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Abstract

We investigate the robustness of Conditional Value-at-Risk (CVaR)
for market risk. The analysis is performed on different asset classes in-
cluding stock indexes, bond indexes, exchange rates and individual
stocks. We find that a robust CVaR measure can be constructed for
almost all of these assets. The key issue is to choose appropriate pa-
rameters, such as confidence levels and ex ante window size for the
CVaR estimator. However, in some cases, the CVaR measure is not
robust, which happens primarily when measuring market risk on indi-
vidual stocks.
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1 INTRODUCTION 4

1 Introduction

This section gives a background and an overview of previous work. Further-
more, the contribution and purpose of the thesis are presented.

1.1 Background
1.1.1 Market Risk Management

In light of the global financial crisis following the failure of Lehman Brothers,
the measurement of market risk has become a primary concern for regula-
tors and risk managers. Coordinated by regulatory authorities, such as the
Basel Committee on Banking Supervision (the Basel Committee) [47] and
by authorities of the EU member states, e.g. the Swedish Financial Su-
pervisory Authority (Finansinspektionen) [48], banks are required to hold a
certain amount of capital against adverse market movements. Specifically,
banks must demonstrate that its capital is sufficient to cover losses 99.9% of
the times over a one year holding period [11]. Such a risk capital is usually

called Value-at-Risk (VaR).

An important milestone in the development of VaR models was J.P. Mor-
gan's decision in 1994 to make its VaR system, RiskMetrics [40], available
on the Internet. In the following years, the RiskMetrics system attained
a de-facto standard status within the financial industry and a benchmark
for measuring market risk. However, in the financial literature, additional
measures of market risk besides VaR have been studied. Artzner et al. [§]
highlighted some theoretical shortcomings of VaR as a measure of market
risk. For example, it does not take into account the magnitude of losses
when VaR is exceeded. VaR also fails to meet the characteristic of sub-
additivity (see section 2.2.3), i.e. the risk of a portfolio in terms of VaR may
be larger than the sum of its components. Artzner et al. [8] proposed an
alternative risk measure defined as the expected value of losses exceeding the
VaR. This new risk measure has sounder theoretical properties, e.g. fulfills
the subadditivity condition, and is usually called Conditional Value-at-Risk

(CVaR).

There exist a large number of different risk measures, of which only a few
have been mentioned here, all with its own characteristics, advantages and
flaws. Triggered by the Basel Committee, VaR has been adopted as the
main measure of market risk. However, VaR has attracted a lot of criticism
as a risk measure. One reason is that the VaR concept can lead to perverse
effects if used as a control mechanism. An example is shown in [15], where
it is described how to earn $1 million in one week with no initial capital.
Other drawbacks with VaR are e.g. that using VaR as a risk measure may



1 INTRODUCTION

o

fail to stimulate diversification, due to its non-subadditivity characteristic
(see e.g. [41]), and that VaR only provides a point-estimate of the loss
distribution. The VaR estimate does not provide any information on the
losses in the tail exceeding VaR, i.e. information on so-called spike the firm
events (low probability, high loss) is not captured with the model. History
and the recent global financial turmoil has shown that such events pose a
real threat to e.g. the banking system (see [18] and [46]).

1.1.2 Asset Allocation and Portfolio Theory

Markowitz’s portfolio theory has influenced academia and financial institu-
tions since it was published in 1952 [33]. Markowitz proposed that a portfolio
should be optimized in a mean-variance framework, i.e. maximizing the re-
turns and at the same time keeping the risk under control. The definition of
risk in this framework was defined as the overall portfolio variance. A more
comprehensive description of portfolio theory and portfolio optimization is
given in [14].

A drawback related to variance as a risk measure is that it penalizes up-
side (gains) and downside (losses) equally. As a complement to the mean-
variance optimization model, not only relying on the variance as a risk mea-
sure, additional constraints can be added to control the risk. This is espe-
cially important as a tool for agency control. Alexander and Baptista [5]
analyze the results from imposing VaR and CVaR constraints in the mean-
variance framework. They show that in some cases such impositions may
induce perverse effects, e.g. that risk averse agents select portfolios with
larger standard deviations.

Instead of optimizing according to the mean-variance model, a portfolio can
be optimized in other frameworks. Since VaR is one of the most popular risk
measures in risk management, many studies have been performed on opti-
mization in the mean-VaR framework. However, VaR is a non-convex and
non-smooth function which has multiple local extrema [35]. Uryasev and
Rockafellar [44] developed a mean-CVaR model using a linear optimization
method and showed that VaR can be calculated as a by-product. Another
advantage with the mean-CVaR model is that CVaR optimization seems
more stable over different confidence levels, at least in the case of fixed in-
come securities (see [34]). Olszewski [38] studied hedge funds and suggested
that a more efficient portfolio can be constructed by optimization in the
mean-CVaR domain compared to the classic mean-variance domain.
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1.1.3 Contribution

In the financial literature it is often suggested that CVaR has more attractive
properties as a risk measure than VaR. But is CVaR really better than VaR?
At least, CVaR can solve some of the issues with VaR, e.g. the diversification
problem stated in [41] (due to its sub-additivity property) and the situation
where you could earn $1 million with no initial capital described in [15] (due
to its consideration of high, low-probability losses). Furthermore, in [19] it
is shown that different assets will be ranked in the same way in terms of
risks measured as VaR and CVaR, respectively. This indicates that some
useful properties of VaR are transferred to the properties of CVaR and that
CVaR in terms of risk ranking seems to do an equally good job as VaR.

For a risk model to be considered robust, it should provide accurate risk
forecasts across different assets, time horizons, and confidence levels within
the same asset class. Surprisingly, risk forecast fluctuations have not been
well documented. Nevertheless, fluctuations in risk forecasts have serious
implications for the usefulness of a risk model. If a VaR value always fluctu-
ates by 30% from one day to the next, it may be hard to sell risk modelling
within the firm. Traders are not likely to be happy with routinely changing
risk limits, and management does not like to change market risk capital lev-
els too often. Moreover, since VaR is used to regulate market risk capital, a
volatile VaR leads to costly fluctuations in capital if the firm keeps its capi-
tal at the predicted minimum level. This may severely hinder the adoption
of risk models within a firm.

There has been extensive research on CVaR in terms of portfolio optimiza-
tion, but not much in terms of robustness. The topic will be further inves-
tigated in this thesis. A similar study was also suggested as future work by
Lambadiaris [29].

1.2 Purpose

The purpose of this thesis is to study the robustness of CVaR as a measure
for market risk. The CVaR robustness will be analyzed and compared for
different asset classes, ex ante window lengths and confidence levels.

1.3 Outline

The structure of this thesis is as follows: Section 1 provides a background
to the subject and an overview of previous work. It also presents the con-
tribution and purpose of the thesis. Section 2 introduces the theoretical
framework, defines the two risk measures VaR and CVaR and explains the
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concept of robustness. Section 3 describes the selection of the data sample
used in the thesis. Section 4 outlines methodology and the empirical mea-
sures and tests used in the analysis. Section 5 presents the empirical findings
and analysis of them. Eventually, section 6 concludes the main results and
provides suggestions for future research.
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2 Theoretical Framework

This section introduces the theoretical framework for the thesis. The two risk
measures VaR and CVaR are defined and some of their properties discussed.
A brief overview of main estimation techniques is given. delta-normal ap-
proach and historical simulation. Moreover, backtesting procedures are de-
scribed and eventually the conecept of robustness is discussed.

2.1 Market Risk

Financial market participants face a risk of disastrous losses due to unex-
pected adverse movements in market factors. The risk of losses arising from
movements in market prices is often referred to as market risk. The Basel
Committee on Banking Supervision classifies the sources of market risk into
four main categories: equities, interest rate related instruments, foreign ex-
change and commodities [10]. As we have seen over the last years, there has
been an increasing instability in the financial environment, an increasing
globalization of financial markets, a significant growth of trading activity,
development of numerous new financial products, new enabling technolo-
gies and regulatory requirements. These are all factors contributing to an
increasing interest in market risk.

There are two main approaches of measuring market risk, statistical methods
and scenario based methods. Comprehensive risk managers combine the use
of statistical risk measures with techniques such as stress testing, scenario
analysis and visualization. Just as a single diagnostic such as body tempera-
ture is not a reliable measure of the health of a human being, risk managers
should not rely solely on a single method to determine the health (or risk)
of a portfolio.

The scope of this thesis covers only statistical risk measures.

2.2 Risk Measures

Since the pioneering work of Markowitz [33], where he introduced the mod-
ern portfolio theory, the variance has been the traditional risk measure in
economics and finance. However, there are several shortcomings related
to variance as a risk measure. For example, it penalizes upside (gains)
and downside (losses) equally and mean-variance decisions are usually not
consistent with the expected utility approach, unless returns are normally
distributed or a quadratic utility function is used. Moreover, the variance
does not account for fat tails of the underlying distribution and therefore is
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inappropriate to describe the risk of low probability events, such as default
risks.

2.2.1 Value-at-Risk

In recent vears, academics and practitioners have extensively studied a risk
measure called Value-at-Risk (VaR). It was developed to respond to the need
to aggregate the various sources of market risk into a single quantitative
measure. VaR focuses on the downside risk of a portfolio and is defined as
the maximum expected loss at a specific confidence level (e.g. 95%) over
a certain time horizon! (e.g. ten days). For example, if VaR is -$100 for
a portfolio at a confidence level of 95% and a time horizon of one week we
can state that "with 95% certainty we will not lose more than $100 over the
next week”. In another example, consider a bank that calculates its VaR
assuming a one-day holding period and a 99% confidence level. Then the
bank can expect that, on average, trading losses will exceed the VaR on one
occasion in one hundred trading days.

The choice of confidence level varies among different risk managers. For
example, the Basel Committee recommends the 99.9% confidence level for
capital adequacy purposes [11]. For internal use, lower confidence levels
are often used. For example, J.P. Morgan [27] uses a 99% confidence level,
Citibank [16] uses a level of 95.4% and Goldman Sachs [24] uses a 95% level.

Another parameter that varies among risk managers is the time horizon
over which VaR is estimated. It is likely that the portfolio return changes
more over a month than over a single day. The length of the holding period
depends on the nature of the portfolio and typically ranges from one day to
one month. The Basel Committee recommends a time horizon of ten days
for most capital market transactions [11].

The mathematical definition of VaR is:

VaR,,
F(a) = / pridr=1—a (1)
=00

where the sample space 2 of the expected rates of return r on some arbitrary
assets is represented by the set R. p(r) is the probability density and we
assume that the expected rates of return r(t) with respect to the time horizon
t of the investment and the confidence level a € [0, 1] is a random variable
determined by the distribution function F': Q — [0, 1].

Equivalently, this can be written

Fla)=Plr<VaR,|=1-« (2)

!Since VaR assumes no changes in the portfolio weights during the time horizon, the term
holding period is often used instead of time horizon
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A graphical interpretation of VaR using a confidence level of 95% is illus-
trated in Figure 1. VaR, is the cut-off point separating the return distribu-

loss VaR 25% profif

Figure 1: Graphical interpretation of VaR

tion from its 5% tail.

2.2.2 Coherent Risk Measure

Not until 1997, with the appearance of Thinking Coherently [7] by Artzner
et al.. it was defined in a clear way what properties a statistic should have
in order to be considered a coherent risk measure. Artzner et al. (see [8]
for a more technical presentation) formulated four axioms that have to be
fulfilled by a coherent risk measure. X and Y denote portfolio returns, p( X)
and p(Y") are their risk measures, respectively, and ¢ is an arbitrary constant:

Translation invariance
p(X +¢) = p(X) — ¢ 3)

Subadditivity
PX+Y) < p(X)+p(Y) (4)

Positive homogeneity

pleX) = ep(X) (5)
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Monotonicity

p(X) <p(Y),if X >V (6)

The translation invariance axiom (3) means that adding cash to the portfolio
decreases the risk by the same amount. The axiom of subadditivity (4)
ensures that the risk of the total portfolio is not larger than the sum of the
risks of its components to reflect the effect of diversification and hedges.
Positive homogeneity (5) means that the risk is scaled with the portfolio
size. Finally, monotonicity (6) is required to ensure that if the payoff of
portfolio X dominates the payoff of portfolio Y, then the risk of portfolio Y
cannot be lower than the risk of portfolio X [43].

In simple words, the axioms defining a coherent risk measure means that
whenever a portfolio is undoubtedly riskier than another one, it will always
have a higher risk value as long as the risk measure is coherent. On the
other hand, a measure not fulfilling all axioms might give wrong assessment
of relative risks [1].

2.2.3 Criticism on VaR

Surprisingly, VaR, despite its wide acceptance, does not fulfill all axioms of
coherence [2]. In fact, VaR fails to meet the characteristic of sub-additivity?,
i.e. the risk of a portfolio in terms of VaR may be larger than the sum of risks
of its components. The sub-additivity condition plays a fundamental role in
risk measurement. With non-subadditivity it could be the case that a well
diversified portfolio require more regulatory capital than a less diversified
portfolio. Thus, managing risk in terms of VaR prevents to add up the VaR
of different risk sources and may fail to stimulate diversification (see e.g. [1].
(7], [8] or [41]).

The non-subadditivity characteristic of VaR can be demonstrated by a sim-
ple example. Suppose that we have two short positions in out-of-the-money
options. The specific details are shown in Table 1. Each of the options has
a 4% probability of a payout of —$100 and a 96% probability of a payout
of zero. If we take the VaR at the 95% confidence level, then each of the
positions has a VaR of zero. However, if we combine the two positions,
the probability of a zero payout falls to less than 95%, and so the VaR of
the combined portfolio is less than zero (in this case equal to —$100, see
Table 2). The VaR of the combined position is therefore greater than the
sum of the VaRs of the individual components, so the VaR is clearly not
sub-additive.

ZHowever, VaR is a coherent risk measure when it is based on the standard deviation of
normal distributions
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Table 1: Non-subadditivity: Options positions considered separately

OPTION A OPTION B
Payout | Probability || Payout | Probability
-$100 4% -$100 4%
0 96% 0 96%
VaR 95% = 0 VaR 95% = 0

Table 2: Non-subadditivity: Options positions combined

COMBINED
Payout | Probability
-$200 0.16%
-$100 7.68%
0 92.16%
VaR 95% = -$100

Another criticism on VaR is based on its non-convexity characteristic, which
limits its use as a risk measure in optimal portfolio selection for investment
purposes. It has been shown [5] that having embedded VaR into an opti-
mization framework, VaR risk managers incur larger losses than non-risk
managers in the most adverse states of the world. Moreover, Basak and
Shapiro [9] show that an agent facing a VaR constraint may choose a larger
exposure to risky assets than in the absence of the constraint. It is also
shown in [35] and [36] that the problem of minimizing VaR of a portfolio of
derivative contracts can have multiple local minimizers, which will lead to
unstable risk ranking.

2.2.4 Conditional Value-at-Risk

VaR is often criticized for not taking into account the magnitude of losses
when VaR is exceeded. CVaR is often proposed as an alternative to VaR.
CVaR is also known as expected shortfall [1], tail VaR [7] or mean short-
fall [35]. In the context of continuous distributions (which we assume for
simplicity in this paper), for a given confidence level & and holding period
t, CVaR is defined as the conditional expectation of the losses exceeding
VaR. Hence, in contrast to VaR, CVaR provides additional information of
the losses in the tail exceeding VaR.

Mathematically, CVaR is defined by:

1 VaR.,
CVaR, = T / rp(r)dr (7)

— 0
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or equivalently

CVaR, = E[z|z < VaR,] (8)

where p(r) is the probability density and r(t) the expected rates of return
with respect to the time horizon t of the investment and VaR is calculated
over the same time horizon with confidence level a € [0, 1].

A graphical interpretation of CVaR is illustrated in Figure 2. CVaR is the

F
loss | vaR95% profit
CrraB 955

Figure 2: Graphical interpretation of CVaR

expected loss if a tail event does occur, and is therefore graphically located
to the left of VaR.

Acerbi and Tasche [3] show that CVaR satisfies the four axioms in sec-
tion 2.2.2 and, consequently, qualifies as a coherent risk measure. In fact,
Acerbi [4] shows that any coherent risk measure can be represented as a
convex combination of CVaRs with different confidence levels. In addi-
tion, CVaR is a convex function with respect to portfolio positions, allowing
the construction of efficient optimizing algorithms. In particular, Uryasev
and Rockafellar [44] show that CVaR can be minimized using linear pro-
gramming techniques, which makes many large-scale calculations practical,
efficient and stable.?

31n fact, the superintendent office of financial institutions in Canada has put in regulation
for the use of CVaR to determine the capital requirement.
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2.3 Estimating VaR and CVaR

There are many ways of estimating VaR (see Duffie and Pan [22] for a com-
prehensive overview). Given the return distribution, the calculation of VaR
is straightforward and given VaR, the calculation of CVaR is straightfor-
ward. Therefore, the challenges of estimating VaR and CVaR are mainly
related to the estimation of the return distribution. The approaches can
be categorised to parametric and non-parametric methods. Parametric ap-
proaches make some assumptions about the return distribution, e.g. the
assumption of normality (see section 2.3.1). The distribution assumptions
imply model risk, i.e. the risk that there is a discrepancy between the as-
sumed return distribution and the #rue underlying probability distribution
[20]. Non-parametric methods base the VaR estimation solely on empirical
distributions of returns. A disadvantage is that the estimates are completely
dependent on a particular data set. The simplest non-parametric method is
called historical simulation method (see section 2.3.2).

2.3.1 Delta-Normal Approach

The simplest parametric method is the delta-normal (analytic) approach.
Following this approach it is assumed that all asset returns are normally dis-
tributed. As the portfolio return is a linear combination of normal variables,
it is also normally distributed. The VaR of a portfolio is then calculated
using historical (ex ante) means, variances and covariances of the portfolio
components. More formally, this can be written as:

VaRo = —26 Z Z W;W;i0i; = b — ZaOp (9)

i=1 j=1

where w; and w; denote the weights of asset ¢ and j in the portfolio of n
assets, respectively. o;; denotes the covariance between returns of asset i
and asset j, u is the mean value of the returns of the portfolio and o), is the
standard deviation of the total portfolio returns. The parameter z, is the
value of the cumulative normal distribution corresponding to the specific
confidence level a, e.g. for the 95% confidence level zg5, = 1.64 and for the
99% confidence level zggy, = 2.33. Since the holding period is usually short
(e.g. ten days) the assumption of a zero mean (g = 0) is often made. Thus,
VaR of a portfolio is simply a multiple of the portfolio standard deviation.
After calculating VaR, the calculation of CVaR is straightforward as the
expected value of the portfolio losses exceeding VaR.

A major drawback with the delta-normal approach is the exposure to model
risk. Even though normal distributions seem to describe the centre of frue
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distributions rather well, problems arise when it comes to estimating the
tails of distributions. Many empirical studies (see e.g. [17], [25], [26] and
[32]) show that the assumption of normally distributed financial returns
underestimates VaR. The underestimation becomes more significant when
studying securities with heavy-tailed distributions and a high potential for
large losses, i.e. that exhibit excess kurtosis [45]. In a similar fashion,
Andersen et al. [6] show that accounting for heavy tails makes it possible
to increase returns while lowering large risks. These empirical findings are
intuitive since heavy tails mean that extreme outcomes are more frequent
than what the use of a normal distribution would predict and therefore heavy
tails lead to underestimated VaR measures.

Despite its drawbacks, the delta-normal approach is widely used among risk
managers. For example, the RiskMetrics system is based on the parametric
delta-normal model [40].

2.3.2 Historical Simulation

The most common and probably simplest non-parametric method to esti-
mate VaR (and CVaR) is based on historical simulation. The main assump-
tion is that trends of past price changes will continue in the future. The
VaR (and CVaR) of a portfolio is then calculated using the percentile of the
empirical distribution corresponding to the chosen confidence level. There
is no need to estimate distribution parameters such as volatilities and cor-
relation coeflicients. The historical simulation method is relatively simple
to implement, by keeping a historical record of past returns. The method
is also free from model risk and makes it possible to accommodate the non-
normal distributions with heavy tails that are often found in financial data
[25].

The number of past observations to be included in the empirical distribution
is often referred to as window size. The choice of window size has a signif-
icant impact on VaR measures, especially when using historical simulation
[25]. A long window size may include observations that are not relevant
to the current situation and may imply a fairly constant VaR measure. A
short window size makes the calculations sensitive with respect to abnormal
outcomes in the recent past and may imply high variance in VaR measures.
Finansinspektionen recommends a window size of at least one year [23].

The historical simulation approach does not efficiently capture extreme
events and pattern changes from historical behavior, but produces accurate
results under normal market conditions [26]. Many large financial institu-
tions and risk managers compute the VaR of their trading portfolios using
the historical simulation approach, e.g. Goldman Sachs [24].
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2.3.3 Alternative Approaches

Another widely used approach is the Monte Carlo simulation, where a future
probability distribution is assumed and the behavior of asset prices is sim-
ulated by generating random price paths. The VaR (and CVaR) measures
can then be determined from the distribution of simulated portfolio values.
Monte Carlo frameworks have been shown to provide the best estimates
for VaR (see e.g. [31] and [39]). However, at the same time, these mod-
els are extremely computer intensive and the additional information that
these techniques provide is of most use for the analysis of complex options
portfolios.

The stress testing method examines the effects of large movements in key
financial variables on the portfolio value. The price movements are simu-
lated in line with certain scenarios, such as movements of the yield curve,
changes in exchange rates, etc. Portfolio assets are re-evaluated under each
scenario and estimating a probability for each scenario allows to construct
a distribution of portfolio returns, from which VaR (and CVaR) can be
derived.

2.4 Backtesting

Since the frue VaR measures cannot be observed, the evaluation of VaR
models must be verified by backtesting. It means that, for a given back-
testing period, the estimated VaR measures are compared to the observed
returns [12]. The Basel Committee [10] defines backtesting as follows:

Backtesting is an ex-post comparison of the risk measure generated by the
risk model against actual daily changes in portfolio value over longer periods
of time. as well as hypothetical changes based on static positions.

2.4.1 Backtesting VaR

Regulatory requirements have motivated the development of backtesting
theory for VaR models. However, there are several possible ways to back-
test VaR models (see [28] and [30] for an overview). Typically, the number
of times the portfolio loss exceeds VaR is calculated. For each backtesting
period the number of violations are calculated. The number of violations
divided by the number of observations in the backtesting period gives the
violation rate, to be compared to the expected rate of violations. For exam-
ple, VaR at the 95% confidence level has an expected rate of violations of
5%, and for VaR 99% the expected rate of violations is 1%.
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The most widely used test is developed by Kupiec [28]. He examines whether
the observed violation rate is statistically equal to the expected violation
rate. Under the null hypothesis that the model is adequate, the appropriate
likelihood ratio statistic is:

L=2In ((1 _ %)T_n (;)ﬂ) (- ) ~xd (10)

where n is the number of days over a period 7' that a violation occurred and
g is the expected violation rate. Therefore, the risk model is rejected if it
generates too many or too few violations.

2.4.2 Backtesting CVaR

Despite the close theoretical relation to VaR, the backtests designed for VaR
can not be used directly in backtesting of CVaR. Yamai and Yoshiba [45]
consider backtesting of CVaR more complex than backtesting of VaR, and
claim that it is one of the reasons for exclusion of CVaR from the Basel
Committee framework.

To implement a backtesting procedure for CVaR, we specify a loss function
p- A number of different loss functions have been suggested in the litera-
ture. An intuitive and easily interpreted loss function would compare the
calculated CVaR to the actual return r in the cases where the r exceeds
the VaR, i.e. the returns in the tail that are included in the calculation of

CValR:
r ifr< VaR
p_{ 0 ifr> VaR (L)

Function (11) gives each tail-loss observation a weight equal to 1 and the
corresponding benchmark is simply the CVaR.

Furthermore, we need a normalized measure of relative performance that can
be used for backtesting over different asset classes. One of them is proposed
by Blanco and Nihle [13] and Dowd [21]:

VaR

rYaR if » < VaR
= { 0 ifr>VaR )

Function (12) gives each tail-loss observation a weight equal to the tail loss
divided by the VaR, i.e. the measure is normalized for the VaR of the un-
derlying asset. The benchmark is equal to the difference between CVaR and
VaR divided by VaR. However, a potential problem with the loss function
(12) is that VaR is in the denominator, and hence is not defined if VaR
is zero. It may also give mischievous answers if VaR gets close to zero or
changes sign.
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2.5 Robustness

Most risk measures, such as VaR and CVaR, are defined as functions of
the distribution of the considered return. However, since the probability
measure describing market events is unknown the distinction between the
theoretical risk measure and its estimator allows us to study the relation
between the choice of the estimator and the specification of risk measures.
In particular, it allows us to consider some natural requirements of the risk
measurement procedure. For example, how robust is the result with respect
to the data set or with respect to other parameters? Constructing and
computing measures of sensitivity allows a quantification of the robustness of
VaR and CVaR with respect to the data set and parameters used to compute
them. However, VaR and CVaR have completely different properties: VaR
is an estimate of a percentile in the distribution of returns, i.e. a single
point in the distribution. CVaR, on the other hand, is the expected value
of returns beyond the VaR percentile, i.e. an estimate that takes all points
beyond the VaR percentile into account. Comparing them directly is like
comparing apples and oranges.

For a risk model to be considered robust, it should provide accurate risk
forecasts across different assets, time horizons, and confidence levels. Fluc-
tuations in risk forecasts have serious implications for the usefulness of a
risk model. There are various definitions of a robust statistic in the litera-
ture. However, strictly speaking, a robust statistic is resistant to errors in
the results, produced by deviations from assumptions (e.g. of normality).
This means that if the assumptions are only approximately met, the robust
estimator will still have a reasonable accuracy and a reasonably small bias,
as well as being asymptotically unbiased, i.e. having a bias tending towards
zero as the sample size tends towards infinity.

In order to quantify the robustness of an estimator for the purpose of this
thesis, it is necessary to define some measures. Rousseeuw and Croux
[42] and Mizera and Miiller [37] propose the characteristics bias and infer-
quartile range for quantifying the robustness of an estimator.

The bias of an estimator is the distance between the average of the collection
of estimates, and the single parameter being estimated. Mathematically, it
is defined as

Bias[p] = E[p] — p = E[p — p] (13)

where p is an estimator of parameter p
Furthermore, an estimator is said to be unbiased if its bias is equal to zero
for all values of parameter p.

Statistical dispersion is the variability or spread in a variable or a distri-
bution. A measure of statistical dispersion is a real number that is zero if
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all the data are identical, increases as the data becomes more diverse and
cannot be less than zero. A common measure of statistical dispersion is the
inter-quartile range (IQR), defined as the difference between two percentiles
of a sample.
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3 Data

In this section the selection and collection of the data sample used in the
thesis are presented. A descriptive overview of the collected data is also
given.

For the purpose of this thesis Datastream is used to gather time series
data for equity indices, bond indices, exchange rates and individual stocks.
Datastrem is a comprehensive online historical database service provided by
Thompson Financial, which is a globally leading supplier of financial infor-
mation. However, Thomson Financial gives no warranty as to its accuracy,
completeness or correctness. Still, data contained in Datastream has been
compiled by good faith from sources believed to be reliable and seems like
an appropriate database for the type of information used in this study.

Daily prices are collected for the 12 year period from January 1, 1996 to
December 31, 2007. The starting date is the earliest available that holds for
all variables in the data set. Furthermore, Yamai and Yoshiba [45] concludes
that both VaR and CVaR are less reliable during periods of market turmoil
and under such circumstances tend to give overly optimistic results. Due to
the global financial turmoil during 2008 and 2009, and to avoid unnecessary
reliability issues and too optimistic results, the scope of this thesis excludes
any data post December 31, 2007.

The data used in this thesis consists of a variety of major international equity
and bond indices as well as major exchange rates and individual stocks.
More specifically, 42 international equity indices from Europe (excluding
Sweden). America (excluding the US), Asia-Pacific and Africa are used.
Most indices were listed on Yahoo Finance [49] as major world indices. To
complete the set, additional 13 US market equity indices and 39 Swedish
market equity indices are used. Moreover, a data sample of 20 major bond
indices, 17 major exchange rates and 15 individual international stocks (five
stocks from the Stockholm Stock Exchange, five stocks from the MICEX
index, which comprises the most liquid Russian stocks, and finally five stocks
from the Dow Jones Industrial Average index in New York) are used. The
analysis is restricted to simplest possible portfolios consisting of a single
asset, i.e. equity or bond index, exchange rate or individual stock.

Equity prices are adjusted for dividends, share repurchases and share issues.
Non-trading days are excluded from the data set.

An example of a portfolio return distribution over time as well as VaR and
CVaR estimates is given for Affarsviirldens Generalindex in Figure (3). As
expected CValR is always less than or equal to VaR.
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Figure 3: Affarsvérldens Generalindex
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4 Analysis

In this section. the methodology is outlined. as well as empirical measures
and tests that are used in the thesis. Furthermore, two hypotheses about
the robustness of CVaR is presented. The first about the robustness within
all examined asset classes and the second about the difference in robustness
between different asset classes

4.1 Returns

Throughout the thesis the daily returns are calculated as:

P,
P4

r =1In

where 7y is the daily return, F; is the closing price on day t and F;_; is the
closing price on day ¢ — 1. In other words, the standard in financial analysis
is followed, using log-returns.

4.2 Methodology

By using data in the ex ante time period, we can calculate VaR and CVaR
using one of several possible methods, which are deseribed in section 2.3.
Thereafter, the accumulated return is observed, 7 days after the end of the
ex ante period, where 75 is the VaR horizon or equivalently, the hypothesized
holding period. If the return is less than VaR, the event is counted. This
is later on used to evaluate VaR. On average, 100(1 — o) returns should be
observed less than VaR, if VaR is a good measure and « is the confidence
level of VaR. Furthermore, the empirical measures to evaluate CVaR are
calculated. The calculation of these empirical measures are described in
section 4.3.

The next step is to move the ex ante window one day forward and repeat
the steps described above, starting with calculating updated values of VaR
and CVaR for the new ex ante time period. This procedure is than repeated
until the end of the date range. Thereafter, the algorithm is repeated for
all the assets, the different methods of calculating VaR and the different
parameters under study. The variable parameters are the VaR horizon 7,
the ex ante window length and the confidence level.
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4.3 Empirical Measures

In order to capture the behavior of VaR and CVaR as well as possible we
defined appropriate empirical measures in section 2.4.1 and 2.4.2. Going
forward, we will call the loss functions for CVaR backtesting CVaR relative

to return, CRR (11) and CVaR relative to VaR, CRV (12).

4.3.1 CVaR Relative to Return (CRR)

For each sample of returns?, the ex ante VaR and CVaR are calculated based
on data in the ex ante period. By definition, CVaR is always less than VaR.
As a second step, the actual return (loss) is examined. If the return is higher
than VaR, nothing is recorded and we continue with the next step in the
algorithm and form a new ex ante period. However, if the return is negative
(i.e. aloss) and abnormal, i.e. less than VaR®, the value is recorded. As a
last step, the difference between the actual return and the calculated CVaR
is computed. Thereafter, we form a new ex ante period one step forward in
time and the algorithm is repeated from start until all samples of returns
have been examined. Finally, the different values for each sample of returns
for each asset are aggregated into a scalar measure, the mean value.

An example can be used to illustrate CRR. If the ex ante CVaR is —15%
and the return is —14%, then CRR becomes —14% — (—15%) = 1%. Hence,
the return is 1% unit larger than CVaR.

An advantage of CRR compared to CRV is that its unit is more easily
interpreted.

4.3.2 CVaR Relative to VaR (CRYV)

Again, using the calculated ex ante VaR and CVaR, the value
_ CVaR - VaR
A= VaR

which measures the magnitude of CVaR compared to VaR, is recorded. As
a second step, the actual return (loss) is examined. If the return is higher
than VaR, nothing is recorded and we continue with the next step in the
algorithm and form a new ex ante period. However, if the return is negative
(i.e. a loss) and abnormal, i.e. less than VaR, the value

{ %}tv&t if return < VaR
p2 = =

0 if return > VaR (14)

‘e.g. each trading day if the VaR horizon is one trading day
“inherent in the VaR and CVaR concepts are that returns are considered negative and
abnormal when they are less than VaR for the relevant confidence level
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which measures how much smaller the return is compared to VaR, is recorded.
As a last step, the difference

P3=pP2—p1

is calculated, which is a measure of the difference between CVaR and the
abnormal negative return. Thereafter, we form a new ex ante period one step
forward in time and the algorithm is repeated from start until all samples
of returns have been examined. The algorithm leaves us with a number of
different p; for each asset. More specifically, there should be a number of p3
equal to approximately 1 — « times the number of samples. All p3 related
to a specific asset are aggregated into a scalar measure, the mean value.

An example can be used to illustrate CRV. If the ex ante VaR and CVaR
are -10% and -15%, respectively, and the return is -14%:

m R (;1'(5)__—1(6)—1_0) = 50%
—14)—(—10
P = 20 — 40%

The interpretation is that on this occasion, we see an abnormal negative
return (since the return is less than VaR) and the return is 10% of VaR
higher (less negative) than CVaR.

An advantage of CRV compared to CRR is that CRV by design is normal-
ized for different volatilities of the different assets. The same measure was
proposed by Blanco and Nihle [13] and Dowd [21].

4.4 Empirical Tests

Two different tests are performed in this thesis to evaluate CVaR. Let us
call them the C'VaR robustness test and the Asset class difference test.

4.4.1 CVaR Robustness Test

Hypothesis 1: C'VaR is more robust than VaR

The hypothesis is that CVaR is a more robust risk measure than VaR. The
reason is that all values in the tail of the return distribution are considered
when estimating CVaR, compared to just the number of values for the case
of VaR. For example, if the tail consists of the returns -8%, -10% and -12%,
all these values are taken into account when estimating CVaR. When VaR
is estimated, the most important feature about the tail is that it consists of
three different values. It should be noted, that it is the tail of the distribution
that is important for most risk measures, since the tail in some sense defines
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the losses, and hence the risk. The variance of the estimate of a mean (e.g.
CVaR) should, intuitively, be less than the variance of the estimation of a
single point (e.g. VaR), and therefore the variance should be lower for CVaR
compared to VaR. Hence CVaR should be a more robust measure of risk.

CVaR is estimated based on two different methods, the first assuming nor-
mally distributed returns (the delta-normal approach, see 2.3.1) and the
second assuming that the distribution of returns in the ex ante period is
representative for the distribution of future returns (the historical simula-
tion method, see 2.3.2).

A formal test is performed where it is tested whether CVaR is an unbiased
estimator® of the conditional return, given that the return is less than VaR.
The test is performed by testing the null hypothesis Hp that the empirical
measure CRR is zero on average against the alternative hyvpothesis H; that
it differs from zero. CRR is by design equal to zero if CVaR is an unbiased
estimator of the conditional return.

To examine the variation of the empirical measures the inter-quantile range
(IQR) is calculated, which measures the difference between two quantiles in
the distribution of an empirical measure. E.g. IQRg g5 g o5 measures the
difference between the five and ninety five percentile. If CVaR is a robust
risk measure, IQR should be reasonably small. However, a formal statistical
test based upon the variation or IQR is not captured within the scope of
this thesis.

4.4.2 Asset Class Difference Test

Hypothesis 2: C'VaR is robust over different asset classes

Since CVaR is estimated based on two different methods, the delta-normal
approach and the historical simulation method, the asset class that, on
average, has returns that are most similar to a normal distribution will
seem to be the most robust asset class, when CVaR is estimated using the
delta-normal method. On the other hand the asset class that, on average, is
most constant over time, will seem to be the most robust asset class when
CVaR is estimated using the historical simulation method. It is without
further studies difficult to say which asset class that has returns that are
more similar to a normal distribution or which asset class that has a pattern
of returns that is the most constant over time.

The null hypothesis Hy will be tested, that the different asset classes, pair-
wise, on average have the same value of the empirical measure CRV (cf.
section 4.3) against the alternative hypothesis H; that they differ. If CVaR

In this thesis, an estimator will be considered unbiased (and hence robust) if the bias is
arbitrary close to zero.
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is a robust measure of risk, there should be no difference over the different
asset classes in terms of robustness (though the actual risk will of course
differ) if CVaR is an unbiased risk measure for those particular asset classes.

In this test, the different asset classes are ranked according to the empirical
measure CRV. The reason that only CRV is considered in this test is that
it is the only empirical measure that is adjusted for the volatility of the
underlying asset (cf. section 4.3). By ranking the different assets, it should
be possible to draw the conclusion whether CVaR is a robust risk measure by
examining the difference in CRV between the different asset classes. If CVaR
is a robust measure of risk, it should be transparent to the underlying type
of asset, in the sense that a measure of robustness should not be different
for different asset classes. Of course, the value of CVaR itself will vary
significantly between different assets since e.g. T-bills are less risky than a
stock in a mineral company listed on the Moscow Stock Exchange. A simple
2-sample t-test where the variances of the two populations are not assumed
equal is performed to investigate the pair-wise difference in CRV between
the different asset classes.
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5 Empirical Findings

In this section the empirical findings and results of the study are presented.
In the first part. all asset classes are treated jointly. whereas in the second
part. they are treated individually. The different asset classes considered are
stock indices. bond indices. exchange rates and individual stocks.

5.1 Parameters

As described in section 2.3, CVaR (and VaR) can be estimated by different
methods. However, in all methods, some parameters always have to be
decided beforehand. In our case, the parameters are the ex ante estimation
window length, the time horizon and the confidence level.

The ez ante estimation window length is chosen to 250 or 500 trading days,
corresponding to approximately one year and two years, respectively. The
ex ante estimation window is used to estimate the model parameters, e.g.
the standard deviation of the returns if that is an input to the model. Lam-
badiaris et al. [29] use an ex ante length of 100 or 252 trading days. They
conclude that a longer estimation window is usually better. The reason that
they do not use a longer ex ante window is a restriction in the number of
samples. Finansinspektionen suggests an ex ante window length of at least
one year [23].

The confidence level of VaR and CValR is chosen to 95% or 99%. These are
the most common levels in the literature. Furthermore, Finansinspektionen
suggests a confidence interval of at least 99% [23].

The VaR and CVaR time horizon is chosen to be one day. This is a common
interval in the literature. The time horizon is the same as the hypothetical
holding period and hence the relevant return is the return during the VaR
horizon period. In our case, where we study market risk, the VaR horizon
is typically one trading day. However, Finansinspektionen suggests a VaR
horizon of ten days [23]. On the other hand, they also say that it is equally
good to perform all calculations assuming a one-day horizon and then as a
final step calculate the final ten-day horizon VaR (or CVaR) value from the
one-day horizon value through a simple transformation.

5.2 CVaR Robustness

The main empirical results are presented in Tables 3 - 8. The complete set
of empirical findings is found in Appendix A.
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The entries in Tables 3 - 4 should be interpreted as follows: Consider e.g.
the second line, the first column tells us that ex ante window has a length
of 500 trading days and the confidence level is 95%. The second column in
Table 3 tells us that the average CRR over all assets is -0.008%. This means
that if CVaR is e.g. -10%, the conditional return, given that the return is
less than VaR, is -10.008% on average. Columns 3 - 6 in Table 3 and columns
2 - 3 in Table 4 are different measures of the deviation of CRR about its
mean, where @ stands for quantile and IQ R for inter-quantile range. The
last two columns in Table 4 show the result of the test whether the mean
CRR is equal to zero (accepted or rejected), and the associated t-statistic is
given in column 4 in Table 4.

Table 3: Empirical results of CRR using the delta-normal method

ex ante length / | mean | Qo5 | Qoos | Qoos | Qo.ors
confidence level | CRR

500 / 95% -0.008 | -0.250 | -0.200 | 0.140 | 0.170
500 / 99% -0.031 | -0.900 | -0.440 | 0.310 | 0.370
250 / 95% -0.067 | -0.300 | -0.260 | 0.067 | 0.093
250 / 99% -0.132 | -1.150 | -0.710 | 0.160 | 0.170

Table 4: (cont’d) Empirical results of CRR using the delta-normal method

ex ante length / | IQR | IQR | t-stat | HPP® | HP”
confidence level | o505 | n.o7s.0.025

500 / 95% 0.340 0.420 | -0.083 | acc acc
500 / 99% 0.740 1.270 | -0.068 | acc acc
250 / 95% 0.320 0.390 | -0.430 | acc acc
250 / 99% 0.870 1.320 | -0.297 | acc acc

Table 5: Empirical results of CRR using the historical simulation method

ex ante length / | mean | Qoo | Qoos | Qoos | Qoors
confidence level | CRR

500 / 95% -0.032 | -0.300 | -0.230 | 0.110 | 0.140
500 / 99% -0.287 | -1.810 | -1.520 | 0.170 | 0.240
250 / 95% -0.110 | -0.420 | -0.300 | 0.002 | 0.009
250 / 99% -0.425 | -1.780 | -1.300 | -0.031 | -0.004

We note that the hypothesis Hy that the empirical measures are equal to
zero, and hence that CVaR is an unbiased estimate of the conditional return.
given that the return is less than VaR, is accepted in most cases. In fact,
it is rejected only in two cases (see Appendix A) at a relatively low 90%
confidence level. In both cases, the ex ante window length is 250 days, which
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Table 6: (cont’d) Empirical results of CRR using the historical simulation
method

ex ante length I0QR IQR t-stat HgS% Hgﬂ%
confidence level | c.9s.0.05 | 0.975.0.025

500 / 95% 0.340 | 0.450 | -0.295 | acc | acc
500 / 99% 1.690 2.050 | -0.419 | acc acc
250 / 95% 0.300 | 0430 |-0.918 | acc acc
250 / 99% 1.270 1.770 | -0.725 | acc acc

is in line with the results of Lambadiaris et al. [29], who concluded that a
longer ex ante window length gives a better estimate. It is also noticable,
that both rejections occur when using the historical simulation method.

To further investigate whether CVaR is an unbiased measure, we study CRR
of the individual assets and perform a similar test as above to test whether
CRR is equal to zero or not. The test is two-sided and performed on a 95%
confidence level. The summary of the results are shown in Table 7. CVaR
seems to be an unbiased estimate even in the case of individual assets. The
parameters of the CVaR estimator in this case are an ex ante window length
of 500 trading days and a confidence level of 95%. The rationale behind
this choice is that these parameters seem to render the most stable CVaR
estimates, as shall be shown subsequently.

Table 7: Summary of the test whether CRR for individual assets are equal
to zero. The table shows the number of assets (and % of times) in each asset
class for which Hy is rejected

Asset class # assets | delta-normal | historical simulation
Stock indices 100 1 (1%) 4 (4%)
Stocks 14 0 0

Bonds 19 0 1 (5%)
Exchange rates 0 0 0

In Table 8 we perform a backtesting of VaR. In the table the proportions
of returns less than VaRl are stated as well as the corresponding p-values
calculated from the binomial test described in section 2.4.1. As we can see,
the null hypothesis of binomially distributed VaR values can be rejected at
a 5% significance level in three of the cases. All rejections refer to the delta-
normal approach. It seems like the historical simulation does a better job in
estimating VaR values. In fact, the backtesting shows encouraging results
when using the historical simulation method. A possible explanation could
be that the assets in the data sample show fat-tail properties, and hence
do not exhibit the normality characteristic assumed in the delta-normal
approach.



5 EMPIRICAL FINDINGS 30

Table 8: Back-testing of VaR: violation ratios and p-values
ex ante length / 500 / 95 [ 500 /99 | 250 /95 | 250 / 99
confidence level

Delta-normal method | 4.1 (o.028) | 1.5 (0.023y | 4.5 (0.100) | 1.6 (0.004)

Historical simulation 4.7 (n.460) 0.9 (0s76) | 5.2 (0620) | 1.3 (0.214)

Furthermore, also the IQR indicates that CVaR is a robust measure of risk.
The IQR increases as the confidence level increases, which is probably due
to the fact that there are fewer samples to base the estimate on, compared to
the lower confidence level. On average, there are five times as many samples
of the return being less than VaR at the 95% confidence level compared to
the 99% confidence level.

For illustrative purposes, consider the IQRg g5_g.05, the largest value is found
for the historical simulation method with an ex ante length of 500 days and
a confidence level of 99% (see Appendix A). The interpretation of this value
would be as follows: the 5-percentile is —1.66% and the 95-percentile is
0.15%. If CVaR is, e.g. —10%, the true conditional return, given that the
return is less than VaR would be between —11.66% and —9.85%. where true
is defined as lying between the 5 and 95 percentiles. This may not appear as
a narrow interval, but it should be considered that this is the worst outcome
of all tests. Using a confidence level of 95% instead, the IQRo.975—0.025 is
always less than 0.47%, no matter what estimation method and ex ante
window length being used.

5.3 Asset Class Difference

Another way to test the robustness of CVaR is to compare the empirical
measure CRV over different asset classes. If CVaR is robust, CRV should
not differ over different asset classes. The test is performed as a difference-
in-mean test where the null hypothesis Hy that there is no difference between
different asset classes is tested against H, that there is a difference in the
mean of CRV between different asset classes. The number of degrees of
freedom (DF) is approximated by the number of assets in the asset class
with the lowest number of assets, minus one.

The result of the test is presented in Tables 9 - 10. In the tables, the -
statistic and DF are presented. The critical values are 2.1009 and 2.1604
at the 95% confidence level for 18 and 13 df, respectively. In the tables, a
t-statistic above the critical value at the 95% confidence level is indicated
with a boldface typesetting.

In fact, there seems to be a significant difference in CRV between different
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Table 9: Difference-in-mean test. Delta-normal method for certain ex ante
lengths (days) and confidence levels (%).

Assets t-stat t-stat t-stat t-stat DF
500 / 95 | 500 / 99 | 250 / 95 | 250 / 99
stock indices - bonds -1.483 -1.205 -0.016 -0.534 18
stock indices - fx rates | -0.191 -0.787 5.455 2.317 13
bonds - fx rates 1.426 0.614 1.233 1.546 13
stocks - fx rates 1.764 1.763 3.125 2.488 13
stocks - stock indices 1.883 2.126 0.517 1.559 13
stocks - bonds -0.414 1.283 0.202 0.777 13

Table 10: Difference-in-mean test. Historical simulation method for certain
ex ante lengths (days) and confidence levels (%).

Assets t-stat t-stat t-stat t-stat DF
500 / 95 | 500 / 99 | 250 / 95 | 250 / 99
stock indices - bonds -1.939 -0.706 3.790 -1.187 18
stock indices - fx rates | -0.671 -0.041 4.214 1.375 13
bonds - fx rates 0.687 0.632 -0.696 2.006 13
stocks - fx rates 0.894 1.843 3.092 2.450 13
stocks - stock indices 1.569 2.011 0.375 1.885 13
stocks - bonds -0.250 1.187 3.110 1.039 13

asset classes in the case of an ex ante window length of 250 days. On the
other hand, when the ex ante window length increases to 500 days, most of
the differences seem to disappear. This can be interpreted as the robustness
of CVaR increases when the ex ante window length increases, which is in
line with previous findings. The CVaR robustness seems sensitive to a short
ex ante window.

Furthermore, the significant difference between the asset classes might be
interpreted as there is a bias in the CVaR estimator. However, by analysing
the data, we find that one part of the explanation to the difference is that
there are a few individual stocks with extreme movements, mainly from
the Moscow stock exchange. These stocks have a significant impact on the
average CRV for the stock category, since the number of individual stocks
in this thesis is rather limited. Hence, another interpretation of the results
is that CVaR is not a good risk measure for certain asset classes, in this
case individual stocks, due to the return distribution of that particular asset
class. This is also in line with the previous findings where we saw that CVaR
sometimes seem to be a blased estimate for individual stocks. However, if
there is a bias with a 250 day ex ante window length, it seems to go away
as the ex ante window length increases to 500 days.



6 CONCLUDING REMARKS 32

6 Concluding Remarks

This section summarizes the findings and provides suggestions for future
research.

In the recent days with turbulence on every major stock exchange, it is
evident that controlling the risks in investment strategies is an important
issue for the entire global economy. Perhaps there is no such thing as a
golden rule on how to manage a portfolio, but history shows that focusing
too much on the return is risky business. In the end of last decade, a risk-
measure called Conditional Value-at-Risk (CVaR) was introduced to the
market. It was the successor of a measure called Value-at-Risk (VaR), which
caught the interest of the market, but had faced problems not being sub-
additive, which is an important feature in the financial world. CVaR, with
more attractive theoretical properties, has therefore been gaining ground in
the last few years. CVaR is being used by insurance companies, mutual
funds and other participants in the financial market who have the need of
evaluating their risks.

Firstly, it seems plausible that CVaR is an unbiased estimate of the con-
ditional return, given that the return is less than VaR, with the possible
exclusion of individual stocks. The empirical findings support the hypothe-
sis that CVaR is a robust risk measure.

Secondly, the results indicate that it is possible to construct a robust CVaR
by estimating the input parameters carefully. This means choosing a confi-
dence level that is not too high, since a certain number of samples is needed
in the ex ante window to estimate the model parameters accurately. It also
means that the ex ante window has to be chosen long enough, probably due
to the same reason.

As the confidence level of VaR increases, the robustness seems to decrease.
This is a problem, since a high confidence level of VaR is usually desirable.
A 95% confidence level would mean that we consider approximately one
trading day per month as being abnormal. A 99% confidence level would
mean that we consider two to three trading days per vear as being abnormal.
When the confidence level increases, the number of relevant samples in the
ex ante window decreases so that the CVaR estimate gets worse. This can
probably to some extent be compensated by extending the ex ante window
length, but this may be difficult for practical reasons, since there is often
a lack of relevant historical data. Even if there is enough historical data
available, it may not be representative due to its age.
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6.1 Suggestions for Future Research

The results in this thesis indicate that the robustness of CVaR increases
as the ex ante window length increases and the confidence level decreases.
This might be due to the fact that the number of historical samples in
the ex ante window increases, which renders a better CVaR estimate. It
would be interesting to find out approximately how many samples are needed
for a good CVaR estimate and if a longer ex ante window length can be
directly traded for a higher confidence level in terms of robustness. Or is
old historical data less useful than more recent data? What is the trade-off
between recent and old data?

Inherent in the CVaR estimation process is the estimation of VaR. This
might transfer some of the robustness issues of VaR onto CVaR. It would
be interesting to try to isolate the evaluation of the CVaR robustness from
VaR. In our study, we evaluate CVaR every time the return is less than VaR,
but since there are issues with VaR, this might not be the best thing to do.
One possible alternative might be to evaluate CVaRk for e.g. the worst five
percent of the returns, if the confidence level is 95 %.
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A Empirical Findings - CVaR Robustness

In this appendix, we present the numerical results discussed in section 5.

Table 11: Empirical results using the delta-normal method. Ex ante length
= 500 days, confidence level = 95%

mean | Qo.o2s | Qoos | Qoos | Qoors

CRV | 1.32 | -5.52 | -4.58 | 7.98 | 10.95
CRR | -0.01 | -0.25 | -0.20 | 0.14 0.17

Table 12: (cont.) Empirical results using the delta-normal method. Ex ante
length = 500 days, confidence level = 95%

IQR | IQR | t-stat | HP*® | HO®
0.95-0.05 0.975-0.025
CRV | 12.60 16.50 0.26 ace acc
CRR | 0.34 0.42 -0.08 | acc acc

Table 13: Empirical results using the historical simulation method. Ex ante
length = 500 days, confidence level = 95%

mean | Qo.ozs | Qoos | Qoos | Qoors

CRV | 198 | -6.78 | -5.28 | 8.93 | 11.32
CRR | -0.04 | -0.30 | -0.23 | 0.11 0.14

Table 14: (cont.) Empirical results using the historical simulation method.
Ex ante length = 500 days, confidence level = 95%

IQR | IQR | t-stat | HP®® | H%
0.85-0.05 0.975-0.025
CRV | 14.20 | 1810 | 033 | acc | acc
CRR | 0.34 0.45 -0.30 | acc acc

Table 15: Empirical results using the delta-normal method. Ex ante length
= 500 days, confidence level = 99%
mean | Qoozs | Qoos | Qogs | Qoors

CRV | 0.59 [ -9.85 | -8.67 | 10.74 | 15.20
CRR | -0.03 | -0.90 | -0.44 | 0.31 0.37
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Table 16: (cont.) Empirical results using the delta-normal method. Ex ante
length = 500 days, confidence level = 99%

IQR | IQR | tstat [ HP% [ HJ%
0.85-0.05 0.975-0.025
CRV | 19.40 | 25.10 | 0.09 | acc | acc
CRR | 0.74 1.27 -0.07 acc acce

Table 17: Empirical results using the historical simulation method. Ex ante
length = 500 days, confidence level = 99%

mean | Qo.ozs | Qoos | Qoos | Qoors
CRV 6.80 -7.76 | -6.55 | 24.28 | 26.45
CRR | -0.29 | -1.81 | -1.52 | 0.17 0.24

Table 18: (cont.) Empirical results using the historical simulation method.
Ex ante length = 500 days, confidence level = 99%

IQR | IQR | tstat | HP® | H)™®
0.95-0.00 0.875-0.025
CRV | 30.80 34.20 0.73 acc acc
CRR | 1.69 2.05 -0.42 | acc acc

Table 19: Empirical results using the delta-normal method. Ex ante length
= 250 days, confidence level = 95%.

mean | Qo.ozs | Qo.os | Qoos | Qoors
CRV | 3.98 -3.82 | -1.64 | 10.25 | 13.60
CRR | -0.07 | -0.30 | -0.26 | 0.07 0.09

Table 20: (cont.) Empirical results using the delta-normal method. Ex ante
length = 250 days, confidence level = 95%.

IQR | IQR | tstat | H*® | H'”
0.895-0.05 0.975-0.025
CRV | 11.90 17.40 0.76 acc acc
CRR | 0.32 0.39 -0.43 | acc acc

Table 21: Empirical results using the historical simulation method. Ex ante
length = 250 days, confidence level = 95%.

mean | Qoozs | Qoos | Qoos | Qoors
CRV 5.41 -0.17 0.39 | 10.78 | 12.43
CRR | -0.11 -0.42 | -0.30 | 0.00 0.01




A EMPIRICAL FINDINGS - CVAR ROBUSTNESS 40

Table 22: (cont.) Empirical results using the historical simulation method.
Ex ante length = 250 days, confidence level = 95%.

IQR | IQR | t-stat | HP*® | H®
0.895-0.05 0.975-0.025
CRV | 1040 | 12.60 | 1.65 | acc | rej
CRR | 0.30 0.43 -0.92 acc acc

Table 23: Empirical results using the delta-normal method. Ex ante length
= 250 days, confidence level = 99%

mean | Qoozs | Qoos | Qoos | Qoors
CRV | 4.59 -4.51 | -3.75 | 20.15 | 21.29
CRR | -0.13 | -1.15 | -0.71 | 0.16 0.17

Table 24: (cont.) Empirical results using the delta-normal method. Ex ante
length = 250 days, confidence level = 99%

IQR | IQR | t-stat | HP® | HY™”
0.895-0.00 0.875-0.025
CRV | 23.90 25.80 0.65 acc acc
CRR | 0.87 1.32 -0.30 | acc acc

Table 25: Empirical results using the historical simulation method. Ex ante
length = 250, confidence level = 99%

mean | Qoozs | Qoos | Qoos | Qoors
CRV | 13.15 3.81 4,25 | 28.16 | 31.31
CRR | -0.43 | -1.78 | -1.30 | -0.03 -0.00

Table 26: (cont.) Empirical results using the historical simulation method.
Ex ante length = 250, confidence level = 99%

IQR | IQR | tstat | HP% | HIO% |
0.05-0.056 0.975-0.025
CRV | 23.90 | 27.50 | 1.80 | acc | rej
CRR | 1.27 177 -0.73 acc acc




