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Abstract

In this study, issuer specific term structures of interest rates are estimated in the presence
of missing data. A smoothing spline estimation is applied on a set of bootstrapped yield
notations for a number of Emerging Market issuers. Based on estimated term structures,
in which a significant fraction of data is missing, univariate GARCH(1,1) filters are applied
on single time series, after which a PCA based agorithm fills missing observations. Term
structures are thereafter recursively reconstructed. In the center of the study lies the de-
signed backfilling routine. Its application onto a number of synthetic data sets shows that
its performance is satisfactory. Although, it is dependent on the fraction of missing values,
the complexity of the underlying factor structure and the amount of noise in the data set.
Applied onto the real set of data, the routine produces results of varying quality. Obtained
estimates of missing term structures appear credible but their correctness remains to be
assessed.

Keywords: Yield Curve Estimation, Backfilling, GARCH(1,1), Principal Component Anal-
ysis.
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Chapter 1

Introduction

1.1 Background
Financial risk modeling is an important task for banks and institutions active within the
finance sector. Increasing pressure both from financial authorities and own management em-
phasizes the significance of sophisticated risk models, perhaps even more in the aftermath
of the recent financial market turmoil. At this day, most financial institutions perform risk
management through mathematical computations based upon historical observations. The
availability of such data is unfortunately not always as good as one might wish for. Risk
measures, such as Value at Risk (VaR) and Expected Tail Loss (ETL), must nevertheless
be calculated and reported to regulators on a daily basis. Estimating one’s risk profile and
forecasting possible future losses based on scarce data is therefore a difficulty that many
financial institutions are forced to confront.

In the field of financial risk management, risks are commonly divided into three categories:
Market Risk, Credit Risk and Operational Risk. Market risk arises from movements in gen-
eral market factors such as interest rates, commodity prices and currency exchange rates.
Market Risk is undiversifiable and is also commonly referred to as Systematic Risk. Credit
risk is defined as the risk carried by the lender that a debtor will not be able to repay her
debt, but it can also be the risk of a change in credit rating, reflecting the market’s percep-
tion of an issuer’s creditworthiness. Operational risk is the risk of losses due to failure in
internal processes (Hult and Lindskog, 2007).

Idiosyncratic credit risk (also referred to as specific credit risk) aims to explain that the price
of a product bearing credit risk, does not necessarily follow general market movements. The
value of a product can behave in a unique way and the concept of idiosyncratic risk captures
these excess changes in the product’s value (Frisch et al., 2002). A typical example of such
product is a corporate bond, which also carries the risk of default of the issuer. One way
of assessing the idiosyncratic risk of the product is to observe its yield to maturity and how
it changes in comparison with a risk free benchmark. In focus is thus the credit spread
between the different yields, a popular indicator of risk for fixed income products.
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One common approach is to explain the credit spread by mapping various parts of it to
different risk factors such as rating and currency. Products with similar risk factors are
grouped together and risks are calculated based on these characteristics. However, this di-
vision does not provide an explanation of the entire spread. The part of the credit spread
which cannot be generalized and thus remains unexplained corresponds to the idiosyncratic
credit risk of the product.

Another option would be to observe the yield curve derived from fixed income products
of a single issuer. In the issuer specific yield curve one can claim to find all information
about how prices of the issuer’s products behave. By subtracting a risk free benchmark curve
(such as LIBOR or various swap rates) together with explained changes in the credit spread,
idiosyncratic movements in the issuer yield curve can be obtained, if such representation is
desired. In the the Basel Amendment for incorporating market risk, specific credit risk is
generally said to arise from issuer related events.1 Specific risk calculations on issuer level
are for example applied in the standard model for calculation of capital adequacy suggested
in the FINMA circular (FINMA, 2009).2

1.2 The Problematics of Missing Data

Practitioners in a wide range of industries are on a daily basis forced to confront the issue of
missing data or data of poor quality. In geosciences, with climate research as one example,
most data sets are obtained through historical observations. Within DNA Microarray Tech-
nology experimental data is used for investigations of genetic behaviour. Demographic re-
search is dependent of proper documentation of human population. However, rough weather
conditions, experimental failures and insufficient surveys are just some of the reasons which
can cause such data sets to be incomplete (Kondrashov and Ghil, 2006; Zhang et al., 2008).

These are just a couple of examples where the problem of missing data is substantial, but
the list can be made much longer. Nevertheless, statistical tools and computational proce-
dures generally require full sets of data. Sometimes the only way to obtain such data sets,
is through estimation and imputation of missing observations.

In the finance industry, the situation is at least as severe and one of the areas where the
problem perhaps becomes most significant is risk management. Missing data might not be
a large issue in the world of equity, where historical prices for a given share are fairly easy
to find. That is however seldom the case for more exotic products, or even regular bonds
issued by corporates or smaller emerging nations. Single missing price notations as well
as continous gaps are common to find among historical price notations of traded products.
Despite this shortcoming, regulatory requirements on risk calculations, such as the number
of historical observations that risk measures must be based upon and the frequency of which
these observations are updated, become more and more extensive (Basel Committee, 2005).
Finding a way to deal with missing observations has thus never been more important.

1In the Basel amendment of 1996 (updated in 2005), specific risk is defined as the risk that the price of
a product moves more or less than the general market together with the product’s event risk which arises
from irregular and infrequent events, generally connected to the issuer, such as the risk of default.

2The FINMA Circular (08/20) presents guidelines for calculation of capital adequacy for Swiss banks due
to risks caused by interest rate and share price changes for positions held within the banks trading book, as
suggested by the Swiss Financial Market Supervisory Authority (FINMA).
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1.3 Aim of Thesis
The aim of this Master’s Thesis is to design a procedure for estimation of issuer specific
interest rate term structures with scarce availability of data. The procedure is initialized
with a term structure estimation using historical yield notations, each for a number of bonds
of a number of different issuers. Missing values, seen as missing observations in the term
structure representation, will thereafter be treated with a backfilling algorithm. Based on
the assumption that single time series of yield changes, at constant maturities, follow a
GARCH(1,1) process, GARCH filters will be applied on single time series followed by an
iterative value imputation based on Principal Component Analysis.

The main focus of this study is backfilling of missing observations, which is also where the
mathematical emphasis will be placed. The backfilling algorithm introduced in this study
will therefore be additionally validated through application on various synthetic data sets
from which results are evaluated separately. Its performane is a crucial ingredient to fill
missing data in the already estimated term structure dimension.

The designed procedure will be implemented in the context of Emerging Markets, where the
availability and quality of data is low, as a typical example of a business for which banks
calculate risk measures on a daily basis. To find an optimal representation for missing
observations, based on available data, will be the main challenge of this thesis project.
Generalizations will have to be weighted against loss of the information one has at hand.

1.4 Outline
The disposition of this paper is as follows. The first chapter gives an introduction to the
topic and explains the aim of the study. Chapter 2 presents a literary review of methods and
models applied within the practice today. The third chapter presents a theoretical framework
which is found necessary for the chosen topic. Chapter 4 and 5 describe the applied method
together with the data which has been used throughout this study. Chapter 6 consists of a
further assessment of the backfilling routine and is followed by general results of the study in
chapter 7. Chapter 8 contains a concluding discussion together with suggestions for further
research.
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Chapter 2

Literary Review

This chapter presents a review of existing literature where similar challenges, as those faced
in this study, have been dealt with. Applied methods of the two main parts of the study;
yield curve estimation and backfilling of missing data, are discussed together with their
respective advantages and disadvantages.

2.1 Approaches to Yield Curve Estimation
The Term Structure of Interest Rates, or the Yield Curve (the two expressions will be used
analogously throughout this document), is a powerful financial tool. It illustrates the re-
lationship between the yield of a zero-coupon bond and its time to maturity. The term
structure of interest rates is an essential ingredient within portfolio management, financial
engineering and financial risk management and is frequently used for pricing of defaultable
bonds and credit derivatives. Another example of its application is the calculation of Value
at Risk (VaR) with means of Historical Simulation, where future scenarios are generated
based on historical changes in interest rates and credit spreads (Houweling et al., 2001; Lin,
2002).

Due to its popularity, estimating the yield curve has become a common practice and there
is a wide range of methods designed for the purpose. Whichever technique a practitioner
chooses there are a number of specifically desired properties of a good yield curve estimation.
As mentioned in Nawalka and Soto (2009), the following characteristics should be obtained:

• The estimated curve should give suitable fit of the data.

• Estimated zero and forward rates should remain positive over the estimation period.

• Countinous and smooth functions should be fitted to the discount function, zero yields
and forward rates.

• The estimated curve should allow for asymptotic shapes.

8



The main challenge one must face when modeling the yield curve is caused by characteristics
of the sample data used for the estimation. This holds regardless if one wishes to model the
discount function, the spot curve or the forward curve, three analogous approaches (Lin,
2002). The term structure as such is seldom directly observable in terms of market nota-
tions. It must instead be estimated from available prices and yields of desired products.
Commonly used as a mean of obtaining zero rates, is the yield to maturity for a coupon
bearing bond (which in turn can be seen as the internal rate of return that gives the bond’s
present value as all cash flows are discounted).

Among the predecessors of yield curve estimation one can find polynomial splines by Mc-
Culloch (1971, 1975), exponential splines as in Vasicek and Fong (1982) and the equilibrium
model created by Cox et al. (1985). During later years, models such as the Nelson Siegel
(Nelson and Siegel, 1987), with the extension of Svensson (1994), together with different ver-
sions of B-splines (see for example Ioannides (2003) and Lin (2002)) are popular approaches.

The basic relations between bond prices, zero rates and forwars rates will not be presented
in this section. It is assumed that the reader is familiar with these. If this is not the sace,
or if one simply wants a reminder, it can be helpful to review Nawalka and Soto (2009) for
a fundamental explanation.

2.1.1 Piecewise Spline Estimation
Using piecewise defined functions, splines, to obtain a complete representation of the yield
curve is a well-tried method. One of the strengths of splines is that an a priori curvature
of the term structure does not have to be imposed. This is fully determined by the data to
which the splines adjust. The revolutionary example is given by McCulloch and his attempt
to estimate the discount function with the help of polynomial splines (McCulloch, 1971),
but the subsequent variations are many.

Polynomial Splines by McCulloch

The discount function δ(m), where m is the maturity denoted in years, tells us the present
value of one unit of a given currency repayable in m years. The further ahead in the future
a payment takes place, the lower is its value today. With an increasing m, δ(m) typically
decreases exponentially towards zero. Since the value of one unit today is exactly one unit,
δ(0) = 1 by construction. If one achieves to properly estimate the discount function, calcu-
lating the corresponding yield to maturity, as well as the forward rate, for a given coupon
bearing bond, becomes a straightforward task.

Perhaps not surprisignly, McCulloch’s approach to modeling the yield curve builds upon
such an estimation of the discount function. His idea is that the discount function can be
estimated piecewise using continously defined and differentiable polynomials on subsections
of the sample interval of times to maturity (McCulloch, 1971, 1975). McCulloch suggests
representation (2.1), where the discount function is defined as a linear combination of a
number of such functions f():

δ(m) = 1 +
k∑
j=1

ajfj(m) (2.1)
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If k functions are used, k subintervals must be defined and k + 1 knots, that define the
subintervals for the various functions, are required. McCulloch initially sets the functional
forms as quadratic polynomials and obtains the estimates of the coefficients aj by a weighted
least squares regression (McCulloch, 1971). Instead of estimating an additional constant a0
in the above equation, it can immediately be replaced by 1, as δ(0) = 1 by definition.

Since the zero yield at maturity m can be expressed as the average forward rate up until
this maturity, and by using the fact that the forward rate ρ(m) is the factor of decay for
the exponentially decreasing discount function δ(t), McCulloch derives an expression for the
yield curve η(m) as:

η(m) = − 1
m

∫ m

0
ρ(x)dx = − 1

m
ln(δ(m)) (2.2)

In a later example, McCulloch makes adjustments to his model to incorporate tax effects.
They can have a distorting effect on the curve, severely affecting its shape, if they are not
taken into consideration (so McCulloch (1975)). In connection to these changes, he replaces
the quadratic functinal forms by cubic polynomials with the motivation that they are more
flexible, thus adapt faster to the behaviour of the discount function, and that they provide
a smoother representation of the forward curve. However, any other p-degree polynomial,
p − 1 times differentiable, can be used if preferred. The modified model is presented in
equation (2.3) where t denotes the estimated tax rate.

η(m) = − 1
m(1− t)

∫ m

0
ρ(x)dx = − 1

m
ln(δ(m)) (2.3)

One uncertainty with McCulloch’s model is related to the the number of connecting knots
one wishes to use for the estimation. If they are too few, the adjustment of the curve to its
actual shape becomes slow and a good fit can be difficult to obtain, especially for shorter
maturities. If the knots are too many, there will instead be a risk of overfitting and possible
outliers can have a large impact on the shape of the curve. When knots are unevenly
distributed, the polynomial spline also tends to oscillate and the curve can generate values
that are inconsistent with the behaviour of a discount function.

Exponential Splines by Vasicek and Fong

As already stated by McCulloch, the discount function is practically of exponentially de-
creasing shape. Vasicek and Fong (1982) uses this fact in their claim that the application
of polynomials therefore is unsuitable for its estimation. They find that polynomials can be
forced to appear exponential, if the number of knots are sufficient, but despite an arbitrarily
good fit within sample, polynomials have undesirable asymptotic properties and should not
be used for discount function estimation.

The authors find it more appropriate to use exponential splines which according to them
fit the data well, give smoother forward rates and show desirable asymptotic characteristics
for longer maturities. Their basic model for the price of a bond expressed in terms of the
discount function D(), given below for the k:th bond among a total of n bonds, is:

Pk +Ak = D(Tk) +
Lk∑
j=1

CkD(Tk − j + 1)−Qk −Wk + εk, k = 1, 2, . . . , n (2.4)
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where,

D(·) = is the discount funtion.
Ak = denotes accrued interest.
Pk = the price of the bond.
Tk = time to maturity measured in half years.
Ck = semiannual coupon rate.
Qk = denotes tax effects.
Wk = denotes effects for callable bonds.
εk = residual term, for which E[εk] = 0.

That the model is expressed in terms of the discount function rather than forward rates or
yields is because bond prices are linear in the discount function which simplifies the estima-
tion. When the discount function has been estimated, standard relationships make it easy
to derive corresponding forward rates and yields. In order to further simplify computations,
Vasicek and Fong impose the following transformation of the argument t:

t = − 1
α

log(1− x), 0 ≤ x < 1. (2.5)

and define the function G(x) such that:

D(t) = D

(
− 1
α

log(1− x)
)
≡ G(x) (2.6)

Since the discount function is exponential, its logarithm is basically represented by a straight
line which can easily be estimated by splines. This is the purpose of imposing above trans-
formation that results in the function G(x), which displays desired logarithmic properties.
The authors choose to define G(x) as a cubic polynomial and a transformed version of equa-
tion (2.4) can be estimated using least squares regression. Without presenting a too high
level of details, and with the help of imposing transformation (2.5), the discount function
can be expressed in it’s original parameter t in the following way:

D(t) = a0 + a1exp(−αt) + a2exp(−2αt) + a3exp(−3αt) (2.7)

Vasicek’s and Fong’s model, which the authors denote third order exponential splines, gives
an extensive representation of the term structure and leaves few things unsaid. However,
exponential splines can give similar properties as polynomials, namely that the yield curve
can display a sharp curvature towards longer maturities which is highly unlikely to occur in
reality where an asymptotic behaviour generally can be seen (Nelson and Siegel, 1987).

B-Splines

A third example of functional forms of the spline family are the B-Splines.1 B-Splines have
also become popular among practitioners and examples can be seen where B-Splines are fit-
ted to the discount function, the forward curve and the yield curve (Lin, 2002). In Houweling
et al. (2001), B-Splines are even used to model the spread curve between a default-free gov-
ernment curve and a defaultable corporate curve, with satisfactory results.

1B is in this case short notation for Basis.
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Lin (2002) presents an example of B-Spline application, as he uses the method to esitmate
the yield curve of Taiwanese government bonds. With the notations of Lin each basis
function of a B-spline interval can be expressed as:

gps (t) =
s+p+1∑
i=1

 s+p+1∏
j−s,j 6=i

1
Tj − Ti

 [max(t− Tj , 0)]p (2.8)

gps (t) is the s:th p-order B-Spline function which is non-zero only if t ∈ [Ts, Ts+p+1], s =
1, 2, . . . ,m, and wherem is the number of subperiods between t = 0 and the longest maturity
bond of the sample. This shows that a p-order spline only is defined in p + 1 subintervals.
Furthermore, p+m functions are needed, defined between a total of 2p+m+ 1 knots. An
example of a set of basis functions can be seen in figure 2.1 below.

Figure 2.1: A set of basis functions defined on different intervals (Filipović, 2009).

In Houweling et al. (2001) the authors select a somewhat unusual setup as they attempt to
jointly model a default-free government curve together with a defaultable corporate spread
curve. It is believed by the authors that such setup results in smoother and more realistic
spreads than if the two yield curves are modeled separately, where the spread curve is ob-
tained by subtracting the government curve from the corporate yield curve.

Like McCulloch (1971, 1975) and Vasicek and Fong (1982), the authors place their focus on
the discount function. Additionally, they categorize the sample bonds based on character-
istics (such as credit rating and industry) and define the joint model, decomposed into the
two curves, as:

D1(t) = d(t)

Dc(t) = d(t) + sc(t), c = 2, 3, . . . , C (2.9)

In equation (2.9), Dc(·) denotes the discount curve of bond category c, d(·) is the government
discount curve and sc(·) is the discount spread curve for bond category c. When applying
B-Splines, the representation of equation (2.9) is transformed into:

D1(t) = g1(t)β1

Dc(t) = g1(t)β1 − gc(t)βc, c = 2, 3, . . . , C (2.10)

12



In representation (2.10), the authors choose to model the government yield curve by cubic
B-Splines. The corporate spread curve however, is modeled by quadratic B-Splines. The
motivation behind this choice, is that the spread curve generally displays less complicated
shapes than the yield curve and is better represented by quadratic basis functions which
reduces flexibility as well as degrees of freedom. The unknown spline weights β1, β2, . . . , βC
are estimated by restricted feasible generalized least squares.

One of the main disadvantages of the B-Spline methodology is the effect of the chosen knots
on the result. Lin (2002) selects points ad hoc which could cause unrealistic curve shapes if
placed inappropriately. Another drawback is the asymptotic behaviour of the method. Out
of sample estimates cannot be obtained and due to this, despite satisfactory results from the
application of B-Splines, Lin expresses concerns and mentions that an exponential spline
representation as in Vasicek and Fong (1982), is a more appropriate choice.

2.1.2 The Nelson-Siegel-Svensson Models
Among the most popular methods for yield curve estimation, even applied at a number
of central banks, are the Nelson-Siegel model and its extension by Svensson (Nelson and
Siegel, 1987; Svensson, 1994). The desire of Charles Nelson and Andrew Siegel was to create
a model that fits the whole family of basic shapes of the yield curve and not just creates
a local approximation to observations. They also wanted a model that could be used for
prediction beyond the sample range, something they found that many existing approaches
failed to do.

The authors instead believed that the class of functions which can create the typical shapes
of the yield curve are associated with solutions to differential equations. Their suggested
model is based on the idea that the instantaneous forward rate of maturity m, here denoted
r(m), can be explained by such solution (equation 2.11); namely that to a second order
differential equation.

r(m) = β0 + β1 exp(−m
τ

) + β2

[
(m
τ

) exp(−m
τ

)
]

(2.11)

The yield to maturity R(m) can further be derived from the relation between forward rate
and yield:

R(m) = 1
m

∫ m

0
r(x)dx (2.12)

which finally gives the expression for yield to maturity:

R(m) = β0 + (β1 + β2)
[
1− exp(−m

τ
)
] m
τ
− β2 exp(−m

τ
) (2.13)
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In equations (2.11) and (2.13) above, τ denotes a time constant that determines the rate of
which the regressor values (simplified as m exp(−m) and exp(−m)) decay to 0. A small τ
implies a fast decay and a very flexible adjustment of the curve whereas a large τ implies a
slow decay which would fit curvature for longer maturities where sharp shifts in the curve
are rare.

The coefficients β0, β1 and β2 have relatively intuitive interpretations in the representation
of the forward curve (equation (2.11)). β0 is the long term component to which the curve
converges as the maturity grows large, β1 is the short term component that quickly becomes
insignificant and β2 is the medium term component that starts at zero, initially grows with
the maturity m, and decreases again as the exponential term in the regressor takes over. β2
thus creates a hump shape in the yield curve.

The creators claim that the suggested model gives a flexible and parsimonious representation
of all shapes generally associated with the yield curve: monotonic, humped and s-shaped.
In their application of the model on US Treasuries, they found that it could explain up to
96% of the variation in yields.

Lars Svensson (1994) wanted to further increase the flexibility and improve the fit of the
model suggested by Nelson and Siegel, in his attempt to model and analyze Swedish forward
rates. To achieve this he introduced a second hump shape, thus adding the two parameters
τ2 and β3 to the original formula, which gives the representation of the instantaneous forward
rate:

r(m) = β0 + β1 exp(−m
τ1

) + β2

[
(m
τ1

) exp(−m
τ1

)
]

+ β3
m

τ2
exp(−m

τ2
) (2.14)

Furthermore, the zero yield curve is then given by:

R(m) = β0 + β1

(
1− exp(−m

τ1
)
)(
−τ1
m

)
+ β2

[(
1− exp(−m

τ1
)
)
τ1
m
− exp(m

τ1
)
]

+β3

[(
1− exp(−m

τ2
)
)
τ2
m
− exp(m

τ2
)
]

(2.15)

Coefficients are estimated with linear least squares by Nelson and Siegel and with Maximum
Lieklihood by Svensson. Svensson however emphasizes that other estimation techniques also
can be applied. An illustration of curves that can be obtained by the two estimation tech-
niques can be seen below in figure 2.2 where Korean government zero yields are used as base
for the estimation. The figure shows that both estimation techniques yield good results
when data of high quality is used.

Various studies show that the two models of Nelson, Siegel and Svensson are far better than
others, something which was also found in a comparison of estimation techniques of the UK
goverment curve by Ioannides (2003). Shortcomings of the models do however exist, for
example when the sample data is of poor quality. Irregularly placed observations can force
the models to create unrealistic humps and depending on the estimated parameters β1 and
β2, the curve can sometimes take off to infinity as the maturity goes to zero.
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Figure 2.2: Example of yield curve estimation using the Nelson-Siegel and Svensson Models. Curves are
estimated for maturities between 3 months and 20 years and are based on 13 zero yields of Korean goverment
bonds on December 14th 2009. Both curves display a good fit to the underlying data, smooth curvature
and desired asymptotic properties.

2.1.3 Estimating the Yield Curve with the means of PCA
Prinicpal Component Analysis (PCA) has become a popular estimation method when deal-
ing with interest rates. It can be used to derive the driving components of the stochastic
movements of the term structure and can be applied both on the forward curve and directly
onto the yield curve (Filipović, 2009). The transformed data representation in terms of the
Principal Components for example helps identifying key drivers of risk and thus facilitates
portfolio risk management. For a detailed technical description of PCA the reader is referred
to chapter 3 section 3.5, where the full procedure is explained.

The high colinearity that characterizes the term structure of interest rates is what makes
it suitable for PCA. Dimension reduction, one of the main purposes of PCA, can be done
successfully after which the variation in the term structure can be explained by just a few
components. The typical PCA representation of the yield curve contains three components
which explain a significant part of the total variation. These components are referred to
as the trend, tilt and curvature components. For interest rate modeling in industrialized
currencies, more than 95% of the variation in the data set is explained by these components,
whereas smaller Emerging Market currencies might need a larger set of components, due to
a higher level of illiquidity (Alexander, 2009).
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2.2 Imputation of Missing Data
As discussed in the introductory chapter (section 1.2), missing values cause large problems
for statistical analysis of univariate and multivariate data sets. Estimating these values
with any method can lead to biased estimates of sample covariances, means and standard
deviations as well as causing incorrect conclusions drawn from various statistical analyses
(Stanimirova et al., 2007). However, excluding them can create just as much error and loss
of prediction power (Heitjan, 1997). Many statistical analysis methods require complete
sample data, which gives the practitioner no other choice but to fill gaps with various types
of backfilling methods (Zhang et al., 2008).

Common approaches for filling unobserved or missing values are for example variations of
single or multiple imputation together with the Expectation-Maximization algorithm (gen-
erally referred to as the EM-algorithm). Another possibility is to assume a distribution
based on the observed data from which values are simulated. In this section, a number of
methods found relevant for this study are discussed, many of which rely on the statistical
tool Principal Component Analysis (PCA).

2.2.1 An Evolutionary Algorithm
In a somewhat creative approach introduced by Figueroa-Garcıa et al. (2008), univariate
time series with missing data are filled with what the authors refer to as an iterative evo-
lutionary algorithm where parallels can be drawn to the field of genetics. The algorithm is
based on the minimization of a fitness function derived from a time series’s autocorrelation
function, mean and variance.

By using the largest and most recent complete subset l of the original time series xt, the
sample autocovariance function of the set is defined as:

γ̂(h)l =
n2−|h|∑
t=n1

(xt+|h| − x̄)(xt − x̄)
n

, (n1 + n2) < h < (n2 − n1), n1, n2 ∈ T (2.16)

In equation (2.16), t is the general time index of the time series xt and (n1, n2) are the lower
and upper bounds of an index vector ν containing all positions of missing values in xt. By
computing the mean and variance for xt, based only on observed values and denoted x̄a and
V ar(xa), the fitness function to be minimized can be expressed as:

κ =
H∑
h=1

[|ρ̂(h)l − ρ(h)|] + |x̄a − x̄|+ |V ar(xa)− V ar(x)| (2.17)

where ρ̂(h)l is the autocorrelation function defined on the subset l given by standard relation
with the autocovariance function.
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The authors apply their model onto a set of weather time series and obtain satisfactory
results. However, applied on a larger set of data, the correlation structure is ignored by
only placing focus on univariate characteristics of the time series (within the scope of this
study, interest rate time series can be mentioned as an appropriate example). Additionally,
despite the authors’ attempt to create an understandable algorithm by descriptive parallels,
it becomes somewhat complicated for the reader to follow.

2.2.2 Sequential Local Least Squares (SLLS)
In DNA Microarray Technology, missing values in time series is a common occurence. De-
spite this fact, most statistical algorithms require 100% coverage. To solve the issue, Zhang
et al. (2008) suggest a sequential local least squares estimator (SLLS) where k-neighbouring
genes are used as estimation base.

The sample genes are initially separated into two groups: those that are complete and those
that contain missing values. Thereafter the procedure starts with the gene with the lowest
non-zero fraction of missing values, referred to as the the target gene. The target gene
is regressed upon k neighbouring (complete) genes which are selected according to their
similarities with the target gene. With gi denoting the target gene, gs the k neighbouring
genes and xT their coefficients, the regression can be expressed as:

gi = x1gs1 + x2gs2 + . . .+ xkgsk = xTgs (2.18)

The target gene is thereafter redefined as the gene with second highest fraction of missing
values and the procedure is repeated. The previous target gene has now been transferred
to the group of genes containing complete data, and could thus be part of the regression
base when values are imputed in the subsequent target gene. Hence, only the first target
gene is certainly based upon originally full time series whereas following regressions also
might include already imputed genes. The optimal number of neighbouring genes, k, is not
defined as a constant but instead depends on the current target gene. The authors suggest
an automatic parameter selection algorithm to determine the value of k.2

The procedure continues until all missing values have been filled. However, a lower boundary,
that defines how high the rate of originally missing values can be for a gene to be used for
recreation of values in other genes, is set by the authors. This threshold rate, r0, is defined
as:

r0 =
∑m2
i=1 ci
m2n

(2.19)

where n is the total number of genes, m2 is the number of genes with at least one missing
value and ci the number of missing values in gene i.

The presented algorithm is relatively intuitive for the user but it has one main drawback.
It requires at least k complete genes for the initial target gene to be filled and can therefore
not be used on data sets where all series have a least one missing observation.

2The selection algorithm is not presented in this section. The reader is instead referred to the original
source of Zhang et al. (2008) for full details. However, the authors do emphasize the importance of the
parameter and compare it with the number of Principal Components that are used in PCA related imputation
methods.
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2.2.3 PCA Based Backfilling Routines
A substantial number of backfilling routines are related to the statistical method Principal
Component Analysis (PCA), of which a few relevant examples are presented below. For
complete technical details of PCA the reader is referred to section 3.5 in chapter 3.

Singular Spectrum Analysis (SSA)

Kondrashov and Ghil (2006) present a data adaptive parametric method referred to as Sin-
gular Spectrum Analysis (SSA) in their attempt to backfill missing values in spatio-temporal
data sets. The method is iterative and uses both spatial and temporal correlations. When
applied on both simulated and real data the method produces good results, for single miss-
ing values as well as longer continous gaps.

The method is based on an eigenvalue decomposition of a lag-covariance matrix, Cx, ob-
tained from the original data series Xt : t = 1, . . . , N , and embedded in an M ×M vector
space. The eigenvectors with corresponding eigenvalues, denoted Ek and λk, explain the
partial orthogonal variances of Xt where the sum of all eigenvalues gives its total variance.
By projecting the time series onto each eigenvector (here also referred to as EOF:s for Em-
pirical Orthogonal Function) the principal components are obtained, with the help of which
the time series can be reconstructed through the relation:

Rκ(t) = 1
Mt

∑
k∈κ

Ut∑
j=Lt

Ak(t− j + 1)Ek(j) (2.20)

In the above equation κ defines the set of EOF:s that are used for reconstruction, Mt is
a normalization factor and Lt and Ut denotes lower and upper bound, all of which are t-
dependent. Ak(·) denotes the positions of the principal component Ak.

After first centering the data set by its unbiased mean estimate and initially replacing miss-
ing values by zeros, the algorithm starts off by using the first EOF, E1, and reconstructing
the data by applying relation (2.20). This gives the first reconstructed component (R1) of
the data and non-zero values are now imputed in positions for originally missing values. The
estimation is thereafter repeated, still using only E1. When convergence has been reached,
the second EOF, E2, is added and missing values are again reconstructed until convergence
using the two vectors E1 and E2. So the algorithm continues until convergence is reached
as all the first κ EOF:s are used.

One of the weaknesses of the SSA algorithm presented by Kondrashov and Ghil (2006) is
how to define the parameters κ and M . Optimal values differ between data sets and the
authors find values for each set through cross-validation. The method does however seem
to yield good results, even for longer continuous gaps in the original series.
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EM-PCA and EM-SPCA

Despite the popularity of Principal Component Analysis, the method does have a number
of shortcomings. It is highly sensitive to outliers and does not treat missing values sophisti-
catedly, two properties which are common in experimental data. Stanimirova et al. (2007)
present a robust PCA, designed with the purpose of performing PCA on datasets where
missing values and outliers occur, which also imputes values. They refer to the method as
Expectation-Maximization Spherical PCA, or simply EM-SPCA. 3

The data set X is initially centred around its robust centre, here defined as the L1-median,
and thereafter projected onto a subspace; a hypersphere with the radius 1. The projected
version of a vector xi (denoted xpi ) can be expressed as:

xpi = xi − µL1(X)
||xi − µL1(X)|| + µL1(X) (2.21)

where µL1 is the L1-median centre and || · || denotes the Euclidean norm, here used as a
weight factor. Classical PCA is then performed on the projected data, from which an esti-
mate of X can be obtained with the help of robust loadings and factors, and missing values
can be filled. The complete algorithm roughly follows the steps presented below.

After replacing originally missing values by the row and column means the algorithm is initi-
ated with robust centering (as mentioned above). The data set is projected and an eigenvalue
decomposition is performed on this projected set, from which values are reconstructed with
obtained principal components. The authors suggest to use the s first principal components
which explain about 80% of the variation in the data. The algorithm is then iterated until
convergence is reached, which is measured with the help of the objective function defined
for the k:th iteration as:

SSk =
∑
p

∑
q

(xp,q)2, p, q ∈ missing elements (2.22)

The algorithm is similar to "normal" EM-PCA where the procedure is identical but instead
of robust loadings and factors, standard loadings and factors are used. The number of
necessary iterations varies depending on the amount and positioning of missing values but
convergence is generally reached faster if the correlation structure in the data is well defined.
However, no matter the number of iterations, one of the strengths of the EM-algorithm is
that it always converges to its optimal solution. In the case where outliers exist, the authors
show that EM-SPCA outperforms standard EM-PCA.

Regression-based PCA

Another suggestion of PCA related backfilling procedures is presented by Grung and Manne
(1998). They have selected a regression based method in which factors and factor loadings
are obtained by a two-step regression. Although corresponding factors and loadings do not
display the property of orthogonality, this can easily be obtained by one additional operation.

3The EM-algorithm will not be further explained in this study. For a specific explanation readers can
for example turn to Moon (1996) found in the list of references.
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Consider the M ×N data matrix Y with some values Yij missing. Further consider the ma-
trix X which contains the values from Y but where missing observations have been replaced
by zeros. The relation between Y and X can be described with the help of a third matrix,
namely the index matrix C for which Cij = 1 where Yij is known and zero otherwise. The
relation between all three matrices can be expressed by Xij = CijYij and for the matrix C,
C2
ij = Cij also holds. With the help of this notation a set of regressions can be performed

as below.

Define the matrices A(i) and B(i), where A(i)
jk = Cijpjk and B(j)

ik = tikCij . The variables pjk
and tik are values of the factors t(i) and the loadings p(j). These values can be obtained by
the following two regressions which are based on minimizing an objective function F (not
presented here):

t(i) = x(i)A(i)(A(i)TA(i))−1 (2.23)

p(j)T = (B(j)TB(j))−1B(j)T x(j) (2.24)

In the above equations, x(i) and x(j) are the i:th row and the j:th column of the matrix X
respectively. As previously mentioned, the factors and factor loadings obtained from above
regression are not orthogonal. By estimating Y with Ŷij =

∑
k tikpjk, where missing values

now have been filled with respect to the minimized objective function F , standard PCA can
be performed on this estimate and orthogonality properties will be obtained.

The authors show that the method works well on data sets with fractions of missing values
up to 25%, but that its performance is heavily dependent on their positions. If more than
25% of the values are missing, convergence which again is measured with the help of the
objective function, takes a long time to reach.
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Chapter 3

Theoretical Framework

In this chapter a theoretical framework, found necessary as foundation for this study, is
presented. Relevant procedures for term structure estimation are described together with
the GARCH(1,1) process, commonly used for financial time series modeling. The final part
of the chapter covers the statistical tool Principal Component Analysis (PCA).

3.1 The Bootstrap Method
To obtain a good estimate of the term structure of interest rates might seem simple, if only
one had a set of zero-coupon bonds at hand. Since zero yields are difficult to observe directly
in the market they must be estimated and a common means for this is the Boostrap method.
It provides a simple and straightforward approach and is based on iterative calculation of
zero yields from coupon bonds with increasing maturiy. An illustrative example is given by
Nawalka and Soto (2009) and is recited below.

Consider a set of N bonds that pay semiannual coupons where the shortest maturity bond
reaches maturity within six months. Let t1, t2, t3, . . . be the times for coupon payments,
where t1 denotes six months from today. The price of this bond, with continous compound-
ing, is given by:

P (t1) = Ct1 + Ft1
exp(y(t1)t1) (3.1)

where Ct1 and Ft1 denote the semiannual coupon payment and the face value of the bond
respectively. y(t1) is the annualized six month zero-coupon yield, corresponding to the first
determined point on the yield curve, and which easily can be obtained with the help of
equation (3.1).

When the six month zero yield has been obtained, the one year zero yield (where t2 denotes
one year) can be calculated from relation (3.2). P (t2) here denotes the price of a one year
coupon bond, Ct2 the semiannual one year coupon paid at times t1 and t2, Ft2 the face
value of the bond paid after one year and y(t2) the annualized one-year zero-coupon yield:

P (t2) = Ct2
exp(y(t1)t1) + Ft2 + Ct2

exp(y(t2)t2) (3.2)
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Typically assumed when the Bootstrap method is applied, is that the zero curve is linear
between determied points on the curve. Zero rates for maturities that lie in between these
points can thus be obtained by simple linear interpolation. One other common character-
istic is to define the yield curve as horizontal outside of maturities framed by determied
points. This approach can in fact be seen as the simplest of examples on how to obtain
a reptresentation of the yield curve. However, the only time when the Bootstrap method
with linear interpolation can be of good use, is when one has a relatively large set of bonds
evenly distributed over desired maturities (Hull, 2006).

3.2 Smoothing Splines
A set of functions, piecewise defined between a number of connecting knot points that
together represent an arbitrary curve, are more commonly known as splines and have previ-
ously been disussed in chapter 2. The functional form of a spline can vary and a number of
popular examples are found in section 2.1.1. Splines sometimes suffer from the problem of
overfitting and can display undesired rapid oscillations or too high adjustment to outliers.
To prevent such properties, the spline can be smoothed by introducing a penalty function,
which penalizes excess variability of the fitted curve. A descriptive example by Fisher et al.
(1995) is presented below.

Consider the example of the term structure of interest rates and let h(τ) denote an arbitrary
spline function representing it, where τ denotes the time to maturity. Furthermore let h(τ)
be related to the discount function δ(τ) through a functional transformation g(h(·), τ) ≡
δ(τ). The application of a smoothing spline will here penalize excess variability in the
discount function so that a large number of knot points still can be used without causing
overfitting or oscillation. The penalty function is defined as a constant multiplied by the
integral (over all observed times 0, . . . , T ) of the squared second derivative of the spline
function and thus takes the following form:

λ

∫ T

0
h′′(τ)2dτ (3.3)

λ is sometimes referred to as the "smoothing factor" and decides to which extent the curve
should adjust to the data as oppose to being smooth. λ = 0 implies no smoothing and cor-
responds to the application of a normal interpolating spline whereas with a growing value
of λ the curve eventually converges to the least squares fit of a straight line.

With the penalty function defined as in (3.3) the optimal smoothing solution is found by
simply minimizing the residual sum of squares plus the penalty function. In the case of term
structure estimation, and with the help of the current prices pi, coupon vectors ci (one for
each bond, containing all its coupon payments) and the functional transformation g(·), the
expression to minimize over all bonds i = 1, . . . , n takes the form:1

min
h(τ)∈H

[
n∑
i=1

pi − cTi g(h(·), τi))2 + λ

∫ T

0
h′′(τ)2dτ

]
(3.4)

1Furthermore, H denotes the subspace of all possible functions on R+, twice differectiable with second
derivatives that integrate to a finite value.
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By smoothing the spline representation, previously mentioned shortcomings of standard
splines can be reduced and a more stable curve estimate can be obtained. Due to the reduc-
tion in estimated parameters, the risk for poor curve fitting due to ad hoc parametrisation
is also reduced. Though the example presented in this section is based on a term structure
estimation, a smoothing spline can of course be applied on any other curve that one desires
to estimate with the method. Figure 3.1 illustrates a smoothing spline fitted to a higher
order polynomial with two different values of the smoothing factor.

Figure 3.1: A smoothing cubic spline is fitted to the higher order polynomial y = x4 − x3 − 10x2 − 5x with
the two different smoothing factors λ1 = 0.1 and λ2 = 0.2.

3.3 GARCH Models
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is a time series model
introduced by Bollerslev (1986). Similar to the extension of AR processes to ARMA, the
GARCH process is an extension of its predecessor, the ARCH process, first introduced by
Engle (1982). The main purpose of the GARCH model is to predict conditional variances
of a random variable. The more flexible lag structure and parsimonious data representation
that GARCH permits for are found among its strengths (Bollerslev, 1986). Tsay (2005) also
emphasizes how GARCH models are designed to capture volatility clustering of returns, a
common phenomenon in high frequency financial data.

Within the econometric field, GARCH and ARCH models have become standard tools for
volatility related questions, such as forecasting and analysis (Engle, 2001). Periods of high
or low volatility have important implications for financial risk measurement as well as for
pricing of financial products. Since volatility clustering effects is typically seen in short term
data, GARCH is generally applied on daily or intraday data (Alexander, 2009). Addition-
ally, GARCH displays a mean reverting property of volatility and is designed to deal with
heteroskedastic error terms, another issue that normally arises when dealing with financial
time series (Engle, 2001). A widespread number of applications of GARCH exist and there
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are various extensions of the model.

3.3.1 Symmetric Normal GARCH

GARCH(1,1), also denoted Symmetric Normal GARCH, is the simplest and most robust in
the family of volatility models. The general representation of a time series Xt which follows
a GARCH(1,1) process is (Penzer, 2007):

Xt = σtεt

σ2
t = c+ bX2

t−1 + aσ2
t−1, Ft−1 (3.5)

In the above expressions, Xt is zero-mean distributed and σ2
t denotes its conditional variance

at time t, given the information set Ft−1, containing all relevant information from the infinite
past at time t. εt is a series of iid random variables where E[εt] = 0 and V ar(εt) = 1. [a, b, c]
are the estimated GARCH coefficients defined such that a, b ≥ 0, c > 0 and a + b < 1. In
financial applications, Xt is sometimes said to be the market shock, generally given by the
mean deviation of the return series (Alexander, 2009). Although, assuming that the returns
themselves are zero-mean distributed and follow a GARCH(1,1) model is also a common
approach. Furthermore, the GARCH parameters a, b and c are estimated by maximizing
the log-likelihood function (equation 3.6), found to be a systematic approach to obtain the
best possible fit (Engle, 2001):

−2lnL(θ) =
T∑
i=1

(
ln
(
σ2
t

)
+
(
εt
σt

)2
)

(3.6)

Despite treatment of volatility clustering, the symmetric normal GARCH is not always an
optimal model to describe financial time series. One reason for this is correlation clustering,
which refers to increasing correlations between different assets when financial markets are
more volatile. Nor does symmetric normal GARCH take the direction of returns into con-
sideration and thus ignores the possibility that periods during which markets decline, have
a larger impact on volatilities than upwards moving markets do, referred to as the "leverage
effect", typically seen for equity and commodity markets and for which credible evidence
exists (Alexander, 2009; Tsay, 2005).

To fully capture the characteristics of correlation clustering, a multivariate extension of the
model is required. The extension to a multivariate GARCH model is however complicated.
With an increasing number of time series, the number of parameters to be estimated in-
creases fast and a growing covariance matrix makes positive definite estimation more and
more difficult. Some models allow for low level multivariate GARCH estimation, such as the
BEKK-representation but it remains that the application of multivariate GARCH is very
difficult in practice.2 To further reflect the leverage effect, an asymmetric GARCH model
such as A-GARCH or GJR-GARCH would be a better choice (Alexander, 2009).

2The BEKK-representation is fully presented in Alexander (2009), page 165.
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3.4 The Kalman Filter
The Kalman filter is a recursive process that provides a procedure for filtering of time-
discrete linear data series (Welch and Bishop, 1995). It was invented by Rudolf E. Kalman
during the 1960:s and has become a much appreciated tool. The Kalman filter separates
the state variable x from a prediction error which is believed to be caused by the estima-
tion measurement z. One of the strengths with the Kalman filter is that it can be used also
in the presence of missing data; the procedure simply builds over such period in the data set.

Consider the discrete-time state variable x ∈ Rn together with a measurement z ∈ Rm,
described by the expressions:

xk = Axk−1 +Buk−1 + wk−1 (3.7)

zk = Hxk + vk (3.8)

where wk and vk are the process and the measurement noise for which w ∼ N(0, Q) and
v ∼ N(0, R), where R and Q are the process and measurement covariance matrices. Fur-
thermore, the matrix A defines the relation between the current and previous state variable
(xk and xk−1) and the matrix H relates the state variable to the measurement z. (u denotes
an optional control input related to the state variable x through the matrix B.)

The Kalman filtering equations for a series of the described character are then given by:

Time update equations:

x̂−k = Ax̂k−1 +Buk−1 (3.9)

P−k = APk−1A
T +Q (3.10)

Measurement update equations:

Kk = P−k H
T
(
HP−k H

T +R
)−1 (3.11)

x̂k = x̂−k +Kk

(
zk −Hx̂−k

)
(3.12)

Pk = (I −KkH)P−k (3.13)

P−k and Pk above, are the a priori and a posteriori estimate error covariance and Kk is
referred to as the Kalman gain.

The Kalman equations are thus divided into two types. The time updating equations create
a prediction of the next state xk by means of previously known information. When this
has been done, the measurement equations are applied to correct the initial measure of the
k:th state from the measurement error by first computing the Kalman gain and thereafter
adding it to the a priori estimate of xk to obtain its a posteriori estimate.
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3.5 Principal Component Analysis
Principal Component Analysis (PCA) is a powerful and flexible statistical tool dating back
to the beginning of the 20th century. Its main purpose is to reduce the dimensionality of a
large set of data while retaining as much variability as possible, mentioned among others by
Jolliffe (2002) and Alexander (2009). The model is commonly mistaken for a factor model
and even though similarities are many, Jolliffe claims that the main difference is the explicit
underlying model of a factor model, which does not exist in PCA.

The fundamental idea of PCA is to transform a data set into a new set of variables called
Principal Components. These variables are orthogonal and ordered such that the first com-
ponent explains more of the varialbility within the original data than the second principal
component, which in turn explains more than the third principal component and so on (the
cumulative explained variability is generally high already after just a few components). Fur-
ther analysis can thereafter be carried out directly on the principal components, something
that significantly simplifies computations as the size of the data set has been reduced. As a
pure statistical tool, the derived components do not need to have an interpretation but in
the case where a lot of colinearity exists, interpretations can be found.

PCA has been applied in a large number of contexts and Jolliffe (2002) mentions an im-
pressive number of 14 fields of application in the introducing chapter of his book. He
also presents elaborated examples for spatio-temporal analysis, how PCA can explain the
variability in human anatomy and how it can be used for demographic mapping of living
arrangements among elderly. PCA has become a very important tool also in the field of
finance as well as for data imputation, something which will be applied in this study.

3.5.1 Deriving the Principal Components
The Principal Component representation (described by Alexander (2009)) is defined as
follows: Let X be a T × n matrix of random variables and let V be its corresponding n× n
covariance matrix (or correlation matrix if preferred). Furthermore, let W be the n × n
orthogonal matrix of V. The T × n matrix P, where columns that correspond to principal
components (as an exact linear combination) of X, is then given by the relation:

P = XW (3.14)

or analogously,

X = PWT (3.15)

where WT = W−1 since W is an orthogonal matrix.

By selecting the first k columns of P and W and thus creating P∗ and W∗, an approxi-
mantion of X can be obtained through the relation:

X∗ = P∗W∗T (3.16)

where P∗ hopefully explains as much as possible of the variation in the original data.
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The principal components are thus retrieved through an eigenvalue decomposition of a
covariance or correlation matrix of a set of observed variables. The i:th eigenvalue λi of V
is obtained by taking the sum of squares of each element in the corresponding i:th principal
component. Given that the total variation is explained by the sum of the eigenvalues of V,
one can easily derive an expression for the fraction of the variability which is explained by
the first k components (Alexander, 2009):

λ1 + . . .+ λk
λ1 + . . .+ λn

(3.17)

Example

Consider the three randon variables (z1, z2, z3) together defining the matrix Z. Observations
are available of all three variables during a fixed time period t = 1, 2, . . . , 10, as shown below:

Z ≡ (z1, z2, z3) =



−0.330 −0.255 −0.222
−0.200 −0.185 −0.162
0.040 0.044 0.058
0.090 0.105 0.108
0.110 0.125 0.128
0.060 0.105 0.098
0.140 0.105 0.098
0.110 0.065 0.058
−0.130 −0.165 −0.172
0.110 0.055 0.008


(z1, z2, z3) are all zero-mean distributed by definition but if the data does not display this
property it should be centered around its mean before PCA is performed. If the practitioner
desires to reconstruct the original data from its transformed version, it is simple to add the
originally estimated mean on top of the vectors after reconstruction which will result in the
original set of observations.

The covariance matrix of Z is given by Σ:

Σ =

0.0261 0.0224 0.0201
0.0224 0.0205 0.0189
0.0201 0.0189 0.0177
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Performing Principal Component Analysis on the covariance matrix Σ of Z and using no-
tations as defined above gives us the matrix P of principal components:

P =



−0.4707 −0.0410 0.0039
−0.3169 −0.0001 −0.0057
0.0813 −0.0180 −0.0074
0.1733 −0.0274 −0.0006
0.2078 −0.0301 −0.0011
0.1490 −0.0432 0.0120
0.1998 0.0158 −0.0063
0.1371 0.0287 −0.0077
−0.2663 0.0529 −0.0003
0.1054 0.0625 0.0133



together with the orthogonal matrix W of Σ:

W =

0.6350 0.7377 −0.2292
0.5697 −0.2468 0.7839
0.5217 −0.6284 −0.5770



With this representation it is now a simple task to reconstruct the original data by executing
the expression X = PWT (equation 3.15) or with a reduced set of principal components
through X∗ = P∗W∗T (equation 3.16).

3.5.2 PCA in Practice
The number of components one should use in equation (3.16) to estimate the matrix X∗
depends on how much of the variability one wants to explain, as well as on the colinearity
within the original data set. In highly colinear sets, already the first few principal compo-
nents can give the desired level of explanation. In fact, if too many components are used,
one might increase the risk of introducing noise into the equation (Alexander, 2009). What
one must be aware of is that despite its strengths as a statistical tool, PCA is in general a
non-robust method. Outliers can highly affect the principal components, something which
is emphasized by Stanimirova et al. (2007).

To apply PCA on the correlation or the covariance matrix is yet another choice to be made
by the practitioner. PCA performed on the correlation matrix is less dependent on the units
in which the original data set is expressed and therefore produces more comparable results
between different sets of data. The covariance matrix on the other hand, is highly unit
dependet but gives results that are easier to interpret. Transforming between one or the
other when the components are computed is however not an easy task since the eigenvectors
of a covariance matrix has no simple relation to those of its corresponding correlation matrix.
One should therefore carefully consider this choice at forehand (Jolliffe, 2002). Within the
practice of finance, PCA is often used to model returns of portfolios and profit and loss
cash flows but also for assessment of financial risk. The covariance (or correlation) matrix
of equity returns or interest rate changes is then used as input.
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Chapter 4

Method

This chapter presents the methods that have been applied throughout this study. Its aim
is to provide the reader with enough information to understand how the work has been
conducted and to be able to follow each step of the process.

4.1 Estimating the term structure
Historical yield notations are downloaded for a number of bonds for each of a number of
different issuers. Let I = 1, . . . , k denote the various issuers. Yields are observed during
the five year period 2005.05.03 - 2010.04.30. Each time series of yields is inspected and
outliers are removed manually. Due to increasing volatility towards the end of a bond’s
lifetime, approximately the last month of notations before maturity is removed for all of the
sample bonds that reaches expiry during the observed time window. As issuer specific term
structures are desired, each issuer is now treated separately.

The term structure of interest rates for the issuer I, at a fixed day of the observed period,
is given by the relation between the zero yield of each of the issuers’s bonds and its current
time to maturity. Since observed notations correspond to coupon bearing yields, these must
first be transformed into zero yields for the representation of the yield curve to be correct.
By placing the yield for each bond of the issuer I in relation to its time to maturity and
thereafter applying the Bootstrap metod on the full set of bonds, yields are converted into
zero yields and the representation of the yield curve is corrected.1 Implementing the method
in Matlab is done with the function zbtyield(), from which zero yields are returned for the
same times to maturity which were used as input in the function.

The Bootstrap method is applied for each day of the observed period, always using all bonds
of the issuer I, for which yield notations are available on that day. The procedure is finally
repeated for the remaining issuers in the sample, resulting in a corresponding set of zero
yields for the entire set of observed bonds.

1Each time the Bootstrap method is applied, it by construction done so on a full term structure. Higher
maturity zero yields are constantly based upon already estimated zero yields for lower maturities of the
same curve. For a descriptive example the reader is referred to section 3.1 where the method is explained.
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With the aim to obtain yield time series at constant maturities, issuer specific yield curves
are estimated at each day of the observed period, based on previously estimated zero rates.
However, it was found that at least three zero yields are required, for the chosen estimation
techniques to produce sound results. On days where this criteria is not fulfilled, the yield
curve is not estimated and will further on be regarded as missing.2

Again consider the issuer I, for which a set of n bonds are observed. At a fixed day of
the observed period, let yi and Ti denote the yield and time to maturity of bond i, where
i = 1, . . . , n. Bonds are ordered such that T1 < . . . < Tn. Three different estimation
techniques are applied and can with defined notations be described as follws:

1. In the first approach, bootstrapped zero yields are connected through simple linear
interpolation between consecutive bonds, assuming constant forward rates. Thus, to
obtain the unknown yield y for the known time to maturity T , where Ti−1 < T < Ti
and generally yi−1 < y < yi, relation (4.1) for linear interpolation is used:

y = yi − yi−1

Ti − Ti−1
(T − Ti−1) (4.1)

For maturities outside of the sample maturity range, zero yields are assumed to be
constant. The yield curve for concerned maturities is thus represented by a horizontal
line.

2. The second estimation technique consists of a cubic smoothing spline, applied directly
onto the estimated zero yields with the help of the Matlab function csaps(). The
smoothing spline f is obtained by minimizing the sum of squares plus the penalty
function (compare with section 3.2) of the expression:

n∑
i=1
|yi − f(Ti)|2 + λ

∫ T

0
f ′′(T )dT (4.2)

Through visual inspection of estimated curves together with their fit to corresponding
zero yields, the smoothing factor λ is set to the relatively high value 0.6 which gives
a significant smoothing of the curve.3 Such strong smoothing is found necessary for
the curve not to display too high adjustment to the sometimes uneven positioning of
yield notations, thus preventing an oscillating behaviour of the curve. Furthermore, a
higher smoothing factor generally agrees with the smoothness typically characterizing
a yield curve. In order to obtain estimates of maturities outside of the sample range,
curves are extrapolated with a second order polynomial.

3. The third and most sophisticaed method is the Svensson model. Based on computed
clean prices, coupon rates, coupon frequencies and settlement dates, curves are esti-
mated to fit zero yields with the help of the Matlab function fitsvensson(), which uses
non-linear least squares to find the optimal parameter values, (τ1, τ2, β0, . . . , β3). Due

2The motivation behind this choice is that the applied estimation techniques simply cannot produce
reasonable curve estimates for less than three zero yields. The accurateness of estimation results can be
questioned if less than three notations are used and one of the techniques can not even produce an estimate
due to the model parametrization.

3The function csaps() requires the smoothing parameter p = 1 − λ for which p = 1 results in an
interpolating spline and p = 0 the least squares linear fit. The function is thus called with the value p = 0.4
equal to λ = 0.6.
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to the extent of the model expression, its is here not presented again but the reader
is referred to section 2.1.2 for complete representations.

Yield curves obtained from each technique are carefully reviewed, with qualities such as
smoothness and closeness of fit with the underlying zero yields, at highest priority. Given
the characteristics of the linear interpolation, smothness is essentially evaluated for the
Svensson model and the smoothing spline. Additionally, basic properties of term structures
such as long term convergence and non-negativity are verified.

The reason for which several techniques are evaluated is to identify one that best models
the sample data. As the focus of this study rather is placed on backfilling, it was found
appropriate to apply a number of established techniques and select the one that produces
the best estimates. After careful review, the smoothing cubic spline is finally chosen for the
remainder of this study. Despite being slightly less sophisticated than the Svensson model,
curves estimated with the smoothing spline are found to best fulfill desired curve qualities
without too much loss of already scarce information.

The yield curve estimation results in a transformed set of data. As oppose to originally
observed yield notations for given bonds, time series now correspond to zero yields at given
maturities, one set for each issuer. For more clarity in future computations, notations are
hereby introduced.

Let I = 1, . . . , k, once more denote the sample issuers and let t ∈ {s ∈ N∗|s ≤ 1304} be
the 5 year time period of daily observations. Furthermore let Y I be the estimated term
structure of issuer I. Denoting time to maturity m (also referred to as time buckets) and
introducing matrix notations, Y I can be expressed as Y I = (yIt,m), where yield time series
now are observed at constant maturities.

By the chosen construction of term structures, each Y I consists of rows which are either com-
plete or entirely missing. Additionally, to simplify computations, observations are placed in
reverse order so that t = 1 corresponds to the most recent observation. The range of the dis-
crete time buckets m differs between issuers, m ∈M I = {. . .}I , and depends on the longest
maturity bond of each issuer. In most casesM I = {3m, 6m, 1y, 1.5y, 2y, 3y, 4y, 5y, 10y, 15y, 20y},
but for a couple of issuers the longest maturity is instead 10y.4

4.2 Backfilling of missing observations
As historical term structures have been estimated it is now time to place focus on filling
the significant fraction of missing observations in the data set. With the aim to obtain time
series that are stationary and iid, univariate GARCH(1,1) filters are applied on each of the
time series. Prior to the filter application, the transformed data is once again reviewed for
outliers. Based on visual inspection, parts of or entire term structures, are removed if they
deviate too much from term structures of adjacent days. The reason for which this has to be
done can simply be seen as shortcomings in the chosen term structure estimation technique,
especially affecting the short and long ends of the curves. After this adjustment, term struc-

4Attepmting to estimate term structures of longer maturities than those of existing bonds is simply found
meaningless since no data is available for such maturities and positions thereof cannot be held.
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tures Y I now also contain a number of rows where only a part of the observations are missing.

Reviewed term structures are placed horizontally after each other in a large matrix Y =
[Y 1, Y 2, . . . , Y k]. Daily yield changes are thereafter calculated for each time series in Y as:
xIt,m = yIt,m − yIt+1,m, where t and t + 1 are two consecutive days (recall that observations
are placed in reverse time order). For the yield change to be calculated on a certain day
one thus needs the current and previous day’s yield notations. Since data at times is very
scarce, the computation results in a matrix of daily yield changes with a higher amount of
missing values than the matrix containing yield notations. The entire data matrix of yield
changes can now be denoted X = [X1, X2, . . . , Xk] and for which yield changes exist for the
period t = 1, . . . , 1303.

4.2.1 GARCH Estimation
The application of GARCH(1,1) filters on each univariate time series of yield changes is
done with the belief that a correct filling is easier to obtain if time series are iid with mean
zero and volatility one. To justify this choice, the existence of GARCH(1,1) properties must
however first be established within them. As time series of yield changes are treated individ-
ually throughout this section, the simplified notation xt will here be used, where xt := xIt,m
for a fixed issuer I and maturity m.

Autocorrelations, conditional volatility functions and filtered yield changes (also referred
to as GARCH residuals throughout the remainder of this study) are reviewed for a couple
of selected time series. The Matlab function garchfit() is additionally applied to estimate
GARCH(1,1) coefficients. For the assessment to be meaningful, the various steps must be
performed on time series with higher quality data and it is further assumed that remaining
time series behave similarly to those being analyzed. Results from the various tests are
presented in Appendix A.

Once GARCH properties have been established, coefficients θ = (a, b, c), as defined in
equation (4.3), are estimated for each xt. Due to missing values, the estimation is executed
with a method that allows for missing observations. By applying the Kalman filter equations,
optimal GARCH coefficients together with conditional volatilities for observed data points
are obtained according to the approach described by Penzer (2007), briefly recited below.5

xt = σtεt

σ2
t = c+ bx2

t−1 + aσ2
t−1 (4.3)

Assuming that each time series xt of yield changes is zero mean distributed and follows a
GARCH(1,1) process, a transformation is imposed on xt. Define ut = x2

t − c/(1− a− b), let
ξt = σ2

t −c/(1−a−b) and reformulate the GARCH representation as ξt = aξt−1 +but−1. An
estimate of the sample conditional variance function is then given by the expression σ̃2

t =
ξ̃t + c

1−a−b . The optimal GARCH(1,1) coefficients θ = [a, b, c], finally used for estimating
the conditional variance, are obtained through minimizing the expression below:

θ̂ = argmin
θ
{
n∑
t=ν

[
x2
t/σ̃

2
t (θ|x, F0) + log σ̃2

t (θ‖x, F0)
]
} (4.4)

5For a more detailed description of the estimation method the reader is asked to turn to Penzer (2007),
found in the Bibliography.
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When coefficients and conditional volatilities have been estimated for each of the constant
maturity time series of yield changes in the sample, they are filtered by dividing them by
their respective conditional volatilities. This gives a set of new time series of GARCH resid-
uals, εt, with the same missing positions as corresponding yield changes xt.

Let E denote the matrix of filtered time series, which is of the same dimension as the matrix
X. Thus, E = [E1, E2, . . . , Ek], where EI corresponds to filtered yield changes for issuer
I, or with matrix notation E = (εIt,m), where t ∈ {s ∈ N∗|s ≤ 1303} and m ∈ M I as
previously defined. GARCH(1,1) residuals are by definition iid distributed with E[εt] = 0,
V ar(εt) = 1 and are independent of the information set Ft−1 given at time t, properties
that hopefully can help ensure a sound estimation of missing positions in the following
imputation algorithm. Filtered time series εt are finally reviewed visually and compared
with their respective volatility functions σt and non-filtered time series xt, before the filling
algorithm is applied.

4.2.2 PCA-based Filling Algorithm
Similar to some of the procedures presented in chapter 2, the backfilling algorithm applied
in this study is based upon a Principal Component Analysis decomposition, here applied on
the matrix E of estimated GARCH(1,1) residuals. Before the procedure is initiated, a few
preparatory steps must however be performed.

The number of optimal principal components k for filling missing values in E is defined and
remains fixed throughout the algorithm. The selection of k is explained later on in this
section and the reader is for now asked to assume that k is constant. Entirely empty rows of
E, and rows that contain fewer than k observations, are excluded from the matrix, reducing
its dimension. On this reduced matrix, missing positions are identified and defined as a
subspace Ω, such that Ω = (t, j) where εt,j (thus also xt,j) are missing. The index j is here
introduced as a general notation of the columns in the matrix E, since the actual positions
of missing values in the matrix now are of interest (as oppose to characteristics such as time
to maturity and issuer). Important to note is also that t now is defined on a shorter interval,
depending on the number of excluded rows of E. Missing positions are finally replaced by
zeros6, resulting in the matrix E0, with slightly smaller dimension than E and which no
longer contains missing values. The backfilling procedure can now be initiated with the
matrix E0, but is described for the general matrix, El, obtained in the l:th iteration, by
below algorithm:

1. Each column of the input matrix El is standardized by subtracting its mean and
dividing it by its standard deviation, resulting in the matrix Êl. Despite time series
already being filtered, some sampling error is assumed to be present and this operation
is done to ensure that column vectors are zero mean distributed and have standard
deviation one.

2. Principal Component Analysis (PCA) is performed on the matrix Êl such that Prin-
cipal Components (PC:s) Pl and loadings Wl are obtained.

6Both zeros and row/column wise means are tried for this purpose but as no difference in performance
can be detected, and since the input data consists of filtered time series with means very close to zero
(assuming some sampling error), it is chosen to consistently use zeros for this purpose.
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3. The first k PC:s are selected together with corresponding loadings, resulting in a
subset of PC:s and loadings denoted P∗l and W∗

l . An estimate Ê∗l of the matrix Êl is
obtained as Ê∗l = P∗lW

∗T
l .

4. From the estimate Ê∗l , values are taken only from positions initially identified as
missing (i.e. ∀(t, j) ∈ Ω) and imputed into corresponding positions of the matrix Êl,
resulting in the new matrix El+1. El+1 is finally reblended with means and standard
deviations estimated in step 1 (though remains denoted El+1).

5. Step 1 to 4 are repeated until convergence of imputed values is reached. Convergence
is measured as the maximum of absolute differences of each imputed position between
two consecutive iterations of the procedure and is reached when this difference falls
below the threshold value 10−5:

max
(t,j)∈Ω

|εl+1
t,j − ε

l
t,j | < 10−5 (4.5)

The reason why certain rows are excluded from the initial matrix E prior to the backfill-
ing procedure is initiated, is that they are found not to contain enough information for
estimation of their missing values. These rows are instead filled through simulation from
empirical factor distributions and placed back into their original positions (as in E), when
the backfilling procedure has reached convergence.7 A new matrix Ẽ, of the same dimension
as E, has now been generated where missing positions of E have been filled and originally
observed values remain identical.

To ensure the validity of the backfilling procedure and to further reach understanding of its
limitations it is initially applied on a number of synthetic data sets. The validation process,
together with results thereof, is described in detail in chapter 6.

Application on Real Data

Once validity of the PCA-based backfilling procedure has been ensured, it is applied on
the matrix E of estimated GARCH residuals. However, due to limitations in the data set,
convergence is not easily reached. A number of subsets are therefore created to try to en-
hance the procedure’s performance. For further improvement, it is also attempted to include
additional risk factors in terms of extra time series, sought to be drivers of the concerned
markets in the data set. The purpose of this is to include more information in the set with
the hope that convergence easier can be reached, and that a larger amount of missing values
can be filled. Additional time series are observed during the same time period as the chosen
data.

The different tested approaches are:

1. No decomposition. The procedure is applied on the full matrix E.

2. The data is divided according to the regions covered by the data. Each subset, corre-
sponding to GARCH residual time series of issuers from one region, is filled separately.
The reason for which this decomposition is applied is to further make use of the re-
gional correlation structure, assumed to be significant within the data set.

7This procedure is not found to be of primary focus of this study and a description thereof can therefore
be found in Appendix B.
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3. Backfilling is performed on time series corresponding to tenors between two and five
years. The decomposition thus contains all GARCH residual time series, εIt,m, for
all issuers I = 1, . . . , k, where m ∈ M I = {2, 3, 4, 5}. The motivation behind this
choice is to remove possible excess volatilities caused by the term structure estimation
method, which might populate throughout the data set as the backfilling procedure
is performed. The existence of excess volatilities is mainly expected in the long and
short ends of estimated curves, which is why they are removed.

4. Backfilling is performed in two steps, where the matrix E initially is divided into
subsets based on region and tenors, although still for a reduced number of tenors,
m ∈ M I = {2, 3, 4, 5}. For clarification this means that all time series with the
same maturity m, belonging to issuers of the same region, correspond to one subset
which is filled separately. The aim of this decomposition is to significantly reduce the
complexity of the sets, upon which the backfilling procedure is applied. After this
first run of the procedure, a second decomposition is created, where subsets instead
correspond to issuer specific time series. In other words, the procedure is now applied
on each EI , I = 1, . . . , k (though still for maturities m ∈ M I = {2, 3, 4, 5}). During
this second run, additional values can be filled based on already imputed estimates.

5. The two step application described in item 4 is again used, with the difference that
additional risk factors now are included in the first run of the procedure. Additional
time series consist of one leading regional equity index and the currency exchange rate
USD/local currency for concerned region. The same additional, region specific time
series are thus placed together with all the tenor-dependent subsets of each region.
The second run of the procedure is analogous to the one described in item 4.

The reason for which a single issuer decomposition is not mentioned among the items above,
is that by construction of each term structure, the largest part of missing values corresponds
to entire missing rows. Due to the condition that the number of observations on a row must
exceed k for it to be filled by the means of PCA, most values would simply not be filled by
the procedure but would instead have to be simulated (something which is desired to do for
as few observations as possible). However, as the issuer specific decomposition is applied
above, a large part of missing values have already been filled, and further estimates can be
obtained based on already imputed values. Additionally, such representation is beneficial as
factor simulation of remaning missing observations is applied (described in Appendix B), to
retain the correlation structure between rows of observations, of one issuer.

Defining k

Defining the optimal number of principal components, k, is a common difficulty one comes
accross when implementing a PCA-based backfilling routine (recall discussions in section
2.2.3). Nevertheless it’s a difficulty that has to be dealt with. Cross validation is one
common approach, defining a threshold of explained variance is another. However, the
characteristics of the data used in this study, complicates the selection of k. Complete sub-
sets for cross validation are difficult to find without being forced to impute initial estimates,
and defining a threshold of explained variance, with such significant fraction of the data
missing, might give incorrect implications.

The approach chosen in this study concerns the comparison of the input matrix (E or vari-
ous subsets thereof) with a random matrix with the same basic properties. The underlying
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idea is that those Principal Components of the input matrix that give a higher level of ex-
planation than corresponding components of a randomly generated matrix, contain relevant
information and should thus be kept. The selection is based upon eigenvalue decomposition
and is described by the following steps:

1. A large number of matrices Zp, p = 1, . . . , N , of the same dimension and with the
same missing positions as the input matrix, are simulated. Each position of Zp is
N(0, 1) distributed.

2. A pairwise Spearman’s rank correlation matrix is computed for each simulated matrix.

3. Estimated rank correlation matrices are transformed into linear correlation matrices
by applying relation (4.6) (as described by Hult and Lindskog (2002)). ρs,ij here
denotes Spearman’s rho for the two column vectors zt,i and zt,j (t = 1, . . . , 1303), and
ρij is the corresponding linear correlation coefficient:

ρij = 2 sin(ρs,ij
π

6 ) (4.6)

The reason for which rank correlation is computed and thereafter transformed to linear
correlation is simply to obtain a robust estimate of the correlation matrix. Rank
correlation coefficients such as Spearman’s rho and Kendall’s tau are invariant under
the marginal distributions of the data and the approach is appropriate for heavy tailed
distributions, a characteristic often found in financial data.8

4. Eigenvalue decompositions are performed on the linear correlation matrices and their
respective eigenvalues are sorted in descending order and divided by the sum of all
eigenvalues of the corresponding matrix. This gives the fraction of the total variance
explained by each eigenvalue (compare with discussions in section 3.5.1 regarding
PCA).

5. Based on the N simulated matrices, an empirical distribution is created for each of
the ordered and normalized eigenvalues. The 95% percentile is finally computed for
the empirical distribution of each eigenvalue.

6. Step 2 to 4 are now performed on the input matrix E, resulting in a set of ordered
and normalized eigenvalues of its linear correlation matrix. k is thereafter defined as
the number of eigenvalues which explain more than the corresponding 95% percentile.

Once k have been defined it remains constant throughout the iterative filling process on the
selected data set.

8Futher motivation of the choice to use a rank correlation estimator is not described in this study. The
reader is instead referred to Lindskog et al. (2003) for a more detailed description and justification of the
approach.
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4.3 Term Structures Revisited
Based on the complete matrix of GARCH residuals, Ẽ, missing yield changes are now
computed and filled into X, leaving originally observed yield changes untouched. Each
time series is treated separately and the computation is done using equation (4.3). For
clarification, an estimate x̃t,j of the missing yield change xt,j , is computed as:

x̃t,j = σ̃t,j ε̃t,j , ε̃t,j ∀ (t, j) ∈ Ω (4.7)

where ε̃t,j has been filled by the designed backfilling procedure and σ̃t,j has been computed
with the help of relation (4.3), using the conditional volatility σ̃t−1,j , the yield change xt−1,j
(both observed on previous day) and estimated GARCH(1,1) coefficients (a, b, c).

After this operation, the matrix X of yield changes is complete. Although such representa-
tion generally is of higher interest for many financial risk applications, it is also desirable
to finalize the procedure by computing the actual yields. Through the simple computation,
yt,j = yt−1,j − xt−1,j , each constant maturity yield time series is recursively filled, and the
matrix Y is completed (recall that yields and yield changes are placed in reverse order where
the most recent observations are found on the first rows of the matrices X and Y).
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Chapter 5

Data

The real set of data, on which the entire procedure is applied, from term structure esti-
mation to filling of missing values, consists of yield notations from eight different issuers.
The issuers are taken from the two different Emerging Markets South Korea and Mexico
and correspond to one government and three corporate issuers from each region. Data is
downloaded for the five year period 2005.05.03 - 2010.04.30, mainly from Bloomberg but
complementary sources, specific for the bank, are to some extent also used. For each of the
eight issuers a set of bonds are used to estimate daily term structures. The number of bonds
per issuer varies between 4 and 21 and the length of the historical time series differs beween
issuers depending on the data availability among providers. Table 5.1 gives more detailed
information about available data for each of the eight issuers.

Issuer Name Bond Type Industry # Bonds Available
History (Years)

Industrial Bank of Korea Corporate Finance 18 ≈ 4.5
Korea Exchange Bank Corporate Finance 21 ≈ 4

Korea Telecom Corporate Telecom 19 5
Republic of Korea Government - 19 5

América Móvil Corporate Telecom 7 ≈ 2
Petróleos Mexicanos Corporate Petrol 11 5
Telefonos de Mexico Corporate Telecom 4 ≈ 2

United Mexican States Government - 19 5

Table 5.1: Description of the real data on which the full procedure is applied throughout this study.

As can be seen in table 5.1, the availability of data varies significantly among the selected
issuers and a five year history can only be obtained for a few of them. Also worth to be noted
is that despite a fairly long history of available data, illiquidity might cause a significant
amount of gaps also during the observed time period, which is the case for a couple of issuers.
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Figure 5.1: One of the many raw input yield time series is illustrated. This particular time series consists of
coupon bearing yield notations for a Korean government bond with 5.0 semiannual coupon which matures
in March 2013. Even for this time series, which is regarded as one of the better ones as it streches over the
entire five year window, a number of gaps with missing values are clearly visible.

As a final illustration of the raw input data, an example time series (here taken from the set
of Korean government bonds) is shown in figure 5.1. Even for this issuer, which is regarded
as one of the better ones, missing values are clearly noticable in the time series.
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Chapter 6

Model Validation

This chapter contains an evaluation of the iterative, PCA-based backfilling routine which
later on is implemented with the purpose of filling missing observations in a term structure
dimension. The application of the routine onto a number of different synthetic data sets,
with different underlying factor structures and various fractions of missing data, is presented
together with obtained results thereof.

6.1 Synthetic Data Sets
Two main data structures are created for the evaluation of the procedure. The first a more
generic data set and the second somewhat more custom made, to resemble the true set of
data onto which the procedure later on will be applied. The respective structures and the
ways in which they are varied are further described below.

Generic Set

Let X = (xt,i), i = 1, . . . , 50, be a matrix containing 50 simulated time series over the time
period t = 1, . . . , 1000. Furthermore let Y = (yt,j) denote the matrix of underlying factors
where j = 1, . . . , k and k ∈ {5, 10}. Let error terms εt,i (not to be confused with GARCH
residuals as described in chapter 4) of each simulated value xt,i be unique and let each
εt,i ∈ N(0, 1). xt,i, is related to the underlying factors yt,j by a set of unique coefficients
αj,i such that:

xt,i = yt,1α1,i + . . .+ yt,kαk,i =
k∑
j=1

yt,jαj,i (6.1)

The underlying factors yt,j are simulated N(0, 1) and the respective factor coefficients αj,i
are uniformly distributed over the interval [0, 1].
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The fraction of missing values of the data set is varied between 5%, 10%, 15%, 20%, 25%,
30%, 40% and 50%. Positions where observations are set as missing are randomly selected
(discrete uniform) and true values of these positions (simulated from above factor struc-
tures) are saved for comparison with estimates imputed by the procedure. The number of
Principal Components (k) used in the backfilling procedure is set to equal the number of
underlying factors of the simulated structure.

To measure the performance of the backfilling procedure, the average sum of squared differ-
ences between true and imputed value over all imputed positions is calculated, as expressed
in equation 6.2. The reason for this is that the amount of positions for which the sum is cal-
culated is varied between 5% and 50%, and an average measure is necessary for comparison
of the procedure’s performance.

1
|Ω|

∑
xt,i∈Ω

(x̃t,i − xt,i)2 (6.2)

In the above equation, xt,i denote true values which have been intentionally removed, x̃t,i
correspond to the imputed values at the same position, Ω the set of missing positions in the
observed data and |Ω| the number of positions in Ω.1 Additionally, the sum of squared er-
rors, the maximum absolute difference between true and estimated value among all imputed
positions, and the number of iterations needed to reach convergence are reviewed. Results
are presented later on in this chapter (section 6.2).

Customized Set

The second synthetic data set is created to resemble the true set of GARCH residuals onto
which the procedure later on will be applied. It consists of 92 time series with 1303 observa-
tions each. Using notations as described for the generic data set above, xt,i and yt,j , where
i = 1, . . . , 92 and j = 1, . . . , k, are simulated time series and underlying factors respectively.
In this exercise, it is however chosen to try a larger number of underlying structures and
therefore k ∈ {1, 3, 5, 10, 15, 20}. To additionally investigate the influence of the error term,
the exercise is also performed for two different sizes of errors: N(0, 10−4) and N(0, 10−2).
The reason for this is that the amount of noise in daily financial data sometimes can be sig-
nificant and the influence of the error term on the algorithm’s performance is thus of interest.

To further resemble the true set of data, which is obtained from a number of eight underly-
ing term structures, column vectors of the data matrix X are groupwise assigned different
variances and small means. Even though the procedure itself is designed to standardize
vectors of the input data at each iteration, this characteristic is imposed since it is also
found in the true set of data.

1|Ω| is referred to as the cardinal of Ω and defines the number of positions in the set Ω.

41



Missing positions are now set to be identical to those in the matrix of filtered GARCH
residuals. Missing values are thus not randomly selected and their character is more con-
centrated to larger horizontal and vertical gaps instead of randomly spread single positions.
The total fraction of missing positions thus corresponds to 33.7% of the data, but the frac-
tion varies among subsections since the availability of data differs between various issuers. k
is again given by the number of underlying factors and the model performance is measured
as previously described for the generic data set.

6.2 Results from Model Validation
Below, results obtained from the application of the backfilling procedure onto the two syn-
thetic data sets are presented, starting with the generic set thereafter followed by the cus-
tomized set, both with various imposed characteristics as explained in section 6.1.

6.2.1 Generic Data Set
Table 6.1 presents results obtained for the generic data set with a 5 factor underlying
structure.

# Missing Max Abs Sum Square Avg Sum Square # Iterations
(%) Diff Diff Diff (10−3)
5% 0.0439 0.3042 0.1261 17
10% 0.0464 0.6132 0.1226 17
15% 0.0455 0.9368 0.1249 29
20% 0.0476 1.2574 0.1257 34
25% 0.0523 1.6075 0.1286 52
30% 0.0508 1.9467 0.1298 56
40% 0.0491 2.7188 0.1359 67
50% 0.0559 3.6019 0.1441 178

Table 6.1: Results from generic data set with underlying 5 factor structure. Columns in the table correspond
to the fraction of missing values in the data set (1), the maximum absolute difference between imputed and
original values (2), the sum (3) and average sum (4) of squared differences over all imputed positions and
the number of iterations needed to reach convergence (5).

As can be seen from the results in table 6.1, the algorithm produces sound results as the
distances between imputed values and true values in general are small. Convergence of the
algorithm is easily reached with a slight increase of necessary iterations, proportional to
the increasing amount of missing values. The average sum square difference also displays
a slight increase as the fraction of missing observations grow large whereas it remains on
a constant level for lower fractions. The maximum absolute difference between real and
imputed values remains relatively constant for all scenarios. A larger number of iterations
as well as a larger difference between true and imputed values with a growing number of
missing positions is expected as the amount of information in the set decreases, but results
here show that the precision of the model remains high.

Figures 6.1 and 6.2 illustrate some of the results obtained with the underlying five factor
structure. The same vector xt,i of the data set (t = 1, . . . , 1000 and i fixed) where 10% and
30% of the positions have been removed, is shown together with imputed missing positions
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and the difference between imputed and true values over all positions of the vector. For
positions where observations have not been removed, this difference is simply represented
by a zero.

Figure 6.1: Example vector from a generic 5 factor structure where missing values have been imposed on
10% of the positions in the data set and filled with the designed algorithm. Filled values are illustrated in
red on the centered plot of the figure and the differences between imputed and original values are shown in
the bottommost plot of the figure.

# Missing Max Abs Sum Square Avg Sum Square # Iterations
(%) Diff Diff Diff (10−3)
5% 0.0397 0.3287 0.1315 22
10% 0.0454 0.6699 0.1340 29
15% 0.0425 1.0134 0.1351 43
20% 0.0422 1.3888 0.1389 60
25% 0.0447 1.7764 0.1421 84
30% 0.0503 2.2126 0.1475 106
40% 0.0698 3.2322 0.1616 148
50% 0.0886 4.6693 0.1868 639

Table 6.2: Results from generic data set with underlying 10 factor structure. Columns in the table correspond
to the fraction of missing values in the data set (1), the maximum absolute difference between imputed and
original values (2), the sum (3) and average sum (4) of squared differences over all imputed positions and
the number of iterations needed to reach convergence (5).

43



Figure 6.2: Example vector from a generic 5 factor structure where missing values have been imposed on
30% of the positions in the data set and filled with the designed algorithm. Filled values are illustrated in
red on the centered plot of the figure and the differences between imputed and original values are shown in
the bottommost plot of the figure.

Results in table 6.2, obtained as the number of underlying factors is increased from 5 to
10, roughly display the same characteristics as for the previous less complex structure. Av-
erage sum square differences are still fairly small as are the maximum absolute differences,
although these measures show larger increases than in previous example. The most sig-
nificant difference is seen in the number of iterations needed for the algorithm to reach
convergence. In general convergence is still easily reached but for the set which contains
50% of missing values, a much larger number of iterations is needed than for previous factor
structure, as well as compared with lower fractions of missing values for the same under-
lying structure. These facts indicate that the factor complexity has a notable impact on
convergence of the model, as well as some impact also on other performance measures. The
loss of precision with increasing fraction of missing positions is here more significant than
for the less complex factor structure.

Again a couple of sample plots illustrate some of the results obatined with the 10 factor
structure. An example vector is shown in figures 6.3 and 6.4, with 10% and 30% of missing
values respectively.
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Figure 6.3: Example vector from a generic 10 factor structure where missing values have been imposed on
10% of the positions in the data set and filled with the designed algorithm. Filled values are illustrated in
red on the centered plot of the figure and the differences between imputed and original values are shown in
the bottommost plot of the figure.

Figure 6.4: Example vector from a generic 10 factor structure where missing values have been imposed on
30% of the positions in the data set and filled with the designed algorithm. Filled values are illustrated in
red on the centered plot of the figure and the differences between imputed and original values are shown in
the bottommost plot of the figure.
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6.2.2 Customized Data Set
As the smaller N(0,10−4) distributed error terms are applied for the customized data set
whith constant fraction and positioning of missing values and where the number of under-
lying factors are varied, results presented in table 6.3 are obtained.

# Factors Max Abs Sum Square Avg Sum Square # Iterations
Diff Diff Diff (10−6)

1 0.00228 0.0031 0.0758 79
3 0.00262 0.0027 0.0660 117
5 0.00566 0.0044 0.1080 225
10 0.03017 0.0145 0.3594 2079
15 0.00954 0.0195 0.4830 4727
20 0.01791 0.0436 1.0786 9740

Table 6.3: Results from customized data set with N(0,10−4) distributed error terms, constant fraction of
missing values (33.7%) and various underlying factor structures. Columns in the table correspond to the
number of underlying factors (1), the maximum absolute difference between imputed and original values (2),
the sum (3) and average sum (4) of squared differences between true and imputed value over all imputed
positions and finally the number of iterations needed to reach convergence of the algorithm (5).

One of the most evident differences compared with the generic data set are the number of
necessary iterations to reach convergence. Even for a less complex factor structure with
10 underlying factors, more than 2’000 iterations are needed to reach convergence whereas
less than 150 iterations would have been necessary for the corresponding fraction of missing
values of the generic data set. Although, certain conclusions cannot be made since also other
characteristics differ, such as the dimension of the data set, this could be an indication that
the positioning of missing values has an impact on the time needed to reach convergence.
Such indications have been observed before, among others by Grung and Manne (1998).

As expected with a small error term, other performance measures display good results
in each scenario. The average sum square differences are as small as of the order 10−6

(for the simplest structure) and grow with an increasing number of factors, in line with
expectations. The maximum absolute difference between true and imputed values also
increases with the number of underlying factors, though with one exception; the underlying
10 factor structure. That this particular data set yields the biggest absolute distance is
somewhat surprising but not worrying since average sum square difference instead displays
expected behaviour where the largest value is found for the largest number of factors. A
number of example illustrations are found in figures 6.5 - 6.8 where two different vectors
with various characteristics of missing values are shown.
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Figure 6.5: Example vector from customized data set based on a 3 factor structure with N(0,10−4) dis-
tributed errors and where missing values have been imposed on 33.7% of the positions in accordance with
the original data set. In this example, the distribution thereof is farily even. Filled values are illustrated in
red on the centered plot of the figure and the differences between imputed and original values are shown in
the bottommost plot of the figure.

Figure 6.6: Example vector from customized data set based on a 3 factor structure with N(0,10−4) dis-
tributed errors and where missing values have been imposed on 33.7% of the positions in accordance with
the original data set. In this example, the distribution thereof is characterized by a long consecutive gap.
Filled values are illustrated in red on the centered plot of the figure and the differences between imputed
and original values are shown in the bottommost plot of the figure.
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Figure 6.7: Example vector from customized data set based on a 15 factor structure with N(0,10−4) dis-
tributed errors and where missing values have been imposed on 33.7% of the positions in accordance with
the original data set. In this example, the distribution thereof is farily even. Filled values are illustrated in
red on the centered plot of the figure and the differences between imputed and original values are shown in
the bottommost plot of the figure.

Figure 6.8: Example vector from customized data set based on a 15 factor structure with N(0,10−4) dis-
tributed errors and where missing values have been imposed on 33.7% of the positions in accordance with
the original data set. In this example, the distribution thereof is characterized by a long consecutive gap.
Filled values are illustrated in red on the centered plot of the figure and the differences between imputed
and original values are shown in the bottommost plot of the figure.
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As error terms instead are set to be somewhat larger, namely N(0,10−2) distributed, the
algorithm instead yields results presented in table 6.4.

# Factors Max Abs Sum Square Avg Sum Square #Iterations
Diff Diff Diff (10−3)

1 0.17737 16.155 0.3997 80
3 0.25506 26.251 0.6495 116
5 0.55895 43.224 1.1000 225
10 2.90030 140.869 3.5000 2144
15 0.96018 190.651 4.7000 4431
20 4.20830 478.129 11.8000 9651

Table 6.4: Results from customized data set with N(0,10−2) distributed error terms, constant fraction of
missing values (33.7%) and various underlying factor structures. Columns in the table correspond to the
number of underlying factors (1), the maximum absolute difference among imputed and original values (2),
the sum (3) and average sum (4) of squared differences over all imputed positions and finally the number of
iterations needed to reach convergence of the algorithm (5).

When reviewing the results in table 6.4, one can state that the performance measures behave
similar to those obtained with the smaller error term. The maximum absolute difference,
the sum of squared differences and the average sum of squared differences typically increase
with an increasing number of factors. Although with the same exception of the 10 factor
structure where the largest absolute difference between true and imputed value can be seen.
However, the sizes of the measures are here notably larger. Convergence is again reached
with similar numbers of iterations as for previous approach and results are satisfactory at
every attempt. The behaviour of the number of needed iterations imply that the error term
does in fact not affect the time needed to reach convergence but only the correctness of
imputed values.

A number of illustrative examples are shown in figures 6.9 - 6.12. Note the different scales
for the illustrated differences between imputed and true positions, as well as the average
sum squared differences presented in table 6.4, compared to the factor structure containing
smaller error terms.
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Figure 6.9: Example vector from customized data set based on a 3 factor structure with N(0,10−2) dis-
tributed errors and where missing values have been imposed on 33.7% of the positions in accordance with
the original data set. In this example, the distribution thereof is farily even. Filled values are illustrated in
red on the centered plot of the figure and the differences between imputed and original values are shown in
the bottommost plot of the figure.

Figure 6.10: Example vector from customized data set based on a 3 factor structure with N(0,10−2) dis-
tributed errors and where missing values have been imposed on 33.7% of the positions in accordance with
the original data set. In this example, the distribution thereof is characterized by a long consecutive gap.
Filled Values are illustrated in red on the centered plot of the figure and the differences between imputed
and original values are shown in the bottommost plot of the figure.
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Figure 6.11: Example vector from customized data set based on a 15 factor structure with N(0,10−2)
distributed errors and where missing values have been imposed on 33.7% of the positions in accordance with
the original data set. In this example, the distribution thereof is farily even. Filled values are illustrated in
red on the centered plot of the figure and the differences between imputed and original values are shown in
the bottommost plot of the figure.

Figure 6.12: Example vector from customized data set based on a 15 factor structure with N(0,10−2)
distributed errors and where missing values have been imposed on 33.7% of the positions in accordance with
the original data set. In this example, the distribution thereof is characterized by a long consecutive gap.
Filled values are illustrated in red on the centered plot of the figure and the differences between imputed
and original values are shown in the bottommost plot of the figure.
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Overall validation results imply that the model produces good estimates when it is applied
on data sets with various underlying structures and varying fractions of missing data. Con-
vergence is certainly reached slower when the number of factors as well as the fraction of
missing values increase. Nevertheless, the backfilling procedure produces sound estimates
which in fact lie very close to true values in all scenarios.

From the presented validation tests, implications are also found that the error term has an
impact on the performance of the model. As the size of the error terms of the customized
data set increases, imputed values differ more from true values than with smaller error terms.
The number of iterations remain roughly the same, but sum squared differences increase
significantly, something which might be important to bear in mind as the algorithm is ap-
plied on a true set of daily financial data which generally contains a substantial part of noise.

Finally judging from the larger number of iterations seen for the customized data set, indi-
cations are found that the positioning of missing values might have an impact on the time
needed for the routine to converge. Although imputed estimates are satisfactory, larger
horizontal and vertical gaps appear to notably slow down the routine, something which also
has been expressed in previous studies.
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Chapter 7

Results

This chapter presents results from the various components of the study, applied on a true
set of data with the aim to estimate historical yield curves. Estimated term structures are
illustrated and assessed. Thereafter follows results obtained from the backfilling procedure,
which are of special importance in this study. Last but not least, results from the recon-
struction of term structures with the help of imputed estimated values and GARCH(1,1)
parametrizations are presented. At the very end of the chapter, a short summary of gathered
results is presented to provide the reader with an overview of the most important findings.

7.1 Estimated Yield Curves
Figures 7.1, 7.2 and 7.3 illustrate zero yields obtained from the Bootstrap method applied
onto various sets of coupon bearing yield notations.

Figure 7.1: Bootstrapped zero yields are illustrated together with corresponding coupon bearing yield no-
tations, here for a set of Korean government bonds with various coupon and time to maturity, observed in
April 2010. Zero yields display a farily nice curvature of an upward sloping curve with a slight dip towards
longer maturities.
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Figure 7.2: Bootstrapped zero yields are illustrated together with corresponding coupon bearing yield no-
tations, here for a set of Mexican government bonds with various coupon and time to maturity, observed in
June 2008. Zero yields imply a relatively flat term structure during the observed period.

Figure 7.3: Bootstrapped zero yields are illustrated together with corresponding coupon bearing yield nota-
tions, here for a set of corporate bonds issued by Korea Telecom, with various coupon and time to maturity,
observed in April 2010. Similar to figure 7.1 above, estimated zero yields create a smooth and nice curvature
of one of the typical shapes of a yield curve.
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As can be seen, estimated zero yields display a more even pattern than initial coupon bear-
ing yields. This implies that the Bootstrap method produces sound zero notations which
can be used as a base for the continued yield curve estimation. However, with a decreasing
number of points, the method tends to produce less stable estimates where yields sometimes
diverge from an imagined curve. This feature will be dealt with later on as estimated yield
curves will be closely obsereved and outliers removed from the sample.

The application of the three different yield curve estimation techniques onto obtained zero
yields results in curves of widely varying quality. A number of example curves are illustrated
in figures 7.4, 7.5 and 7.6, where results from all three techniques are shown togeher with
underlying zero yields.

Figure 7.4: Three different techniques are applied onto a set of zero yields to obtain estimates of the
yield curve: linear interpolation between estimated zero yields, a smoothing cubic spline and the Svensson
model. A somewhat naive estimate is obtained through linear interpolation whereas other techniques produce
sensible curve estimates.

Linear interpolation between estimated zero yields, where yields of maturities outside of
the sample data are treated as constant, always produces results but the quality thereof is
generally very poor. The method works fairly well when a large set of evenly distributed
zero yields are available. Results are however less satisfactory when observations are few an
unevenly distributed. Even for a set of yields as in figure 7.5, where notations are frequent
and a decent curve shape can be sensed, an uneven shape of the interpolated curve is evident.
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Figure 7.5: Three different techniques are applied onto a set of zero yields to obtain sound estimates of the
yield curve: linear interpolation between estimated zero yields, a smoothing cubic spline and the Svensson
model. Good estimates are produced by the Svensson model and the smoothing spline whereas linear
interpolation appears to underestimate the curve, entirely without smoothness.

Depsite not being the most sophisticated method for yield curve estimation, the smoothing
cubic spline with smoothing factor 0.6 generally produces results of good quality. Good
sample data gives estimates almost in the range of what the Svensson model produces
and during periods, and for issuers, where data is of lower quality, the smoothing spline
also generates reasonable estimates in almost all of the cases. Figure 7.7 illustrates this
fact where a smooth curvature and asymptotic properties are obtained with the smoothing
spline whereas a Svensson estimate could not even be obtained due to restrictions in the data.

For a good set of zero yields, the Svensson model clearly produces the best results among the
three techniques. Smoothness of the curve as well as fit to the data are well fulfilled which
can be seen in figures 7.4 and 7.5. In many of the cases though, the results obtained with
the Svensson model are disappointing. As the quality of the data used in this study does not
seem to agree with what is necessary for the model, a large part of the estimated yield curves
display uneven curvature, poor fit to zero yields and even yields that are negative or that
goes to infinity as the time to maturity decreases towards zero. One poor example of the
capability of the Svensson model is illustrated in figure 7.6 where a corporate yield curve for
Petróleos Mexicanos is estimated. Two sharp hump shapes can be seen together with a yield
decreasing toward minus infinity. Figure 7.7 shows another example, though in this case the
Svensson model cannot even create a curve estimate as too few yield notations are observed.
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Figure 7.6: Three different estimation techniques are applied onto a set of zero yields to obtain estimates
of the yield curve: linear interpolation between estimated zero yields, a smoothing cubic spline and the
Svensson model. The figure illustrates an example where very poor estimates of zero yields have been
obtained. The Svensson model here produces an overfitted curve, as does the linear interpolation which by
construction intersects each point. The smoothing spline however produces a smooth curve where only a
slight kink can be detected toward the short end of the curve.

Figure 7.7: Example yield curve of the corporate issuer Telefonos de Mexico. This figure illustrates how
the smoothing spline can produce reasonable estimates of the yield curve at times when an estimate by the
Svensson model cannot even be obtained. The simple characteristics of linear interpolation are once again
evident.
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Figure 7.8: Term structures estimated on the 30th of April 2010 for all of the eight issuers covered in the
sample are illustrated. It is clear that even for the most recent period, where data quality in general is good
for all issuers, the Svensson model sometimes creates unreliable results whereas the smoohing spline yields
reasonable estimates for all issuers. For Telefonons de Mexico an estimate could not even be obtained with
the Svensson model due to the limited amount of data points.

Judging from obtained curve estimates, the choice of which technique to apply is not a diffi-
cult one. The smoothing cubic spline outstands the simplicity of the linear interpolation and
produces significantly more stable estimates than the Svensson model. The Svensson model
would surely be the best choice for consistently good sets of zero yields but the quality of the
data used in this study is too poor for the technique to be suitable. The smoothing spline
is found to be a good compromise between model sophistication and loss of already scarce
data. Figure 7.8 shows estimates obtained with the smoothing cubic spline and the Svensson
model for all issuers on the most recent day of the sample. The exception is Telefonos de
Mexico where the Svensson model could not produce any estimate due to data restrictions.

The condition of at least three valid yield notations to attempt an estimate of the yield
curve resulted in a somewhat reduced set of data. However, as the quality thereof varies
between issuers, some sets remain fairly intact whereas others are more affected. A smaller
fraction of full term structures as well as single notations from the estimated yield curves
must also be removed due to unsatisfactory results, which even further decreases the number
of remanining yield notations. With the smoothing spline as selected estimation method,
and where all identified outliers have been removed, the respective histories of estimated
term structures show the characteristics presented in table 7.1. A total of 92 constant ma-
turity yield time series, all with varying fractions of missing values, have now been obtained.

A couple of examples of how estimated yields develop over time, for a reduced set of matu-
rities, are shown in figures 7.9 and 7.10. Periods of steeper as well as flatter yield curves can
be identified as vertical distances between time series vary. Generally, longer term series lie
above shorter term series, implying the most common scenario of an upwards sloping curve.
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Issuer Name Observed Dates Tenors # Time # Missing
Series (%)

Industrial Bank of Korea 01/08/2005-30/04/2010 3M-20Y 12 22.76%
Korea Exchange Bank 29/03/2006-30/04/2010 3M-10Y 10 37.80%

Korea Telecom 04/05/2005-30/04/2010 3M-10Y 10 20.46%
Republic of Korea 03/05/2005-30/04/2010 3M-20Y 12 6.90%

Total Korea - - 44 21.33%
América Móvil 25/08/2008-30/04/2010 3M-20Y 12 68.60%

Petróleos Mexicanos 03/05/2005-30/04/2010 3M-20Y 12 2.07%
Telefonos de Mexico 25/08/2008-30/04/2010 3M-20Y 12 68.31%

United Mexican States 03/05/2005-30/04/2010 3M-20Y 12 2.88%
Total Mexico - - 48 35.46%

Total All - - 92 28.70%

Table 7.1: Static information of resulting sets of term structures for each of the selected issuers (1). Columns
in the table correspond to the dates between which term structures are estimated (2), for which tenors the
term structure has been estimated (3), the number of raw time series per issuer (4) and the fraction of
missing values in the data set after the estimation has taken place (5) (where a complete 5 year history
corresponds to a full set of data).

Figure 7.9: Estimated time series corresponding to maturities 2y to 5y are illustrated for the Korean
government bond curve. In the lower part of the figure, a subperiod is shown where a fraction of the
observations are missing.
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Figure 7.10: Estimated time series corresponding to maturities 2y to 5y are illustrated for the corporate
bond curve of Industrial Bank of Korea. The lower part of the figure shows a subperiod which contains a
notable amount of missing positions.

Issuer Name # Missing Issuer Name # Missing
(%) (%)

Industrial Bank of Korea 32.66% América Móvil 70.17%
Korea Exchange Bank 49.14% Petróleos Mexicanos 3.60%

Korea Telecom 29.27% Telefonos de Mexico 69.88%
Republic of Korea 12.38% United Mexican States 4.44%

Total Korea 30.10% Total Mexico 37.02%
Total All 33.71%

Table 7.2: Resulting set of yield changes for each of the eight issuers computed from the set of obtained
issuer term structures. It is clearly notable that the fraction of missing values significantly increases as yield
changes are computed. A complete 5 year history corresponds to a full set of data.

As yield changes are computed from estimated term structures, an increase in missing posi-
tions can be observed (as previously discussed in section 4.2). Presented in table 7.2 are the
fractions of missing values in the set of yield changes, displayed per issuer, in total per region
and in total over the entire data set. The additional loss of information, as yield changes are
computed from yields, is especially visible among a couple of the Korean issuers. The frac-
tion of missing observations displayed in table 7.2 will remain through the GARCH filter and
are thus the same positions which later on will be filled by the iterative backfilling procedure.
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7.2 Backfilling Performance
Below follows a brief presentation of the GARCH(1,1) filter application onto constant ma-
turity time series of yield changes. This is followed by results obtained by the PCA-based
backfilling procedure, applied onto the various described sets and subsets of GARCH resid-
uals.

7.2.1 GARCH(1,1) Filtering
When GARCH properties have been established (from which results are presented in Ap-
pendix A), all time series of yield changes are filtered with the procedure described by Penzer
(2007) and recited in section 4.2.1. A few examples of filtered GARCH residual time series
of varying length is illustrated in figure 7.11 and it is upon time series of this character
that the backfilling procedure will be applied. Further assessing the total of 92 filtered time
series, it is found that their average mean and volatility (based only on available observa-
tions for each time series) are -0.036 and 1.023 respectively. The standard deviation of these
measures are 0.049 for the mean and 0.034 for the volatility. Thus, some sampling error is
present but on average time series are approximately (0,1) distributed.

Figure 7.11: Three examples of filtered GARCH residuals are illustrated, all of varying quality. The length
of the time series as well as the frequency of notations differs among all of the three issuers. Periods of
higher and lower quality can be seen with the naked eye.
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Figure 7.12: GARCH residuals for the corporate 5y maturity time series of Petróleos Mexicanos. After 1000
iterations convergence of the procedure has not yet been reached and imputed values are significantly larger
than original values of the same time series.

7.2.2 Filling of Time Series
No Decomposition

Applying the backfilling procedure directly onto the entire set of data is in some regards a
beneficial scenario. In such approach, no correlations would be neglected and no extra time
would need to be spent on decomposing the data into smaller subsets. However, when ap-
plying the backfilling procedure onto the 92 estimated GARCH residual time series, results
are not satisfactory. 12 optimal Principal Components are estimated but as iterations are
initiated, convergence is not reached. Imputed estimates rapidly exceeds observed values
and show no sign of slowing down.

The backfilling procedure is initiated once more on the set, but is now stopped after 1000
iterations. Time series are at this point reviewed and it is evident that imputed values are
largely overestimated. The smallest and largest imputed values are -43.7 and 51.1, both of
far larger size than what is reasonable for a set of (0,1) distributed GARCH residuals. As
the procedure is allowed to continue for even longer time, imputed values grow even larger.
An example is illustrated in figure 7.12 where imputed values are clearly overestimated.

Regional Decomposition

The regional decomposition results in two different subsets corresponding to South Korean
and Mexican issuers. The Korean subset contains of 44 time series for which 4 optimal PC:s
are estimated and the Mexican subset contains of remaining 48 time series for which the
larger number of 8 PC:s are obtained. The algorithm does however not reach convergence
for any of the two subsets. Again letting the algorithm iterate 1000 times for each of the
subsets, similar results are obtained as for the previous scenario. Many of the imputed
values are far larger than observed ones, reaching up to -42.5 and 43.8 for Korea, and -38.3
and 20.3 for Mexico. The convergence factor has at this stage reached 0.023 but is in fact

62



Figure 7.13: GARCH residuals for the corporate 5y maturity time series of Industrial Bank of Korea. After
1000 iterations convergence of the procedure has not yet been reached and imputed values are significantly
larger than original observations of the same time series.

increasing again as the procedure is stopped. An example time series is again illustrated in
figure 7.13, this time for the corporate issuer Industrial Bank of Korea.

Two to five Year Tenors

When visually reviewing the constant maturity time series of yield changes, it can be con-
firmed that tenors on the long and short ends of the curves in general display a more volatile
behaviour than tenors at the midmost part of the curves. Removing these excess volatile
time series, in order to reduce the risk of error population in the PCA-based backfilling
routine, is thus justified. Reducing the number of tenors for each of the issuers to those
between two and five years, results in one set of 32 time series, 4 belonging to each issuer,
and with 4 optimal PC:s estimated for the entire set.

Unfortunately, convergence remains unreached also for this decomposition and imputed
positions are again clearly too large. Similarly to previous approaches the convergence
factor shows no sign of decreasing to zero and after 1000 iterations, values in the range of
-31.3 to 35.0 are imputed in formerly missing positions. (As results are similar to those of
previous approach it is chosen not to include any illustration for current subset.)

Regional and Tenor-wise Decomposition - Two-Step Filling

As the first decomposition according to regions and tenors is applied, 8 subsets of 4 time
series each are obtained. Complexity is thus significantly reduced prior to the application
of the backfilling procedure. This fact is also reflected in a low number of optimal PC:s for
the different subsets, all for which convergence is reached within just a few seconds. The
total fraction of missing values in the set decreases from 33.71% to 15.66%.
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Issuer Name PC:s Itera- # Missing #Missing After # Missing After
tions Pre Fill (%) 1st Run (%) 2nd Run (%)

Industrial Bank of Korea 1 18 31.33% 22.14% 21.72%
Korea Exchange Bank 1 19 48.83% 22.22% 21.76%

Korea Telecom 1 19 30.47% 22.05% 21.58%
Republic of Korea 1 18 11.86% 9.79% 9.32%

Total Korea - - 30.62% 19.05% 18.60%
América Móvil 1 42 69.59% 21.45% 5.24%

Petróleos Mexicanos 1 18 3.40% 2.94% 2.40%
Telefonos de Mexico 2 138 69.84% 21.55% 5.66%

United Mexican States 1 10 3.49% 3.13% 2.99%
Total Mexico - - 36.58% 12.26% 4.07%

Total All - - 33.71% 15.66% 11.33%

Table 7.3: Filling results from the two-step decomposition of the original data set. The number of optimal
PC:s (2) and necessary iterations (3) are shown as the second run of the procedure is performed on each of
the issuer sets of time series in the sample. Furthermore, the fraction of missing values is presented before
(4), in between (5) and after (6) the filling has been performed twice, here illustrated per issuer which was
found to be the most relevant representation.

As the second decomposition is performed, where each issuer is treated separately, 8 subsets
consisting of 4 time series each are again created. Table 7.3 presents the number of principal
components and the number of iterations needed to reach convergence solely for this second
decomposition (as the issuer term structure is the representation of interest). The fraction
of missing values is however presented for the various issuers prior to filling, after the first
run and finally after the second run of the backfilling procedure.

Clearly notable in table 7.3 is the significant reduction in missing values among Mexican
issuers. The total fraction of missing observations here decreases from 36.58% to 4.07%
after applying the procedure twice, whereas for Korea the fraction decreases from 30.62%
to 18.60%. Although the quality of the imputed values is the most crucial aspect, it is in
this study also desired to fill a large amount of missing values.

Figure 7.14 illustrates an example time series of GARCH residuals, where imputed values
(combined from the first and second run) are displayed in red. Judging from the size of
imputed values they seem to be reasonable estimates. However, as the figures basically
illustrate noise and since true values for imputed positions are unknown, further analysis of
their quality is difficult to make in this dimension.

Apart from the fear that correlations between time series are not optimally used as they
are shuffled around, the main drawback of this choice of decomposition is the relatively low
number of imputed values. This fact becomes clear when inspecting figure 7.14 where large
gaps still are visible. Fewer time series are here treated simultaneously by the backfilling
routine and depending on the number of optimal Principal Components, the fraction of
the data which remains unfilled is quite significant. Imagine for example that two Principal
Components are found optimal for filling of a data set consisting of 4 time series. This means
that all rows containing 1 or 2 observations will be excluded from the filling procedure. Since
4 observations here corresponds to a complete row, only rows with excatly 3 observations
will be filled by the routine.
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Figure 7.14: The figure illustrates the 5y maturity time series of the corporate issuer Industrial Bank of
Korea, after application of the backfilling procedure. Displayed in red are all imputed values after the first
and second sun of the procedure. No additional time series have been used during the filling procedure.

Including Additional Risk Factors - Two-step Filling

To increase the fraction of positions being filled by the algorithm, additional time series are
placed in subsets created by the the first decomposition. As the two regions covered by
the data correspond to South Korea and Mexico the additional time series are: USD/KRW
- Currency exchange rate between US Dollar and Korean Won, Kospi 200 Index - Capi-
talization weighted index based on 200 Korean stocks corresponding to 93% of the Korea
Stock Exchange market value, USD/MXN - Currency exchange rate between US Dollar and
Mexican Peso and the Mexbol Index - Capitalization weighted index of leading stocks traded
on the Mexican Stock Exchange.

With additional risk factors taken into account, the first run of the procedure is now per-
formed on 8 different subsets each consisting of 6 time series (instead of 4 as in previous
scenario). As a result of adding more information to the data set, the number of optimal
PC:s in this first run of the procedure generally increases from 1 to 2. Since more information
is added to the data set it is however found that this increase is reasonable. Convergence is
once again easily reached for all subsets and the total fraction of missing values decreases
from 33.71% to astonishing 5.76%.

As the second decomposition is applied, additional time series are removed and 8 subsets of
4 time series each are again created. Results are presented in table 7.4 and a clear improve-
ment can be seen. The number of missing values which are filled by the procedure have
now significantly increased and in the total set, only 5.53% of the observations remain miss-
ing after the filling procedure as oppose to 11.33% when no additional risk factors were used.
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Issuer Name PC:s Itera- # Missing #Missing After # Missing After
tions Pre Fill (%) 1st Run (%) 2nd Run (%)

Industrial Bank of Korea 1 17 31.33% 9.69% 9.27%
Korea Exchange Bank 1 18 48.83% 9.69% 9.27%

Korea Telecom 1 18 30.47% 9.69% 9.27%
Republic of Korea 1 18 11.86% 9.54% 9.11%

Total Korea - - 30.62% 9.65% 9.23%
América Móvil 2 0 69.59% 2.40% 2.40%

Petróleos Mexicanos 1 17 3.40% 0.61% 0.50%
Telefonos de Mexico 2 0 69.84% 2.40% 2.40%

United Mexican States 2 0 3.49% 2.05% 2.05%
Total Mexico - - 36.58% 1.87% 1.84%

Total All - - 33.71% 5.76% 5.53%

Table 7.4: Filling results from the two step decomposition of the original data set, with additional risk
factors included. The number of optimal PC:s (2) and necessary iterations (3) are shown as the second
run of the procedure is performed on each of the issuer sets of time series in the sample. Furthermore, the
fraction of missing values is presented before (4), in between (5) and after (6) the filling has been performed
twice, here illustrated per issuer, which was found to be the most relevant representation.

Something that might appear strange in table 7.4, are the "zero" iterations noted for some of
the issuers. This simply implies that the restriction on the number of observations needed
for a day to be included in the filling procedure (in this case 3, since k equals 2), is not
fulfilled for any of the days that still contain missing values. All values that are possible to
fill with the means of PCA are thus done so during the first run of the procedure. The time
series illustrated in figure 7.15 is the same time series as shown in figure 7.14, though this
time with estimates obtained with the help of additional information.

Comparing figures 7.14 and 7.15, it appears as if positions which are successfully estimated
in both scenarios are identical. This would in turn imply that adding additional time series
will in fact not distort imputed values but will simply help to fill a larger number of missing
positions. To illustrate this further, an example is shown in figure 7.16 where the same two
sections of a time series is filled without and with additional information. The differences
between imputed values are seemingly small but with the help of additional information,
more values can be filled.
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Figure 7.15: The figure illustrates the 5y maturity time series of the corporate issuer Industrial Bank of
Korea, after application of the backfilling procedure. Imputed values from the first and second run of the
procedure are displayed in red. Additional time series have been used to increase the fraction of filled values.

Figure 7.16: Gaps in one of the original time series have here been filled with and without the presence of
additional risk factors. Differences between imputed values (comparing the upper and lower parts of the
figure) are seemingly small, but the amount of positions which are imputed is higher as additional time
series are included.
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Region Issuer Name Avg. Sum Sq. Diff.
Korea Industrial Bank of Korea 0.00396

Korea Exchange Bank 0.00356
Korea Telecom 0.00552

Republic of Korea 0.00360
Mexico América Móvil 0.28930

Petróleos Mexicanos 0.65125
Telefonos de Mexico 0.29166

United Mexican States 0.36266

Table 7.5: Average sum square differences between unitely imputed values as the filling procedure has been
performed without and with additional time series. Results show that differences in general are small for
Korean issuers but significantly larger for Mexican issuers, something which is believed to be related to the
much larger fraction of originally missing values among Mexican issuers.

Unfortunately, this is not always the scenario as some of the issuers illustrate larger dif-
ferences between the two approaches than what can be seen here. To further assess this
matter, the average sum square differences between values imputed without and with ad-
ditional risk factors, are assessed for each issuer and presented in table 7.5. Korean issuers
in general show very small differences between the two approaches whereas differences are
more significant for Mexican issuers. This is rather believed to be related to the fraction of
initially missing values in the data set being filled. This fraction is notably higher among a
couple of Mexican issuers and since a regional (and tenor-wise) decomposition is applied this
will influence time series of the same tenor, for other issuers of the same region. A higher
level of originally missing values makes the difference of including additional time series even
more distinct as the relative amount of new information will be very high, something which
might steer imputed values more than desired.

7.3 Term Structure Reconstruction
Figures 7.17 and 7.18 illustrate reconstructed histories of term structures for the Republic
of Korea and Industrial Bank of Korea, from a historical yield perspective. Both figures
show reasonable yield notations on positions that were previously missing. Illustrated time
series are generated without the presence of additional risk factors, meaning that a larger
fraction of missing observations finally had to be filled through simulation from factor dis-
tributions (see Appendix B). To assess the credibility of estimated missing values, compare
with figures 7.9 and 7.10 on pages 59 and 60.

Figure 7.19 instead shows an example of the impact of including additional risk factors in
the backfilling algorithm, on the final yields. Time series corresponding to the 2y to 5y
maturity yields for the corporate issuer Industrial Bank of Korea are again illustrated over
the observed period. Comparing the lower part of the plot with that of figure 7.18, a slight
difference in the shape of the time series can be detected, mainly in the leftmost half of the
plots.
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Figure 7.17: Estimated time series corresponding to maturities 2y to 5y, where missing values have been
imputed with the suggested filling algorithm, here illustrated for the Korean government bond curve. Values
are imputed without additional risk factors. In the lower part of the figure, a subperiod is shown where
missing values, as shown in figure 7.9, have been filled.

Figure 7.18: Estimated time series corresponding to maturities 2y to 5y, where missing values have been
imputed with the suggested filling algorithm, here illustrated for the corporate yield curve of Industrial Bank
of Korea. Values are imputed witout additional risk factors. In the lower part of the figure, a subperiod is
shown where missing values, as shown in figure 7.10, have been filled.
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Figure 7.19: Estimated time series corresponding to maturities 2y to 5y, where missing values have been
imputed with the suggested filling algorithm, again illustrated for the corporate yield curve of Industrial
Bank of Korea. Additional time series have been used and a slight difference can be seen through visually
comparison with figure 7.18.

If one looks closely, a dip can be observed for the 5y maturity time series in the lower part
of figure 7.18. Approximately 1/3 into the subperiod (corresponding to ≈ November 2005)
the 5y maturity yield in fact decreases to a level below the 4y and even the 3y yield. Lower
yields for longer maturities do sometimes occur, but generally on the long end of curves
covering a broader range of maturities. As the figure illustrates yields only for a limited
number of fairly short maturities, it is considered unlikely to see the yield of the longest
maturity dip below those of shorter maturities, in turn implying that the imputed value
here might be incorrect. Such dip cannot be seen in figure 7.19, which in turn speaks in
favour of the scenario where additional risk factors are included.

In contrast to examples illustrated so far, where results appear good, a couple of term
structures are less successfully filled. To give an example, a part of the filled history of
the Mexican corporate issuer América Móvil is illustrated in figure 7.20. América Móvil
is the issuer with the highest fraction of originally missing values as more than 70% of
its yield changes were unobserved. As historical yield notations were available during the
period 25/08/2008-30/04/2010, approximately the left half of figure 7.20 has been entirely
constructed with estimates from the PCA-based filling routine. This turned out to be too
much for the filling algorithm. Even though imputed GARCH residuals appear reasonable
(though this dimension practically consists of pure noise and therefore is difficult to cor-
rectly assess), it becomes clear when the term structure dimension is reconstructed, that
filled values don’t make much sense.
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Figure 7.20: Illustration of a less successfully filled history of term structures, in this case for the corporate
issuer América Móvil. The issuer corresponds the one with the highest fraction of originally missing values
where roughly only two years of observations were available.

As a final evaluation of the resulting yield estimates, it remains to review them from a term
structure perspective. Figures 7.21 to 7.23 show a few examples of where parts of, or entire
term structures, estimated per issuer, have been imputed. Here illustrated together with
observed term structures of adjacent days. The first thing one notes is the shape of the im-
puted yield curves, which correspond well with originally observed curves. The distance to
these curves is also reasonable and imply that daily changes of yields at constant maturities
are in range of what can be expected. Unfortunately it is difficult to further discuss the
correctness of the imputed values. Sine they are unknown there is no "true" value for such
positions which makes visual inspection one of the strongest tools to assess the correctness
of curves and time series.

Figure 7.21: The figure illustrates partially and entirely filled yield curves together with originally observed
ones. Also in this example simulated curves are aligned with observed curves from adjacent days and
seemingly display a credible shape.

Especially interesting is figure 7.23, where the same two yield curves have been filled with-
out and with additional time series respectively. The difference among imputed GARCH
residuals is in general very small for the issuer and here it can be seen that also the final
yield curve representations seem very close if not identical.
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Figure 7.22: Imputed yield curve for Korean government bonds is illustrated (in red) among already observed
yield curves (in black) from adjacent days of the history. The imputed yield curves display a credible
behaviour and correspond to the shape of observed curves.

Figure 7.23: Examples of imputed yield curves are illustrated for the corporate issuer Korea Exchange Bank.
Above plot shows estimates produced without additional risk factors and below plot shows the same yield
curves estimated in the presence of additional information. Fortunately, no significant difference can be
noted, implying that the inclusion of additional time series can be helpful.
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Summarized Results

Zero yields are estimated with the Boostrap method based on coupon bearing yield nota-
tions of a number of different issuers. The method generally produces reasonable zero yields
but as the number of observed bonds decreases and their positioning relative to each other
becomes more uneven, the quality of estimated yields decreases.

Three different techniques are thereafter applied onto zero yields for estimation of issuer
specific yield curves. It is found that the cubic smoothing spline with a smoothing factor
λ = 0.6 gives the best fit to the data and produces consistent results. Yield curves are there-
after estimated for all issuers and a set of 10-12 time series of historical yields at constant
maturity (yt) is obtained for each issuer. With a simple computation, corresponding time
series of yield changes (xt) are created.

Assuming they follow univariate GARCH(1,1) processes, each time series xt is filtered to
obtain GARCH residuals (εt). PCA-based backfilling is performed on these residuals and
depending on the set of data the procedure is applied on, the performance of the procedure
varies. It is quickly realized that a decomposition of the real data used in this study is neces-
sary for the procedure to reach convergence. After trying a number of different approaches,
a two-step filling based on two different decompositions is found to be the most successful.
Attempting to include additional risk factors in the backfilling procedure generally gives
positive results. For Korean issuers the effect seems solely positive as a larger amount of
positions can be filled. However, estimates produced for Mexican issuers clearly differs from
those obtained without additional time series, although something rather believed to depend
on the higher fraction of missing values among Mexican issuers.

Recursive reconstruction of yield changes and thereafter term structures generally produces
reasonable results. However, time series with a higher fraction of originally missing values
display less successful outcome. Assessing the credibility of obtained results is mainly done
visually, other approaches are difficult since missing observations truly are unknown and
meaningful numerical comparisons are difficult to make.
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Chapter 8

Conclusions and Discussion

In this Master’s Thesis a procedure has been designed for estimation of issuer specific term
structures with scarce availability of data. The aim has been to obtain complete histories
of yield curves based upon which financial risk measures can be computed. To reach this
objective, the main focus has been placed upon filling of missing values, for which a specific
algorithm has been developed.

As term structures were estimated based on bootstrapped zero yields, it very early became
clear that the most sophisticated method does not always produce the best result. The
appropriate choice of model is highly dependent on the characteristics and quality of the
data and should carefully be considered. The smoothing cubic spline which was chosen in
this study, turned out to be the best technique to obtain reasonable estimates without too
much loss of data. Data which was scarce already from the beginning. However, unstable
estimates at curves’ ends made it possible to only use the midmost part of the estimated
term structures to obtain sound results in the subsequent backfilling procedure.

To avoid estimation errors, which here turned out to affect the performace of the latter ap-
plied filling procedure, corresponding CDS notations or other suitable proxies could instead
be used. Such measures can however be difficult to find for smaller issuers, where finding
bond notations already is a challenge. The term structure estimation technique is also a
part of the study with room for improvements as this aspect was somewhat de-emphasized
in favour of the backfilling routine.

The designed backfilling algorithm is proven to yield successful results for a number of syn-
thetic data sets of which underlying factor structures are known. The fraction of missing
values, the number of underlying factors and the amount of noise in the data set are all
shown to have an impact on the model’s performance. Applied on a true set of data, conver-
gence was however found difficult to reach. This could in fact be related to the amount of
noise which can be high among daily financial data. Even more so due to additional errors
assumed to be introduced during the term structure estimation. It is also commonly known
that Principal Component Analysis is a non-robust method, and the data set might have
contained too much noise for the filling routine to correclty reach convergence. As an alter-
native to a more profound yield curve estimation to minimize errors, robust PCA could be
used to reduce the impact of noise and possible outliers throughout the backfilling algorithm.
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The higher the fraction of missing values, the larger is the risk that these values are not
correctly estimated and one should carefully consider if it is justified to apply the procedure
on data sets of too low quality. On sets with a lower fraction and a more sparse structure of
missing values, it has been shown in this study that satisfactory results are obtainable, but
where does one draw the line? Is it possible to define a measure of the character of missing
observations and set a threshold for when values still can be filled with the suggested pro-
cedure? In this study, term structures are successfully estimated as long as the fraction of
missing values is kept on a reasonable level. The actual validity of the estimates is however
still to be assessed. A good way of evaluating filled term structures has not been thought
of, something left to further investigate.

Also worth to highligt is the question of how many Principal Components to use in the
imputation algorithm. The approach presented in this study was found meanigful for the
chosen data, but is nevertheless only one among many different possibilities. Difficulties to
reach convergence could possibly be related to this question and alternative ways of defining
the number of components remains to be tried. As dimensionality of the data was reduced
through decomposition, the optimal number of components might have been easier to de-
tect, leading to reasonable results and convergence, but unfortunately also to the neglection
of important correlations as time series are separated.

As a final word, the strongest lesson learned in this study is related to the data. Regardless
of what one wishes to do, one must be aware that every step of the process will be highly
dependent on the chosen data set.
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Appendix A

Ensuring GARCH(1,1)
Properties

As mentioned in section 4.2.1, it must be shown that GARCH(1,1) properties exist among
estimated yield changes to justify the GARCH(1,1) assumption and filter application. En-
suring the existence of such properties is the purpose of this appendix.

Figures A.1 and A.2 illustrate the 5y maturity time series together with daily yield changes
for the two government curves in the sample. It is easy to see in both figures that yield
changes show periods of higher and lower volatilities. Volatility clustering thus clearly exist,
which suggests that GARCH(1,1) characteristics might be present in the data.

Figure A.1: The 5y maturity yield time series of the Korean government bond curve is illustrated together
with its daily changes. Periods of different volatilities are easily detected among yield changes.
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Figure A.2: The 5y maturity yield time series of the Mexican government curve is illustrated together with
corresponding daily yield changes. Volatility clusters are evident also in this example.

Further reviewed are autocorrelations, partial autocorrelations and autocorrelations between
squared yield changes, here illustrated for the Korean 5y government time series in figures
A.3 - A.5. Resulting plots suggest that no autocorrelations exist between observed yield
changes, whereas they are clearly noticable among squared changes, thus indicating the
existence of a volatility process. Similar implications are given as the function garchfit() is
applied, where GARCH(1,1) processes successfully are fitted to each of the time series. Co-
efficients (a, b, c) (as defined in equation (3.5) of section 3.3.1) and their respective standard
errors are presented in table A.1.

Figure A.3: Sample autocorrelation function illustrated for the 5y maturity time series of yield changes of
the Korean government curve. No significant autocorrelations can be detected for the various presented
lags.
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Figure A.4: Sample partial autocorrelation function illustrated for the Korean government 5y maturity time
series of yield changes. No significant partial autocorrelations can be detected for the various lags.

Figure A.5: Sample autocorrelation function of squared yield changes for the 5y maturity Korean government
time series. Though no correlations could be detected among yield changes, squared changes clearly display
correlations between observations of different lags.

Issuer Name c (10−3) SEc (10−3) b SEb a SEa
Republic of Korea 0.0170 0.0066 0.0478 0.0051 0.9496 0.0049

United Mexican States 0.0942 0.0190 0.1695 0.0183 0.8103 0.0176

Table A.1: GARCH(1,1) coefficients with respective standard errors (SE∗) for the two example time series,
selected to ensure the existence of GARCH(1,1) properties.
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Conditional volatilities together with filtered GARCH residuals are finally illustrated in fig-
ures A.6 and A.7. Filtered GARCH residuals display a significantly more stable behaviour
than time series containing yield changes, although some outliers do appear in the respective
example series which can be assumed to be a result of sampling error.

Figure A.6: Conditional volatilities are illustrated together with filtered yield changes of the 5y maturity
time series of Korean government bonds. The lower plot illustrates a much more even behaviour where
clusters of volatilities noted in figure A.1 have been removed.

Figure A.7: Conditional volatilities are illustrated together with filtered yield changes of the 5y maturity
time series of Mexican government bonds. In the lower plot of filtered GARCH residuals, a much more even
behaviour is now seen than compared to corresponding yield changes in figure A.2
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Appendix B

Simulation of Remaining
Missing Values

Due to the constraint set in the filling routine, where the number observations for a fixed t
must be larger than the number of optimal PC:s for that given row to be included, a fraction
of values will remain missing as the procedure reaches convergence. The size of this fraction
in turn depends on the character of the input data. Optimally, no positions would remain
missing after the procedure has been applied but those that still do must nevertheless be
filled. This is done by random draws from empirical distributions of Principal Components
(PC:s) and factor residuals.

Example

Consider the matrix X consisting of i = 1, . . . , n time series observed during the period
t = 1, . . . , T . With matrix notation, X = (xt,i), where x·,i further denotes the i:th column
vector of X, i.e. the i:th time series. Now let X be defined by the two underlying factors
(f1, f2) (observed during the same period) such that each xt,i is given by factor observations
(ft,1, ft,2) and corresponding set of factor coefficients α1,i and α2,i through the following
relation:

xt,i = ft,1α1,i + ft,2α2,i + ϕt,i (B.1)

ϕt,i, which corresponds to a residual term of the factor model, can be "backed out" from the
model by rewriting the relation such that:

ϕt,i = xt,i − ft,1α1,i − ft,2α2,i (B.2)

In this study, the factors f correspond to the set of Principal Components that are obtained
as the iterative PCA-based filling procedure has reached convergence and coefficients are
the corresponding loadings of the same PCA decomposition. If two PC:s are found optimal
for the filling of a certain data set it means that these two components correspond to factors
in above representations. After this final filling step, the matrix of GARCH residuals is
complete, Ẽ has been created.
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To fill entire rows of missing values, random draws are made from the Principal Component
vectors and values are created by multiplying corresponding loadings with these compo-
nents. Assuming that the filled part of the matrix contains "true" values, PC vectors are
at convergence seen as their respective empirical distribution. If thus two PC:s are found
relevant for reconstruction of the data, one random couple of these two components are
drawn independent of each other, and independently with replacement for each row where
missing values still exist. This gives us a set of factor pairs (f1, f2), one for each t where
values still need to be filled.

Additionally, a residual term ϕt,i is added on top of each simulated value, obtained by
subtracting the part explained by relevant PC:s from the values of X at convergence. Inde-
pendent random draws are made column wise from corresponding residual distribution ϕ·,i
for each of the positions that are simulated in corresponding time series x·,i.

For partially empty rows, which do not contain enough information to be kept in the fill-
ing algorithm, but that still have at least one "true" observation, the above procedure is
somewhat modified. Instead of just one random draw per row to fill, N = 1000 draws are
made, both from PC:s and residuals, and values of X are reconstructed for these N different
scenarios. The selected scenario is the one that minimizes the sum of squared differences
between that (or those) value(s) that are originally observed and that (or those) that are
generated at corresponding positions of each of the N scenarios. Consider for example the
row vector xt,· = (NaN,NaN,NaN, 0.73,−0, 49), where three missing positions remain to
be simulated. Furthermore let the row vector x∗t,· = (x∗t,1, x∗t,2, x∗t,3, x∗t,4, x∗t,5, ) be simulated
values from one of the N random draws. The squared difference to be minimized over all
the N simulations is then given by (0.73− x∗t,4)2 + (−0.49− x∗t,5)2.
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