3c) equals to 0, which means the 

likelihood ratio (4.3) depends on factors θ.  

z୩ ൌ ෍ A୧୩൫e஘ୡ౟ െ 1൯
୫

୧ୀଵ

                                                     ሺ4.4ሻ 
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 Hence the final form of the likelihood ratio is  

dP
dQ஘

ൌ exp൫െθL ൅ ψሺθሻ൯                                                  ሺ4.5ሻ 

where 

ψሺθሻ ൌ ෍ A୧଴൫e஘ୡ౟ െ 1൯
୫

୧ୀଵ

െ ෍ α୩ log ൭1 െ β୩ ෍ A୧୩൫e஘ୡ౟ െ 1൯
୫

୧ୀଵ

൱
ୢ

୩ୀଵ

                 ሺ4.5aሻ 

is the cumulant generating function of L under the original measure P.  

For the choice of ԕ, we use the same idea as in the NCM case. Choose  

θ୶ ൌ ൜
unique solution of ψL,୫

ᇱ ሺθ୶ሻ ൌ x,   x ൐ ψᇱሺ0ሻ 
0,                                                              x ൑ ψᇱሺ0ሻ                             ሺ4.6ሻ 

Thus the two-step IS estimator of P(L>x) for MPM is: 

P෡ሺL ൐ ሻݔ ൌ
1
N ෍ IሼL୩ ൐ ሽݔ

N

୩ୀଵ

exp ቀെθ୶L୩ ൅ ψL,୫ሺθ୶ሻቁ                       ሺ4.7ሻ 

Here we summarize the IS algorithm as follow: 

1. Set ψL,୫ሺθሻ and solve for θ୶ as in (4.6) 

2. Generate Z୩~Γ ൭α୩, β୩
1 െ β୩z୩

ൗ ൱ , k ൌ 1, … , d, where z୩ from (4.4) 

3. Compute the conditional mean X୧, i ൌ 1, … , m, as in (2.12) 

4. Generate Y୧~Poisson൫X୧e஘౮ୡ౟൯, i ൌ 1, … , m 

5. Calculate loss L according to (2.6)  

6. Repeat step 1~6 for N times and return the two-step IS estimator as (4.7) 

 

4.2.1.1     Estimator for VaR 

α-VaR is the unique solution of the function as same as (3.9) in Section 3.2.1.2. 

݂ሺݔሻ ൌ  ܲሺܮ ൐ ሻݔ െ ሺ1 െ  ሻߙ

We could take xିଵ ൌ 0 and x଴ ൌ ∑ c୧ as the initial guess and we use the same recursive 

procedure: 

௞ାଵݔ ൌ
1
2

ሺିݔଵ ൅ ଵିݔ ݁ݎ݄݁ݓ    ,଴ሻݔ ൌ maxሺݔ௞|݂ሺݔ௞ሻ ൐ 0ሻ, ଴ݔ ൌ minሺݔ௞|݂ሺݔ௞ሻ ൏ 0ሻ 



32 
 

The IS two-step IS estimator of the ܲሺܮ ൐  ሻ is asymptotic optimal (P. Glasserman and J. Liݔ

(2003).  

 

4.2.1.2     Estimator for ES 

As we mentioned, we use the square element approximation to estimate the ES in Section 3.2.1.3. 

Here we would like to employ the same method to estimate ES by using the same simulation 

result as the VaR. We would have the same estimator as in Section 3.2.1.3 (3.11). 

We have the estimator as: 

ES෢ଵ ൌ
1
α ሺVaR ൈ ∆p୲ ൅ ௧ݔ ൈ ∆p୲ିଵ ൅ ڮ ൅ ଵݔ ൈ ∆p଴ሻ 

where ∆p଴ ൌ 1 െ ܲሺܮ ൐ ,ଵሻݔ ∆pଵ ൌ  ܲሺܮ ൐ ଵሻݔ െ ܲሺܮ ൐ ,ଶሻݔ … , ∆p୲ ൌ  ܲሺܮ ൐ ௧ሻݔ െ α, and 

we can have another way of estimation as follow: 

ES෢ଶ ൌ
1
α ሺݔ௧ ൈ ∆p୲ ൅ ڮ ൅ ଵݔ ൈ ∆pଵ ൅ ෍ ܿ௜

௠

௜ୀଵ

ൈ ∆p଴ሻ 

where ∆p୩ as same as in (3.20). 

It’s easy to see that ES෢ଶ ൐ ܵܧ ൐ ES෢ଵ, ES෢ଵ and ES෢ଶ are the lower and upper bound of the 

estimation of ES by the rectangle element approach. We could take 

ES෢ ൌ
1
2 ൫ES෢ଵ ൅ ES෢ଶ൯ 

as a better estimation or choose ݔሾ௧ ଶ⁄ ሿାଵ as a demarcation point, and use the function below: 

ES෢ଷ ൌ
1
α ሺVaR ൈ ∆p୲ ൅ ڮ ൅ ሾ௧ݔ ଶ⁄ ሿିଵ ൈ ∆pሾ௧ ଶ⁄ ሿ ൅ ሾ௧ݔ ଶ⁄ ሿାଵ ൈ ∆pሾ௧ ଶ⁄ ሿାଵ … ൅ ෍ ܿ௜

௠

௜ୀଵ

ൈ ∆p଴ሻ 

We are going to use ES෢ଷ to estimate the ES in the numerical simulation part; it’s more suitable in 

the situation which the inverse probability function grows faster in the tail part.  

 

4.2.2     Search Method based on IS for Shortfall Risk 

4.2.2.1     Piecewise polynomial loss function 

Here we would outline the main aspects of the importance sampling algorithm for estimating 

EൣγିଵሺL െ cሻஓ૚ሼሺLିୡሻவ଴ሽ൧. Conceptually, the approach is quite similar to the two-step method 

discussed in Section 3.2.2.1.  
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Firstly, we assume the values of the common risk factors Zଵ, … , Zୢ are given, so that Y୧s are 

independent Poisson random variables with parameters X୧ condition on factors Z. In analogy 

with the procedure for case in NCM, we can easily get likelihood ratio of loss L as: 

exp ൭െθL ൅ ෍ X୧ሺe஘ୡ౟ െ 1ሻ
୫

୧ୀଵ

൱                                                    ሺ4.8ሻ  

And ∑ X୧ሺe஘ୡ౟ െ 1ሻ୫
୧ୀଵ  is the conditional cumulant generating function of L given the risk factors 

Zଵ, … , Zୢ. 

Secondly, we apply the importance sampling to the common risk factors. We consider 

exponentially twisting each Z୩ by some z୩. We get a change of distribution through likelihood 

ratio: 

exp ቌെ ෍ሼz୩Z୩ ൅ α୩ logሺ1 െ β୩z୩ሻሽ
ୢ

୩ୀଵ

ቍ                                   ሺ4.9ሻ 

where െα୩ logሺ1 െ β୩z୩ሻ is the cumulant generating function of Z୩, which has a 

Gammaሺα୩, β୩ሻ distribution. It’s obviously that z୩ ൏ 1/β୩. Under the distribution defined by z୩, 

we can get  Z୩~Γሺα୩, β୩
1 െ β୩z୩

ൗ ሻ. It shows exponential twisting to a gamma distribution 

produces another gamma distribution with same shape parameter and a different scale parameter. 

From the product of (4.8) and (4.9), we obtain the likelihood ratio for the two-step change of 

distribution. X୧s are determined via (2.12). The likelihood ratio for two-step IS method can be 

written as: 

exp ቀെθL ൅ ψሺଵሻሺθሻ ൅ ψሺଶሻሺzሻቁ 

where  

ψሺଵሻሺθሻ ൌ ෍ A୧଴൫e஘ୡ౟ െ 1൯
୫

୧ୀଵ

 

ψሺଶሻሺzሻ ൌ െ ෍ α୩ logሺ1 െ β୩z୩ሻ
ୢ

୩ୀଵ

 

when we choose  

z୩ ൌ ෍ A୧୩൫e஘ୡ౟ െ 1൯
୫

୧ୀଵ

  k ൌ 1, … , d                                             ሺ4.10ሻ 
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Choosing z୩ in this way, we can eliminate the Z୩ from the likelihood ratio, leaving only the 

dependence of L. 

The rest is how to choose θ. It can be proved the ψL,୫ሺθሻ ൌ ψሺଵሻሺθሻ ൅ ψሺଶሻሺzሻ is the 

cumulant generating function of L. Similar as in the NCM case, we choose  

θୱ ൌ ൜
unique solution of ψL,୫

ᇱ ሺθୱሻ ൌ s,   s ൐ ψᇱሺ0ሻ 
0,                                                              s ൑ ψᇱሺ0ሻ                            ሺ4.11ሻ 

Based on these considerations we are now in the position to summarize the main steps of MC 

algorithm: 

1. Set s and solve for θୱ as in (4.11) 

2. Generate Z୩~Γ ൭α୩, β୩
1 െ β୩z୩

ൗ ൱ , k ൌ 1, … , d, where z୩ from (4.10) 

3. Compute the conditional mean X୧, i ൌ 1, … , m, as in (2.12) 

4. Generate Y୧~Poisson൫X୧e஘౩ୡ౟൯, i ൌ 1, … , m 

5. Calculate loss L according to (2.6)  

6. Repeat step 1~6 for N times and return the two-step IS estimator for 

EൣγିଵሺL െ cሻஓ૚ሼሺLିୡሻவ଴ሽ൧ as 

1
N ෍

1
γ ሺL୩ െ sሻஓ1ሼLౡவ௦ሽexp ሺെθୱL୩ ൅ ψL,୫ሺθୱሻሻ

N

୩ୀଵ

 

7. Compare the estimator value with λ 

 

4.2.2.2     Exponential loss function 

In the case of MPM, one can calculate analytically the SR associated with the exponential loss 

function from (2.4b). Combining the explicit representation from (3.16) and the definition of the 

cumulant generating function we showed 

ܴܵఒሺܮሻ ൌ
1
ߚ log ቆ

ఉ௅൧݁ൣܧ
ߣ ቇ ൌ

1
β

ሾψሺβሻ െ logሺߣሻሿ 

where according to (4.5a), in MPM 

ψሺβሻ ൌ ෍ A୧଴൫eஒୡ౟ െ 1൯
୫

୧ୀଵ

െ ෍ α୩ log ൭1 െ β୩ ෍ A୧୩൫eஒୡ౟ െ 1൯
୫

୧ୀଵ

൱
ୢ

୩ୀଵ

 

Hence, numerical simulation is not necessary for determining exponential SR in the MPM. 
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4.3     Direct method for estimate risk measures in MPM 
 

4.3.1     Direct Approximation Method based on IS for VaR and ES 

As we showed in Section 3.3.1, by taking the following approximation of F 

෨௡ܨ ൌ 1 െ
1
݊ ෍ ௜1ሼ௑೔வ௫ሽݎ

௡

௜ୀଵ

 

where ௜ܺ is generated from ܨ෨ rather than F. And employ the large deviation theory, we a quantile 

approximation 

ܲሺܺ ൐ ሻݔ ൎ exp൫െߠݔ௫ ൅ ߰ሺߠ௫ሻ൯ 

Let  ߠ෨௣ be the root of the equation  

െ߰ᇱ൫ߠ෨௣ ൯ߠ෨௣ ൅ ߰൫ߠ෨௣൯ ൌ logሺ1 െ  ሻ                                           ሺ4.12ሻ݌

for p close to 1, it implies x ب Eሺxሻ, 

ܲ ቀܺ ൐ ߰ᇱ൫ߠ෨௣ ൯ቁ ൎ 1 െ  ݌

suggesting that ߰ᇱ൫ߠ෨௣ ൯ can be used as an approximation to the quantile ܨ෨௡ିଵሺ݌ሻ. Of course, this 

approximation is crude. 

Now we could apply the tail approximation importance sampling method into the MPM. We 

can have the procedure as follow: 

1. Set vector p = α, 

2. Generate ߠ෨௣ from (4.12), where ߰ is refer to (4.5a), 

3. Generate Z୩~Γ ൭α୩, β୩
1 െ β୩z୩

ൗ ൱ , k ൌ 1, … , d, where z୩ from (4.10) 

4. Compute the conditional mean X୧, i ൌ 1, … , m, as in (2.12) 

5. Generate Y୧~PoissonቀX୧e஘෩౦ୡ౟ቁ, i ൌ 1, … , m 

6. Calculate loss L according to (2.6)  

7. Calculate the loss vector L by (2.6) and likelihood ratio vector r by exp ቀെߠݔ෨௣ ൅ ߰൫ߠ෨௣൯ቁ. 

We get a set of simulated values ሺLଵ, rଵሻ, … , ሺL୬, r୬ሻ. We sort the L୧s in descending order, which 

thereby forming the ordered sample ሺLሺଵሻ, … , Lሺ୬ሻሻ. We could get the α quantile by the value Lሺ୲ሻ 

associated with the first integer t for which  
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෍ rሺ୨ሻ

୲

୨ୀଵ

൒ ሺ1 െ pሻn                                                               ሺ4.13ሻ 

where rሺ୨ሻ ൌ exp ቀെܮሺ௝ሻߠ෨௣ሺ௝ሻ ൅ ߰൫ߠ෨௣ሺ௝ሻ൯ቁ. 

Similar to the empirical function, we could have the α-VaR and α-ES estimator as  

VaR෢ ஑ሺLሻ ൌ L୲ 

ES෢஑ሺLሻ ൌ  
1

Nሺ1 െ pሻ ෍ L୩

୲

୩ୀଵ
r୩ 

where we get t by (4.13). 

It’s obviously that this direct method would be faster to get the result of the VaR and ES, cf. 

the discussion at the end of Section 3.3.  

 

4.3.2     Direct Approximation Method based on IS for Shortfall Risk 

4.3.2.1     Piecewise polynomial loss function  

Similar to plain Monte Carlo method, a sequence of loss value L could be get by Direct Method 

without setting the threshold value x or s. We prefer this one stage algorithm rather than the two-

stage method, Search Method. Combine the Direct Method procedure with the recursive 

procedure (2.5) to calculate s୩, the algorithm procedure is as follow: 

1. Set vector p from ݌ଵ~݌ଶ with n elements, where ݌ଵ is relative small, and ݌ଶ is close to 1, 

2. Generate ߠ෨௣ from (4.12), where ߰ is refer to (4.5a), 

3. Generate Z୩~Γ ൭α୩, β୩
1 െ β୩z୩

ൗ ൱ , k ൌ 1, … , d, where z୩ from (4.10) 

4. Compute the conditional mean X୧, i ൌ 1, … , m, as in (2.12) 

5. Generate Y୧~PoissonቀX୧e஘෩౦ୡ౟ቁ, i ൌ 1, … , m 

6. Calculate loss L according to (2.6) and likelihood ratio vector r by exp ቀെߠݔ෨௣ ൅ ߰൫ߠ෨௣൯ቁ. 

7. Set initial guess s଴ and sଵ, calculate the expected value EሾγିଵሺL െ sሻஓ૚ሼ௅ି௦வ଴ሽሿ by  

1
ܰ ෍ ௜ܮଵሺିߛ െ ௞ሻఊ૚ሼ௅೔ି௦ೖவ଴ሽݏ ௜ܮ෨௣ߠെൣ݌ݔ݁ ൅ ߰൫ߠ෨௣൯൧

ே

௜ୀଵ

                    ሺ4.14ሻ 
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8. Insert (4.14) into the recursive procedure (2.5), stop the recursive when error between 

EሾγିଵሺL െ sሻஓ૚ሼ௅ି௦வ଴ሽሿ and parameter λ is smaller enough, the value sכ is take as the 

estimator of utility based Shortfall Risk with piecewise polynomial loss function 

Only one step importance sampling method is employed, and the defects has been discussed in 

Section 3.3.1. 

4.3.2.2     Exponential loss function  

As we mentioned in Section 4.2.2.2, we can analytically solve SR with exponential loss function. 

No need Direct Method estimator. 
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Chapter 5 
Numerical Simulations 
 

We are going to show the numerical simulation result of Monte Carlo method and importance 

sampling here. And compare the efficiency of methods which have been mentioned in the first 

four chapters. It’s obviously that the importance sampling could be more efficient in Mixed 

Poisson Model as importance sampling step respect to risk variables Z doesn’t require additional 

approximation procedure. So we do the simulation relate to MPM first. 

 

 5. 1     Estimate risk measures in MPM 

 
We now show the performance of our procedure to estimate risk measures in a multi-factor 

model through numerical experiments. We firstly show the result of search method and direct 

method for VaR and ES respectively, and then result for SR would be introduced as well. To 

illustrate variance reduction performance of importance sampling algorithms in MPM, we 

demonstrate a numerical simulation of a simple portfolio with the following parameters: 

1. Number of obligors m=10  

2. Number of common risk factors d=3 

3. Size of exposures c୧ ൌ i,   i ൌ 1, … , m 

4. Expected value of latent variables: p୧ ؔ EሺX୧ሻ ൌ 0.1 for i=1,…,m 

5. Coupling coefficient: A୧୩ ൌ 0.01, i ൌ 1, … , m, k ൌ 1, … , d and this yields A୧଴ ൌ 0.07 

6. Variance parameter for the distribution of the common risk factor variables: σ୩ ൌ 1 

From these parameters, we could take the initial guess at xିଵ ൌ 0 and x଴ ൌ ∑ c୧ ൌ 55 for search 

method. Although the realistic credit portfolios may contain much larger numbers of obligors 

and risk factors, even the exposure may be random variables, this simple portfolio is sufficient 



39 
 

for illustrating the efficiency of the importance sampling procedure. We will compare with 

results obtained from plain MC simulations under the above parameters. We replicate each 

simulation 100 times. 

Table 1     α=95% 

Number of Simulation 
N 

One Simulation 
(Time in seconds) 

Mean Value 
of VaR 

Std. of VaR Value of ES Std. of ES 

 Plain Monte Carlo     
100 0.1696 17.1500 1.9142 21.2833 2.5418 
200 0.3485 17.8200 1.5595 21.8709 1.8942 
500  1.0354 17.7700 0.8391 21.9819 1.0839 
1000 2.3156 17.7800 0.7860 22.1933 0.8531 
2000 3.5058 17.7900 0.4984 22.2648 0.5843 
 Search Method     
400(8*50) 0.9190 17.5400 0.9211 22.0694 0.6642 
900(9*100) 1.8247 17.7800 0.6305 22.3034 0.4704 
 Direct Method     
100 0.2761 17.9000 0.7587 23.0118 0.6537 
500 1.1691 17.9600 0.3897 22.4553 0.3290 
1000  2.6534 17.9400 0.2429 22.4524 0.1646 
Source: simulation data, by Matlab R2007a 
 

Table 1 is the result of estimating VaR and ES at 95% in Mixed Poisson Model. For the search 

method, the number in the bracket is the number of x times the replicated value n for each x. We 

run a large number N ൌ 1 ൈ 10଺ by plain Monte Carlo method. We would like to use the result 

of this large MC simulation as the ‘true’ value of VaR and ES. It takes 3 hours and 8 minutes to 

finish the simulation (11317.9126 sec). The ‘true’ value of VaR is 18 and ES is 22.3810.  The 

first column shows the number of generated losses, second column is the computation time to 

estimate the risk measures. The third and fifth column shows the mean value of estimated VaR 

and ES of 100 replications, and the standard deviation of the 100 estimated VaR and ES are 

given in column five and seven. 

 As showed in table 1, Search Method and Direct Method convergence to the ‘true’ value 

much faster than that of plain Monte Carlo Method. It’s clear that for roughly same computation 

time among the three methods, the Direct Method gets the smallest standard deviation for the 

two risk measures, and has the best estimated result as well. The Search Method could have 

rather good accuracy when the replicated value n for each x is large enough. Table 2 shows the 

simulation result when α=99%. From the large deviation theory, we could figure out that the 

Direct Method would work better when ݔ ب  ሿ, and the estimated result of plain Monte Carloݔሾܧ
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Method varies a lot from another replication. Because the value 99% represents quite rare events, 

the plain MC method requires large simulation numbers. 

Table 2     α=99% 

Number of Simulation 
N 

One Simulation 
(Time in seconds) 

Mean Value 
of VaR 

Std. of VaR Value of ES Std. of ES 

 Plain Monte Carlo     
500  0.9354 25.0300 1.8719 28.3719 2.3260 
1000 1.7315 25.2500 1.3661 28.8309 1.7254 
2000 3.2747 25.2500 1.0860 29.2792 1.2537 
 Direct Method     
100 0.2340 25.2300 1.4809 31.8301 2.3719 
500 1.1712 25.2300 0.5006 29.7665 0.7077 
1000  2.2134 25.2800 0.4120 29.6090 0.4067 
Source: simulation data, by Matlab R2007a 
 

The ‘true’ value of VaR and ES at 99% is 25 and 29.6542 respectively. As evident from table 2, 

compared to plain MC estimators, the estimators based on importance sampling is characterized 

by significantly better convergence properties, in particular, when increasing the value α. Figure 

3 and Figure 4 show the numerical result for VaR and ES at level 95%. 

 
Figure 3    95% VaR 
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Figure 4    95% ES 

The typical value for α is 95% and 99%, but sometimes higher value may also be of interest. We 

compare the performance of estimating VaR and ES based on N ൌ 10ସ samples for α equals to 

0.999, 0.9999 and 0.99999. The simulation is repeated 100 times and the mean and standard 

deviation are shown in Table 3. 

 

Table 3    Number of simulations N = 1e+04 

1-α Time of Simulation 
(in seconds) 

Value of VaR 
100 replications

Std. of VaR 
 

Value of ES 
100 replications 

Std. of ES 

 Plain Monte Carlo     
1e-3 16.5612 34.7200 1.2640 38.3800 1.5779 
1e-4  17.6072 45.0200 4.4585 45.0200 4.4585 
1e-5 17.3187 44.9500 4.2696 44.9500 4.2696 
 Direct Method     
1e-3 26.0263 35.0000 0.0000 39.0390 0.0558 
1e-4  24.5167 44.0000 0.0000 47.7125 0.0582 
1e-5 25.2904 52.3600 0.4824 56.0324 0.0733 
Source: simulation data, by Matlab R2007a 
 

It clearly shows in Table 3, plain MC method doesn’t work for very rare event, meanwhile the 

Direct Method have quite good estimation for both VaR and ES.  
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Due to the highly computation cost when calculate SR with Search method, Table 4 doesn’t 

show the simulation results for utility based Shortfall Risk with piecewise polynomial loss 

function by search method. 

Table 4     γ ൌ 2, ߣ ൌ 1 

Number of Simulation 
N 

One Simulation 
(Time in seconds) 

Mean Value of SR஛
୮ 

(piecewise polynomial) 
Std. of SR஛

୮ 

 Plain Monte Carlo   
500 0.8395 18.0938 2.3935 

1000 1.8782 17.8354 1.8062 
2000 3.4920 17.7118 0.8884 

 Direct Method   
100 0.5529 17.6619 1.1021 
500 2.7771 17.8123 0.4890 

1000 5.4834 17.7823 0.3028 
Source: simulation data, by Matlab R2007a 
 

Evidently, the importance sampling estimator works much more efficiently than the plain Monte 

Carlo estimator. The standard techniques for VaR could be extended to convex SR measures that 

do not share the deficiencies of VaR. Larger number of simulation results could be found in the 

following figure 5.  

 
Figure 5    SR஛

୮ with piecewise polynomial loss function with parameter γ ൌ 2, ߣ ൌ 1 
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5. 2     Estimate risk measures in NCM 

 
Refer to the Glasserman and Li (2003), when underling correlations are not too large, one step 

importance sampling is also effective. We first give a low correlation example for NCM. We 

only employ the one step importance sampling for Search Method in this model, which doesn’t 

require the tail bound approximation. The parameters are as follow: 

1. Number of obligors m=10 

2. Number of common risk factors d=3 

3. The marginal default probabilities p୧ ൌ 0.05, where  i ൌ 1, … , m 

4. Size of exposures c୧ ൌ i, where  i ൌ 1, … , m 

5. The coupling coefficient A୧୩ ൌ 0.1, i ൌ 1, … , m, k ൌ 1, … , d and A୧଴ ൌ 0.985 for the 

amplitude of the idiosyncratic risk factor 

From these parameters, we could take the initial guess at xିଵ ൌ 0 and x଴ ൌ ∑ c୧ ൌ 55 for 

search method. This simple portfolio is sufficient for illustrating the efficiency of the importance 

sampling procedure. Results obtained from plain MC simulations and importance sampling 

methods would be listed under the above parameters. Simulations would be replicated for 100 

times.  

Table 5     α=95% 

Number of Simulation 
N 

Time of Simulation 
(in seconds) 

Value of VaR Std. of VaR Value of ES Std. of ES 

 Plain Monte Carlo     
1000 0.9846 11.1400 0.8530 15.1890 0.7099 
2000 1.8701 11.1200 0.6077 15.2224 0.5318 
4000 3.9999 11.1000 0.5025 15.2828 0.4268 

 Search Method     
1000(10*100) 4.9904 10.95 0.7043. 15.1750 0.5375 
1800(9*200) 8.5152 10.93 0.5675 15.2757 0.3600 

 Direct Method     
500 1.6042 11.1000 0.6577 15.3722 0.3907 

1000 2.0589 11.0700 0.3968 15.3065 0.2402 
2000 3.5426 11.1100 0.2532 15.3283 0.1871 

Source: simulation data, by Matlab R2007a 
 

Table 5 is the result of estimating VaR and ES at 95% in Normal Copulas Model. We run a large 

number N ൌ 1 ൈ 10଺ by plain Monte Carlo method. We would like to use the result of this large 
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MC simulation as the ‘true’ value of VaR and ES. It takes 2 hours and 48 minutes to finish the 

simulation (10086.5320 sec). The ‘true’ value of VaR is 11 and ES is 15.2627.  

From the table 5, it is clearly that Direct Method is a rather good method for estimating in 

NCM. For each simulation, it takes almost double time for each simulation in plain MC, but VaR 

estimator convergences almost 4 times and ES estimator convergences almost 8 times faster than 

those of the plain MC. From the table 6 below, which estimate at 99%, shows the direct method 

convergence even faster, as the large deviation theory would work better when the ݔ ب  .ሿݔሾܧ

We don’t simulate for search method for 99%, as it’s not that efficient in NCM.  

Table 6     α=99% 

Simulations 
N 

Time of Simulation 
(in seconds) 

Value of VaR 
100 replications

Std. of VaR 
 

Value of ES 
100 replications 

Std. of ES 

 Plain Monte Carlo     
1000 1.0349 18.5600 1.2053 20.9236 1.1436 
2000  1.9372 18.4326 0.8234 20.4683 0.7891 
4000 4.1077 18.0321 0.6724 20.5643 0.5632 
 Direct Method     
500 1.6086 18.1200 0.8808 20.6115 0.4750 
1000  2.1375 18.1000 0.4201 20.6107 0.3512 
Source: simulation data, by Matlab R2007a 
 

Similar as in MPM, we compare the performance of estimating VaR and ES for α equals to 

0.999, 0.9999 and 0.99999 in NCM. The simulation is repeated 100 times and the mean and 

standard deviation are shown in Table 7. 

Table 7    Number of simulations N = 1e+4 

1-α Time of Simulation 
(in seconds) 

Value of VaR 
100 replications

Std. of VaR 
 

Value of ES 
100 replications 

Std. of ES 

 Plain Monte Carlo     
1e-3 9.4104 24.5100 0.9045 26.8282 1.0569 
1e-4  9.4366 31.6200 2.5615 31.6200 2.5615 
1e-5 9.6320 32.1500 3.1346 32.1500 3.1346 
 Direct Method     
1e-3 29.0778 24.9400 0.2387 27.2729 0.1015 
1e-4  28.8738 30.8600 0.3766 33.1625 0.3146 
1e-5 29.0275 35.9300 0.3828 38.6157 1.3372 
Source: simulation data, by Matlab R2007a 
 

Figure 6 and Figure 7 show estimates of the 95% VaR and ES for different sample size N (in 

log). Y label shows the mean value of VaR and ES with the preceding parameters and X label 

illustrate the number of replications logଵ଴ሺNሻ. 
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Figure 6    95% VaR 

 
Figure 7     95% ES 

The Search Method is a two-stage algorithm when estimate utility based SR with piecewise 

polynomial loss function, and compared with direct method, it is obviously not that efficient to 

do the simulation. Table 8 shows the simulation results by plain Monte Carlo estimator and 
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Direct Method estimator. We take λ=1, β=1 and γ=2 as the parameter to estimate utility based 

SR. 

Table 8     γ ൌ 2, ߣ ൌ 1 

Number of Simulation 
N 

One Simulation 
(Time in seconds) 

Mean Value of SR஛
୮ 

(piecewise polynomial) 
Std. of SR஛

୮      
(piecewise polynomial) 

 Plain Monte Carlo   
100 0.1030 9.4278 2.6224 
500 0.5495 9.8918 1.2811 

1000 1.0978 9.8268 0.8885 
5000 6.0292 10.0321 0.4481 

 Direct Method   
100 0.2329 9.7598 1.0721 
500 1.2171 9.8943 0.6321 

1000 2.3875 9.9432 0.4323 
Source: simulation data, by Matlab R2007a 
 

Table 9    β=1, ߣ ൌ 1 

Number of Simulation 
N 

One Simulation 
(Time in seconds) 

Mean Value of SR஛
ୣ  

(exponential) 
Std. of SR஛

ୣ  
(exponential) 

 Plain Monte Carlo   
1000 0.9505 19.3210 3.5924 
5000 5.4957 23.0918 2.2811 
10000 10.0978 34.2268 1.8885 

 One-step IS   
100 0.2775 32.1757 0.5790 
500 1.4045 32.1933 0.3691 

1000 2.9649 32.2378 0.2836 
Source: simulation data, by Matlab R2007a 

 

We use algorithm based on one-step importance sampling for estimating SR஛
୮ and ܴܵఒ

௘௫௣. From 

table 8, we can see that the Direct Method takes approximately twice as long per replication as 

plain Monte Carlo simulation, but Direct Method offers dramatic increase in precision. As 

evident from table9, plain Monte Carlo convergence very slow due to the actual value of SR஛
ୣ  

under the inputs β=1, ߣ ൌ 1 is quite big. This indicates that Monte Carlo method needs large 

sample size to estimate the rare event, meanwhile importance sampling algorithms work much 

better at the tail. We could have more visualized result as figure 8 and 9 illustrated. 
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Figure 8  SR஛

୮,   γ ൌ ߣ ,2 ൌ 1 

 
Figure 9  SR஛

ୣ ,   β=1, ߣ ൌ 1 
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Here we give the second example for NCM, which have high underlying correlations. We need 

to employ the two-step importance sampling, and we would like to figure out that tail bound 

approximation would have significant influence the efficiency for the estimation. The factors are 

as follows: 

1. Number of obligors m=100  

2. Number of common risk factors d=10 

3. The marginal default probabilities p୧ ൌ 0.01 כ ሺ1 ൅ sinሺ8πi/mሻሻ,   i ൌ 1, … , m 

4. Size of exposures c୧ ൌ ሺ5ڿi/mۀሻଶ,   i ൌ 1, … , m 

5. The coupling coefficient A୧୩ is chosen independently and uniformly from the 

interval ሺ0,1/√dሻ), where d=10; it ensure the sum of square A୧୩ for each i does not 

exceed 1, and A୧଴ for each i gets from (2.9). 

The marginal default probabilities vary between 0 and 2% with mean 1%, and the possible 

exposures are 1, 4, 9, 16 and 25, with 20 obligors at each level. 

From the parameters, we could take the initial guess at xିଵ ൌ 0 and x଴ ൌ ∑ c୧ ൌ 1100 for 

search method. The two-step importance sampling estimator (3.8) is given for Search Method; 

meanwhile in the Direct Method, we still keep the one step importance sampling estimator. We 

could see the simulation result as follows: 

Table 10    α=95% 

Number of Simulation 
N 

Time of Simulation 
(in seconds) 

Mean Value 
of VaR 

Std. of VaR Mean Value 
of ES 

Std. of ES 

 Plain Monte Carlo     
1000 9.5558 51.5892 8.2053 84.7453 15.0436 
2000 18.6596 50.9873 6.1234 83.2881 12.7889 
9100 74.8451 50.5432 3.2124 81.6184 9.6531 

 Search Method     
2000(10*200) 378.0990 50.2235 1.4808 81.8296 1.9328 
9100(13*700) 649.7052 50.0124 0.8634 81.8731 1.0308 

 Direct Method     
1000 21.8399 51.3426 10.6483 82.8761 15.3150 
2000 49.3452 50.8721 7.4392 82.2109 13.0013 
9100 201.7592 50.4632 4.8243 81.9880 9.7453 

Source: simulation data, by Matlab R2007a 
 

We run a large number N ൌ 5 ൈ 10଺ by plain Monte Carlo method. We use this large simulation 

result the ‘true’ value of VaR and ES. It takes 3 days and 21 hours to finish the simulation 

(337027.1620 sec). The ‘true’ value of VaR is 50 and ES is 81.9407.  Evidently, the Direct 
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Method estimator doesn’t show the good convergence property as in last model, because the one 

step IS method is employed here. The Search Method which apply the two-step IS estimator (3.8) 

cost too much computation time, but with quite good accuracy. It shows the theoretical validity 

of (3.8) for the model with high underlying correlation.   

We could have a brief summery here. Compare with plain Monte Carlo method, importance 

sampling method exhibits a significantly improved convergence behavior, and the computation 

cost could be reduced by employ better algorithm for solving the tail bound approximation 

function (3.7) in two-step importance sampling for NCM.  
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Chapter 6 
Concluding Remarks 

 

6. 1     Conclusion 
 

Evaluating the risk of financial positions is an important task for financial institutions and 

regulating authorities. The frequently used approach Monte Carlo method would cost too much 

time and computation resources when simulations focus in the rare events or the tail. We tailored 

two variance reduction methods to address the applicable way for improving the efficiency of 

Monte Carlo method. 

We have developed, analyzed and tested these algorithms based on importance sampling 

procedure for estimating risk measures in two standard portfolio credit risk models CreditMetrics 

(Gupton etal., 1997) and CreditRisk plus (Cre, 1997). It was demonstrated that the variance 

reduction method exponential twisting, employed by Glasserman and Li (2003, 2005) for 

measuring probability over threshold x, could be extend to efficiently estimate risk measures 

(VaR, ES and utility based Shortfall Risk) in these models. Compare with plain Monte Carlo 

estimators, the importance sampling estimators, especially Direct Method estimators exhibit a 

significantly improved convergence behavior. This was illustrated by means of numerical 

examples. 

Conclude with, variance reduction method exponential twisting may be extended to estimate risk 

measures that do not require so large sample size as plain Monte Carlo method. 
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 6. 2     Discussion and Further Development  
 

In the year 2008, the subprime crisis attacked the whole world’s banks, funds, investment banks 

and etc. Three of the top five investment banks had been broken or bought by other commercial 

banks in US. The governments in Europe offered hundreds of thousands salvage money to those 

banks with a long standing reputation. The great depression also appeared in other industries. It 

is the biggest crisis after the ‘Great Depression’ which happened in 1930s. Everything began 

when the equities prices touched the roof, and the defaults of bonds, CDOs, CDSs and other 

equities credit derivatives. By put too many eggs in one bracket almost destroyed the world 

financial system. Many people criticized that it’s the normal copulas which blew up the Wall 

Street. Felix Salmon published one essay on Wired Magazine in February 2009. He stated the 

normal copulas formula derived by David Li is the recipe of disaster. 

Normal Copulas Model has its natural defect. It is a light tail model, and low dependence 

property between obligors has long academic distance from reality. But the attitude when using 

the model is much more important. What we have done with the Normal Copulas Model here is 

trying to give out an idea of accelerating the velocity of convergence. We may extend the 

variance reduction idea to the heavy tail models, such as t copulas model and a better algorithm 

to solve the tail bound approximation would be great promotion for the efficiency.       
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