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Abstract

Investors holding structured products are advised to asloal their positions in order
to lock in profits or to enhance their portfolios’ return paial. This thesis analyzes
rebalancing situations that arise when investing in pplecprotected notes and non-
principle protected certificates, which are linked to a ktowlex. The rebalancing
decision is determined in a two-stage procedure. In thediegfe, return scenarios are
generated by simulating the evolution of the structuredipets’ risk factors under the
physical measure. Structured products are traded overetheter and therefore the
investor is exposed to credit risk. The presented approarporates this risk factor.
The simulation procedure is based on a statistical factatainasing Principle Compo-
nent Analysis. In the second stage, the portfolio weightistdpjents are determined by
solving a scenario optimization program that takes int@anttrading constraints and
proportional transaction costs. Experiments concludethigarepresentative quality of
the scenarios is insufficient when the simulation proceduselely based on historical
data. Adding a subjective view to the simulation methodplogn increase the repre-
sentativeness of the scenarios, depending on the accurétoy wiew. The conducted
investigations conclude that rebalancing is necessamdier@o meet the investor’s risk
requirements and to maximize the reward potential.

Keywords:  Structured products, portfolio optimization under trasigm costs,
scenario optimization, statistical factor models
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Introduction

Structured products, such as principle protected noteNFRave been a popular asset
class for both institutional and private investors. In nedirkg material they are often
advertised as a safe investment that guarantees a minimyoff pamaturity and per-
mits profiting from positive developments in the underlyimgrkets. Most investors
see a structured investment (here interchangeably usédswitctured product) as a
typical buy-and-hold asset. In other words, a structurestiyet is bought and held
until its maturity. This practice is due to the belief tha¢ texposure to market risk is
restricted by the guarantee feature of the PPN at maturite forgets though that the
risk and reward characteristics of a structured produdivewith time and changing
market conditions. This report will formulate how the chaeaistics of a portfolio of
structured investments can be analyzed, and how a ratiovedtor with a given risk
conception should react to these changing attributes gbdriolio (referring to the
investor as a male does not imply anything on the gender af\asior in general).

1.1 Definition of structured products

A structured product is an investment vehicle that is abglan numerous variations,
therefore it is important to clarify which type is considérna this investigation. A
PPN is a structured investment that is a prepackaged cotigyinaf a zero coupon
bond and an at-the-money (ATM) plain vanilla call option eanumderlying. The bond
and the option are denoted in the same currency and haveingatohturity. The price
of a PPN on the date of issue is equal to the face value of the, lvdnich is set to be
the current price of the underlying. The amount of optioreduided in the structure is
the difference between the face value and the current pfitteedond, divided by the
price of the option. This is known as the participation tatét maturity the owner
of a PPN receives the face value of the bond plus the payofietall option times
the participation rate. Some PPNs have a minimum payoftifeavhich is equal to
just a fraction of the issue price. These products have aehigarticipation rate since
the difference between the issue price and the guarantgedf pahich is equal to the
face value of the bond, is invested in an ATM call option. lis tleport a PPN always
guarantees a minimum payoff equal to the issue price. If e@sior wishes to obtain
a higher participation rate, he can purchase another stadtinvestment called non-
principle protected certificate (NPPC) which is identicabhe option included in the

1t is common practice to refer to the participation rate as #regntage of the difference between the
face value and the current price of the zero coupon bond tineeatio of the current value of the underlying
and the price of the option
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PPN. By adding NPPCs to a fixed amount of PPNs, any participatite greater or
equal to the one of the PPN can be reached. Figutelillustrates how a structured
product is valued in terms of its components.

protected
-4 certificate

TF Non-principle

Principle
> protected
note

Principle
protected —-
note

— et

Figure 1.1.1: lllustration of the value of structured product in term &f @domponents.
The left bar shows a PPN and the right bar shows a PPN plus a NPPC

1.2 Motivating example

The following example, which is closely related to an ilkasion in Nyman (2009,
shows investment situations that arise when holding stradtproducts. The goal is
to motivate that a portfolio of structured investments dtidae evaluated on a regu-
lar basis in terms of its risk and reward characteristicspdR#ioning has two main
reasons. One is that the investor holds a position whichrhesanore risky than his
risk tolerance allows. The second is that the portfoliolgaie potential is below the
reward requirement of the investor.

In this motivating example, the investor is assumed to hatimme horizon of ten
years and exclusively hold PPNs with three years time to ritptuTo simplify the
situation the interest rate and the volatility of the ungied are assumed to be constant.
Figurel.2.1presents the development of the underlying index and thieio of the
investor’s portfolio value.

The time span is divided into four different investment pds. At the beginning
of each period the investor’s total wealth is put in the PPIésl at that time.

During the first period the underlying asset experiencedlariarket. The option
included in the structure goes deep in-the-money, and thréanhsalue of the PPN
increases significantly. At the end of the first period the RiAth one year time to
maturity is sold and the received cash flow is reinvested iewlyissued PPN. The
portfolio owner secures accomplished gains by selling theetired investment prior
to its maturity. Why is this a rational decision? At the begmgnof period one, the
largest loss the investor can realize over the next threesygaqual to zero. Two years
later, the structured product has a current market valugeahis issue price. With
one year time to maturity the largest loss the investor cdiersaver the next year
is no longer equal to zero. The owner risks to lose the diffeecbetween the PPN's
current price and its issue price over the next year. Thentialue of the PPN is 90%
above the issue price and therefore the investor risks t]oupsto 47% of his current
wealth over the next year. An alternative investment oppuoty is the currently issued
PPN. The maximum loss which can be realized over the nextwkan holding this
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Figure 1.2.1: Portfolio value development of an investor who has a timézbarof 10
years. The solid line represents the portfolio value meaban the left-hand scale. The
dotted line corresponds to the underlying index level mesban the right-hand scale.
The dashed-dotted lines indicate the portfolio rebalaptimes. The guarantee feature
of the PPN is illustrated by the dashed arrows. The lengthefrrow symbolizes
the time to maturity. The rebalancing situation at the engeofod 1 illustrates early
selling to secure realized gains and the one at the end afgb8ishows early selling to
increase the reward potential of the portfolio.

structure is around 7%. This corresponds to the scenarioenthe option becomes
nearly worthless and the value of the structured produajuskto the price of a zero
coupon bond with two years time to maturity.

In period two the investor holds the structured productlutgimaturity. In this
case the terminal value of the underlying is below the staiké therefore the received
payoff is equal to the initial investment, which is then xasted in a newly issued
PPN.

During period three the underlying asset experiences arbagket. At the end of
the period the structured investment has one year left omatlrity and the option is
deep out-of-the-money. The potential reward from holding dption over the next
period is very small, since the event of the underlying'sieabeing above the strike is
unlikely. The worst case scenario loss the investor cary @t over the next year is
a negative value, since the current value of the PPN is bediewssue price. From a
risk perspective this situation is favorable, because M Rill give a positive return
over the next year regardless of the price of the underlyimgadurity. Examining the
situation from a return perspective, it is almost equivaterjust holding a bond with
one year time to maturity. Since this is below the return inexpients of the investor,
he sells his position and receives the market value of the WRish is equal to the
current price of the bond plus current price of the optiontitie received cash flow
the investor purchases the currently issued PPN that haghartpotential reward than
holding his previous position over the next period. The nesiton is risky and highly
dependent on the performance of the underlying.

In the fourth investment period the structured investmetigld until its maturity.
The investor achieves a profit due to a high performance ofitigerlying at the end
of the period.
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To keep the example simple some effects were ignored. Hiwst,dnterest rates
do change through time and future interest rates are stticlaassee from today. This
means that the future price of a bond prior to its maturityniknown. Also the volatility
of the market changes through time which will have a signifiéapact on the option
price. Changes in the interest rates and in the underlyirgaility will lead to vari-
ation in the participation rate of PPNs issued at differann{s in time, since this rate
is dependent on those factors. Structured products aredmaer-the-counter (OTC),
which introduces credit risk as an additional factor inficiag their price prior to their
maturity. Moreover, buying and selling financial asset® atsolves costs which in-
fluence the rebalancing decision. In this report, the imré&sportfolio is analyzed in
terms of expected return and Conditional Value-at-R{VvaR), and rebalancing de-
cisions are made to optimize his position according to Blsaind reward requirements,
in the presence of transaction costs.

1.3 Report outline

The thesis is structured in the following way: Readers wigousafamiliar with the fol-
lowing concepts: CVaR as a risk measure, scenario optimizgportfolio optimiza-
tion with transaction costs, statistical factor models enadlit default swaps should first
read the chapter callétheoretical Backgroundvhich explains these concepts that are
necessary to follow later investigations. The chaptealysis of the rebalancing deci-
sionexplains how a model of the underlying risk factors influegcihe market value
of the portfolio can be built and how the portfolio choice Ipiem is formulated. The
main part of the report is presented in the chapter cdliedstigations This chapter
consists of four sections with different topics. Each settipens with its purpose and
closes with conclusions from the conducted experiments.fift section investigates
the effects of the risk specification on the portfolio weggand on the performance
of the rebalancing strategy. The second section incorpeitae investor’'s subjective
view in order to reduce the return scenarios’ dependencéstorical trends in the risk
factors. Experiments are carried out showing that a subgeciew of good quality can
enhance the performance of the rebalancing strategy. Titepirt studies the impact
of transaction costs on the portfolio weights and on theqoarnce of the rebalancing
strategy. In the fourth part, the model of the investmentdiec is extended in order
to take into account credit risk. The effects of credit risktbe portfolio weights are
examined. The report closes with the final chapter calledclusions

2also known as Expected Shortfall



Theoretical Background

2.1 Risk measures

In traditional portfolio theory the risk of a portfolio is rasured in terms of its variance.
This approach is based on the assumption that the pordalegurn distribution is
symmetric. Since the return distribution of a portfolio taining derivatives becomes
non-symmetric, there is a need for new risk measures. Tvkomisasures used for
portfolios with non-symmetric return distributions arderat-Risk (VaR) and CVaR.

VaR describes the predicted maximum loss with a specifiedidance levela
over a period of time. Ik € X denotes a portfolio from the set of available portfolios
X ={(x1,%2,...,%) | X > 0Vi, 3 1% = 1} andw a random vector of future asset
prices, then the loss of portfoliocan be described &$x, w) = Vo(x) —Vi(x, w) where
Vo(x) is the current portfolio value and; (x, w) is the random future portfolio value.
The probability of the loss not exceeding a fixed threshoisl P (L(x, w) < y). VaR
can be defined as

VaRy (x) = myin{P(L(x, w)<y)>1l-a}

In the second Basel Accord, internal models method for meagsmarket risk in or-
der to determine minimum capital requirements are basedath @asel Committee
on Banking Supervision, 2004Despite the fact of its popularity in the financial world,
VaR is difficult to implement in portfolio optimization. Kt of all, it lacks subadditiv-
ity, which implies that it is not in line with the general idézat diversification leads
to risk reduction. Moreover, it does not take into accouetdize of losses beyond the
VaR threshold, which can result in promoting portfoliosiwé&normous losses far out
in the tail of the loss distribution. Furthermore, VaR is aftmnvex and non-smooth
function, that exhibits multiple local extrema, which malgtobal optimization com-
putationally intensive.

An alternative measure of risk is CVaR, which has been deeeldaking into ac-
count the weak points of VaR. CVaR is the expected loss umgecandition that the
loss exceeds the VaR threshold. In general, it can be defged a

CVaRy (x) = % /VaRp(x)dp
0

Assuming thatw is a continuous random variable with probability densitpdiion
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p(w), CVaR can also be defined as

CVaR; (x) = % / L(x, w)p(w)dw

L(x,w)>VaRq (X)

CVaR is not only a coherent measure of risk, but also an uppandbto VaR, as shown
by the following argument.

CVaR,(x) = % / L(x, w)p(w)dw
L(x,w) éVaRa (x)

Y

% / VaRe () p(w)dw
L(x.0) 2VaRa ()

_ VaRa 9 / p(w)dw

a
L(x,@) >VaRa (x)

> VaRq(x)

However, CVaR cannot be implemented in portfolio optimimatusing its general
form, since its definition is still based on VaR. It is thougbspible to express CVaR
in a different way without first computing VaR. To do this, thaction G4(X,y) is
introduced as

Ga(x,y)=y+% / max(L(x, w) — y,0)p(w)dw (2.1.1)
weR

This is a convex function iy and the minimum value d&, (X, y) with respect toy and
givenx corresponds to CVaRx). An additional advantageous feature@j (X, y) is
that the minimizer ovey is equal to VaR(x). VaR and CVaR in terms d& can be
summarized as

VaRg (x)
CVaRy(x) = minGa (X Y)

argminGg (X, y)
y

To find the minimum CVaR portfolio in the set of available folibs X, one simply
minimizes the functior, (x, y) simultaneously with respect toandy.

min CVaR; (X) x?x'f‘yG“ (X, y)

Since CVaR (x) < Gq(X,y), the functionG can also be used to formulate a CVaR
constraint on a portfolio. LeR(x, w) denote a given portfolio’s return, then the max-
imum expected return portfolio with a CVaR beldwis the solution to the following
optimization problem

mn —ERxw)] & mn —ERxw)
subjectto: CVaR(x) < & subject to: Sg(;? y)<¢&
xe X
yeR

Further information on CVaR as a risk measure in portfolitrojzation can be found
in Uryasev (2001
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2.2 Portfolio Construction

2.2.1 Stochastic Programming

The future value of a portfolio is unknown today, since it éegs on the future prices
of the assets, which are subject to randomness. Howeveanuwbstment decision has
to be faced today. Portfolio optimization belongs to thesslaf stochastic program-
ming. There are several ways to handle the uncertainty ipan@meters. The key idea
is to transform the stochastic program into a deterministjaivalent. The simplest
approach is to replace all random variables by their expe@&ies. This is known in

the optimization terminology as a mean value problem. Tinipke approach may fail

to deliver a good solution. A more sophisticated way of ipooating randomness is
the so called two-stage stochastic problem with recouBggé and Louveaux, 1997

The general formulation of a two-stage linear stochastiggam with recourse reads:

min c'x+E [myina(oo)Ty(w)}
subjectto: Ax=Db (2.2.1)

B(w)x+C(w)y(w) = d(w)
x>0, y(w)>0

In equation 2.2.1) x are the first-stage variables, which represent decisi@itve to

be made before randomness occyfsv) are the second-stage variables which can be
interpreted as some kind of adjustments for each ewest that the constraiti( w)x+
C(w)y(w) = d(w) is satisfied. Solving such a problem can be extremely diffishen

the sample space has a large cardinality or is infinite. &mstke sample space can be
approximated by a smaller finite set of scenafiag| k=1, ..., S} where each scenario
occurs with probabilitypc. The deterministic equivalent using this approximaticads

S
min  cTx+ 5 paagyk
k=1

X!y
subjectto:  Ax=Db (2.2.2)
Bix+ Ciyk = di k=1,...,S
x>0

yk >0 k=1,...,S

The complexity of this optimization program depends on thmber of scenario§,
since both the number of variables and the number of constris proportional t&.
The solution to these kinds of problems can be determineg fast, due to efficient
algorithms for solving linear programs, such as Simplexxterior point method, and
the steady increase of computational power in personal aterg@ However, it is im-
portant to keep the class of problems as simple as possibérefore the optimization
problems for portfolio selection are restricted to lineawgrams in order to keep the
computation time at an acceptable level.

2.2.2 Linearization of CVaR

The CVaR objective / constraint needs to be linearized ot express the portfolio
choice problem as a linear stochastic program of the f@&@9. Assume that the loss
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functionL(x, w) is linear inx and thatSrealizations of the random vectarare given
in form of scenarios with equal probability. The functiGg (X, y) as defined inZ.1.])
can be approximated by

. S
Galxy) = y+ o Y maxL(x @)~ .0) (2.2.3)
k=1

With the help of artificial variableg,, equation 2.2.3 can be written as a linear ob-
jective function or a linear constraint. In the case of afotid choice problem with
CVaR objective the linear approximation with scenariogsisea

. 13
min Y+ — ) &
s,

X,Y,Z o
subjectto:  z >0 k=1,...,S
z > L(X,a) -y k=1,...,S
xeX
yeR

In the situation where a linear reward function, such as ebgaereturn, is maximized
subject to a CVaR constraint, the linear optimization peablis defined as follows:
wherept is the vector of expected asset returns &nsl the upper bound on CVaR

; T
min —u'x
X,Y,Z H

1 S
subject to: i <
ubj y+ ask;zk_ ¢

z>0 k=1,...,S
Z > L(X,ax)—Yy k=1,...,S
xeX
yeR

For a more detailed discussion on CVaR as an objective andstremt in portfolio
optimization se&rokhmal et al. (2002

2.2.3 Transaction costs

Transaction costs have become increasingly importantritfgho optimization. Their
impact varies depending on the asset class. While largetoaksscan be bought and
sold in moderate sizes without much trading friction, tteeling costs can amount to
a large sum in small and illiquid markets. Transaction casitse from three different
sources; namely commissions such as brokerage fees, lbbapgesad that is the cost of
buying an asset and immediately selling it, and finally mankg@act which is the cost
due to unloading large positions compared to average traolacthe Scherer, 20017

In portfolio construction trading costs can be handled io tifferent ways. The
indirect approach tries to restrict actions which causastation costs to increase.
Following this line of thought, turnover constraints haweb introduced to portfolio
management. If the current holdings are described by thevet@ | then the assets
bought are identified byx" and the ones sold by, so that the new holdings satisfy
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x = xntial 1 x+ _ x=. The turnover of the portfolio is defined &', x" +x~. The
following linear program maximizes the expected returntaf portfolio subject to
constraints that restrict the portfolio to a maximum tureiay;, and tox being a feasible
portfolio.

min —uTx
X, xt x—

subjectto;  x=x"al 4yt x—
n
_Z\Xi+ +X <T
i=

xt >0
x >0
Xe X

Another idea to indirectly control transaction costs usadihg constraints. An asset
may for example only enter the portfolio if the invested mdjn in the asset lies
above a certain minimum level. In the same fashion one cdriatethe asset to be
included in the portfolio if the invested proportion liedde a fixed maximum level,
to reduce market impact. Not only weights can be limited gbsh the number of assets
in a portfolio can be subject to a constraint, which will ré$o lowering transaction
costs. For modeling this aforementioned type of tradingstraimt, it is necessary to
introduce binary variabled which indicate if an assetis included in the portfolio or
not.
_ | 1 ifassei isincluded in the portfolio
5 _{ 0 otherwise

The weight constraints can be formulated as
I <x <&M §e{0,1}

Different choices for the paramete¢8" andx™ will then result in different types of
buy-in thresholds, which are summarized in the followiriglea

Type Xirmn XImax
Either above smallest proportion of large number
or out wealth invested in asset
Either below 0 largest proportion of
or out wealth invested in asset
Either in between smallest proportion of largest proportion of
or out wealth invested in asset| wealth invested in asset

Table 2.1: Parameter settings for weight constraints to control tiatisn costs
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The so called cardinality constraint, which limits the nienbf assets included in
the portfolio, can be formulated as

X < o i=1,...,n (2.2.4)
Ya < v
5 € {01}

wherex"®is set to be a large number agids the maximum number of different assets
included in the portfolio. The cardinality constraint cas#y be combined with one
of the weight constraints by simply replacir?} 2.4 with the appropriate formulation.

The disadvantage of the trading constraints is that thein@itation relies on binary
variables!, which change the class of optimization problems from liqgagram to
mixed integer linear program. Optimization problems witteger restriction on some
of the decision variables are very complex and thereforairea lot of computation
time.

A direct approach for handling transaction costs modelstis¢ of buying or sell-
ing an asset proportional to the capital invested in thetatst TG denote the pro-
portional cost associated with buying assehd TG~ the proportional cost of selling
asset. To include this transaction cost model in the usual formatteof a portfolio
choice problem, the budget constrajfit ; X = 1 has to be modified. In the new set-
ting wealth is not only invested in assets but also used tdgrahe cost that originates
from making investment decisions. The new budget equatads

X+ 3 (TG TG %) =1

Since the sum of weights no longer adds up to one, the rewadtién 3! ; i needs

to be modified tdy | ; (14 ix;). A portfolio that minimizes CVaR subject to attaining
a certain level of expected returgrqe; and taking into account proportional transaction
costs can be found by solving the following linear program.

. 13
min —
XXt X",Z)y v Gskzlzk
subjectto:  z >0 k=1,....S
ZkZL(X7m<)_y k= ) “aS
n
(L4 )% > 1+ rarget
2
n n
zlm- + Zi(TQWWTQ‘&‘) =1
i= i=
X = xintial ek i=1..,n
X >0, i=1,....,n
X" >0, i=1,...,n
X >0, i=1,....,n

1The either below or out type of trading constraint can be fdatea without using binary variables.
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2.2. PORTFOLIO CONSTRUCTION

The advantage of using proportional transaction costsas ttie complexity of the
optimization problem hardly increases while taking intc@mt a main part of costs
related to trading financial assets.

However, not all costs are related to the size of the tradexeSees and commis-
sions have to be met when entering a certain market. Such amstknown as fixed
transaction costs and are denok@" andFC; for thei asset. Their formulation re-
quires two binary variable§" € {0,1} andd~ € {0,1} and these two constraints for
each asset

)(i

wherex™® js an arbitrary large number. The new budget constraint fistd and
proportional transaction costs reads :

X|+ S 6I+Xmax
—ymnax
< §X

n n

X+ 3 (BFG+ FG )+ 3 (TG +TGx ) =1

Taking into account both fixed and proportional transactiosts is a closer description
of the real world but comes at the expense of a dramaticataser in the complexity
of the optimization problem. As already mentioned eartteg, use of binary variables
changes the problem class to a mixed integer linear program.

2.2.4 Scenario generation

Scenario based optimization uses a finite set of outcomeseofandom parameters
to formulate the deterministic equivalent of the stocltaptioblem. The generation
of scenarios is a key issue since the quality of the scenhasssubstantial influence
on the quality of the solution. In general, scenarios candreerated by any model
which describes the random parameters of the optimizatioblem. It is assumed

that the random parameters are asset returns. Scenarioetases could be produced
by simulating from an autoregressive (AR) model or by boatgting historical return

observation. There is no general way of generating goodssize) but there are some
ideas that can give guidance to scenario genera8chédrer, 2007

e parsimonious: the size of scenarios should be as small as possible to réueice
optimization program’s computational complexity

e representative: the scenarios should reflect the random parameters in atreali
fashion

e free of modeling errors: situations such as arbitrage should be removed since
they are uncharacteristic and usually dissolve very guitkthe market

To create scenarios that are representative and parsiogyniariance reduction meth-
ods can be used. Two of such methods are adjusted randomiisgrapd tree-fitting.
The first approach creates random samples in pairs whichgeatect negative corre-
lation. Assume a simple AR model of a return series

_ b1 b2
r=a+ <b21 boo l-1+&

11



CHAPTER 2. THEORETICAL BACKGROUND

whereg; is simulated from some symmetric distribution. A simulapadr of residuals
using the adjusted sampling approacligs —&).

The tree-fitting approach has the goal of matching some poifsgd moments of
the sample and the assumed distribution. These kinds ofhiatproblems can be
solved as a nonlinear optimization problem. Assume thatdbielual term of the AR
model introduced earlier is normally distributed with zemean and covariance matrix
>. Sscenarios are generated where each one has equal prgbabditcurrence. A
sample ofgg having equal mean and a covariance matrix as close as possithe
population is the solution to the foIIowing optimizatiomptem

. Eki&ki 2
min Zl ( il Zij)
€ =11

subject to: z &=0
1

whereg is thei element of thék scenario residual.

The third desirable scenario property can also be imposedphiynization pro-
gram. If scenarios are to be free of arbitrage the followiihgasion should not appear
(Cornuejols and Tuttncl, 2007

e Arbitrage I: A strategy which has a negative initial cost antbn-negative value
for all scenarios

e Arbitrage II: A strategy which has zero initial cost and asadeone scenario
outcome with a positive value, while all other scenariod vékult in a non-
negative value

Both of these arbitrage situations can be formulated aadipeograms. Leltik denote
the return of the asset in thek scenario, then the solution to the following linear
program is unbounded if arbitrage | is present in the scesari

n

min Xi
X i;
n
subject to: zlrlkx| >0, k=1,....S
i=

To check if arbitrage Il situations exist, the next optintiaa problem can be used. In
the case of arbitrage, the solution will be unbounded.

n
L A
subject to: X =0
5

n

k
Er-xizo, k=1,....S
e

By examining the scenarios with the two aforementionedilirograms, a set of sce-
narios containing arbitrage can be abandoned or extenddware random samples
until it becomes arbitrage free. Even in situations whebitr@ge cannot exist due to
restrictions in the portfolio weights, like disallowingath selling, it is important to
check for these kinds of modeling errors, since certaintassl become extremely
desirable and therefore will be overrepresented in thetoaeted portfolio.
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2.2. PORTFOLIO CONSTRUCTION

2.2.5 Scenario optimization with CVaR objective and constint

To summarize the presented modeling approaches of CVaRamshttion costs, two
mixed integer linear programs are presented. Before timeulation can be written out
the loss functiori(x, w) is revised. The loss function is defined as the difference®f t
portfolio value at time 0 and the portfolio value at time 1.rlifdenotes the return of
thei asset in thé scenario, the loss occurring in thescenario can be described as

Lix,ax) = Vo—Vi(x ax)

= 5oy (L)
— 1_i=ii(1+rik))(i

Furthermore, the expected return of an asset is defined byé¢aa return of the sce-
nariosy; = %zlerik. The following two portfolio choice problems both incorpoe
fixed and proportional transaction costs. The first minimittee portfolio’s risk mea-
sured in CVaR subject to attaining a certain expected rééwed of the portfolio. The
second maximizes the portfolio’s reward potential measimexpected return subject
to an upper bound on the portfolio’s CVaR.

CVaR objective and return constraint

min Jri
XX~ xt.07,0" 2y 4 orSklek
subjectto: z >0 k=1,...,S
n
zkzl—zl(l—krik)xi—y k=1,...,S
i=
n
(1+ 1) % > 14 Ttarget
2
n n
3y (FGT8 +FCIa) +
n
+ Z(TQ+Xi+ +TG X ) =1
i=
X = Al xe  x i=1...,n
Xi >0 i=1,...,n
0<x < xX™ i=1...,n
0<x" < g xm i=1,...,n
6 €{0,1}, §*e{0,1} i=1,...,n
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Return objective and CVaR constraint

XX~ xt,07,0% .z

n
min - 1+ )%
, i;( i) X
. 13
subject to: y+a—sk;2k§€
z>0 k=1,...,S
L k
zkzl—i;<1+ri)x@—y k=1,...,S
n n
i;>q+i;(Fc:i+(5,++Fc>,*5,*)+

+2 (TGX+TG%) =1

initial

X =X 4t — % i=1,....n
X >0 i=1,...,n
0<x <§ xX™ i=1...,n
0<xh < §Fhxm i=1,...,n
& €{0,1}, &' e{0,1} i=1,...,n

Both of these formulations can be used to trace out the affiéfentier. When
minimizing risk, varying the target retuimgget Will result in different frontier portfo-
lios. When instead maximizing return, changing the uppendan CVaR¢ will give
the various portfolios on the efficient frontier.

2.3 Factor models

A factor model represents some variablgfor example an asset return, in terms of
some constard, a finite amount of factor$, ..., f,, and a residuat. In general, the
model can be formulated as:

m
r=a-+ Z b fc+€
k=1

Depending on the choice of factors, models for asset rearmelassified as macroeco-
nomic, fundamental, or statistical factor modélsgy, 200%. Macroeconomic factor
models use observable economic time series, like gross stanpeoduct or inflation,
as common sources of variation in returns, while fundaniéactor models focus on
asset specific properties as for example industry classifitaStatistical factor models
explain returns by unobservable variables which are derestatistical techniques
such as Principle Components Analysis (PCA).

This paper discusses only the latter type of factor modelgoiimulate the model,
both the factor loadingbkyx and factorsfy need to be estimated. The goal is to choose
the factor loadings in such a way that the residual term haseectatiorE[e] =0
and is uncorrelated with each of the factors Cipye) = 0. Furthermore, one wants
to explain most of the variation in the investigated varaby the factors, which is
equivalent to minimizing the variance of the residual term.
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2.3. FACTOR MODELS

2.3.1 Principle Component Analysis

PCA is a technique based on linear algebra that analyzesvalisas of several inter-
correlated quantities and explains the variation in tha tgta set of orthogonal vari-
ables. Them observations of variables are described by thex n matrix R. The
sample meang; and the sample variances; of the columns oR are estimated and
summarized as follows.

1m
dj = aklekj
M = Inu'
LI -
gj = 7m_1kzl(Rki—Ui)(Rkj—llj)

S = diag{\/all,wxazz, .. -7\/O-nn}

Let R be the centered version & where every column is subtracted by its sample
mean and divided by the square root of its sample variancis. CEm be expressed in
vector notation aR = (Ii— M) S-1 After this pre-processing, the mati¥ R can be
referred to as the correlation matrix. It is assumed Bhags the following singular
value decomposition (SVD).

R=PAQ'

whereP andQ are orthonormain x m andn x n matrices and\ is am x n diagonal
matrix of singular values. In fact\? is equal to the diagonal matrix which has the
eigenvalue oR" R as diagonal elements.

RTR= (PAQT)" PAQT = QATPTPAQT = QATAQT = Qa%QT

It is assumed without loss of generality, that the columntaescof the matrixQ are
ordered in such a way théi; > dp2 > --- > dyn holds for the diagonal elements Af
The PCA produces a set of new variables called principle aorapts (PCs). The PCs
are linear combinations of the original variables and comgin such a way, that the
amount of variation they explain is in decreasing order, thatithey are orthogonal to
each other. The observations of PCs are known as factorssfe@ned can be computed
by

F=RQ
whereQ is referred to as the loading matrix with each column vectoresponding to
one PC. So thé&h observation of the original variables can be represeintéerms of
the principle components as

lie =ql1F1+9LF2+ -+ 0lmFim

wherer;, corresponds to thith row of theR matrix andg,j represents thg¢th column
of theQ matrix. The above representation replicates the origiaahbles perfectly. In
order to reduce the number of variables, one investigatesdhtribution of each PC

to the total variation, which is given byn% With highly inter-correlated data sets,
=

one often experiences that most of the variation can be imguldy just a few PCs. A

model using the firsK PCs is formulated in the following way.

K
e = z q;rkl:lk+£
k=1
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CHAPTER 2. THEORETICAL BACKGROUND

The presented model for the centered observations satfiftee wanted properties of
a factor model and, in addition to that, has factors whictuaerrelated.

A more detailed presentation of PCA can be foundbdi and Williams (in press
2010.

2.4 Reduced-form approach to modeling credit risk

This section introduces the reduced-form approach to nmagletedit risk and how this
model can be calibrated to market data. The discussed tiwdfeamework follows
the outline as ir0’Kane and Turnbull (2003

2.4.1 Reduced-form models of credit risk

In reduced-form models the credit default event is desdritse the first jump of a
Poisson processlérrow and Turnbull, 1995 The time of defaultr of an entity is
exponentially distributed. The probability of defaultiag time 7 is defined by the
conditional probability

P{t <t+dtjt >t} = {(t)dt

Itis the probability of defaulting in the time intervialt + dt), conditioned on the event,
that the entity has not defaulted up to time t. The probatidiiependent on the length
of the time intervallt and a deterministic functiod(t), which is known as the hazard
rate. The non-negative random variabldescribing the default time is assumed to be
independent of all other economic quantities, such asdsteates or index level. The
probability of surviving up to timel', given that the entity has not defaulted prior to
timet, is

.
Qt,T) = exp{—/t Z(s)ds}

The hazard rate can be calibrated to market data using ertbdit default swaps (CDS)
or corporate bonds. Before the calibration technique wilts@ described, this finan-
cial contract will be summarized.

2.4.2 Credit Default Swap

The basic idea behind a CDS is to transfer the risk of a referentity defaulting from
one party (the protection buyer) to another party (the ptaie seller). The contract

is specified on a notional principle, which is assumed to berfeacy unit to simplify
notation. Figure2.4.1gives an overview of all participants and payment streams of
this financial contract. A CDS gives the holder the right,Ha tase of default of the
reference entity, to be compensated for a loss of the ndtmireciple. To obtain this
right, the protection buyer pays the protection seller adfigash flow at a specified
frequency up to the maturity of the contract or until defaxdturs. The sum of these
payments is known as the premium leg, which has the folloyiegent value.
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Reference entity

—— G
Protection Leg
Protection :: Protection
buyer seller
Premium Leg

Figure 2.4.1: Relationship between the participants of a credit defaudfpsand pay-
ment streams

Premium Leg PW,T) = S(to, T) % A(th—1,tn)P(t,th) Q(t, tn)
n=1

where:

t the current time

to the issue time of the CDS

T the maturity of the CDS

A(th-1,tn) the time fraction between the two time poitts; andt,

S(to, T) the CDS rate contracted at tiriewith maturity T
P(t,T) the price of a zero coupon bond at titneith maturity T

The present value of the protection leg is the discounteda®p value of the compen-
sation payed to the protection buyer.

Protection Leg P%,T) = (1-R) /T P(0,5)Q(t,s){(s)ds
t

In this formulationR is the recovery rate, which is assumed to be deterministic an
constant. If one assumes that the event of default can oclyran a finite numbe

of fixed time points during the contract time, then the iné¢gan be replaced by a sum
describing the present value of the protection leg

M
Discrete Protection Leg RY,T) = (1—R) z P(t,tm) (Q(t,tm-1) — Q(t,tm))
m=1

At the issue time the CDS rate, also known as the credit spie@thosen so that the
value of the contract is zero, i.e. the value of the premiugnded the value of the
protection leg are equal.
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2.4.3 Calibration of the hazard rate term structure

This part illustrates how a piecewise constant hazard satalibrated to a given set
of CDS rates with different maturitie§;, T, ..., Tx. The algorithm is based on the
fact that the premium and the protection leg are equal atisse. The hazard rate
is assumed to be constant on the time intef¥al;, Ti) fori = 1,...,K — 1. For time
horizons beyondk the hazard rate matches the value betwien andTk. A monthly
discretization is used and the premium is pa)léctimes per year. The calibrating
procedure starts with the shortest matufityand determines the hazard ratg in
such a way that the contract value is zero which means solving

Ty/k Ty /12
S(to, T J A —{Ttkn — (1 _ Y —(mtm-1 _ g {mytm
0,T1) Y Altg-1)n,tn)P(t,tn)e ¥ = (1-R) 5 P(t,tm) (€1 e°n
n=1 m=1

After the value of the hazard rate for the first interval isedetined, the procedure is
repeated for the next one in the same manner. The survivahpility is then given as
follows

Q(to,s) = exp{ - <K§ {r. max(min(s, Ti) — Ti1,0)> — {1 max(s— Tk—1, O)}

It should be noticed that, situations can arise where theeinzehnot be fitted to
market data. If the CDS rate is high for a given maturity arehtdrops dramatically
for the next maturity, the fitted hazard rate tends to be megathich is incorrect from
a probability point of view. Another critical situation aeis if the CDS rate has a big
jump from one to the next maturity, since there might be ngdanough hazard rate
to make both legs equal.
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Analysis of the rebalancing decision

3.1 Assets

This section formally introduces the assets that will bedusehe portfolio construc-
tion. The terminal payoff structure of the assets and tieiotetical value in the Black
& Scholes setting are examined.

The market contains three different assets, which are aaasbunt, a PPN and
a NPPC. The cash account is a risk-free asset, that payseresht This asset is a
safe haven for the investor because it bears no risk. Thetimvean only have a long
position in the cash account, since this would otherwiseyirtipat he could borrow
money without paying interest, which would be an unrealigisumption. The second
asset present in the market is a PPN. This structured pragdactontingent claim, that
entitles the holder to receive the following payoff at majur

PPNT) = S+Bmax(Sr—S,0)

where:
T maturity of the asset
S value of the underlying on the issue date
Sr value of the underlying at maturity
B participation rate

The PPN guarantees a predetermined minimum pagpfilus an unknown payoff
dependent on the value of the underlying at maturity. Thigcstired product can
be viewed as a combination offayear zero coupon bond with face valS8gand 3
European call options with the same time to maturity as thelland a strike pric&.
The bond is assumed to be free of default risk until othersfsecified. The price of
this structured investment at tinhén the Black & Scholes model can be described by
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CHAPTER 3. ANALYSIS OF THE REBALANCING DECISION

the following equation

PPNt) = Se '™ Y4Bc(S,%,T-t,r,q,0)

where:
S value of the underlying at timie
r risk-free interest rate
o} dividend yield of the underlying asset
o volatility of the underlying
c(§,K,T,r,q,0) Black & Scholes price of a European call option

with strike K and time to maturityl

In this report the issue price of the PPN, which is the valuthefPPN at time zero, is
set toSy, which implies that the participation rate can be deterchiog

B B so(l_efrT)
- (%, %,T,1,9,0)

The exposure of the PPN to the underlying market is conttdiie3, which is a func-
tion of the underlying’s volatility, the risk-free intertagte, the time to maturity and the
underlying’s dividend yield. The participation rate is @pendent of the current price
of the underlying. This follows directly when inserting tBé&ack & Scholes formula
for an ATM European call option in equati@l.1 Figure3.1.lillustrates the effects
of the dependent factors on the participation rate.

(3.1.1)

S=K=100, T=3 g=0, r=0.02 S=K=100, T=3 g=0, sigma=0.2
1 1
208 208
i i
506 506
g g
S 0.4 © 0.4
802 802
0 0
0 0.2 0.4 0.6 0.8 0 0.05 0.1
volatility of the underlying risk—free interest rate
S=K=100, r=0.02 g=0, sigma=0.2 S=K=100, T=3 r=0.02, sigma=0.2
0.8 0.7
[} Q
© 0.6 © 0.6
c c
=] =]
< 0.4 0.5
Q =3
3] o
g 0.2 c 0.4
o o
0
0 2 4 6 8 0 0.02 0.04 0.06
time to maturity dividend yield of the underlying

Figure 3.1.1: The participation rate of a PPN as a function of the undeglgiviolatility
(upper left graph), risk-free interest rate (upper riglaar), time to maturity (lower left
graph) and the underlying’s dividend yield (lower right gina

20



3.2. DATA SET

If the volatility of the underlying increases, the price loétcall option increases too
and therefore the participation rate declines. An incr@asach of the other mentioned
factors results in an increase of the participation rate.

The third asset available on the market is a structured gtodinich consists only
of the option part of the PPN and is referred to as NPPC. Thefpay maturity is
equal to one European call option with strike prige

NPPQT) = max(Sr — S,0)

The price of the NPPC at times given by the Black & Scholes formula for an Euro-
pean call option

NPPQt) =c(§,%,T —t,1,0,0)

This asset gives the investor the opportunity to increaseutiside potential of his
portfolio. Some market conditions such as low interest acathigh volatility reduce
the participation rate of the PPN. This limits how much theestor can profit from
positive developments in the underlying market. By invasth NPPC, he can increase
the dependence of the portfolio value on the underlying.

3.2 Data Set

The data set, extracted from Bloomberg, contains obsengtf the OMX Stockholm
30 Index (OMXS30) level, interest rates implied by SwedishaBury Bills for ma-
turities 3,6 and 12 months and Swedish Government Bonds &bunities 2,5 and 10
years, and credit default swap (CDS) rates with the RoyakBdu$cotland Plc (RBS)
as reference entity.

The OMXS30, which has Bloomberg ticker OMX Index, is a cdjztgion-weighted
index of the 30 most actively traded stocks on the StockhdiockSExchange. The
index is not adjusted for ordinary dividends, but the indejue is corrected for all
other corporate actions such as bonus issues, splits anggredfASDAQ OMX AB).
Bloomberg also provides a total return version of the OMXS@8ich means that the
ordinary dividends are reinvested. This data is used tonasti the dividend yield of
the index.

The Swedish National Debt Office issues Swedish Treasurtg Bit Swedish:
statsskuldvéaxel) with maturities of 1 to 12 months. Thedls bave no coupon pay-
ments. Another instrumentissued by this state organiz&ithe Swedish Government
Bond (in Swedish: statsobligation). The bond pays a yeatgdfcoupon and is avail-
able with maturities of 2 up to 30 yearRiksgalden - Swedish National Debt Office,
2007. The government interest rates with maturities 3 month®éths ,12 months,
2 years, 5 years and 10 years are calculated from the fixedri@instruments issued
by the Swedish National Debt Office. The rates are composedBlgomberg service
called fair market yield curve. The Bloomberg ticker for thenonth rate is C2593M
Index. For the other maturities, the fifth and the sixth cbema which indicate the
maturity are replaced by the respective ones.

The CDS rates are given for contracts with time to maturit§ géars and 5 years.
These maturities have the longest history of the availatgracts with RBS as refer-
ence entity. The Bloomberg ticker for such an instrumentB©OR CDS EUR SR 3Y,
where the last two characters denote the time to maturitgeoDS. The CDS data is
only used in the part of the investigation concerning craslit
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CHAPTER 3. ANALYSIS OF THE REBALANCING DECISION

The data set contains weekly observations. The Swedishyoeat interest rates
and the OMXS30 level records range from the 1st of Januar9 i®the 23th of April
2010. This amounts to 591 observation dates of each timessefihe CDS rates
are recorded from the 18th of April 2004 until the 23th of A@@2010. The historical
government interest rates and the OMXS30 levels are disglayfigure3.2.1

Time series of the various government rates
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Figure 3.2.1: Time series of the Swedish government interest rates andMéS30

3.3 Overview of the model components

An overview of the components, which are needed to analyzesthalancing situation
for a portfolio of structured products, is presented in @estion. First of all, the
measures of risk and reward are motivated. Thereafter aip#sn of the investment
situation is presented. It follows a parameter specificatibthe Black and Scholes
model, that is used to price the structured products. Therdhstruction of the return
scenarios is introduced. The section closes with an oudirtbe procedure, that is
used to compute the optimal portfolio weights.

3.3.1 Quantification of reward and risk

A portfolio of assets is characterized in terms of risk anvdarel, which are conflicting
objectives. An investor is assumed to view reward as a pesitiaracteristic and risk
as a negative characteristic. In traditional portfolioatye(Markowitz, 1952 reward
is quantified in terms of expected return and risk is measuradrms of variance.
This study also uses expected return as the measure of ramartestor receives
from holding a certain position. It is a generally exceptedrmtity, which is easy to
understand and to formulate for a general investor.

Variance is a measure of risk, which relies on the assumghiainthe return distri-
bution of the portfolio has a finite second moment and is sytrimaround its mean,
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as for example the normal distributiokl¢Neil et al., 2002. When derivatives are in-
cluded in a portfolio, the portfolio’s return distributidmecomes asymmetric and heav-
ily tailed. A different measure of risk must be used to ac¢danthese features of the
return distribution. VaR and CVaR are risk measures whielcammonly used in risk
management, when distributions show asymmetry around daarand heavy tails.
CVaR is the measure of risk used in the report due to two reagerst of all, CvVaR
can be formulated as a linear program in the setting of sae@timization. This
makes it possible to solve the optimization problem in reabte time and ensures that
the global optimum will be found. The second advantage isithakes into account
losses beyond the VaR threshold. This means that no risksecaidden in the tail of
the return distribution unobservable for the chosen risisuee. The definitions of VaR
and CVaR, and how to formulate CVaR as convex function isritese in sectior?.1

3.3.2 Description of the investment situation

The considered investment situations are very similareaoties in the motivating ex-
ample presented in the introduction. At the initial stadm investor wealth can be
allocated into three different assets available on the etarihich are a non-interest
paying cash account, a currently issued PPN and a curressihed NPPC. The port-
folio is assumed to be long-only and purchasing or sellirgdnuctured products in-
volves transaction costs, that are modeled as costs piopalrto the size of the in-
vestment. Changing the position in the cash account is nudlized with any costs.
After a specified period of time has passed, which is refeiexs rebalancing period,
the investor has the possibility to rebalance his portfionatch his reward and risk
conception. This situation is called the rebalancing stadg is offered to reallocate
his portfolio weights to either the cash account, a newlyesisPPN or a newly issued
NPPC. This means that the portfolio owner can only sell trewipusly issued struc-
tured investments, and only purchase the currently isstradtsred products. This
restriction matches the actual market situation. Strectimvestments usually have a
limited offer time. The rebalancing stage is repeated matyulintil the time horizon
of the investor is reached. At each stage the expected ratatthe CVaR of the port-
folio is measured over the next rebalancing period. Théairstage can be viewed in
the same way as the rebalancing stage, assuming that thstanpeeviously holds a
cash-only portfolio.

The rebalancing situation has to be modeled as a stochasiicination program,
since the future prices of the structured products are umkras seen from today. The
concept of scenario optimization is used to transform tbelrgtstic program into the
deterministic equivalent. Scenarios have to be generatdddcribe the possible out-
comes of the random parameters over the next rebalancimegdpé&efore selecting a
methodology to generate scenarios, a pricing method fosttiietured products needs
to be found and the random parameters entering this methstbeudentified.

3.3.3 Pricing model

The Black & Scholes formula is used to price the option pathefstructured products,
and the value of the bond part is determined by discountiegbibnd’s face value
using the risk-free rate. This approach is used due to itpotetional efficiency. The
option value needs to be computed for each scenario. In todgrnerate a sufficient
amount of scenarios and still keep a reasonable compushttomplexity, the method
used to determine the value of the option needs to be veryegific The Black &
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Scholes option pricing formula is a closed-form solutiod #rerefore produces option
price at very small computational cost. Another advantagehat this setting only
requires a few inputs, which limits the amount of risk fastdahat need to be modeled.
Furthermore,the model’s advantages and disadvantagasfienown.

As a consequence of this modeling approach, the price oftthetsred invest-
ments depends on the time to maturity, the future interest the future price of the
underlying, the future volatility of the underlying and theure dividend yield of the
underlying. The following assumptions are made on thesabias. The interest rate
and the price of the underlying are modeled as random vasal$ince the portfolio
can contain structured products, that have different tito@saturity, not only a single
interest rate needs to be modeled, but the whole yield ciive annual dividend yield
of the underlying is set to be%%o,which is the average dividend yield when comparing
the total return version of the OMXS30 with the standard ieers

The volatility of the underlying can either be specified gsimplied volatility ex-
tracted from option market prices or using realized vatgtiWasserfallen and Schenk
(1996 compared market prices of structured products to themaigtrices, using both
volatility specifications. They did not observe any systeéendifferences in the theo-
retical prices when utilizing either implied or realizedaiility. Furthermore, one can
notice when examining historical option prices, that theaypmarket of the OMXS30
is not very liquid. This causes difficulties to find a consistmethodology of extract-
ing the volatility surface over long time spans. Moreovie a&mount of data and risk
factors, that need to be handled, increases rapidly whéwiolg this approach. This
report uses therefore realized volatility as defineHidl (2005). Let ¢ be the standard
deviation of the log returns of the underlying within a giiene period of past obser-
vation and let be the time length in years between two observations, treretidized
volatility o reads

o = &

VU
The most recent 104 observations are used to compute theeckablatility of the
underlying.

3.3.4 Scenario construction

Using this framework, scenarios are generated in the falgwvay. Based on histor-
ical data a statistical factor model is built to be used fonidation of future devel-
opments of the yield curve and the underlying asset overitine $pan until the next
rebalancing stage. The factor model and the simulationodethat is used to generate
time series of future changes in the yield curve and the Uyidgrasset, are presented
in section3.4 Each simulated time series will account for one scenariextNthe
price of the structured products at the final observatiomefdimulated time series is
determined. The risk-free rate for pricing the option anttie bond is chosen to match
the maturity of the structured investment. If the interes¢ rof this particular maturity
is not available, it is determined by linear interpolatidriie two rates closest in terms
of maturity. The return of each asset can then be computethéoscenario. Each
scenario gives a realization of the unknown return of easktasver the next period.
Since all scenarios are equally likely, averaging over tifferént outcomes gives the
expected return of the asset over the next period.
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3.3.5 Determining optimal portfolio weights

The scenario returns of the assets as well as the assetsteapeturns and the initial
portfolio weights are then used as the input for the lineagpm, that yields the
optimal portfolio weights as a solution. This optimizatiproblem is formulated in
section3.5. It is presented in two different variations. The investan @ither choose
to restrict the CVaR of the portfolio by an upper bound and imé&e the portfolio’s

expected return, or formulate a minimum requirement on #peeted return of the
portfolio and minimize the portfolio’'s CVaR. Both the exped return of the portfolio
and the portfolio’s CVaR are measured over the next rebalgmeriod, that is set to
be one year if not specified otherwise.

3.4 A factor model of the yield curve and the underly-
ing index

Scenario optimization requires a finite set of realizatiohthe random parameters to
formulate the deterministic equivalent of the stochastabfem. The random parame-
ters for the rebalancing problem are the asset returns bgarext rebalancing period.
The asset returns depend on some random risk factors. Igdti®n a statistical fac-
tor model is set up that can be used to simulate future yietdesuand index levels. A
historical and a Monte Carlo algorithm for the simulatiordanthe physical measure
is presented.

During the time span of the data set, the Swedish governmésitest rates and
the OMXS30 have experienced up- and downturns. Since mdfieandex level nor
the interest rates are approximately stationary, the tigegson is based on relative
changes for the interest rates and logarithmic returnshi@iridex, which seem to be
weakly stationary as Figui24.lindicates.

A PCA (as presented in sectidh3.]) is performed on the whole available time
span of the data set, which concludes thaf79b of the variation can be explained
by the first four PCs. This deduction is in line with the findéngf Litterman and
Scheinkman (1991,who confirmed that around 96% of the variation in the yieldve
can be explained by three factors. Since the data set is cxedpmf the yield curve and
the index, an additional source of randomness is added wettaeset which increases
the amount of necessary PCs to describe it by one. This re@sisralso sustained by
the fact that the correlation between the OMXS30 and thewdifft interest rates varies
between (L1 and 026. The outcome of the PCA is summarized in tableand the
factor loadings of the main PCs are presented in fiGude2
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Figure 3.4.1: Time series of weekly relative changes of Swedish govermiinggrest
rates with six different maturities and weekly log returfi©MXS30
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Principle Components
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Figure 3.4.2: The factor loadings of the first four principle componentsda@ata set
of relative changes of Swedish government interest ratds six different maturities
and log returns of the OMXS30. The analysis is performed @dhvégekly observations
ranging from January 1999 until April 2010.

PC | Explained variation [%]| Cumulative explained variation [%4]
1 56.4 56.4
2 20.2 76.7
3 12.8 89.4
4 6.3 95.7
5 2.3 98.0
6 14 99.5
7 0.5 100

Table 3.1: Variance explained by the principle components for a dat@feelative
changes of Swedish government interest rates with sixrdiftematurities and log
returns of the OMXS30. The analysis is performed on 590 wealk$ervations ranging
from January 1999 until April 2010.

In Litterman and Scheinkman (1991he three dominating PCs of the yield curve
are described as a level, steepness and curvature. Simaitaayal holds true for the
first PCs of the data set investigated here. The first PC isregf¢o as the level, because
it has no sign changes and therefore can be interpreted aaliepshift. The second
PC accounts for a change in the steepness of the yield curgteeping of the yield
curve has a positive effect on the index level. The third R@asents a shock to the
index development. This PC has a small effect on the inteagss but a large effect
on the index. The fourth PC corresponds to a change in cuevafithe yield curve. It
has only a small effect on the index. When the PCA is perfornmedist the Swedish
government interest rates, very similar results to thoskeittérman and Scheinkman
are obtained. Further illustration and discussion on #8se are omitted.

Another important aspect in order to determine a statistézdor model that can
be used for simulation purposes is the stability of the mttelugh time. This is done
by investigating the stability of the factor loadings and #xplanatory power of the
PCs.
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The estimation of the PCs is based on a sample from a largeitgiam. Choosing
a specific sample might have a strong effect on the factoingadind the explanatory
power of the PCs. For the investigation of sample dependevexskly observations of
the time period ranging from January 1999 to April 2010 avédéid into quarter-yearly
overlapping periods with a length of four years: This resirit30 different samples.
Each of these samples contains 209 data points, which atgkrabservations to get
stable estimates of the PCs.

The explanatory power of each of the first four PCs and themdative sum is dis-
played in Table3.2 There are effects of sample dependence present in thenexpig
power of the PCs. The first PC explains in some periods moreG8%o of the variation
(Jun-00 to Jun-04), while in other periods it only standsbiglow 55% of the variation
(May-04 to May-08). There are also similar strong variagipnesent in the other three
PCs. Even though there is variation in the explanatory paf#ére individual factors,
the sum of explanatory power of the first four factors is alsvalgove 93%. This leads
to the conclusion that the first four factors account for tlegampart of the variation in
the data set, independent of the selected sample.

The estimated factor loadings for each of the first four PEshown in figure.4.3
where each line represents a different sample. Since & pte presented on the same
scale, it is possible to observe that the sample dependetice factor loadings for the
first PC is much smaller than for the other three PCs. The naygdhle coefficient is
the one affecting the index in the second PC. Even thoughattterfloadings for the
PCs show sample dependence, it seems that there is a stabterg in the shape of
the principle components.
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Period Explanatory power [%0]

Start End PC1| PC2| PC3 | PC4| Cumulative Sum
Jan-99 | Dec-02 | 60.92| 16.18 | 13.51| 5.44 96.05
Mar-99 | Mar-03 | 60.84 | 16.40 | 13.16 | 5.67 96.07
Jun-99 | Jun-03 | 62.20| 16.16 | 12.98 | 4.45 95.80
Sep-99 | Sep-03| 63.57| 14.92| 12.68| 4.69 95.86
Dec-99 | Dec-03 | 65.71| 15.25| 11.83| 4.58 97.37
Mar-00 | Mar-04 | 67.43| 14.50| 11.51| 4.27 97.71
Jun-00 | Jun-04 | 68.24| 14.93| 10.76 | 3.89 97.83
Sep-00| Sep-04| 68.29| 14.78| 10.80| 3.92 97.79
Dec-00 | Dec-04 | 68.56 | 14.44| 10.96 | 3.88 97.85
Mar-01 | Mar-05 | 67.82| 15.23| 10.61| 4.14 97.80
Jun-01 | Jun-05 | 66.04| 16.31| 10.91| 4.23 97.49
Sep-01| Sep-05| 65.29| 16.61| 11.08| 4.43 97.40
Dec-01 | Dec-05 | 65.15| 16.73 | 10.36| 4.66 96.90
Mar-02 | Mar-06 | 61.12| 18.29| 11.62| 4.90 95.93
Jun-02 | Jun-06 | 60.56 | 18.08 | 12.09 | 4.85 95.58
Sep-02 | Sep-06| 59.96 | 18.18| 12.29| 4.95 95.38
Dec-02 | Dec-06 | 59.90| 18.21| 12.25| 4.96 95.30
Mar-03 | Mar-07 | 59.32 | 18.44 | 12.55| 4.90 95.21
Jun-03 | Jun-07 | 58.81| 18.29 | 12.98| 5.01 95.10
Sep-03 | Aug-07 | 57.72| 18.09 | 13.35| 5.60 94.76
Dec-03 | Nov-07 | 55.20| 19.38 | 13.38| 6.02 93.97
Mar-04 | Feb-08 | 55.80| 19.41| 12.93| 5.97 94.11
May-04 | May-08 | 54.72 | 20.20 | 12.99 | 6.00 93.92
Aug-04 | Aug-08 | 54.50 | 20.04 | 13.48 | 5.92 93.95
Nov-04 | Nov-08 | 58.69 | 19.64 | 11.65| 5.33 95.31
Feb-05 | Feb-09 | 60.19| 18.60 | 12.54 | 5.01 96.34
May-05 | May-09 | 58.35| 20.78 | 12.47 | 4.85 96.45
Aug-05 | Aug-09 | 58.67 | 20.25| 12.20| 5.49 96.61
Nov-05 | Nov-09 | 58.22| 20.10| 12.11| 5.78 96.21
Feb-06 | Feb-10 | 57.72| 19.69 | 11.86| 6.73 96.00
Jan-99 | Apr-10 | 56.45| 20.20| 12.75| 6.34 95.74

Table 3.2: Sample dependence of the explanatory power for 30 quagtatyyoverlap-
ping time intervals consisting of 4 years of weekly obsdored. The last row indicates
the explanatory power for the whole data set ranging fronadgn1999 to April 2010.
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Figure 3.4.3: Sample dependence of the factor loadings of the first four P@s line
in a subplot represents the factor loadings of the indic&€dor one sample. The
investigation is performed on 30 quarter-yearly overlagpsamples consisting of 4
years of weekly observations. All samples are taken frompafadion of 590 weekly
observations ranging from January 1999 to April 2010
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3.4.1 PCA-based simulation of future yield curves and indelevels

This part focuses on the simulation of changes in the yietdecand index level. One
simulation path consists of 52 weekly changes, which remethe time span of one
year. The simulation is based on a four factor model wheréattter loadings and the
factor scores are estimated by PCA. Since the PCA methoglgedmn the centered
observations, the simulated observations need to be esbeath the historical mean
and standard deviation of the original variables. The satiah data is conducted in
two different ways. The first approach is historical simalatand the second is Monte
Carlo simulation. Before looking at these sampling methdusautocorrelation of the
PCs is studied, since both approaches rely on the assuntp#ibthe observations are
independently identically distributed.

Autocorrelation in the PC 1 Autocorrelation in the PC 2
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Figure 3.4.4: Autocorrelation plot of each of the first four PCs. The sanipleom-
posed of 590 weekly observations ranging from January 199®til 2010

Figure3.4.4shows the autocorrelation graph for the factor scores ofitsiefour
PCs. Significant autocorrelation is present whenilagrrelation does not fall within
the interval indicated by the two horizontal lines arourgxkaxis. There is hardly any
significant autocorrelation present in the PCs. Therefopying that the observations
are independent is a reasonable assumption.

3.4.2 Historical simulation

One non-parametric method for simulation is bootstrappatigp known as historical
simulation. To simulate new observations of the PCs, rans@mpling with replace-
ment is applied to the historical observations of the PC& H@s are uncorrelated but
this does not imply that they are independent. The sampliaggulure is done in the
following manner. One historical observation date is ranlygicked from the sample
with replacement, where each observation date has equadlptiby of being chosen.
The following equation is used to compute the centered maigiariables

4
.
lie = ) OekFik + €
2
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The noise term is simulated from a normal distribution wi}z] = 0 andVar[e] =
Var |:217:5q;rj|:]j:|. Finally the original variables will be rescaled with thaistorical
mean and standard deviation.

3.4.3 Monte Carlo simulation

Monte Carlo simulation is a parametric simulation methbdréfore a parametric mul-
tivariate distribution function has to be selected for tl@&sP The study is preformed
on the whole available time span of the data set and is caotieth two steps. First
the distribution of the dominating PCs is investigated, #meh the residual term is
examined. To do this, the marginal distribution functiofshe PCs are analyzed by
guantile-quantile plots (qq plots), and the dependencetstre of the marginals are
investigated with the help of scatter plots.

Figure3.4.5shows the qq plots where the empirical distribution is pldthgainst
a standard normal distribution for the left column of thegdéans, and against a t-
distribution for the right column. The qq plots indicate ttitiae empirical marginals
are heavier tailed that a normal distribution, since the Ismupward sloping for the
right tail and downward sloping for the left tail. A distritbon with heavier tails is
believed to give a better fit to the observed data, as confilmgetie qq plots against
t-location scale family. The line is fairly straight for &iCs, which indicates a good
fit. The maximum likelihood estimated (MLE) parameters @&f tharginal distributions
are given in table.3. The table indicates that the marginals have differentekegof
freedom. However,the qq plots show that the fit is even aebdptvhen restricting the
degrees of freedom ta&b.

Figure3.4.6illustrates the pairwise scatter plots of the centeredfastores. Al-
most all scatter plots display a strong concentration irrelecthat is centered at the
origin. The scatter plot that deviates the most from thissolztion is the upper left
one in the figure. Here the shape is rather elliptic. Sincenansgtry with respect to
the origin could be observed for most scatter plots, a spaledistribution would be a
good fit for the centered factor scores.

normal distribution t-location scale

PC u (o) u (o) Y
0.0000 1.9861 | -0.0360 1.1529 2.77
0.0000 1.1882 | 0.0548 0.7604 3.03
0.0000 0.9440 | -0.0164 0.7783 6.51
0.0000 0.6656 | -0.0041 0.2653 1.93
0.0000 0.3986 | -0.0013 0.2235 2.59
0.0000 0.3173 | -0.0041 0.0554 1.07
0.0000 0.1947 | 0.0035 0.1412 3.91

~NOoO O~ WN PR

Table 3.3: Maximum likelihood estimates for normal and t-locationleddistributions
fitted to the historical observations of the PCs
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Figure 3.4.5: Quantile-quantile plots of the marginal distribution ftinas of the first
four PCs. The figure displays two plots for each marginal. [Efteone is the empirical
distribution against a standard normal distribution arelight one is the empirical
distribution against a t-distribution with85 degrees of freedom.
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Figure 3.4.6: Pairwise scatter plots of the centered factor scores fdiirgtefour PCs
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Taking into account both the observations made from the qts gind the scatter
plots, a multivariate t-distribution gives a good paratcetnodel of the multivariate
distribution of the first four PCs. It is not necessary to usmjpula model since the
degrees of freedom for the marginals are in close range. A MiLfBe centered first
four PCs gives a multivariate t-distribution with= 3.85. This parameter is equal to
the degrees of freedom used for the t-distribution in theldised qq plots of the first
four PCs. Instead of using the MLE estimates for the margiisdtibution, the mean
and standard deviation are chosen to match the empirical enehstandard deviation
when each marginal has the same degrees of freedom.

The next object under investigation is the residual termthi previous section
it was assumed, that follows a multivariate normal distribution. Instead of nivadk
such an assumption the residual term is investigated indheeananner as the first
four PCs. The only assumption made is that the residual terimdependent of the
first four PCs. Figur@.4.7shows the qq plots of the last three PCs. The t-distribution
with 3.76 degrees of freedom gives a good fit for the fifth and seve@thiie sixth
PC shows slightly heavier tails. The scatter plots of thettage PCs are displayed in
figure3.4.8 In all three plots the shape looks approximately centered.
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Figure 3.4.7: Quantile-quantile plots of the marginal distribution ftioas of the last
three PCs used as residual term. The figure displays two folo&ach marginal. The
left one is the empirical distribution against a standanamad distribution and the right
one is the empirical distribution against a t-distributieith 3.76 degrees of freedom.
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Figure 3.4.8: Pairwise scatter plots of the centered factor scores foagtéhree PCs

Since the t-distribution with .36 degrees of freedom gives a good fit for the marginals
and the scatter plots do not reject a spherical distributimlast three PCs are modeled
by a multivariate t-distribution with .36 degrees of freedom. The complete parametric
model reads

-
I

4 3
T
ie Ce Fk + (018 §
k; k k; k+4Ek

where:
F ~ t3g5(0,2F)
1.8935 0 0 0
s. 0 0.6777 0 0
= 0 0 04277 O
0 0 0 Q2127
£ ~ t376(0,Z)
0.0742 0 0
2e = 0 0.0470 0
0 0 00177

The centered simulated risk factor changes still need tegeated with their historical
mean and standard deviation.

Since the multivariate t-distribution belongs to the fanaf normal variance mix-
ture distributions, the simulation algorithm for this faynas outlined inMcNeil et al.
(2002 can be utilized. LeBbe ad-dimensional random variable that has a multivariate
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t-distribution, therS has the following representation

s & u+vwaz
where: Z ~ Ny (0,1y)
V/W ~ X5
-2
AAT =V " %5
Y
Here u and correspond to the mean vector and the covariance matrixeofaittor
scores and’ is the degrees of freedom parameter of the t-distributiarshbuld be
noticed that the covariance matrix of this distribution mtyodefined ifv > 2. The step
by step simulation algorithm reads as follows.

Simulation of normal variance mixture

1. Compute Cholesky decompositionb‘}zz to obtainA

2. Sample independent standard normal variables(Z;,Zy, ... ,Zd)T
3. Sample indepenAdent\{)v from x?-distribution withv degrees of freedom and
computew = v /W

4. ComputeS= u++WAZ

The parametric approach has the advantage that the simhalaservation can ex-
perience changes that have not occurred in the past. Thishisved on cost of a
modeling error which is due to a misfit between the paraméisitibution and the un-
known distribution of the PCs. Both the non-parametric dreddarametric simulation
approaches can be used to generate scenarios under thegphyesasure. If a different
sample is used, the presented analysis for choosing a pei@distribution has to be
repeated to be able to insure a good fit. Since this is a titessive procedure, the
historical simulation approach is used for all investigatin this report.

3.5 Portfolio rebalancing decision

The optimization problem for the rebalancing situationaenrfulated in this section.
Both the maximizing expected return of the portfolio subjiecan upper bound on
the portfolio’s CVaR case and the minimizing the portfdi€VaR subject to a lower
bound on the portfolio’s expected return case are presemtegiscenario optimization
problem is based on the general case, which is introduceddiios 2.2.5 Trading
constraints are incorporated in the problem formulatiothabstructured products with
limited offer time can be handled.

It is assumed that the investor holds a portfolio of assetisnatt; specified by the
initial weightsx"@ . The portfolio choice problem becomes a rebalancing proble
where the positions are adjusted in order to satisfy theshovis objective and con-
straints on his portfolio. Furthermore, it has to be takeo sccount that structured
products can only be purchased at the issuing date, and enafier a fixed amount
of time has passed. Let asset 0 represent the non-interest paying cash account. To
simplify the rebalancing situation, it is assumed that tiigal portfolio consists only
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of structured investments that have not reached their fhathis is not a limitation,
since structured products that reach their maturity at tjiraan be handled in the fol-
lowing way. The value of such an asset is given by the payafttion. The investor
can no longer hold this asset, so it is removed from the partémd its value is added
to the cash account. The value of the portfolio does not olding the weight vector
xntial is adjusted using the described procedure. Furthermdrstrattured invest-
ments that have neither a positive weight in the portfolar, are issued at the current
time can be disregarded, since structured products canbendpld after their issuing
date. The assets are enumerated as follows

i=0 cash account
i=12,...,m assets with positive weights issued priot;jto
i=m+1m+2....n assets issued at tinte

So using the notation introduced in sect®2.3the trading constraints on the weight
adjustments;” andx;” are given by

0< x < nital i=0,1,2,...,m
xi+:o i=1,2,....m

X =0 i=m+1m+2....n
0<x" i=0,m+1m+2....n

The variables forced to be zero can be eliminated from thenigdtion procedure.
Since the scenario optimization introduces a lot of con#isand decision variables to
the portfolio choice problem, only proportional transantcosts are taken into account
since they do not rely on binary variables, which would tredwusly increase the
complexity. The new budget and weight constraints are

transaction costs

_n>q + _mTQ‘>q‘+ % TG =1
o

i=m+1
——
invested wealth cost of sells cost of buys
_ initial + —
X = X " +X =X
xo= el e i=1,...,m
x = Xl i=m41,...,n
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3.5. PORTFOLIO REBALANCING DECISION

The linear program maximizing the expected portfolio refusubject to an upper
boundé on the CVaR of the portfolio can be formulated as

n

min - Zh(lJr
xx—xtzy &

1 S
bject to: — <
subjectto: y+ aSkZZk_

z>0 k=1,...,S

Z>1— Zl(1+r)x. y k=1,...,S

%m+2jqxw—z TG =1

mH-1

Xo—XI(S“tIaI—i—XO _XO

x; = xnitial_ y= i=1..,m
X = xjntal - i=m+1,...,n
Xxi >0 i=0,....,n
X >0 i=0,1,....,m
x>0 i=0,m+1,....n

In the same manner the next linear program minimizes the @¥#éke portfolio, while
attaining a minimum target rate of expected retugret

. 13
min —
i Y+ os lek

XX~ xt.zy
subjectto: z >0 k=1,....S
> (111
zZ>1— 1+ )% —Vy k=1,...,S
5
n
(14 i) % > 14 Target
2,
n m
Z)xi+ZlTQ‘Xi_+ Z TG =1
i i i=m+1
Xo = XB““a'+x0 XO
X = X:nltlal XF i=1....m
x; = xinital et i=m+1,...,n
X >0 i=0,....,n
X >0 i=0,1,..
x>0 i=0,m+1
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CHAPTER 3. ANALYSIS OF THE REBALANCING DECISION

3.6 Example of a rebalancing situation

This section investigates the computational complexitshefportfolio choice problem
and the robustness of its solution. To show the consisteittyedwo different portfolio
optimization problems, which are presented in sec3idnan example of a rebalancing
situation is investigated.

The setup is as follows. The investor holds a cash-only plstind can invest
in either a new issued PPN with proportional transactiort 286 or an NPPC with
proportional transaction cost 4%. Both assets have 3 ygaestb maturity and the
next rebalancing time will be in one year. 1000 scenariosgarerated using the
statistical factor model with the historical simulatiorgafithm based on 4 years of
weekly observations of interest rates and the OMXS30 leViéle assets’ scenario
returns as well as the assets’ expected return are detatraim given as an input
to the scenario optimization problem. CVaR is measured wittonfidence level of
a = 0.05. The current time point (19th of May 2006) is chosen, siidg one of
the time points where the simulated risk factors give a negative expected asset
return. The OMXS30 has a closing level of 953 on that day and the three year
government interest rate is13%. The volatility of the index is estimated to be 2%
and the Black & Scholes call option price is.89 SEK. In this economic setting the
participation rate of the PPN is 3%. The expected return computed as the average
outcome for the simulated scenarios is82% for the PPN and 983% for the NPPC.
Histograms illustrating the distribution of the asset retuare presented in figuge6.1

Simulated asset returns of PPN Simulated asset returns of NPPC

100

0
-0.060 0.235 047 0.705 0.94 —8.99 0 2.48 496 744 9.92
asset retum asset retum

Figure 3.6.1: The two histograms show the annual return distribution oP&l Fleft
diagram) and a NPPC (right diagram) as a result of 1000 siediiadex and interest
rate scenarios using the statistical factor model fornedlét sectiorB.4 with the his-
torical simulation algorithm. The PPN wi88.99% participation rate and the NPPC
have 3 years time to maturity
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Return
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(a) Efficient frontier of the example rebalancing situation

Frontier portfolios produced by max return subject to risk constraint
1

0.5

0 0.2 0.4 0.6 0.8
Portfolio CVaR
Frontier portfolios produced by min risk subject to return constraint
1

0.5

0 0.2 0.4 0.6 0.8
Portfolio CVaR

(b) Weight allocations of the frontier portfolios

Figure 3.6.2: Efficient frontier of the example rebalancing situation ahd weight
allocations of the frontier portfolios

Figure 3.6.2 shows the efficient frontiers produced by the different mjzation
programs and the weight allocation of the frontier portisli The frontier portfolios
are produced with the following approach. First, the maximreturn portfolio with no
CVaR restriction is determined. Next, a grid of 20 equallsicgd points of the interval
between zero and the CVaR of the max return portfolio is déistedd. Each of these
values is used as an upper bound on the portfolio’s CVaR foclwthe maximum ex-
pected return portfolio is determined. The frontier congpluin this manner is referred
to as maximum return subject to risk constraint frontier gufe3.6.2 To work out
the second frontier called minimum risk subject to returnstmaint, the expected re-
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CHAPTER 3. ANALYSIS OF THE REBALANCING DECISION

turns of the first frontier portfolios are used as lower baiod the portfolio’s expected
return and then the portfolio’s risk measured in CVaR is mirid.

As one should suspect must the so computed frontier patfblave the same ex-
pected return and CVaR levels, which is confirmed by the figwhen investigating
either of the weight allocation plots, one can see how theyleichange when the
risk or return requirements are changed. An investor whagk risk averse holds
cash-only since this is the only risk-free asset, which ¢fiohas zero return. When
the investor is prepared to hold a risky portfolio he firsbedltes his weight into the
PPN. The more return the investor requires, or the more gsis lwilling to take, the
larger is the weight invested in the NPPC. This simple sibmamakes it possible to
compare the optimization results with commonsense saisitio the investment prob-
lem. In the weight allocation figures the weights do not alvagld up to one, due
to the transaction costs. Apart from confirming the corressnof the algorithms, this
situation can be used to investigate differences in contipaie complexity of the two
portfolio choice problem settings. Since computation tisna very unstable measure,
the computational work is recorded as the number of itematioTo solve the linear
program, the simplex algorithm is used. The iterations eded solve the problems
are displayed in tabld.4.

Expected return of the Max Return| Min CVaR
frontier portfolio Iterations | Iterations

0% 52 53
8.8% 125 326
14 % 81 322
19 % 65 320
23 % 55 319
28 % 54 319
32 % 54 319
37% 54 319
41% 54 316
46 % 54 316
50 % 54 316
55 % 54 316
59 % 54 316
64 % 54 315
68 % 52 314
73 % 52 313
77 % 52 313
81 % 52 313
86 % 52 313
90 % 52 314

Table 3.4: Iterations of the simplex method needed to find the weighth@Egfficient
frontier portfolios in a 3 asset setting with 1000 scenarios

In this situation, the optimization problem maximizing exped return subject to a
CVaR constraint converges much quicker than the minimigiigR subject to an ex-
pected return constraint. The minimizing CVaR setting seaften more than 6 times
the amount of the iterations used for the maximizing retuoblem to converge. Only
for the portfolio with either zero return constraint, or aexs an upper bound of the
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3.6. EXAMPLE OF A REBALANCING SITUATION

CVaR of the portfolio, the number of iterations are appraadiety equal. Also, the

number of iterations seems to be very stable for varioustpain the frontier. When

varying the number of scenarios, it could be observed thatathount of iterations

changes proportionally to the number of scenarios, andllesadvantage of the max-
imizing return setting is retained.

Min CVaR st. lower | Max expected return st.
expected return bound upper CVaR bound
Bound value| 14.32| 41.30| 72.56| 9.53 | 38.14| 71.51

# Scenarios Asset weight

250 PPN 1.446| 4.750 | 8.580| 0.553| 1.585| 2.871
NPPC 1.418| 4.658 | 8.415| 0.543| 1.555| 2.816
500 PPN 0.960| 3.149| 5.687| 0.352| 1.084| 1.989
NPPC 0.942| 3.089| 5.578| 0.346| 1.063| 1.951
1000 PPN 0.734| 2.432| 4.400| 0.231| 0.744| 1.385
NPPC 0.720| 2.385| 4.315| 0.227| 0.730| 1.358

Table 3.5: The table presents the standard deviation in percent ofdttéopio weights
for 100 repeatedly solved portfolio choice problems usingesv set of generated
scenarios for each repetition. The investigation is domeaftow, middle and high
risk/return portfolio using different number of scenarassinput to the optimization
program. The variation of the weight allocated to the castoaet is not displayed
since it turned out to be zero for all investigated cases.

The weight allocation, that is the solution to the portfallwice problem, depends
on the generated scenarios, which are an input of the ogttraiz program. The fol-
lowing study examines how robust the weights are when thienggation procedure
is repeated with a new set of generated scenarios for the feaioe model using the
historical simulation technique. The robustness of théfplio weights is investigated
for both the minimizing the portfolio’s CVaR subject to a lembound on portfolio’s
expected return setting, and the maximizing the portfsl&Xpected return subject to
an upper bound on the portfolio’s CVaR setting. The necgagaver and lower bounds
are determined as follows. Three portfolios are selectami the efficient frontier dis-
played in figure3.6.2 Counting from left to right the third, the ninth and the siehths
portfolio were chosen which correspond to a low, medium dagt hisk/return portfo-
lio. The risk/return value of the portfolio is used as a boimthe respective optimiza-
tion setting. These portfolio choice problems are solve@@times with a new set of
scenarios for each repetition. The standard deviationemights is then investigated
for sets consisting of 250, 500 and 1000 scenarios. Tabldisplays the results of the
investigation, which lead to three conclusions. First gflatger numbers of scenarios
yield more robust weights. Secondly, the maximizing expéceturn setting produces
more stable weights than the minimizing CVaR setting. Thedtbeduction is that
lower risk/return portfolios have more robust weights thagh risk/return portfolios.

As a consequence of the advantages of the maximizing expestian setting over
the minimizing CVaR setting in terms of weight robustnesd eequired number of
iterations to determine a solution, the maximizing expeéctgturn setting is used for
all further investigation. Furthermore, the number of gated scenarios given as an
input to the optimization program is set to 1000 for most & ihvestigations to be
conducted, since it produced stable weights, while reggireasonable computation
time.
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Investigations

4.1 Investigation of the rebalancing strategy on histor-
ical data

This section investigates how well the rebalancing stsapegforms on a set of histor-
ical data. The main focus is on examining the effects of thdidence limit and the
CVaR upper bound on the capital allocation at the rebalgntines and the historical
performance of the strategy.

For the historical tests, a data set of 10 years of weeklyrehtens of the Swedish
government interest rates and the OMXS30 ranging from thie df4April 2000 to the
2nd of April 2010 is chosen. The selected time span includés bp- and downturns
of the underlying of the structured products and the Sweglisiernment interest rates.
The allocation strategy starts with the first investment los 9th of April 2004 and
is rebalanced every 52 weeks, which is approximately one yiée final value of the
strategy is measured on the 2nd of April 2010. At each investitime point, maximiz-
ing the portfolio’s expected return subject to an upper looom the portfolio’s CVaR
measured with respect to a given confidence level is usedtérdime the portfolio
weights. The optimization problem works with 1000 scergrishich are generated
by the historical simulation algorithm based on a stat$tiactor model for the yield
curve and the index. The factor model takes into account & necent four years of
weekly observations. The market is assumed to be frictgsnie these investigations
, i.e. the proportional transaction costs of all assets qualgo zero. The investment
situation at the different rebalancing points is as follosthe first rebalancing point,
which is the initial investment situation, the investor’saith can be allocated to a cash
account, a currently issued PPN and a currently issued NPRCstructured products
have 3 years time to maturity at their date of issue. At argrlegbalancing point, a
new issued PPN and NPPC are available to the investor. Arvieveof the market
conditions and the selected rebalancing points are givégure4.1.1
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Figure 4.1.1: Historical observations of Swedish government interes¢sraand
OMXS30. The rebalancing times and the final evaluation timeeiladicated by the
horizontal dotted lines and the dates on the x-axis.

4.1.1 Historical strategy performance and weight allocatin for var-
ious upper bounds on the portfolio’s CVaR

A portfolio with a high upper bound on CVaR is a more risky istreent compared to
a portfolio with a low CVaR constraint. In a well functionimgarket, an investor, who
takes higher risk, is compensated by greater return patentihis means that in an
economic setting favorable to the risky investment, thdipascomplished should be
higher than the one of a low risk strategy. In an unfavorabtsemic setting, the loss
of a risky investment will though be much higher compared &irategy with lower
risk.

In this investigation an increase in the index level can leaiified as a favorable
economic situation, while a decrease in the index levelesgmts an unfavorable eco-
nomic situation for the investment strategy. Based on theawing presented earlier,
a strategy with a higher CVaR bound should outperform aegiyatvith a lower CVaR
bound when the index experiences an upturn. In the case oivatdin, should the
performance of a strategy with a lower CVaR bound be supéoier strategy with a
higher CVaR bound.
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Figure 4.1.2: Historical portfolio value development for maximizing t&pected port-
folio return over the next rebalancing period with subjecah upper bound on port-
folio’s CVaR measure at 0.05 confidence level. The figureldygpthe four strategies’
portfolio value at the rebalancing times and at the finaluatbn time with different
upper CvaR bounds compared to a direct investment in therlymalindex.

Figure 4.1.2 displays the realized developments of the portfolio valfeesfour
investment strategies using different CVaR bounds. CVaRdasured over the next
rebalancing period at the 0.05 confidence level. On the aies e portfolios with
a higher CVaR bound experience a much larger increase ire v@wmpared to the
portfolios with a lower CVaR bound during the upturn of thdém from 2005 to 2007.
On the other side, the high CVaR bound portfolios decreasadae in value compared
to the low CVaR bound portfolios during the downturn betwesmalancing points of
2007 and 2009. The result is in line with how portfolios witlffetent CVaR bounds
should behave in various economic situations.

To analyze the performance in more detail, one needs to eeathe expected
returns and the CVaR of the composed portfolios, which apgehn figure4.1.3 and
their weight allocations, which are displayed in figufes.1to A.1.4in the appendix.
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Figure 4.1.3: The expected return and CVaR of the composed portfoliogjudiiifer-
ent upper bounds on the portfolio's CVaR. The confidencd fevall CVaR measure-
ments is set to be 0.05.

At the first rebalancing point all portfolios have almost ieglent expected return
and CVaR. This is due to the fact, that the PPN issued at thedipalancing time is
the only asset available at that time point with a positiveested return over the next
rebalancing period. Any portfolio will have a CVaR less tlmrequal to the CVaR of
the PPN. The resulting portfolio values at the next time pane very close, because
the capital allocations are nearly equal. A similar situatppears at rebalancing time
6, where again the newly issued NPPC has a negative expetted pver the com-
ing rebalancing period. At the other rebalancing points i bhe newly issued PPN
and NPPC have positive expected returns. All portfolioseth their respective up-
per CVaR bound at these time points. This means that onedlooly compare the
portfolio value developments for the years 2006 to 2009 iarég.1.2to investigate
the impact of the upper CVaR bound. Examining the capitakalion diagrams, one
can recognize that for portfolios with higher CVaR boundi& proportion of wealth
invested in NPPCs is greater than for portfolios with low&aR bounds. The rebal-
ancing behavior seems to be unaffected of the CVaR boundn@tire upturn of the
index (rebalancing times 2, 3 and 4), all existing positiaressold at each rebalancing
point and the complete wealth is reinvested in newly isstieattsired products. After
the first downturn (rebalancing time 5), the structured $tweents issued at rebalanc-
ing time 4 partially remain in the portfolio and the valuee®ed for selling fractions
of formerly purchased structured products is invested iN BPAn important observa-
tion that this historical test points out is, that capitdbehted to the NPPCs increases
more and more, as the index experiences an upturn, and desr@gain when the index
takes a downturn. Since the investor’s risk conception i Kged for each rebalanc-
ing strategy, one can conclude that the risk charactesisfithe assets are influenced
by trends in the time series of the risk factors.
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4.1.2 Historical strategy performance and weight allocatyn for var-
ious confidence levels at which the portfolio’s CVaR is mea-
sured

The previous investigation is repeated, but instead of pipeeubound of the portfolio’s
CVaR is the confidence level for the CVaR measurements altein The upper bound
of the portfolio’s CVaR is held constant at 0.10. If two potibs have the same upper
bound on CVaR, then the portfolio for which CVaR is measuteailagher confidence
level can be identified as the risky one. Figdi&.4shows that the portfolios with a
higher confidence level outperform the ones with a lower demite level during the
upturn of the index, and that the portfolios with a lower cdefice level give better
results than the portfolios with a higher confidence leveirduthe downturn of the
index.

portfolio value

—F— index

— © — confidence level 0.01
* - confidence level 0.05

0.6} —x— - confidence level 0.1

—f8— confidence level 0.2

0-4 L L L L L
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Figure 4.1.4: Historical portfolio value development for maximizing eqbed portfo-
lio return of the next rebalancing period with subject to aper bound on the portfo-
lio’s CvaR equal 0.10. The figure displays the portfolio \&aat the rebalancing times
and at the final evaluation time of four strategies with défe confidence levels for
measuring CvVaR compared to a direct investment in the uyidgrindex.
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Figure 4.1.5: The expected return and CVaR of the composed portfoliogubfferent
confidence levels for the CVaR measurements. The upper baupdrtfolio’s CvaR
is equal to 0.10 for all portfolios.

Figure 4.1.5shows the expected return and CVaR of the portfolios. Duéeo t
limited availability of investment alternatives with a [itde expected return at rebal-
ancing times 1 and 6, are the expected returns of the partfeliy similar for those
periods. For the other rebalancing times does a portfolibh wiCVaR measured on
a higher confidence level reach a higher expected return adgo one for which
CVaR is measured on a lower confidence level. One can notitethib differences
in expected return of the portfolios significantly incredisen rebalancing time 2 to
4. At rebalancing time 4 the CVaR for the portfolio with coficte level 0.2 is even
negative. The weight allocation diagrams are not displayekde report, because they
do not yield any new information. As mentioned earlier, de thore risky portfo-
lios, which are the ones with higher confidence level, havarger part of the wealth
allocated to NPPCs.

4.1.3 Conclusions from the historical tests

Both the confidence level for CVaR measurements and the uyperd on the port-
folio's CVaR successfully control the riskiness of the istigated portfolios, as the
tests using historical data indicates. A low risk portfalimes not profit from favorable
economic developments at the same degree as a high risklporiflowever, the port-
folio value of a low risk portfolio does not decrease as riypéc the one of a high risk
portfolio in unfavorable economic situations.

The investigation revealed that historical trends havergel@ffect on evaluating
the riskiness of an asset using the formulated scenariaggoe approach. When the
index has a large positive trend, the riskiness of both thE®GIBnd the option part of
the PPN reduces significantly, because for most scenagasathoption will be in-the-
money at the next rebalancing time. This results in a higkpeeted return of these
assets. Historical trends in the interest rates have alsffect on the riskiness and the
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expected return of the structured products.

It is important to be aware of the historical trends’ influeran the generation
of future return scenarios, because one can not just expsothto repeat itself. A
methodology of controlling trends in the risk factor chaspas to be established. The
next section presents an approach to this problem.

One should notice that the realized portfolio values andatbight allocations of
the rebalancing strategy also depend on the chosen setadéneing dates. However,
the observations and conclusions made from the investigatof rebalancing dates
were also established for other sets of rebalancing dates.

4.2 The investor’s view as a second source of informa-
tion

The section adds a new source of information to the portfdiection process. The
previous section concluded that the historical trends efitk factor changes create a
strong bias in the scenario generation. To control thic&ffee investor can specify his
own view on the expected future development of the risk factbhe present approach
combines both the information from the historical data, #Hreinvestor’s opinion to
generate scenarios that are less influenced by historggaddrand more representative
with respect to the investor’s view on the expected futureetimments of the risk
factors

4.2.1 Formulation of a subjective view

Up to this point, all information entering the model for silating future developments
of the yield curve and the index is solely based on histodbakervations. One conse-
guence of this modeling approach is that the generated sosmaatch the historical
data input closely in terms of the mean and the standardtilaviaf each return series.
In this context a return series refers to a series of rislofadftanges. The centered sim-
ulated returns are realizations of a random vector, thazbéesmean and a covariance
matrix with ones on the main diagonal. These centered retamnmthen rescaled by the
historical mean and standard deviation. As a result of thedflarge numbers does
the sample mean and sample standard deviation of the seduletiurn series converge
to the sample mean and sample standard deviation of theibadteeturn series.

Such a behavior is undesirable since it implies that if arreseries had a positive
mean in the past, it will have a positive mean in the futureéfhumber of scenarios is
sufficiently large. Since the weights of the portfolio opitzation should be robust, the
number of generated scenarios is large so that there is/feargideviation between the
mean and the standard deviation of the simulated returassand the historical return
series. The scenarios are only representative if the markapected to have a similar
behavior as in the past.

Market climates change though and there is no reason tosbéhiat a return series
will experience a positive trend in the future because ithadsitive trend in the past.
Since historical data gives no reliable information abdwt direction of the market
developments, other sources of information have to be USad.way to do this, is to
simply ask the investor about his subjective belief on theeeted future developments
of the return series. If an investor expects the index to gabw high rate, he should
probably allocate his capital in assets, that profit frora fltienario. It is only rational to
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make investment decisions based on ones own subjectiw/bsliA price of an asset
reflects the consensus forecast of its future performantehimiforecast can differ
from ones own opinion. This difference makes an asset eitttierctive or unattractive
for an investor.

The investor’s view as a stochastic trend

The investor’s view on the return series is expressed byahdam variableuiew ~
N (fliew, Q). The expected returns the investor presumes are specifi imector
[view and the uncertainty in the view is formulatedn= diag{s11,2, - - -, Sin} Where
si is the variance in thé&h view. The views are assumed to be independent of each
other. The new rescaling equation reads

Pro= A(fview + &view) + (I — A) Hdata+ S:iatarT
where: &view ~ N (0,Q)

N =diag{A1,A2,...,An} with A; € [0,1]

Udata IS the sample mean vector of the historical return seriesSagdis a diagonal
matrix with the sample standard deviation of the historredilirn series on the main
diagonal. A; is the weight the investor puts on thtl view. If A; is 0, the investor’s
opinion is disregarded and the incorporated informatiome® only from historical
data. The case whehis the zero matrix is referred to as an uninformed view; lis
1 the historical mean is not taken into account and the tresdlely estimated on the
investor’s view. It might be a difficult task for an investoréxpress the uncertainty of
his view in terms of variance. But if he can specify an undetyanterval for each of
his views, then the variance can be determined from it. Thefiong example clarifies
the idea.

The investor'sth view indicates that the index will have a mean weekly metnir
r = 0.20% which is around 11% annual return. He is uncertain abisubhecast but
he thinks that with 80% chance the mean weekly return wilbkéwveenr, = 0.18%
andry = 0.22%. For this two-sided confidence interval the variancéefiew on the
index is

_ 2
r.—r
<¢ 1( conlzence evej

where®~1(x) is the inverse of a standard normal distribution. For thianeple the
variance would be 000244,

To see how the choice ok, flyiew andQ influences the simulation of the return
series, the mean and covariance af€ determined.

E [FT} = Afiew+ (1= i) Hdata
COV[FT} = AZCOV[SvieW] + StatdCOV [rT] Stata

The new mean of the return series is a convex combinatioregih, andpgata Only
the elements on the main diagonal of the historical covaeianatrixsjataCov[rT} Sata
are going to be changed. The tei¥s; is added to théth diagonal element. This
increases the variance of each return series and decréasesrtelation between the
different return series. An investor, who puts a lot of weigh his uncertain subjective
view, actually implies that the future market movementd i more rapid than in
the past and that the return series will have a lower dep@&eden each other. The
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investor’s subjective view and its effect are very diffaresince the way in which the
two sources of information are combined is not appropriate.

Historical data and the investor’s view combined by using stistical distance

A different approach has to be formulated. The informatiamf the investor’s view
and the historical observation should be combined in sucayativat the new expected
return vector differs as little as possible from the one st by either source. The
statistical distance is used as a distance measure to alisbriips objective. This
approach is also used with respect to asset returns in trek-Bitterman model. A
detailed description of this model can be foundankert (2006.

HUdatalS the estimate of the expected future developments sugbgtthe historical
data, which has the covariance matﬁi wherem s the number of observations and
> is the covariance matrix of the observed returns. The iovestn formulate either
absolute or relative views on the expected developmentseafdturn series. An abso-
lute view for example is, that the expected weekly log retfriie index is ®20%, and
a relative view is that the weekly relative change in the @8ry®wedish government
interest rate is 0.002 higher than the weekly relative changhe 10-year Swedish
government interest rate. To express thes@ws ak x n matrix P is introduced with
only three different elements, that arel,0 and 1. An absolute view has only one
positive element in the row, which is situated at the respecblumn entry. A relative
view has a zero row sum. The risk factors that are compareel ddvand -1 entry at
their representative entries. The formulation ofkaliews reads

PU = g+ &view

g is ak dimensional vector that holds the investor's views apgy is a randomk
dimensional vector expressing the uncertainty of the viéW views are assumed to
be independent and therefore the covariance matigy&f is the diagonak x k matrix
Q. Let pucomp denote the estimate of the future expected returns, thestétistical
distances are defined as

(PUcomb— Q)T Q! (PUcomb— Q)
(ucomb_ I-ldata)T mz_l (IJcomb_ udata)

The weight put on the subjective viewAse (0,1). Notice thatA is the weight for all
Views. Ueomb IS then the solution to the following optimization problem

Heomb = argmin{A (PLicomb— Q)T Q! (PUcomb— Q) +
u
+(1=2A) (Hcomb— I'ldata)T mz ! (Mcomb— Hdata) }
= argmin{(Ptcomb— Q)T Q! (Plcomb— Q) +
u

1-A
+ (HMcomb— Udata)T Tmz ! (Mcomb— Mdata) }

To simplify notation set 1 = 1;—)‘m. This optimization problem can be classified as
an unconstrained quadratic optimization program. TheioesQ ! andmz—! are
positive semidefinite as a result ©f being a diagonal matrix and being a covari-
ance matrix, which both are positive semidefinite matriCEse inverse of a positive
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semidefinite matrix is also a semidefinite matrix. So botligteal distances are con-
vex functions and a non-negative weighted sum of convextimmds also a convex
function. Since the function to be minimized is convex, amgal optimum is also a
global optimum. Setting the first derivative with respectutequal to zero yields the
solution to the problem.

-1
Heomo=(PTQ P+ (15) ) (PTQ 2q+ (1) pea)
The centered simulated returns are then rescaled psig and Syata

oT T
" = Hcomb+ Sdatal

This formulation has the advantage that the covariancexiapreserved and only the
estimation of the future trends uses both sources of infoboma

4.2.2 Rebalancing problem with subjective view

While in the previous section the only source of informatithie historical data, in this
section the investor’s view enters as a second source afiafiion. Both information
sources are combined in the way described in sedtidrito get a new estimate of the
expected development in the underlying return series. Dk ig to investigate how
the allocation among the assets changes dependiggloandQ.

The analysis is done for a single absolute view on the exgdotgreturn of the
OMXS30 in two steps. Firsk andQ are kept fixed and is modified. In the second
partq is constant and andQ are varied. The investment situation investigated and
all parameter settings are equivalent to sec8d® The investor is maximizing the
expected return of the portfolio over the next year keepihgdne year-CVaR of the
portfolio below 20% of his initial wealth. All computatiorere performed with the
same random stream to eliminate any effects due to randdatieas of the simulation
process.

Effects of varying q

To analyze the impact af on the estimation of the expected chandess set to be &
and the uncertainty in the view is chosen so that it is equéhechistorical variance
of the log returns of the OMXS30. The historical mean weeklyim of the index is
0.0018. The parametertakes on values betweerB and+3 times the historical mean.

The effect of a single view on the expected log return of thaeinis shown in
figure4.2.1 The expected relative changes of the interest rates anekfiected log
return of the index experience a linear dependence on tremederq, in the case
of a single absolute view on the expected log return of thexndrhe effect on the
expected interest rate changes is an interesting obsamvalhe impact is dependent
on the covariance between the respective interest ratetenthdex. The 3 month
interest rate is the rate with the smallest positive covaga The slope of the graph is
rather flat. The 5 year rate has the largest covariance anefthe the slope is rather
steep.
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Figure 4.2.1: The effect of a single absolute view on the expected log metdirthe
OMXS30. The upper graph shows the dependence of the exped#gitte changes in
the interest rates am The 3M rate is the interest rate with the smallest covagamith
the index and the 5Y rate is the one with the largest covagiavith the index. The
lower graph shows how the expected return of the index cleadegeending on q
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Figure 4.2.2: The changes in portfolio weights depending on a single stitsgeabso-
lute viewq of the investor on the expected log return of the OMXS30, caneg to the
no-view situation of sectioB.6
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The resulting impact on the weight allocation is displayedigure4.2.2The in-
vestor holds no cash and the weight put into the PPN and th&€NgPdRependent on the
subjective view. In the original no-view case, 83% of the initial wealth is invested in
the PPN and 199% are allocated to the NPPC. The remainirZ82 of the funds are
used to pay for the transaction costs. When the investor kdewrest presumption on
the expected future performance of the index, the wealtesited in the certificate is
reduced to zero and instead all funds are allocated to the RN the investor has a
strong positive view on the market’s expected future dgualent, the NPPC’s weight
in the portfolio is increased by more than 3%. This paramsttey indicates a strong
dependence of the weight allocation on the investor’s stibgview.

Effects of varying A and Q

The investor’s view on the expected return of the index igfixeinvestigate the effects
of varyingA andQ. The OMXS30 has a historical mean annual log return.20%,
estimated on four years of weekly observations prior to g Df May 2006. The
investor believes the index will have an expected annuakébgrn of 4% above the
historical mean annual log return. This corresponds$+00.0025 andugata= 0.0018.
In the following analysig\ varies in the interval between 0 and 1, where 0 corresponds
to the no-view situation. Equatiod.@.]) is used to specify different levels of uncer-
tainty. The confidence level for all views is set to h® @ndr = q. To create views
with different uncertaintyr, is varied. The case, where is close tor, corresponds
to a certain view, while the case, wheteis much smaller than, corresponds to an
investor, who is uncertain in his view. Figude2.3shows how the expected values
for three selected return series change depending end Q. First of all, one can
notice that a formulation of a view on the expected index ktgnn also has an impact
on the expectation of relative changes for the interessyate already observed when
varyingA. This is a consequence of the statistical distance appyedtbh takes into
account the covariance between the random variables. Hpe g all surfaces is very
similar, but the slopes differ a lot. 2 is small, the impact of the subjective view on
Heombo IS large. WhemQ is large, the effect of the investor’s view on the expectatio
of the changes in the risk factors is rather small, comparékle no-view situation. A
A close to one puts more weight on the subjective view, whilecdose to zero, puts
more weight on the historical mean. The slope is largesténglaph concerning the
OMXS30. Comparing the graphs of the selected interest reitbsone another leads
to the conclusion, that the slope of the 3 month rate surfacather flat compared to
the 5 year surface. This is due to the greater covarianceceetthe relative changes
in the 5 year government interest rate and the log returnseahidex, causing a bigger
impact of the subjective view formulated on the index on this.

Figure4.2.4shows the changes in weight allocation. The surface for aasbunt
is not presented since the investor does not allocate ardsfinto this asset in any
situation. Since thqis greater thapigats the more certain or the more weight is put on
the the investor’s view, the more weight is allocated from FPN towards the NPPC.
If Qis small, the effect of varying is almost non-existing. The same observation is
made for varyindQ whenA is chosen close to 1. Therefore one cannot separate these
two parameters when specifying a single subjective viewwél@r, when defining
several viewsQ can assist in adjusting the uncertainty in the differentvgie The
more uncertain or the less weight is put on the investorwMiee smaller the changes
are in the portfolio weights compared to the no-view sitrati
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Figure 4.2.3: The figure displays the effects of a single absolute view tdated on
the expected log return of the OMXS30 wiih= 0.0025and varyingh andQ on the
combined view of the expected weekly relative change in theo8th government in-
terest rate (upper graph), the expected weekly relativegda the 5 year government
interest rate (middle graph) and the expected weekly lagmstof the OMXS30 (lower
graph). The historical mean relative change of the 3 monieigunent interest rate is
0.9968 and of the 5 year government interest rate is 0.9984. historical mean log
return of the OMXS30 is 0.0018

56



4.2. THE INVESTOR’S VIEW AS A SECOND SOURCE OF INFORMATION

x 10

change in weight

(a) weight changes in the PPN; In the no-view case, the iavedibcates 826% of his wealth

into the PPN
x 107
10
- 8
e
2
g
c 6
(]
o
S
< 4
o
2

(b) weight changes in the NPPC; In the no-view case, the favafocates 1816% of his wealth
into the NPPC

Figure 4.2.4: The optimal portfolio weights are compared to the no-vietuation
from section3.6. The investor has an absolute view on the expected log refire
index withq = 0.0025 A andQ take various values. For all situations, the resulting

position in the cash account is equal to zero and thereferedabh account surface is
not displayed.

57



CHAPTER 4. INVESTIGATIONS

4.2.3 Effect of the subjective view on the portfolio performace

The goal of this part is to illustrate how taking into accoargubjective view can en-
hance the performance of the rebalancing strategy. If astov has a good guess about
what is going to happen in the future, he should hold a padatfthat takes advantage
of this superior information. Since a rational investor Vebonly allocate his wealth in
assets, that according to his option should give posititiame the performance of the
portfolio should increase when the subjective view becomese accurate.

To test if this common sense hypothesis is observable, the sxperiment as in
section4.1is repeated with a subjective view and a fixed specificatiothefCVaR
upper bound equal to 0.20 and a 0.05 confidence level for treRGWeasurements.
To get a good view, a synthetic absolute view on the expeetfetive changes of each
interest rate and the expected log return of the index isdiuiced. The view is simply
the actual relative change for the interest rates and régplgcthe actual log return
for the OMXS30. The quality of the views is controlled thrbutpe covariance matrix
of the viewsQ. The variance of each view is calculated, as previously ritesit, by
using confidence intervals. The confidence level for all amrfce intervals used in
this section is ®. Since the confidence level is fixed, the lower confidencd sn
used to alter the variance of each view. To refer to the diffeiqualities of views
the term uncertainty level is used. A view with uncertairgydlv has the following
specifications. The differencg —r is for a view on the expected relative change of an
interest rate equal tev|q; — 1| whereg; is the expected weekly relative change in the
interest rate according to the subjective view. For a viewhenexpected log return of
the index the difference. —r is equal tmv|qj | whereq; is the expected weekly log
return of the index according to the subjective view. Theoedor the different settings
for the interest rates and the index is, that the uncertamgach view should be of
approximately same order of magnitude. This correspondaying, that the investor
has equally good information on interest rates and the OMIXS&ce the uncertainty
of the view is a multiplicative ofj, theg; have to be scaled. Tt for interest rates
lies close to one while the for the index is close to zero. Subtracting one from the
view on the expected relative change of the interest ratgbrll uncertainties close to
each other. Notice that defining the view in this way impligsit the subjective view
is more uncertain on random variables that have a large ehamgl less uncertain on
random variables that only experience a small change. Lamdesmall refers here to
the absolute change. To scale both covariance matriceptoxamately equal order
of magnitudei is chosen to be.99.

Figure4.2.5illustrates howicomnoiS influenced by the uncertainty in the subjective
view. To keep the figure clear, only two elementsigfnnofor two different uncertainty
levels: 0.1 and 1 are displayed. When the uncertainty leveMisicomno iS close to
g- As the uncertainty level for the subjective view incregsgsnois adjusted towards
Hdata It is also observable that a larggg introduces more uncertainty. |§| is small
HeombofOr uncertainty level 0.1 is very close ¢p but when|q| is largeicomnoisS Not as
much adjusted towardsgiven the same uncertainty level.
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Figure 4.2.6: Development of portfolio value for the different strateg@epending on
the uncertainty level in the synthetic subjective view. Thesen confidence level for
the CvaR measurements is 0.05 and the upper bound on thelfmsri€VaR is 0.20
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The weight allocation diagrams for the different uncettalavels are displayed on
pages82 to 83 and the resulting portfolio values are illustrated in figdt2.6 First
of all, one can notice that a good view enhances the perfarenahthe strategy. In
the no-view situation, the portfolio value at the final ewlan time for a strategy
with the same confidence level and upper CVaR bound is arotintinies the initial
value. When using the synthetic view with the lowest uncetydievel, the portfolio
value after an investment period of six years reaches alhbdimes the initial value.
The strategy with the uncertainty level 0.01 has only onéopewith a decrease in
portfolio value. This is the period from 2004 to 2005. Theréese is due to a sharp
decline in volatility of the index, which lowers the valuetbe option so dramatically
that even the event of the option going into the money carewiver the loss in the
option value. One can notice that the performance relatessa proportional to the
uncertainty level of the view. Since the view is the actualife outcome this result
is in line with common sense reasoning. When examining figlr2sl to A.2.4, it is
observable that the weight allocation is highly dependarthe subjective view. Since
the elements oficomnoare used as the mean of the relative changes and the loggeturn
of the risk factors, the expected return and the riskinessi@fsset over the next period
change a lot, depending on this parameter. At the first thebalancing times the
weight allocations are rather similar. The low uncertalatel portfolios have a greater
exposure to the index development through purchasing a®QN1, while the high
uncertainty portfolios place the entire funds in the PPN tlredalancing times 2 and 3
the chosen assets are the same for all portfolios, but dgaiow uncertainty portfolios
have more exposure to the index. Rebalancing times 4 and e dhe significant
differences in the performance of the portfolios. The moitfwith the most accurate
subjective view sells all risky positions and thereforairs the portfolio value, while
all other portfolios decrease their value during this peminie to investing in a bear
market. The greater the uncertainty in the synthetic viewhis greater is the exposure
to the index in these two periods. This is caused by the giesitiye historical mean
of the log returns of the index, which introduces a large fp@sbias in the scenario
generation. At rebalancing time 6 the portfolio weightssinsilar again.

One should keep in mind that a PPN only has a lower bound equhbktissuing
price at time of maturity. The intermediate values are ddpaton both the develop-
ment of the interest rates and the index.

It became clear that the better the quality of the subjeatiee, the greater the
performance enhancement. Furthermore, it is interestngeé how dependent the
performance increase is on the number of absolute views.wElght allocation and
realized performance is determined of a selection of difienumbers of views where
all views have the uncertainty level 0.01. The first settilag kiews on all interest
rates and the index. In the second setting the number of viewsduced to two,
one on the 12 month interest rate and one on the index. The $kiting has only
a view on the index and the fourth setting has only a view onlthenonth interest
rate. Figuret.2.7shows the portfolio values for the different view settingke weight
allocation diagrams can be found on pagéso 85in the appendix.
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Figure 4.2.7: Development of portfolio value for the different selectiohsynthetic

Subjective view settings with uncertainty level 0.01. Thesen confidence level for
the CvVaR measurements is 0.05 and the upper bound on thelfps'tCVaR is 0.20

The weight distribution among the different assets and émfopmance of the strat-
egy hardly changes for the first three settings. A big difieezoccurs when the view
on the index is removed. The strategy with only a view on thentidth interest rate
has a much weaker performance than the other view settingstilh outperforms the
no-view setting. This experiment indicates that the viewlaexpected log return of
the index seems to be most important for the performancegtha good view on the
expected relative changes of the interest rates can add etnaeenhancement on the
performance of the strategy.

4.2.4 Conclusions on the effects of the investor’s subjecé view

The investor’s subjective view reduces the effect of histdrtrends on the scenario
generation and increases the representativeness of thargseaccording to the in-
vestor’s opinion on the future behavior of the risk factofthe modified approach
of generating scenarios incorporates information front thastorical data and the in-
vestor’'s view on the expected changes in the risk factors the next rebalancing
period.

The historical tests indicated, that an accurate subgatigw can enhance the
performance of the rebalancing strategy. The view on thexndrned out to add most
enhancement to the portfolio in the investigated situation

It has to be mentioned that embedding a subjective view rtonaatically leads to
better investment decisions. A view that badly describesttpected future behavior
of the risk factors, leads to non-representative scenavithsrespect to the unknown
future market developments. This causes a wrong evaluafitime assets’ riskiness
and reward potential, which will then result into unproflamvestment decisions.

The conducted investigation only indicates that the inmesit decisions made
using the presented approach can take advantage of infonmathout the expected
changes of the risk factors available to the investor.

Moreover, one can notice that all investigated rebalansingtegies have large
turnover. In the actual market situation, this would cauig fransaction costs and
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reduce the portfolio performance. The next section takiessiocount transaction costs
in the investment decision.

4.3 Impact of transaction costs on the rebalancing strat-
egy

Transaction costs are an important factor in portfolio feheing. This section investi-
gates the impact of the transaction costs on the rebalabeimgvior. The historical test
with a synthetic view on the expected risk factor changesésidor this investigation.
Both the effects of transaction costs for buying and forirsglstructured products are
examined. The historical test has the same setup as in &2 CVaR is mea-
sured at the 0.05 confidence level and the upper bound of tiifelgws CVaR is 0.20.
The synthetic view used in this part has an uncertainty lef/811 and is composed of
absolute views on all risk factors.

4.3.1 Transaction costs in the primary market

When an investor purchases a structured product, he us@altplpay some brokerage
commission. Regarding structured products on the Swedisket) the commission is
a proportion of the invested capital, which varies betwe¥#ntd 3% depending on the
product type and the issuer. Tal#lel in the appendiA.3 presents the brokerage com-
missions for a selection of structured products from déffeiissuers. In contrast to the
investigation from sectiod.2.3 the assumption of a frictionless market is abandoned,
and the effects of transaction costs for buying structungdstments are examined on
the performance of the strategy, the expected return anG¥a® of the optimal port-
folios and the weight allocation behavior. The choice ofgmmional buying cost levels
are 0%, 1%, 2% and 3%. The actual portfolio value developraeder the different
conditions is shown in figuré.3.1
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Figure 4.3.1: Historical portfolio value development in the presenceasftdor buying
structured products. The Portfolio CVaR is measured at 108 €onfidence level and

the upper CVaR bound for the portfolios is 0.20. All portéaiuse the synthetic view
on all risk factors with an uncertainty level of 0.1
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The transaction costs imposed for purchasing structuredugts have a signifi-
cant impact on the achieved portfolio values during thestwent period from 2004
to 2010. The portfolio value in 2010 in the case of 1% buyingtd® 7.3% less than
in the frictionless case. For a buying cost of 2% and 3%, thed fiortfolio values are
15.2% respectively 19.3% less compared to the no trangaotists setting. Tabla.2
in the appendiXA.3 reveals the expected return and the CVaR of the optimal gortf
lios. At all rebalancing points a higher buying cost resirita lower expected return
portfolio, while the portfolios’ CVaR are equal. The fifthoaancing time is a little bit
exceptional, since the CVaR constraint is not active. Thidue to the negative view
on the index, which causes the expected returns of the neslyed products to be ei-
ther very small or negative. Examining the weight allocatitagrams for the different
transaction costs settings, that are displayed in figuBel to A.3.4 in appendixA.3
concludes two main effects. First of all, the cost of buyitg&ured products de-
creases the attractiveness of the assets, that are nadédlcio the current portfolio.
The transaction costs shift the return distribution of tigividual asset to the left. This
decreases the expected return of the asset and increasg¥aReof the asset. There-
fore, some structured products do not enter the portfoliolanger than compare to
the frictionless case. An example of such an asset is PPN\hg aeginning of the fifth
rebalancing period (S5), which is in the presence of traimacost substituted for
cash. Secondly, transaction costs reduce the turnoveeipdftfolio. Assets, that are
held for only one year in the frictionless market, are heldtfm years, such as PPN 1
and PPN 3 in the 2% buying cost case, or even until their ntgitas for example PPN
4 in the case of 3% buying cost, when a cost of buying strudtpreducts is imposed.
In other words, transaction costs create some kind of athiat a newly issued struc-
tured investment has to overcome to be included in the gartfdhe higher the cost
of buying structured products is the higher the barrier been

4.3.2 Transaction costs in the secondary market

Structured investments can be sold prior to their matufikys can either be conducted
on an exchange for listed structured product or in form of @€ @ade, where often
the issuer acts as the market maker. Since the secondargtgnkot very liquid
compared to trading large cap stocks on an exchange, ignbiihask spread would
be unrealistic. The previous study is repeated with a fixegbgutional cost of 2%
for buying structured products and in addition a cost folirsgktructured investments
prior to its maturity is introduced. Figurk3.2displays the historical portfolio value
development for different levels of transaction costs feltisg structured products
prior to their maturity.
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Figure 4.3.2: Historical portfolio value development in the presencerahsaction
costs. The proportional cost of buying structured invesiisiés fixed to b&% for all
cases. The proportional cost for selling structured prtgiscvaried betwee@% and
3%. The portfolio CVaR is measured at the 0.05 confidence lawélthe upper CVaR
bound for the portfolios is 0.20. All portfolios use the dyetic view on all risk factors
with an uncertainty level of 0.1

In the case of 1% selling cost, the portfolio value in 2010.898 less compared
to the situation with no selling cost. Selling costs of 2% &f6l give portfolio values
in 2010, that are 6.5 % repectively 9.5 % below the zero seltiost setting. The ef-
fect of the selling cost on the portfolio value developmemat as dramatic as for the
buying cost. This might be due to the fact, that one can estépeost by holding the
structured investment until its maturity. However, thedstigation leads to the con-
clusion, that the portfolio performance decreases whehenigelling cost is imposed.
TableA.3 in the appendiA.3 shows that also the expected return of the portfolios is
decreased, starting from the second rebalancing time. Wafolio weights are ad-
justed, the working capital is reduced and therefore patti@®expected return, that is
computed on the basis of portfolio value before adjustmiat® taken place, is used
to recover the transaction costs. When the transaction aosiacreased, a larger part
of the expected return is needed to replace the loss in tdpisto market friction.

The weight allocation diagrams, presented in figé&s5to A.3.8in appendixA.3
lead to two observations. First of all, the selling costadtices some kind of barrier
for an asset to leave the portfolio. This can be seen in th@foig case. PPN 3 is sold
at the end of the fourth period and the gained capital is placehe cash account in
the case of no selling cost. This reallocation is triggengdhfe small negative return
of the PPN 3 over the next period. In the presence of sellisgioathe market, it is a
better option to hold an asset with a negative return smeidber the proportional cost
of selling it. This is exactly what this example shows, sintall cases with selling
cost the PPN 3 remains in the portfolio after the fourth rebeing time. Secondly, one
can observe that the holding period of the structured prtsdncreases with increasing
selling cost. In case of 2% buying cost and 0% selling cosstnatured investment is
held until its maturity. When selling costs are increasea, $tvuctured products (PPN
3 and PPN 4) remain in the portfolio until they reach their umiay.
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4.3.3 Conclusions on the impact of transaction costs

Transaction costs have a significant influence on the rebialgbehavior. The turnover
in the portfolio decreases when the frictionless markatmgsion is abandoned. Newly
offered structured products need to outperform the ondaded in the portfolio no-
tably to make up for the transaction costs, that have to begain the investigated
setting, transaction costs can decrease the achievedlpoviilues over an investment
period of six years by up to 23.2%.

The historical tests reveal that, in the presence of trdimsacost, structured prod-
ucts are also sold before they have reached their maturitytereceived cash flow is
reinvested in the newly issued structured investments.

4.4 Effects of credit risk on portfolio optimization with
structured products

This section introduces credit risk that is an importark fé&tor that needs to be con-
sidered when investing in structured products. Most stinect investments are traded
OTC and therefore carry credit risk. If the issuer of a stied product defaults,
the complete value might not be recovered and in the wors thaes contract might
be worthless. In recent years credit risk has gained a lot@gnition in the finan-
cial world. Especially since the collapse of Lehman Brogtraard three major Icelandic
banks, itis confirmed that financial institutions can filelfankruptcy and in the course
of this, default their outstanding payments. This sectnlitlined as follows. First
credit risk is implemented in the pricing of the assets anth@scenario generation.
Thereafter the effects of credit risk on the portfolio wegghre investigated. The sec-
tion closes with conclusions of the effect of credit risk partfolio optimization with
structured products.

4.4.1 Modeling credit risk

Credit risk is defined as the risk of the value of an asset ortigho changing due to
unexpected changes in the credit quality of the counter@artnot only default of the
counterpart has an effect on the portfolio value, but alshamge in credit rating may
influence the value of an asset or of a portfolio. The first gteprder to incorporate
credit risk in the investment situation is to determine tae price of a PPN and a
NPPC, taking into account the possibility of the contrasties’s default.

Pricing defaultable structured products

Previously in this study, the pricing of structured produist done using the Black

& Scholes model under the assumption, that the issuer ofuatsted investment is
always able to fulfill its obligations. This assumption issnabandoned. The random
time of default is denoted. At this time point, the issuer can no longer meet its
obligations. If this situation occurs, the owner of the staned products is assumed

to be compensated by a fraction of the structured produely®fb at maturity. This
fraction, denote® € [0, 1], is an exogenous, fixed parameter and known as the recovery
rate of the entity. The credit default event is assumed tandepgendent of all other
economic quantities. The reduced-form approach is usestritdng the event of an
entity defaulting by the first jump of a Poisson process. Tiiglel is summarized in
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section2.4.1 More information on credit risk models can be foundvicNeil et al.
(2002 or Ammann (2001

The value of a structured product at timegiven that default of the issuer has not
occurred prior to time, is the discounted expected payoff at maturity in the caae th
the issuer survives up to the asset’s maturity plus the digteal expected compensation
the holder receives in the case of default during the lifetofthe asset. Under the risk-
neutral measure this can be expressed as

1{r>t}nD(t) = 1{r>t}Et [1{T>T}P(th)7T(T) +1{T§T}P(t7T)R7T(T)]
where:
m(t) price of a defaultable structured product at time
mi(t) price of a default-free structured product at titne
P(t,s) price of a default-free zero-coupon bond

with face value 1 and maturityat timet

Using the mutually independence of the default event, therast rate and the price
of the underlying, and the fact thatt) = P(t, T)E [1(T)] andQ(t,T) = E; [1(7-71}]
gives, that the price at timeof a defaultable structured investment with matuiity
under credit risk, given that default has not occurred gndimet is

Lrogy T (1) = Lirogy (RTI() + QL T) (1~ R) (L))

The price of a structured product is the sum of the value ofcthen, given that de-
fault has occurred prior to maturity, and the expected auithit cash flow received in
case of the issuer meeting its obligatioAsnimann, 2001 To be able to price a de-
faultable structured investment issued by a specific eritg needs to determine the
survival probability of the issue®(t, T) givenR. The survival probability under the
risk-neutral measure can be retrieved using market pritesrporate bonds or CDS
rates. Sectio2.4.3illustrates the procedure using CDS rates under the asgunmgit
a piecewise linear hazard rate. This approach is used fanvastigations concerning
credit risk. Since the value of the defaultable structuremtipct is non-negative, the
owner of it bears the credit risk. He should be compensateddyer price for bearing
more risk. So far the price of a defaultable structured itnaesit is determined under
the condition that default of the issuer has not yet occurfBabough if the counter-
party has defaulted, the value of the claim is the recovey times the value of the
default-free claim. Both cases can be summarized as follows

(R+Qt.T)(L—R)mt) if 1>t
”D(t):{ Rmt) if 1<t (4.4.1)

Scenario generation under credit risk

The equation4.4.1) can be used to determine the fair price of PPN and NPPC under
credit risk. The next step is to generate the return scemakollowing the same ap-
proach as for the yield curve and the index level, the evahgtiof the CDS rates are
simulated under the physical measure. From the CDS ratesuitvival probability
under the risk-neutral measure can be determined by thieratidin procedure. The
hazard rate is assumed to be piecewise constant, whichresd0DS rates with dif-
ferent contract maturities for calibration. Only two c@ur maturities are selected,
due to the limited amount of historical observations for traamtract maturities. The
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CDS rates for contracts with RBS as reference entity and [®eatisely 5 years time

to maturity are used. This results in a hazard rate termtstr@iovith two levels. The
short term hazard rate up to 3 years and the long term hazartbraorizons beyond 3
years. It is assumed that the CDS buyer makes quarterly preipayments. To value
the protection leg a grid with four equally spaced time pr year is used. Further-
more, the 30/360 day count convention is considered whélratihg the hazard rate.
As mentioned in sectioR.4.3 there are some limitations on the calibration procedure.
Therefore are scenarios, that result in situations whergeledefined hazard rate can
be fitted, replaced by new simulated scenarios.

In order to generate the return scenarios, the statistcabf model is extended to
also describe the CDS rates for two different maturitieguFéA.4.1in the appendix
shows the historical CDS rates and the weekly log returne@fQDS rates. The log
returns seem to be weekly stationary. One can notice thdwaghtie magnitude of the
returns has increased in the more recent observations| 206, the CDS rates for
both horizons fluctuated around 10 basis points (bp). Sinee the CDS rates have
experienced a significant increase. In 2010, the rates aamanhd 125 bp for the 3
year time horizon and 150 bp for the 5 year time horizon. The faetor model uses
the first six PCs in order to have a similar explanatory poveethe previous model.
The selected PCs describe.98% of the variation in the data. The stability of both
the explanatory power and the factor loadings is investiyat the same manner as
presented in sectioB.4 and the results are displayed in tal®{el and figureA.4.2.
The first six PCs describe more than 95% of the variation isel#écted time periods.
The explanatory power of the single PCs experiences quidagvariation. The factor
loadings of the first four PCs show a similar stability as ia greviously used factor
model. The variations in the factor loadings for the fifth anpdh PC are much greater
compared to the first four PCs. Two time periods show signmifidiferences in these
two PCs. They correspond to the time spans from April 2003dl2007 and July
2003 to July 2007. Those time intervals only include periotisre the CDS rates were
very low, which could be the reason for the difference in @edr loadings. In order
to use the historical simulation approach, the autocdiogiaf the new PCs needs to
be investigated. FigurA.4.3 shows that there is hardly any autocorrelation present in
the factor scores of the PCs when using weekly observatidresprocedure of finding
a parametric model for the PCs is not repeated, instead theratgon of risk factor
changes for the scenarios relies solely on the historicallsition approach.

4.4.2 Effects of credit risk on the return distribution of structured
products

The following example illustrates how credit risk changes teturn distribution of
structured products. The extended statistical factor et the historical simulation
approach are used to generate 2000 simulated one-yeatiemslof the risk factors.
For each scenario the returns of the structured productsateelated. All these return
scenarios then determine the one-year return distribsibida PPN and a NPPC. Three
different settings are investigated. The first one repisgae returns of default-free as-
sets. The second one corresponds to the return distridattbe case, where credit risk
enters the pricing formula. The third one incorporatesitréezk in the pricing method
and generates default scenarios. RBS has Aa3 long ternt cadidg determined by
Moody’s 1. For this class the probability of default occurring durthg next year was

http://www.investors.rbs.com/debt_securitisatiofifigs.cfm; date:23th of May 2010
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1.424% in 2008 Emery and Ou, 2009 This probability is used to create the actual
default scenarios in the third setting. It is assumed thaetlent of default under the
physical measure is independent from all other random hissa Since no recovery
rate estimates for the reference entity could be found,tbeage of the defaulted debt
recovery rate estimates for European institutions f@@i#dane and Turnbull (2003is
used as the estimate of the recovery rate. The average raddfément classes of se-
niority is 22%. The economic setting is summarized in tabhle The most recent 4
years of weekly observation are given as input for the factodel and the historical
simulation algorithm.

current time point 15 February 2008
current OMXS30 level 938.79

current 3-year interest rate 3.75%

current 3-year CDS rate 92.87 bp

current volatility 18.83%
risk-neutral 3-year survival probability 96.50%

time to maturity of the assets 3years

Table 4.1: Current economic setting used for the investigation of tfeglit risk’s ef-
fects on the return distribution of structured investments

The scenarios are generated taking into account a sulgedtw, that has the
following specifications: The expected relative change Ibfrngéerest rates is set to
one. The expected weekly log return of the CDS rates is equadrb and the expected
weekly log return of the index is 0.0018, which correspomds 10% annual log return.
The variances of the absolute views are set to match theneaseofigaia A is chosen
to be 099. The histograms of the return scenarios for the strudtimeestments are
shown in figured.4.1
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Figure 4.4.1: Return distribution of a PPN and a NPPC in three differentirsgs.
The default-free asset case corresponds to structuredgtsoaithout credit risk. The
defaultable asset setting represents structured prothattsarry credit risk. The de-
faultable asset case with actual default corresponds twetsted product that carries
credit risk and where actual default of the issuer is sinealaEach histogram is com-
posed of 2000 scenarios that are generated by historicaldiion. The expected risk
factor changes are computed using a subjective view onsélifaictors. The investor
believes that the expected weekly relative change of edefest rate is 1, the expected
weekly log return of each CDS rate is 0 and the expected wéeklyeturn of the index
is 0.0018. The uncertainty of the views is chosen so thatithes the variances of the
return series’ expected returrs.s 0.99.
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The histograms for the PPN in the specified settings shoveewtie differences.
When comparing the default-free PPN returns to the defdalf@BN returns, one can
see that the scenario returns become more symmetricalijbdi®d in the defaultable
asset case. In the default-free asset setting only very fyative return scenarios
occur and they have only very small absolute return valuesenidnedit risk is con-
sidered, the scenario returns are wider spread. This isatietadditional source of
randomness in form of credit risk. The right tails of the digitions are similar in
shape. In the case of the defaultable PPN, the right tail Xgerenced a small shift to
the right. This effect can be explained by the higher parétion rate of the defaultable
PPN compared to the default-free PPN. Credit risk reductsthe price of the bond
part and the price of the option. Since the PPN has a pricel émtize current index
level at the issue date, the participation rate of the defhld version must be higher.
In this example the participation rates are 78.29% for tHfaudefree PPN and 98.99
% for the defaultable PPN. In the case of a defaultable PPN adtual defaults, some
scenarios with returns between -0.8 and -0.7 occur. Theasioasrcorrespond to the 36
actual default cases. Apart from these 36 observations hibtogram is identical to
the one of the defaultable PPN.

The histograms of the NPPC hardly show any differences. iShisie to the fact
that in a large number of scenarios big losses already ondheidefault-free setting.
One can though see that the left tail of the distribution loee® slightly heavier for
the defaultable NPPC compared to the default-free NPPC.s@h@ observation is
noticeable when comparing the setting without actual defda the case with actual
default scenarios.

The following conclusions can be drawn from this experimé&nedit risk changes
the return distributions of structured investments. Thengfes are more significant for
PPNs than for NPPCs. When CVaR is chosen as the measure ofheskpserved
differences in the left tail of the return distribution wilave an effect on the riskiness
of the assets. In the case of defaultable assets the CVameviligher compared to
the default-free asset. When also actual default scenagdateoduced the CVaR will
increase even more.

4.4.3 Comparison of portfolio optimization with default-free and
defaultable structured products

This section investigates the impact of credit risk on tvesment decision. Due to the
limited amount of historical observations of CDS ratess gtudy cannot be performed
over the same time length as the previous historical ingattins. Instead, only the
last two rebalancing times can be analyzed. Figude2gives an overview of the two
rebalancing periods considered in this study. The inputtferfactor model is always
the most recent four years of weekly observations of themetaries. For each invest-
ment situation, 2000 scenarios are generated with theriwatsimulation approach.
The proportional cost of buying and selling structured steents is 2%. The upper
bound on the portfolios’ CVaR is 0.20 and CVaR is measuretie0t05 confidence
level. Instead of using a synthetic view, this study ut#izeconstant subjective view
in the same manner as in sectid®.2 The composed portfolios are analyzed in the
case of default-free structured products and defaultabletsred investments. The
case with actual default scenarios is not investigatedlea@ summarizes the returns
of the assets, the risk and return specifications of the @ptoartfolios and the real-
ized development in the portfolio values. Figutd.3displays the weight allocation
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Figure 4.4.2: Historical observations of Swedish government interdsis;aCDS rates
on RBS and OMXS30. The rebalancing times and the final evaluéime are indi-
cated by the horizontal dotted lines and the dates on thésx-ax

default-free assets defaultable assets

year 2008 \ 2009 \ 2010 2008 \ 2009 \ 2010
Expected asset returns
PPN1 7.86% | 4.11% - 8.22% | 3.31% -
NPPC1 40.29% | 52.48% - 43.62% | 52.88% -
PPN2 - 4.42% - - 5.28% -
NPPC2 - 42.46% - - 43.20% -
Optimal portfolio characteristics

Expected return 12.43% | 12.98% - 11.78% | 8.49% -
CVaR 20.00% | 20.00% - 20.00% | 20.00% -
realized value 1 0.8594 | 1.2296 1 0.8604 | 1.1628

Table 4.2: Overview of the structured products’ expected returns atrébalancing

times in the case of default-free and defaultable assetthdéfinore, the table presents
the risk and return characteristics of the optimal portfland the realized develop-
ment in the portfolios’ value for both cases.
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(b) Portfolio weight allocation in the case of defaultaliieistured products

Figure 4.4.3: Portfolio weight allocation in the cases of default-freel afefaultable
structured products. The used subjective view has thewailp specifications. The
expected relative change of each interest rate is 1, thecteghéog return of each CDS
rate is 0 and the expected weekly log return of the index i®1B0 The uncertainty
of the views is chosen so that it matches the variances ofdfuerr series’ expected
returns. A is 0.99. The chosen confidence level for the CVaR measursnie6t05
and the upper bound on the portfolios’ CVaR is 0.20
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When comparing the weight allocations in the cases of defeadtand defaultable
structured products, the following observations are m&dedit risk changes the return
distribution of the structured investments and therefae &n impact on the weight
allocation of the portfolio. At the first rebalancing timejyeocan notice that a smaller
proportion of the funds are allocated to the NPPC 1 and arlgmportion is allocated
to the PPN 1 in the defaultable asset setting, compared wetfaelt-free asset setting.
At the second rebalancing time the return potential of thid BRignificantly reduces,
due to the low interest rates and the low index level, thahpsighe option out-of-the-
money. The large rise in the CDS rates from rebalancing tieetiine 2 increases the
riskiness of all defaultable structured products. The ipressection showed, that the
effects are much more significant on the PPNs compared tortbég on the NPPCs.
In the defaultable asset case at the second rebalancingaitagye part of the weight
invested in PPN 1 is sold and the received cash flow is alldcp&etly to the cash
account and to the NPPC 2 in order to meet the investor's ggkirements and to
maximize the reward potential of the portfolio. In the ddfdree asset setting, the
riskiness of the PPN hardly changes. To increase the retitempial, part of the PPN
1 is sold and the received cash flow is allocated to the NPPC 2.

When examining the expected return and the CVaR of the optioréfolios given
in table4.2, one can notice that all portfolios reach the upper CVaR Hoéut the first
rebalancing time the difference in expected return is aldu6%. In the case of de-
faultable structured products, the loss in the portfoligiside potential due to a smaller
weight in NPPC 1 can nearly be recovered due to the higheicjpation rate PPN 1,
compared to the default-free setting. At the second rebalgrtime the difference in
the expected return of the portfolios is more than 4%. Thislmaexplained by two
reasons. A part of the portfolio has to be invested in thefigsk cash account in order
to satisfy the upper CVaR bound. Since the cash account hasetarn over the next
time period, the expected return is reduced. Furthermtmastared products have to
be sold in order to create this cash position. This actioagiise to transaction costs,
which also lower the expected return of the portfolio.

The realized portfolio values are similar at the second legtzing time. In the
defaultable asset case, the loss is a little smaller cordpar¢he default-free case.
This is due to the smaller portfolio weight in the NPPC 1 indleéaultable asset setting.
NPPC 1 lost more than 60% of its value in both cases. At the éwaluation time the
default-free portfolio outperforms the defaultable politf by a 5% higher portfolio
value. The default-free portfolio has more exposure toridex, due to larger weights
in all structured investments, and can therefore profit muane from the positive
market developments.

Table 4.2 also displays the expected returns of the default-free afduttable
structured products at the two rebalancing times. It isceatble that the default-
able structured investments have a higher expected retuamtloe next year at their
issue date compared to the default-free ones. This is inwitle the argument that
the investor has to be compensated by a higher expected fetusearing credit risk.
Furthermore, this example also shows the impact of a sudaeedse in credit risk on
the expected returns of a PPN. At the second rebalancingttiemdefaultable PPN 1
looses its superior expected return characteristic oweddfault-free one.

4.4.4 Conclusions on the impact of credit risk

Credit risk has significant effects on return and risk chisréstics of structured prod-
ucts. The effects are more significant on PPNs than on NPP@s.cfianges in the
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asset characteristics result in differences in the cagitatation when comparing the
portfolio weights in the cases of default-free and defduétatructured investments. It
seems that more rebalancing activity is necessary to pdtisfrisk requirements when
considering credit risk. To investigate this hypothesisniore detail, one has to look
at a larger variety of rebalancing situations over theilifiet of defaultable structured
investments.

Modeling credit risk based on CDS data should be investiatemore detail.
First of all, a CDS is an OTC traded asset and therefore sagrelit risk in itself. This
issue is ignored in the presented approach. Secondlyréastich as liquidity, spread,
and market supply and demand typically lead to an overestmaf the hazard rate
(O’Kane and Turnbull, 2003 One possibility for evaluating the quality of the hazard
rate estimates is to compare the ones extracted from CDSaldta ones determined
from corporate bond prices. Moreover, the reduced-formehoduld be replaced by a
firm-value model in order compare the model prices of OT Cadestructured products.
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Conclusions

The report implements theoretical concepts to solve invest situations concerning
PPNs and NPPCs with the OMXS30 as the underlying asset. Vastor’s portfolio is
analyzed in terms of expected return and CVaR, and the optigights are determined
in a two-stage procedure. The first stage corresponds taaengreturn scenarios and
the second stage determines the optimal portfolio weidfis.fact that both stages are
independent of each other makes this approach very flexible.

The optimization problem can handle trading constraintsh&s limited offer time
and short-selling restriction, and proportional tranigsctosts, while still retaining in
the class of linear optimization programs. This has the idgge that the problem is
solvable in reasonable time and that the optimal solutiogoisg to be determined,
provided that it exists. Two alternative optimization farations are established. The
maximizing the expected portfolio return subject to an ugymrind on the portfolio’s
CVaR formulation outperforms the minimizing portfolio’sV@R subject to a lower
bound on the portfolio’s expected return formulation imisrof robustness of the solu-
tion and solution time. Experiments using the former apghaanclude that exposure
to market risk can be controlled by the upper bound on thdgms CVaR. Moreover,
tests varying the confidence level, at which the portfol@¥&aR is measured, point out
that a lower confidence level reduces the the riskiness gbahtfolio when the upper
CVaR bound is kept unchanged.

Investigation of investment situations on the historicatiedrevealed, that the risk
and reward characteristics of the assets determined byscageneration under the
physical measure are heavily influenced by historical séndhe risk factor changes.
In order to reduce this dependence, the investor’s subgciw on the expected future
evolution of the risk factors is introduced. The represivaaguality of the scenarios
depends though on how well the subjective view and the licstiollata describe future
behavior in the development of the risk factors. Investiget on historical data us-
ing synthetic views of different quality confirmed that a m@iccurate view on future
behavior of the risk factors leads to more profitable investndecisions.

Transaction costs are identified as an important factordbalancing decisions.
The presented experiment points out that transaction sagifficantly reduce the re-
turn performance of the used investment strategy. Highesaction costs increase the
holding period of structured products and reduce the oeoge of situations where it
is profitable to sell structured products prior to their nnyu

Structured products are in general traded OTC. For the typs&tsuctured products
examined in this study, the credit risk, which is presentvarg OTC trade, is exclu-
sively carried by the investor. The model of the investméotsion can be extended in
order to take into account credit risk. Credit risk has aificant impact on the return
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distribution of the structured products. This impact caudiéferences in the capital
allocation, which is shown in an experiment that comparetfgms of default-free
structured products and portfolios of defaultable streduproducts. In order to in-
vestigate the effects of credit risk on the optimal portfalieights, further studies are
necessary.

All conducted experiments showed that rebalancing atrimeeliate time points is
necessary in order to meet the investor’s risk requiremedit@ maximize the reward
potential of his portfolio. This indicates that even in thegence of high transaction
costs, situations arise where it is profitable for an invegiaebalance his portfolio.
The rebalancing decision is though very complex and infladray various factors.
The presented approach can assist in making objectiveamtiaf decisions for an
investor, who evaluates the riskiness and reward potesfttas portfolio on short term
basis. Additionally, the investigated experiments giverespntation of the factors
influencing the rebalancing decision when investing incitrred products.
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Appendix

A.1 Weightallocation diagrams for the rebalancing strate-
gies using various upper bounds on the portfolio’s
CVaR

confidence level 0.05 and CVaR constraint 0.05 [ \a\ cash
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Figure A.1.1: Weight allocation for a rebalancing strategy with a 0.05amdmwund on
the portfolio’s CVaR measured at the 0.05 confidence levahdicated the weight at
the beginning of thé period, while k indicates the weight at the end of the period,
when the assets are priced in the updated economic setting.
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confidence level 0.05 and CvaR constraint 0.1 miﬂﬁcash
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Figure A.1.2: Weight allocation for a rebalancing strategy with a 0.1 upgsind on
the portfolio’s CvVaR measured at the 0.05 confidence levahdicated the weight at
the beginning of thé period, while k indicates the weight at the end of the period,
when the assets are priced in the updated economic setting.
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Figure A.1.3: Weight allocation for a rebalancing strategy with a 0.2 upsind on
the portfolio’s CvVaR measured at the 0.05 confidence levahdicated the weight at
the beginning of thé period, while k indicates the weight at the end of the period,
when the assets are priced in the updated economic setting.
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A.1. WEIGHT ALLOCATION DIAGRAMS FOR THE REBALANCING STRATEGIES
USING VARIOUS UPPER BOUNDS ON THE PORTFOLIO’S CVAR

1.::cunﬁdence level 0.05 and CVaR constraint 0.4 | {1 cashy
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Figure A.1.4: Weight allocation for a rebalancing strategy with a 0.4 upgmind on
the portfolio’s CVaR measured at the 0.05 confidence levehdicated the weight at
the beginning of thé period, while k indicates the weight at the end of the period,
when the assets are priced in the updated economic setting.
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A.2 Weightallocation diagrams for the rebalancing strat-
egy on historical data using a synthetic subjective
view

A.2.1 Weight allocation diagrams using a synthetic subjecote view
with different uncertainty levels
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Figure A.2.1: Weight allocation using an synthetic subjective view witicertainty
level 0.01. The chosen confidence level for the CVaR measmtis 0.05 and the
upper bound on the portfolios CVaR is 0.20
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Figure A.2.2: Weight allocation using an synthetic subjective view witicertainty
level 0.1. The chosen confidence level for the CVaR measurtnig 0.05 and the
upper bound on the portfolios CVaR is 0.20
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A.2. WEIGHT ALLOCATION DIAGRAMS FOR THE REBALANCING STRATEGY
ON HISTORICAL DATA USING A SYNTHETIC SUBJECTIVE VIEW
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Figure A.2.3: Weight allocation using an synthetic subjective view witfcertainty
level 1. The chosen confidence level for the CVaR measureniet05 and the upper
bound on the portfolios CVaR is 0.20
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Figure A.2.4. Weight allocation using an synthetic subjective view witfcertainty
level 5. The chosen confidence level for the CVaR measurenie0tO5 and the upper
bound on the portfolios CVaR is 0.20
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A.2.2 Weight allocation diagrams using different numbers 6 ab-

solute views
all rates & index 7% cash
1% ST ES PPN 1
y xg‘m HHNPPC 1
o i} ——PPN?2
o §§ l1lIl/INPPC 2
=) 06 \: ::::::IPPNS
g \gz I
g \:: BEENPPC 3
S04 \EE PPN 4
E §§§ ZZZZNPPC 4
0.2 §§§ PPN
§§§ HHHHINPPC 5
0 — =i PPN 6
S1 E1 S2 E2 S3 E3 S4 E4 S5 E5 S6 E6 | {llINPPC 6

rebalancing time

Figure A.2.5: The weight allocation at the rebalancing points using alieoliews on
all government interest rates and the OMXS30. The syntheie has an uncertainty
level of 0.01. The chosen confidence level for the CVaR measents is 0.05 and the
upper bound on the portfolios CVaR is 0.20
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Figure A.2.6: The weight allocation at the rebalancing points using a voewhe 12
month government interest rate and the OMXS30. The sywthegwv has an uncer-
tainty level of 0.01. The chosen confidence level for the Cvagasurements is 0.05
and the upper bound on the portfolios CVaR is 0.20

84



A.2. WEIGHT ALLOCATION DIAGRAMS FOR THE REBALANCING STRATEGY
ON HISTORICAL DATA USING A SYNTHETIC SUBJECTIVE VIEW

index Ncash
MR PPN 1
HHHANPPC 1
——PPN2
IIIINPPC 2

0.8

A

N i

0.6

BEENPPC 3
W PPN 4
ZZZNPPC 4
7 PPN 5
HHHNPPC 5

H B ERER I PN 6
2 S3 E3 S4 E4 S5 E5 S6 E6 | HHHINPPC B
rebalancing time

04

portfolio weights

0.2

w
—
w
%]
m

Figure A.2.7: The weight allocation at the rebalancing points using onhea on the
OMXS30. The synthetic view has an uncertainty level of 0.TMe chosen confidence
level for the CVaR measurements is 0.05 and the upper bouttueqoortfolios CVaR
is 0.20
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Figure A.2.8: The weight allocation at the rebalancing points using onhea on the
12 month government interest rate. The synthetic view hasaartainty level of 0.01.
The chosen confidence level for the CVaR measurements isasbdfhe upper bound
on the portfolios CVaR is 0.20
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A.3 lllustrations on the impact of transaction costs on
rebalancing strategy

A.3.1 Overview of brokerage fees for structured products

Issuer Product name Brokerage| Time to

Fees maturity
ErikPenser| Accelerator 10 Tillvaxt 2% 3years
ErikPenser| Sverige 18 Tillvaxt 2% 3 years
ErikPenser| Accelerator 9 Tillvaxt 2% 5years
ErikPenser| Accelerator 9 Trygghet 2% 5years
ErikPenser| Kina 20 Tillvaxt 2% 3years
SHB Kanada Balans 923AK 2% 4 years
SHB Sverige Balans 923AS 2% 5years
SHB Sverige Balans 923AX 2% 5years
SHB Svenska Aktier 923AZ 1% 2 years
SHB Svenska Aktier 923AY 1% 2 years
SHB Tillvaxtmarknader Balans 923AT 2% 5years
SHB Index Balans 923Rl 2% 3years
HQ Brasilien Riskkontroll 3% 5years
HQ Indien / Kina Tillvaxt 2 3% 5years
HQ Sverige Max / Min 2 2% 3years
HQ Trend Emerging Markets Riskkontroll @ 3% 4 years
HQ Trend Total Riskkontroll 4 3% 5years
HQ Trend Total Riskkontroll Tillvéaxt 4 3% 5years
RBS Autopilot Bull & Bear 2 Trygghet 2% 5years
RBS Autopilot Bull & Bear 2 Tillvéaxt 2% 5years
RBS Autopilot Vector 13 Trygghet 2% 5years
RBS Sharpener Accumulator 3 2% 5years
RBS Etiska Tillvaxtmarknader 2 2% 5years
RBS Global Trygghet 2% 5years
RBS Global Tillvaxt 2% 5years
RBS Kina Ostasien 2 2% 3years
RBS Brasilien Total 2% 4 years
SEB Brasilien/Kina 005B 2% 4 years
SEB Brasilien/Kina 005C 2% 4 years
SEB Sverige Kupong 005K 2% 5 years
SEB Ravaror 005P 2% 4 years
SEB Ré&varor 005R 2% 4 years
SEB Sverige 10 Bolag 005S 2% 4 years
SEB Sverige 10 Bolag 005T 2% 4 years

Table A.1: The tables shows a variety of structured products from mdiffeissuers.
The table is taken from Nordnet’s web page on the 11 of May 2010
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A.3.

ILLUSTRATIONS ON THE IMPACT OF TRANSACTION COSTS ON

REBALANCING STRATEGY

A.3.2 Expected return and CVaR of the optimal portfolios unde
transaction costs for buying structured products

portfolio | buying Rebalancing time

property | cost 1 2 3 4 5 6
Return 0% 7.14% | 60.60% | 60.98% | 12.17%| 1.99% | 30.67%
Risk 20.00% | 20.00% | 20.00% | 20.00% | -0.21% | 20.00%
Return 1% 5.99% | 57.04% | 57.41%| 10.79% | 1.97% | 28.39%
Risk 20.00% | 20.00% | 20.00% | 20.00% | -0.42% | 20.00%
Return 2% 4.85% | 55.45% | 53.91% | 10.26% | 0.62% | 26.15%
Risk 20.00% | 20.00% | 20.00% | 20.00% | -0.13% | 20.00%
Return 3% 3.74% | 54.71%| 50.48% | 9.81% | 0.59% | 24.91%
Risk 20.00% | 20.00% | 20.00% | 20.00% | -0.13% | 20.00%

Table A.2: Expected returns and CVaR of the optimal portfolios at thersbalanc-

ing times under different proportional costs of buying stawed products. CVaR is

measured at the 0.05 confidence level and the upper CVaR hafuaitiportfolio is

0.20

A.3.3 Expected return and CVaR of the optimal portfolios unde
transaction costs for buying and selling structured produds

portfolio | selling rebalancing time

property | cost 1 2 3 4 5 6
Return 0% 4.85% | 55.45% | 53.91% | 10.26% | 0.62% | 26.15%
Risk 20.00% | 20.00% | 20.00% | 20.00% | -0.13% | 20.00%
Return 1% 4.85% | 54.69% | 50.38% | 9.79% | 0.54% | 26.09%
Risk 20.00% | 20.00% | 20.00% | 20.00% | 0.59% | 20.00%
Return 2% 4.85% | 53.94% | 46.84% | 9.37% | 0.47% | 26.10%
Risk 20.00% | 20.00% | 20.00% | 20.00% | 0.65% | 20.00%
Return 3% 4.85% | 53.19% | 43.30% | 9.09% | 0.41% | 26.10%
Risk 20.00% | 20.00% | 20.00% | 20.00% | 0.70% | 20.00%

Table A.3: Expected returns and CVaR of the optimal portfolios at theelalancing

times under 2% proportional costs of buying and varying prtpnal cost for selling
structured products. CVaR is measured at the 0.05 confideveleand the upper CVaR

bound of all portfolio is 0.20
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A.3.4 Weight allocation diagrams under transaction costsdr buy-
ing structured products
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Figure A.3.1: Weight allocation for a view on all government interest sated the
OMXS30 with uncertainty level 0.1 with no transaction cdetsbuying and for selling
PPNs and NPPCs
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Figure A.3.2: Weight allocation for a view on all government interest sa#&d the
OMXS30 with uncertainty level 0.1 with% transaction costs for buying and zero
transaction costs for selling PPNs and NPPCs
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A.3. ILLUSTRATIONS ON THE IMPACT OF TRANSACTION COSTS ON
REBALANCING STRATEGY

proportional cost for buying 2 % S| cash
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Figure A.3.3: Weight allocation for a view on all government interest saé@d the
OMXS30 with uncertainty level 0.1 witR% transaction costs for buying and zero
transaction costs for selling PPNs and NPPCs
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Figure A.3.4: Weight allocation for a view on all government interest saé@d the
OMXS30 with uncertainty level 0.1 witB% transaction costs for buying and zero
transaction costs for selling PPNs and NPPCs
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A.3.5 Weight allocation diagrams under transaction costsdr buy-
ing and selling structured products
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Figure A.3.5: Weight allocation for a view on all government interest sated the
OMXS30 with uncertainty level 0.1 witA% transaction costs for buying and no cost
for selling PPNs and NPPCs
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Figure A.3.6: Weight allocation for a view on all government interest sa#ed the
OMXS30 with uncertainty level 0.1 witP% transaction costs for buying atél trans-
action costs for selling PPNs and NPPCs
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A.3. ILLUSTRATIONS ON THE IMPACT OF TRANSACTION COSTS ON
REBALANCING STRATEGY

proportional cost for selling 2 % S| cash
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Figure A.3.7: Weight allocation for a view on all government interest saé@d the
OMXS30 with uncertainty level 0.1 witt% transaction costs for buying aéf trans-
action costs for selling PPNs and NPPCs
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Figure A.3.8: Weight allocation for a view on all government interest saé@d the
OMXS30 with uncertainty level 0.1 witP% transaction costs for buying aBélb trans-
action costs for selling PPNs and NPPCs
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A.4 Factor model for changes ininterestrate, CDS rates
and index level

Time Series Plot:CDS rates
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Figure A.4.1: Time series of CDS rates and weekly log returns of CDS rateRBS
with 3 and 5 years time to maturity recorded of the time spamfApril 2003 to April

2010
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A.4. FACTOR MODEL FOR CHANGES IN INTEREST RATE, CDS RATES AND
INDEX LEVEL

Period Explanatory Power

Start End | PC1| PC2| PC3| PC4 | PC5| PC6| Sum
Apr-03 | Apr-07 | 46.21| 17.30| 13.95| 10.21| 4.84 | 3.77 | 96.29
Jul-03 | Jul-07 | 45.48| 16.59| 14.08 | 10.45| 5.23 | 4.27 | 96.10
Oct-03 | Oct-07 | 45.14| 18.80| 13.79| 10.19| 4.61 | 3.41 | 95.94
Jan-04 | Jan-08| 44.07 | 19.97| 14.32| 9.54 | 4.77 | 2.80 | 95.48
Apr-04 | Apr-08 | 43.74| 20.67 | 14.47| 9.20 | 4.79 | 2.75| 95.61
Jul-04 | Jul-08 | 44.80| 21.13| 14.02| 8.58 | 4.64 | 2.72 | 95.89
Oct-04 | Oct-08 | 45.65| 21.26| 14.01| 8.77 | 4.40 | 2.29 | 96.38
Jan-05| Jan-09| 47.74| 21.91| 11.41| 9.18 | 4.98 | 1.97 | 97.19
Apr-05 | Apr-09 | 45.72| 22.35| 14.92| 9.00 | 3.77 | 1.90 | 97.66
Jul-05 | Jul-09 | 47.07 | 22.60 | 13.46| 9.08 | 4.12 | 1.56 | 97.89
Oct-05 | Oct-09 | 47.38| 22.88| 12.86| 8.94 | 4.27 | 1.64 | 97.97
Jan-06| Jan-10| 46.40| 23.40| 12.32| 8.97 | 493 | 1.78 | 97.81
Apr-06 | Apr-10 | 46.29 | 23.69| 12.06| 8.83 | 5.31 | 1.75| 97.93
Apr-03 | Apr-10 | 45.26 | 22.34| 13.29| 9.11 | 5.04 | 1.88 | 96.92

Table A.4: Sample dependence of the explanatory power for 13 quagtayyoverlap-
ping time intervals consisting of 4 years of weekly obsdored. The last row indicates
the explanatory power for the whole data set ranging fromlZ003 to April 2010.
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Figure A.4.2: Sample dependence of the factor loadings of the first six B@e.line
in a subplot represents the factor loadings of the indic&€dor one sample. The
investigation is performed on 13 quarter-yearly overlagpsamples consisting of 4
years of weekly observations. All samples are taken frompaufadion of 367 weekly
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A.4. FACTOR MODEL FOR CHANGES IN INTEREST RATE, CDS RATES AND

INDEX LEVEL
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Figure A.4.3. Autocorrelation plot of each of the first six PCs. The sampleam-
posed of 367 weekly observations ranging from April 2003 piR2010
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