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Abstract

This thesis investigates whether stock picking based on classification and re-
gression trees can be implemented as a successful algorithmic trading system, if
only based on technical analysis. To evaluate the performance of this method a
fictional portfolio was constructed from the Stockholm Stock Exchange OMX-
30, traded on a five-year period.

By means of implementation, classification of the assets in the portfolio was
initially conducted. By using threshold values of the weekly returns and com-
parison with the index of the portfolio, every asset was classified as either out-
performing, neutral or underperforming. With a satisfactory classification, each
asset that is considered as outperforming is held over a period of one week
and at the end of the period the position is terminated and a rebalancing of
the portfolio is made. If no assets are classified as outperforming, the portfolio
is liquidated and invested at a risk-free rate, defined as the STIBOR 1 week rate.

When backtesting the model we find that the hit ratio of the overall classifica-
tion is slightly larger than 50 %. During backtesting over the complete trading
period it is found that an immense increase of portfolio value is generated. How-
ever, since the model is used in sample no predictive validity outside the range
can be made. For this reason, 10-fold cross-validation and resubstitution tech-
niques are employed in order to increase the validity if used in an out-of-sample
test. Further, a rolling Sharpe ratio is introduced to evaluate the risk-adjusted
returns for both portfolios and it is found that the rebalanced portfolio exhibits
greater values.

It is concluded that algorithmic trading based on classification and regression
trees can be effective in finding patterns that influence the stock prices and that
it can form the foundation for an algorithmic trading system.
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Chapter 1

Introduction

Developments in the field of financial mathematics have been great during recent
years. Many new areas of research have been introduced and most significantly,
the combination of progressions within financial mathematics, aided by tremen-
dous computational power, has made it possible to conduct research that would
have been impossible only a few years ago. One specific field that has especially
increased is the electronic financial market and it is estimated that today the
majority of trading is conducted electronically. One sector within the electronic
financial market that has achieved an extra focus is algorithmic trading and
methods of forecasting the markets.

Algorithmic trading is a method where a computer is conducting a specific in-
vestment instead of a human. As described in the literature, these trading
systems implement historical data with respect to well-defined rules, whereas
traditional trading only implements a specific strategy [18]. The same underly-
ing technique, as for algorithmic trading, is also applicable for the methods of
forecasting financial markets. As computational handling is needed, it can be
said that there exists many benefits as well as pitfalls of this quantitative ap-
proach to trading and forecasting. First of all, many suggest that quantitative
approaches are superior in comparison with traditional approaches. The main
reason for this is that the algorithms do not suffer the biases of that humans
tend to have, such as escalation bias, self-confidence bias et cetera. Moreover, a
quantitative approach can make an investment more efficiently at a lower price
thanks to a quicker simultaneous analysis of many factors. On the other hand, a
quantitative approach to trading can also be less effective since the judgmental
aspect of a human is not directly applied. Furthermore, there might also be
issues with the calibration of trading system, resulting in e.g. incorrect timing
of the buying and selling of an asset. Generally, the method of conducting in-
vestments based on mathematical models has both been praised and condemned
as described by Brock et al. (1992) and Fama and Blume (1966).

Since global markets continuously evolve and become more interactive, forecast-
ing of financial markets and trading activity will play a more crucial role in the
future. For this reason, the topic of trading and forecasting at an increased
pace coupled with improved accuracy will also be playing a more important
role ahead. However, this task itself is very complex due to the non-stationary,
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noisy and deterministically unpredictable nature of the financial markets. This
study examines the method called classification trees and its ability to forecast
stock price movements effectively when only based on technical market data.
The method itself will be described, implemented and finally evaluated with the
objective of determining if it can yield significantly better returns than simply
investing in an index fund.

This thesis is structured as follows: Chapter 2 describes the background of the
field of study, classification trees as well as the usage of the methods within the
financial markets. Furthermore, this section illustrates the basic structure of
the model. Chapter 3 introduces the underlying data of the analysis and how
the financial portfolios and technical indicators are constructed as well as the
mathematics of classification trees. Chapter 4 consists of the results from the
study and the influence of behavioural finance on the results.
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Chapter 2

Background

2.1 Forecasting of the financial markets

There exists a lot of research that support the idea of forecasting financial mar-
kets. In an early study, conducted by Lo and MacKinlay (1988), it is shown that
weekly stock market returns do not follow a random walk process. Employing a
specification test based on simple volatility proves this fact and it is suggested
that the markets are not completely random. There are some fundamental
ideas regarding this behaviour of the markets. First of all, the non-stationary
behaviour of financial markets is regarded to be a result of a distribution of
the financial time series that is constantly changing. Secondly, the noise of the
time series is due to the incomplete information of the financial markets where
models do not manage to capture the autocorrelation between historic and fu-
ture prices. Finally, the paradoxical behaviour of being both deterministic but
still unpredictable refers to that the financial markets are in a long perspective
deterministic, but random on a short horizon. Besides this study, Keim and
Stambaugh (1986) present findings that suggest that there exist some variables
that can predict the stock market movements on short term basis and that fore-
casting in some sense is possible.

Most studies regarding predictability of stock markets focus on well-established
markets, some European but especially the US market. Regarding the European
markets, Ferson and Harvey (1993) find that returns are to some extent pre-
dictable by investigating national equity markets and various global variables.
Regarding the US market, Fama and French (1992) investigate the relationship
between various fundamental variables and stock returns. Their main finding
is that cross-sectional variation in average returns can be captured by book-to-
market equity and size. Rosenberg, Reid, and Lanstein (1985) find that there
exists a positive correlation between the ratio of a firm’s book value of common
equity to its market value and the average returns on stocks. Similar results
are also found by Stattman (1980). However, as proposed by Fama and French
(1992), many of these factors are only scaled versions of price and may thus
be redundant when describing returns, suggesting that technical factors, i.e.,
factors that only represent information embedded in the stock price, might not
capture future returns correctly. This brings up the topic of technical analy-
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sis as a tool for predicting the stock market that may or may not be satisfactory.

Technical analysis (TA) is a method for predicting stock returns by finding pat-
terns and relationships in the historic financial time series. This method is based
on using primarily stock price and volume data. Different variations of this data
are also present within technical analysis such as e.g. highest and lowest stock
price as well as derivative prices.

The method of technical analysis itself stems from the Dow Theory, established
by Charles Dow in the beginning of the nineteenth century and has been both
praised and rejected. For instance, according to Fama (1970) the weak form of
the efficient market hypothesis states that all information regarding a company
is reflected in its stock price. Thus, it should be impossible to forecast the stock
prices since all information is already known. However, many empirical stud-
ies do not support the weak form of the efficient market hypothesis and rather
suggest that the financial markets are only efficient in theory. These findings
suggest that technical analysis can be used to capture profitable opportunities
when trading.

Evidence of profitable trading, when using technical analysis, is shown by Kwon
and Kish (2002). Their findings suggest that technical trading rules are superior
when compared with traditional buy-hold (B&H) strategies. This is found by
investigating technical trading rules such as momentum, trading volume and
moving averages by employing bootstrap, GARCH and t-test methodologies.
Similar results are also found by Neftci (1991) when studying trading rules
of various algorithms based on technical analysis. Strong support regarding
technical analysis is also found by Brock, Lakonishok and Blake (1992) where
they implement moving averages and trading range breaks as trading rules.
Their findings suggest that stock returns are correlated differently depending
on if buy or sell signals are present. Furthermore, and what might be relevant
regarding our study, are the findings of Wong et al. (2003) where the timing of
entry and exit in the stock market is investigated. Technical indicators such as
moving averages and relative strength indexes are employed within their study
and it is found that it is possible to generate substantial positive returns when
using their approach. Further, Vasiliou et al. (2006) show similar findings by
implementing trading techniques based on technical analysis. Consistent with
previous studies, their research suggests that trading based on technical analysis
can generate large excess returns over buy-hold strategies. Over a one-year
(250 days) period, trading based on various indicators generated returns that
varied between 36.10 % and 55.65 % while buy-hold strategies only generated
returns of 12 %. Hence, since the efficient market hypothesis is contradicted
by these empirical studies, it might be possible to use technical analysis to
construct efficient trading rules for construction of a trading algorithm based on
classification trees.

2.2 Algorithmic Trading

Ever since technical analysis has shown itself to be beneficial, it has been im-
plemented on numerous occasions as algorithmic trading systems. One of the

5



first systems was created by Pruitt and White (1988) and was based on tech-
nical indicators such as volume, moving averages and relative strength indexes.
As this system generated excess returns, many other trading systems were also
implemented, as described by e.g., Brock et al. (1992), Bessembinder and Chan
(1995) as well as Ratner and Leal (1999).

As trading systems have been refined to make better stock price predictions,
various alternative approaches have been developed. Methods that have gained
ground for implementation are parametric models. One of these models is the
Generalized Methods of Moments (GMM). This method’s success in estimating
financial time series was investigated by Hansen and Singleton (1982). More-
over, the use of the GMM models for construction of optimal portfolios was also
studied by Brandt (1999). The advantages of this approach and the reason why
it is so commonly used in forecasting are, as described by Leung et al. (2001),
that one does not have to create assumptions of the distribution of the time se-
ries and that the method is very flexible. Other forms of parametric approaches
regarding trading systems and forecasts of financial time series can be based on
the theory of random walk. This approach tends also to be a relevant bench-
mark due to its coupling to the efficient market hypothesis.

However, rather than using parametric methods such as the GMM or random
walk theory, there exist nonparametric methods that may in several cases prove
themselves better. For instance, in a study made by Hill et al. (1996) it is
found that non-parametric methods can generate much better results than sev-
eral traditional statistical models including advanced time series models. The
reason for this is first and foremost that traditional parametric methods show
bad mapping capabilities for nonlinear relationships, often seen in real-world fi-
nancial time series. An example of this is shown by Refenes et al. (1994) where
traditional statistical approaches of forecasting financial time series quickly be-
comes unsatisfactory if exposed to nonlinearities within the data sets. For this
reason, non-parametric methods such as various neural network and decision
tree approaches have been taken into account within the field of forecasting fi-
nancial markets.

There exist many different non-parametric methods for algorithmic trading.
Some of them have gained extra focus, such as artificial neural networks, ge-
netic algorithms and fuzzy logic as described by Chavarnakul and Enke (2009).
Another development is the method of chart pattern analysis as made by Lo et
al. (2000). In this study, various chart patterns for analysis of technical indica-
tors are introduced as well as employing pattern recognition processes such as
non-parametric kernel regression to the financial time series.

As seen in the previous section, non-parametric methods are regarded as su-
perior in comparison to statistical and parametric methods. However, they
all have different strengths and weaknesses. For instance, neural network ap-
proaches may not exhibit convergence since the optimization of the algorithm
is conducted by searching for a minimum along the error surface. During this
procedure one may not find a global minima because of getting stuck in a local
one [23]. Moreover, the neural network methods often experience problems with
overfitting when learning from the data in the sample as well as with the setting
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of the various parameters that are needed in the algorithm. Finally, the differ-
ent steps in most of the non-parametric methods are very difficult to interpret.
Nevertheless, non-parametric model such as classification trees exhibits most of
the advantages of the subsequent non-parametric models, though at the same
time they are very simple to interpret and implement in a system.

2.2.1 Classification and Regression Trees and Technical
Analysis

As shown, often problems can be solved by using standard pattern recognition.
The use of the pattern recognition exist in many disciplines such as computer
vision, medicine, manufacturing as well as in finance. Examples of this are:

• Medical diagnosis of a patient based on symptoms and test results, e.g.
blood pressure, pulse and temperature

• Credit risk of a customer regarding loans based on e.g. credit history,
income and present loans

• Species of a certain flower based on e.g. colour, size and other variables

Tree structured approaches such as classification trees might provide a superior
perspective and may also generate several advantages in comparison with other
non-parametric methods. Maybe most importantly, a tree-structured alterna-
tive provides overwhelming simplicity due to its binary nature. This results in
both fast classifications of new data as well as a lucid overview of the model,
which can be easily explained. Moreover, the method yields decision boundaries
that are complex and the method is equally appropriate for both ordered data
and for categorical data or a mixture of them.

An approach based on classification and regression trees exhibits several benefits
if compared with the parametric and nonparametric approaches that have al-
ready been introduced. As shown by Breiman et al. (1984), who introduced the
method, classification trees can be used with any data set given a satisfactory
vector of questions. This means that the model can be applied to both categor-
ical data and ordered data, which in its turn has the consequence that one does
not have to be bound to a certain category when conducting the research. Sec-
ondly, the model is very good in handling nonhomogeneous relationships with
respect to conditional information. This has the implication that, when a node
is split into two children, the algorithm searches for the next best split within
each child independently of each other. Moreover, within standard structures
of data, Breiman et al. (1984) also show that the results are invariant under
monotone transformations of individual variables, i.e., if xi is an ordered vari-
able within a specific problem, the optimal split will be the same regardless of
transformations such as x′i = xni are conducted. The biggest advantage of clas-
sification trees may be the nonparametric and robustness properties concerning
misclassified points and outliers within the data set. The model regards each
data point as only one among N data points and thus one does not have to have
a priori data structures or distributions.
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The classification tree model is a method that uses a classifier or a classification
rule to establish what class a certain object should fall into. For an implemen-
tation, it is necessary to construct a classifier based on a historic data to be able
to classify future observations. Thus, one already must have a data set where
the class of each observation is known, i.e., there exists a class label for each
case. For this reason, this method of pattern recognition is known as supervised
learning. The structure of supervised learning is illustrated by the schematic

Figure 2.1: Illustration of the pattern recognition process
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Diagram of the different steps during a statistical pattern recognition method.

diagram in figure 2.1, as proposed by Duda and Hart (1973). The basic process
is initiated when an object enters the system. The object has several features
that are extracted by a sensor and is compared with predefined classes. When
conducting this, the specific object is classified into a certain class membership
by using specific classification rules as shown in figure 2.1. The technique should
therefore be regarded as a multi-stage decision process with binary decisions at
each level. The tree structured nature of the method means that it is con-
structed by nodes and branches. Each branch is the connection between two
adjacent nodes. There always exist more nodes than branches in the structure
as there must exist nodes at the end of the final branches. Every split node is
called a parent node and the two nodes that are produced by the split are called
child nodes. Generally, the first node within the tree is called the root node.
The final nodes in the tree are known as terminal nodes and have an associated
class label to them and denotes the final classification of the data. As seen, the
terminal nodes are never split into children. The other type of nodes are instead
known as nonterminal nodes or internal nodes since they are always split into
two children. As an example we introduce a basic classification tree in figure 2.2.

In this example we use two describing features in the example, namely X1 and
X2, which together create a feature vector. This can be created if one utilizes or-
dered variables and fixed-dimensional data. For instance, consider the example
in figure 2.2 again. In this case, the procedure partitions the two-dimensional
space X with respect to posed questions of the form xi ≤ cn where cn is a con-
stant. The filters at each level are made in a way that the data in each subset
of X becomes more homogenous with respect to its class. However, the way of
viewing the recursively partitioning process with rectangles becomes very bur-
densome when the dimension is increasing. For this reason, the same structure
can also be described by a binary tree structure. At each level the same type of
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Figure 2.2: Illustration of the pattern recognition process
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Figure 2.3: Illustration of the pattern recognition process
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filtering process is conducted as in the previous case and the positive response
results at each level results in a step to the left child, tL, and a negative response
results in a step to the right, tR. By doing this, the previous example results in
a tree diagram as in figure 2.3.

However, it is apparent that constructing a tree classifier is problematic if not
implemented properly. Actually, it turns out to be very dependent on the split-
ting and the stop-splitting criteria of the data, i.e., when a node is a child or a
terminal node. To fully understand how the problems arise and how they can
be solved, we must first have an understanding of the preliminary fundamen-
tals. For this reason, data and the features of the data, which will be employed
during implementation, as well as the mathematics of classification trees will be
described in the upcoming sections.
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Chapter 3

Theory

3.1 Data sets

The data that we use in this study comes from 10 randomly picked stocks traded
at OMX-30 at the Stockholm Stock Exchange. We have decided to use weekly
data that spans from 1 January 2003 until 1 January 2008 for the companies as
shown in 3.1. The weekly closing prices, quoted in SEK and provided by Morn-
ingstar, Inc. constitutes the historical data set that is employed to calculate
stock returns.

Table 3.1: Companies used in this study

Assets: Abbrevation: Assets: Abbrevation:
ABB ABB Nordea NORDEA
AstraZeneca AZN Sandvik SAND
AtlasCopco ATC SKA SKA
Boliden BOL SHB SHB
Electrolux ELUX Volvo VOLVO

The closing prices for the different companies can be seen in figure 3.1 and in
figure 3.2. The plots in the figures are not adjusted for splits and extraordi-
nary events as can be seen for e.g., Atlas Copco in mid-2007 and Electrolux
in mid-2006. However, these are neglected in this study but adjusted for when
calculating the returns and technical indicators by interpolation.
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Figure 3.1: Price of asset used in the rebalanced portfolio and in the index
portfolio
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A plot of the price of assets used in the study.

Figure 3.2: Price of asset used in the rebalanced portfolio and in the index
portfolio

Jan03Dec03Dec04Dec05Dec06Dec07

50

100

150

SAND

Trading Period

P
ric

e,
 [S

E
K

]

Jan03Dec03Dec04Dec05Dec06Dec07

50

100

150

200
SKA

Trading Period

P
ric

e,
 [S

E
K

]

Jan03Dec03Dec04Dec05Dec06Dec07
100
150
200
250

SHB

Trading Period

P
ric

e,
 [S

E
K

]

Jan03Dec03Dec04Dec05Dec06Dec07

50

100

150

VOLVO

Trading Period

P
ric

e,
 [S

E
K

]

A plot of the price of assets used in the study.

3.1.1 Other data

To be able to calculate other factors such as the technical indicators, we use
data for the 10 stocks traded on OMX-30 on the Stockholm Stock Exchange for
the same period. The data sets used are opening prices, highest price, lowest
price, traded volume and time of day. This historical data is also quoted in SEK
and provided by Morningstar, Inc.
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Besides what has already been stipulated, no other modifications of the data
has been made with the exception for converting it from a .txt file to a MySQL
database. This format has shown itself suitable since all implementations have
been conducted using MATLAB (R2007a).

3.2 Method

Let us first of all review the scope of this study. The aim is to investigate
whether a profitable portfolio of stocks can be built by using a classification and
regression tree approach based on technical analysis. Therefore, our main ob-
jectives are creating and evaluating the performance of a general index portfolio
compared to a rebalanced portfolio that is based on technical analysis. To be
able to do this we must establish a set of technical indicators that describe our
securities from a technical analysis point of view. Moreover, we must classify
our securities based on whether a particular security performs better or worse
than the average. For this reason, we will first of all create a set of rules that
indicate the performance of the portfolio assets over time. Secondly, we will
create an algorithm based on the classification tree approach that classifies our
assets according to this set of rules. When the classification for each new time
period is made, we rebalance our portfolio with respect to this classification.

To form a solid foundation for the forthcoming analysis, this chapter will de-
scribe the fundamental tools that will be used. First of all we will describe the
mathematics regarding financial data and how stock market returns are calcu-
lated as well as how an index portfolio is created. Secondly, we will present
the different technical indicators that will be used within the classification algo-
rithm. Thirdly, we will introduce the algorithm of classification and regression
trees and the mathematics behind it. In this section, we will also explain the
different procedures in the algorithm, i.e., growing the tree, pruning the tree
and finally how to conduct the classification of new data. Finally, we present
the method of constructing the rebalanced portfolio in compliance with Swedish
law regarding investment funds.

3.2.1 Financial data and basic portfolio construction

The financial data used regarding returns has the price of an asset as an under-
lying basis. When calculating the rate of return in the discrete case of a portfolio
one has to calculate the rate of return of each asset within the portfolio. Let
us take a number of quotations T , where t = 1, . . . , T , of an asset i. Secondly,
introduce a vector of returns ri,t that denotes the observation of each random
variable ri. If the price of this specific asset at time t is introduced as St and
the price of the same asset at time t− 1 is St−1 then the rate of return of this
asset is consequently

ri,t = ∆St =
St − St−1

St−1

If this is expanded into the continuously compounded case and we denote Si(t)
as the time series of the price of the same asset i we get,

ri,t = lnSi(t)− lnSi(t− 1)
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This result can help us define the expected return Ri of the same asset and from
basic probability theory we thus achieve,

Ri = E(ri) = r̄i =
1
T

T∑
t=1

ri,t

Similarly, let us examine the case where we have portfolio consisting of multiple
assets. First of all, let us introduce N assets within the portfolio, where the asset
i in the portfolio has return ri and weight or fraction wi of the total portfolio
and since our budget constraint

∑N
i=1 wi = wT ·1 = 1, one achieves the return

of the portfolio over period t− 1 to t as,

rp =
N∑
i=1

wiri

If we introduce a vector consisting of the expected returns of the assets within
the portfolio as R we get the expected return of the portfolio as,

Rp =
N∑
i=1

wiRi = wT ·R

In the case of rebalancing of an portfolio we may allow short selling. When con-
structing a portfolio we might also set specific restrictions regarding the weights
of each asset. By definition short selling represents the act of selling assets that
have been borrowed. Thus, the weight of each asset can both be negative or
positive is this act is allowed. However, if short selling is restricted we must
introduce a restriction according to ∀i wi ≥ 0. This means in that we may only
buy assets and is known as taking a long position.

The continuous compounded case, as already introduced, can be expanded into
an approximation that can handle small asset returns as seen in equation 3.1.
However, to achieve an exact result one has to add an error term εt.

∆St ≈ lnSt − lnSt−1 = ln
(

St
St−1

)
= εt (3.1)

Now we can introduce an important difference between the price and the rate
of return of an asset. To fully understand the difference, we introduce the
concept of autoregressive models. Autoregressive models used in this setting
are typically the AR(1) process,

Xt = c+ ϕXt−1 + εt

As seen, variable Xt depends on the constant c, the variable Xt−1 and a white
noise, i.e., εt ∼ N(0, σ2). For convenience the constant is normally set as c = 0.
Moreover, if the parameter |ϕ| < 1 we achieve a process that is stationary. If
ϕ = 1 we achieve a random walk and if ϕ > 1 we get a non-stationary process.
A process that is stationary is considered to show mean reversion meaning that
prices and returns eventually move back towards the mean. Similarly, if the
logarithm is applied to the price of an asset tomorrow we get the logarithm of
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the price today times the parameter ϕ with an added error term εt, i.e., the
price of an asset tomorrow is the same as the price today times a factor and
then an error variable. The factor within the process is normally ϕ = 1 which
results in

lnSt = lnSt−1 + εt

Thus, it is shown that price data is an autoregressive process that exhibits a
random walk. On the contrary, the returns data, as seen from equation 3.1, are
stationary and is white noise around zero. Once again, we end up with the fact
that returns should theoretically be highly stochastic and stationary, given that
the markets would be efficient as in the efficient market hypothesis.

3.2.2 Technical Indicators

In the previous section it is shown that rate of return is stochastic and that the
price of assets cannot be forecasted given that the efficient market hypothesis
holds. Nevertheless, in the empirical studies that have been introduced it is
shown that future stock prices and returns are somewhat correlated with vari-
ous technical indicators.

Technical indicators can be divided into different groups depending on their
nature and name. However, the group membership of some factors can be
dual since some of the features of two or more groups might be present and
the grouping is not definite. They all include various combinations of the open,
high, low or close prices over different time periods and for each new time period
a new data point is produced. We have chosen to group the indicators according
to the preceding list:

1. Oscillators

2. Stochastics

3. Indexes

4. Indicators

It should initially be stressed that many of the technical indicators complement
each other. In an interview, the founder of the magazine Technical Trends,
Arthur A. Merrill, recommends that several indicators should be used simulta-
neously. In the interview he stipulates that if 40-50 different indicators are used
the diversification will be favoured, hence reducing the risk of a emotional at-
tachment [3]. However, even though this does not affect an algorithmic trading
system directly, it may affect the implementation when choosing which indica-
tors to use. For this reason, several technical indicators, as seen in table 3.2, are
employed in the study and the ones that are the most significant ones during
classification will be favoured automatically by the algorithm.

Throughout this section we use some specific variables when calculating the
various technical indicators and these are summarized in table 3.3.
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Table 3.2: Technical indicators that are used in the study and the specific group
that each indicator belongs to.

Name of technical indicator: Type of technical indicator:

Momentum Oscillators
Accumulation Distribution Oscillator Oscillators
Fast Stochastics %K Stochastics
Median Price Indicators
Fast Stochastics %D Stochastics
Negative Volume Index Indexes
Highest High Indicators
Positive Volume Index Indexes
Lowest Low Indicators
Slow Stochastics %K Stochastics
Price and Volume Trend Indicators
Slow Stochastics %D Stochastics
Accumulation Distribution Line Oscillators
Acceleration Between Times Oscillators
Relative Strength Index Indexes
Bollinger Bands Indicators
Volume Rate of Change Indicators
PercentB Indicators
Price Rate of Change Indicators
Bandwidth Indicators
On-Balance Volume Indicators
Volatility Stochastics
Chaikin Volatility Stochastics
William’s % R Stochastics
William’s Accumulation Distribution Line Indicators

Table 3.3: Variables that are used in the technical indicators

Variable: Details:

Ph Price high
Pl Price low
Po Price open
Pc Price close
Pt Price at time t

3.2.3 Oscillators

Oscillators are technical indicators that fluctuate inside a specific range. This
can for instance be fluctuation over a central line, a point or between upper and
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lower boundaries. Moreover, these indicators vary over time but cannot trend for
longer periods. For this reason, they are tools that are widely used to calculate
if a particular asset is overbought or oversold. They are also used to spot the
strength and direction of momentum of an asset’s movement. The common
interpretation of centralized oscillators is that the asset is bullish when trading
occurs above the centreline of the oscillator, and vice versa when the asset is
bearish. The technical indicators that belong to this group are Accumulation
distribution oscillator, Price momentum and Acceleration between times.

Accumulation Distribution Oscillator

The accumulation distribution oscillator is a technical indicator that takes the
opening, closing, high and low prices of the asset into account. This type of
oscillator is regarded as normalized since it is divided by the range of the mea-
surement period and treats each new measurement period individually. The
interpretation of the accumulation distribution oscillator is as described in Kauf-
man (1987) as,

ADO =
(Ph − Po) + (Pc − Pl)

2 · (Ph − Pl)
· 100

In the previous expression Ph denotes the high price, Po is the opening price, Pc
is the closing price and Pl is the low price of the period. To visualize the concept
the accumulation distribution oscillator of AstraZeneca is plotted in figure 3.3.

Figure 3.3: Plot of accumulation/distribution line as a technical indicator
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The concept of accumulation distribution oscillator implemented for AstraZeneca.
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Price Momentum

Momentum is a measure that calculates the ratio between closing prices at
different time horizons. When we employ the closing price we get,

MON =
Pc,t=0

Pc,t=N

In the expression the variable N denotes the time lag when calculating the
difference in price. In this study we use two different time lags, N = 2 and
N = 4, two and four weeks. The price momentum for AstraZeneca is shown
as an example in figure 3.4. Price momentum can be used in many ways and

Figure 3.4: Plot of price momentum as a technical indicator
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The figure shows the price momentum indicator for AstraZeneca. One can

clearly see the trend indications.

can also range over both short and long periods depending on the scope of the
analysis. One way of using the momentum oscillator is to find specific trends
in the financial data such as uptrend or downtrend movements. The general
approach is to sell when the indicator has reached its peak and starts to decline,
and vice versa. Further, it is assumed that when the indicator has reached very
high levels, the price may also reach significantly higher levels in the near future.
An advantage of the oscillator is its dual function where it can be used both as
a relative strength-ranking tool as well as a momentum indicator for analyzing
price movements and internal strength of the stock [13].
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Figure 3.5: Plot of acceleration between times as a technical indicator
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The plot indicates the acceleration of price momentum over time for AstraZeneca.

Acceleration Between Times

Acceleration between times is the measure of change in momentum between two
periods and described by Kaufman (1987) as,

ABTN = MOt=0 −MOt=N

In our survey we calculate the acceleration between times for the assets with
the price momentum as data input, where we employ a period of N = 4 as seen
in figure 3.5. The acceleration between times provides us with a clear indication
of the trend of the momentum over the past month.

3.2.4 Stochastics

Technical indicators that belong to this group are Fast stochastics, Slow stochas-
tics, Chaikin volatility, Ex-post volatility and Williams %R. The indicators
within this group have in common that they focus on the relationship between
the closing price and the price range of stocks over time. The different indica-
tors are very capable of signalling when the market is considered overbought or
oversold as well as upward and downward trend patterns.

Fast Stochastics

Fast stochastics is an indicator that can be measured over different time periods.
The indicator is divided into type F%K and F%D. As proposed by Achelis
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(1995), the first type is calculated as,

%K =
Pc −minPl,t=1,...,N

maxPh,t=1,...,N −minPl,t=1,...,N
· 100

In the preceding expression minPl,t=1,...,N and maxPh,t=1,...,N denotes the low-
est low price during the N last periods respectively highest high during the N
last periods. A common value of the parameter is N = 14, though this value
can altered depending on the orientation of the study. When calculating the
F%K in this study the parameter was set as N = 6. When calculating F%D

Figure 3.6: Plot of fast stochastics as technical indicators
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Since fast stochastics is a percentage ratio the y-axis will range

between 0 and 100%.

one has to employ a n-period simple moving average to the F%K stochastics.
The parameter of the simple moving average is often set as n = 3 and this value
is employed in this study as well.

Fast stochastics may be used in several ways. One of the most important indi-
cations is when F%K and F%D intersect with each other, generating either a
bullish or a bearish signal. For this reason the F%D line is called the trigger
line, since this is the line that triggers a signal when it intersects with F%K.
Further, the movements of the indicators in relation to the price movements
may also give clear indications of changes in the trend. The appearance of the
two stochastics for AstraZeneca can be seen in figure 3.6.

Slow Stochastics

Slow stochastics are indicators that are very similar to the fast stochastic indi-
cators. The reason for this is that they are calculated from the fast stochastics
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by employing simple moving averages. Hence, we achieve two different types of
slow stochastics, S%K and S%D. The first type, S%K, is calculated by using

Figure 3.7: Plot of slow stochastics as technical indicators
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Since slow stochastics is a percentage ratio the y-axis will range

between 0 and 100%.

a simple moving average applied to F%K with the parameter set as n = 3.
The second type, S%D, is calculated by applying a simple moving average with
n = 3 to the S%K instead. By this procedure, we achieve a smoothed out
version of the fast stochastics as seen in figure 3.7. This implies that we reduce
the number of false intersections between the two lines and that we may achieve
a more accurate perspective of the price movements. As seen though, the F%D
and S%K are exactly the same. However, the F%D is employed as a trigger
line in fast stochastics and this is not the case for S%K in slow stochastics.
However, the concept of intersection is important in slow stochastics as well and
the crossing of the S%K and S%D may indicate important trend movements.
Besides this, other important indications of price movements include the case
when the indicators move towards the upper and lower bounds.

Chaikin Volatility

Chaikin volatility is measured by calculating the spread between high and low
prices over a predetermined period with an applied n-period exponential moving
average (EMA) and then measuring the m-period rate of change as explained
by Achelis (1995),

V olatilityChaikin =

(
HLEMAn,t=0 −HLEMAn,t=m

)(
HLEMAn,t=0

) · 100

HLEMAn,t = EMAn(Ph,t − Pl,t)

The normal appearance of this indicator can be seen for AstraZeneca in figure
3.8 where we have used n = 6 and m = 6.

When using the Chaikin volatility as an indicator, there exist different ap-
proaches. One theory is that when prices turn towards the bottom one will
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Figure 3.8: Plot of Chaikin volatility as a technical indicator
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One can clearly see the indications of the Chaikin volatility.

experience a sudden increase in the Chaikin volatility over a short period of
time right before hitting the bottom. The same theory stipulates that when
getting closer to the top, the volatility will decrease, signifying a bull market
that is mature. The fundamental idea of this is that traders focus on termi-
nating positions quickly before hitting the bottom and when being close to the
top trades are made on a slower pace. On the other hand, the second approach
suggests the opposite explanation. This approach suggests that while being at
the top, traders are uncertain of possible outcomes, which results in increased
volatility when taking and terminating positions at a higher pace. Similarly,
while being at the bottom positions are taken at a slower pace since they ex-
hibit great uncertainty, resulting in a decreased volatility.

Williams %R

Williams %R (percent R) is a stochastic indicator that shows whether a stock is
overbought or oversold. The indicator is very similar to the F%K but is defined
instead as [1],

%R =
maxPh,t=1,...,N − Pc,t=1

maxPh,t=1,...,N −minPl,t=1,...,N
· −100

Since this is a percentage ratio the plot will be bounded between [0,−100] as
seen in figure 3.9. The main indication of %R is when the line is close to the
upper and lower bounds, normally around -20 % and -80 %, meaning that the
stock is overbought or oversold respectively. One may advantageously combine
this indicator with price indicators. The general approach is not to sell an asset
before the price decrease of the asset is realized.
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Figure 3.9: Williams %R as a technical indicator
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William’s %R implemented for AstraZeneca. Since the indicator is a

negative ratio, the y-axis spans normally from 0 to -100.

Ex-post Volatility

Ex-post volatility, or historical volatility, is calculated as the standard devia-
tion of the historical time series of returns. One must use the continuously
compounded logarithmic returns over a specific time period and we choose to
measure the volatility over 6 weeks. To calculate the volatility over a time period
T , the standard deviation σSD of the returns is scaled according to,

σ =
σSD√
T

The ex-post volatility is measuring the magnitude of the return movements for
a given time frame and is therefore sometimes considered as the risk when taking
a position. Consequently, a stock with large ex-post volatility may have great
differences in return, which might generate large profits, but at the same time
large losses. As seen in figure 3.10 where the ex-post volatility of AstraZenca
is plotted, the values are ranging between 0 % and 7 %. Nevertheless, the
magnitude of volatility can be much more fluctuating and exhibit large values
and often depends on the size of the company, traded volume and price.

3.2.5 Indexes

Within this study, we implement the Relative strength index, Positive volume
index and Negative volume index as technical indexes.
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Figure 3.10: Ex-post volatility of AstraZeneca
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Ex-post volatility for AstraZeneca. One can clearly see that there exist periods that

have higher magnitude and periods that have lower magnitude of the volatility.

Relative Strength Index

The relative strength index is an indicator that evaluates the difference between
the present prices with the most normal price. Since the measure is ratio based
it normally take values in [0, 100]. When calculating the relative strength index
one may use various time-spans and we choose to calculate our indicator using
data for 6 weeks. However, one might also use shorter and longer periods.
The relative strength index is employed to evaluate several aspects of an asset.
The preliminary theory is that the maximum value 100 of this indicator signifies
that the price has decreased throughout the whole measurement period. On
the other hand, the minimum value 0 indicates that the price has increased
throughout the whole period. Generally, it is considered that values over 70
and below 30 indicate oversold or overbought assets respectively. Hence, an
index rising above 30 would be viewed as a buy-signal. Similarly, a sell-signal
is when the index decreases and falls below 70. A popular method of using this
indicator is to look for divergences between historical prices and the indicator.
This means that one tries to find patterns where the relative strength index does
not show the same appearance as the price movements, signifying an upcoming
price movement in accordance with the relative strength index movements in
the near future. The appearance of this index can be seen for AstraZeneca in
figure 3.11.

Positive and Negative Volume Index

Technical indicators such as the positive and negative volume indexes indicate
whether the volume has increased or decreased over a predetermined time pe-
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Figure 3.11: Relative Strength Index of AstraZeneca
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Relative strength index for a slightly longer period than 6 weeks

is constructed AstraZeneca. One can clearly see the indications of

being overbought and oversold.

riod. When high values of the positive volume index are evident it is believed
that uninformed and inexperienced traders take positions. Conversely, low val-
ues are thought to indicate that well-informed investors take positions. Similarly,
the same analogy holds for negative volume index.

To calculate the index one has to use the closing price and the trading volume.
When calculating the positive volume index, as in Achelis (1995), one determines
if the trading volume has increased between two consecutive trading periods. If
the trading volume has not increased, the positive volume index is equal to the
positive volume index of the previous time. However, if the trading volume has
increased the positive volume index is set as,

PV It = PV It−1 ·
(

1 +
Pc,t − Pc,t−1

Pc,t−1

)
Similarly, the previous expression holds for the negative volume index, NV It,
but with a minor modification. If the trading volume has not decreased, the
negative volume index is equal to the value of the previous time. However, if
the negative volume index has decreased the value is changed with the same
closing price ratio. Since both calculations need an initial value both indexes
are given a start value of 100.
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Figure 3.12: Positive and Negative Volume Index of AstraZeneca
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Positive and negative volume index for AstraZeneca. One can clearly see the

indications of being overbought and oversold.

3.2.6 Indicators

This group consist of various indicators that do not fall into the earlier groups.
They include calculations based on price and volume at different periods. We
have chosen to use indicators such as the Highest High, Lowest Low, Median
Price, Price & Volume Trend, On-balance Volume, Bollinger Bands, Percent B,
Bandwidth, Accumulation Distribution Line and William’s Accumulation Dis-
tribution Line.

Highest High, Lowest Low and Median Price

These indicators measure the highest high and the lowest low price over a spe-
cific time period as well as the median price. In this study we choose to use two
measurement periods, 4 and 6 weeks, for the highest high and the lowest low.
The appearance of this can be seen for AstraZeneca in figure 3.13.

The indication of highest high and lowest low are sudden changes of the factor.
This might be an indication of a changing trend. To achieve good indications of
this one might use upper and lower bands that can change over time. When the
indicator crosses a band, one should enter the market and when the opposite
band is crossed one should exit the market and reverse the position taken at the
outset. Another recommendation stipulates that one should take long positions
when the previous 4-week high is penetrated. Similarly, when the previous 4-
week low is crossed one should instead take short positions.
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Figure 3.13: Highest high and lowest low of AstraZeneca
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Highest high and lowest low for AstraZeneca. One can clearly see the

indications of being overbought and oversold.

The median price on the other hand is the mid-point of the high and low for
each period. This line can in many cases be accompanied by a moving average,
which might give great insights regarding the stock price movements. In figure
3.14 we see the median price for AstraZeneca with a 6-period modified moving
average1 as well as their difference. When the intersection of the lines occur from
above by the moving average with the median price, a buy signal is generated
and when the crossing is made from below a sell signal is made. Hence, if the
difference between them is negative and then turns positive, a buy signal is at
hand and vice versa as can be seen in the lower plot in figure 3.14.

Price and Volume Trend

The price and volume trend is an indicator that takes the volume and closing
price into account. The indicator is mainly used to establish the strength of
price trends and indicate weak price movements. This is made possible since
the indicator takes the percentual change of prices into account and not only
that a price change occur in general as presented by Achelis (1995),

PV Tt = PV Tt−1 + volume · Pc,t − Pc,t−1

Pc,t−1

The main indication of this factor is the flow of money in and out of a security.
1Modified moving average is defined as MAt = MAt−1 + 1

n
(Pt − (MAt−1))
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Figure 3.14: Median price, Modified Moving Average and their difference for
AstraZeneca
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Median price and 6-period modified moving average for AstraZeneca. One

can clearly see the indications for taking long and short positions.

Figure 3.15: Price and Volume Trend for AstraZeneca
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Price and Volume Trend for AstraZeneca. One can clearly

see the indications.

Hence, it indicates whether the security is experienced as bullish or bearish.
Generally, one is can advantageously use the divergence between the indicator
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and the price to conclude if the price will increase.

Volume and Price Rate of Change

The price rate of chance is calculated as the difference between the closing price
today and the closing price of a previous time period N ,

PROC =
(
Pc,t=0 − Pc,t=N

Pc,t=N

)
· 100

If the price of an asset experiences an increase, the price rate of change will rise,
and vice versa. It is said that prices usually evolve in a cyclical manner and
this can be captured by the price rate of change at different time periods. In

Figure 3.16: Price rate of change for AstraZeneca
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Price rate of change for AstraZeneca. One can clearly

see the indications for taking long and short positions.

this study we have chosen to use the price rate of change at 2 and 6 weeks as
can be seen in figure 3.16. Moreover, it is possible to get good indications of
price movements if the price rate of change cycles are compared with the market
cycles.

The volume rate of change is an indicator that is very similar to the price rate
of change. It is calculated in the same manner except that ones uses volume
instead of price. It is a known fact that specific price chart formations such as
breakouts, tops and bottoms can be seen in the volume rate of change chart as
a sharp peak.

On-Balance Volume

By relating the volume to the price movements as a momentum indicator, we
obtain the on-balance volume. The indicator is calculated by looking at the
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Figure 3.17: Volume rate of change for AstraZeneca
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Volume rate of change for AstraZeneca. One can clearly

see the indications for taking long and short positions.

cumulative volume of a specific asset,

OBVt = OBVt−1 + V olumet if Pc,t > Pc,t−1

OBVt = OBVt−1 − V olumet if Pc,t < Pc,t−1

OBVt = OBVt−1 if Pc,t = Pc,t−1

As seen, the on-balance volume indicates if volume is flowing in or out of a
particular asset depending on the price. Movements will be experienced in the
on-balance volume before large price movements are seen. The reason for this
is that informed investors take positions ahead of the public.

When analyzing the on-balance volume one introduces three trends: rising,
falling and neutral. We are able to see all these type of trends in figure 3.18.
When the trend shifts from a rising trend to a falling trend, it is said that short
positions should be taken. Similarly, if the trend goes from falling to a rising,
long positions should be taken. This is consistent with the assumption that the
indicator precedes the price changes. However, to be able to profit from this
type of analysis, all positions have to be taken at a fast pace.

Bollinger Bands, %B and Bandwidth

Bollinger bands consist of three lines superimposed on the price chart as seen in
figure 3.19. The middle band of the Bollinger bands is a simple moving average
of the price and in this study we have chosen to employ a 10-week simple moving
average. The upper and the lower bands are constructed by the middle band

30



Figure 3.18: On-balance volume for AstraZeneca
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but shifted up respectively down with a number D standard deviations. In this
study we conduct this shifting with 2 standard deviations (D=2).

Figure 3.19: Bollinger bands for AstraZeneca
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Bollinger bands capture the price movements between the upper and the lower
bands. As one seen, the bands become wider during periods of higher price
volatility and when the volatility is low the bands become tighter. The Bollinger
bands have some important features. First of all, when a price penetrates a
band, it is considered that the particular trend will continue. Hence, if the up-
per band is crossed the price will continue to increase and vice versa. Secondly,
if the bands are tightening one can expect significant price movements. More-
over, when a new top or bottom is generated outside the bands and accompanied
by a top or bottom inside the bands, one can expect a break in the present trend.

To be able to fully capture the information from the Bollinger bands we intro-
duce the indicators Bandwidth and %B (percent B), which both derive from
the Bollinger bands. The Bandwidth is defined as the distance between the
upper and the lower Bollinger band whereas %B is defined at time t as,

%B =
Pc,t −Bollingerlower band

Bollingerupper band −Bollingerlower band
· 100

The Bandwidth helps us to measure how much tighter or wider the bands
become and provide us with information as previously stated. In addition, %B
helps us define the location of the price with respect to the upper and lower
band. This measure also helps us in locate where the price crosses the Bollinger
bands and to what extent, i.e., a value of %B below 0 meaning a penetration
of the lower Bollinger band, a value above 100 meaning a crossing of the upper
band. The amount of what is below or above these limits denotes to what extent
the price crosses the bands as a percentage of the Bandwidth.

Figure 3.20: Bandwidth and Percent B for AstraZeneca
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Accumulation Distribution Line

The accumulation distribution line is an indicator that is based on the assump-
tion that a price movement is more important if it is accompanied by a large
volume and vice versa. For this reason, the indicator includes not only various
price data but also volume data and is defined as,

ADL =
(Pc − Pl)− (Ph − Pc)

(Ph − Pl)
· volume

The accumulation of an asset is signified by this indicator as an increase, whereas
a distribution of the asset is indicated by a decrease. We are able to identify
both of these characteristics in figure 3.21. Just as with other indicators we may
also regard this indicator in relation to the price movements. For instance, if
prices decline at the same time as this indicator moves up, we are very likely to
see prices moving up in the near future.

Figure 3.21: Accumulation Distribution Line for AstraZeneca
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William’s Accumulation Distribution Line

To be able to express this indicator let us first define the true range low (TRL)
as the lowest among today’s low and yesterday’s close. Further, let us define
true range high (TRH) as the highest among today’s high and yesterday’s close.
At this point, define today’s accumulation distribution line as, At this point, we

ADt = Pc,t − TRL if Pc,t > Pc,t−1

ADt = Pc,t − TRH if Pc,t < Pc,t−1

ADt = O if Pc,t = Pc,t−1
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can define the William’s accumulation distribution line as,

WADLt = WADLt−1 +ADt

This indicator is mainly used as a tool for finding divergences. The approach is
that one should sell a particular asset if the asset makes a new high at the same
time as this indicator fail to do so. Similarly, one should buy a particular asset
if it makes a new low but William’s accumulation distribution line fail to do so.
An example of the appearance of this indicator can be seen in figure 3.22.

Figure 3.22: William’s Accumulation Distribution Line for AstraZeneca
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3.3 Construction of a Tree Classifier

Let us define a measurement space X that consists of vectors of data. Each vec-
tor x in this measurement space consists of various measurements of predefined
factors (x1, x2, . . .). These factors must describe our object in any somehow
sense and if predicting the financial markets they can for instance be as in pre-
vious sections (e.g., oscillators, stochastics, indexes and indicators).

Our main task is to classify our objects with respect to the data found in each
measurement vector x ∈ X. Given this, we are about to define our set of various
classes as C = {1, 2, . . . , J}, i.e., we have J different classes in total. These
different classes could be different species of flowers, various medical diagnoses or
other relationships depending on what type of classification one intends to carry
out. In this study we focus on classifying our data into three performance classes
of assets (J = 3): outperforming, neutral or underperforming. To establish if
an asset is outperforming, neutral or underperforming we initially create a set
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of rules where the excess rate of return of the rebalanced portfolio in relation to
the portfolio index, r, is evaluated against a predetermined threshold, R. The
threshold itself is dependent on the risk attitude of the investor and throughout
this study we set R = 1.5%. Hence, the set of rules can be stated as:

r > R ⇒ Outperforming
r ≤ |R| ⇒ Neutral
r < −R ⇒ Underperforming

When creating a classification of future data, one must conduct the observations
with respect to historic and already classified data (e.g., outperforming, neutral
or underperforming). For this reason, a learning set L must be constructed.
This set consists of N vectors that are made up by d-dimensional feature vectors
x, accompanied by the correct classification of each feature vector. In a more
general approach this means that the learning set of the classification tree is
denoted by,

L = {(x1, j1) , . . . , (xN , jN )}
where each data set (x1, j1) , . . . , (xN , jN ) is made up by the feature vector
xn ∈ X and the associated class jn ∈ {1, . . . , J} where n is the index of all
objects n = 1, . . . , N . Consequently, in our study we use a measurement matrix
(n.b. for each time period t and each asset m), where N equals the number of
cases observed, i.e., our learning period, and d equals the number of technical
indicators and we end up with a N × d matrix of measurement data with an
1×N associated vector of classes.

The classification of the data is conducted in a binary procedure and contin-
ues in a repetitive splitting. The first split of the data results in two major
descendant and disjoint subsets, X1 and X2, of our measurement space X, i.e.,
X1 ∪ X2 = X and so forth. This splitting continues recursively and results
in more but smaller subsets that are disjoint and more homogenous than the
previous set. In a more general approach this recursive classification can be
described as a partitioning of our measurement space X into J disjoint subsets.
If the subsets that are created are being denoted A1, A2, . . . , Aj and

⋃
j Aj = X

then the classifier partitions the data into subsets such that j is the predicted
class given ∀x ∈ Aj .

However, it is difficult to achieve a tree classifier that is not overfitted or exhibits
overtraining. Overfitting and overtraining occurs when the model has over-
adjusted itself too much to a specific learning set and thus becomes deficient
with new situations and data. However, there are many ways of avoiding these
challenges and as one concludes the most crucial steps of constructing a good
classification tree is to decide when a split should occur and when the splitting
should stop. Generally, if the splitting is stopped very early the classification
will not be accurate and the classification will be very heterogenous. Similarly, if
the splitting continues for a long period of time, eventually the classes will only
consist of one object and the system will be overfitted. For this reason it must
be stressed that a satisfactory approach to tree construction must be chosen
and one clearly understands that the three most important steps in growing a
classification tree is:
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1. How to decide when and how a node should be split

2. How to decide when the node splitting should be terminated and a node
should be declared terminal

3. How to decide what class the terminal node belongs to

When conducting the previous tasks the learning set is the only source of infor-
mation. For this reason it is crucial not to use more data than necessary and
efficient methods must be employed. The general consensus is that it is more
difficult to handle the first two steps than deciding what class a terminal node
belongs to. Let us for this reason introduce the methods of these steps and
illustrate how to grow a tree.

3.3.1 Growing the tree

Tree classifiers can be grown in different ways but they all have one fundamental
idea in common and that is that each new subset is purer and more homogenous
than the previous set. To illustrate this procedure let us first of all introduce
the necessary preliminary theory of Bayesian probability. First of all, define
the resubstitution estimate p(j, t) as the probability that an object belonging to
class j is at the same time at node t. This can be expressed more explicitly as

p(j, t) = π(j)
Nj(t)
Nj

In the preceding expression Nj(t) denotes the number of observations that exist
in node t and associated with class j, N(t) is the total amount of cases in the
learning sample where xn ∈ t and π(j) is the probability that class j will be
presented to the classification tree also known as prior probability. Bayesian
probability theory now provides us with the conditional probability stating that
given that a specific case has already fallen into node t, the probability that the
case also belongs to class j is given by

p(j|t) =
p(j, t)
p(t)

where p(t) =
∑
j p(j, t) is the marginal probability denoting the probability that

any case is in node t.

When conducting the splitting of the data a set of questions Q, generated from
the measurement vector, is presented initially to the root node and eventually
to child nodes. The set of questions are different depending on what type of
data that is used and the set may either be of categorical or ordered nature.
More explicitly, introduce the vector of measurements x = (x1, . . . , xM ) and let
each measurement either be categorical or ordered. If the measurement xm is
categorical and, assuming that it can take a value {k1, . . . , kL}, then the set Q
poses a question xm ∈ S where S is defined over {k1, . . . , kL}. On the other
hand, if the measurement xm is ordered the set Q includes instead questions
such as xm ≤ h where h is defined on (−∞,∞). It should be noted at this
point that the number of questions within the set Q are finite and that the
split always is dependent on one variable. Thus, at each new node, starting at
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the root node, questions on the preceding form are posed to each node. When
the question set Q is introduced to a node, each variable in x is investigated
by the algorithm and the best possible split is selected, making the potential
subset more homogenous. This is recursively made for all variables in x and we
achieve the set P denoting the best splits for each factor (x1, . . . , xM ), i.e., the
technical indicators in our study. At this point, each best possible split in the
set P is compared with all best possible splits and the split that is the superior
one and results in the most homogenous subset, is selected.

The performance of the classification tree is highly dependent on the increase
in homogeneity of each new subset. For this sake, let us introduce, for any node
t in the classification tree T , a measure i(t) that signifies the impurity of the
node. In each split s, the data is divided into proportion pR and pL depending
on if the data is sent to node tR and tL as seen in figure 3.23. The proportions
are defined as pL = p(tL)/p(t) respectively pR = p(tR)/p(t) and pL + pR = 1.

Figure 3.23: Basic structure of splitting a node
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s pR pL 

The figure displays the splitting procedure. When a split s generates

two children, a proportion pL and pR of the initial data is sent to the

children denoted by tL and tR.

Thus, we will enjoy a decrease in impurity per split which is equal to the impurity
of the root node subtracted by the proportion of impurity in each child as in
the subsequent expression,

∆i(s, t) = i(t)− pRi(tR)− pLi(tL)

Regarding a complete classification tree, like the small one in figure 3.23, we
will have a set of terminal nodes. Let us define this set of terminal nodes as T̃
and now define the overall tree impurity by,

I(T ) =
∑
t∈eT

I(t) =
∑
t∈eT

i(t)p(t)

Obviously, when a new split s is made, the new tree T ′ that is formed results in
an impurity,

I(T ′) =
∑

eT−{t}
I(t) + I(tR) + I(tL)
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It is now logical that minimizing the overall tree impurity is the same as max-
imizing the decrease in tree impurity since it is dependent on each split s and
the node t,

∆I(s, t) = I(T )− I(T ′) = I(t)− I(tL)− I(tR)
Consequently, we may form a rule for determining when we have reached a
terminal node. This is conducted by introducing a threshold β > 0 that stops
the splitting when the decrease in impurity per split has turned sufficiently
small,

max
s∈S

∆I(s, t) < β

Having established a stopping criterion we must also introduce how each ter-
minal node t ∈ T̃ is assigned a class j(t). We conduct this by observing for
which class j, that Nj(t) in the terminal node is the greatest and assign this
node class j(t), i.e., the maximum value of p(j|t) by means of the plurality rule.
Now, given that the object is in node t, let us also assign an expression r(t) for
which the object is classified incorrectly as,

r(t) = 1−max
j
p(j|t)

Further, introduce a penalty of misclassifying an object that belongs to class i
into class j as C(i|j) where,{

C(i|j) ≥ 0, i 6= j
C(i|j) = 0, i = j

When we implement the classification algorithm in this study we set the C(i|j) =
1 if i 6= j and C(i|j) = 0 if i = j. Having this stipulated, we are able to express
the expected cost of incorrectly classifying an object of class j as class i when
being in node t as, ∑

j

C(i|j)p(j|t)

This in its turn makes it possible to refine the initial class assigning rule and
we choose to assign a terminal node class j(t) = i if i minimizes the subsequent
misclassification cost. Moreover, redefine r(t) as,

r(t) = min
i

∑
j

C(i|j)p(j|t)

In the same procedure as for tree impurity for a complete classification tree, we
can express the misclassification cost of the complete classification tree as,

R(T ) =
∑
t∈eT

R(t) =
∑
t∈eT

r(t)p(t)

This form of splitting and these class assignment rules are used as preliminary
basics when implementing our algorithm. However, the presented method must
be altered due to some deficiencies. When using this form of R(T ), the total
cost of classifying incorrectly is decreased for every split and it seems like the
results are improving. Moreover, it may be the case that all splits in S return
a misclassification cost of zero and that for this reason there does not exist a
number of best splits.2 However, this is not the case and one would eventually

2For a proof on this matter please refer to Breiman et al. (1984)
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end up with an overfitted system. For this reason, we refer to the findings of
Breiman et al. (1984) where they show that it is more effective to create a large
complete classification tree that overfits the data and then use various tech-
niques of pruning to achieve better generalization to new data. For this reason,
we initially create a very large tree and then use the pruning techniques as pre-
sented in upcoming sections. Furthermore, what we also take into account are
advantageous techniques for splitting nodes and creating the complete classifica-
tion tree. In some literature, it is argued that the choice among well-recognized
splitting rules does not matter. However, according to Salford Systems3 the de-
cision of splitting rule might reduce the error rate by 5-10 % depending on data
set [32]. For this reason we choose to evaluate the Gini Index as well as Twoing
Rule splitting rules and implement the superior one in the final algorithm.

Gini Index

The Gini index splitting rule is a very simple but effective method, based on the
ideas of the previously mentioned splitting impurity function. Hence, at each
node we try to find the split that makes a potential subset more homogenous
than the previous set and this is conducted by choosing the split that reduces
the impurity of the tree the most. However, the major difference is that this
method does not exhibit the deficiencies of the preliminary impurity function.

Let us once again consider the method of assigning a node t with the class j
that has the largest posterior probability. The fundamental idea of the Gini
index splitting criterion is that we pick a random object from the node t and
assign it class i. Consequently, the probability of this class is chosen is the
posterior probability p(i|t). In addition, consider the likelihood of this case really
belonging to class j, which is the posterior probability p(j|t). The Gini index,
which is an impurity measure, is now defined as the sum over the intersection
of these probabilities as,

i(t) =
∑
j 6=i

p(j|t)p(i|t) = 1−
∑
j

p2(j|t)

By means of implementation, the Gini index tries to conduct a split into two
children where the largest or most important class of the parent is separated
from the other classes and this is continued in a recursive manner. In this
study we only focus on the classes that are the largest and do not consider any
classes as more important than others by using customized weights or variable
misclassification costs.

Twoing Rule

The Twoing rule is very different in comparison with the previous splitting rule
but employs the preliminary ideas of splitting and Bayesian probability. The
fundamental technique of the splitting rule is that we initially try, rather than
splitting by the most important or largest class, to segment the data into two
equally sized subgroups. When conducting this separation, we try to find a
general common factor that can be used to separate the initial set into the two

3Market leader in choice modeling and data mining software development
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subgroups. When the separation has been made, we search for the split that,
as previously shown, results in a maximization of the decrease of the impurity.
Having established the splitting that would result in the biggest decrease of
impurity, we redefine the selection of the initial separation of the set of classes
by conducting yet another maximization. At this point we focus on the initial
separation of the learning set into two groups and search for the possible separa-
tion that would decrease the impurity of the previous split the most. Hence, at
each node the Twoing splitting rule conducts a dual maximization. As a matter
of fact, one may regard the splitting at each node as if there only existed two
possible classes. By doing this4, we may reduce the overall complexity and we
can express the impurity as,

i(t) =
pLpR

4

∑
j

(|p(j|tL)− p(j|tR)|)

2

3.3.2 Pruning the tree

Recall that it is very ineffective and difficult to create a good classification tree
by terminating the splitting procedure after a certain amount of splits. Instead,
as suggested by Breiman et al. (1984), it is more effective to grow a very large
tree, sometimes until each terminal node is associated with only one object or
that all objects belong to the same class, and then use pruning techniques to
reduce the size of the tree.

By means of the previous splitting techniques, we construct the maximum tree
Tmax. When this maximum tree is created we strive to prune the tree by using
the previous misclassification rates R(T ) together with the complexity of any
subtree, |T̂ |. The complexity of any tree is the number of terminal nodes in a
partially ordered subtree T of the overly large tree Tmax, i.e., T 4 Tmax. By
definition, given a complexity cost of each terminal node as α ≥ 0, the cost
complexity measure is,

Rα(T ) = R(T ) + α|T̂ |

Consider the alternative that we have a small tree, then obviously we achieve a
large R(T ). Similarly, if we have a large tree, with only one object per terminal
node and class, R(T ) = 0 but Rα(T ) 6= 0 due to the complexity of the tree.
Hence, we strive to minimize the cost complexity of the tree by searching for
subtrees that can be eliminated in a nested partially ordered set of subtrees,

Tmax � T1 � T2 � . . . � TR = {root}

When deciding which subtree to eliminate, it is a fairly ingenious step to consider
finding the weakest connection of a subtree. To find the weakest connection, we
introduce a function gr(t), where we step through all connections in the tree,
as5,

gr(t) =
R(t)−R(Trt)

|T̂rt| − 1

4For a proof on this matter please refer to Breiman et al. (1984)
5For a derivation of this expression we refer to Breiman et al. (1984)
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In the expression, t denotes an internal node of one of the nested subtrees Tr
and Trt denotes its connection to the node t. Hence, the weakest connection in
the tree Tr is the one that has the smallest value for gr(t),

gr(t?r) = min
t∈Tr

gr(t)

This pruning is continued recursively until we reach the root node which means
that for each new pruning level, a nested subtree is eliminated from the initial
tree, Tr+1 = Tr − Tt?r . Consequently, we will achieve a partially ordered set of
subtrees as previously described, starting with the maximum tree and ending
with the root node. Further, at each new pruning level, we update the com-
plexity cost as αr+1 = gr(t?r) which in its turn results in an increasing sequence
{αr} for r ≥ 1 where α1 = 0. At this point, we introduce a theorem that, under
the subsequent conditions, states that the minimal cost complexity tree within
the interval αr ≤ α < αr+1 is,

T (α) = T (αr) = Tr (3.2)

We have thus reached the point where we have a sequence of both subtrees and
cost complexity parameters. We have also established that the minimal cost
complexity tree exists within the stipulated sequence of trees. Nevertheless, we
do not know which tree that accounts for the best pruning level and must there-
fore introduce additional techniques to establish this. Among several possible
approaches, we have considered using Cross-Validation.

Cross-Validation

The method of cross-validation is a based on a large amount of learning and
testing sets that are generated from the original learning sample L. The method
is very demanding when it comes to computations; however, it produces results
that can be considered more stable when using smaller amounts of data. Very
often, other methods of pruning techniques would generate more accurate re-
sults on the training set due to underestimation of the misclassification error
and overfitting of data. However, empirical results it is shown that smaller trees
generate better results than complex ones.

The fundamental idea of cross-validation is that we use as much information
from the learning sample L as possible by separating it into K subsets. In this
study we use the K = 10, which is also the standard within the literature, known
as 10-fold cross-validation. Every subset, which we define as Lk, will be used as
a test sample in the algorithm. The rest of the available data, L(k) = L − Lk
where k = 1, . . . ,K, will be used to create new trees T (k)

r by the previously
introduced technique. Since we create sequences of trees and cost complexity
parameters for both our initial learning sample L and our K generated samples,
we will achieve K + 1 sequences of trees and parameters.

As the superior tree Tr, for any sequence of trees, lies within an interval of com-
plexity costs, as seen in equation 3.2, we must redefine this interval to be able
to conduct estimations of the misclassification. For this reason, consider that
we instead employ the geometric mean of the interval α?r = √αrαr+1, which in
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its turn makes it possible to get an estimation of the misclassification cost.

Recall that our main objective is that we want to minimize the overall mis-
classification cost, Rα(T ), of the tree. To do this, we will use the sequence of
generated trees to achieve the trees with same complexity as our original tree.
Now consider equation 3.2 again. If we use this theorem we can achieve the
estimate of the cost complexity measure for each subtree Tr as,

R̂(Tr) = R̂(T (α?r))

This is explicitly conducted by finding all generated trees T (k)
r where α?r , which

is associated with the tree Tr, lies within the generated interval [α(k)
r , α

(k)
r+1).

When we have found all these trees we evaluate the associated k:th test set Lk
in each generated tree T (k)

r and create a vector that has the same amount of
ones as the number of incorrect classifications and zeros as correct classifica-
tions. This procedure is made for all subtrees Tr and we set R̂(Tr) as the mean
of the vector consisting of zeros and ones. Now, the best-pruned tree is the
tree that has the fewest nodes, i.e., greatest value of r and that is within one
standard error of the minimum R̂(Tr) for all r. This rule is known as the 1 SE
rule.6

Having established the rule of optimal pruning, we use this in our algorithm for
each time period and for each asset. Generally, the pruning establishes trees
that are fairly small with few terminal nodes as seen in the figure 3.24 where
the graphs represent the error dependence of the number of terminal nodes.

3.4 Construction of Rebalanced Portfolio

To construct our portfolio, we start by introducing the sequence of weekly un-
classified sets of features and achieve a classification based on previous patterns.
When the algorithm has classified the assets at each new time period as either
outperforming, neutral or underperforming we intend to increase the value of
the portfolio by rebalancing the assets based on the classification. As the clas-
sification algorithm is implemented with a training period of 20 weeks and the
technical indicators use a certain number of weeks of historical data, the first
trading positions can be taken after 6 months of recorded data.

When conducting the rebalancing of the portfolio, we decide to only take long
positions of the assets that are classified as outperforming. However, we restrict
ourselves and do not allow taking short positions in underperforming assets nor
keeping positions in neutral assets. Hence, at each new time period all positions
are changed with respect to the classification of the new time period. When
conducting this we include transaction costs and when buying or selling assets
15 basis points7 are deducted from the value of each transaction.

Due to regulations regarding investment funds, which is stipulated by Swedish
law8, the percentage invested per asset is limited due to risk reduction. However,

6For a more explicit discussion on this topic we refer to Breiman et al. (1984)
7One basis point equals 1/100th of one percent
8For a comprehensive discussion please see ‘Lag (2004:46) om investeringsfonder’.
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Figure 3.24: 10-Fold Cross Validation Calibration of Classification Trees
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The figure displays the error for each tree generated for AstraZeneca. As seen

in the upper plot the best sized tree is the one that has the fewest terminal

nodes but within one standard error of the tree with the lowest cost.

we use a simplification of the law and decide only to invest a maximum of 20
% of the total fund value in an asset that is classified as outperforming. If not
enough assets are classified as outperforming, the rest of the fund’s value will be
invested at the risk free rate, here defined as the mean weekly Stockholm Inter
Bank Offered Rate (STIBOR) as seen in figure 3.25.

3.5 Sharpe Ratio

When investing in funds it is common to use risk-adjusted returns. This gives
an insight of the risk taken in comparison with the return of a portfolio. To be
able to measure this one usually employs the Sharpe ratio which is defined as,

S =
R−Rf

σ

In the subsequent expression, R denotes the realized return of the portfolio, Rf
is the risk-free rate of return and σ is the standard deviation of the difference
R − Rf . When measuring the Sharpe ratio for our rebalanced and index port-
folio we use the mean STIBOR as the risk-free rate of return.

The Sharpe ratio is often used to compare two portfolios to each other. The
portfolio that exhibits the highest Sharpe ratio is considered as the superior
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Figure 3.25: Accumulation Distribution Line for AstraZeneca
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The mean weekly STIBOR during the period 010103 - 010108.

portfolio, since it generates higher returns with respect to risk. Generally, it is
considered that the risk taken within an investment should be proportional to
the Sharpe ratio. This means that if we have one portfolio that has a Sharpe
ratio that is half that of another portfolio, the half of the risk should be taken
when investing in the first portfolio. Moreover, a portfolio that has a Sharpe
ratio that is positive should be bought, whereas a portfolio that exhibits a
negative Sharpe ratio should be held short. Similarly, a portfolio that has a
Sharpe ratio of zero should not be considered using since one may instead use
the risk-free rate of return [33].
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Chapter 4

Results

In this chapter we discuss the results achieved when running the model. Further,
we will discuss the impact of behavioural finance on the trading system and
the stock market since it seems as if the efficient market hypothesis does not
completely hold and this may affect the sector of applicability and validity of
the system

4.1 Performance of model

The performance of the classification is very crucial for the overall performance
of the trading system. What is most important is the rate of misclassification
and especially the number of cases where underperforming assets are classified as
outperforming. The reason for this is that these classifications will influence the
performance the most since they account for large negative returns. Similarly,
we wish to achieve a low proportion of assets that are neutral but classified as
outperforming. However, since they only account for small negative returns as
well as small positive returns, this type of misclassification is not as important
as the previous one. Nevertheless, we wish to achieve an overall high rate of
correct classifications as well as of assets that are outperforming and classified
as outperforming. When our classification algorithm is executed we achieve the
results as seen in table 4.1. When running the algorithm using the Gini index
and the Twoing rule, we achieve better results when using the Twoing rule and
therefore we use this splitting technique for the empirical results.
As seen, we get a total classification that is slightly better than 50 %. Moreover,
the classification of an outperforming asset as outperforming is significantly bet-
ter than just classifying an asset randomly with a probability of correct classifi-
cation of 33 1

3 %. Similarly, assets that are neutral are classified as outperforming
at quite a high rate but still lower than a random classification. Further, what
might be most important is the rate of assets that are underperforming and
classified as outperforming. This rate is very low and for this reason we get a
low degree of negative returns.
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Table 4.1: Hit ratio of classification: total, outperforming/outperforming
(O/O), neutral/outperforming (N/O) and underperforming/outperforming
(U/O)

Asset Type: [%]: Type: [%]: Type: [%]: Type: [%]:
ABB Total 53.8 O/O 50.0 N/O 44.8 U/O 7.4
AstraZeneca Total 53.8 O/O 37.5 N/O 21.8 U/O 5.7
AtlasCopco Total 50.4 O/O 35.8 N/O 20.7 U/O 3.9
Boliden Total 61.9 O/O 48.2 N/O 33.5 U/O 7.6
Electrolux Total 42.0 O/O 42.8 N/O 27.5 U/O 8.9
Nordea Total 53.4 O/O 38.4 N/O 23.0 U/O 9.5
Sandvik Total 47.5 O/O 37.0 N/O 22.1 U/O 9.4
SKA Total 48.3 O/O 36.9 N/O 22.2 U/O 9.0
SHB Total 59.9 O/O 34.0 N/O 19.1 U/O 8.7
Volvo Total 49.9 O/O 32.4 N/O 18.3 U/O 8.2
Portfolio Mean 52.0 Mean 39.3 Mean 25.3 Mean 7.8

The performance of the classification results in that outperforming assets are
chosen at a somewhat slow pace during the rebalancing and it seems like some of
the assets that are close to being neutral are being misclassified at a higher rate.
However, since few underperforming assets are being included in the portfolio,
the amount of positive returns of the rebalanced portfolio is quite stable. This
can be seen in figure 4.1.
As one sees, the amount of positive returns is much larger of the rebalanced
portfolio than of the index portfolio. One might say that, by using classification
trees, one is able to avoid large negative returns. When examining the lower
plot in figure 4.1, we see that returns are both negative and positive with ap-
proximately the same distribution. If we conduct a histogram over the index
portfolio returns and a QQ-plot we see that they are more or less normally
distributed with a slightly fat lower tail as seen in figure 4.2 and figure 4.3.
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Figure 4.1: Returns of rebalanced portfolio and index portfolio
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A bar plot of the returns of the rebalanced portfolio and the index

portfolio. One can clearly see that most returns of the rebalanced

portfolio are positive.

As we have shown, the returns of the rebalanced portfolio will not show a nor-
mally distributed behaviour that fluctuates around zero. Rather, it will be
centred at a positive value with a slightly positive skewness as seen in figure 4.4.
A QQ-plot, as seen in figure 4.5, reveals that the lower tail is slightly thinner
than a normal distribution and that the upper tail is slightly fatter.
As seen in the figures, the returns of the rebalanced portfolio exhibit a slight
positive skewness. This holds since the mass of the distribution is to the left
and that the upper tail is much fatter than the lower tail. If we measure the
skewness and the kurtosis of the index and the rebalanced portfolio we get the
results that can be seen in table 4.2.

Table 4.2: Skewness and Kurtosis

Portfolio: Skewness: Kurtosis:
Index -0.69 5.56
Rebalanced 2.74 11.85

Hence, it is obvious that the value of the rebalanced portfolio is performing
better than the index portfolio. If we regard the evolution of the value of both
portfolios over time, as seen in figure 4.6, we see that the rebalanced portfolio
has an annually return of 30-50 % whereas the index portfolio has an annually
return of 0-10 %.
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Figure 4.2: Histogram of the index portfolio
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Histogram of the index portfolio returns. As seen most returns fluctuate

around zero and the tails are a bit heavier than the fitted normal

distribution.

Figure 4.3: QQ-plot of the index portfolio
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QQ-plot of the index portfolio returns.

When we regard the complete time period as in figure 4.7, we see that the re-
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Figure 4.4: Histogram of the rebalanced portfolio
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Histogram of the rebalanced portfolio returns. We see that

most observations are zero and a larger amount of positive

returns than negative.

Figure 4.5: QQ-plot of the rebalanced portfolio
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QQ-plot of the rebalanced portfolio returns.

balanced portfolio has reached a value of approximately 700 SEK whereas the
index portfolio has only reached a value of approximately 150 SEK.
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Figure 4.6: Value of rebalanced portfolio and index portfolio
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The figure represents a sequencing of index portfolio and the rebalanced portfolio.

As seen the rebalanced portfolio experiences a great increase in value

in comparison with the index portfolio.

By appearance, it seems like that the rebalanced portfolio follows the index
portfolio’s movements, but with a greater efficiency. This is not very surpris-
ing since the rebalanced portfolio consists of the same assets as in the index
portfolio and great portfolio returns will be included in both the index portfolio
as within the rebalanced portfolio at the same time. However, since the index
portfolio consists of the complete set of assets and is constant during the whole
trading period, significant positive returns from some assets will be erased or
smoothened by significant negative returns from other assets. For this reason
the index portfolio will not be able to experience the same increase in value
as the rebalanced portfolio, which is allowed to experience great returns from
individual assets.
In table 4.3 we see the performance of the rebalanced and the index portfolio
per month, measured from the first trading week. As seen, the rebalanced
portfolio has gained an excess rate of return of more than 400 % if compared
with the index portfolio. This return might seem immense, however, the excess
returns might at the same time be dramatically reduced if transaction costs are
increased.
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Figure 4.7: Value of rebalanced portfolio and index portfolio
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The figure represents the index portfolio and the rebalanced portfolio.

We see that the rebalanced portfolio has a higher value in comparison

with the index portfolio.

What also must be considered is that the overall market sentiment over the
period has been positive and this is something that significantly effects the
performance of the rebalanced portfolio. We are only able to conclude that
the algorithm works well in a positive market since it is fairly easy to classify
outperforming stocks. On the other hand, just as the rebalanced portfolio might
experience great returns, it may also be a subject of great losses. For instance,
as the algorithm only learns on historical data sudden great changes in the
market will not be acknowledged by the algorithm immediately and only after
it has been present for a long period of time. As an example of this, we might
consider the large negative return during spring of 2006 where the rebalanced
portfolio experiences a great decrease in value. Similarly, we see that during the
subsequent trading period of the great return (i.e. 2005-2007) the value of the
rebalanced portfolio is very volatile. Not surprisingly, the index portfolio is a
bit more volatile as well and the general market sentiment seems eventually to
be going in to a negative trend.
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Table 4.3: Technical indicators that are used in the study and the specific group
that each indicator belongs to.

Year Type Jan Feb Mar Apr May Jun
2003 Index: - - - - - 100.00

Rebalanced: - - - - - 100.00
Performance: - - - - - 0.00

2004 Index: 115.12 117.27 114.38 112.82 117.71 113.91
Rebalanced: 161.19 163.96 169.47 169.48 171.48 175.34
Performance: 40.01 39.82 48.16 50.22 45.68 53.93

2005 Index: 108.25 110.50 117.65 119.35 119.92 122.94
Rebalanced: 229.13 236.13 251.38 254.54 251.19 269.11
Performance: 111.66 113.68 113.67 113.27 109.47 118.89

2006 Index: 159.57 160.81 170.58 179.14 189.83 148.10
Rebalanced: 371.06 423.65 443.03 466.93 501.35 513.33
Performance: 132.53 163.45 159.72 160.65 164.11 246.61

2007 Index: 178.84 180.17 191.87 188.00 179.81 179.96
Rebalanced: 627.11 673.54 670.53 681.05 681.71 699.35
Performance: 250.65 273.83 249.47 262.26 279.13 288.61

Year Type Jul Aug Sep Oct Nov Dec
2003 Index: 102.22 107.78 112.45 109.84 115.45 112.49

Rebalanced: 102.81 126.76 138.08 144.18 154.41 154.79
Performance: 0.58 17.61 22.79 31.27 33.76 37.61

2004 Index: 108.83 107.09 112.82 109.67 112.25 109.75
Rebalanced: 177.28 185.85 196.07 205.77 214.75 222.03
Performance: 62.89 73.55 73.79 87.63 91.31 102.31

2005 Index: 128.51 135.13 136.45 141.74 145.72 153.17
Rebalanced: 279.38 283.34 292.92 307.06 336.60 355.88
Performance: 117.40 109.69 114.67 116.64 130.99 132.35

2006 Index: 153.30 158.28 166.91 172.81 175.78 167.21
Rebalanced: 523.52 561.03 569.54 602.04 616.00 624.73
Performance: 241.49 254.44 241.23 248.39 250.43 273.62

2007 Index: 182.85 161.41 161.84 172.35 156.93 150.57
Rebalanced: 696.71 681.48 699.68 747.81 728.31 764.05
Performance: 281.03 322.22 332.31 333.88 364.11 407.44

Total Index: 146.50
Rebalanced: 751.09
Performance: 412.69

In order to anticipate the risk-adjusted returns of the portfolios we analyze the
Sharpe ratio and the difference in the ratio over a rolling years period as intro-
duced earlier.

From figure 4.8 we can see that the Sharpe ratio of the rebalanced portfolio varies
somewhat over time between approximately 0.5 and 1. On the other hand, the
Sharpe ratio of the index portfolio is significantly lower and varies over time
between approximately 0 and 0.5 and sometimes even negative. This means
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Figure 4.8: Plot of the Sharpe ratio
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The figure represents the Sharpe ratio of the two portfolios over time.

The upper plot represents the ratio for the rebalanced portfolio and the

lower plot represents the ratio for the index portfolio.

Figure 4.9: Bar plot of the excess Sharpe ratio
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The bar plot shows the difference in Sharpe ratio between the rebalanced

and the index portfolio.

that the index portfolio can at some points be compared with the performance
of the risk free rate of return. This is not the case for the rebalanced portfolio
and it performs better. Moreover, it is interesting that the large negative returns
during spring 2006 is acknowledged by the Sharpe ratio, just as the more volatile
period during the later phases of the trading period.
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4.2 Behavioural Finance

One could argue that irrational investors are the main reason why patterns
are present within price data and why technical analysis might actually work.
If investors were rational and based their decisions on fundamental analysis,
anomalies would not be present and the stock market would be very different
than today. If investigating the most important split factors of the algorithm
we get a pie diagram as in figure 4.10 and figure 4.11. The abbreviation that
are used in the figures are summarized in the table 4.4.

Table 4.4: Technical indicators that are employed in the classification tree and
their abbreviation.

Name of technical indicator: Abbreviation:

Momentum 2 Weeks PMOM2W
Momentum 4 Weeks PMOM4W
Fast Stochastics %K STOCHOSCK
Fast Stochastics %D STOCHOSCD
Highest High 4 Weeks HHIGH4
Highest High 8 Weeks HHIGH8
Lowest Low 4 Weeks LLOW4
Lowest Low 8 Weeks LLOW8
Price and Volume Trend PVT
Accumulation Distribution Line ADLN
Relative Strength Index RSI
Volume Rate of Change 2 Weeks VROC2
Volume Rate of Change 4 Weeks VROC4
Price Rate of Change 2 Weeks PROC2
Price Rate of Change 6 Weeks PROC6
On-Balance Volume OBV
Chaikin Volatility CHVOL
Accumulation Distribution Oscillator ADO
Median Price MPRC
Difference Median Price and Modified MA MPRCDIFF
Negative Volume Index NVI
Positive Volume Index PVI
Slow Stochastics %K SPCTK
Slow Stochastics %D SPCTD
Acceleration Between Times ACC
PercentB PERCENTB
Bandwidth BANDWIDTH
Volatility VOLATILITY
William’s Accumulation Distribution Line WADL
William’s %R WPCTR

As seen in the pie diagrams, factors such as Price Rate of Change (PROC), Price
Momentum (PMOM) and Volume Rate of Change (VROC) with different time spans
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Figure 4.10: Pie chart of the split factors
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Figure 4.11: Pie chart of the split factors
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are very common splitting factors. This can be regarded as being related to
some of the theories within behavioural finance. The anomalies that might be
the most important for this study are herd behaviour and momentum invest-
ing. The herd behaviour suggests that investors often move in sync without
any predetermined strategy. This could thus affect different momentum and
rate of change indicators since, if the price changes immensely, it is likely that
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other investors will also take positions in the asset. Moreover, the theory of
momentum investing is very likely to be related to the previous herd behaviour.
This theory suggests that assets that have had a positive returns for a longer
period of time are likely to experience even higher returns in the nearby future
which supports the findings of momentum indicators among the most important
splitting factors.

It can also be believed that the algorithm may encounter problems when using
other sets of data within different price ranges. According to a study conducted
by Black (1986) investors choose shares based on an irrational behaviour. It is
shown that many investors prefer low priced stock since they believe that high
priced stocks can decrease more in value during a drop. Similarly, Brennan
and Hughes (1991) conclude that a low priced stocks are negatively correlated
to the amount of analyst following the company, a result that is also acknowl-
edged by Bhushan (1989). This may be an explanation of why low-priced assets
have irrational and less informed investors and might therefore exhibit complex
or non-existing patterns for technical analysis. Since splitting rules must be
encountered by the algorithm several times before they become important split-
ting factors, lower priced stocks might therefore not be suitable for algorithmic
trading systems based on classification trees.
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Conclusion

This chapter concludes the findings of this study. We discuss possible modifica-
tions of the study and recommendations for further research and we also bring
up the topic of behavioural finance.

By implementing an algorithmic trading system based on classification trees we
are able to conclude that the method is very capable and that the results are
promising. By using technical analysis we are able to find patterns that, in some
cases, may forecast stock price movements. Since we only use a one-week fore-
casting period, based on the previous 20 weeks, the rates of change of both price
and volume are significant. We also find that the trading system can generate
significant positive returns even with trading costs included and our modified
regulations regarding the maximum weight allowed per asset in the portfolio
taken into account. When running our model we achieve 412% in excess return
when compared to our initial index portfolio. Further, our rebalanced portfolio
also show a greater Sharpe ratio over time. On the other hand, it is also noted
that, if the market changes a lot at a fast pace, the algorithm will most likely not
perform as well as when the market is experiencing a constant increase. This is a
consequence of that the patterns must have been experienced before and related
to a particular movement of the stock. Our results are found during a fairly
constant increase of stock prices and we have not examined if the algorithm will
perform well in other market conditions. For this reason, in future research it
may be relevant to analyze the overall trend of the market coupled with the
financial cycles. Moreover, we have also assumed that the financial market ex-
hibits perfect liquidity of stocks, meaning that there always exists a buyer and
a seller. In addition, we have also assumed that all trades occur instantaneously
without any price movement. In a real-life implementation this would not be
the case and this might severely affect the performance of the trading system.

One might also wonder how well the algorithm would be able to capture pat-
terns in future data and in sets of data within other price ranges. The influence
of behavioural finance and anomalies in the financial market are obvious and
must be accounted for if using the trading system with other data sets. Even
though the algorithm is used with pruning techniques that reduce the effect of
being in-sample, the system has not yet been implemented in a real-life, out-of-
sample environment. Most likely, the performance of the trading system will be
reduced, however this is yet to be tested.

Future research could include other types of data, both categorical and ordered
as well as fundamental data. It would be interesting to examine the performance
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of other pruning and splitting techniques as well as bagging or boosting methods
such as Random forests. Finally, hybrid models of classification and regression
trees, together with other pattern recognition models such as artificial neural
networks or genetic algorithms may improve the results significantly.

We also conclude that the impact of behavioural finance on the relationship
between stock price and future price movements is important and that it is
definitely a topic that needs further research.
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