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Abstract

Investors holding structured products are advised to rebalance their positions in order
to lock in profits or to enhance their portfolios’ return potential. This thesis analyzes
rebalancing situations that arise when investing in principle protected notes and non-
principle protected certificates, which are linked to a stock index. The rebalancing
decision is determined in a two-stage procedure. In the firststage, return scenarios are
generated by simulating the evolution of the structured products’ risk factors under the
physical measure. Structured products are traded over-the-counter and therefore the
investor is exposed to credit risk. The presented approach incorporates this risk factor.
The simulation procedure is based on a statistical factor model using Principle Compo-
nent Analysis. In the second stage, the portfolio weight adjustments are determined by
solving a scenario optimization program that takes into account trading constraints and
proportional transaction costs. Experiments conclude that the representative quality of
the scenarios is insufficient when the simulation procedureis solely based on historical
data. Adding a subjective view to the simulation methodology can increase the repre-
sentativeness of the scenarios, depending on the accuracy of the view. The conducted
investigations conclude that rebalancing is necessary in order to meet the investor’s risk
requirements and to maximize the reward potential.

Keywords: Structured products, portfolio optimization under transaction costs,
scenario optimization, statistical factor models
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1
Introduction

Structured products, such as principle protected notes (PPN), have been a popular asset
class for both institutional and private investors. In marketing material they are often
advertised as a safe investment that guarantees a minimum payoff at maturity and per-
mits profiting from positive developments in the underlyingmarkets. Most investors
see a structured investment (here interchangeably used with structured product) as a
typical buy-and-hold asset. In other words, a structured product is bought and held
until its maturity. This practice is due to the belief that the exposure to market risk is
restricted by the guarantee feature of the PPN at maturity. One forgets though that the
risk and reward characteristics of a structured product evolve with time and changing
market conditions. This report will formulate how the characteristics of a portfolio of
structured investments can be analyzed, and how a rational investor with a given risk
conception should react to these changing attributes of hisportfolio (referring to the
investor as a male does not imply anything on the gender of an investor in general).

1.1 Definition of structured products

A structured product is an investment vehicle that is available in numerous variations,
therefore it is important to clarify which type is considered in this investigation. A
PPN is a structured investment that is a prepackaged combination of a zero coupon
bond and an at-the-money (ATM) plain vanilla call option on an underlying. The bond
and the option are denoted in the same currency and have matching maturity. The price
of a PPN on the date of issue is equal to the face value of the bond, which is set to be
the current price of the underlying. The amount of options included in the structure is
the difference between the face value and the current price of the bond, divided by the
price of the option. This is known as the participation rate1. At maturity the owner
of a PPN receives the face value of the bond plus the payoff of the call option times
the participation rate. Some PPNs have a minimum payoff feature which is equal to
just a fraction of the issue price. These products have a higher participation rate since
the difference between the issue price and the guaranteed payoff, which is equal to the
face value of the bond, is invested in an ATM call option. In this report a PPN always
guarantees a minimum payoff equal to the issue price. If an investor wishes to obtain
a higher participation rate, he can purchase another structured investment called non-
principle protected certificate (NPPC) which is identical to one option included in the

1It is common practice to refer to the participation rate as the percentage of the difference between the
face value and the current price of the zero coupon bond times the ratio of the current value of the underlying
and the price of the option
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CHAPTER 1. INTRODUCTION

PPN. By adding NPPCs to a fixed amount of PPNs, any participation rate greater or
equal to the one of the PPN can be reached. Figure1.1.1illustrates how a structured
product is valued in terms of its components.

Figure 1.1.1: Illustration of the value of structured product in term of its components.
The left bar shows a PPN and the right bar shows a PPN plus a NPPC.

1.2 Motivating example

The following example, which is closely related to an illustration in Nyman (2009),
shows investment situations that arise when holding structured products. The goal is
to motivate that a portfolio of structured investments should be evaluated on a regu-
lar basis in terms of its risk and reward characteristics. Repositioning has two main
reasons. One is that the investor holds a position which becomes more risky than his
risk tolerance allows. The second is that the portfolio’s reward potential is below the
reward requirement of the investor.

In this motivating example, the investor is assumed to have atime horizon of ten
years and exclusively hold PPNs with three years time to maturity. To simplify the
situation the interest rate and the volatility of the underlying are assumed to be constant.
Figure1.2.1presents the development of the underlying index and the evolution of the
investor’s portfolio value.

The time span is divided into four different investment periods. At the beginning
of each period the investor’s total wealth is put in the PPN issued at that time.

During the first period the underlying asset experiences a bull market. The option
included in the structure goes deep in-the-money, and the market value of the PPN
increases significantly. At the end of the first period the PPNwith one year time to
maturity is sold and the received cash flow is reinvested in a newly issued PPN. The
portfolio owner secures accomplished gains by selling the structured investment prior
to its maturity. Why is this a rational decision? At the beginning of period one, the
largest loss the investor can realize over the next three years is equal to zero. Two years
later, the structured product has a current market value above its issue price. With
one year time to maturity the largest loss the investor can suffer over the next year
is no longer equal to zero. The owner risks to lose the difference between the PPN’s
current price and its issue price over the next year. The current value of the PPN is 90%
above the issue price and therefore the investor risks to lose up to 47% of his current
wealth over the next year. An alternative investment opportunity is the currently issued
PPN. The maximum loss which can be realized over the next yearwhen holding this

2



1.2. MOTIVATING EXAMPLE

Figure 1.2.1:Portfolio value development of an investor who has a time horizon of 10
years. The solid line represents the portfolio value measured on the left-hand scale. The
dotted line corresponds to the underlying index level measured on the right-hand scale.
The dashed-dotted lines indicate the portfolio rebalancing times. The guarantee feature
of the PPNs is illustrated by the dashed arrows. The length ofthe arrow symbolizes
the time to maturity. The rebalancing situation at the end ofperiod 1 illustrates early
selling to secure realized gains and the one at the end of period 3 shows early selling to
increase the reward potential of the portfolio.

structure is around 7%. This corresponds to the scenario where the option becomes
nearly worthless and the value of the structured product is equal to the price of a zero
coupon bond with two years time to maturity.

In period two the investor holds the structured product until its maturity. In this
case the terminal value of the underlying is below the strikeand therefore the received
payoff is equal to the initial investment, which is then reinvested in a newly issued
PPN.

During period three the underlying asset experiences a bearmarket. At the end of
the period the structured investment has one year left untilmaturity and the option is
deep out-of-the-money. The potential reward from holding the option over the next
period is very small, since the event of the underlying’s value being above the strike is
unlikely. The worst case scenario loss the investor can carry out over the next year is
a negative value, since the current value of the PPN is below the issue price. From a
risk perspective this situation is favorable, because the PPN will give a positive return
over the next year regardless of the price of the underlying at maturity. Examining the
situation from a return perspective, it is almost equivalent to just holding a bond with
one year time to maturity. Since this is below the return requirements of the investor,
he sells his position and receives the market value of the PPNwhich is equal to the
current price of the bond plus current price of the option. With the received cash flow
the investor purchases the currently issued PPN that has a higher potential reward than
holding his previous position over the next period. The new position is risky and highly
dependent on the performance of the underlying.

In the fourth investment period the structured investment is held until its maturity.
The investor achieves a profit due to a high performance of theunderlying at the end
of the period.

3



CHAPTER 1. INTRODUCTION

To keep the example simple some effects were ignored. First of all, interest rates
do change through time and future interest rates are stochastic as see from today. This
means that the future price of a bond prior to its maturity is unknown. Also the volatility
of the market changes through time which will have a significant impact on the option
price. Changes in the interest rates and in the underlying’svolatility will lead to vari-
ation in the participation rate of PPNs issued at different points in time, since this rate
is dependent on those factors. Structured products are traded over-the-counter (OTC),
which introduces credit risk as an additional factor influencing their price prior to their
maturity. Moreover, buying and selling financial assets also involves costs which in-
fluence the rebalancing decision. In this report, the investor’s portfolio is analyzed in
terms of expected return and Conditional Value-at-Risk2 (CVaR), and rebalancing de-
cisions are made to optimize his position according to his risk and reward requirements,
in the presence of transaction costs.

1.3 Report outline

The thesis is structured in the following way: Readers who are unfamiliar with the fol-
lowing concepts: CVaR as a risk measure, scenario optimization, portfolio optimiza-
tion with transaction costs, statistical factor models andcredit default swaps should first
read the chapter calledTheoretical Background, which explains these concepts that are
necessary to follow later investigations. The chapterAnalysis of the rebalancing deci-
sionexplains how a model of the underlying risk factors influencing the market value
of the portfolio can be built and how the portfolio choice problem is formulated. The
main part of the report is presented in the chapter calledInvestigations. This chapter
consists of four sections with different topics. Each section opens with its purpose and
closes with conclusions from the conducted experiments. The first section investigates
the effects of the risk specification on the portfolio weights and on the performance
of the rebalancing strategy. The second section incorporates the investor’s subjective
view in order to reduce the return scenarios’ dependence on historical trends in the risk
factors. Experiments are carried out showing that a subjective view of good quality can
enhance the performance of the rebalancing strategy. The third part studies the impact
of transaction costs on the portfolio weights and on the performance of the rebalancing
strategy. In the fourth part, the model of the investment decision is extended in order
to take into account credit risk. The effects of credit risk on the portfolio weights are
examined. The report closes with the final chapter calledConclusions.

2also known as Expected Shortfall
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2
Theoretical Background

2.1 Risk measures

In traditional portfolio theory the risk of a portfolio is measured in terms of its variance.
This approach is based on the assumption that the portfolio’s return distribution is
symmetric. Since the return distribution of a portfolio containing derivatives becomes
non-symmetric, there is a need for new risk measures. Two risk measures used for
portfolios with non-symmetric return distributions are Value-at-Risk (VaR) and CVaR.

VaR describes the predicted maximum loss with a specified confidence levelα
over a period of time. Ifx∈ X denotes a portfolio from the set of available portfolios
X = {(x1,x2, . . . ,xn) ∣ xi ≥ 0 ∀i, ∑n

i=1xi = 1} andω a random vector of future asset
prices, then the loss of portfoliox can be described asL(x,ω) =V0(x)−V1(x,ω) where
V0(x) is the current portfolio value andV1(x,ω) is the random future portfolio value.
The probability of the loss not exceeding a fixed thresholdγ is P(L(x,ω)≤ γ). VaR
can be defined as

VaRα(x) = min
γ
{P(L(x,ω)≤ γ)≥ 1−α}

In the second Basel Accord, internal models method for measuring market risk in or-
der to determine minimum capital requirements are based on VaR (Basel Committee
on Banking Supervision, 2004). Despite the fact of its popularity in the financial world,
VaR is difficult to implement in portfolio optimization. First of all, it lacks subadditiv-
ity, which implies that it is not in line with the general ideathat diversification leads
to risk reduction. Moreover, it does not take into account the size of losses beyond the
VaR threshold, which can result in promoting portfolios with enormous losses far out
in the tail of the loss distribution. Furthermore, VaR is a non-convex and non-smooth
function, that exhibits multiple local extrema, which makes global optimization com-
putationally intensive.

An alternative measure of risk is CVaR, which has been developed taking into ac-
count the weak points of VaR. CVaR is the expected loss under the condition that the
loss exceeds the VaR threshold. In general, it can be defined as

CVaRα(x) =
1
α

α∫

0

VaRp(x)dp

Assuming thatω is a continuous random variable with probability density function

5



CHAPTER 2. THEORETICAL BACKGROUND

p(ω), CVaR can also be defined as

CVaRα(x) =
1
α

∫

L(x,ω)≥VaRα (x)

L(x,ω)p(ω)dω

CVaR is not only a coherent measure of risk, but also an upper bound to VaR, as shown
by the following argument.

CVaRα(x) =
1
α

∫

L(x,ω)≥VaRα (x)

L(x,ω)p(ω)dω

≥ 1
α

∫

L(x,ω)≥VaRα (x)

VaRα(x)p(ω)dω

=
VaRα(x)

α

∫

L(x,ω)≥VaRα (x)

p(ω)dω

≥ VaRα(x)

However, CVaR cannot be implemented in portfolio optimization using its general
form, since its definition is still based on VaR. It is though possible to express CVaR
in a different way without first computing VaR. To do this, thefunction Gα(x,γ) is
introduced as

Gα(x,γ) = γ +
1
α

∫

ω∈ℝ

max(L(x,ω)− γ ,0)p(ω)dω (2.1.1)

This is a convex function inγ and the minimum value ofGα(x,γ) with respect toγ and
givenx corresponds to CVaRα(x). An additional advantageous feature ofGα(x,γ) is
that the minimizer overγ is equal to VaRα(x). VaR and CVaR in terms ofG can be
summarized as

VaRα(x) = argmin
γ

Gα(x,γ)

CVaRα(x) = min
γ

Gα(x,γ)

To find the minimum CVaR portfolio in the set of available portfolios X, one simply
minimizes the functionGα(x,γ) simultaneously with respect tox andγ.

min
x∈X

CVaRα(x)⇔ min
x∈X,γ

Gα(x,γ)

Since CVaRα(x) ≤ Gα(x,γ), the functionG can also be used to formulate a CVaR
constraint on a portfolio. LetR(x,ω) denote a given portfolio’s return, then the max-
imum expected return portfolio with a CVaR belowξ is the solution to the following
optimization problem

min
x

−E[R(x,ω)] ⇔ min
x,γ

−E[R(x,ω)]

subject to: CVaRα(x)≤ ξ
x∈ X

subject to: Gα(x,γ)≤ ξ
x∈ X
γ ∈ ℝ

Further information on CVaR as a risk measure in portfolio optimization can be found
in Uryasev (2000).
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2.2. PORTFOLIO CONSTRUCTION

2.2 Portfolio Construction

2.2.1 Stochastic Programming

The future value of a portfolio is unknown today, since it depends on the future prices
of the assets, which are subject to randomness. However, theinvestment decision has
to be faced today. Portfolio optimization belongs to the class of stochastic program-
ming. There are several ways to handle the uncertainty in theparameters. The key idea
is to transform the stochastic program into a deterministicequivalent. The simplest
approach is to replace all random variables by their expected values. This is known in
the optimization terminology as a mean value problem. This simple approach may fail
to deliver a good solution. A more sophisticated way of incorporating randomness is
the so called two-stage stochastic problem with recourse (Birge and Louveaux, 1997).
The general formulation of a two-stage linear stochastic program with recourse reads:

min
x

cTx+E

[

min
y

a(ω)Ty(ω)

]

subject to: Ax= b (2.2.1)

B(ω)x+C(ω)y(ω) = d(ω)

x≥ 0, y(ω)≥ 0

In equation (2.2.1) x are the first-stage variables, which represent decisions that have to
be made before randomness occurs.y(ω) are the second-stage variables which can be
interpreted as some kind of adjustments for each eventω so that the constraintB(ω)x+
C(ω)y(ω) = d(ω) is satisfied. Solving such a problem can be extremely difficult when
the sample space has a large cardinality or is infinite. Instead the sample space can be
approximated by a smaller finite set of scenarios{ωk∣ k= 1, . . . ,S} where each scenario
occurs with probabilitypk. The deterministic equivalent using this approximation reads

min
x,y

cTx+
S

∑
k=1

pka
T
k yk

subject to: Ax= b (2.2.2)

Bkx+Ckyk = dk k= 1, . . . ,S

x≥ 0

yk ≥ 0 k= 1, . . . ,S

The complexity of this optimization program depends on the number of scenariosS,
since both the number of variables and the number of constraints is proportional toS.
The solution to these kinds of problems can be determined very fast, due to efficient
algorithms for solving linear programs, such as Simplex or Interior point method, and
the steady increase of computational power in personal computers. However, it is im-
portant to keep the class of problems as simple as possible. Therefore the optimization
problems for portfolio selection are restricted to linear programs in order to keep the
computation time at an acceptable level.

2.2.2 Linearization of CVaR

The CVaR objective / constraint needs to be linearized in order to express the portfolio
choice problem as a linear stochastic program of the form (2.2.2). Assume that the loss

7



CHAPTER 2. THEORETICAL BACKGROUND

functionL(x,ω) is linear inx and thatS realizations of the random vectorω are given
in form of scenarios with equal probability. The functionGα(x,γ) as defined in (2.1.1)
can be approximated by

G̃α(x,γ) = γ +
1

αS

S

∑
k=1

max(L(x,ωk)− γ ,0) (2.2.3)

With the help of artificial variableszk, equation (2.2.3) can be written as a linear ob-
jective function or a linear constraint. In the case of a portfolio choice problem with
CVaR objective the linear approximation with scenarios reads

min
x,γ ,z

γ +
1

αS

S

∑
k=1

zk

subject to: zk ≥ 0 k= 1, . . . ,S

zk ≥ L(x,ωk)− γ k= 1, . . . ,S

x∈ X

γ ∈ ℝ

In the situation where a linear reward function, such as expected return, is maximized
subject to a CVaR constraint, the linear optimization problem is defined as follows:
whereµ is the vector of expected asset returns andξ is the upper bound on CVaR

min
x,γ ,z

−µTx

subject to: γ +
1

αS

S

∑
k=1

zk ≤ ξ

zk ≥ 0 k= 1, . . . ,S

zk ≥ L(x,ωk)− γ k= 1, . . . ,S

x∈ X

γ ∈ ℝ

For a more detailed discussion on CVaR as an objective and a constraint in portfolio
optimization seeKrokhmal et al. (2002)

2.2.3 Transaction costs

Transaction costs have become increasingly important in portfolio optimization. Their
impact varies depending on the asset class. While large-cap stocks can be bought and
sold in moderate sizes without much trading friction, the trading costs can amount to
a large sum in small and illiquid markets. Transaction costsarise from three different
sources; namely commissions such as brokerage fees, bid-ask spread that is the cost of
buying an asset and immediately selling it, and finally market impact which is the cost
due to unloading large positions compared to average tradedvolume (Scherer, 2007).

In portfolio construction trading costs can be handled in two different ways. The
indirect approach tries to restrict actions which cause transaction costs to increase.
Following this line of thought, turnover constraints have been introduced to portfolio
management. If the current holdings are described by the vector xinitial , then the assets
bought are identified byx+ and the ones sold byx−, so that the new holdings satisfy

8



2.2. PORTFOLIO CONSTRUCTION

x = xinitial + x+ − x−. The turnover of the portfolio is defined as∑n
i=1x+i +x−i . The

following linear program maximizes the expected return of the portfolio subject to
constraints that restrict the portfolio to a maximum turnoverτ, and tox being a feasible
portfolio.

min
x,x+,x−

−µTx

subject to: x= xinitial +x+−x−

n

∑
i=1

x+i +x−i ≤ τ

x+ ≥ 0

x− ≥ 0

x∈ X

Another idea to indirectly control transaction costs uses trading constraints. An asset
may for example only enter the portfolio if the invested proportion in the asset lies
above a certain minimum level. In the same fashion one can restrict the asset to be
included in the portfolio if the invested proportion lies below a fixed maximum level,
to reduce market impact. Not only weights can be limited, butalso the number of assets
in a portfolio can be subject to a constraint, which will result in lowering transaction
costs. For modeling this aforementioned type of trading constraint, it is necessary to
introduce binary variablesδi which indicate if an asseti is included in the portfolio or
not.

δi =

{
1 if asseti is included in the portfolio
0 otherwise

The weight constraints can be formulated as

δix
min
i ≤ xi ≤ δix

max
i , δi ∈ {0,1}

Different choices for the parametersxmin
i andxmax

i will then result in different types of
buy-in thresholds, which are summarized in the following table.

Type xmin
i xmax

i
Either above smallest proportion of large number

or out wealth invested in asseti
Either below 0 largest proportion of

or out wealth invested in asseti
Either in between smallest proportion of largest proportion of

or out wealth invested in asseti wealth invested in asseti

Table 2.1: Parameter settings for weight constraints to control transaction costs

9
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The so called cardinality constraint, which limits the number of assets included in
the portfolio, can be formulated as

xi ≤ δix
max
i , i = 1, . . . ,n (2.2.4)

n

∑
i=1

δi ≤ ψ

δi ∈ {0,1}

wherexmax
i is set to be a large number andψ is the maximum number of different assets

included in the portfolio. The cardinality constraint can easily be combined with one
of the weight constraints by simply replacing (2.2.4) with the appropriate formulation.

The disadvantage of the trading constraints is that their formulation relies on binary
variables1, which change the class of optimization problems from linear program to
mixed integer linear program. Optimization problems with integer restriction on some
of the decision variables are very complex and therefore require a lot of computation
time.

A direct approach for handling transaction costs models thecost of buying or sell-
ing an asset proportional to the capital invested in the asset. Let TC+

i denote the pro-
portional cost associated with buying asseti andTC−

i the proportional cost of selling
asseti. To include this transaction cost model in the usual formulation of a portfolio
choice problem, the budget constraint∑n

i=1xi = 1 has to be modified. In the new set-
ting wealth is not only invested in assets but also used to payfor the cost that originates
from making investment decisions. The new budget equation reads

n

∑
i=1

xi +
n

∑
i=1

(
TC+

i x+i +TC−
i x−i

)
= 1

Since the sum of weights no longer adds up to one, the reward function∑n
i=1 µixi needs

to be modified to∑n
i=1 (1+µixi). A portfolio that minimizes CVaR subject to attaining

a certain level of expected returnrtarget, and taking into account proportional transaction
costs can be found by solving the following linear program.

min
x,x+,x−,z,γ

γ +
1

αS

S

∑
k=1

zk

subject to: zk ≥ 0 k= 1, . . . ,S

zk ≥ L(x,ωk)− γ k= 1, . . . ,S
n

∑
i=1

(1+µ)xi ≥ 1+ rtarget

n

∑
i=1

xi +
n

∑
i=1

(
TC+

i x+i +TC−
i x−i

)
= 1

xi = xinitial
i +x+i −x−i , i = 1, . . . ,n

xi ≥ 0, i = 1, . . . ,n

x+i ≥ 0, i = 1, . . . ,n

x−i ≥ 0, i = 1, . . . ,n

1The either below or out type of trading constraint can be formulated without using binary variables.
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2.2. PORTFOLIO CONSTRUCTION

The advantage of using proportional transaction costs is that the complexity of the
optimization problem hardly increases while taking into account a main part of costs
related to trading financial assets.

However, not all costs are related to the size of the trade. Some fees and commis-
sions have to be met when entering a certain market. Such costs are known as fixed
transaction costs and are denotedFC+

i andFC−
i for the i asset. Their formulation re-

quires two binary variablesδ+
i ∈ {0,1} andδ−

i ∈ {0,1} and these two constraints for
each asset

x+i ≤ δ+
i xmax

x−i ≤ δ−
i xmax

wherexmax is an arbitrary large number. The new budget constraint withfixed and
proportional transaction costs reads :

n

∑
i=1

xi +
n

∑
i=1

(
δ+

i FC+
i +δ−

i FC−
i

)
+

n

∑
i=1

(
TC+

i x+i +TC−
i x−i

)
= 1

Taking into account both fixed and proportional transactioncosts is a closer description
of the real world but comes at the expense of a dramatical increase in the complexity
of the optimization problem. As already mentioned earlier,the use of binary variables
changes the problem class to a mixed integer linear program.

2.2.4 Scenario generation

Scenario based optimization uses a finite set of outcomes of the random parameters
to formulate the deterministic equivalent of the stochastic problem. The generation
of scenarios is a key issue since the quality of the scenarioshas substantial influence
on the quality of the solution. In general, scenarios can be generated by any model
which describes the random parameters of the optimization problem. It is assumed
that the random parameters are asset returns. Scenario asset returns could be produced
by simulating from an autoregressive (AR) model or by bootstrapping historical return
observation. There is no general way of generating good scenarios, but there are some
ideas that can give guidance to scenario generation (Scherer, 2007).

∙ parsimonious: the size of scenarios should be as small as possible to reducethe
optimization program’s computational complexity

∙ representative: the scenarios should reflect the random parameters in a realistic
fashion

∙ free of modeling errors: situations such as arbitrage should be removed since
they are uncharacteristic and usually dissolve very quickly in the market

To create scenarios that are representative and parsimonious, variance reduction meth-
ods can be used. Two of such methods are adjusted random sampling and tree-fitting.
The first approach creates random samples in pairs which haveperfect negative corre-
lation. Assume a simple AR model of a return series

rt = a+

(
b11 b12

b21 b22

)

rt−1+ εt

11
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whereεt is simulated from some symmetric distribution. A simulatedpair of residuals
using the adjusted sampling approach is(εk,−εk).

The tree-fitting approach has the goal of matching some prespecified moments of
the sample and the assumed distribution. These kinds of matching problems can be
solved as a nonlinear optimization problem. Assume that theresidual term of the AR
model introduced earlier is normally distributed with zeromean and covariance matrix
Σ. S scenarios are generated where each one has equal probability of occurrence. A
sample ofεk having equal mean and a covariance matrix as close as possible to the
population is the solution to the following optimization problem

min
ε

2

∑
i=1

2

∑
j=1

S

∑
k=1

(εkiεk j

S
−Σi j

)2

subject to:
S

∑
k=1

εk = 0

whereεki is thei element of thek scenario residual.
The third desirable scenario property can also be imposed byoptimization pro-

gram. If scenarios are to be free of arbitrage the following situation should not appear
(Cornuejols and Tütüncü, 2007).

∙ Arbitrage I: A strategy which has a negative initial cost anda non-negative value
for all scenarios

∙ Arbitrage II: A strategy which has zero initial cost and at least one scenario
outcome with a positive value, while all other scenarios will result in a non-
negative value

Both of these arbitrage situations can be formulated as linear programs. Letrk
i denote

the return of thei asset in thek scenario, then the solution to the following linear
program is unbounded if arbitrage I is present in the scenarios.

min
x

n

∑
i=1

xi

subject to:
n

∑
i=1

rk
i xi ≥ 0, k= 1, . . . ,S

To check if arbitrage II situations exist, the next optimization problem can be used. In
the case of arbitrage, the solution will be unbounded.

min
x

−
S

∑
k=1

n

∑
i=1

rk
i xi

subject to:
n

∑
i=1

xi = 0

n

∑
i=1

rk
i xi ≥ 0, k= 1, . . . ,S

By examining the scenarios with the two aforementioned linear programs, a set of sce-
narios containing arbitrage can be abandoned or extended with more random samples
until it becomes arbitrage free. Even in situations where arbitrage cannot exist due to
restrictions in the portfolio weights, like disallowing short selling, it is important to
check for these kinds of modeling errors, since certain assets will become extremely
desirable and therefore will be overrepresented in the constructed portfolio.

12
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2.2.5 Scenario optimization with CVaR objective and constraint

To summarize the presented modeling approaches of CVaR and transaction costs, two
mixed integer linear programs are presented. Before the formulation can be written out
the loss functionL(x,ω) is revised. The loss function is defined as the difference of the
portfolio value at time 0 and the portfolio value at time 1. Ifrk

i denotes the return of
the i asset in thek scenario, the loss occurring in thek scenario can be described as

L(x,ωk) = V0−V1(x,ωk)

=
n

∑
i=1

xinitial
i −

n

∑
i=1

(

1+ rk
i

)

xi

= 1−
n

∑
i=1

(

1+ rk
i

)

xi

Furthermore, the expected return of an asset is defined by themean return of the sce-
nariosµi =

1
S∑S

k=1 rk
i . The following two portfolio choice problems both incorporate

fixed and proportional transaction costs. The first minimizes the portfolio’s risk mea-
sured in CVaR subject to attaining a certain expected returnlevel of the portfolio. The
second maximizes the portfolio’s reward potential measured in expected return subject
to an upper bound on the portfolio’s CVaR.

CVaR objective and return constraint

min
x,x−,x+,δ−,δ+,z,γ

γ +
1

αS

S

∑
k=1

zk

subject to: zk ≥ 0 k= 1, . . . ,S

zk ≥ 1−
n

∑
i=1

(

1+ rk
i

)

xi − γ k= 1, . . . ,S

n

∑
i=1

(1+µi)xi ≥ 1+ rtarget

n

∑
i=1

xi +
n

∑
i=1

(
FC+

i δ+
i +FC−

i δ−
i

)
+

+
n

∑
i=1

(
TC+

i x+i +TC−
i x−i

)
= 1

xi = xinitial
i +x+i −x−i i = 1, . . . ,n

xi ≥ 0 i = 1, . . . ,n

0≤ x−i ≤ δ−
i xmax i = 1, . . . ,n

0≤ x+i ≤ δ+
i xmax i = 1, . . . ,n

δ−
i ∈ {0,1}, δ+

i ∈ {0,1} i = 1, . . . ,n

13
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Return objective and CVaR constraint

min
x,x−,x+,δ−,δ+,z,γ

−
n

∑
i=1

(1+µi)xi

subject to: γ +
1

αS

S

∑
k=1

zk ≤ ξ

zk ≥ 0 k= 1, . . . ,S

zk ≥ 1−
n

∑
i=1

(

1+ rk
i

)

xi − γ k= 1, . . . ,S

n

∑
i=1

xi +
n

∑
i=1

(
FC+

i δ+
i +FC−

i δ−
i

)
+

+
n

∑
i=1

(
TC+

i x+i +TC−
i x−i

)
= 1

xi = xinitial
i +x+i −x−i i = 1, . . . ,n

xi ≥ 0 i = 1, . . . ,n

0≤ x−i ≤ δ−
i xmax i = 1, . . . ,n

0≤ x+i ≤ δ+
i xmax i = 1, . . . ,n

δ−
i ∈ {0,1}, δ+

i ∈ {0,1} i = 1, . . . ,n

Both of these formulations can be used to trace out the efficient frontier. When
minimizing risk, varying the target returnrtarget will result in different frontier portfo-
lios. When instead maximizing return, changing the upper bound on CVaRξ will give
the various portfolios on the efficient frontier.

2.3 Factor models

A factor model represents some variabler, for example an asset return, in terms of
some constanta, a finite amount of factorsf1, . . . , fm and a residualε. In general, the
model can be formulated as:

r = a+
m

∑
k=1

bk fk+ ε

Depending on the choice of factors, models for asset returnsare classified as macroeco-
nomic, fundamental, or statistical factor models (Tsay, 2005). Macroeconomic factor
models use observable economic time series, like gross domestic product or inflation,
as common sources of variation in returns, while fundamental factor models focus on
asset specific properties as for example industry classification. Statistical factor models
explain returns by unobservable variables which are derived by statistical techniques
such as Principle Components Analysis (PCA).

This paper discusses only the latter type of factor models. To formulate the model,
both the factor loadingsbk and factorsfk need to be estimated. The goal is to choose
the factor loadings in such a way that the residual term has zero expectationE[ε] = 0
and is uncorrelated with each of the factors Cov( fk,ε) = 0. Furthermore, one wants
to explain most of the variation in the investigated variable by the factors, which is
equivalent to minimizing the variance of the residual term.

14



2.3. FACTOR MODELS

2.3.1 Principle Component Analysis

PCA is a technique based on linear algebra that analyzes observations of several inter-
correlated quantities and explains the variation in the data by a set of orthogonal vari-
ables. Them observations ofn variables are described by them× n matrix R̃. The
sample meansµ j and the sample variancesσ j j of the columns ofR̃ are estimated and
summarized as follows.

µ j =
1
m

m

∑
k=1

R̃k j

M = 1mµT

σi j =
1

m−1

m

∑
k=1

(
R̃ki −µi

)(
R̃k j −µ j

)

S = diag{√σ11,
√

σ22, . . . ,
√

σnn}

Let R be the centered version of̃R where every column is subtracted by its sample
mean and divided by the square root of its sample variance. This can be expressed in
vector notation asR=

(
R̃−M

)
S−1 After this pre-processing, the matrixRTR can be

referred to as the correlation matrix. It is assumed thatR has the following singular
value decomposition (SVD).

R= P∆QT

whereP andQ are orthonormalm×m andn×n matrices and∆ is a m×n diagonal
matrix of singular values. In fact,∆2 is equal to the diagonal matrixΛ which has the
eigenvalue ofRTRas diagonal elements.

RTR=
(
P∆QT)T

P∆QT = Q∆TPTP∆QT = Q∆T∆QT = Q∆2QT

It is assumed without loss of generality, that the column vectors of the matrixQ are
ordered in such a way thatδ11 ≥ δ22 ≥ ⋅⋅ ⋅ ≥ δnn holds for the diagonal elements of∆.
The PCA produces a set of new variables called principle components (PCs). The PCs
are linear combinations of the original variables and computed in such a way, that the
amount of variation they explain is in decreasing order, andthat they are orthogonal to
each other. The observations of PCs are known as factor scoresF and can be computed
by

F = RQ

whereQ is referred to as the loading matrix with each column vector corresponding to
one PC. So theith observation of the original variables can be representedin terms of
the principle components as

r i ∙ = qT
∙1Fi1+qT

∙2Fi2+ ⋅ ⋅ ⋅+qT
∙mFim

wherer i ∙ corresponds to theith row of theR matrix andq∙ j represents thejth column
of theQ matrix. The above representation replicates the original variables perfectly. In
order to reduce the number of variables, one investigates the contribution of each PC
to the total variation, which is given by δii

∑n
j=1 δ j j

. With highly inter-correlated data sets,

one often experiences that most of the variation can be explained by just a few PCs. A
model using the firstK PCs is formulated in the following way.

r i ∙ =
K

∑
k=1

qT
∙kFik + ε
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The presented model for the centered observations satisfiesall the wanted properties of
a factor model and, in addition to that, has factors which areuncorrelated.

A more detailed presentation of PCA can be found inAbdi and Williams (in press
2010).

2.4 Reduced-form approach to modeling credit risk

This section introduces the reduced-form approach to modeling credit risk and how this
model can be calibrated to market data. The discussed theoretical framework follows
the outline as inO’Kane and Turnbull (2003).

2.4.1 Reduced-form models of credit risk

In reduced-form models the credit default event is described by the first jump of a
Poisson process (Jarrow and Turnbull, 1995). The time of defaultτ of an entity is
exponentially distributed. The probability of defaultingat time τ is defined by the
conditional probability

P{τ < t +dt∣τ ≥ t}= ζ (t)dt

It is the probability of defaulting in the time interval[t, t +dt), conditioned on the event,
that the entity has not defaulted up to time t. The probability is dependent on the length
of the time intervaldt and a deterministic functionζ (t), which is known as the hazard
rate. The non-negative random variableτ describing the default time is assumed to be
independent of all other economic quantities, such as interest rates or index level. The
probability of surviving up to timeT, given that the entity has not defaulted prior to
time t, is

Q(t,T) = exp{−
∫ T

t
ζ (s)ds}

The hazard rate can be calibrated to market data using eithercredit default swaps (CDS)
or corporate bonds. Before the calibration technique with CDS is described, this finan-
cial contract will be summarized.

2.4.2 Credit Default Swap

The basic idea behind a CDS is to transfer the risk of a reference entity defaulting from
one party (the protection buyer) to another party (the protection seller). The contract
is specified on a notional principle, which is assumed to be 1 currency unit to simplify
notation. Figure2.4.1gives an overview of all participants and payment streams of
this financial contract. A CDS gives the holder the right, in the case of default of the
reference entity, to be compensated for a loss of the notional principle. To obtain this
right, the protection buyer pays the protection seller a fixed cash flow at a specified
frequency up to the maturity of the contract or until defaultoccurs. The sum of these
payments is known as the premium leg, which has the followingpresent value.
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Figure 2.4.1: Relationship between the participants of a credit default swap and pay-
ment streams

Premium Leg PV(t,T) = s(t0,T)
N

∑
n=1

∆(tn−1, tn)P(t, tn)Q(t, tn)

where:

t the current time

t0 the issue time of the CDS

T the maturity of the CDS

∆(tn−1, tn) the time fraction between the two time pointstn−1 andtn
s(t0,T) the CDS rate contracted at timet0 with maturityT

P(t,T) the price of a zero coupon bond at timet with maturityT

The present value of the protection leg is the discounted expected value of the compen-
sation payed to the protection buyer.

Protection Leg PV(t,T) = (1−R)
∫ T

t
P(0,s)Q(t,s)ζ (s)ds

In this formulationR is the recovery rate, which is assumed to be deterministic and
constant. If one assumes that the event of default can only occur on a finite numberM
of fixed time points during the contract time, then the integral can be replaced by a sum
describing the present value of the protection leg

Discrete Protection Leg PV(t,T) = (1−R)
M

∑
m=1

P(t, tm)(Q(t, tm−1)−Q(t, tm))

At the issue time the CDS rate, also known as the credit spread, is chosen so that the
value of the contract is zero, i.e. the value of the premium leg and the value of the
protection leg are equal.
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2.4.3 Calibration of the hazard rate term structure

This part illustrates how a piecewise constant hazard rate is calibrated to a given set
of CDS rates with different maturitiesT1,T2, . . . ,TK . The algorithm is based on the
fact that the premium and the protection leg are equal at issue time. The hazard rate
is assumed to be constant on the time interval[Ti−1,Ti) for i = 1, . . . ,K −1. For time
horizons beyondTK the hazard rate matches the value betweenTK−1 andTK . A monthly
discretization is used and the premium is payed12

k times per year. The calibrating
procedure starts with the shortest maturityT1 and determines the hazard rateζT1 in
such a way that the contract value is zero which means solving

s(t0,T1)
T1/k

∑
n=1

∆(t(k−1)n, tkn)P(t, tkn)e
−ζT1tkn = (1−R)

T1/12

∑
m=1

P(t, tm)
(

e−ζT1tm−1 −e−ζT1tm
)

After the value of the hazard rate for the first interval is determined, the procedure is
repeated for the next one in the same manner. The survival probability is then given as
follows

Q(t0,s) = exp

{

−
(

K−1

∑
i=1

ζTi max(min(s,Ti)−Ti−1,0)

)

−ζTK max(s−TK−1,0)

}

It should be noticed that, situations can arise where the model cannot be fitted to
market data. If the CDS rate is high for a given maturity and then drops dramatically
for the next maturity, the fitted hazard rate tends to be negative, which is incorrect from
a probability point of view. Another critical situation arises if the CDS rate has a big
jump from one to the next maturity, since there might be no large enough hazard rate
to make both legs equal.

18



3
Analysis of the rebalancing decision

3.1 Assets

This section formally introduces the assets that will be used in the portfolio construc-
tion. The terminal payoff structure of the assets and their theoretical value in the Black
& Scholes setting are examined.

The market contains three different assets, which are a cashaccount, a PPN and
a NPPC. The cash account is a risk-free asset, that pays no interest. This asset is a
safe haven for the investor because it bears no risk. The investor can only have a long
position in the cash account, since this would otherwise imply that he could borrow
money without paying interest, which would be an unrealistic assumption. The second
asset present in the market is a PPN. This structured productis a contingent claim, that
entitles the holder to receive the following payoff at maturity

PPN(T) = S0+β max(ST −S0,0)

where:

T maturity of the asset

S0 value of the underlying on the issue date

ST value of the underlying at maturity

β participation rate

The PPN guarantees a predetermined minimum payoffS0 plus an unknown payoff
dependent on the value of the underlying at maturity. This structured product can
be viewed as a combination of aT-year zero coupon bond with face valueS0 andβ
European call options with the same time to maturity as the bond and a strike priceS0.
The bond is assumed to be free of default risk until otherwisespecified. The price of
this structured investment at timet in the Black & Scholes model can be described by
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CHAPTER 3. ANALYSIS OF THE REBALANCING DECISION

the following equation

PPN(t) = S0e−r(T−t)+βc(St ,S0,T − t, r,q,σ)

where:

St value of the underlying at timet

r risk-free interest rate

q dividend yield of the underlying asset

σ volatility of the underlying

c(St ,K,T, r,q,σ) Black & Scholes price of a European call option

with strikeK and time to maturityT

In this report the issue price of the PPN, which is the value ofthe PPN at time zero, is
set toS0, which implies that the participation rate can be determined by

β =
S0
(
1−e−rT

)

c(S0,S0,T, r,q,σ)
(3.1.1)

The exposure of the PPN to the underlying market is controlled by β , which is a func-
tion of the underlying’s volatility, the risk-free interest rate, the time to maturity and the
underlying’s dividend yield. The participation rate is independent of the current price
of the underlying. This follows directly when inserting theBlack & Scholes formula
for an ATM European call option in equation3.1.1. Figure3.1.1illustrates the effects
of the dependent factors on the participation rate.
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Figure 3.1.1:The participation rate of a PPN as a function of the underlying’s volatility
(upper left graph), risk-free interest rate (upper right graph), time to maturity (lower left
graph) and the underlying’s dividend yield (lower right graph)
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If the volatility of the underlying increases, the price of the call option increases too
and therefore the participation rate declines. An increasein each of the other mentioned
factors results in an increase of the participation rate.

The third asset available on the market is a structured product, which consists only
of the option part of the PPN and is referred to as NPPC. The payoff at maturity is
equal to one European call option with strike priceS0

NPPC(T) = max(ST −S0,0)

The price of the NPPC at timet is given by the Black & Scholes formula for an Euro-
pean call option

NPPC(t) = c(St ,S0,T − t, r,q,σ)

This asset gives the investor the opportunity to increase the upside potential of his
portfolio. Some market conditions such as low interest rateor high volatility reduce
the participation rate of the PPN. This limits how much the investor can profit from
positive developments in the underlying market. By investing in NPPC, he can increase
the dependence of the portfolio value on the underlying.

3.2 Data Set

The data set, extracted from Bloomberg, contains observations of the OMX Stockholm
30 Index (OMXS30) level, interest rates implied by Swedish Treasury Bills for ma-
turities 3,6 and 12 months and Swedish Government Bonds for maturities 2,5 and 10
years, and credit default swap (CDS) rates with the Royal Bank of Scotland Plc (RBS)
as reference entity.

The OMXS30, which has Bloomberg ticker OMX Index, is a capitalization-weighted
index of the 30 most actively traded stocks on the Stockholm Stock Exchange. The
index is not adjusted for ordinary dividends, but the index value is corrected for all
other corporate actions such as bonus issues, splits and mergers (NASDAQ OMX AB).
Bloomberg also provides a total return version of the OMXS30, which means that the
ordinary dividends are reinvested. This data is used to estimate the dividend yield of
the index.

The Swedish National Debt Office issues Swedish Treasury Bills (in Swedish:
statsskuldväxel) with maturities of 1 to 12 months. These bills have no coupon pay-
ments. Another instrument issued by this state organization is the Swedish Government
Bond (in Swedish: statsobligation). The bond pays a yearly fixed coupon and is avail-
able with maturities of 2 up to 30 years (Riksgälden - Swedish National Debt Office,
2007). The government interest rates with maturities 3 months,6months ,12 months,
2 years, 5 years and 10 years are calculated from the fixed-income instruments issued
by the Swedish National Debt Office. The rates are composed bya Bloomberg service
called fair market yield curve. The Bloomberg ticker for the3 month rate is C2593M
Index. For the other maturities, the fifth and the sixth character, which indicate the
maturity are replaced by the respective ones.

The CDS rates are given for contracts with time to maturity of3 years and 5 years.
These maturities have the longest history of the available contracts with RBS as refer-
ence entity. The Bloomberg ticker for such an instrument is RBOS CDS EUR SR 3Y,
where the last two characters denote the time to maturity of the CDS. The CDS data is
only used in the part of the investigation concerning creditrisk.
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The data set contains weekly observations. The Swedish government interest rates
and the OMXS30 level records range from the 1st of January 1999 to the 23th of April
2010. This amounts to 591 observation dates of each time series. The CDS rates
are recorded from the 18th of April 2004 until the 23th of April 2010. The historical
government interest rates and the OMXS30 levels are displayed in figure3.2.1.
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Figure 3.2.1: Time series of the Swedish government interest rates and theOMXS30

3.3 Overview of the model components

An overview of the components, which are needed to analyze the rebalancing situation
for a portfolio of structured products, is presented in thissection. First of all, the
measures of risk and reward are motivated. Thereafter a description of the investment
situation is presented. It follows a parameter specification of the Black and Scholes
model, that is used to price the structured products. Then the construction of the return
scenarios is introduced. The section closes with an outlineof the procedure, that is
used to compute the optimal portfolio weights.

3.3.1 Quantification of reward and risk

A portfolio of assets is characterized in terms of risk and reward, which are conflicting
objectives. An investor is assumed to view reward as a positive characteristic and risk
as a negative characteristic. In traditional portfolio theory (Markowitz, 1952) reward
is quantified in terms of expected return and risk is measuredin terms of variance.
This study also uses expected return as the measure of rewardan investor receives
from holding a certain position. It is a generally excepted quantity, which is easy to
understand and to formulate for a general investor.

Variance is a measure of risk, which relies on the assumptionthat the return distri-
bution of the portfolio has a finite second moment and is symmetric around its mean,
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3.3. OVERVIEW OF THE MODEL COMPONENTS

as for example the normal distribution (McNeil et al., 2002). When derivatives are in-
cluded in a portfolio, the portfolio’s return distributionbecomes asymmetric and heav-
ily tailed. A different measure of risk must be used to account for these features of the
return distribution. VaR and CVaR are risk measures which are commonly used in risk
management, when distributions show asymmetry around the mean and heavy tails.

CVaR is the measure of risk used in the report due to two reasons. First of all, CVaR
can be formulated as a linear program in the setting of scenario optimization. This
makes it possible to solve the optimization problem in reasonable time and ensures that
the global optimum will be found. The second advantage is that it takes into account
losses beyond the VaR threshold. This means that no risks canbe hidden in the tail of
the return distribution unobservable for the chosen risk measure. The definitions of VaR
and CVaR, and how to formulate CVaR as convex function is described in section2.1.

3.3.2 Description of the investment situation

The considered investment situations are very similar to the ones in the motivating ex-
ample presented in the introduction. At the initial stage, the investor wealth can be
allocated into three different assets available on the market, which are a non-interest
paying cash account, a currently issued PPN and a currently issued NPPC. The port-
folio is assumed to be long-only and purchasing or selling the structured products in-
volves transaction costs, that are modeled as costs proportional to the size of the in-
vestment. Changing the position in the cash account is not penalized with any costs.
After a specified period of time has passed, which is referredto as rebalancing period,
the investor has the possibility to rebalance his portfolioto match his reward and risk
conception. This situation is called the rebalancing stage. He is offered to reallocate
his portfolio weights to either the cash account, a newly issued PPN or a newly issued
NPPC. This means that the portfolio owner can only sell the previously issued struc-
tured investments, and only purchase the currently issued structured products. This
restriction matches the actual market situation. Structured investments usually have a
limited offer time. The rebalancing stage is repeated regularly until the time horizon
of the investor is reached. At each stage the expected returnand the CVaR of the port-
folio is measured over the next rebalancing period. The initial stage can be viewed in
the same way as the rebalancing stage, assuming that the investor previously holds a
cash-only portfolio.

The rebalancing situation has to be modeled as a stochastic optimization program,
since the future prices of the structured products are unknown as seen from today. The
concept of scenario optimization is used to transform the stochastic program into the
deterministic equivalent. Scenarios have to be generated to describe the possible out-
comes of the random parameters over the next rebalancing period. Before selecting a
methodology to generate scenarios, a pricing method for thestructured products needs
to be found and the random parameters entering this method must be identified.

3.3.3 Pricing model

The Black & Scholes formula is used to price the option part ofthe structured products,
and the value of the bond part is determined by discounting the bond’s face value
using the risk-free rate. This approach is used due to its computational efficiency. The
option value needs to be computed for each scenario. In orderto generate a sufficient
amount of scenarios and still keep a reasonable computational complexity, the method
used to determine the value of the option needs to be very efficient. The Black &
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Scholes option pricing formula is a closed-form solution and therefore produces option
price at very small computational cost. Another advantage is that this setting only
requires a few inputs, which limits the amount of risk factors, that need to be modeled.
Furthermore,the model’s advantages and disadvantages arewell known.

As a consequence of this modeling approach, the price of the structured invest-
ments depends on the time to maturity, the future interest rate, the future price of the
underlying, the future volatility of the underlying and thefuture dividend yield of the
underlying. The following assumptions are made on these variables. The interest rate
and the price of the underlying are modeled as random variables. Since the portfolio
can contain structured products, that have different timesto maturity, not only a single
interest rate needs to be modeled, but the whole yield curve.The annual dividend yield
of the underlying is set to be 2.5%,which is the average dividend yield when comparing
the total return version of the OMXS30 with the standard version.

The volatility of the underlying can either be specified using implied volatility ex-
tracted from option market prices or using realized volatility. Wasserfallen and Schenk
(1996) compared market prices of structured products to theoretical prices, using both
volatility specifications. They did not observe any systematic differences in the theo-
retical prices when utilizing either implied or realized volatility. Furthermore, one can
notice when examining historical option prices, that the option market of the OMXS30
is not very liquid. This causes difficulties to find a consistent methodology of extract-
ing the volatility surface over long time spans. Moreover, the amount of data and risk
factors, that need to be handled, increases rapidly when following this approach. This
report uses therefore realized volatility as defined inHull (2005). Let ς be the standard
deviation of the log returns of the underlying within a giventime period of past obser-
vation and letυ be the time length in years between two observations, then the realized
volatility σ reads

σ =
ς√
υ

The most recent 104 observations are used to compute the realized volatility of the
underlying.

3.3.4 Scenario construction

Using this framework, scenarios are generated in the following way. Based on histor-
ical data a statistical factor model is built to be used for simulation of future devel-
opments of the yield curve and the underlying asset over the time span until the next
rebalancing stage. The factor model and the simulation method, that is used to generate
time series of future changes in the yield curve and the underlying asset, are presented
in section3.4. Each simulated time series will account for one scenario. Next, the
price of the structured products at the final observation of the simulated time series is
determined. The risk-free rate for pricing the option and/or the bond is chosen to match
the maturity of the structured investment. If the interest rate of this particular maturity
is not available, it is determined by linear interpolation of the two rates closest in terms
of maturity. The return of each asset can then be computed forthe scenario. Each
scenario gives a realization of the unknown return of each asset over the next period.
Since all scenarios are equally likely, averaging over the different outcomes gives the
expected return of the asset over the next period.
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3.3.5 Determining optimal portfolio weights

The scenario returns of the assets as well as the assets’ expected returns and the initial
portfolio weights are then used as the input for the linear program, that yields the
optimal portfolio weights as a solution. This optimizationproblem is formulated in
section3.5. It is presented in two different variations. The investor can either choose
to restrict the CVaR of the portfolio by an upper bound and maximize the portfolio’s
expected return, or formulate a minimum requirement on the expected return of the
portfolio and minimize the portfolio’s CVaR. Both the expected return of the portfolio
and the portfolio’s CVaR are measured over the next rebalancing period, that is set to
be one year if not specified otherwise.

3.4 A factor model of the yield curve and the underly-
ing index

Scenario optimization requires a finite set of realizationsof the random parameters to
formulate the deterministic equivalent of the stochastic problem. The random parame-
ters for the rebalancing problem are the asset returns over the next rebalancing period.
The asset returns depend on some random risk factors. In thissection a statistical fac-
tor model is set up that can be used to simulate future yield curves and index levels. A
historical and a Monte Carlo algorithm for the simulation under the physical measure
is presented.

During the time span of the data set, the Swedish government interest rates and
the OMXS30 have experienced up- and downturns. Since neither the index level nor
the interest rates are approximately stationary, the investigation is based on relative
changes for the interest rates and logarithmic returns for the index, which seem to be
weakly stationary as Figure3.4.1indicates.

A PCA (as presented in section2.3.1) is performed on the whole available time
span of the data set, which concludes that 95.7% of the variation can be explained
by the first four PCs. This deduction is in line with the findings of Litterman and
Scheinkman (1991) ,who confirmed that around 96% of the variation in the yield curve
can be explained by three factors. Since the data set is composed of the yield curve and
the index, an additional source of randomness is added to thedata set which increases
the amount of necessary PCs to describe it by one. This reasoning is also sustained by
the fact that the correlation between the OMXS30 and the different interest rates varies
between 0.11 and 0.26. The outcome of the PCA is summarized in table3.1 and the
factor loadings of the main PCs are presented in figure3.4.2.
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Figure 3.4.1: Time series of weekly relative changes of Swedish government interest
rates with six different maturities and weekly log returns of OMXS30
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Figure 3.4.2: The factor loadings of the first four principle components for a data set
of relative changes of Swedish government interest rates with six different maturities
and log returns of the OMXS30. The analysis is performed on 590 weekly observations
ranging from January 1999 until April 2010.

PC Explained variation [%] Cumulative explained variation [%]
1 56.4 56.4
2 20.2 76.7
3 12.8 89.4
4 6.3 95.7
5 2.3 98.0
6 1.4 99.5
7 0.5 100

Table 3.1: Variance explained by the principle components for a data set of relative
changes of Swedish government interest rates with six different maturities and log
returns of the OMXS30. The analysis is performed on 590 weekly observations ranging
from January 1999 until April 2010.

In Litterman and Scheinkman (1991), the three dominating PCs of the yield curve
are described as a level, steepness and curvature. Similar portrayal holds true for the
first PCs of the data set investigated here. The first PC is referred to as the level, because
it has no sign changes and therefore can be interpreted as a parallel shift. The second
PC accounts for a change in the steepness of the yield curve. Asteeping of the yield
curve has a positive effect on the index level. The third PC represents a shock to the
index development. This PC has a small effect on the interestrates but a large effect
on the index. The fourth PC corresponds to a change in curvature of the yield curve. It
has only a small effect on the index. When the PCA is performed on just the Swedish
government interest rates, very similar results to those ofLitterman and Scheinkman
are obtained. Further illustration and discussion on this issue are omitted.

Another important aspect in order to determine a statistical factor model that can
be used for simulation purposes is the stability of the modelthrough time. This is done
by investigating the stability of the factor loadings and the explanatory power of the
PCs.
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The estimation of the PCs is based on a sample from a larger population. Choosing
a specific sample might have a strong effect on the factor loadings and the explanatory
power of the PCs. For the investigation of sample dependence, weekly observations of
the time period ranging from January 1999 to April 2010 are divided into quarter-yearly
overlapping periods with a length of four years: This results in 30 different samples.
Each of these samples contains 209 data points, which are enough observations to get
stable estimates of the PCs.

The explanatory power of each of the first four PCs and their cumulative sum is dis-
played in Table3.2. There are effects of sample dependence present in the explanatory
power of the PCs. The first PC explains in some periods more than 68% of the variation
(Jun-00 to Jun-04), while in other periods it only stands forbelow 55% of the variation
(May-04 to May-08). There are also similar strong variations present in the other three
PCs. Even though there is variation in the explanatory powerof the individual factors,
the sum of explanatory power of the first four factors is always above 93%. This leads
to the conclusion that the first four factors account for the major part of the variation in
the data set, independent of the selected sample.

The estimated factor loadings for each of the first four PCs are shown in figure3.4.3
where each line represents a different sample. Since all plots are presented on the same
scale, it is possible to observe that the sample dependence in the factor loadings for the
first PC is much smaller than for the other three PCs. The most variable coefficient is
the one affecting the index in the second PC. Even though the factor loadings for the
PCs show sample dependence, it seems that there is a stable structure in the shape of
the principle components.
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Period Explanatory power [%]
Start End PC 1 PC 2 PC 3 PC 4 Cumulative Sum

Jan-99 Dec-02 60.92 16.18 13.51 5.44 96.05
Mar-99 Mar-03 60.84 16.40 13.16 5.67 96.07
Jun-99 Jun-03 62.20 16.16 12.98 4.45 95.80
Sep-99 Sep-03 63.57 14.92 12.68 4.69 95.86
Dec-99 Dec-03 65.71 15.25 11.83 4.58 97.37
Mar-00 Mar-04 67.43 14.50 11.51 4.27 97.71
Jun-00 Jun-04 68.24 14.93 10.76 3.89 97.83
Sep-00 Sep-04 68.29 14.78 10.80 3.92 97.79
Dec-00 Dec-04 68.56 14.44 10.96 3.88 97.85
Mar-01 Mar-05 67.82 15.23 10.61 4.14 97.80
Jun-01 Jun-05 66.04 16.31 10.91 4.23 97.49
Sep-01 Sep-05 65.29 16.61 11.08 4.43 97.40
Dec-01 Dec-05 65.15 16.73 10.36 4.66 96.90
Mar-02 Mar-06 61.12 18.29 11.62 4.90 95.93
Jun-02 Jun-06 60.56 18.08 12.09 4.85 95.58
Sep-02 Sep-06 59.96 18.18 12.29 4.95 95.38
Dec-02 Dec-06 59.90 18.21 12.25 4.96 95.30
Mar-03 Mar-07 59.32 18.44 12.55 4.90 95.21
Jun-03 Jun-07 58.81 18.29 12.98 5.01 95.10
Sep-03 Aug-07 57.72 18.09 13.35 5.60 94.76
Dec-03 Nov-07 55.20 19.38 13.38 6.02 93.97
Mar-04 Feb-08 55.80 19.41 12.93 5.97 94.11
May-04 May-08 54.72 20.20 12.99 6.00 93.92
Aug-04 Aug-08 54.50 20.04 13.48 5.92 93.95
Nov-04 Nov-08 58.69 19.64 11.65 5.33 95.31
Feb-05 Feb-09 60.19 18.60 12.54 5.01 96.34
May-05 May-09 58.35 20.78 12.47 4.85 96.45
Aug-05 Aug-09 58.67 20.25 12.20 5.49 96.61
Nov-05 Nov-09 58.22 20.10 12.11 5.78 96.21
Feb-06 Feb-10 57.72 19.69 11.86 6.73 96.00
Jan-99 Apr-10 56.45 20.20 12.75 6.34 95.74

Table 3.2: Sample dependence of the explanatory power for 30 quarter-yearly overlap-
ping time intervals consisting of 4 years of weekly observations. The last row indicates
the explanatory power for the whole data set ranging from January 1999 to April 2010.
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Figure 3.4.3:Sample dependence of the factor loadings of the first four PCs. One line
in a subplot represents the factor loadings of the indicatedPC for one sample. The
investigation is performed on 30 quarter-yearly overlapping samples consisting of 4
years of weekly observations. All samples are taken from a population of 590 weekly
observations ranging from January 1999 to April 2010
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3.4.1 PCA-based simulation of future yield curves and indexlevels

This part focuses on the simulation of changes in the yield curve and index level. One
simulation path consists of 52 weekly changes, which represent the time span of one
year. The simulation is based on a four factor model where thefactor loadings and the
factor scores are estimated by PCA. Since the PCA method is applied on the centered
observations, the simulated observations need to be rescaled with the historical mean
and standard deviation of the original variables. The simulation data is conducted in
two different ways. The first approach is historical simulation and the second is Monte
Carlo simulation. Before looking at these sampling methods, the autocorrelation of the
PCs is studied, since both approaches rely on the assumptionthat the observations are
independently identically distributed.

0 5 10 15 20
−0.5

0

0.5

1

Lag [in weeks]

S
am

pl
e 

A
ut

oc
or

re
la

tio
n Autocorrelation in the PC 1

0 5 10 15 20
−0.5

0

0.5

1

Lag [in weeks]

S
am

pl
e 

A
ut

oc
or

re
la

tio
n Autocorrelation in the PC 2

0 5 10 15 20
−0.5

0

0.5

1

Lag [in weeks]

S
am

pl
e 

A
ut

oc
or

re
la

tio
n Autocorrelation in the PC 3

0 5 10 15 20
−0.5

0

0.5

1

Lag [in weeks]

S
am

pl
e 

A
ut

oc
or

re
la

tio
n Autocorrelation in the PC 4

Figure 3.4.4: Autocorrelation plot of each of the first four PCs. The sampleis com-
posed of 590 weekly observations ranging from January 1999 to April 2010

Figure3.4.4shows the autocorrelation graph for the factor scores of thefirst four
PCs. Significant autocorrelation is present when lagi correlation does not fall within
the interval indicated by the two horizontal lines around the x-axis. There is hardly any
significant autocorrelation present in the PCs. Therefore implying that the observations
are independent is a reasonable assumption.

3.4.2 Historical simulation

One non-parametric method for simulation is bootstrapping, also known as historical
simulation. To simulate new observations of the PCs, randomsampling with replace-
ment is applied to the historical observations of the PCs. The PCs are uncorrelated but
this does not imply that they are independent. The sampling procedure is done in the
following manner. One historical observation date is randomly picked from the sample
with replacement, where each observation date has equal probability of being chosen.
The following equation is used to compute the centered original variables

r i ∙ =
4

∑
k=1

qT
∙kFik + ε
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The noise term is simulated from a normal distribution withE[ε] = 0 andVar[ε ] =
Var

[

∑7
j=5qT

∙ jFi j

]

. Finally the original variables will be rescaled with theirhistorical

mean and standard deviation.

3.4.3 Monte Carlo simulation

Monte Carlo simulation is a parametric simulation method, therefore a parametric mul-
tivariate distribution function has to be selected for the PCs. The study is preformed
on the whole available time span of the data set and is carriedout in two steps. First
the distribution of the dominating PCs is investigated, andthen the residual term is
examined. To do this, the marginal distribution functions of the PCs are analyzed by
quantile-quantile plots (qq plots), and the dependence structure of the marginals are
investigated with the help of scatter plots.

Figure3.4.5shows the qq plots where the empirical distribution is plotted against
a standard normal distribution for the left column of the diagrams, and against a t-
distribution for the right column. The qq plots indicate that the empirical marginals
are heavier tailed that a normal distribution, since the line is upward sloping for the
right tail and downward sloping for the left tail. A distribution with heavier tails is
believed to give a better fit to the observed data, as confirmedby the qq plots against
t-location scale family. The line is fairly straight for allPCs, which indicates a good
fit. The maximum likelihood estimated (MLE) parameters of the marginal distributions
are given in table3.3. The table indicates that the marginals have different degrees of
freedom. However,the qq plots show that the fit is even acceptable when restricting the
degrees of freedom to 3.85.

Figure3.4.6illustrates the pairwise scatter plots of the centered factor scores. Al-
most all scatter plots display a strong concentration in a circle that is centered at the
origin. The scatter plot that deviates the most from this observation is the upper left
one in the figure. Here the shape is rather elliptic. Since a symmetry with respect to
the origin could be observed for most scatter plots, a spherical distribution would be a
good fit for the centered factor scores.

normal distribution t-location scale
PC µ σ µ σ ν
1 0.0000 1.9861 -0.0360 1.1529 2.77
2 0.0000 1.1882 0.0548 0.7604 3.03
3 0.0000 0.9440 -0.0164 0.7783 6.51
4 0.0000 0.6656 -0.0041 0.2653 1.93
5 0.0000 0.3986 -0.0013 0.2235 2.58
6 0.0000 0.3173 -0.0041 0.0554 1.07
7 0.0000 0.1947 0.0035 0.1412 3.91

Table 3.3: Maximum likelihood estimates for normal and t-location scale distributions
fitted to the historical observations of the PCs
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Figure 3.4.5: Quantile-quantile plots of the marginal distribution functions of the first
four PCs. The figure displays two plots for each marginal. Theleft one is the empirical
distribution against a standard normal distribution and the right one is the empirical
distribution against a t-distribution with3.85degrees of freedom.
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Figure 3.4.6: Pairwise scatter plots of the centered factor scores for thefirst four PCs
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Taking into account both the observations made from the qq plots and the scatter
plots, a multivariate t-distribution gives a good parametric model of the multivariate
distribution of the first four PCs. It is not necessary to use acopula model since the
degrees of freedom for the marginals are in close range. A MLEof the centered first
four PCs gives a multivariate t-distribution withν = 3.85. This parameter is equal to
the degrees of freedom used for the t-distribution in the displayed qq plots of the first
four PCs. Instead of using the MLE estimates for the marginaldistribution, the mean
and standard deviation are chosen to match the empirical mean and standard deviation
when each marginal has the same degrees of freedom.

The next object under investigation is the residual term. Inthe previous section
it was assumed, thatε follows a multivariate normal distribution. Instead of making
such an assumption the residual term is investigated in the same manner as the first
four PCs. The only assumption made is that the residual term is independent of the
first four PCs. Figure3.4.7shows the qq plots of the last three PCs. The t-distribution
with 3.76 degrees of freedom gives a good fit for the fifth and seventh PC. The sixth
PC shows slightly heavier tails. The scatter plots of the last three PCs are displayed in
figure3.4.8. In all three plots the shape looks approximately centered.
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Figure 3.4.7: Quantile-quantile plots of the marginal distribution functions of the last
three PCs used as residual term. The figure displays two plotsfor each marginal. The
left one is the empirical distribution against a standard normal distribution and the right
one is the empirical distribution against a t-distributionwith 3.76degrees of freedom.
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Figure 3.4.8: Pairwise scatter plots of the centered factor scores for thelast three PCs

Since the t-distribution with 3.76 degrees of freedom gives a good fit for the marginals
and the scatter plots do not reject a spherical distribution, the last three PCs are modeled
by a multivariate t-distribution with 3.76 degrees of freedom. The complete parametric
model reads

rT
i ∙ =

4

∑
k=1

q∙kFk+
3

∑
k=1

q∙k+4εk

where:

F ∼ t3.85(0,ΣF)

ΣF =

⎛

⎜
⎜
⎝

1.8935 0 0 0
0 0.6777 0 0
0 0 0.4277 0
0 0 0 0.2127

⎞

⎟
⎟
⎠

ε ∼ t3.76(0,Σε)

Σε =

⎛

⎝

0.0742 0 0
0 0.0470 0
0 0 0.0177

⎞

⎠

The centered simulated risk factor changes still need to be rescaled with their historical
mean and standard deviation.

Since the multivariate t-distribution belongs to the family of normal variance mix-
ture distributions, the simulation algorithm for this family as outlined inMcNeil et al.
(2002) can be utilized. LetSbe ad-dimensional random variable that has a multivariate
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t-distribution, thenShas the following representation

S
d
= µ +

√
WAZ

where: Z ∼ Nd(0, Ik)

ν/W ∼ χ2
ν

AAT =
ν −2

ν
Σ

Hereµ andΣ correspond to the mean vector and the covariance matrix of the factor
scores andν is the degrees of freedom parameter of the t-distribution. It should be
noticed that the covariance matrix of this distribution is only defined ifν > 2. The step
by step simulation algorithm reads as follows.

Simulation of normal variance mixture

1. Compute Cholesky decomposition ofν−2
ν Σ to obtainA

2. Sample independent standard normal variablesZ = (Z1,Z2, . . . ,Zd)
T

3. Sample independentlŷW from χ2-distribution withν degrees of freedom and
computeW = ν/Ŵ

4. ComputeS= µ +
√

WAZ

The parametric approach has the advantage that the simulated observation can ex-
perience changes that have not occurred in the past. This is achieved on cost of a
modeling error which is due to a misfit between the parametricdistribution and the un-
known distribution of the PCs. Both the non-parametric and the parametric simulation
approaches can be used to generate scenarios under the physical measure. If a different
sample is used, the presented analysis for choosing a parametric distribution has to be
repeated to be able to insure a good fit. Since this is a time-intensive procedure, the
historical simulation approach is used for all investigation in this report.

3.5 Portfolio rebalancing decision

The optimization problem for the rebalancing situation is formulated in this section.
Both the maximizing expected return of the portfolio subject to an upper bound on
the portfolio’s CVaR case and the minimizing the portfolio’s CVaR subject to a lower
bound on the portfolio’s expected return case are presented. The scenario optimization
problem is based on the general case, which is introduced in section2.2.5. Trading
constraints are incorporated in the problem formulation sothat structured products with
limited offer time can be handled.

It is assumed that the investor holds a portfolio of assets attime ti specified by the
initial weightsxinitial

i . The portfolio choice problem becomes a rebalancing problem
where the positions are adjusted in order to satisfy the investor’s objective and con-
straints on his portfolio. Furthermore, it has to be taken into account that structured
products can only be purchased at the issuing date, and mature after a fixed amount
of time has passed. Let asseti = 0 represent the non-interest paying cash account. To
simplify the rebalancing situation, it is assumed that the initial portfolio consists only
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of structured investments that have not reached their maturity. This is not a limitation,
since structured products that reach their maturity at timeti can be handled in the fol-
lowing way. The value of such an asset is given by the payoff function. The investor
can no longer hold this asset, so it is removed from the portfolio and its value is added
to the cash account. The value of the portfolio does not change but the weight vector
xinitial is adjusted using the described procedure. Furthermore, all structured invest-
ments that have neither a positive weight in the portfolio, nor are issued at the current
time can be disregarded, since structured products can onlybe sold after their issuing
date. The assets are enumerated as follows

i = 0 cash account
i = 1,2, . . . ,m assets with positive weights issued prior toti
i = m+1,m+2, . . . ,n assets issued at timeti

So using the notation introduced in section2.2.3the trading constraints on the weight
adjustmentsx+i andx−i are given by

0≤ x−i ≤ xinitial
i i = 0,1,2, . . . ,m

x+i = 0 i = 1,2, . . . ,m

x−i = 0 i = m+1,m+2, . . . ,n

0≤ x+i i = 0,m+1,m+2, . . . ,n

The variables forced to be zero can be eliminated from the optimization procedure.
Since the scenario optimization introduces a lot of constraints and decision variables to
the portfolio choice problem, only proportional transaction costs are taken into account
since they do not rely on binary variables, which would tremendously increase the
complexity. The new budget and weight constraints are

n

∑
i=0

xi

︸︷︷︸

invested wealth

+

transaction costs
︷ ︸︸ ︷
m

∑
i=1

TC−
i x−i

︸ ︷︷ ︸

cost of sells

+
n

∑
i=m+1

TC+
i x+i

︸ ︷︷ ︸

cost of buys

= 1

x0 = xinitial
0 +x+0 −x−0

xi = xinitial
i −x−0 i = 1, . . . ,m

xi = xinitial
i +x+0 i = m+1, . . . ,n
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The linear program maximizing the expected portfolio return, subject to an upper
boundξ on the CVaR of the portfolio can be formulated as

min
x,x−,x+,z,γ

−
n

∑
i=0

(1+µi)xi

subject to: γ +
1

αS

S

∑
k=1

zk ≤ ξ

zk ≥ 0 k= 1, . . . ,S

zk ≥ 1−
n

∑
i=1

(

1+ rk
i

)

xi − γ k= 1, . . . ,S

n

∑
i=0

xi +
m

∑
i=1

TC−
i x−i +

n

∑
i=m+1

TC+
i x+i = 1

x0 = xinitial
0 +x+0 −x−0

xi = xinitial
i −x−i i = 1, . . . ,m

xi = xinitial
i +x+i i = m+1, . . . ,n

xi ≥ 0 i = 0, . . . ,n

x−i ≥ 0 i = 0,1, . . . ,m

x+i ≥ 0 i = 0,m+1, . . . ,n

In the same manner the next linear program minimizes the CVaRof the portfolio, while
attaining a minimum target rate of expected returnrtarget.

min
x,x−,x+,z,γ

γ +
1

αS

S

∑
k=1

zk

subject to: zk ≥ 0 k= 1, . . . ,S

zk ≥ 1−
n

∑
i=1

(

1+ rk
i

)

xi − γ k= 1, . . . ,S

n

∑
i=0

(1+µi)xi ≥ 1+ rtarget

n

∑
i=0

xi +
m

∑
i=1

TC−
i x−i +

n

∑
i=m+1

TC+
i x+i = 1

x0 = xinitial
0 +x+0 −x−0

xi = xinitial
i −x−i i = 1, . . . ,m

xi = xinitial
i +x+i i = m+1, . . . ,n

xi ≥ 0 i = 0, . . . ,n

x−i ≥ 0 i = 0,1, . . . ,m

x+i ≥ 0 i = 0,m+1, . . . ,n
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3.6 Example of a rebalancing situation

This section investigates the computational complexity ofthe portfolio choice problem
and the robustness of its solution. To show the consistency of the two different portfolio
optimization problems, which are presented in section3.5, an example of a rebalancing
situation is investigated.

The setup is as follows. The investor holds a cash-only portfolio and can invest
in either a new issued PPN with proportional transaction cost 2% or an NPPC with
proportional transaction cost 4%. Both assets have 3 years time to maturity and the
next rebalancing time will be in one year. 1000 scenarios aregenerated using the
statistical factor model with the historical simulation algorithm based on 4 years of
weekly observations of interest rates and the OMXS30 level.The assets’ scenario
returns as well as the assets’ expected return are determined and given as an input
to the scenario optimization problem. CVaR is measured witha confidence level of
α = 0.05. The current time point (19th of May 2006) is chosen, sinceit is one of
the time points where the simulated risk factors give a non-negative expected asset
return. The OMXS30 has a closing level of 951.59 on that day and the three year
government interest rate is 3.17%. The volatility of the index is estimated to be 12.95%
and the Black & Scholes call option price is 87.09 SEK. In this economic setting the
participation rate of the PPN is 98.99%. The expected return computed as the average
outcome for the simulated scenarios is 12.83% for the PPN and 98.03% for the NPPC.
Histograms illustrating the distribution of the asset returns are presented in figure3.6.1
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Figure 3.6.1: The two histograms show the annual return distribution of a PPN (left
diagram) and a NPPC (right diagram) as a result of 1000 simulated index and interest
rate scenarios using the statistical factor model formulated in section3.4with the his-
torical simulation algorithm. The PPN with98.99% participation rate and the NPPC
have 3 years time to maturity
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Figure 3.6.2: Efficient frontier of the example rebalancing situation andthe weight
allocations of the frontier portfolios

Figure 3.6.2 shows the efficient frontiers produced by the different optimization
programs and the weight allocation of the frontier portfolios. The frontier portfolios
are produced with the following approach. First, the maximum return portfolio with no
CVaR restriction is determined. Next, a grid of 20 equally spaced points of the interval
between zero and the CVaR of the max return portfolio is established. Each of these
values is used as an upper bound on the portfolio’s CVaR for which the maximum ex-
pected return portfolio is determined. The frontier computed in this manner is referred
to as maximum return subject to risk constraint frontier in figure3.6.2. To work out
the second frontier called minimum risk subject to return constraint, the expected re-
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turns of the first frontier portfolios are used as lower bounds on the portfolio’s expected
return and then the portfolio’s risk measured in CVaR is minimized.

As one should suspect must the so computed frontier portfolios have the same ex-
pected return and CVaR levels, which is confirmed by the figure. When investigating
either of the weight allocation plots, one can see how the weights change when the
risk or return requirements are changed. An investor who is highly risk averse holds
cash-only since this is the only risk-free asset, which though has zero return. When
the investor is prepared to hold a risky portfolio he first allocates his weight into the
PPN. The more return the investor requires, or the more risk he is willing to take, the
larger is the weight invested in the NPPC. This simple situation makes it possible to
compare the optimization results with commonsense solutions to the investment prob-
lem. In the weight allocation figures the weights do not always add up to one, due
to the transaction costs. Apart from confirming the correctness of the algorithms, this
situation can be used to investigate differences in computational complexity of the two
portfolio choice problem settings. Since computation timeis a very unstable measure,
the computational work is recorded as the number of iterations. To solve the linear
program, the simplex algorithm is used. The iterations needed to solve the problems
are displayed in table3.4.

Expected return of the Max Return Min CVaR
frontier portfolio Iterations Iterations

0 % 52 53
8.8 % 125 326
14 % 81 322
19 % 65 320
23 % 55 319
28 % 54 319
32 % 54 319
37 % 54 319
41 % 54 316
46 % 54 316
50 % 54 316
55 % 54 316
59 % 54 316
64 % 54 315
68 % 52 314
73 % 52 313
77 % 52 313
81 % 52 313
86 % 52 313
90 % 52 314

Table 3.4: Iterations of the simplex method needed to find the weights ofthe efficient
frontier portfolios in a 3 asset setting with 1000 scenarios

In this situation, the optimization problem maximizing expected return subject to a
CVaR constraint converges much quicker than the minimizingCVaR subject to an ex-
pected return constraint. The minimizing CVaR setting needs often more than 6 times
the amount of the iterations used for the maximizing return problem to converge. Only
for the portfolio with either zero return constraint, or zero as an upper bound of the
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CVaR of the portfolio, the number of iterations are approximately equal. Also, the
number of iterations seems to be very stable for various points on the frontier. When
varying the number of scenarios, it could be observed that the amount of iterations
changes proportionally to the number of scenarios, and thatthe advantage of the max-
imizing return setting is retained.

Min CVaR st. lower Max expected return st.
expected return bound upper CVaR bound

Bound value 14.32 41.30 72.56 9.53 38.14 71.51
# Scenarios Asset weight

250 PPN 1.446 4.750 8.580 0.553 1.585 2.871
NPPC 1.418 4.658 8.415 0.543 1.555 2.816

500 PPN 0.960 3.149 5.687 0.352 1.084 1.989
NPPC 0.942 3.089 5.578 0.346 1.063 1.951

1000 PPN 0.734 2.432 4.400 0.231 0.744 1.385
NPPC 0.720 2.385 4.315 0.227 0.730 1.358

Table 3.5: The table presents the standard deviation in percent of the portfolio weights
for 100 repeatedly solved portfolio choice problems using anew set of generated
scenarios for each repetition. The investigation is done for a low, middle and high
risk/return portfolio using different number of scenariosas input to the optimization
program. The variation of the weight allocated to the cash account is not displayed
since it turned out to be zero for all investigated cases.

The weight allocation, that is the solution to the portfoliochoice problem, depends
on the generated scenarios, which are an input of the optimization program. The fol-
lowing study examines how robust the weights are when the optimization procedure
is repeated with a new set of generated scenarios for the samefactor model using the
historical simulation technique. The robustness of the portfolio weights is investigated
for both the minimizing the portfolio’s CVaR subject to a lower bound on portfolio’s
expected return setting, and the maximizing the portfolio’s expected return subject to
an upper bound on the portfolio’s CVaR setting. The necessary upper and lower bounds
are determined as follows. Three portfolios are selected from the efficient frontier dis-
played in figure3.6.2. Counting from left to right the third, the ninth and the sixteenths
portfolio were chosen which correspond to a low, medium and high risk/return portfo-
lio. The risk/return value of the portfolio is used as a boundin the respective optimiza-
tion setting. These portfolio choice problems are solved a 100 times with a new set of
scenarios for each repetition. The standard deviation in the weights is then investigated
for sets consisting of 250, 500 and 1000 scenarios. Table3.5displays the results of the
investigation, which lead to three conclusions. First of all, larger numbers of scenarios
yield more robust weights. Secondly, the maximizing expected return setting produces
more stable weights than the minimizing CVaR setting. The third deduction is that
lower risk/return portfolios have more robust weights thanhigh risk/return portfolios.

As a consequence of the advantages of the maximizing expected return setting over
the minimizing CVaR setting in terms of weight robustness and required number of
iterations to determine a solution, the maximizing expected return setting is used for
all further investigation. Furthermore, the number of generated scenarios given as an
input to the optimization program is set to 1000 for most of the investigations to be
conducted, since it produced stable weights, while requiring reasonable computation
time.
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4
Investigations

4.1 Investigation of the rebalancing strategy on histor-
ical data

This section investigates how well the rebalancing strategy performs on a set of histor-
ical data. The main focus is on examining the effects of the confidence limit and the
CVaR upper bound on the capital allocation at the rebalancing times and the historical
performance of the strategy.

For the historical tests, a data set of 10 years of weekly observations of the Swedish
government interest rates and the OMXS30 ranging from the 14th of April 2000 to the
2nd of April 2010 is chosen. The selected time span includes both up- and downturns
of the underlying of the structured products and the Swedishgovernment interest rates.
The allocation strategy starts with the first investment on the 9th of April 2004 and
is rebalanced every 52 weeks, which is approximately one year. The final value of the
strategy is measured on the 2nd of April 2010. At each investment time point, maximiz-
ing the portfolio’s expected return subject to an upper bound on the portfolio’s CVaR
measured with respect to a given confidence level is used to determine the portfolio
weights. The optimization problem works with 1000 scenarios, which are generated
by the historical simulation algorithm based on a statistical factor model for the yield
curve and the index. The factor model takes into account the most recent four years of
weekly observations. The market is assumed to be frictionless in these investigations
, i.e. the proportional transaction costs of all assets are equal to zero. The investment
situation at the different rebalancing points is as follows. At the first rebalancing point,
which is the initial investment situation, the investor’s wealth can be allocated to a cash
account, a currently issued PPN and a currently issued NPPC.The structured products
have 3 years time to maturity at their date of issue. At any later rebalancing point, a
new issued PPN and NPPC are available to the investor. An overview of the market
conditions and the selected rebalancing points are given infigure4.1.1.
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Figure 4.1.1: Historical observations of Swedish government interest rates and
OMXS30. The rebalancing times and the final evaluation time are indicated by the
horizontal dotted lines and the dates on the x-axis.

4.1.1 Historical strategy performance and weight allocation for var-
ious upper bounds on the portfolio’s CVaR

A portfolio with a high upper bound on CVaR is a more risky investment compared to
a portfolio with a low CVaR constraint. In a well functioningmarket, an investor, who
takes higher risk, is compensated by greater return potential. This means that in an
economic setting favorable to the risky investment, the profit accomplished should be
higher than the one of a low risk strategy. In an unfavorable economic setting, the loss
of a risky investment will though be much higher compared to astrategy with lower
risk.

In this investigation an increase in the index level can be identified as a favorable
economic situation, while a decrease in the index level represents an unfavorable eco-
nomic situation for the investment strategy. Based on the reasoning presented earlier,
a strategy with a higher CVaR bound should outperform a strategy with a lower CVaR
bound when the index experiences an upturn. In the case of a downturn, should the
performance of a strategy with a lower CVaR bound be superiorto a strategy with a
higher CVaR bound.
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Figure 4.1.2:Historical portfolio value development for maximizing theexpected port-
folio return over the next rebalancing period with subject to an upper bound on port-
folio’s CVaR measure at 0.05 confidence level. The figure displays the four strategies’
portfolio value at the rebalancing times and at the final evaluation time with different
upper CVaR bounds compared to a direct investment in the underlying index.

Figure 4.1.2 displays the realized developments of the portfolio valuesfor four
investment strategies using different CVaR bounds. CVaR ismeasured over the next
rebalancing period at the 0.05 confidence level. On the one side, the portfolios with
a higher CVaR bound experience a much larger increase in value compared to the
portfolios with a lower CVaR bound during the upturn of the index from 2005 to 2007.
On the other side, the high CVaR bound portfolios decrease far more in value compared
to the low CVaR bound portfolios during the downturn betweenrebalancing points of
2007 and 2009. The result is in line with how portfolios with different CVaR bounds
should behave in various economic situations.

To analyze the performance in more detail, one needs to examine the expected
returns and the CVaR of the composed portfolios, which are shown in figure4.1.3, and
their weight allocations, which are displayed in figuresA.1.1 to A.1.4 in the appendix.
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Figure 4.1.3: The expected return and CVaR of the composed portfolios using differ-
ent upper bounds on the portfolio’s CVaR. The confidence level for all CVaR measure-
ments is set to be 0.05.

At the first rebalancing point all portfolios have almost equivalent expected return
and CVaR. This is due to the fact, that the PPN issued at the first rebalancing time is
the only asset available at that time point with a positive expected return over the next
rebalancing period. Any portfolio will have a CVaR less thanor equal to the CVaR of
the PPN. The resulting portfolio values at the next time point are very close, because
the capital allocations are nearly equal. A similar situation appears at rebalancing time
6, where again the newly issued NPPC has a negative expected return over the com-
ing rebalancing period. At the other rebalancing points do both the newly issued PPN
and NPPC have positive expected returns. All portfolios do reach their respective up-
per CVaR bound at these time points. This means that one should only compare the
portfolio value developments for the years 2006 to 2009 in figure4.1.2to investigate
the impact of the upper CVaR bound. Examining the capital allocation diagrams, one
can recognize that for portfolios with higher CVaR bounds, the proportion of wealth
invested in NPPCs is greater than for portfolios with lower CVaR bounds. The rebal-
ancing behavior seems to be unaffected of the CVaR bound. During the upturn of the
index (rebalancing times 2, 3 and 4), all existing positionsare sold at each rebalancing
point and the complete wealth is reinvested in newly issued structured products. After
the first downturn (rebalancing time 5), the structured investments issued at rebalanc-
ing time 4 partially remain in the portfolio and the value received for selling fractions
of formerly purchased structured products is invested in PPN 5. An important observa-
tion that this historical test points out is, that capital allocated to the NPPCs increases
more and more, as the index experiences an upturn, and decreases again when the index
takes a downturn. Since the investor’s risk conception is kept fixed for each rebalanc-
ing strategy, one can conclude that the risk characteristics of the assets are influenced
by trends in the time series of the risk factors.
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4.1.2 Historical strategy performance and weight allocation for var-
ious confidence levels at which the portfolio’s CVaR is mea-
sured

The previous investigation is repeated, but instead of the upper bound of the portfolio’s
CVaR is the confidence level for the CVaR measurements alternated. The upper bound
of the portfolio’s CVaR is held constant at 0.10. If two portfolios have the same upper
bound on CVaR, then the portfolio for which CVaR is measured at a higher confidence
level can be identified as the risky one. Figure4.1.4shows that the portfolios with a
higher confidence level outperform the ones with a lower confidence level during the
upturn of the index, and that the portfolios with a lower confidence level give better
results than the portfolios with a higher confidence level during the downturn of the
index.
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Figure 4.1.4: Historical portfolio value development for maximizing expected portfo-
lio return of the next rebalancing period with subject to an upper bound on the portfo-
lio’s CVaR equal 0.10. The figure displays the portfolio value at the rebalancing times
and at the final evaluation time of four strategies with different confidence levels for
measuring CVaR compared to a direct investment in the underlying index.
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Figure 4.1.5:The expected return and CVaR of the composed portfolios using different
confidence levels for the CVaR measurements. The upper boundon portfolio’s CVaR
is equal to 0.10 for all portfolios.

Figure 4.1.5 shows the expected return and CVaR of the portfolios. Due to the
limited availability of investment alternatives with a positive expected return at rebal-
ancing times 1 and 6, are the expected returns of the portfolio very similar for those
periods. For the other rebalancing times does a portfolio with a CVaR measured on
a higher confidence level reach a higher expected return compared to one for which
CVaR is measured on a lower confidence level. One can notice that the differences
in expected return of the portfolios significantly increasefrom rebalancing time 2 to
4. At rebalancing time 4 the CVaR for the portfolio with confidence level 0.2 is even
negative. The weight allocation diagrams are not displayedin the report, because they
do not yield any new information. As mentioned earlier, do the more risky portfo-
lios, which are the ones with higher confidence level, have a larger part of the wealth
allocated to NPPCs.

4.1.3 Conclusions from the historical tests

Both the confidence level for CVaR measurements and the upperbound on the port-
folio’s CVaR successfully control the riskiness of the investigated portfolios, as the
tests using historical data indicates. A low risk portfoliodoes not profit from favorable
economic developments at the same degree as a high risk portfolio. However, the port-
folio value of a low risk portfolio does not decrease as rapidly as the one of a high risk
portfolio in unfavorable economic situations.

The investigation revealed that historical trends have a large effect on evaluating
the riskiness of an asset using the formulated scenario generation approach. When the
index has a large positive trend, the riskiness of both the NPPC and the option part of
the PPN reduces significantly, because for most scenarios the call option will be in-the-
money at the next rebalancing time. This results in a higher expected return of these
assets. Historical trends in the interest rates have also aneffect on the riskiness and the
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expected return of the structured products.
It is important to be aware of the historical trends’ influence on the generation

of future return scenarios, because one can not just expect history to repeat itself. A
methodology of controlling trends in the risk factor changes has to be established. The
next section presents an approach to this problem.

One should notice that the realized portfolio values and theweight allocations of
the rebalancing strategy also depend on the chosen set of rebalancing dates. However,
the observations and conclusions made from the investigated set of rebalancing dates
were also established for other sets of rebalancing dates.

4.2 The investor’s view as a second source of informa-
tion

The section adds a new source of information to the portfolioselection process. The
previous section concluded that the historical trends of the risk factor changes create a
strong bias in the scenario generation. To control this effect, the investor can specify his
own view on the expected future development of the risk factors. The present approach
combines both the information from the historical data, andthe investor’s opinion to
generate scenarios that are less influenced by historical trends and more representative
with respect to the investor’s view on the expected future developments of the risk
factors

4.2.1 Formulation of a subjective view

Up to this point, all information entering the model for simulating future developments
of the yield curve and the index is solely based on historicalobservations. One conse-
quence of this modeling approach is that the generated scenarios match the historical
data input closely in terms of the mean and the standard deviation of each return series.
In this context a return series refers to a series of risk factor changes. The centered sim-
ulated returns are realizations of a random vector, that haszero mean and a covariance
matrix with ones on the main diagonal. These centered returns are then rescaled by the
historical mean and standard deviation. As a result of the law of large numbers does
the sample mean and sample standard deviation of the simulated return series converge
to the sample mean and sample standard deviation of the historical return series.

Such a behavior is undesirable since it implies that if a return series had a positive
mean in the past, it will have a positive mean in the future if the number of scenarios is
sufficiently large. Since the weights of the portfolio optimization should be robust, the
number of generated scenarios is large so that there is hardly any deviation between the
mean and the standard deviation of the simulated return series and the historical return
series. The scenarios are only representative if the marketis expected to have a similar
behavior as in the past.

Market climates change though and there is no reason to believe that a return series
will experience a positive trend in the future because it hada positive trend in the past.
Since historical data gives no reliable information about the direction of the market
developments, other sources of information have to be used.One way to do this, is to
simply ask the investor about his subjective belief on the expected future developments
of the return series. If an investor expects the index to growat a high rate, he should
probably allocate his capital in assets, that profit from this scenario. It is only rational to
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make investment decisions based on ones own subjective believes. A price of an asset
reflects the consensus forecast of its future performance but this forecast can differ
from ones own opinion. This difference makes an asset eitherattractive or unattractive
for an investor.

The investor’s view as a stochastic trend

The investor’s view on the return series is expressed by the random variableµview ∼
N(µ̂view,Ω). The expected returns the investor presumes are specified inthe vector
µ̂view and the uncertainty in the view is formulated inΩ = diag{s11,s22, . . . ,snn} where
sii is the variance in theith view. The views are assumed to be independent of each
other. The new rescaling equation reads

r̃T = Λ(µ̂view+ εview)+(I −Λ)µdata+SdatarT

where: εview ∼ N(0,Ω)

Λ = diag{λ1,λ2, . . . ,λn} with λi ∈ [0,1]

µdata is the sample mean vector of the historical return series andSdata is a diagonal
matrix with the sample standard deviation of the historicalreturn series on the main
diagonal. λi is the weight the investor puts on theith view. If λi is 0, the investor’s
opinion is disregarded and the incorporated information comes only from historical
data. The case whenΛ is the zero matrix is referred to as an uninformed view. Ifλi is
1 the historical mean is not taken into account and the trend is solely estimated on the
investor’s view. It might be a difficult task for an investor to express the uncertainty of
his view in terms of variance. But if he can specify an uncertainty interval for each of
his views, then the variance can be determined from it. The following example clarifies
the idea.

The investor’sith view indicates that the index will have a mean weekly return of
r̄ = 0.20% which is around 11% annual return. He is uncertain about his forecast but
he thinks that with 80% chance the mean weekly return will liebetweenrL = 0.18%
andrU = 0.22%. For this two-sided confidence interval the variance of the view on the
index is

sii =

(

rL − r̄

Φ−1
(

1−confidence level
2

)

)2

(4.2.1)

whereΦ−1(x) is the inverse of a standard normal distribution. For this example the
variance would be 0.000244.

To see how the choice ofΛ, µ̂view andΩ influences the simulation of the return
series, the mean and covariance of ˜r are determined.

E
[
r̃T] = Λµ̂view+(1−Λi)µdata

Cov
[
r̃T] = Λ2Cov[εview]+SdataCov

[
rT]Sdata

The new mean of the return series is a convex combination of the µ̂view andµdata. Only
the elements on the main diagonal of the historical covariance matrixSdataCov

[
rT
]
Sdata

are going to be changed. The termλ 2
i sii is added to theith diagonal element. This

increases the variance of each return series and decreases the correlation between the
different return series. An investor, who puts a lot of weight on his uncertain subjective
view, actually implies that the future market movements will be more rapid than in
the past and that the return series will have a lower dependence on each other. The
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investor’s subjective view and its effect are very different, since the way in which the
two sources of information are combined is not appropriate.

Historical data and the investor’s view combined by using statistical distance

A different approach has to be formulated. The information from the investor’s view
and the historical observation should be combined in such a way, that the new expected
return vector differs as little as possible from the one suggested by either source. The
statistical distance is used as a distance measure to accomplish this objective. This
approach is also used with respect to asset returns in the Black-Litterman model. A
detailed description of this model can be found inMankert (2006).

µdatais the estimate of the expected future developments suggested by the historical
data, which has the covariance matrix1

mΣ wherem is the number of observations and
Σ is the covariance matrix of the observed returns. The investor can formulatek either
absolute or relative views on the expected developments of the return series. An abso-
lute view for example is, that the expected weekly log returnof the index is 0.20%, and
a relative view is that the weekly relative change in the 2-year Swedish government
interest rate is 0.002 higher than the weekly relative change in the 10-year Swedish
government interest rate. To express thesek views ak×n matrix P is introduced with
only three different elements, that are−1,0 and 1. An absolute view has only one
positive element in the row, which is situated at the respective column entry. A relative
view has a zero row sum. The risk factors that are compared have a 1 and -1 entry at
their representative entries. The formulation of allk views reads

Pµ = q+ εview

q is a k dimensional vector that holds the investor’s views andεview is a randomk
dimensional vector expressing the uncertainty of the views. The views are assumed to
be independent and therefore the covariance matrix ofεview is the diagonalk×k matrix
Ω. Let µcomb denote the estimate of the future expected returns, then thestatistical
distances are defined as

(Pµcomb−q)T Ω−1 (Pµcomb−q)

(µcomb−µdata)
T mΣ−1 (µcomb−µdata)

The weight put on the subjective view isλ ∈ (0,1). Notice thatλ is the weight for all
views. µcomb is then the solution to the following optimization problem

µcomb = argmin
µ

{λ (Pµcomb−q)T Ω−1 (Pµcomb−q)+

+(1−λ )(µcomb−µdata)
T mΣ−1 (µcomb−µdata)}

= argmin
µ

{(Pµcomb−q)T Ω−1 (Pµcomb−q)+

+(µcomb−µdata)
T 1−λ

λ
mΣ−1 (µcomb−µdata)}

To simplify notation setτ−1 = 1−λ
λ m. This optimization problem can be classified as

an unconstrained quadratic optimization program. The matrices Ω−1 andmΣ−1 are
positive semidefinite as a result ofΩ being a diagonal matrix andΣ being a covari-
ance matrix, which both are positive semidefinite matrices.The inverse of a positive
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semidefinite matrix is also a semidefinite matrix. So both statistical distances are con-
vex functions and a non-negative weighted sum of convex function is also a convex
function. Since the function to be minimized is convex, any local optimum is also a
global optimum. Setting the first derivative with respect toµ equal to zero yields the
solution to the problem.

µcomb=
(

PTΩ−1P+(τΣ)−1
)−1(

PTΩ−1q+(τΣ)−1 µdata

)

The centered simulated returns are then rescaled usingµcomb andSdata.

r̃T = µcomb+SdatarT

This formulation has the advantage that the covariance matrix is preserved and only the
estimation of the future trends uses both sources of information.

4.2.2 Rebalancing problem with subjective view

While in the previous section the only source of information is the historical data, in this
section the investor’s view enters as a second source of information. Both information
sources are combined in the way described in section4.2.1to get a new estimate of the
expected development in the underlying return series. The goal is to investigate how
the allocation among the assets changes depending onq,λ andΩ.

The analysis is done for a single absolute view on the expected log return of the
OMXS30 in two steps. Firstλ andΩ are kept fixed andq is modified. In the second
part q is constant andλ andΩ are varied. The investment situation investigated and
all parameter settings are equivalent to section3.6. The investor is maximizing the
expected return of the portfolio over the next year keeping the one year-CVaR of the
portfolio below 20% of his initial wealth. All computationsare performed with the
same random stream to eliminate any effects due to random variations of the simulation
process.

Effects of varying q

To analyze the impact ofq on the estimation of the expected changes,λ is set to be 0.5
and the uncertainty in the view is chosen so that it is equal tothe historical variance
of the log returns of the OMXS30. The historical mean weekly return of the index is
0.0018. The parameterq takes on values between−3 and+3 times the historical mean.

The effect of a single view on the expected log return of the index is shown in
figure 4.2.1. The expected relative changes of the interest rates and theexpected log
return of the index experience a linear dependence on the parameterq, in the case
of a single absolute view on the expected log return of the index. The effect on the
expected interest rate changes is an interesting observation. The impact is dependent
on the covariance between the respective interest rate and the index. The 3 month
interest rate is the rate with the smallest positive covariance. The slope of the graph is
rather flat. The 5 year rate has the largest covariance and therefore the slope is rather
steep.
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Figure 4.2.1: The effect of a single absolute view on the expected log return of the
OMXS30. The upper graph shows the dependence of the expectedrelative changes in
the interest rates onq. The 3M rate is the interest rate with the smallest covariance with
the index and the 5Y rate is the one with the largest covariance with the index. The
lower graph shows how the expected return of the index changes depending on q
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no-view situation of section3.6
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The resulting impact on the weight allocation is displayed in figure4.2.2.The in-
vestor holds no cash and the weight put into the PPN and the NPPC is dependent on the
subjective view. In the original no-view case, 81.73% of the initial wealth is invested in
the PPN and 15.99% are allocated to the NPPC. The remaining 2.28% of the funds are
used to pay for the transaction costs. When the investor has the lowest presumption on
the expected future performance of the index, the wealth invested in the certificate is
reduced to zero and instead all funds are allocated to the PPN. When the investor has a
strong positive view on the market’s expected future development, the NPPC’s weight
in the portfolio is increased by more than 3%. This parameterstudy indicates a strong
dependence of the weight allocation on the investor’s subjective view.

Effects of varying λ and Ω

The investor’s view on the expected return of the index is fixed to investigate the effects
of varyingλ andΩ. The OMXS30 has a historical mean annual log return of 9.20%,
estimated on four years of weekly observations prior to the 19th of May 2006. The
investor believes the index will have an expected annual logreturn of 4% above the
historical mean annual log return. This corresponds toq= 0.0025 andµdata= 0.0018.
In the following analysisλ varies in the interval between 0 and 1, where 0 corresponds
to the no-view situation. Equation (4.2.1) is used to specify different levels of uncer-
tainty. The confidence level for all views is set to be 0.9 and ¯r = q. To create views
with different uncertainty,rL is varied. The case, whererL is close to ¯r, corresponds
to a certain view, while the case, whererL is much smaller thanr, corresponds to an
investor, who is uncertain in his view. Figure4.2.3shows how the expected values
for three selected return series change depending onλ andΩ. First of all, one can
notice that a formulation of a view on the expected index log return also has an impact
on the expectation of relative changes for the interest rates, as already observed when
varyingλ . This is a consequence of the statistical distance approach, which takes into
account the covariance between the random variables. The shape of all surfaces is very
similar, but the slopes differ a lot. IfΩ is small, the impact of the subjective view on
µcombo is large. WhenΩ is large, the effect of the investor’s view on the expectations
of the changes in the risk factors is rather small, compared to the no-view situation. A
λ close to one puts more weight on the subjective view, while aλ close to zero, puts
more weight on the historical mean. The slope is largest in the graph concerning the
OMXS30. Comparing the graphs of the selected interest rateswith one another leads
to the conclusion, that the slope of the 3 month rate surface is rather flat compared to
the 5 year surface. This is due to the greater covariance between the relative changes
in the 5 year government interest rate and the log returns of the index, causing a bigger
impact of the subjective view formulated on the index on thisrate.

Figure4.2.4shows the changes in weight allocation. The surface for cashaccount
is not presented since the investor does not allocate any funds into this asset in any
situation. Since theq is greater thanµdata, the more certain or the more weight is put on
the the investor’s view, the more weight is allocated from the PPN towards the NPPC.
If Ω is small, the effect of varyingλ is almost non-existing. The same observation is
made for varyingΩ whenλ is chosen close to 1. Therefore one cannot separate these
two parameters when specifying a single subjective view. However, when defining
several views,Ω can assist in adjusting the uncertainty in the different views. The
more uncertain or the less weight is put on the investor’s view, the smaller the changes
are in the portfolio weights compared to the no-view situation.
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Figure 4.2.3: The figure displays the effects of a single absolute view formulated on
the expected log return of the OMXS30 withq= 0.0025and varyingλ andΩ on the
combined view of the expected weekly relative change in the 3month government in-
terest rate (upper graph), the expected weekly relative change in the 5 year government
interest rate (middle graph) and the expected weekly log returns of the OMXS30 (lower
graph). The historical mean relative change of the 3 month government interest rate is
0.9968 and of the 5 year government interest rate is 0.9984. The historical mean log
return of the OMXS30 is 0.0018
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4.2.3 Effect of the subjective view on the portfolio performance

The goal of this part is to illustrate how taking into accounta subjective view can en-
hance the performance of the rebalancing strategy. If an investor has a good guess about
what is going to happen in the future, he should hold a portfolio, that takes advantage
of this superior information. Since a rational investor would only allocate his wealth in
assets, that according to his option should give positive return, the performance of the
portfolio should increase when the subjective view becomesmore accurate.

To test if this common sense hypothesis is observable, the same experiment as in
section4.1 is repeated with a subjective view and a fixed specification ofthe CVaR
upper bound equal to 0.20 and a 0.05 confidence level for the CVaR measurements.
To get a good view, a synthetic absolute view on the expected relative changes of each
interest rate and the expected log return of the index is introduced. The view is simply
the actual relative change for the interest rates and respectively the actual log return
for the OMXS30. The quality of the views is controlled through the covariance matrix
of the viewsΩ. The variance of each view is calculated, as previously described, by
using confidence intervals. The confidence level for all confidence intervals used in
this section is 0.9. Since the confidence level is fixed, the lower confidence limit is
used to alter the variance of each view. To refer to the different qualities of views
the term uncertainty level is used. A view with uncertainty level v has the following
specifications. The differencerL − r̄ is for a view on the expected relative change of an
interest rate equal to−v∣qi −1∣ whereqi is the expected weekly relative change in the
interest rate according to the subjective view. For a view onthe expected log return of
the index the differencerL − r̄ is equal to−v

∣
∣q j
∣
∣ whereq j is the expected weekly log

return of the index according to the subjective view. The reason for the different settings
for the interest rates and the index is, that the uncertaintyin each view should be of
approximately same order of magnitude. This corresponds tosaying, that the investor
has equally good information on interest rates and the OMXS30. Since the uncertainty
of the view is a multiplicative ofqi , theqi have to be scaled. Theqi for interest rates
lies close to one while theqi for the index is close to zero. Subtracting one from the
view on the expected relative change of the interest rate brings all uncertainties close to
each other. Notice that defining the view in this way implies,that the subjective view
is more uncertain on random variables that have a large change, and less uncertain on
random variables that only experience a small change. Largeand small refers here to
the absolute change. To scale both covariance matrices to approximately equal order
of magnitudeλ is chosen to be 0.99.

Figure4.2.5illustrates howµcombois influenced by the uncertainty in the subjective
view. To keep the figure clear, only two elements ofµcombofor two different uncertainty
levels: 0.1 and 1 are displayed. When the uncertainty level islow µcombo is close to
q. As the uncertainty level for the subjective view increasesµcombo is adjusted towards
µdata. It is also observable that a large∣q∣ introduces more uncertainty. If∣q∣ is small
µcombo for uncertainty level 0.1 is very close toq, but when∣q∣ is largeµcombo is not as
much adjusted towardsq given the same uncertainty level.
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The weight allocation diagrams for the different uncertainty levels are displayed on
pages82 to 83 and the resulting portfolio values are illustrated in figure4.2.6. First
of all, one can notice that a good view enhances the performance of the strategy. In
the no-view situation, the portfolio value at the final evaluation time for a strategy
with the same confidence level and upper CVaR bound is around 1.5 times the initial
value. When using the synthetic view with the lowest uncertainty level, the portfolio
value after an investment period of six years reaches almost4.5 times the initial value.
The strategy with the uncertainty level 0.01 has only one period with a decrease in
portfolio value. This is the period from 2004 to 2005. The decrease is due to a sharp
decline in volatility of the index, which lowers the value ofthe option so dramatically
that even the event of the option going into the money cannot recover the loss in the
option value. One can notice that the performance relates inverse proportional to the
uncertainty level of the view. Since the view is the actual future outcome this result
is in line with common sense reasoning. When examining figuresA.2.1 to A.2.4, it is
observable that the weight allocation is highly dependent on the subjective view. Since
the elements ofµcomboare used as the mean of the relative changes and the log returns
of the risk factors, the expected return and the riskiness ofan asset over the next period
change a lot, depending on this parameter. At the first three rebalancing times the
weight allocations are rather similar. The low uncertaintylevel portfolios have a greater
exposure to the index development through purchasing also NPPC 1, while the high
uncertainty portfolios place the entire funds in the PPN 1. At rebalancing times 2 and 3
the chosen assets are the same for all portfolios, but again the low uncertainty portfolios
have more exposure to the index. Rebalancing times 4 and 5 cause the significant
differences in the performance of the portfolios. The portfolio with the most accurate
subjective view sells all risky positions and therefore retains the portfolio value, while
all other portfolios decrease their value during this period due to investing in a bear
market. The greater the uncertainty in the synthetic view is, the greater is the exposure
to the index in these two periods. This is caused by the great positive historical mean
of the log returns of the index, which introduces a large positive bias in the scenario
generation. At rebalancing time 6 the portfolio weights aresimilar again.

One should keep in mind that a PPN only has a lower bound equal to the issuing
price at time of maturity. The intermediate values are dependent on both the develop-
ment of the interest rates and the index.

It became clear that the better the quality of the subjectiveview, the greater the
performance enhancement. Furthermore, it is interesting to see how dependent the
performance increase is on the number of absolute views. Theweight allocation and
realized performance is determined of a selection of different numbers of views where
all views have the uncertainty level 0.01. The first setting has views on all interest
rates and the index. In the second setting the number of viewsis reduced to two,
one on the 12 month interest rate and one on the index. The third setting has only
a view on the index and the fourth setting has only a view on the12 month interest
rate. Figure4.2.7shows the portfolio values for the different view settings.The weight
allocation diagrams can be found on pages84 to 85 in the appendix.
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Figure 4.2.7: Development of portfolio value for the different selectionof synthetic
subjective view settings with uncertainty level 0.01. The chosen confidence level for
the CVaR measurements is 0.05 and the upper bound on the portfolios’ CVaR is 0.20

The weight distribution among the different assets and the performance of the strat-
egy hardly changes for the first three settings. A big difference occurs when the view
on the index is removed. The strategy with only a view on the 12month interest rate
has a much weaker performance than the other view settings, but still outperforms the
no-view setting. This experiment indicates that the view onthe expected log return of
the index seems to be most important for the performance, though a good view on the
expected relative changes of the interest rates can add someextra enhancement on the
performance of the strategy.

4.2.4 Conclusions on the effects of the investor’s subjective view

The investor’s subjective view reduces the effect of historical trends on the scenario
generation and increases the representativeness of the scenarios according to the in-
vestor’s opinion on the future behavior of the risk factors.The modified approach
of generating scenarios incorporates information from both historical data and the in-
vestor’s view on the expected changes in the risk factors over the next rebalancing
period.

The historical tests indicated, that an accurate subjective view can enhance the
performance of the rebalancing strategy. The view on the index turned out to add most
enhancement to the portfolio in the investigated situation.

It has to be mentioned that embedding a subjective view not automatically leads to
better investment decisions. A view that badly describes the expected future behavior
of the risk factors, leads to non-representative scenarioswith respect to the unknown
future market developments. This causes a wrong evaluationof the assets’ riskiness
and reward potential, which will then result into unprofitable investment decisions.

The conducted investigation only indicates that the investment decisions made
using the presented approach can take advantage of information about the expected
changes of the risk factors available to the investor.

Moreover, one can notice that all investigated rebalancingstrategies have large
turnover. In the actual market situation, this would cause high transaction costs and
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reduce the portfolio performance. The next section takes into account transaction costs
in the investment decision.

4.3 Impact of transaction costs on the rebalancing strat-
egy

Transaction costs are an important factor in portfolio rebalancing. This section investi-
gates the impact of the transaction costs on the rebalancingbehavior. The historical test
with a synthetic view on the expected risk factor changes is used for this investigation.
Both the effects of transaction costs for buying and for selling structured products are
examined. The historical test has the same setup as in section 4.2.3. CVaR is mea-
sured at the 0.05 confidence level and the upper bound of the portfolio’s CVaR is 0.20.
The synthetic view used in this part has an uncertainty levelof 0.1 and is composed of
absolute views on all risk factors.

4.3.1 Transaction costs in the primary market

When an investor purchases a structured product, he usually has to pay some brokerage
commission. Regarding structured products on the Swedish market, the commission is
a proportion of the invested capital, which varies between 1% to 3% depending on the
product type and the issuer. TableA.1 in the appendixA.3 presents the brokerage com-
missions for a selection of structured products from different issuers. In contrast to the
investigation from section4.2.3, the assumption of a frictionless market is abandoned,
and the effects of transaction costs for buying structured investments are examined on
the performance of the strategy, the expected return and theCVaR of the optimal port-
folios and the weight allocation behavior. The choice of proportional buying cost levels
are 0%, 1%, 2% and 3%. The actual portfolio value developmentunder the different
conditions is shown in figure4.3.1.
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Figure 4.3.1:Historical portfolio value development in the presence of cost for buying
structured products. The Portfolio CVaR is measured at the 0.05 confidence level and
the upper CVaR bound for the portfolios is 0.20. All portfolios use the synthetic view
on all risk factors with an uncertainty level of 0.1
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The transaction costs imposed for purchasing structured products have a signifi-
cant impact on the achieved portfolio values during the investment period from 2004
to 2010. The portfolio value in 2010 in the case of 1% buying cost is 7.3% less than
in the frictionless case. For a buying cost of 2% and 3%, the final portfolio values are
15.2% respectively 19.3% less compared to the no transaction costs setting. TableA.2
in the appendixA.3 reveals the expected return and the CVaR of the optimal portfo-
lios. At all rebalancing points a higher buying cost resultsin a lower expected return
portfolio, while the portfolios’ CVaR are equal. The fifth rebalancing time is a little bit
exceptional, since the CVaR constraint is not active. This is due to the negative view
on the index, which causes the expected returns of the newly issued products to be ei-
ther very small or negative. Examining the weight allocation diagrams for the different
transaction costs settings, that are displayed in figureA.3.1 to A.3.4 in appendixA.3
concludes two main effects. First of all, the cost of buying structured products de-
creases the attractiveness of the assets, that are not included in the current portfolio.
The transaction costs shift the return distribution of the individual asset to the left. This
decreases the expected return of the asset and increases theCVaR of the asset. There-
fore, some structured products do not enter the portfolio any longer than compare to
the frictionless case. An example of such an asset is PPN 5 at the beginning of the fifth
rebalancing period (S5), which is in the presence of transaction cost substituted for
cash. Secondly, transaction costs reduce the turnover in the portfolio. Assets, that are
held for only one year in the frictionless market, are held for two years, such as PPN 1
and PPN 3 in the 2% buying cost case, or even until their maturity, as for example PPN
4 in the case of 3% buying cost, when a cost of buying structured products is imposed.
In other words, transaction costs create some kind of barrier, that a newly issued struc-
tured investment has to overcome to be included in the portfolio. The higher the cost
of buying structured products is the higher the barrier becomes.

4.3.2 Transaction costs in the secondary market

Structured investments can be sold prior to their maturity.This can either be conducted
on an exchange for listed structured product or in form of an OTC trade, where often
the issuer acts as the market maker. Since the secondary market is not very liquid
compared to trading large cap stocks on an exchange, ignoring bid-ask spread would
be unrealistic. The previous study is repeated with a fixed proportional cost of 2%
for buying structured products and in addition a cost for selling structured investments
prior to its maturity is introduced. Figure4.3.2displays the historical portfolio value
development for different levels of transaction costs for selling structured products
prior to their maturity.
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Figure 4.3.2: Historical portfolio value development in the presence of transaction
costs. The proportional cost of buying structured investments is fixed to be2% for all
cases. The proportional cost for selling structured products is varied between0% and
3%. The portfolio CVaR is measured at the 0.05 confidence level and the upper CVaR
bound for the portfolios is 0.20. All portfolios use the synthetic view on all risk factors
with an uncertainty level of 0.1

In the case of 1% selling cost, the portfolio value in 2010 is 3.8% less compared
to the situation with no selling cost. Selling costs of 2% and3% give portfolio values
in 2010, that are 6.5 % repectively 9.5 % below the zero selling cost setting. The ef-
fect of the selling cost on the portfolio value development is not as dramatic as for the
buying cost. This might be due to the fact, that one can escapethis cost by holding the
structured investment until its maturity. However, the investigation leads to the con-
clusion, that the portfolio performance decreases when higher selling cost is imposed.
TableA.3 in the appendixA.3 shows that also the expected return of the portfolios is
decreased, starting from the second rebalancing time. When portfolio weights are ad-
justed, the working capital is reduced and therefore part ofthe expected return, that is
computed on the basis of portfolio value before adjustmentshave taken place, is used
to recover the transaction costs. When the transaction costsare increased, a larger part
of the expected return is needed to replace the loss in capital due to market friction.

The weight allocation diagrams, presented in figuresA.3.5to A.3.8in appendixA.3
lead to two observations. First of all, the selling cost introduces some kind of barrier
for an asset to leave the portfolio. This can be seen in the following case. PPN 3 is sold
at the end of the fourth period and the gained capital is placed in the cash account in
the case of no selling cost. This reallocation is triggered by the small negative return
of the PPN 3 over the next period. In the presence of selling cost in the market, it is a
better option to hold an asset with a negative return smallerthan the proportional cost
of selling it. This is exactly what this example shows, sincein all cases with selling
cost the PPN 3 remains in the portfolio after the fourth rebalancing time. Secondly, one
can observe that the holding period of the structured products increases with increasing
selling cost. In case of 2% buying cost and 0% selling cost, nostructured investment is
held until its maturity. When selling costs are increased, two structured products (PPN
3 and PPN 4) remain in the portfolio until they reach their maturity.
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4.3.3 Conclusions on the impact of transaction costs

Transaction costs have a significant influence on the rebalancing behavior. The turnover
in the portfolio decreases when the frictionless market assumption is abandoned. Newly
offered structured products need to outperform the ones included in the portfolio no-
tably to make up for the transaction costs, that have to be payed. In the investigated
setting, transaction costs can decrease the achieved portfolio values over an investment
period of six years by up to 23.2%.

The historical tests reveal that, in the presence of transaction cost, structured prod-
ucts are also sold before they have reached their maturity and the received cash flow is
reinvested in the newly issued structured investments.

4.4 Effects of credit risk on portfolio optimization with
structured products

This section introduces credit risk that is an important risk factor that needs to be con-
sidered when investing in structured products. Most structured investments are traded
OTC and therefore carry credit risk. If the issuer of a structured product defaults,
the complete value might not be recovered and in the worst case the contract might
be worthless. In recent years credit risk has gained a lot of recognition in the finan-
cial world. Especially since the collapse of Lehman Brothers and three major Icelandic
banks, it is confirmed that financial institutions can file forbankruptcy and in the course
of this, default their outstanding payments. This section is outlined as follows. First
credit risk is implemented in the pricing of the assets and inthe scenario generation.
Thereafter the effects of credit risk on the portfolio weights are investigated. The sec-
tion closes with conclusions of the effect of credit risk forportfolio optimization with
structured products.

4.4.1 Modeling credit risk

Credit risk is defined as the risk of the value of an asset or a portfolio changing due to
unexpected changes in the credit quality of the counterpart. So not only default of the
counterpart has an effect on the portfolio value, but also a change in credit rating may
influence the value of an asset or of a portfolio. The first stepin order to incorporate
credit risk in the investment situation is to determine the fair price of a PPN and a
NPPC, taking into account the possibility of the contract issuer’s default.

Pricing defaultable structured products

Previously in this study, the pricing of structured products is done using the Black
& Scholes model under the assumption, that the issuer of a structured investment is
always able to fulfill its obligations. This assumption is now abandoned. The random
time of default is denotedτ. At this time point, the issuer can no longer meet its
obligations. If this situation occurs, the owner of the structured products is assumed
to be compensated by a fraction of the structured product’s payoff at maturity. This
fraction, denotedR∈ [0,1], is an exogenous, fixed parameter and known as the recovery
rate of the entity. The credit default event is assumed to be independent of all other
economic quantities. The reduced-form approach is used, describing the event of an
entity defaulting by the first jump of a Poisson process. Thismodel is summarized in
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section2.4.1. More information on credit risk models can be found inMcNeil et al.
(2002) or Ammann (2001).

The value of a structured product at timet, given that default of the issuer has not
occurred prior to timet, is the discounted expected payoff at maturity in the case that
the issuer survives up to the asset’s maturity plus the discounted expected compensation
the holder receives in the case of default during the lifetime of the asset. Under the risk-
neutral measure this can be expressed as

1{τ>t}πD(t) = 1{τ>t}Et
[
1{τ>T}P(t,T)π(T)+1{τ≤T}P(t,T)Rπ(T)

]

where:

πD(t) price of a defaultable structured product at timet

π(t) price of a default-free structured product at timet

P(t,s) price of a default-free zero-coupon bond

with face value 1 and maturitys at timet

Using the mutually independence of the default event, the interest rate and the price
of the underlying, and the fact thatπ(t) = P(t,T)Et [π(T)] andQ(t,T) = Et

[
1{τ>T}

]

gives, that the price at timet of a defaultable structured investment with maturityT
under credit risk, given that default has not occurred priorto timet is

1{τ>t}πD(t) = 1{τ>t} (Rπ(t)+Q(t,T)(1−R)π(t))

The price of a structured product is the sum of the value of theclaim, given that de-
fault has occurred prior to maturity, and the expected additional cash flow received in
case of the issuer meeting its obligations (Ammann, 2001). To be able to price a de-
faultable structured investment issued by a specific entity, one needs to determine the
survival probability of the issuerQ(t,T) given R. The survival probability under the
risk-neutral measure can be retrieved using market prices of corporate bonds or CDS
rates. Section2.4.3illustrates the procedure using CDS rates under the assumption of
a piecewise linear hazard rate. This approach is used for theinvestigations concerning
credit risk. Since the value of the defaultable structured product is non-negative, the
owner of it bears the credit risk. He should be compensated bya lower price for bearing
more risk. So far the price of a defaultable structured investment is determined under
the condition that default of the issuer has not yet occurred. Though if the counter-
party has defaulted, the value of the claim is the recovery rate times the value of the
default-free claim. Both cases can be summarized as follows

πD(t) =

{
(R+Q(t,T)(1−R))π(t) if τ > t

Rπ(t) if τ ≤ t
(4.4.1)

Scenario generation under credit risk

The equation (4.4.1) can be used to determine the fair price of PPN and NPPC under
credit risk. The next step is to generate the return scenarios. Following the same ap-
proach as for the yield curve and the index level, the evolutions of the CDS rates are
simulated under the physical measure. From the CDS rates, the survival probability
under the risk-neutral measure can be determined by the calibration procedure. The
hazard rate is assumed to be piecewise constant, which requires CDS rates with dif-
ferent contract maturities for calibration. Only two contract maturities are selected,
due to the limited amount of historical observations for most contract maturities. The
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CDS rates for contracts with RBS as reference entity and 3 respectively 5 years time
to maturity are used. This results in a hazard rate term structure with two levels. The
short term hazard rate up to 3 years and the long term hazard rate for horizons beyond 3
years. It is assumed that the CDS buyer makes quarterly premium payments. To value
the protection leg a grid with four equally spaced time points per year is used. Further-
more, the 30/360 day count convention is considered when calibrating the hazard rate.
As mentioned in section2.4.3, there are some limitations on the calibration procedure.
Therefore are scenarios, that result in situations where nowell-defined hazard rate can
be fitted, replaced by new simulated scenarios.

In order to generate the return scenarios, the statistical factor model is extended to
also describe the CDS rates for two different maturities. FigureA.4.1 in the appendix
shows the historical CDS rates and the weekly log returns of the CDS rates. The log
returns seem to be weekly stationary. One can notice though that the magnitude of the
returns has increased in the more recent observations. Until 2007, the CDS rates for
both horizons fluctuated around 10 basis points (bp). Since then the CDS rates have
experienced a significant increase. In 2010, the rates are ataround 125 bp for the 3
year time horizon and 150 bp for the 5 year time horizon. The new factor model uses
the first six PCs in order to have a similar explanatory power as the previous model.
The selected PCs describe 96.92% of the variation in the data. The stability of both
the explanatory power and the factor loadings is investigated in the same manner as
presented in section3.4 and the results are displayed in tableA.4 and figureA.4.2.
The first six PCs describe more than 95% of the variation in allselected time periods.
The explanatory power of the single PCs experiences quite strong variation. The factor
loadings of the first four PCs show a similar stability as in the previously used factor
model. The variations in the factor loadings for the fifth andsixth PC are much greater
compared to the first four PCs. Two time periods show significant differences in these
two PCs. They correspond to the time spans from April 2003 to April 2007 and July
2003 to July 2007. Those time intervals only include periodswhere the CDS rates were
very low, which could be the reason for the difference in the factor loadings. In order
to use the historical simulation approach, the autocorrelation of the new PCs needs to
be investigated. FigureA.4.3 shows that there is hardly any autocorrelation present in
the factor scores of the PCs when using weekly observations.The procedure of finding
a parametric model for the PCs is not repeated, instead the generation of risk factor
changes for the scenarios relies solely on the historical simulation approach.

4.4.2 Effects of credit risk on the return distribution of str uctured
products

The following example illustrates how credit risk changes the return distribution of
structured products. The extended statistical factor model and the historical simulation
approach are used to generate 2000 simulated one-year evolutions of the risk factors.
For each scenario the returns of the structured products arecalculated. All these return
scenarios then determine the one-year return distributions of a PPN and a NPPC. Three
different settings are investigated. The first one represents the returns of default-free as-
sets. The second one corresponds to the return distributionin the case, where credit risk
enters the pricing formula. The third one incorporates credit risk in the pricing method
and generates default scenarios. RBS has Aa3 long term credit rating determined by
Moody’s 1. For this class the probability of default occurring duringthe next year was

1http://www.investors.rbs.com/debt_securitisation/ratings.cfm; date:23th of May 2010
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1.424% in 2008 (Emery and Ou, 2009). This probability is used to create the actual
default scenarios in the third setting. It is assumed that the event of default under the
physical measure is independent from all other random variables. Since no recovery
rate estimates for the reference entity could be found, the average of the defaulted debt
recovery rate estimates for European institutions fromO’Kane and Turnbull (2003) is
used as the estimate of the recovery rate. The average rate for different classes of se-
niority is 22%. The economic setting is summarized in table4.1. The most recent 4
years of weekly observation are given as input for the factormodel and the historical
simulation algorithm.

current time point 15 February 2008
current OMXS30 level 938.79
current 3-year interest rate 3.75%
current 3-year CDS rate 92.87 bp
current volatility 18.83%
risk-neutral 3-year survival probability 96.50%
time to maturity of the assets 3 years

Table 4.1: Current economic setting used for the investigation of the credit risk’s ef-
fects on the return distribution of structured investments

The scenarios are generated taking into account a subjective view, that has the
following specifications: The expected relative change of all interest rates is set to
one. The expected weekly log return of the CDS rates is equal to zero and the expected
weekly log return of the index is 0.0018, which corresponds to a 10% annual log return.
The variances of the absolute views are set to match the variances ofµdata. λ is chosen
to be 0.99. The histograms of the return scenarios for the structured investments are
shown in figure4.4.1.
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Figure 4.4.1: Return distribution of a PPN and a NPPC in three different settings.
The default-free asset case corresponds to structured products without credit risk. The
defaultable asset setting represents structured productsthat carry credit risk. The de-
faultable asset case with actual default corresponds to a structured product that carries
credit risk and where actual default of the issuer is simulated. Each histogram is com-
posed of 2000 scenarios that are generated by historical simulation. The expected risk
factor changes are computed using a subjective view on all risk factors. The investor
believes that the expected weekly relative change of each interest rate is 1, the expected
weekly log return of each CDS rate is 0 and the expected weeklylog return of the index
is 0.0018. The uncertainty of the views is chosen so that it matches the variances of the
return series’ expected returns.λ is 0.99.
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The histograms for the PPN in the specified settings show noticeable differences.
When comparing the default-free PPN returns to the defaultable PPN returns, one can
see that the scenario returns become more symmetrically distributed in the defaultable
asset case. In the default-free asset setting only very few negative return scenarios
occur and they have only very small absolute return values. When credit risk is con-
sidered, the scenario returns are wider spread. This is due to the additional source of
randomness in form of credit risk. The right tails of the distributions are similar in
shape. In the case of the defaultable PPN, the right tail has experienced a small shift to
the right. This effect can be explained by the higher participation rate of the defaultable
PPN compared to the default-free PPN. Credit risk reduces both the price of the bond
part and the price of the option. Since the PPN has a price equal to the current index
level at the issue date, the participation rate of the defaultable version must be higher.
In this example the participation rates are 78.29% for the default-free PPN and 98.99
% for the defaultable PPN. In the case of a defaultable PPN with actual defaults, some
scenarios with returns between -0.8 and -0.7 occur. The scenarios correspond to the 36
actual default cases. Apart from these 36 observations, this histogram is identical to
the one of the defaultable PPN.

The histograms of the NPPC hardly show any differences. Thisis due to the fact
that in a large number of scenarios big losses already occur in the default-free setting.
One can though see that the left tail of the distribution becomes slightly heavier for
the defaultable NPPC compared to the default-free NPPC. Thesame observation is
noticeable when comparing the setting without actual defaults to the case with actual
default scenarios.

The following conclusions can be drawn from this experiment: Credit risk changes
the return distributions of structured investments. The changes are more significant for
PPNs than for NPPCs. When CVaR is chosen as the measure of risk,the observed
differences in the left tail of the return distribution willhave an effect on the riskiness
of the assets. In the case of defaultable assets the CVaR willbe higher compared to
the default-free asset. When also actual default scenarios are introduced the CVaR will
increase even more.

4.4.3 Comparison of portfolio optimization with default-free and
defaultable structured products

This section investigates the impact of credit risk on the investment decision. Due to the
limited amount of historical observations of CDS rates, this study cannot be performed
over the same time length as the previous historical investigations. Instead, only the
last two rebalancing times can be analyzed. Figure4.4.2gives an overview of the two
rebalancing periods considered in this study. The input forthe factor model is always
the most recent four years of weekly observations of the return series. For each invest-
ment situation, 2000 scenarios are generated with the historical simulation approach.
The proportional cost of buying and selling structured investments is 2%. The upper
bound on the portfolios’ CVaR is 0.20 and CVaR is measured at the 0.05 confidence
level. Instead of using a synthetic view, this study utilizes a constant subjective view
in the same manner as in section4.4.2. The composed portfolios are analyzed in the
case of default-free structured products and defaultable structured investments. The
case with actual default scenarios is not investigated. Table 4.2summarizes the returns
of the assets, the risk and return specifications of the optimal portfolios and the real-
ized development in the portfolio values. Figure4.4.3displays the weight allocation
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Figure 4.4.2:Historical observations of Swedish government interest rates, CDS rates
on RBS and OMXS30. The rebalancing times and the final evaluation time are indi-
cated by the horizontal dotted lines and the dates on the x-axis.

default-free assets defaultable assets
year 2008 2009 2010 2008 2009 2010

Expected asset returns
PPN1 7.86% 4.11% - 8.22% 3.31% -
NPPC1 40.29% 52.48% - 43.62% 52.88% -
PPN2 - 4.42% - - 5.28% -
NPPC2 - 42.46% - - 43.20% -

Optimal portfolio characteristics
Expected return 12.43% 12.98% - 11.78% 8.49% -
CVaR 20.00% 20.00% - 20.00% 20.00% -
realized value 1 0.8594 1.2296 1 0.8604 1.1628

Table 4.2: Overview of the structured products’ expected returns at the rebalancing
times in the case of default-free and defaultable assets. Furthermore, the table presents
the risk and return characteristics of the optimal portfolios and the realized develop-
ment in the portfolios’ value for both cases.
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(a) Portfolio weight allocation in the case of default-freestructured products

(b) Portfolio weight allocation in the case of defaultable structured products

Figure 4.4.3: Portfolio weight allocation in the cases of default-free and defaultable
structured products. The used subjective view has the following specifications. The
expected relative change of each interest rate is 1, the expected log return of each CDS
rate is 0 and the expected weekly log return of the index is 0.0018. The uncertainty
of the views is chosen so that it matches the variances of the return series’ expected
returns. λ is 0.99. The chosen confidence level for the CVaR measurements is 0.05
and the upper bound on the portfolios’ CVaR is 0.20
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When comparing the weight allocations in the cases of default-free and defaultable
structured products, the following observations are made.Credit risk changes the return
distribution of the structured investments and therefore has an impact on the weight
allocation of the portfolio. At the first rebalancing time, one can notice that a smaller
proportion of the funds are allocated to the NPPC 1 and a larger proportion is allocated
to the PPN 1 in the defaultable asset setting, compared to thedefault-free asset setting.
At the second rebalancing time the return potential of the PPN 1 significantly reduces,
due to the low interest rates and the low index level, that pushes the option out-of-the-
money. The large rise in the CDS rates from rebalancing time 1to time 2 increases the
riskiness of all defaultable structured products. The previous section showed, that the
effects are much more significant on the PPNs compared to the ones on the NPPCs.
In the defaultable asset case at the second rebalancing time, a large part of the weight
invested in PPN 1 is sold and the received cash flow is allocated partly to the cash
account and to the NPPC 2 in order to meet the investor’s risk requirements and to
maximize the reward potential of the portfolio. In the default-free asset setting, the
riskiness of the PPN hardly changes. To increase the return potential, part of the PPN
1 is sold and the received cash flow is allocated to the NPPC 2.

When examining the expected return and the CVaR of the optimalportfolios given
in table4.2, one can notice that all portfolios reach the upper CVaR bound. At the first
rebalancing time the difference in expected return is around 0.6%. In the case of de-
faultable structured products, the loss in the portfolio’supside potential due to a smaller
weight in NPPC 1 can nearly be recovered due to the higher participation rate PPN 1,
compared to the default-free setting. At the second rebalancing time the difference in
the expected return of the portfolios is more than 4%. This can be explained by two
reasons. A part of the portfolio has to be invested in the risk-free cash account in order
to satisfy the upper CVaR bound. Since the cash account has zero return over the next
time period, the expected return is reduced. Furthermore, structured products have to
be sold in order to create this cash position. This action gives rise to transaction costs,
which also lower the expected return of the portfolio.

The realized portfolio values are similar at the second rebalancing time. In the
defaultable asset case, the loss is a little smaller compared to the default-free case.
This is due to the smaller portfolio weight in the NPPC 1 in thedefaultable asset setting.
NPPC 1 lost more than 60% of its value in both cases. At the finalevaluation time the
default-free portfolio outperforms the defaultable portfolio by a 5% higher portfolio
value. The default-free portfolio has more exposure to the index, due to larger weights
in all structured investments, and can therefore profit muchmore from the positive
market developments.

Table 4.2 also displays the expected returns of the default-free and defaultable
structured products at the two rebalancing times. It is noticeable that the default-
able structured investments have a higher expected return over the next year at their
issue date compared to the default-free ones. This is in linewith the argument that
the investor has to be compensated by a higher expected return for bearing credit risk.
Furthermore, this example also shows the impact of a sudden increase in credit risk on
the expected returns of a PPN. At the second rebalancing timethe defaultable PPN 1
looses its superior expected return characteristic over the default-free one.

4.4.4 Conclusions on the impact of credit risk

Credit risk has significant effects on return and risk characteristics of structured prod-
ucts. The effects are more significant on PPNs than on NPPCs. The changes in the
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asset characteristics result in differences in the capitalallocation when comparing the
portfolio weights in the cases of default-free and defaultable structured investments. It
seems that more rebalancing activity is necessary to satisfy the risk requirements when
considering credit risk. To investigate this hypothesis inmore detail, one has to look
at a larger variety of rebalancing situations over the lifetime of defaultable structured
investments.

Modeling credit risk based on CDS data should be investigated in more detail.
First of all, a CDS is an OTC traded asset and therefore carries credit risk in itself. This
issue is ignored in the presented approach. Secondly, factors such as liquidity, spread,
and market supply and demand typically lead to an overestimation of the hazard rate
(O’Kane and Turnbull, 2003). One possibility for evaluating the quality of the hazard
rate estimates is to compare the ones extracted from CDS datato the ones determined
from corporate bond prices. Moreover, the reduced-form model could be replaced by a
firm-value model in order compare the model prices of OTC traded structured products.
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5
Conclusions

The report implements theoretical concepts to solve investment situations concerning
PPNs and NPPCs with the OMXS30 as the underlying asset. The investor’s portfolio is
analyzed in terms of expected return and CVaR, and the optimal weights are determined
in a two-stage procedure. The first stage corresponds to generating return scenarios and
the second stage determines the optimal portfolio weights.The fact that both stages are
independent of each other makes this approach very flexible.

The optimization problem can handle trading constraints, such as limited offer time
and short-selling restriction, and proportional transaction costs, while still retaining in
the class of linear optimization programs. This has the advantage that the problem is
solvable in reasonable time and that the optimal solution isgoing to be determined,
provided that it exists. Two alternative optimization formulations are established. The
maximizing the expected portfolio return subject to an upper bound on the portfolio’s
CVaR formulation outperforms the minimizing portfolio’s CVaR subject to a lower
bound on the portfolio’s expected return formulation in terms of robustness of the solu-
tion and solution time. Experiments using the former approach conclude that exposure
to market risk can be controlled by the upper bound on the portfolio’s CVaR. Moreover,
tests varying the confidence level, at which the portfolio’sCVaR is measured, point out
that a lower confidence level reduces the the riskiness of theportfolio when the upper
CVaR bound is kept unchanged.

Investigation of investment situations on the historical data revealed, that the risk
and reward characteristics of the assets determined by scenario generation under the
physical measure are heavily influenced by historical trends in the risk factor changes.
In order to reduce this dependence, the investor’s subjective view on the expected future
evolution of the risk factors is introduced. The representative quality of the scenarios
depends though on how well the subjective view and the historical data describe future
behavior in the development of the risk factors. Investigations on historical data us-
ing synthetic views of different quality confirmed that a more accurate view on future
behavior of the risk factors leads to more profitable investment decisions.

Transaction costs are identified as an important factor for rebalancing decisions.
The presented experiment points out that transaction costssignificantly reduce the re-
turn performance of the used investment strategy. Higher transaction costs increase the
holding period of structured products and reduce the occurrence of situations where it
is profitable to sell structured products prior to their maturity.

Structured products are in general traded OTC. For the typesof structured products
examined in this study, the credit risk, which is present in every OTC trade, is exclu-
sively carried by the investor. The model of the investment situation can be extended in
order to take into account credit risk. Credit risk has a significant impact on the return
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distribution of the structured products. This impact causes differences in the capital
allocation, which is shown in an experiment that compares portfolios of default-free
structured products and portfolios of defaultable structured products. In order to in-
vestigate the effects of credit risk on the optimal portfolio weights, further studies are
necessary.

All conducted experiments showed that rebalancing at intermediate time points is
necessary in order to meet the investor’s risk requirement and to maximize the reward
potential of his portfolio. This indicates that even in the presence of high transaction
costs, situations arise where it is profitable for an investor to rebalance his portfolio.
The rebalancing decision is though very complex and influenced by various factors.
The presented approach can assist in making objective rebalancing decisions for an
investor, who evaluates the riskiness and reward potentialof his portfolio on short term
basis. Additionally, the investigated experiments give a presentation of the factors
influencing the rebalancing decision when investing in structured products.
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A
Appendix

A.1 Weight allocation diagrams for the rebalancing strate-
gies using various upper bounds on the portfolio’s
CVaR

Figure A.1.1: Weight allocation for a rebalancing strategy with a 0.05 upper bound on
the portfolio’s CVaR measured at the 0.05 confidence level. Si indicated the weight at
the beginning of thei period, while Ei indicates the weight at the end of the period,
when the assets are priced in the updated economic setting.
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Figure A.1.2: Weight allocation for a rebalancing strategy with a 0.1 upper bound on
the portfolio’s CVaR measured at the 0.05 confidence level. Si indicated the weight at
the beginning of thei period, while Ei indicates the weight at the end of the period,
when the assets are priced in the updated economic setting.

Figure A.1.3: Weight allocation for a rebalancing strategy with a 0.2 upper bound on
the portfolio’s CVaR measured at the 0.05 confidence level. Si indicated the weight at
the beginning of thei period, while Ei indicates the weight at the end of the period,
when the assets are priced in the updated economic setting.

80



A.1. WEIGHT ALLOCATION DIAGRAMS FOR THE REBALANCING STRATEGIES
USING VARIOUS UPPER BOUNDS ON THE PORTFOLIO’S CVAR

Figure A.1.4: Weight allocation for a rebalancing strategy with a 0.4 upper bound on
the portfolio’s CVaR measured at the 0.05 confidence level. Si indicated the weight at
the beginning of thei period, while Ei indicates the weight at the end of the period,
when the assets are priced in the updated economic setting.
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A.2 Weight allocation diagrams for the rebalancing strat-
egy on historical data using a synthetic subjective
view

A.2.1 Weight allocation diagrams using a synthetic subjective view
with different uncertainty levels

Figure A.2.1: Weight allocation using an synthetic subjective view with uncertainty
level 0.01. The chosen confidence level for the CVaR measurements is 0.05 and the
upper bound on the portfolios CVaR is 0.20

Figure A.2.2: Weight allocation using an synthetic subjective view with uncertainty
level 0.1. The chosen confidence level for the CVaR measurements is 0.05 and the
upper bound on the portfolios CVaR is 0.20
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A.2. WEIGHT ALLOCATION DIAGRAMS FOR THE REBALANCING STRATEGY
ON HISTORICAL DATA USING A SYNTHETIC SUBJECTIVE VIEW

Figure A.2.3: Weight allocation using an synthetic subjective view with uncertainty
level 1. The chosen confidence level for the CVaR measurements is 0.05 and the upper
bound on the portfolios CVaR is 0.20

Figure A.2.4: Weight allocation using an synthetic subjective view with uncertainty
level 5. The chosen confidence level for the CVaR measurements is 0.05 and the upper
bound on the portfolios CVaR is 0.20
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A.2.2 Weight allocation diagrams using different numbers of ab-
solute views

Figure A.2.5: The weight allocation at the rebalancing points using absolute views on
all government interest rates and the OMXS30. The syntheticview has an uncertainty
level of 0.01. The chosen confidence level for the CVaR measurements is 0.05 and the
upper bound on the portfolios CVaR is 0.20

Figure A.2.6: The weight allocation at the rebalancing points using a viewon the 12
month government interest rate and the OMXS30. The synthetic view has an uncer-
tainty level of 0.01. The chosen confidence level for the CVaRmeasurements is 0.05
and the upper bound on the portfolios CVaR is 0.20
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A.2. WEIGHT ALLOCATION DIAGRAMS FOR THE REBALANCING STRATEGY
ON HISTORICAL DATA USING A SYNTHETIC SUBJECTIVE VIEW

Figure A.2.7: The weight allocation at the rebalancing points using only aview on the
OMXS30. The synthetic view has an uncertainty level of 0.01.The chosen confidence
level for the CVaR measurements is 0.05 and the upper bound onthe portfolios CVaR
is 0.20

Figure A.2.8: The weight allocation at the rebalancing points using only aview on the
12 month government interest rate. The synthetic view has anuncertainty level of 0.01.
The chosen confidence level for the CVaR measurements is 0.05and the upper bound
on the portfolios CVaR is 0.20
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A.3 Illustrations on the impact of transaction costs on
rebalancing strategy

A.3.1 Overview of brokerage fees for structured products

Issuer Product name Brokerage Time to
Fees maturity

ErikPenser Accelerator 10 Tillväxt 2% 3 years
ErikPenser Sverige 18 Tillväxt 2% 3 years
ErikPenser Accelerator 9 Tillväxt 2% 5 years
ErikPenser Accelerator 9 Trygghet 2% 5 years
ErikPenser Kina 20 Tillväxt 2% 3 years
SHB Kanada Balans 923AK 2% 4 years
SHB Sverige Balans 923AS 2% 5 years
SHB Sverige Balans 923AX 2% 5 years
SHB Svenska Aktier 923AZ 1% 2 years
SHB Svenska Aktier 923AY 1% 2 years
SHB Tillväxtmarknader Balans 923AT 2% 5 years
SHB Index Balans 923RI 2% 3 years
HQ Brasilien Riskkontroll 3% 5 years
HQ Indien / Kina Tillväxt 2 3% 5 years
HQ Sverige Max / Min 2 2% 3 years
HQ Trend Emerging Markets Riskkontroll 9 3% 4 years
HQ Trend Total Riskkontroll 4 3% 5 years
HQ Trend Total Riskkontroll Tillväxt 4 3% 5 years
RBS Autopilot Bull & Bear 2 Trygghet 2% 5 years
RBS Autopilot Bull & Bear 2 Tillväxt 2% 5 years
RBS Autopilot Vector 13 Trygghet 2% 5 years
RBS Sharpener Accumulator 3 2% 5 years
RBS Etiska Tillväxtmarknader 2 2% 5 years
RBS Global Trygghet 2% 5 years
RBS Global Tillväxt 2% 5 years
RBS Kina Ostasien 2 2% 3 years
RBS Brasilien Total 2% 4 years
SEB Brasilien/Kina 005B 2% 4 years
SEB Brasilien/Kina 005C 2% 4 years
SEB Sverige Kupong 005K 2% 5 years
SEB Råvaror 005P 2% 4 years
SEB Råvaror 005R 2% 4 years
SEB Sverige 10 Bolag 005S 2% 4 years
SEB Sverige 10 Bolag 005T 2% 4 years

Table A.1: The tables shows a variety of structured products from different issuers.
The table is taken from Nordnet’s web page on the 11 of May 2010.
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A.3. ILLUSTRATIONS ON THE IMPACT OF TRANSACTION COSTS ON
REBALANCING STRATEGY

A.3.2 Expected return and CVaR of the optimal portfolios under
transaction costs for buying structured products

portfolio buying Rebalancing time
property cost 1 2 3 4 5 6
Return 0% 7.14% 60.60% 60.98% 12.17% 1.99% 30.67%
Risk 20.00% 20.00% 20.00% 20.00% -0.21% 20.00%
Return 1% 5.99% 57.04% 57.41% 10.79% 1.97% 28.39%
Risk 20.00% 20.00% 20.00% 20.00% -0.42% 20.00%
Return 2% 4.85% 55.45% 53.91% 10.26% 0.62% 26.15%
Risk 20.00% 20.00% 20.00% 20.00% -0.13% 20.00%
Return 3% 3.74% 54.71% 50.48% 9.81% 0.59% 24.91%
Risk 20.00% 20.00% 20.00% 20.00% -0.13% 20.00%

Table A.2: Expected returns and CVaR of the optimal portfolios at the six rebalanc-
ing times under different proportional costs of buying structured products. CVaR is
measured at the 0.05 confidence level and the upper CVaR boundof all portfolio is
0.20

A.3.3 Expected return and CVaR of the optimal portfolios under
transaction costs for buying and selling structured products

portfolio selling rebalancing time
property cost 1 2 3 4 5 6
Return 0% 4.85% 55.45% 53.91% 10.26% 0.62% 26.15%
Risk 20.00% 20.00% 20.00% 20.00% -0.13% 20.00%
Return 1% 4.85% 54.69% 50.38% 9.79% 0.54% 26.09%
Risk 20.00% 20.00% 20.00% 20.00% 0.59% 20.00%
Return 2% 4.85% 53.94% 46.84% 9.37% 0.47% 26.10%
Risk 20.00% 20.00% 20.00% 20.00% 0.65% 20.00%
Return 3% 4.85% 53.19% 43.30% 9.09% 0.41% 26.10%
Risk 20.00% 20.00% 20.00% 20.00% 0.70% 20.00%

Table A.3: Expected returns and CVaR of the optimal portfolios at the six rebalancing
times under 2% proportional costs of buying and varying proportional cost for selling
structured products. CVaR is measured at the 0.05 confidencelevel and the upper CVaR
bound of all portfolio is 0.20
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A.3.4 Weight allocation diagrams under transaction costs for buy-
ing structured products

Figure A.3.1: Weight allocation for a view on all government interest rates and the
OMXS30 with uncertainty level 0.1 with no transaction costsfor buying and for selling
PPNs and NPPCs

Figure A.3.2: Weight allocation for a view on all government interest rates and the
OMXS30 with uncertainty level 0.1 with1% transaction costs for buying and zero
transaction costs for selling PPNs and NPPCs
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A.3. ILLUSTRATIONS ON THE IMPACT OF TRANSACTION COSTS ON
REBALANCING STRATEGY

Figure A.3.3: Weight allocation for a view on all government interest rates and the
OMXS30 with uncertainty level 0.1 with2% transaction costs for buying and zero
transaction costs for selling PPNs and NPPCs

Figure A.3.4: Weight allocation for a view on all government interest rates and the
OMXS30 with uncertainty level 0.1 with3% transaction costs for buying and zero
transaction costs for selling PPNs and NPPCs
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A.3.5 Weight allocation diagrams under transaction costs for buy-
ing and selling structured products

Figure A.3.5: Weight allocation for a view on all government interest rates and the
OMXS30 with uncertainty level 0.1 with2% transaction costs for buying and no cost
for selling PPNs and NPPCs

Figure A.3.6: Weight allocation for a view on all government interest rates and the
OMXS30 with uncertainty level 0.1 with2% transaction costs for buying and1% trans-
action costs for selling PPNs and NPPCs
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A.3. ILLUSTRATIONS ON THE IMPACT OF TRANSACTION COSTS ON
REBALANCING STRATEGY

Figure A.3.7: Weight allocation for a view on all government interest rates and the
OMXS30 with uncertainty level 0.1 with2% transaction costs for buying and2% trans-
action costs for selling PPNs and NPPCs

Figure A.3.8: Weight allocation for a view on all government interest rates and the
OMXS30 with uncertainty level 0.1 with2% transaction costs for buying and3% trans-
action costs for selling PPNs and NPPCs
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A.4 Factor model for changes in interest rate, CDS rates
and index level
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Figure A.4.1: Time series of CDS rates and weekly log returns of CDS rates for RBS
with 3 and 5 years time to maturity recorded of the time span from April 2003 to April
2010
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A.4. FACTOR MODEL FOR CHANGES IN INTEREST RATE, CDS RATES AND
INDEX LEVEL

Period Explanatory Power
Start End PC 1 PC 2 PC 3 PC 4 PC 5 PC6 Sum

Apr-03 Apr-07 46.21 17.30 13.95 10.21 4.84 3.77 96.29
Jul-03 Jul-07 45.48 16.59 14.08 10.45 5.23 4.27 96.10
Oct-03 Oct-07 45.14 18.80 13.79 10.19 4.61 3.41 95.94
Jan-04 Jan-08 44.07 19.97 14.32 9.54 4.77 2.80 95.48
Apr-04 Apr-08 43.74 20.67 14.47 9.20 4.79 2.75 95.61
Jul-04 Jul-08 44.80 21.13 14.02 8.58 4.64 2.72 95.89
Oct-04 Oct-08 45.65 21.26 14.01 8.77 4.40 2.29 96.38
Jan-05 Jan-09 47.74 21.91 11.41 9.18 4.98 1.97 97.19
Apr-05 Apr-09 45.72 22.35 14.92 9.00 3.77 1.90 97.66
Jul-05 Jul-09 47.07 22.60 13.46 9.08 4.12 1.56 97.89
Oct-05 Oct-09 47.38 22.88 12.86 8.94 4.27 1.64 97.97
Jan-06 Jan-10 46.40 23.40 12.32 8.97 4.93 1.78 97.81
Apr-06 Apr-10 46.29 23.69 12.06 8.83 5.31 1.75 97.93
Apr-03 Apr-10 45.26 22.34 13.29 9.11 5.04 1.88 96.92

Table A.4: Sample dependence of the explanatory power for 13 quarter-yearly overlap-
ping time intervals consisting of 4 years of weekly observations. The last row indicates
the explanatory power for the whole data set ranging from April 2003 to April 2010.
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Figure A.4.2: Sample dependence of the factor loadings of the first six PCs.One line
in a subplot represents the factor loadings of the indicatedPC for one sample. The
investigation is performed on 13 quarter-yearly overlapping samples consisting of 4
years of weekly observations. All samples are taken from a population of 367 weekly
observations ranging from April 2003 to April 2010
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INDEX LEVEL
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Figure A.4.3: Autocorrelation plot of each of the first six PCs. The sample is com-
posed of 367 weekly observations ranging from April 2003 to April 2010
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