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This paper is an econometric study of five publically attainable macroeconomic 
and market variables from the US market. The aim is to study the behaviour and 
dependencies of GDP growth, inflation, yield curve, equity indices and foreign 
exchange rates in order to determine a forecasting model with horizon of one year. 
Such a model could be used to study possible future macroeconomic scenarios as 
well as to increase the understanding of how these variables react one to another. 
Very little is assumed of the series prior to modelling and relations predicted by 
econometric theory are expected to reveal themselves through the process of data 
analysis. The forecasting model is kept as simple as possible and the complexity of 
a model is only increased if it results in significant improvements of forecasting 
accuracy. Univariate ARMA models as well as multivariate VAR models that allow 
for international variable dependencies are tested, assuming either normal, t(3) or 
GARCH-gauss distribution of error terms. Models are ranked by comparing RMSE 
forecasting values and error terms behaviour. Results indicate that it is hard to 
find models that outperform the random walk although diagnostic tests indicate 
that many series share similar patterns of historical movements. It is therefore of 
interest to study further whether the models can be improved by identifying a 
common cointegrating vector. 
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1 Introduction 
In 2002 the Swedish National Debt Office introduced a stochastic simulation model that simulates 

different macroeconomic variables in order to forecast the cost development of the Swedish national 

debt (Bergström, Holmlund, & Lindberg, 2002). The model was recently refined by Jonson (2008) and 

used to investigate inter-risk correlations in order to examine risk aggregation.  

The macroeconomic model is interesting on its own and can be used to investigate possible future 

scenarios and modified to highlight specific issues, such as studying the consequences of adding a 

shock in various variables or analysing the dependencies of other economic variables based on the 

ones included in the macro-model. For example, by investigating and modelling the dependencies of 

credit default swap spreads index for given class of rating one could gain some understanding of how 

credit risk of a company of a certain rating should evolve with changes in the economic environment. 

This is desirable information for potential investors that might not have access to the internal data of 

the company at stake. 

One could also use the macroeconomic model to explore how indexes for corporate bonds of specific 

rating classes depend on the economic factors and investigate whether there are any significant 

differences between the dependencies of the different rating levels. This could increase the 

understanding of how much bonds of different rating classes can be expected to evolve with changes 

in the economy. 

In this thesis, I focus on modelling the factors of the macroeconomic model. I study the time series 

and propose a model that best describes the data, accounting for cross-market information as well as 

autorcorrelating qualities and behaviour of error terms.  

I restrain the model to cover variables that can be reached through official and publicly attainable 

channels. The factors included are the annual inflation rate, quarterly changes in GDP, foreign 

exchange rates, equity indices and the yield curve with main focus on the American market. Data 

from the Euro area, UK and Japan is included in order to test the possibility of cross-market effects.  

The series are modelled assuming as little as possible about the economic relationships within the 

data prior to modelling. The idea is to let the data reveal these relations through the models as 

inspired by Carriero, Kapetanios, & Marcellino (2009) and at the same time keep the modelling as 

simple as possible. A more sophisticated model is only chosen over a simpler one only if it performs 

significantly better than the latter.  

The univariate models tested are the Random walk along with the linear ARMA model. The residuals 

are assumed to be either IID or follow a normal GARCH process. Cross-variable information is studied 

by applying vector-autoregressive models.  

The yield curve is modelled in two ways. One is to apply the dynamic Nelson-Siegel model and the 

other is to model the yield changes with a VAR model and then interpolate between the nodes using 

a natural cubic spline.  

Out-of-sample comparison is done at the forecasting horizon of 12 months. 
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1.1 Disposition 
Chapter 2 provides a theoretical background and introduction to the time series models proposed 

and tested in this thesis, whereas chapter 3 includes a literature study that lists and summarizes 

recent findings. Chapter 4 contains a detailed description of the time series used and chapter 5 

includes the process of modelling the provided set of data. The actual modelling takes place in 

chapter 6 along with results and discussions. Conclusions are found in chapters 7.  
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2 Theoretical background 
This chapter provides a theoretical background and introduction to the time series models proposed 

and tested in this thesis. In 2.1 I start by describing the linear models of univariate time series along 

with a variety of test related to fitting the models to the data. I then move on to introducing the 

nonlinear GARCH and ARHC models that make use of time-varying volatility. Chapter 2.2 describes 

multivariate time series models and in 2.3 the state-space representations are introduced with 

applications on how to model the yield curve. 

2.1 Univariate time series 

2.1.1 Stationary time series 

Most models rely on the time series being stationary upon modelling. Stationary is defined as 

follows: 

Stationary time series 

     is a time series with     
    .      is (weakly) stationary if its mean 

function,       is independent of t and the covariance function           is 

independent of   for each  . 

There are several ways to make sure that the modelled data is stationary. The first step is to plot the 

data and by visual inspection determine if there are any signs of a stochastic- or a deterministic 

trend. Linear models assume constant volatility. If the data shows signs of exponential growth or 

variability that increases or decreases with time, the Box-Cox transformation can be applied to the 

data in order to achieve time series that are approximately linear.  

Box-Cox transformations1 

This class of transformation can be used to stabilise variability of data when 

the variability increases or decreases with time. The Box-Cox transformation is 

defined as: 

       

          

    

 
    

    

Next step is to eliminate the linear trend from the data and test for stationary. By applying the 

Augmented Dickey-Fuller test for unit root one can determine whether or not the data is stationary 

and if not, decide whether the trend is deterministic or stochastic. An appropriate transformation of 

the data can then be made.  

Augmented Dickey-Fuller test (   )2 

The augmented Dickey-Fuller tests look at the model 

                                   

and test the null hypothesis of a non-stationary process against a stationary 

process.  

                                                           

1
 As defined in (Brockwell & Davis, 2002) 

2
 (Alexander, 2001) 
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The first test assumes that the process has zero mean and is trend stationary. 

In this case,   and   are set to zero prior to conducting the test. The second 

version applies do data showing no sign of a trend but appears to have a 

nonzero mean setting    . Finally, if the data seems include a linear trend, 

the model is tested as it is. 

In all cases the hypothesis testing becomes equivalent to testing        

against       . 

Now, there are a few possibilities. Given that the test was not able to reject the null hypothesis of 

non-stationarity the ADF test is altered to test whether the trend is deterministic or stochastic. If the 

test indicates a deterministic trend, one should react by removing a fitted trend line from the data. If 

the trend appears to be stochastic, the data is differentiated and tested again for stationary in order 

to confirm the order of integration. 

After obtaining stationary data one turns focus at the autocorrelation of the observations of the time 

series. Just by looking at the plotted sample ACF one can make some assumptions of the data. If 

        is slowly decaying with time then this is a sign indicating that the time series are still non-

stationary. 

Sample autocorrelation function (sample ACF) 

Given the observations        of a time series the sample mean, sample 

autocovariance function and sample autocorrelation function of         are 

defined as: 

   
 

 
   
 
     is the sample mean) 

                                  
              

is the sample autocovariance function (sample ACF) 

      
     

     
,        ,  is the sample autocorrelation function. 

2.1.2 White noise 

The simplest time series models assume that the variables are uncorrelated with identical mean and 

variance. The basic models of white noise, iid noise and NID noise are defined as follows: 

White noise 

A sequence of uncorrelated random variables is called white noise if each variable 

has zero mean and variance   . The notation for this is                . 

IID noise 

A sequence of independent and identically distributed random variables with mean 

0 and variance      is called iid noise, written                
  . 

NID noise 

A sequence of independent and normally distributed random variables with mean 0 

and variance   , is referred to as NID noise, notated               
  . 

The sample ACF indicates whether or not the data can be interpreted as observation from the 

processes above. The noise sequences are made up of uncorrelated random variables which should 

result in a sample ACF that is close to zero for all    . 
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There are several other tests that can be used to determine whether the data may be seen as iid 

noise. Some of these tests are listed below. 

The Ljung –Box Portmanteau test3 

This test considers all sample autocorrelation functions       simultaneously by 

studying    , defined as 

                       
 

   
 

The sample ACFs of an iid sequence with finite variance become approximately iid 

with distribution          as long as   is large. For large  ,     can therefore be 

approximated by the chi-squared distribution with   degrees of freedom.  

A large value of     indicates that some of the sample autocorrelation functions 

are large, making it unlikely that the data to be iid random variables. The 

assumption of a iid sequence is therefore rejected at level   if           
    . 

The turning point test4 

This test counts the number of “turns” in the time series. A turning point is defined 

at time   if for the observation    it holds that either                     or 

                   .  

If the observations make a sequence of iid random variables the probability of a 

turning point at time   is    . The number of turning points,  , will therefore have 

an expected value    
 

 
      and variance   

  
        

  
. With   large   

becomes approximately        
  . 

If   is much larger than    we conclude that the sequence is fluctuating too rapidly 

for being an iid sequence. A   much smaller than    indicates a positive correlation 

between the neighbouring observations. The assumption of an iid sequence is 

therefore rejected at level   if                   

The difference-sign test5 

This test treats the differenced series         and counts the number of time it is 

positive. If the sequence is made up of iid random variables this number,  , has an 

expected value    
 

 
      and variance   

  
     

  
. With   large   can be 

approximated as        
  .  

A large value of        indicates a trend in the series of data. The assumption of 

no trend in the time series is therefore rejected at level   if                 . 

The difference-sign test is not guaranteed to detect seasonal fluctuations in the 

data. A sinusoidal wave would, for example, pass through the randomness test 

since its differenced series would be positive equally often as negative. 

                                                           

3
As defined in (Brockwell & Davis, 2002) 

4
 (Brockwell & Davis, 2002) 

5
 (Brockwell & Davis, 2002) 
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The rank test6 

  is the number of pairs       for which     and      . Assuming an iid 

sequence the probability of         equals     and since the number of pairs 

      such that     is   
 
   

 

 
       the expected value of   is therefore 

   
 

 
       with variance    

  
            

  
.  

When n is large the approximation          
   becomes valid. 

A large value of        indicates a trend in the series of data. The assumption of 

no trend in the time series is rejected at level   if                 . 

Data samples containing 100 IID random variables are simulated where the first sample is made up of 

uniformly distributed variables and the second is NID. Dependent data series are created from each 

sample using following definition a first order autoregressive process7:                . 

            for the uniform data sample and               in the normal case. These four samples 

are now used to test the validity of the IID tests listed above. The results are shown in Table 1 and 

confirm what is expected. All tests (Ljung-Box, Turning point test, Difference-sign test and Rank test) 

reject IID for the AR processes but not for the uniform and normal data samples at 5 % level of 

significance.  

N = 100 and α = 0.05 

        

        

Distribution 

IID       NID 

Ljung-
Box 

Turning 
point test 

Difference - 
sign test 

Rank test Jarque-Bera 
test 

Uniform 0 0 0 0 1 

Normal 0 0 0 0 0 

AR(1) Uniform 1 1 1 1 1 

AR(1) Normal 1 1 1 1 1 
Table 1 Test results for 4 simulated data samples with known distribution and sample size 100. 
Randomness tests as well as tests for NID are conducted at level of significance 0.05. 

In order to determine if the time series might be normally distributed one can look at the histogram 

of the data and compare it with the curve expected from a normally distributed set of observations. 

Finally, one can look at the qq-plot and proceed with Jarque-Bera test. 

The Jarque-Bera test8 

This test is designed to check for normality by looking at the Jarque-Bera statistic, 

JB, where 

    

 
 
 
 
 
  
 

   
  

 
  

  
    

 

  

 
 
 
 
 

  and                
 

   
   

is distributed asymptotically as       if the residuals      are normally distributed 

    random variables.  

                                                           

6
 (Brockwell & Davis, 2002) 

7
 The AR process is discussed in detail in chapter 2.1.4.  

8
 (Alexander, 2001) 
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The Jarque-Bera test for NID is used on the simulated data samples (see results in Table 1) and, as 

anticipated, rejects NID for all samples but the IID normal one. Knowing that the IID and NID tests are 

good enough to distinguish between IID, NID and non-IID is comforting for later purposes when these 

tests will be used on data series whose distributions are unknown. 

2.1.3 Random walk 

The random walk is another simple process. The random walk has proven hard to beat when it comes 

to modelling economic variables and its simple nature is feasible from a computing point of view. The 

drawback is that it contains no information of underlying relationships or developing of the markets. 

It has therefore become the benchmark model which other suggested models must be able to 

outperform in order to be considered a realistic modelling alternative. 

Random walk 

The random walk is a stochastic process obtained by tracing a sequence of 

independent and identically distributed (iid) random variables.  

Thus, random walk is defined as          
 
     for            where      is iid 

noise. 

The simplest way of testing for random walk is to look at the differentiated data and determine if this 

new set of data can be seen as iid noise. 

2.1.4 ARMA models9 

     models make a class of linear processes that are defined by linear difference equations that 

have constant coefficients.      stands for autoregressive moving-average and is a combination of 

just that, an autoregressive (  ) process and a moving-average (  ) process. 

      Process 

     is a autoregressive process of order   if 

                      ,  

where               and         are constants. 

      Process 

A moving-average process of order   is defined as      such that 

                     ,  

where               and         are constants. 

          Process 

     is stationary. For every  , 

                                      , 

              and the polynomials             
   and 

             
   have no common factor. Then      is known as an 

          process. 

                                                           

9
 (Brockwell & Davis, 2002) 
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When fitting data to an ARMA model one starts by looking at the sample ACF to get an indication of 

what the correlation structure looks like.  

An ARMA model is determined by using the parameter estimations derived from maximising the 

likelihood function of the system, a method known as Maximum likelihood estimation or MLE. The 

definition of the likelihood function is based on the distribution of the distribution of   . The 

Gaussian likelihood for an ARMA process is given by the equation 

       
 
        

 
 
       

 

 
  
   

      

where                  and          
  .  

The log likelihood value of each model can then be used to compare the models against each other 

and decide which model is most desirable for the data. Several methods have been developed and 

the Akaike information Criterion is among those that are best known. The AIC value is computed for 

each model and the model with minimum AIC is preferred. However, studies have shown that the 

    statistics tend to overestimate the number of estimation parameters needed for modelling. By 

adding a penalty factor to the     value one can counteract this tendency to overestimate.  

AIC (The Akaike Information Criterion) 

The     value is a measure of the goodness of fit of a given model and is defined as  

                         

where     is the likelihood value. The AIC value provides a way to compare 

different models where the one with the lowest AIC value is assumed to be the 

model that best fits the data. 

BIC (Bayesian Information Criterion) 

The     statistics is closely related to     but the penalty factor for overfitting is 

stronger for     than    . BIC is defined as  

                              

where   is the number of observations. 

The AICC value 

The bias-corrected     value, the AICC value, is defined by 

                
         

       
. (1) 

2.1.5 Time varying correlation coefficients10 

All the models above assume that the error terms are iid. This does not always seem reasonable so 

one might suspect that a model that allows the volatilities to vary with time could in some cases 

perform better. 

Indeed, there exist a class of models that incorporate clustering of volatility; an attribute known as 

autoregressive conditional heteroscedasticity (    ). The      effect is defined as follows: 

        

The autoregressive conditional heteroscedasticity model of order p defines the 

conditional variance of the stationary time series as a weighted average of the past 

unexpected squared returns: 

                                                           

10
 (Alexander, 2001) 
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Where                                   
   

The      models have been expanded to include autocorrelation of the squared conditional 

variance   . These generalised models of order       are known as       models. 

           

The generalised      model of order       is defined by the equation 

  
           

          
        

          
  

Where                                           
   

There are several versions of GARCH models. The asymmetrical GARCH model accounts for the 

asymmetrical behaviour of some data series that are more volatile following a sudden negative 

change in time series value than after a positive change of the same absolute value.  

Normally, the GARCH(1,1) provides an adequate description of data. The general model is reduced 

accordingly and is defined as: 

           

The generic GARCH(1,1) is defined by 

  
         

       
  

Where                                   
   

Sometimes it is reasonable to assume that the error terms might not be Gaussian. When the returns 

follow a t-distribution the corresponding       model is referred to as the        model. 

When fitting data to a GARCH model it is wise to start by looking at the sample ACF of the squared 

returns and check for signs of autocorrelation. If the squared returns do not indicate any 

autocorrelation the error terms can be regarded as independent and introducing a GARCH model is 

inappropriate. The Ljung-Box test defined earlier can be used test the squared returns for 

autocorrelation. 

Just like earlier, the model parameters are estimated with MLE but the log likelihood function 

becomes 

                          
    

    
  
 

  
 

 
   ) 

when the residuals are normally distributed and 

          
  

   

 
 

 
 
   

 

 
 

      
 

    
 

 
       

   
   

 
       

  
 

  
      

  
   

 
     

when they are t-distributed11. 

After fitting the GARCH model to data, the Ljung-Box test can be used again to check that the 

standardized squared returns,   
     

     
  , where    

  is the estimate of the GARCH conditional 

variance, are free from autocorrelation. 

                                                           

11
 (Jonson, 2008) 
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2.2 Multivariate time series 
It is now time to look at how the time series relate and depend on each other. By modelling the time 

series together one can include and investigate the correlation between the different variables and 

get a better understanding on dependencies within the economy as a whole. 

2.2.1 VAR models 

The vector autoregression model is a multivariate expansion of the univariate      model. It can 

be shown that every multivariate      model can be transformed into a multivariate    model12 

which is why I only consider     models when expanding the univariate      models to fit 

multivariate data. 

       model13 

The vector autoregression of order p for an  -variate system of stationary time 

series is defined by 

                          (1) 

where   ,    and    are     vectors and         are     matrices of 

coefficients.  

The model parameters are derived using MLE and the AICC can be altered to fit multivariate data. 

Multivariate AICC 

The multivariate expansion of the univariate AICC defined in (1) is 

             
          

        
  

Where p is the order of the VAR model, m is the number of observations and n is 

the number of variables in the system.  

It is not always true that a full model with all parameters designed to fit the data is the best one. By 

restricting the model and presetting some parameters to zero before fitting the model one can 

achieve a simpler model with just as good, or even better, qualities as the full model. The likelihood 

ratio test is designed to compare a full model to a restricted one.  

Likelihood ratio test 

The likelihood ratio test (LR test) compares a model containing restrictions on the 

model parameters to the unrestricted model. The statistical significance of the 

difference in log likelihoods of the unrestricted and restricted parameter estimates 

is evaluated. 

Let   be the difference in degrees of freedom between the restricted and the 

unrestricted model. The test statistics are then assumed to be asymptotically 

       distributed. 

2.2.2 Error Correction Model (ECM)14 

Two non-stationary time series are cointegrated if they share a stochastic trend. This means that the 

series are tied together in the long run even though they might drift apart in the short run. 

                                                           

12
 (Brockwell & Davis, 2002) 

13
 (Alexander, 2001) 

14
 (Alexander, 2001) 
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Cointegration 

Two series   and   are said to be cointegrated if both are integrated of order one 

         if there exists a linear combination of   and   that is stationary. That is, 

there exists   such that          .  

Thus the cointegration trait of two time series can be used to improve the modelling of their 

stationary differentiated transformations by including a “disequilibrium term” that captures 

deviations from the long-run equilibrium relationship between the series. This corrected model is 

known as the error correction model (ECM). 

ECM model 

The error correction model defines the first difference of the non-stationary time 

series    as: 

                                   

where every equation represents a variable in the system.    is the constant term, 

                  are the lagged terms up to order p and       represents 

the disequilibrium term. The parameters are estimated as usually using OLS 

method. 

When estimating the ECM model, one starts by determining the disequilibrium term. This is done by 

studying the non-stationary data and search for stationary linear combinations. 

Engle-Granger Methodology 

The Engle-Granger process includes two steps. The first step is to use OLS 

regression to estimate the cointegration vector. Next step is to check the residuals 

for stationary in order to make sure that the linear combination is stationary. This 

can be done using the Augmented Dickey-Fuller test that was introduced earlier. 

The Engle-Granger Methodology may be simple and convenient when modelling two variables but 

when the system becomes more complex and includes more than two time series questions arise. In 

larger system there may exist more than one cointegration relationship but the OLS regression will 

only identify one. Which relationship is then being identified and how many are still unaccounted 

for? Which variable should be considered to be the dependent one? In this case, the Johansen 

methodology is more appropriate. 

Johansen Methodology 

The Johansen test is the multivariate generalisation of the univariate unit root test 

and is based on a VAR model. Rewriting equation (1) returns 

                                          

                      

    is stationary since         which leads to the conclusion that each term in 

            must be stationary. The rank of this matrix will therefore reveal 

the number of independent linear relationships. The eigenvectors of the non-zero 

eigenvalues are the cointegrating vectors of the system. 

The Johansen test now uses a trace test to determine the rank of          

  . The statistic is  
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Where T is the sample size, R is the rank, n is the number of variables included in 

the system and     are the estimated eigenvalues ordered decreasingly. 

Then the test statistic for every            is calculated testing for       

  against        . The critical values of the trace statistic are provided in 

Johansen & Juselius, (1990). 

2.3 State-space representation15 
A time series      is said to have a state-space representation if it can be described with an 

observation equation and a state equation. The  -dimensional observation    is expressed as a linear 

function of a  -dimensional state variable    plus noise. The observation equation and the state 

equation are defined as follows: 

Observation equation 

                   

where                 and      is a sequence of     matrices 

State equation 

                     

where               and      is a sequence of     matrices.      is 

uncorrelated with     . The initial state    is uncorrelated with all of the noise 

terms      and     . 

This is a flexible way of defining a time series model. In fact all the models from the previous sections 

can be transformed into state-space representation. The dynamic Nelson-Siegel model proposed by 

Diebold & Li, (2006) builds on state-space modelling. State-space models are more flexible than the 

previously defined ARMA models since they do not need the parameters to be constant, but can 

allow the parameters to vary with time and follow their own process. The observation equation and 

the state equation are estimated simultaneously by maximising the likelihood for the whole system.  

The future behaviour of state-space modelled data can be predicted using a Kalman recursion.  

Kalman prediction recursion  

The one-step predictors     and their error covariance matrices   are defined as 

              and                      
 
   

and are uniquely determined by the recursions 

                
                 (2) 

           
         

    
    t=1,... 

where 

         
    ,            

  

and   
   is any generalised inverse of    and the initial conditions 

                                                           

15
 (Brockwell & Davis, 2002) 
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Relying on the recursive nature of the one-step-ahead Kalman prediction it is now straight forward to 

extend the recursion for the h-step-ahead prediction. On finds that 

                                                           

and        is defined i equation (2). 

The h-step Kalman prediction 

Define   
   

                             
   and 

  
   

                             
   

The recursion then becomes  

                                         

                             

  
   

         
     

      
                   

  
   

       
   
    
                 

where   
   

       

 

After obtaining a h-step-ahead prediction one is interested in measuring the forecasting performance 

of the given model and compare it to the performance of other model candidates. The root mean 

squared error (RMSE) can be used as at tool for achieving just this. 

RMSE  

The root mean squared error is defined as the square root of the mean of the 

squared prediction errors.  

        
       

  
 

 

 

2.3.1 The dynamic Nelson-Siegel model 

The dynamic Nelson-Siegel yield curve is defined as a function of maturity   

            
      

  
     

      

  
       

The factors              are time-varying factors and represent the level, slope and curvature of the 

yield curve. Following (Diebold & Li, 2006)   is fixed at         . 

 The state-space representation of the model is now given by the observation equation: 

 

  
  
  

   

         
         
         

   

    
    
    

   

     

     

     
  

and the state equation 
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where the white noise disturbances of observation and state equations are orthogonal to the initial 

state and to each other.  

 
  
  
      

 
 
   

  
  

     and                                  
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3 Relevant results from the literature 
Below is a summary of what has recently been written in the fields of modelling each variable 

included in the multifactor model.  

3.1 Inflation 
Jonson (2008) uses a first order autoregressive process to model inflation just as was done in the 

original paper from the Swedish national debt government (Bergström, Holmlund, & Lindberg, 2002). 

The idea is that since most countries aim at maintaining price stability one can assume that inflation 

is stable around a certain mean and that the state of the economy is represented through short term 

interest rates. For Jonson (2008) the process provided decent R2 values that ranged between 85-96% 

for the different markets but for two of the regions, the assumption of normally distributed residuals 

was rejected with help of Jarque-Bera test. 

Gonzáles, Hubrich, & Teräsvirta (2009) use a shifting-mean autoregressive model to forecast inflation 

in the euro area, UK and USA. By using penalised likelihood when estimating the model parameters 

they combine the information of the data series with exogenous information such as the inflation 

target of the central banks. In that sense the Gonzáles, Hubrich, & Teräsvirta (2009) provide a more 

flexible model than Bergström, Holmlund, & Lindberg (2002) but their model is designed to perform 

at medium and long-term forecasting. The forecasting period of my work however is 12 months only, 

indicating that different approach might be of more convenience. 

Marcellino (2008) writes a detailed analysis of the forecasting performance of univariate time series 

models. He compares several alternating specifications of autoregressive models for both GDP 

growth and Inflation, including normal AR models, time-varying AR models, smooth transition AR 

models and artificial neural networks. Marcellino (2008) concludes that quantitative gains from time-

varying/non-linear models are non-existent and that it is hard to outclass carefully specified linear 

time series. Particularly, this applies to GDP growth. 

Canova (2007) compares the forecasting performance of several models of inflation for G-7 

countries. His results agree with those of Marcellino (2008) and suggest that very little improvement 

can be expected from choosing multivariate models, that are suggested by economic theory or 

statistical analysis, over univariate ones. Moreover, Canova (2007) explores the effect of 

international interdependencies and reckons that cross-sectional information can indeed improve 

the performance of a model but only when used in combination with time varying coefficients 

models.  

3.2 GDP growth 
When modelling the real GDP growth Jonson (2008) follows Bergström, Holmlund, & Lindberg (2002) 

and assumes a regime switching AR(1) process that shifts between the two states of the business 

cycle; recession and boom.  

Hogrefe (2007) follows up on the documented leading properties of the yield spread on GDP growth. 

He examines the significance of the theory claiming that leading properties of the yield spread should 

be determined by monetary policy. Hogrefe (2007) finds some evidence that supports this hypothesis 

but none conclusive and the question on how the yield spread connects to GDP growth is left 

unanswered.  
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As mentioned earlier, Marcellino (2008) concludes that it may be hard to find a better model than a 

carefully specified linear time series model. A careful specification refers to taking into account 

possible existence of unit root and a right choice of deterministic component or information criteria 

for lag length selection.  

3.3 Equity Index 
Jonson (2008) follows the work of Ibbotson & Cheng from 200116 and applies the Building Block 

Method to model risk premium on equity index. This method defines the equity premium as a 

function of stock return, inflation and risk free premium and thus provides a theoretical connection 

between equity index and the Macroeconomy.  

Akgiray (1989) studies equity indices from a pure time series perspective. By looking at historical 

daily CRSP17 indices ranging between 1963 and 1986 he finds that the GARCH(1,1) model is well 

suited to model daily returns. He also concludes that although providing a good fit to daily data, the 

model is less appropriate to model weekly or monthly data. In fact, the monthly returns can be 

assumed to be independently normally distributed. 

Mckenzie & Omran (2000) look at stock development of 50 UK companies and apply a GARCH model 

on daily stock returns and include the volume of trade in the conditional variance. They find that the 

GARCH model becomes superfluous in the model when the extra information of trade volumes is 

incorporated but there is still significant GARCH effect to be found in the autocorrelation of squared 

residuals.  

Alexander (2001) finds strong signs of cointegration between Dutch, German and French equity 

indices. She also refers to a study from 1995 conducted by Alexander and Thillainathan18 that 

discovers cointegration between Asian-Pacific equity markets, given that indices are expressed in 

local currencies. 

3.4 Foreign exchange rate 
The foreign exchange rate has long been modelled based on economic theories. Unfortunately, most 

studies of the last decades suggest that these models operate no better, or are in some cases outper-

formed, by a simple random walk.19 Jonson (2008) and Bergström, Holmlund, & Lindberg (2002) both 

employ a theoretical model based on GDP growth and long term interest rates of both currency 

areas. 

Cuaresma & Hlouskova (2004) compare the performance of several vector autoregressive models 

when forecasting the exchange rates for Central and Eastern European currencies against the Euro 

and the US dollar. Their work is based on monetary economic theories for exchange rates. Some 

improvements over the random walk is detected but only within the range of long term forecasting 

and no evidence is found to support the choice of more refined models in favour of simple random 

walk when it comes to forecasting over shorter horizons.  

Carriero, Kapetanios, & Marcellino (2009) deviate from the theoretical model and implement a pure 

time series approach instead. They use a panel of 33 exchange rates (where currencies are priced 

against the US dollar) to incorporate cross-dynamics between the exchange rates into their model. 

                                                           

16
 Ibbotson, R.G. & Chen, P. (2001) The Supply of Stock Market Return. Working Paper. 

17
 CRSP stands for Center for Research in Security Prices 

18
 Alexander, C.O. & Thillainathan, R. (1995). The Asian connection. Emerging Markets Investor 2(6), 42-46. 

19
 (Carriero, Kapetanios, & Marcellino, 2009) 
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By shrinking the VAR coefficients towards a random walk representation Carriero, Kapetanios, & 

Marcellino (2009) use a Bayesian Vector Autoregressive model (BVAR) to incorporate the prior 

assumption of a drift-less random walk to the cross-sectional information from the panel of data. 

They find that the BVAR model systematically outperforms random walk for most currencies and at 

all horizons. 

3.5 Yield curve 
When it comes to modelling the yield curve, Jonson (2008) deviates from the ways of Bergström, 

Holmlund, & Lindberg (2002). While Jonson (2008) models the yield curve as a whole, following the 

work of Diebold & Li (2006), Bergström, Holmlund, & Lindberg (2002) focus on short-term nominal 

interest rates separately from the long-term rates, nominal as well as real.  

Much work has been done on modelling the yield curve. The articles described below can be seen as 

indications of recent development within the field.  

Diebold & Li (2006) adjust the Nelson-Siegel framework to model the yield curve as a time varying 

three-dimensional parameter. The parameters are interpreted as the level, slope and curvature of 

the yield curve and the time variation of the parameters are modelled as an AR(1) process. Diebold & 

Li (2006) find that this model outperforms the Random walk at 1-year-ahead forecasting horizon.  

Aruoba, Diebold, & Rudebusch (2006) refine the dynamic Nelson-Siegel model proposed by Diebold 

& Li (2006). The model is represented as a state-space representation that allows for interaction 

between the latent factors (level, slope and curvature) and macroeconomic factors. Aruoba, Diebold, 

& Rudebusch (2006) find that the yield curve is linked to inflation. 

Moench (2008) uses a panel of 160 time series of various economic categories to predict the future 

development of the yield curve. With a factor-augmented VAR and a term structure based on an 

assumption of absence of arbitrage he claims to be able to outperform Diebold & Li (2006) at 

intermediate and long forecasting horizons.  

Bowsher & Meeks (2008) propose a functional signal plus noise (FSN) model to model and forecast 

the yield curve. The stochastic behaviour of the signal function is described by the state equation, 

assuming a cointegrated VAR process for a subspace of the yields. These yields are then used to 

determine the observation equation of the state-space model. The observation equation has the 

form of a natural cubic spline. Bowsher & Meeks (2008) compare their work to Diebold & Li (2006) 

and find that the FSN-ECM model outperforms the dynamic Nelson-Siegel model when forecasting at 

1-month-ahead horizon. 
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4 Data 
Five variables are considered: GDP growth, foreign exchange rate, equity index and the yield curve.  

Data is used from four currency areas: USA, Japan, UK and the Euro area.  

The GDP growth is defined as quarterly percentage change of GDP volumes. The series come from 

the OECD database with collected volume series starting in March 1996. GDP growth data ranges 

from June 1996 to September 2009. 

The inflation is determined using the monthly Consumers Price Index (CPI) for each currency area. 

Inflation is then defined as the percentage change in CPI Index over a 12 month period. The inflation 

series start in January 1997 and end in September 2009 with CPI data ranging from January 1996. 

The exchange rates between the currencies of the three markets and the US dollar are included and 

presented in dollars.  Series start in January 1999 and end in September 2009.  

Three equity indices are used: the S&P 500 index, the S&P 400 Midcap index and the S&P 500 

Smallcap index. Series start in January 1996 and end in September 2009. 

U.S. Treasury yields with maturities of 3, 6, 12, 24, 36, 60, 84 and 120 months that are published by 

the Federal Reserve are used. The yields are then used to determine the yield curve. Series start in 

January 1996 and end in September 2009. 
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5 Modelling procedure 
This chapter contains the process of modelling the provided set of data. Chapter 5.1 describes the 

strategy of choosing models that adequately explain the behaviour of the data. Chapter 5.2 explains 

the procedure of comparing the out-of-sample performances of the competing models in order to 

point out the most appropriate model for the given set of data.  

5.1 In-sample model estimation 
The time series are studied according to the theory described in chapter 2. After finding stationary 

transformations one proceeds to define and estimate the time series models. 

The univariate models tested are the Random walk and the linear ARMA model. The residuals are 

assumed to be either IID or follow a normal GARCH process. 

Next step is to investigate the influence of international data on GDP and inflation by allowing the 

USA data to be correlated to GDP and inflation of other countries. The relationships within the equity 

index data and foreign exchange rate data are explored. Vector autoregressive models are used.  

The yield curve is modelled in two ways. The first approach is to apply the dynamic Nelson-Siegel 

model and focus on how to model the latent factors. The other solution is to apply a VAR model on 

yield changes and then interpolate between the nodes using a natural cubic spline. This method is, in 

many ways, similar to the scheme proposed by (Bowsher & Meeks, 2008). 

The most promising models from this in-sample investigation are then let through to the second part 

of the study, the out-of-sample comparison where the forecasting performance of the selected 

models is analysed. 

5.2 Out-of-sample forecasting  
The out-of-sample forecasting is done using a rolling window forecasting technique. The estimation 

window is rolled over the whole estimation sample ranging from January 1996 to March 2009, 

delaying the start-date by one month for every new estimation and maintaining the sample size. The 

first estimation period is taken as from January 1996 to December 2004 followed by forecasting 

estimations with forecasting horizons of 12-months.  

When modelling GDP growth, inflation and FX rates, the estimations are done recursively from the 

earliest data available to the date of forecast being made, with forecasting date starting in December 

2004 and extending, one month at time, until the sample size is the same as of the estimation 

windows defined earlier. After that the estimation window is rolled as usual. The out-of-sample 

performance is measured using RMSE. 
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6 Model selection – Analysis and results 
The modelling process of each macroeconomic variable is listed in a separate chapter along with 

results and relevant discussions (chapter 6.1 - 6.5 ). Modelling of the yield curve as a whole is 

described in chapter 6.6. 

6.1 Real GDP growth 
Data: Quarterly volume data from OECD database is used. Only US data is of interest. International 

series are used in order to improve US performance. Real GDP growth defined as quarter-on-quarter 

percentage change. 

Series start in June 1996 and end in September 2009. (Volume data from Mar 1996) 

In sample estimation: First the whole data window is used to estimate how models fit data. 

Promising models are then tested in an out-of-sample comparison. AICC value and residuals 

behaviour are used as measure of fit. 

Out-of-sample estimation: The first forecasting window is from Jun1996-Dec2004. Window is then 

widened – one month at time – until March 2009 is reached. For each window, model is estimated 

for window data and a forecasting 12 months ahead is made. Performance is measured in RMSE of 

forecasting error. 

 
Fig 1 Plot at the top shows the historical development of real GDP growth in US, UK, JP and EU. Plots below show the 
derived series that will be modelled. In the case of real GDP growth, series have first been Box-Cox transformed and then 
differentiated. 

Initial analysis: First step is to take a look at the historical development of the GDP growth. Fig 1 

shows the historical GDP growth along with the transformed data. Transforming the series using Box-

Cox transformation yields a set of data that is integrated of order one. The ADF test rejects 

stationarity at level 0.05 whereas the transformed increments are assumed stationary.  
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Correlation coefficients 
    GDP-US GDP-UK GDP-JP GDP-EU 

GDP-US 1,00000 0,04337 -0,20325 0,04138 

GDP-UK 0,04337 1,00000 0,13352 0,23503 

GDP-JP -0,20325 0,13352 1,00000 0,23539 

GDP-EU 0,04138 0,23503 0,23539 1,00000 
Table 2  Correlation coefficient matrix for GDP growth.  

Table 2 shows the correlation coefficients for the different transformed GDP growth data series. One 

can see that there are almost no signs of a linear relationship between the US series and the 

European series respectively, with correlation coefficient at 0.04, and a vague negative relationship 

between US series and the Japanese data, correlation coefficient at -0.20. These results do not 

indicate relationships between the series. 

Model selection: After having found a stationary representation of the data one now investigates 

whether or not this representation can be assumed to be IID. Since the goal is to correctly model 

GDP growth of USA, the focus is on US data only.  

Fig 2 contains first test results for the US time series. The sample ACF indicates that a low order 

ARMA process might be more appropriate than random walk and the Ljung-Box Portmanteau test 

rejects the assumption of IID. Jarque-Bera test fails to reject normality at level 0.05 and there are 

signs of heteroscedasticity.  

 
Fig 2 Test results for the changes in transformed real GDP growth series. The figure shows historical development, 
sample ACF, histogram including a normal curve for comparison and normal qq-plot.  

The sample ACF indicates that an ARMA process might be appropriate to model the GDP growth. To 

test this several ARMA(p,q) models are fitted to the data. P and q are run between 0 and 6 and the 

error terms are assumed to have Gaussian, t(3) or GARCH(1,1)-Gaussian distribution. It turns out that 

the ARMA(0,1) leads to residuals that not only pass the IID tests described in detail in 2.1.2 but can 

also be assumed to be normally distributed.  

Out-of-sample comparison (Table 3) reveals that there is little or none forecasting gain to be made 

from the error term distribution assumptions. Gaussian ARMA(0,1) is therefore chosen as the best 

and most simple model providing RMSE value at 0.0026.  
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GDPUS 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 1 0 0 0 0 - 

ARMA(0,0) - Gaussian  0,00258 1 0 0 0 0 - 

ARMA(0,1) - Gaussian  0,00258 0 0 0 0 0 - 

ARMA(0,1) - GARCH-Gaussian 0,00258 0 0 0 0 0 - 

ARMA(0,1) - T(3) 0,00258 0 0 0 0 0 - 

VAR(1) - VAR full & Q full 0,00227 0 0 0 0 0 -2326 

VAR(1) - VAR full & Q diag 0,00227 0 0 0 0 0 -2310 

VAR(1) - VAR diag & Q full 0,00251 0 1 1 0 0 -2304 

Table 3 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

The chosen ARMA model provides satisfying results for GDP growth in the US but, although it is not 

supported by covariance analysis, it is interesting to find out whether there is some advantage in 

including international data in the time series model. This is done by allowing the US series to 

correlate with GDP growth in Japan, UK and the Euro-area.  

Vector autoregressive models of order between 1 and 8 are tested in four versions each where the 

VAR-matrix and correlation matrix are set to be either full or diagonal. It turns out that the high order 

models do not improve the forecasting performance of the first order models. 

 AICC values indicate that the model with both full VAR matrix and Q provides the best fit to data 

with more information stored in the VAR matrix than Q. The VAR(1) models with full VAR matrix 

provide NID residuals but both turning point test and difference-sign test reject IID for the diagonal  

VAR/full Q model. The best VAR models provide slightly better forecasting results than the best 

univariate model with RMSE at 0.0023.  

Since the goal is to always use the simplest model possible, the first order VAR model with full VAR 

matrix and diagonal Q matrix is chosen to model GDP growth changes. 

6.1.1 Summary and suggested improvements 

Results indicate that a first order vector autoregressive model with diagonal correlation matrix and 

fully determined VAR matrix is the most suitable model for describing quarterly GDP growth. The 

model residuals can be considered NID adding support to the choice of model since the VAR model 

assumes NID error terms.  

Import and export values are, in essence, a measure of interaction between markets and one might 

therefore expect inter-market dependencies for real GDP. These findings are consistent with the fact 

that GDP volumes do depend on the relation between the import and export. 

To improve the out-of-sample performance even more, one could do some more tests. It is possible 

that other variables, such as treasury or inflation rates, contain additional information and even 

though the historical development of GDP changes in Fig 1 do not indicate a common cointegration 

vector, it cannot be ruled out completely without further research. For time being, the obtained first 

order VAR model is accepted.  
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6.2 Inflation 
Data: Monthly CPI data from OECD database is used. Only US data is of interest. International series 

are used to try to improve US performance. Inflation defined as annual percentage change. 

Series start in January 1997 and end in September 2009. (CPI data from Jan 1996 

 
Fig 3 Plot showing the historical development of inflation in US, UK, JP and EU. 

In sample estimation: First the whole data window is used to estimate how models fit data. 

Promising models are then tested in an out-of-sample comparison. AICC value and residuals 

behaviour are used as measure of fit. 

Out-of-sample estimation: The first forecasting window is from Jan1997-Dec2004. Window is then 

widened – one month at time – until forecasting window is the same size as Jan1996-Dec2004. After 

that, window size is constant rolling one month at time until March 2009 is reached. For each 

window, model is estimated for window data and forecasting 12 months ahead is made. 

Performance is measured in RMSE of forecasting error. 

 
Fig 4 The derived return series that will be modelled. The inflation series have first been Box-Cox transformed and then 
differentiated. 

Initial analysis: Just like in the case of GDP growth, a Box-Cox transformation is applied to the 

historical inflation data and the series is then differentiated. This results in stationary series for all 

currency areas. Fig 3 shows the historical development of US inflation series and the transformed 

return series are plotted in Fig 4. 

Correlation coefficients 
    Inf-US Inf-UK Inf-JP Inf-EU 

Inf-US 1,00000 0,27213 0,29282 0,67693 

Inf-UK 0,27213 1,00000 -0,00776 0,39991 

Inf-JP 0,29282 -0,00776 1,00000 0,17360 

Inf-EU 0,67693 0,39991 0,17360 1,00000 
Table 4 Correlation coefficient matrix for inflation 

Table 4 shows the correlation coefficients of the transformed inflation series. Only the inflation of 

the EURO area seems to show some real signs of a positive linear relationship with the US inflation 

with correlation factor of 0.67.  
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Model selection: The ACF plot of US inflation indicates that it is unlikely that the inflation of the US 

should be modelled as random walk (Fig 5). There is a peak at lag 12, suggesting an element of yearly 

seasonality embedded in the data. Indeed, both Ljung-Box and turning point test reject the 

assumption of IID increments and Jarque-Bera rejects normality at level 0.05. There are also signs of 

heteroscedasticity. 

 
Fig 5 Test results for the changes in transformed inflation series. The figure shows historical development, sample ACF, 
histogram including a normal curve for comparison and normal qq-plot. 

INFUS 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera test 

Data – initial analysis - 1 1 0 0 1 - 

ARMA(12,0) - Gauss - Seasonality 0,00616 1 0 0 0 1 - 

ARMA(0,0) - Gaussian  0,00734 1 1 0 0 1 - 

ARMA(0,0) - GARCH-Gaussian 0,00733 1 1 0 0 1 - 

ARMA(0,0) - T(3) 0,00728 1 1 0 0 1 - 

VAR(1) - VAR full & Q full 0,00749 1 0 0 0 1 -5138 

VAR(1) - VAR full & Q diag 0,00749 1 0 0 0 1 -5022 

VAR(1) - VAR diag & Q full 0,00748 1 0 0 0 1 -5110 

Table 5 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

ARMA(p,q) models, where p and q are run between 0 and 6 are now fitted to the data assuming 

Gaussian, t(3) and GARCH(1,1)-Gaussian behaviour of the residuals. The results are not convincing 

(Table 5). There is no visible gain in preferring a more complicated model over a simpler one and the 

random walk model with normally distributed residuals turns out to be the best choice with RMSE 

value of 0.0073. Testing the residuals reveals that there are still signs of heteroscedasticity and Ljung-

Box test as well as the turning point test and Jarque-Bera test reject assumption of IID and normality 

at level 0.05. 

When searching for possible cross-effects from the inflation of the other markets VAR-models of 

order 1 to 13 are applied. Four versions of each model are tested; a full or a diagonal VAR matrix 

combined with full or diagonal Q matrix. Results indicate that a VAR model of order one with all 
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parameters set should be chosen.  Residual behaviour is slightly improved with the turning point test 

now failing to reject IID at level 0.05. Testing the out-of-sample performance returns RMSE = 0.0075 

– almost the same value as obtained in the univariate case but using a much more complicated 

model. The cross-market effect will therefore be ignored in further modelling. 

It was noted earlier that the sample ACF indicated a possible 12 month lag. An autoregressive twelfth 

lag is therefore added to an ARMA(0,0) process. Turning point test fails to reject the notion of IID but 

Ljung-Box and Jarque-Bera tests still reject IID and NID at level 0.05. The out-of-sample performance 

is improved with RMSE value of 0.0062. Assuming non-normal residuals does not improve the 

residual behaviour.  

The chosen model for US inflation is therefore an autoregressive process lagged at level 12, assuming 

normally distributed error terms.  

6.2.1 Summary and suggested improvements 

Applying an ARMA model with autoregressive 12th lag to model the US inflation series improves the 

out-of-sample performance obtained by applying random walk. Cross-market inflation data does not 

affect modelling results. These findings are consistent with the fact that CPI Index is based on 

domestic price level and consumers expectations and should therefore be less sensitive to 

international influences than GDP. 

The residual behaviour is still not satisfying. In search for a better fit, it is interesting to know 

whether there exist relations between the US inflation series and other variables such as treasury 

rates, GDP growth or even FX-rates. First step towards improving the model should nevertheless be 

to eliminate the yearly seasonality from the inflation series through subtraction before attempting to 

fit a model to the data.  

6.3 Equity Index 
Data: Monthly EI data in form of the S&P 500 index, the S&P 400 Midcap index and the S&P 500 

Smallcap index are used. Series start in January 1996 and end in September 2009.  

In sample estimation: First the whole data window is used to estimate how models fit data. 

Promising models are then tested in an out-of-sample comparison.  AICC value and residuals 

behaviour are used as measure of fit. 

Out-of-sample estimation: The first forecasting window is from Jan1996-Dec2004. After that, 

window size is constant- rolling one month at time until March 2009 is reached. For each window, 

model is estimated for window data and forecasting 12 months ahead is made. Performance is 

measured in RMSE of forecasting error. 
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Fig 6 Plot at the top shows the historical development of equity indices SPX, MID and SML. Plots below show the derived 
series that will be modelled. In the case of equity indices, the logged series have been differentiated. 

Initial analysis: Start by taking the logarithm of all equity index series. Both the historical 

development of the indices as well as transformed series is shown in Fig 6. ADF-test indicates that 

the logged data is integrated of the first order, that is, log-transformed series are non-stationary 

whereas the differentiated series are stationary. Each index is analysed individually in chapter 6.3.1, 

6.3.2 and 6.3.3. 

Correlation coefficients 
   EI-SPX EI-MID EI-SML 

EI-SPX 1,00000 0,89775 0,80326 

EI-MID 0,89775 1,00000 0,92682 

EI-SML 0,80326 0,92682 1,00000 
Table 6  Correlation coefficient matrix for Equity Index 

The correlation coefficient matrix (shown in Table 6) indicates that the transformed data is highly 

correlated, indicating that there exist relationships between the data series. In particular, one notices 

that the Midcap and Smallcap indices have the highest correlation coefficient at 0.93 whereas the 

SPX index and the Smallcap index have the lowest correlation value at 0.80. This could be explained 

by looking at how the indices are constructed. The SPX index is based on the stocks of 500 large 

publicly held companies traded in the US whereas the Smallcap index (SML) refers to smaller 

companies and the Midcap index (MID) covers the middle section. By simply considering the 

foundations of the indices, one therefore expects the SML and MID indices to depend more of the 

current state of the economy than the SPX index.  

6.3.1 S&P 500 Index 

When focusing on the S&P500 index (SPX) one can see from the sample ACF in Fig 7 that there is little 

evidence of a more appropriate model than the random walk. There is no sign of autocorrelation and 

none of the IID tests is able to reject the notion of IID. Fitting the histogram to a normal curve makes 
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it unlikely that data should be normally distributed and the Jarque-Bera test does indeed reject 

normality at level 0.05.  

 
Fig 7 Test results for the logged SPX index returns. The figure shows historical development, sample ACF, histogram 
including a normal curve for comparison and normal qq-plot. 

SPX index 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference - 
sign test 

Rank 
test 

Jarque-
Bera test 

Data – initial analysis - 0 0 0 0 1 - 

ARMA(0,0) - Gaussian  0,05253 0 0 0 0 1 - 

ARMA(0,0) - GARCH-Gaussian 0,05277 0 0 0 0 1 - 

ARMA(0,0) - T(3) 0,05311 0 0 0 0 1 - 

VAR(1) - VAR full & Q full 0,05253 0 0 0 0 1 -2065 

VAR(1) - VAR full & Q diag 0,05253 0 0 0 0 1 -1468 

VAR(1) - VAR diag & Q full 0,05253 0 0 0 0 1 -2046 

Table 7 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

After testing down several  ARMA(p,q) models, where p and q are run between 0 and 6 are now 

fitted to the data assuming Gaussian, t(3) and GARCH(1,1)-Gaussian behaviour of the residuals, one 

can conclude that more complicated models do not convincingly outperform a simpler one. Test 

results are listed in Table 7. The best model turns out to be an ARMA(0,0) process providing RMSE= 

0.053.  

Including cross-variable effect between the indices by applying VAR model is the next step. The order 

of the VAR model is run between 1 and 8 and four model variations are tested. Not much is achieved 

by applying a higher order model and fitting indicates that a model that has both full VAR matrix and 

correlating error terms is the most accurate one.  

By comparing the AICC values one can even conclude that there is more information stored in the full 

variance matrix than in the vector autoregressive part. Out-of-sample comparison of the models 

reveals none or little difference between the model variations and no improvements are made on 

the residuals’ behaviour.  
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The S&P500 index is modelled as an ARMA(0,0) process with normally distributed error terms. 

6.3.2 S&P Midcap Index 

The analysis for the Midcap index data (MID) is done just like in the case of the SPX index. First step is 

to look at the sample ACF in Fig 8 and conclude that there is no obvious sign of autoregressive 

behaviour within the data. The tests described in chapter 2 support the assumption of IID time series 

but Jarque-Bera test rejects normality and there are signs of heteroscedasticity. Test results for the 

transformed data are included in Table 8 along with a comparison of the best models. 

 
Fig 8 Test results for the logged MID index returns. The figure shows historical development, sample ACF, histogram 
including a normal curve for comparison and normal qq-plot. 

MID index 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference - 
sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 0 0 0 0 1 - 

ARMA(0,0) - Gaussian  0,06356 0 0 0 0 1 - 

ARMA(0,0) - GARCH-Gaussian 0,06377 0 0 0 0 1 - 

ARMA(0,0) - T(3) 0,06359 0 0 0 0 1 - 

VAR(1) - VAR full & Q full 0,06356 0 0 0 0 1 -2065 

VAR(1) - VAR full & Q diag 0,06356 0 0 0 0 1 -1468 

VAR(1) - VAR diag & Q full 0,06356 0 0 0 0 1 -2046 

Table 8 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

Now, a variety of ARMA models is fitted to the MID series. Lead-lag factors p and q are run between 

0 and 6 and the distribution of error terms is assumed to be either Gaussian, t(3) or GARCH(1,1)-

Gaussian. Just like expected, random walk performs just as well or even better than more complex 

autoregressive models. Since neither out-of-sample performance nor behaviour of residuals is 

improved by assuming other distribution than the normal one for the error terms, there is little 

reason to opt for other model than the Gaussian ARMA(0,0) model with RMSE = 0.064. 

Testing for cross-index effects between MID series and the other equity indices is done in exactly the 

same way as described earlier when analysing the SPX series. And, as in the case of the SPX data, one 
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concludes that a VAR model of first order with all parameters set provides best fit to data. AICC 

values indicate that a full Q matrix is more important than a full VAR matrix. Out-of-sample 

comparison of the models reveals that there is very little difference between them and no model 

outperforms the much simpler ARMA model.  

6.3.3 S&P Smallcap Index 

The sample ACF for Smallcap index data does not raise suspicion of underlying autoregressive 

process (Fig 9). The series pass all IID tests listed in chapter 2.1.2 but Jarque-Bera test rejects 

normally distributed observations. 

 
Fig 9 Test results for the logged SML index returns. The figure shows historical development, sample ACF, histogram 
including a normal curve for comparison and normal qq-plot. 

SML index 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference - 
sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 0 0 0 0 1 - 

ARMA(0,0) - Gaussian  0,06662 0 0 0 0 1 - 

ARMA(0,0) - GARCH-Gaussian 0,06706 0 0 0 0 1 - 

ARMA(0,0) - T(3) 0,06674 0 0 0 0 1 - 

VAR(1) - VAR full & Q full 0,06663 0 0 1 0 1 -2065 

VAR(1) - VAR full & Q diag 0,06663 0 0 1 0 1 -1468 

VAR(1) - VAR diag & Q full 0,06663 0 0 0 0 1 -2046 

Table 9 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

Fitting ARMA models in same manner as for the other indices brings familiar results. Since residual 

behaviour and out-of-sample performance is not improved using more complex models or more 

specific distribution of error terms there is no reason for preferring other model than Gaussian 

ARMA(0,0) with RMSE = 0.067 (see results in Table 9 above). 

To check for cross-effect from other indices the VAR model is used with model order ranging from 1 

to 8 and both VAR- and Q-matrices are allowed to be either full or diagonal. The Smallcap series 

seem to be relatively uncorrelated with SPX and MID indices and the best model is a full VAR(1) 
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process. AICC values indicate that more information is contained in Q than in the vector-

autoregression part of the model. The best VAR models do not outdo the chosen univariate model. 

6.3.4 Summary and suggested improvements 

Aall three equity indices are best modelled individually as random walks, ignoring any dependencies 

between the series; just as predicted by Akgiray (1989).  

The residuals of the fitted random walk model can be assumed to be IID but show sign of being 

heteroscedastic. Heteroscedasticity is a known quality of single stock movements and it is logical to 

expect that this property of stocks is inherited by the stock indices. Nevertheless, allowing for GARCH 

behaviour does not improve equity index models. 

 

 
Fig 10 Plot shows the development of the logged equity indices. 

A quick look at the historical development of the logged indices plotted together in Fig 10 reveals 

that the series look cointegrated or, at least, highly correlated. This seems obvious from data, and is 

supported by the correlation factors in Table 6, but the forecasting performance of the VAR model 

turned out to be only just as good as the ARMA model and results indicated that the indices should 

be modelled as three individual and uncorrelated series. 

It is therefore justified to spend more time on testing for the possibility of cointegration within the 

equity index data series. 

Other possible area of improvement lies in testing the effect of other domestic variables on the 

equity indices. One might expect more sensitivity toward changes in the economy in smaller 

businesses than bigger and therefore expect more prominent cross-variable dependencies in the 

Smallcap index than in S&P500 index.  

6.4 FX rates 
Data: Monthly FX data in form of historical EUR, GDP and JPY series is used. Series start in January 

1999 and end in September 2009.  

In sample estimation: First the whole data window is used to estimate how models fit data. 

Promising models are then tested in an out-of-sample comparison. AICC value and residuals 

behaviour are used as measure of fit. 



38 / 61 
 

Out-of-sample estimation: The first forecasting window is from Jan1999-Dec2004. Window is then 

widened – one month at time – until forecasting window is the same size as Jan1996-Dec2004. After 

that, window size is constant rolling one month at time until March 2009 is reached. For each 

window, model is estimated for window data and forecasting 12 months ahead is made. 

Performance is measured in RMSE of forecasting error. 

 
Fig 11 Plot at the top shows the historical development of FX rates EUR, GBP and JPY. Plots below show the derived 
series that will be modelled. In the case of FX rates, JPY is scaled up by factor 100 before all series are differentiated. 

Initial analysis: Prior to fitting a model to the FX rates the JPY series is scaled up by factor 100 to 

match GDP and EUR series. Both the historical development of the indices as well as transformed 

series is shown in Fig 11. ADF test indicates that all series are I(1) – data series are non-stationary 

while differentiated data is stationary. Each index is analysed individually in chapters 6.4.1, 6.4.2 and 

6.4.3.  

Correlation coefficients 
   FX-EUR FX-GBP FX-JPY 

FX-EUR 1,00000 0,64036 0,27913 

FX-GBP 0,64036 1,00000 0,10007 

FX-JPY 0,27913 0,10007 1,00000 
Table 10 Correlation coefficient matrix for FX-rates 

The correlation coefficient matrix (shown in Table 10) indicates that the JPY evolves almost 

independently of the other currencies whereas the Euro and the British Pound share a positive 

relationship. This is consistent with the special development of the Japanese market for the past 

decades as well as the close relations between the British market and the Euro area.  
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6.4.1 EUR 

When looking at the test results one can quickly assume that there is little reason to believe that an 

autoregressive process should be an appropriate model for the development of the Euro. The sample 

ACF in Fig 12 shows no signs of autoregression and when testing for IID, the assumption is accepted 

at level 0.05 with Ljung-Box turning point test but rejected with both difference-sign test and rank 

test. Jarque-Bera test rejects normality. 

 
Fig 12 Test results for the rate changes of the EURO. The figure shows historical development, sample ACF, histogram 
including a normal curve for comparison and normal qq-plot. 

EUR 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 0 0 1 1 1 - 

ARMA(0,0) - Gaussian  0,04604 0 0 1 1 1 - 

ARMA(0,0) - GARCH-Gaussian 0,04604 0 0 1 1 1 - 

ARMA(0,0) - T(3) 0,04616 0 0 1 1 1 - 

VAR(1) - VAR full & Q full 0,04623 0 0 1 1 1 -1555 

VAR(1) - VAR full & Q diag 0,04623 0 0 1 1 1 -1473 

VAR(1) - VAR diag & Q full 0,04623 0 0 1 1 1 -1544 

Table 11 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

Although ARMA models do not appear to be appropriate for modelling the EUR, several such models 

are fitted to the data. The order parameters, p and q, are set to range between 0 and 6 while the 

error terms distribution is assumed Gaussian, t(3) or GARCH-Gaussian. Several levels for the GARCH 

model are tested.  

The results are as anticipated and listed in Table 11. The ARMA(0,0) model provides the best fit and 

no convincing gain is made from assuming error terms distribution other than normal.  

Fig 11 shows that the FX rates move in much similar ways raising questions about whether or not the 

series are correlated. To test for co-movements a VAR model is used. The order of the VAR models 

runs between and 8 and VAR and Q matrices are either full or diagonal. 
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The fully specified VAR(1) model provides best fit to data with more information stored in Q than in 

the VAR matrix. Out-of-sample comparison does not indicate that any of the VAR models outperform 

the ARMA(0, 0) and the residual behaviour is unchanged.  

The simple ARMA(0, 0) is therefore chosen to model EUR rate with RMSE at 0.046. 

6.4.2 GBP 

The test results are even more distinct for the GDP series. All tests fail to reject IID and the sample 

ACF in Fig 13 does not indicate autoregression. Jarque-Bera test rejects normality at level 0.05. 

 
Fig 13 Test results for the rate changes of the Great British Pound. The figure shows historical development, sample ACF, 
histogram including a normal curve for comparison and normal qq-plot. 

With same argumentation as for the Euro, same ARMA and VAR models are applied to fit the GDP 

series. Even higher levels of freedom are tested for the Student´s distribution of error terms in the 

ARMA models. 

As expected, there is nothing to be gained from using higher order ARMA models or more 

complicated error assumptions than a normal distribution. ARMA(0,0) turns out to be the best model 

with no improvement on the residual behaviour. 
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GBP 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 0 0 0 0 1 - 

ARMA(0,0) - Gaussian  0,05319 0 0 0 0 1 - 

ARMA(0,0) - GARCH-Gaussian 0,05321 0 0 0 0 1 - 

ARMA(0,0) - T(3) 0,05320 0 0 0 0 1 - 

VAR(1) - VAR full & Q full 0,05239 0 0 0 0 1 -1555 

VAR(1) - VAR full & Q diag 0,05239 0 0 0 0 1 -1473 

VAR(1) - VAR diag & Q full 0,05237 0 0 0 0 1 -1544 

Table 12 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

The same applies for the GBP as for the Euro when considering the cross-market effect. Although Fig 

11 indicates that the series are highly correlated – especially EUR and GBP – the forecasting 

performance of the best VAR model that includes cross-market effects does not outperform the 

univariate simple random walk. Investigating the VAR models reveals that although there is no 

significant difference in out-of-sample performance of the three best VAR models, listed in Table 12, 

AICC values indicate that more information is stored in the correlation matrix Q than in the 

autocorrelation matrix VAR(1).  

6.4.3 JPY 

The initial tests on JPY indicate that a random walk is the best choice of model for the JPY. A tests 

confirm IID, Jarque-Bera tests does not reject normality and there is no hint of autoregression in the 

sample autocorrelation function (Fig 14).  

 
Fig 14 Test results for the rate changes of the scaled JPY. The figure shows historical development, sample ACF, 
histogram including a normal curve for comparison and normal qq-plot. 
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JPY 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 0 0 0 0 0 - 

ARMA(0,0) - Gaussian  0,02820 0 0 0 0 0 - 

ARMA(0,0) - GARCH-Gaussian 0,02821 0 0 0 0 0 - 

ARMA(0,0) - T(3) 0,02819 0 0 0 0 0 - 

VAR(1) - VAR full & Q full 0,02829 0 0 0 0 0 -1555 

VAR(1) - VAR full & Q diag 0,02829 0 0 0 0 0 -1473 

VAR(1) - VAR diag & Q full 0,02828 0 0 0 0 1 -1544 

Table 13 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

Staying true to the methodology of testing down models all the same ARMA and VAR models as 

before are tested. Again, the best results are obtained by using a normal ARMA(0,0) or VAR models 

of first order where one or both VAR and Q matrices are full. From the cross-market investigation it is 

noted that a full Q matrix along with diagonal VAR(1) matrix provides a better fit to data than a full 

VAR(1) with diagonal Q. Since the goal is to find a model that is both appropriate and simple the 

random walk model is the best choice. Results are listed in Table 13. 

6.4.4 Summary and suggested improvements 

Consistent with known findings from earlier research done on FX rates, model comparison reveals no 

improvement made from applying complex models in favour of the simple normal random walk. 

Tests confirm that all three currencies return series are IID and, in the case of JPY, even normal. 

Including cross-variable information in a VAR model or by including cointegration does not lead to 

better results.  

Nevertheless, by looking at the data in Fig 11 one can see that the series seem to evolve and react in 

much similar manner. GBP and EUR are obviously correlated whereas JPY follows behind with a lag. 

The relations between the British Pound and the Euro are also supported with a high correlation 

factor. 

This could mean that although the currencies do not react directly to each other, they react to the 

same information with increase or decrease in variation. Since all three currencies are measured in 

US dollar this information might be connected to the US market. Testing against the yields or 

inflation is therefore of interest as well as testing for cointegration between the FX series. 

Adding more currencies to the model as proposed by Carriero, Kapetanios, & Marcellino (2009) could 

possibly improve the forecasting accuracy. 
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6.5 Treasury rates – Yields 
Data: Monthly zero coupon treasury rates from Federal Reserve are used with maturities 3M, 6M, 

1Y, 2Y, 3Y, 5Y, 7Y & 10Y. Series start in January 1996 and end in September 2009.   

In sample estimation:  First the whole data window is used to estimate how models fit data.  

Promising models are then tested in an out-of-sample comparison. AICC value and residuals 

behaviour are used as measure of fit. 

Out-of-sample estimation: The first forecasting window is Jan1996-Dec2004. After that, window size 

is constant rolling one month at time until March 2009 is reached. For each window, model is 

estimated for window data and forecasting 1, 3 & 6 months ahead is made. Performance is measured 

in RMSE of forecasting error. 

 
Fig 15 Plot at the top shows the historical development of treasury yields of maturities 3M, 6M, 1Y, 2Y, 3Y, 5Y, 7Y & 10Y. 
3M series shows the largest variability whereas 10Y series is least variable. Plots below show the derived series that will 
be modelled. The derived series are obtained by differentiating the yields. 

Initial analysis: Data is not transformed. Both the historical development of the indices as well as 

return series is shown in Fig 15. ADF-test indicates that all yields are I(1) – the original series are non-

stationary while the differentiated time series are stationary.  
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Correlation coefficients 
        3M 6M 1Y 2Y 3Y 5Y 7Y 10Y 

3M 1,00000 0,92979 0,84311 0,68159 0,60350 0,49470 0,41987 0,34678 

6M 0,92979 1,00000 0,94635 0,80871 0,73426 0,63991 0,57077 0,49929 

1Y 0,84311 0,94635 1,00000 0,92191 0,86789 0,78196 0,71720 0,64546 

2Y 0,68159 0,80871 0,92191 1,00000 0,98474 0,92664 0,87330 0,80135 

3Y 0,60350 0,73426 0,86789 0,98474 1,00000 0,96492 0,92468 0,86137 

5Y 0,49470 0,63991 0,78196 0,92664 0,96492 1,00000 0,98509 0,95074 

7Y 0,41987 0,57077 0,71720 0,87330 0,92468 0,98509 1,00000 0,97995 

10Y 0,34678 0,49929 0,64546 0,80135 0,86137 0,95074 0,97995 1,00000 
Table 14  Correlation coefficient matrix for the yields. Values that exceed 0.9 are marked in bold. 

From Table 14 one can see that the yields of different maturities are highly correlated. A closer look 

reveals a diagonal shape of correlation factors that exceed the value of 0.9, a revelation of the fact 

that the yields share stronger positive relations with maturities close to their own.  

6.5.1 3M Yields 

The sample ACF indicates autocorrelation in the 3 month yield return (Fig 16). Looking at the 

historical development of the data series one can see that there are periods of high volatility 

followed by periods of small volatility. An autocorrelating model allowing for GARCH–effects might 

correctly describe the time series. Ljung-Box test rejects IID and Jarque-Bera test normality at level 

0.05.  

 
Fig 16 Test results for the 3M yield returns. The figure shows historical development, sample ACF, histogram including a 
normal curve for comparison and normal qq-plot. 

To choose the ARMA model with best fit to data, order parameters p and q are run between 0 and 6 

and the error term distribution is assumed Gaussian, t(3) or GARCH(1,1)-Gaussian.  

It turns out that no tested ARMA model is good enough to be preferred over Random walk. 

ARMA(0,0) models gives the best results with unchanged residual behaviour for all assumptions of 

error term distribution. No significant difference between these models leads to favouring the most 

simple normal ARMA(0,0) model with RMSE = 0.2920. 
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3M Yield 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 1 0 0 0 1 - 

ARMA(0,0) - Gaussian  0,29198 1 0 0 0 1 - 

ARMA(0,0) - GARCH-Gaussian 0,30171 1 0 0 0 1 - 

ARMA(0,0) - T(3) 0,30539 1 0 0 0 1 - 

VAR(1) - VAR full & Q full 0,29152 1 0 0 0 1 -3493 

VAR(1) - VAR full & Q diag 0,29152 1 0 0 0 1 -56 

VAR(1) - VAR diag & Q full 0,29200 1 0 0 0 1 -3310 

Table 15 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

From Fig 15 it is obvious that the yields are highly related. Several VAR models are therefore fitted to 

data in hope for more accurate modelling. The order of vector autoregression was tested for values 

between 1 and 8 and, in line with previous variable modelling for each level, four scenarios are 

tested. The VAR matrices and correlation matrix Q are set to be full or diagonal, respectively.  

First order VAR models with at least one full VAR or Q matrix provide best fit to data where AICC 

values indicate that more information is stored in Q than in the VAR matrix (see Table 15). No VAR 

model improves the residual behaviour of the series. Ljung-Box does still reject IID at level 0.05 and 

Jarque-Bera rejects normality at same level.  

The out-of-sample tests reveal little difference between the first order models and failure to 

outperform the random walk. 

6.5.2 6M Yields 

The historical plot of the 6 months yield returns (Fig 17) shows heteroscedastic behaviour with 

periods of high volatility squeezed between periods of low volatility. Sample ACF shows stronger 

signs of autoregression than spotted by 3M yields. The histogram and qq-plot do not match the 

patterns expected from a normally distributed set of observation and normality is rejected with 

Jarque-Bera test, just as anticipated. Ljung-Box rejects IID at level 0.05. 
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Fig 17 Test results for the 6M yield returns. The figure shows historical development, sample ACF, histogram including a 
normal curve for comparison and normal qq-plot. 

6M Yield 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 1 0 0 0 1 - 

ARMA(0,0) - Gaussian  0,26097 1 0 0 0 1 - 

ARMA(0,0) - GARCH-Gaussian 0,27001 1 0 0 0 1 - 

ARMA(0,0) - T(3) 0,27517 1 0 0 0 1 - 

VAR(1) - VAR full & Q full 0,26048 1 0 0 0 1 -3493 

VAR(1) - VAR full & Q diag 0,26048 1 0 0 0 1 -56 

VAR(1) - VAR diag & Q full 0,26096 1 0 0 0 1 -3310 

Table 16 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

Testing the same ARMA models as in the case of 3M yields brings out familiar results (shown in Table 

16). The best results are obtained with ARMA(0,0) models and assumptions on error term 

distribution provide the same results in out-of-sample comparison with RMSE=0.2610. The residual 

behaviour remains the same regardless of error term distribution. Ljung-Box still rejects IID and 

Jarque-Bera rejects normality.  

There is no reason for choosing anything other than a normal random walk to model 6M yield 

returns. 

First order VAR models with at least one full VAR or Q matrix provide best fit to data with AICC values 

indicating that more information is stored in Q than in the VAR matrix. Residuals’ behaviour is not 

improved from VAR. Ljung-Box and Jarque-Bera reject IID and normality at significance level 0.05.  

Out-of-sample comparison reveals that none of the VAR models outclass the random walk.  
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6.5.3 1Y Yields 

The sample autocorrelation function indicates a low order autocorrelation and there are signs of 

heteroscedasticity in the historical yield returns plot (Fig 18). Ljung-Box Portmanteau test rejects IID 

at level 0.05 and as does Jarque-Bera test for normality. 

 
Fig 18 Test results for the 1Y yield returns. The figure shows historical development, sample ACF, histogram including a 
normal curve for comparison and normal qq-plot. 

1Y Yield 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 1 0 0 0 1 - 

ARMA(0,0) - Gaussian  0,25888 1 0 0 0 1 - 

ARMA(0,0) - GARCH-Gaussian 0,26448 1 0 0 0 1 - 

ARMA(0,0) - T(3) 0,26868 1 0 0 0 1 - 

VAR(1) - VAR full & Q full 0,25852 0 0 0 0 1 -3493 

VAR(1) - VAR full & Q diag 0,25852 0 0 0 0 1 -56 

VAR(1) - VAR diag & Q full 0,25884 1 0 0 0 1 -3310 

Table 17 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

When testing the ARMA procedures that where described in earlier cases, the most simple 

ARMA(0,0) cannot be beaten with RMSE at 0.2589. Ljung-Box test rejects IID and Jarque-Bera rejects 

normality (results are listed in Table 17). Since there is no improvement to be made from assuming 

more advanced error term distributions, neither in out-of-sample performance nor residual 

behaviour, the normal random walk stands out as the most reasonable choice of model.  

First order VAR models with both full VAR matrix and correlating error terms is the most accurate 

model with AICC values indicating that more information is stored in Q than VAR matrix. Out-of-

sample comparison reveals that there is almost no difference in forecasting performance between a 

first order VAR model with a full Q- and VAR matrix and a model with diagonal VAR matrix. Best 

model has RMSE=0,2585 – almost the same value as obtained with the univariate ARMA(0,0) model.  
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However, the residual behaviour is improved with cross-yield information. The residuals are now 

assumed to be IID since Ljung-Box fails to reject IID at significance level 0.05. Jarque-Bera test does 

still reject normality. Full VAR(1) model with full or diagonal covariance matrix is preferred over 

random walk. 

6.5.4 2Y Yields 

Signs of heteroscedasticity from the historical development of the 2 year yield returns are not as 

easily detectable as for the previous yields. From the histogram and qq-plot one can see that the 

distribution of the yield returns does coincide with the normal distribution (Fig 19). Indeed, Jarque-

Bera fails to reject normality at level 0.05. Sample ACF indicates a low order autocorrelation and both 

Ljung-Box test and the Turning point test reject IID. 

 
Fig 19 Test results for the 2Y yield returns. The figure shows historical development, sample ACF, histogram including a 
normal curve for comparison and normal qq-plot. 

2Y Yield 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 1 1 0 0 0 - 

ARMA(0,0) - Gaussian  0,26768 1 1 0 0 0 - 

ARMA(0,0) - GARCH-Gaussian 0,26837 1 1 0 0 0 - 

ARMA(0,0) - T(3) 0,27429 1 1 0 0 0 - 

VAR(1) - VAR full & Q full 0,26730 0 0 0 0 0 -3493 

VAR(1) - VAR full & Q diag 0,26730 0 0 0 0 0 -56 

VAR(1) - VAR diag & Q full 0,26768 1 0 0 0 0 -3310 

Table 18 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

The task of choosing the best ARMA model reveals a familiar result. Higher order models fail to 

outperform the simple ARMA(0,0) in out-of-sample comparison and, as anticipated, there is no gain 

from assuming other error term distribution than the normal one (see results in Table 18). 

In the multivariate case, a first order model with both full VAR matrix and correlating error terms is 

the best choice with AICC values indicating that more information is stored in Q than VAR matrix. 
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Out-of-sample comparison results in RMSE=0.2673 for a first order model with full VAR(1) matrix and 

either full or diagonal Q matrix. The residuals pass the test of being NID. All test fail to reject IID and 

Jarque-Bera accepts normality at level 0.05.  

Although there is no improvement in forecasting performance when cross-yields information is 

included in the model, the full VAR(1) model with full or diagonal Q is chosen over the simpler 

random walk due to improvement in residual behaviour. 

6.5.5 3Y Yields 

From the histogram and qq-plot in Fig 20 one can see that the 3 years yield returns look normally 

distributed while the historical plot shows vague signs of heteroscedasticity. Sample ACF indicates 

autoregression. Jarque-Bera test accepts normality and Ljung-Box rejects IID. 

 
Fig 20 Test results for the 3Y yield returns. The figure shows historical development, sample ACF, histogram including a 
normal curve for comparison and normal qq-plot. 

3Y Yield 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 1 0 0 0 0 - 

ARMA(0,0) - Gaussian  0,27483 1 0 0 0 0 - 

ARMA(0,0) - GARCH-Gaussian 0,27472 1 0 0 0 0 - 

ARMA(0,0) - T(3) 0,27919 1 0 0 0 0 - 

VAR(1) - VAR full & Q full 0,27450 0 0 0 0 0 -3493 

VAR(1) - VAR full & Q diag 0,27450 0 0 0 0 0 -56 

VAR(1) - VAR diag & Q full 0,27482 1 0 0 0 0 -3310 

Table 19 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

Out-of-sample comparison points out the normal ARMA(0,0) model as the most appropriate model 

providing unchanged residual behaviour and RMSE=0.2748 (see Table 19). GARCH-Gaussian and t(3) 

assumptions of error term distribution do not lead to improved results. 
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Fitting a VAR model to data indicates that a first order model with both full VAR matrices and 

correlating error terms is the best choice with AICC values indicating that more information is stored 

in Q than in the VAR matrix. Out-of-sample comparison results in RMSE=0.2745 for a first order 

model with full VAR(1) matrix and either full or diagonal Q matrix. All tests accept IID and normality 

at level 0.05 providing NID residuals. 

A vector autoregressive model is favoured over random walk due to the improved residual 

behaviour. Staying true to the philosophy of never choosing a more complicated model over a 

simpler one unless there are significant benefits, the full VAR(1) model with diagonal covariance 

matrix is picked. 

6.5.6 5Y Yields 

Comparing the basic analysis of the 5 year yield returns in Fig 21 to those of the 3 year data in Fig 20 

reveals some obvious similarities between the two series. There are some indistinct signs of 

heteroscedasticity and autocorrelation and Ljung-Box rejects the notion of IID. The histogram and qq-

plot agree with normally distributed data and normality is indeed accepted by Jarque-Bera test. 

 

Fig 21 Test results for the 5Y yield returns. The figure shows historical development, sample ACF, histogram including a 
normal curve for comparison and normal qq-plot. 

Out-of-sample comparison points out the normal ARMA(0,0) model as the most appropriate model 

providing unchanged residual behaviour and RMSE=0.2691 (see Table 20). GARCH-Gaussian and t(3) 

assumptions on error term distribution do not lead to improved results. 

First order model with both full VAR matrices and correlating error terms is the best choice with AICC 

values indicating that more information is stored in Q than VAR matrix. Out-of-sample comparison 

results in RMSE=0.2688 for a first order model with full VAR(1) matrix and either full or diagonal Q 

matrix. All tests accept IID and normality at level 0.05 providing NID residuals. 
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5Y Yield 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 1 0 0 0 0 - 

ARMA(0,0) - Gaussian  0,26911 1 0 0 0 0 - 

ARMA(0,0) - GARCH-Gaussian 0,26896 1 0 0 0 0 - 

ARMA(0,0) - T(3) 0,27203 1 0 0 0 0 - 

VAR(1) - VAR full & Q full 0,26888 0 0 0 0 0 -3493 

VAR(1) - VAR full & Q diag 0,26888 0 0 0 0 0 -56 

VAR(1) - VAR diag & Q full 0,26913 1 0 0 0 0 -3310 

Table 20 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

A vector autoregressive model is favoured over random walk due to the improved residual 

behaviour. Using same arguments as before the full VAR(1) model with diagonal covariance matrix is 

the preferred model for the 5 year yield returns. 

6.5.7 7Y Yields 

There is no sign of heteroscedasticity in the historical development of the 7 year yield returns, shown 

in Fig 22. Jarque-Bera test fails to reject normality at level 0.05 and both the histogram and qq-plot 

support assumption of normally distributed yield returns. Sample ACF is inconclusive.  

 
Fig 22 Test results for the 7Y yield returns. The figure shows historical development, sample ACF, histogram including a 
normal curve for comparison and normal qq-plot. 

Out-of-sample comparison points out the normal ARMA(0,0) model as the most appropriate model 

providing unchanged residual behaviour and RMSE=0.2610 (see Table 21). GARCH-Gaussian and t(3) 

assumptions on error term distribution do not lead to improved results. 

First order model with both full VAR matrices and correlating error terms is the best choice of model 

with AICC values indicating that more information is stored in Q than VAR matrix. Out-of-sample 

comparison results in RMSE=0.2608 for a first order model with full VAR(1) matrix and either full or 

diagonal Q matrix. All tests accept IID and normality at level 0.05 providing NID residuals. 
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7Y Yield 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 1 0 0 0 0 - 

ARMA(0,0) - Gaussian  0,26099 1 0 0 0 0 - 

ARMA(0,0) - GARCH-Gaussian 0,26082 1 0 0 0 0 - 

ARMA(0,0) - T(3) 0,26189 1 0 0 0 0 - 

VAR(1) - VAR full & Q full 0,26084 0 0 0 0 0 -3493 

VAR(1) - VAR full & Q diag 0,26084 0 0 0 0 0 -56 

VAR(1) - VAR diag & Q full 0,26101 1 1 0 0 0 -3310 

Table 21 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

A vector autoregressive model is favoured over random walk due to the improved residual 

behaviour. The full VAR(1) model with diagonal covariance matrix is chosen to model the 7 year yield 

returns. 

6.5.8 10Y Yields 

Fig 23 shows the initial analysis of the 10 year yield returns. A visual inspection of the plot reveals no 

distinctive pattern within the historical movements of the time series. The sample ACF does not 

indicate autocorrelation and the data looks almost normal in the histogram and in the qq-plot. 

However, normality is rejected at significance level 0.05 with Jarque-Bera test. All tests accept IID. 

From these first findings it seems unlikely that the data will be modelled more accurately using a 

complex process than by simply applying random walk.  

 
Fig 23 Test results for the 10Y yield returns. The figure shows historical development, sample ACF, histogram including a 
normal curve for comparison and normal qq-plot. 

Much anticipated, the out-of-sample comparison points out the normal ARMA(0,0) model as the 

most appropriate with RMSE=0.2533. Jarque-Bera test still rejects normality at level 0.05. GARCH-

Gaussian and t(3) assumptions on error term distribution do not lead to improved results. 
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10Y Yield 
              

              

Model RMSE 

IID       NID 

AICC 

Ljung-
Box 

Turning 
point 
test 

Difference 
- sign test 

Rank 
test 

Jarque-
Bera 
test 

Data – initial analysis - 0 0 0 0 1 - 

ARMA(0,0) - Gaussian  0,25330 0 0 0 0 1 - 

ARMA(0,0) - GARCH-Gaussian 0,25345 0 0 0 0 1 - 

ARMA(0,0) - T(3) 0,25378 0 0 0 0 1 - 

VAR(1) - VAR full & Q full 0,25324 0 0 0 0 1 -3493 

VAR(1) - VAR full & Q diag 0,25324 0 0 0 0 1 -56 

VAR(1) - VAR diag & Q full 0,25332 0 0 0 0 1 -3310 

Table 22 Performance of best models measured in forecasting performance (RMSE) and residual behaviour (Tests for IID 
and NID) as well as initial analysis of the time series being modelled. Forecasting horizon is 12 months ahead and tests 
for independences are significant at level 95%.  

First order model with both full VAR matrices and correlating error terms are the best choice with 

more information stored in Q than VAR matrix. Out-of-sample comparison results in RMSE=0.2532 

for a first order model with full VAR(1) matrix and either full or diagonal Q matrix. The residuals are 

IID but Jarque-Bera test rejects normality at level 0.05. 

Since there are no observed improvements in either forecasting accuracy or residual behaviour, 

there is no apparent reason for abandoning the univariate random walk. 

6.5.9 Summary and suggested improvements 

One can now conclude that for five of eight yield series it is beneficial to include cross-yield 

information in the modelling. Three series - 3M, 6M and 10Y yields – are seemingly unaffected by 

other yields. Since the VAR model provides results for all maturities at the same time and modelling 

the 3M, 6M and 10Y yields separately as univariate series the effect would be that these three series 

were modelled twice. For simplicity, all eight yields are modelled together applying a full VAR(1) 

process with a diagonal covariance matrix, Q. 

A quick look at the yield data in Fig 15 reveals that the data is highly correlated. Indeed, five series 

out of eight are improved by including cross-variable information in the modelling and the data 

seems to follow some common underlying process. This could indicate the presence of a 

cointegrating process within the yield series.  
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6.6 The yield curve 

 
Fig 24 The historical development of the yield curve as a whole.  

Fig 24 shoes the historical development of the whole yield curve in a 3-D plot. From the plot it is easy 

to identify the signature behaviour of a yield curve with the short term yields normally being lower 

than long term yields and with the rates stabilizing over higher maturities. One can also see how the 

gap between long term and short term yields increases during times of recession and decreasing 

during times of expansion, sometimes leading to the extreme situation of short term yields being 

more expensive than long term yields.  

In order to model the whole yield curve, and thus obtain values for arbitrary yield maturities, two 

techniques are considered. One is to apply the findings from the previous chapters and simply 

interpolate a natural cubic spline between the directly forecasted yield maturities.  

Yield returns modelled with a diagonal VAR(1) process and a full correlation matrix results in 

following out-of-sample RMSE values. 

RMSE_VAR = 2.0152 1.9303 1.7779 1.5040 1.3301 1.0451 0.8605 0.6818 

The other technique is to apply a Dynamic Nelson-Siegel model. The Nelson-Siegel equation for yields 

with maturities   is defined as: 

            
      

  
     

      

  
       

where       and    are constants that describe level, slope and curvature of the yield curve. The 

dynamic version proposed by Diebold & Li (2006) allows these three values to vary with time.  

The Dynamic Nelson-Siegel model is applied by using the two-step approach from Diebold & Li 

(2006). To begin with, the time series for       and    are derived from the data sample of yields 

using OLS estimation. The factors are then modelled and predicted using a first order VAR process. 

Following Diebold&Li and setting          and estimating           from the data provides the 

predicted yield curve. 

Modelling           as VAR(1) results in out-of-sample RMSE tabulated below: 
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RMSE_DNS = 2.3199 2.1407 1.9988 1.8544 1.7343 1.4874 1.3153 1.1102 

A comparison of the results from different yield curve models reveals that modelling yield returns as 

a fully determined VAR(1) model with diagonal correlation matrix, Q, provides better yields 

forecasting results than the two-step DNS model. The method of combining natural cubic spline with 

correlating yield returns is chosen as yield curve model. 

6.6.1 Summary and suggested improvements 

The yield curve is modelled as a whole using eight maturities as nodes in a natural cubic spline 

interpolation. The nodes are modelled as a diagonal VAR(1) process with a full covariance matrix, Q. 

The VAR(1) process is chosen for all eight maturities.  

Improvements in modelling the nodes will improve the accuracy of the spline model. As described 

earlier in chapter 6.5.9 this could be achieved by accounting for cointegration between the yields and 

thus modelling the nodes with an error correction model instead of the simple VAR(1) model. 

The maturities were chosen in order to maximise the performance of the dynamic Nelson-Siegel 

model that has now been discarded in favour of an approach inspired by Bowsher & Meeks (2008). It 

is therefore of interest to even further lean on that approach and maybe revaluate which maturities 

series are needed as nodes to model the yield curve.  

Another possibility is to utilize the state-space representation of DNS defined in chapter 2.3.1. This is 

a more refined version of DNS modelling where the state-space system can be solved simultaneously 

and predicted directly using Kalman recursion. Such an approach would erase the model uncertainty 

connected to modelling in two steps instead of one.  
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7 Conclusions 
The model comparison shows that it is not easy to find a model that outperforms the simple random 

walk. Vector autoregressive models improve forecasting performance of GDP and the model fit of 

the yield curve and a univariate ARMA process with one year AR lag is the best fit for inflation. Each 

equity index and FX rate is modelled independently as random walk.  

There are several ways to potentially improve the macroeconomic multifactor model. Feasible 

actions for each variable were listed earlier in this paper and following suggestions refer to overall 

improvements of the multifactor model. 

To start with, one can focus more on the relations between the variables and search for some co-

movements. A study of the impulse responses of the system should then be done to confirm the 

established cross-variable relationships.  

Careful investigation of the behaviour of the variables during and following market shocks is the next 

step. Improvements can be made by including dummy variables that are designed to respond to the 

occurrence of a certain scenario. A shock that simultaneously affects several variables can be 

modelled by temporarily allowing for higher correlation of the error terms. This could be achieved 

with a multidimensional GARCH model.  

Including the economic cycle and allowing for a regime switching AR process as done by both 

Bergström, Holmlund, & Lindberg (2002) and Jonson (2008) is another approach that might possibly 

improve the results. 

Finally, the model should be extended to include more international data. Some studies have 

indicated that, indeed, this could be the case. Diebold, Li, & Yue (2008) find that global yields 

improve the forecasting prediction of the yield curve and Carriero, Kapetanios, & Marcellino (2009) 

get encouraging results from modelling a panel of 33 exchange rates.  

In this thesis I have made some initial model analysis and thoroughly examined the behaviour of the 

series of interest and compared the modelling results to random walk. In many cases I found a way 

to improve the model performance beyond random walk and thus both identify and utilize 

information affecting the data series. In other cases I conclude that there is not enough information 

present to justify applying a more advanced model than random walk.  

The model I propose is ready to serve as basis for further analysis. 
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