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Abstract

A company issuing an insurance will provide, in return for a monetary pre-
mium, acceptance of the liability to make certain payments to the insured
person or company if some beforehand speci�ed event occurs. There will
always be a delay between occurrence of this event and actual payment from
the insurance company. It is therefore necessary for the company to put
aside money for this liability. This money is called the reserve. When a
claim is reported, a claim handler will make an estimate of how much the
company will have to pay to the claimant. This amount is booked as a
liability. This type of reserve is called; "case reserve". When making the
estimate, the claim handler has the option of giving the claim a standard
reserve or a manual reserve. A standard reserve is a statistically calculated
amount based on historical claim costs. This type of reserve is more often
used in small claims. A manual reserve is a reserve subjectively decided by
the claim handler. This type of reserve is more often used in large claims.
This thesis propose a theory to model and calculate an optimal limit above
which a claim should be considered large. An application of the method is
also applied to some di�erent types of claims.

Keywords: Insurance claims, Monte Carlo simulation, large claims, small
claims, case reserve, distributions for insurance claims, general insurance,
non-life insurance
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Chapter 1

Introduction

A company issuing an insurance will provide, in return for a monetary pre-
mium, acceptance of the liability to make certain payments to the insured
person or company if some beforehand prede�ned event occurs.

Both the amount to be paid and the actual occurrence of the event can
be modeled as random variables. If the event actually occurs and is reported
to the insurance company, this type of liability becomes an insurance claim.
In general there is a delay between the speci�ed event occurring and the
insurers actual payment and settlement of the claim.

One reason for this is that there is usually some kind of reporting delay
between occurrence of a claim and the time for reporting it to the insurance
company. There is also a settlement delay. This means that it takes time to
evaluate the �nal settlement. It could for instance be di�cult to establish
the actual cost of rebuilding something. Estimating the payment for some-
one being injured can take a long time and in some cases the actual injury
will not be noticed until years after the actual occurrence of an accident. In
some claim cases, the claim has to be settled in court. The point is that a
settlement can take time, sometimes days and sometimes years. [3]

The term "claims reserving" means that an insurance company has to
put su�cient provisions aside, so that it is able to settle all the claims that
are caused by its insurance contracts up until today. This means that the
company has to put aside money for claims that have been reported and
also for events that have occurred but that have not yet been reported. The
latter is usually called IBNR reserve, meaning reserves for claims that are
Incurred But Not Reported.

Since no one knows for sure how many claimants that will report an ac-
cident that has occurred in the past, the insurance company has to make
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a statistical estimate. There are several methods to do this. However, this
type of reserving will not be covered in the thesis.

This thesis will focus on claims that have been reported to the insurance
company, since they are all connected to a speci�c insurance case. The
reserves from this type of claim is called case reserves. [10]
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Figure 1.1: There is usually some time before occurance of accident and
reporting of a claim. There is also usually a delay between reporting and
actual payment. This is a simpli�ed version since the claim is assumed to
be paid out once in a lump sum. For example, sometimes several claim
payments are paid out over a period of time. After the claim has been paid
out in full, it is usually considered to be closed. However, it happens that
old claims are reopened due to new circumstances. This would in turn lead
to new payments.
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Figure 1.2: Between time t0 and t1, at time ti, the accident has occurred
but it has not yet been reported. When estimating the proper reserve of
these "future claims", several statistical methods can be used. This type
of reserve is called "IBNR reserve". If the claim is between time t1 and t2,
at tj , the claim has been reported but not yet paid out. An estimate of
how much the accident will cost is made. This estimate is then added to
the total reserve. The reserve coming from reported but not paid claims is
called "case reserve".
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Chapter 2

The Problem

2.1 Background

The reserve of a claim should be equal to the expected remaining payments
of the claim. A claim is reported to a claims handler.

In the insurance system, the reserve of a claim can be either manual or
standard. Manual means that the handler will estimate the size of the claim
and enter a reserve into the system. Standard means that the reserve is
calculated automatically. The calculation would for example be dependent
on which line of business the claim falls in. It could also depend on whether
the customer is a private person or company. In other words, a single claim
can vary quite a lot in size, ranging from 0 to a billion SEK.

Typically one would want to put a standard reserve for smaller claims
and a manual reserve for larger claims. This would minimize the error and
create a reliable reserve estimate. This makes sense since there will be a
large number of small claims. They will also be of a more standard nature,
for example a broken window, a burnt out oven or a bicycle theft. This
makes good parameters for making a statistical estimate. Larger claims, on
the other hand, will not be as plentiful, they will also, most of the time be
of a unique nature. This means that they will most likely need an individual
estimation to be accurate.

There are several reasons to make automatic statistical estimates of re-
serves. Having an automatic calculation will obviously minimize the work of
claims handlers. Since a single small claim does not a�ect the whole result
of the company it is considered more accurate to view many small claims
in terms of statistics. Having a standard reserve will also make the claims
reserve predictable. This is because the model for calculating is speci�ed
beforehand and the number of claims received from year to year is quite
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similar. [10]

When a claim handler receives a claim he or she �rst of all has to decide
if the claim will be large and need individual treatment or if it is small and
get a standard reserve. There has to be some limit above which a claim
would be considered "large" and receive a manually estimated reserve.

2.2 Aim of thesis

The purpose of this Master Thesis is to describe theory and methods for
modeling the optimal large claims limit. It aims at �nding a procedure for
estimating this limit. Several modeling issues must therefore be dealt with.
One must de�ne what an optimal limit really is. A de�nition can for instance
be made using loss functions.

The actions of the claim handlers should be described in a model using
historical data where both the estimation of the claim and the actual pay-
ment of the claim is known. This way a model can be built around how
"correct" the claims handlers actually were.

One must also model the standard reserve process. In this process his-
torical data are also known. This way, one can build a model around how
"correct" the automatic process has been.

Another issue is how one should model the claims. Using historical data,
a good approach would be to assume a distribution. Perhaps combining dif-
ferent distributions to catch large tail events.

In addition, one question deals with the problem of knowing at which level
a standard reserve should be calculated. Should one reserve be calculated,
for instance, for all motor claims? Should one reserve be calculated for each
subset of motor claims, for example motor-hull claims? Or maybe there is
no point in actually di�erentiating between claim types at all?

2.3 Outline

The disposition of this paper is as follows. The �rst chapter gives an intro-
duction to the topic. Chapter two presents the background of the problem.
It also presents the aim and the outline of the thesis. Chapter three will take
care of assumptions, de�nitions and modeling of the problems. Chapter four
will give a few solution approaches on how to solve the problem presented.
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The �fth chapter deals with the results. Chapter six contains a concluding
discussion together with suggestions for further research.
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Chapter 3

Theory

3.1 Assumptions

In order to make a proper model, it is necessary to make some simpli�cations
regarding the data used. When discussing data, the author generally mean
data regarding claims of an insurance company. The claims can be of di�er-
ent types. For example house �re claims, theft claims, car claims, personal
injury claims and so on. Di�erent types of claims behave di�erently. Some
take a long time to settle. Others result in annual payments that go on as
long as the claimant lives. Some types of claims are frequently reopened.
To be able to make a reasonable model one must assume and use data that
are reported and settled quite quickly. In�ation and discounting between
occurrence and payout is therefore ignored. For simpli�cation it is assumed
that the total payment of a claim is always paid out as a single lump sum. It
would also be required that data are not frequently reopened. It will be as-
sumed that a closed claim will remain closed. When experimenting with the
presented models, one must have these assumptions in mind when choosing
what type of data to use.

An assumption is done regarding the claims handlers. When �rst receiv-
ing a claim, they must decide whether the claim should be considered large
or small. This decision is made without detailed knowledge of the actual
claim. They must use their experience and give a ballpark �gure of where
the estimate will land. It is assumed that the claims handlers will get this
right every time.

3.2 De�ning an optimal limit

One can de�ne an optimal limit in many ways. There is very little literature
on the subject of the large claims limit. This means that the de�nitions made
here are perhaps some out of many possible. The total number of reported
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claims over a period of time is n. The reserve R is de�ned as the sum of all
estimations of reported but not paid claims ri.

R =
n∑
i=1

ri (3.1)

The total actual paid amount S is the sum of all claim payments si.

S =
n∑
i=1

si (3.2)

Here one wants to de�ne some kind of "loss function" that can later be
minimized. A loss function can be described as a function that measures
some kind of loss. For example a model of how much error there will be in a
reserve estimation. On �rst thought, one might think of a loss function that
looks like R − S. Meaning that the optimal reserve estimation would be as
close as possible to the actual future payments.

Θ = R− S =
n∑
i=1

ri − si =
n∑
i=1

θi = 0 (3.3)

This is an easy way of measuring the "loss". It is also quite easy to give
the "loss" an interpretation. In this case, it would be interpreted as how
wrong the estimation of the reserve is in general. It would also be easy to
perhaps apply some kind of Value at Risk model to this de�nition.

In reserving, it is perhaps worse to have a negative reserve error. One
could for example look at the risk of having a negative reserve error and de-
cide upon a claims limit that would give 95% probability of having a positive
reserve error.

Every estimation ri corresponds to an actual payment si. To make the
model more stable, it would perhaps be desirable to minimize |ri−si| = |θi|.
In other words, to make each estimation come as close as possible to its
actual payment. Minimizing only |Θ| = |R− S| would mean that the model
could become dependent on a few large negative and positive estimation er-
rors that neutralize each other. Trying to instead minimize |θi| would mean
that the model is less dependent on single large estimation errors.

An optimal limit for large claims would therefore be a limit that mini-
mizes all |θi|. This means the limit would be such that:

∑n
i=1 |θi| is min-

imized. The equivalent would be to say: �nd a limit u that ful�lls the
following loss function:

min
n∑
i=1

|θi(u)| = min
n∑
i=1

|ri(u)− si| (3.4)
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Where ri(u) = I(si < u) · rStandardi + I(si > u) · rManual
i . I(.) is the

identity function. si, n and ri can be considered to be stochastic random
variables. The modeling of si and n is discussed in section 3.5, while the
modeling of ri is discussed in section 3.3 and 3.4.

There exist other options for loss functions. One of the most widely used
is perhaps the quadratic loss function. Find a limit u that satis�es:

min
n∑
i=1

θi(u)2 = min
n∑
i=1

(ri(u)− si)2 (3.5)

This type of loss function will treat negative and positive errors equally. In
claims reserving, one could imagine that it would be worse to reserve to
little. If an insurance company does not have enough money to pay for its
liabilities, it is probably in big trouble. If too much money is reserved the
insurance company might have a slightly worse result. The latter alternative
would certainly be preferred. One option would be to use the LINEX loss
function [11]. Find the u that satis�es:

min
n∑
i=1

exp(−β · θi(u)) + β · θi(u) + 1 =

= min
n∑
i=1

exp(−β · (ri(u)− si)) + β · (ri(u)− si) + 1 (3.6)

Where β is some constant > 0. This type of loss function will punish
negative estimation errors exponentially and only punish positive estimation
errors linearly. The LINEX function will look quite similar to the quadratic
loss function for small losses since ex − x− 1 is proportional to x2

2 . The big
di�erence is that the LINEX function can be positively or negatively skewed.

Another, a bit simpler loss function would be. Find u that satis�es:

min
n∑
i=1

I(θi > 0) · k1 · |θi(u)|+ I(θi < 0) · k2 · |θi(u)| =

min
n∑
i=1

I(ri(u)− si > 0) · k1 · |ri(u)− si|+

+I(ri(u)− si < 0) · k2 · |ri(u)− si| (3.7)

Where k1 and k2 are weight constants. The case where k1 and k2 are
equal to one would be the same case as the absolute value loss function
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described earlier. With this equation one can control how much to value
positive and negative errors. In the case of reserving one could argue that
the only error that should be punished is when the reserve is too small. In
that case k1 should be put to zero and k2 can be put to any positive number.

As argued earlier, the standard reserve can be treated with statistical
methods. The error coming from this kind of estimation would sometimes
be larger than zero and sometimes smaller. In a perfect world, the total error
would even out in the end and become zero. It would perhaps therefore be
logical to treat the error coming from these claims, not as individual errors,
but as one error. This would result in a total estimation error that would
oscillate around zero. As the large claims limit increases, it will result in
instability and an increase in variance.

The aim of the manual reserve is however to treat every claim individually
and try to come as close as possible to the actual claim cost. This means one
perhaps should treat these errors individually. A loss function could look like:

Find u that satis�es:

min
n∑
i=1

I(si < u) · |rStandardi − si|+ I(si > u) · |rManual
i − si| (3.8)

3.3 Modeling the actions of the claims handlers

Modeling the actions of humans is a very tricky business. Here, the process
of reserving a manual claim will be considered stochastic. I have not found
any literature describing this type of modeling. This means that the theory
for this part has been developed solely for this thesis.

It would be reasonable to assume that the estimate of the claims handler
rManual
i most of the time will be more or less correct. This means that
the model perhaps can be assumed to be normally distributed or Student-t
distributed around a mean which is the actual future claim payment si.

rManual
i = si +N(0, σ)

or

rManual
i = si + t(0, ν, σ) (3.9)

Where σ is standard deviation and ν is degrees of freedom of the Student-
t distribution.
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It would also be logical to assume that the larger a claim actually turns
out to be, the harder it is to estimate. This means that a claims handler will
more often make a larger estimation error when handling a big claim. At
least, the spread of the estimation should be somehow dependent on the size
of the claim. As an illustration, when a window is broken on a house, the
estimation error of its cost might di�er with a few hundred SEK. Whereas
if a large villa has been burnt to the ground, the error will likely di�er with
the size of tens or hundreds of thousand SEK. To incorporate this into the
model one can make the following multiplication.

rManual
i = si + f(si) ·N(0, σ)

or
rManual
i = si + f(si) · t(0, ν, σ) (3.10)

Where f(si) is a function of si. If f(si) should mirror a dependence of the
size of si, then typically f(si) can be modeled as sαi . Where α is a constant
that is somehow dependent on what type of data are used. This gives:

rManual
i = si + sαi ·N(0, σ)

or
rManual
i = si + sαi · t(0, ν, σ) (3.11)

When estimating α and the parameters of the normal distribution or
student-t distribution one can use historical data, where the estimation of
the claims handler is known and where the actual paid amount is also known.
In other words rManual

i and si are known.

rManual
i − si

sαi
= N(0, σ)

or
rManual
i − si

sαi
= t(0, ν, σ) (3.12)

α can be �ne tuned so that the data looks approximately normal or
student-t distributed. The parameters of the chosen distribution can then
be estimated. This can be done using for example maximum likelihood,
scatter-plots or qq-plots (see later sections).

3.4 Modeling the standard reserve process

The standard reserving method is supposed to make an automatic judgment
of how much to reserve, when the claim is considered to be small. In other
words; how should one make an estimate when the actual future payment si
is smaller than the large claims limit u? A logical way to do it would be to
use the expected value of si:
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rStandardi = E[si|si < u] =

∫ ∞
x=0

x · fsi=x|si<u(si = x|si < u)dx =

=

∫ u

x=0
x · fsi=x|si<u(si = x|si < u)dx (3.13)

To calculate the expected value, one would need to �nd some distribution
for the future payments e.g si.

3.5 Modeling the claims data

3.5.1 Distribution of the claims

A model has to be built around the future payment of a claim si. si is
considered to be a random variable belonging to some distribution.

si ∈ X (3.14)

where X has some distribution.

There are several ways to model this kind of stochastic future payments.
All insurance claims are highly positively skewed. A lognormal distribution
might be �tting for some types of claims. Typically the ones that tend to
have a small upper tail. An example could perhaps be glass damage. The
cost of �xing a glass window or wall will most likely never be large compared
to claims originating from for example, house �res. [2] On the other hand,
claims that have a large upper tail are also possible. The scenario would be
that most claims can be found close to zero, but there is the possibility of
runaway claims many times larger than the expected value. These claims
can be modeled quite accuratly with the generalized pareto distribution or
GPD. [8]

Some insurance claims tend to resemble both distributions. Close to
zero, they look like the lognormal distribution and in the tail they look like
the GPD. In this case Ananda and Cooray [1] suggest using a composite
distribution consisting of a log-normal part and a generalized pareto part. A
lognormal distribution alone, will not catch the relatively long tail of claims
data. While a generalized pareto distribution will not catch the behavior
of smaller claims. The combination of the two will simulate the desired
behavior. In other words, we want to build a model that has a lognormal
distribution until a certain threshold θ. After the threshold it should have
a generalized pareto distribution. The composite density function f(x) can
be described by:
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f(x)

{
cf1(x), if x ∈ (0, θ]
cf2(x), if x ≥ θ (3.15)

Where c is a normalizing constant, f1(x) has the form of a two-parameter
log-normal density and f2(x) has the form of a two-parameter GPD density.

f1(x) =
(2π)−1/2

xσ
exp[−1

2
(
lnx− µ

σ
)2], if x ∈ (0, θ] (3.16)

f2(x) =
αθα

xα+1
, if x ≥ θ (3.17)

where θ, µ, σ, α are unknown parameters such that θ > 0, σ > 0, α >
0. To make the model realistic we impose continuity and di�erentiability
conditions on θ,

f1(θ) = f2(θ)

and

f ′1(θ) = f ′2(θ) (3.18)

where f ′(θ) is the �rst derivative of f(x) evaluated at θ.
If we impose the conditions of (3.17) on (3.14) we get ln(θ) − µ = ασ2 and
exp(−α2σ2) = 2πα2σ2.

Since
∫∞

0 f(x)dx = 1, we get c(
∫ θ

0 f1(x)dx+ 1) = 1. We get

∫ θ

0
f(x)dx =

∫ θ

0

(2π)−1/2

xσ
exp[−1

2
(
lnx− µ

σ
)2]dx

=

∫ ln(θ)−µ
σ

−∞

1√
2π

exp[−1

2
t2]dt = Φ(

ln(θ)− µ
σ

) = Φ(ασ) (3.19)

where Φ(.) is the cumulative distribution function of the standard normal
distribution. This gives c = [1 + Φ(ασ)]−1

With the result above one can show that the composite density can be
reparametrized and re-written as

f(x)

{
αθα

(1+Φ(k))xα+1 exp[− α2

2k2
ln2(xθ )], if x ∈ (0, θ)

αθα

(1+Φ(k))xα+1 , if x ≥ θ
(3.20)

where Φ(.) is the cumulative distribution of the standard normal distri-
bution and k is a known constant. k is given by the solution to exp(−k2) =
2πk2. This gives k = 0.372238898. Here ασ = k and c = 1/(1 + Φ(k)). The
composite probability density will therefore only have two parameters θ > 0
and α > 0. The cumulative distribution function of the composite model is
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Figure 3.1: The lognormal distribution has a small upper tail, while the
pareto distribution has a large one. The composite version has properties
from both. In this case θ = 50 and α = 0.5

F (x)

{
1

(1+Φ(k))Φ((α/k)) ln(x/θ), if x ∈ (0, θ)

1− 1
(1+Φ(k))(θ/x)α, if x ≥ θ (3.21)

3.5.2 Number of claims

The number of reported claims during a certain period of time n can be
considered to be stochastic. The total number of insured during a period of
time is ntot. De�ne p as the probability for an insured to actually have an
accident leading to a claim during this period. Each claim can be considered
to be independent of the other. n can then be modeled as Bin(ntot,p). [5]

ntot can be considered to be large and p can be considered to be quite
small. A well known approximation is then: Bin(ntot,p) ∼ Po(ntot · p) [9].
De�ne ntot · p as λ. This leads to:

n ∼ Po(λ) (3.22)
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Chapter 4

Simulation approaches

For this chapter, methods in [6], [4] and [7] have been used for parametric
and non-parametric simulation. [2], [1] and [8] have been used for distri-
bution estimation techniques such as maximum likelihood, qq-plotting and
information regarding heavy-tailed and short-tailed distributions

4.1 Simulating the optimal large claims limit

To investigate the optimal large claims limit u, one has to decide on a loss
function. For example, the loss functions of equations 3.4, 3.5,3.6 or 3.7 can
be used. Find the limit u that satis�es:

min
n∑
i=1

|θi(u)| = min
n∑
i=1

|ri(u)− si| (4.1)

or

min
n∑
i=1

exp(−θi(u))+θi(u)+1 = min
n∑
i=1

exp(−(ri(u)−si))+(ri(u)−si)+1

(4.2)
or

minimize

n∑
i=1

k1|θi(u)| =
n∑
i=1

k1|ri(u)− si| for θ = ri − si > 0

n∑
i=1

k2|θi(u)| =
n∑
i=1

k2|ri(u)− si| for θ = ri − si < 0 (4.3)
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Where ri(u) = I(si < u) · rStandardi + I(si > u) · rManual
i .

or

min
n∑
i=1

I(si < u) · (rStandardi − si) + I(si > u) · |rManual
i − si| (4.4)

One way to simulate an approximation of the large claims limit is to
measure the loss function for di�erent values of u. u would range from 0 to
a suitable large number. For each u, the result of the loss function would
represent the "error" of using this u. One could thereafter plot this sum as
a function of u to �gure out where the minimum loss occurs and to �gure
out the behavior of the loss function compared to u.

To avoid large random errors, one can simulate many times for every u
and take the average of these results.

If this is to be possible, one needs information about rstandardi and rmanuali .
To make the right calculations new samples must be generated from histor-
ical data. The number of claims received during a certain period has to be
simulated. There also has to be a procedure to simulate the actual claims,
si, from some kind of distribution.

4.2 Simulating the standard reserve

Equation 3.12 gave a model for standard reservation of claims, as follows:

rStandardi =
u∑
x=0

x · P (si = x) (4.5)

What one wants is basically the expected value of the claim cost con-
ditioned on the fact that the actual claim cost is smaller than u. This is
approximated by taking the average value of the sorted samples up to the
point of u. To be more speci�c, one makes enough samples of the claims
distribution and take the average of all claims that are smaller than u.

E[si|si < u] = rStandardi ≈ 1

Nu
·
Nu∑
j=0

ssamplej (4.6)

where Nu is the number of claims smaller than u and ssamplej is a claim cost
smaller than u from the sampled distribution.
To decrease the random error in this procedure one can simulate this many
times for the same u and take an average of these simulations.
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4.3 Simulating the manual reserve

Equation 3.11 gave a model for manual reservation of claims.

rManual
i − si

sαi
= N(0, σ)

or
rManual
i − si

sαi
= t(0, ν, σ) (4.7)

Here, one �rst of all needs to �nd an α that makes the data look ap-
proximately normal or student-t shaped. This can be done using a trial and
error approach. One way of doing it would be to look at real historical data
coming from claim handlers. The data should contain information about
how much money was actually reserved for a claim, rmanuali . The data also
should contain information about how much a claim actually ended up cost-
ing, si. This way one could analyze a histogram of equation 3.11 for di�erent
α. Di�erent α could be tried until the plot has a shape that corresponds to
a normal or student-t distribution. Then one could simulate the parameters
of this distribution. This could easily be done using a standard method such
as maximum-likelihood and qq-plotting.

4.4 Simulating the number of claims that should be

sampled in each period.

To decide how many samples should be simulated in one time period one
could use equation 3.21.

n ∼ Po(λ) (4.8)

where ntot · p is λ. ntot is the total number of people covered by this
insurance. p is the probability that a policyholder will actually have a claim
during the period.

4.5 Simulating the claim payments

De�nition of the total payment of a claim in this context would be the total
amount paid out on a claim before it is considered to be closed.

4.5.1 Non-parametric sampling

One way of approaching simulation of data is to use non-parametric resam-
pling or non-parametric bootstrapping. It is assumed one has a vector of
samples coming from actual data, for example a large number of insurance
claims. Instead of looking at the values and assuming a distribution, one
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can use the "sample distribution". This means one randomly picks sam-
ples from the vector of real data with replacement, until a new vector has
been created. By doing a non-parametric resampling of data one can create
in�nitely many new vectors. This would only be possible if the measured
vector is large enough and representable for the whole underlying distribu-
tion. A positive aspect of non-parametric resampling is that it is relatively
easy and straightforward to do. One does not have to bother with any pa-
rameters for any distributions. It can actually also give quite close results
to parametric sampling, meaning that in some cases perhaps the easy way
is the better way. One of the major negative aspects of non-parametric re-
sampling is that, when resampling, the largest value in any vector can never
be larger than the largest of the historical values. If there is a possibility of
catastrophically large or small values in the future, meaning larger or smaller
than ever recorded, this will not be modeled into the "sample distribution".

4.5.2 Parametric sampling

Another option for simulating the claims would be to assume some kind of
distribution for the claims and estimate the parameters. The main bene-
�t of using a parametric sampling is that this kind of sampling catches a
greater number of aspects on how the "true" distribution works compared
to non-parametric approaches. In this model, for example, values that have
previously never occurred can occur. If one is modeling worst case scenarios,
this is highly relevant.

What type of distribution I will employ will di�er with di�erent types
of claims. This has been discussed in earlier chapters. If the claims seem
to have a short tail when plotting a histogram, a lognormal distribution
might be �tting. If, on the other hand, the claims seem to have a large
upper tail a composite lognormal-pareto distribution might be �tting. For
�tting the lognormal distribution a simple maximum likelihood estimate of
the parameters could give a nice �t to the distribution. A QQ-plot could
thereafter be used to �ne tune these parameters. When �tting a composite
lognormal-pareto distribution, Ananda and Cooray [1] give an algorithm for
calculating the maximum likelihood parameters.

Let X1, X2, ..., Xn be a random sample from the two-parameter compos-
ite lognormal-pareto model described in chapter 3. x1 ≤ x2 ≤ x3 ≤ ... ≤ xn
is assumed to be an ordered sample. Suppose the unknown parameter θ is
in between the mth observation and the m+ 1st observation, in other words,
xm ≤ θ ≤ xm+1. Then the likelihood function is given by

L(α, θ) = C0α
nθnα(

n∏
i=m+1

x−αi ) exp[− α2

2k2

m∑
i=1

ln2(xi/θ)] (4.9)

where C0 = 1/[(
∏n
i=1 xi)(1 + Φ(k))n].
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The maximum likelihood (ML) estimators of θ and α, θ̂ML and α̂ML re-
spectively, can be obtained numerically as follows. First, for a given θ,
numerically �nd the value of α that maximizes L(α, θ). Then by changing θ
over the interval (0,∞), �nd the values of θ and α that maximizes L(α, θ).
It is important to notice that as θ changes, since xm ≤ θ̂ ≤ xm+1, the sum
in L(α, θ) should change accordingly. An algorithm for calculating the max-
imum likelihood shall be presented below.

Step 1. For eachm (m = 1, 2, ..., n−1), calculate α̂tem and θ̂tem as follows:

For m = 1,

α̂tem = n(
n∑
i=1

ln(xi/x1))−1

θ̂tem = x1

n∏
i=1

(xi/x1)k
2

(4.10)

Otherwise,

α̂tem =
k2(n

∑m
i=1 lnxi −m

∑n
i=1 lnxi)

2(m
∑m
i=1(lnxi)2 − (

∑m
i=1 lnxi)2)

+
(k4(n

∑m
i=1 lnxi −m

∑n
i=1 lnxi)

2 + 4mnk2(m
∑m
i=1(lnxi)

2 − (
∑m
i=1 lnxi)

2))1/2

2(m
∑m
i=1(lnxi)2 − (

∑m
i=1 lnxi)2)

(4.11)

θ̂tem = (
m∏
i=1

xi)
1/m exp(

nk2

mα̂tem
) (4.12)

If θ̂tem is in between xm ≤ θ̂tem ≤ xm+1, then the ML estimator of α and θ
are

α̂ML = α̂tem

θ̂ML = θ̂tem (4.13)
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Step 2. If there is no solution for θ (this means xn ≤ θ̂tem) with the
conditions given in Step 1, the ML estimate of α and θ are

α̂ML = nk/

√√√√n
n∑
i=1

(lnxi)2 − (
n∑
i=1

lnxi)2

θ̂ML = (
n∏
i=1

xi)
1/n exp(

k2

α̂ML
) (4.14)

Note that if θ̂tem is closer to x1 or xn Pareto or lognormal will respectively
be a superior model than the composite lognormal-pareto model. In order
to �nd the ML estimators, one needs to check only n− 1 intervals.

After the ML estimators have been found, one can use it in combination
with QQ-plotting to �nd a nice estimate.

4.6 Simulation in practice

This will be a walk-through on how to actually simulate a loss function in a
suitable program.

Step 1. Calculate α and the distributions to use in order to simulate
the manual reserve using historical data. Note that these data must contain
information on both how much was paid out for a claim and how much was re-
served in the beginning for a claim. The reserve for a manual claim will later
be drawn by taking rmanuali = si+sαi · t(0, ν, σ) or rmanuali = si+sαi ·N(0, σ).

Step 2. Decide on a distribution for the claims and if using parametric
sampling, calculate the parameters for the distribution.

Step 3. Start a loop that will repeat once for every value of u (the large
claims limit).

Step 4. Calculate the standard reserve value, rstandardi for the current u.
This is done using information in 4.2. In order to decrease the random error,
one should use a large number of values when sampling from the distribution.

Step 5. Calculate λ and decide on how many claims shall be simulated,
n, by sampling from Po(λ).

Step 6. Draw a value from the distribution, si. If si is smaller than
the current u, give it the standard reserve rstandardi . If it is larger than the
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current u give it the manual reserve rmanuali . When the reserve for si has
been decided, take θi = (ri − si) and calculate the loss function, g(θi), that
has been decided on, for example g(θi) = |θi| . Do this procedure n times.

Step 7. Sum all g(θi) to create the total "error" for the current value of u.

Step 8. Repeat steps 4, 5, 6 and 7 a large number of times and take the
average of these values. This will decrease the random error.

Step 9. Change the value of u and start over from Step 3. In theory one
should do this step for u → ∞. In practice however one must decide on a
suitably large value for u.

Step 10. Plot the error as a function of u

Methods similar to this one can calculate very di�cult stochastic prob-
lems. Problems which would be very hard or even impossible to calculate
explicitly. The fact that we simulate the event a large number of times will
decrease the random e�ect we are creating every time we draw a sample.
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Chapter 5

Results

In this section the theory and modeling is tested using actual data. We want
to simulate the claims that are received by the insurance company over the
course of a year. We have decided to use �re insurance claims, motor vehicle
claims and cargo claims. These were chosen because they intuitively tend
to be quite di�erent �elds. They were also chosen because the raw data
contain su�ciently many manually estimated claims. This means we were
able to make a proper model for the claim handlers' distributions. At �rst,
simulation has been done one claim type at a time. Then all claim types
are merged together making a mixed simulation. A comparison is made to
investigate whether a better result can be achieved by narrowing or widening
the de�nition of a claim type. Ideally one would also like to split each �eld
into di�erent sub-categories. For example, motor could be split into motor-
hull damage, etc. Unfortunately, there are not enough large claims on each
of these categories to make proper estimates.

5.1 Fire claims

The data used are from �re insurance claims from 2008 and 2009. We have
used 2000 (claims) as λ, when calculating the number of claims received
each year. This is approximately the number of �re claims received each
year. They consist of a matrix. The matrix has two columns. One column
contains the original reserve of a single claim, and the other contains the
actual payment of the same claim. The claims are considered to be closed
and the payment is considered to have been paid out in a lump sum.

5.1.1 Deciding the distribution for claimhandlers

We want to calculate α. Di�erent values of α in equation 3.11 is plotted in
a histogram until the graph looks approximately student-t-distributed. For
these data α = 0.5 made equation 3.11 approximately student-t-distributed.
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This can be seen in �gure 5.1. With a maximum likelihood estimation of
the parameters we �nd:

µ = 3.86323

σ = 417.396

ν = 1.876 (5.1)

where µ is the expected value, σ is the standard deviation and ν is the
degrees of freedom of the student-t-distribution.

It can also be seen that the qq-plot in �gure 5.2 looks nice. The real
values seem to be approximately the same distribution as the �tted values.
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Figure 5.1: With a trial and error approach α was found to be roughly 0.5.
This means that si−ri√

si
is roughly student-t distributed
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Figure 5.2: The qq-plot seems linear. This means that the �tted distribution
has roughly the same distribution as the real values coming from equation
3.11.

5.1.2 Non-parametric bootstrapping

We try to use non-parametric bootstrapping to measure the large claims
limit. We create a loop that calculates the mean squared error for di�erent
u ranging from 0 to 3, 000, 000. For every u a certain number of steps are
made. We start with u=0.

First, the standard reserve is calculated by drawing values from the claim
payments vector a large number of times. The ones below the large claims
limit u is then sorted out. The mean from these values is then calculated as
the standard reserve.

Second, we calculate how many samples, n , that will be generated by
sampling one value from Po(λ). λ is calculated by taking ntot · p, where ntot
is the total number of insured and p is the probability of actually having a
claim. Call the number of claims in the claims vector k. p is approximated
to be k/ntot. This means λ = k.

Third, we draw n random samples from the vector of claim payments.
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For every sample si, if it is larger than the current u, give it a reserve by
drawing a sample from rmanuali = si+

√
si · t(µ, σ, ν). If the sample is smaller

than u give it the standard reserve rstandardi calculated earlier.

Fourth, we go through the n samples and give every generated value a
reserve. Calculate the loss function for every iteration by using ri and si.
In this case we have chosen to use the loss functions of equation 3.4 and
equation 3.6 with k2 = 0. The latter loss function will only punish negative
reservation errors.

Fifth, do the second, third and fourth step a large number of times and
take an average of the result. This reduces the random factor involved.

We enlarge u and do all steps again. We do this procedure until u has
reached 3, 000, 000. Then we plot the loss function against its corresponding
u. This is shown in �gures 5.3 and 5.4.
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Figure 5.3: A non-parametric bootstrap of the large claims limit compared
to the absolute value of the error. To make the graph a bit smoother a
�oating average has been added.
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Figure 5.4: A non-parametric bootstrap of the large claims limit compared
to the error generated by negative reservation errors. To make the graph a
bit smoother a �oating average has been added.

5.1.3 Parametric bootstrapping

Here we have to assume and test some distribution. The distribution should
be �tting the �re insurance claim payments. Typically we can assume that
�re insurance claims look more like a lognormal distribution close to zero
and more like a pareto distribution in the tail. Therefore we have assumed
a composite lognormal pareto distribution. We tried to �t the parameters
to this distribution using maximum likelihood. After some �ne-tuning. the
qq-plot looks pretty nice. Figure 5.5 looks fairly linear. The parameters for
the composite lognormal pareto distribution is estimated to be:

θ = 100, 000

α = 0.7 (5.2)
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Figure 5.5: A qq-plot showing a �tted composite lognormal pareto distri-
bution against real samples from �re claims. The plot looks linear. This
means we can assume that the �tted distribution is roughly the same as the
underlying distribution of the Norwegian �re claims.
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Next, we simulate the functions compared to the large claims limit by
repeating the same steps as in the non-parametric bootstrapping. The dif-
ference will be that instead of drawing samples from the actual vector of
samples we will generate samples and create a new vector from the �tted
distribution and draw samples from that.

For further analysis we also make two plots of the the absolute value loss
function against u. One where there are only errors coming from manual
reserve and one where there are only errors coming from standard reserve.

Figure 5.6: A parametric bootstrap of the large claims limit compared to
the absoulte value of the error. To make the graph a bit smoother a �oating
average has been added.
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Figure 5.7: A parametric bootstrap of the large claims limit compared to
the error generated by negative reservation errors. To make the graph a bit
smoother a �oating average has been added.
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Figure 5.8: A non-parametric bootstrap containing only error coming from
standard reserves. Absolute value loss function is used.
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Figure 5.9: A non-parametric bootstrap containing only error coming from
manual reserves. Absolute value loss function is used.

5.1.4 Optimal large claims limit

Can we decide on an actual optimal limit? If we look at �gure 5.3 and
5.6, they look quite similar. Figure 5.3 has a minimum somewhere between
150, 000 and 500, 000 while �gure 5.6 has a minimum somewhere between
250, 000 and 500, 000. For the non-parametric case, between 150, 000 and
500, 000, the mean variance was estimated to 8.3037 · 1013 and the mean
standard deviation was estimated to 4.9956 ·106. In the parametric case, be-
tween 250, 000 and 500, 000, the mean variance was estimated to 3.2739 ·1013

and the mean standard deviation was estimated to 4.8887 · 106. Deciding on
an actual large claims limit for �re claims would have to be a business deci-
sion. Using the absolute value loss function any limit between 250, 000 and
500, 000 would give approximately the same error. If choosing 250, 000 as
the limit around 85% of the claims would be standard reserved. If choosing
500 000 as the limit around 90% of the claims would be standard reserved.
If the company can live with a slightly larger reservation error. An even
higher limit can be chosen. Without enlarging the error a lot, one could put
the limit at 3 000 000. Standard reserving would then be done on around
97.5% of the claims. This would save time for the claims handlers. However
there are some negative sides. When putting the limit too high, some of the
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assumptions made earlier might not hold. If the limit is 3 000 000, it could
for example be very hard for a claims handler to decide whether a claim
will land on 2, 500, 000 or 4, 000, 000 without detailed information about the
claim. If the limit is low, large claims are more easily detected. Also the
risk of one single claim upsetting the whole reserve error will be a lot lower
if the limit is low.

In �gure 5.4 and 5.7 we turn our attention to the other tested loss func-
tion, where we only measured negative reserving error. The behavior looks
similar to the other loss function. The minimum error seems to be around
the same interval as the absolute value loss function. The graphs probably
looks similar because both types of reserving use a symmetrical method. The
manual reserve uses a Student-t distribution, while the standard reserve uses
the expected value.

In �gures 5.8 and 5.9 we have plotted the absolute value loss function
with errors coming only from standard reserves and then only from manual
reserves. This gives us a way to analyze how the di�erent components be-
have. We can see that the manual loss function has a quite negative slope in
the beginning, when all or most of the claims will be booked as manual. As
most claims are smaller than 50 000, the slope will level out quite quickly.
Having a very low limit will certainly not be optimal. There would be a lot
of work for the claim handlers and the error would be high. The standard
reserve error also has a quite steep slope in the beginning. However, this
graph is not as steep as in �gure 5.9 and has a more steady growth. This
makes the total error decrease in the beginning and then increase as the
manual reserving error levels out.
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5.2 Motor claims

The data used are from motor vehicle claims from 2000 to 2009. We have
used 5000 (claims) as λ, when calculating the number of claims received each
year. As before they consist of a matrix. The matrix has two columns. One
column contains the original reserve of a single claim, and the other contains
the actual payment of the same claim. The claims are considered to be closed
and the payment is considered to have been paid out in a lump sum.

5.2.1 Deciding the distribution for claimhandlers

We use the same procedure as for the �re claims. We want to calculate
α. Di�erent values of α in equation 3.11 is plotted in a histogram until the
graph looks approximately student-t-distributed. However, these data do not
look student-t-distributed at all. It is too positively skewed. We therefore
choose to use a generalized extreme value distribution instead. For these data
α = 0.5 made equation 3.11 approximately look like the generalized extreme
value distribution. This can be seen in �gure 5.10. With a maximum
likelihood estimation of the parameters we �nd:

k = 0.155645

σ = 1961.26

µ = 976.333 (5.3)

Where µ is the location parameter, σ is the scale parameter and k is the
shape parameter of the generalized extreme value distribution.

We can also see that the qq-plot in �gure 5.11 looks ok. The real values
could be approximately the same distribution as the �tted values.
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Figure 5.10: With a trial and error approach α was found to be roughly 0.5.
This means that si−ri√

si
is roughly generalized extreme value distributed.
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Figure 5.11: The qq-plot seems approximately linear. This means that the
�tted distribution has roughly the same distribution as the real values coming
from equation 3.11.

5.2.2 Non-parametric bootstrapping

We try to use non-parametric bootstrapping to measure the large claims
limit. We create a loop that calculates the mean squared error for di�erent
u ranging from 0 to 3, 000, 000. For every u a certain number of steps are
made. We start with u=0.

First, the standard reserve is calculated by drawing values from the claim
payments vector a large number of times. The ones below the large claims
limit u is then sorted out. The mean from these values is then calculated as
the standard reserve.

Second, we calculate how many samples, n , will be generated by sam-
pling one value from Po(λ). λ is calculated by taking ntot · p, where ntot
is the total number of insured and p is the probability of actually having a
claim. Call the number of claims in the claims vector k. p is approximated
to be k/ntot. This means λ = k.

Third, we draw n random samples from the vector of claim payments.
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For every sample si, if it is larger than the current u, give it a reserve by
drawing a sample from rmanuali = si+

√
si · t(µ, σ, ν). If the sample is smaller

than u give it the standard reserve rstandardi calculated earlier.

Fourth, we go through the n samples and give every generated value a
reserve. Calculate the loss function for every iteration by using ri and si.As
before we have chosen to use the loss functions of equation 3.4 and equation
3.6 with k2 = 0. The latter loss function will only punish negative reserva-
tion errors.

Fifth, do the second, third and fourth step a large number of times and
take an average of the result. This reduces the random factor involved.

We enlarge u and do all steps again. We do this procedure until u has
reached 3, 000, 000. Then we plot the loss function against its corresponding
u. This is shown in �gures 5.12 and 5.13.

Figure 5.12: A non-parametric bootstrap of the large claims limit compared
to the absolute value of the error. To make the graph a bit smoother a
�oating average has been added.
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Figure 5.13: A non-parametric bootstrap of the large claims limit compared
to the error generated by negative reservation errors. To make the graph a
bit smoother a �oating average has been added.

5.2.3 Parametric bootstrapping

We have to assume and test some distribution. The distribution should be
�tting the motor insurance claim payments. The tail of motor insurance
claims does not look as large as for �re insurance claims. Therefore we
have assumed a lognormal distribution. We tried to �t the parameters to
this distribution using maximum likelihood. The qq-plot of �gure 5.14 looks
fairly linear. The parameters for the lognormal distribution is estimated to
be:

µ = 9.1

σ = 2.2 (5.4)

Next, we simulate the loss functions compared to the large claims limit
by repeating the same steps as in the non-parametric bootstrapping. The
di�erence will be that instead of drawing samples from the actual vector of
samples we will generate samples and create a new vector from the �tted
distribution and draw samples from that.
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Figure 5.14: A qq-plot showing a �tted lognormal distribution against real
samples from motor insurance claims. The plot looks linear. This means we
can assume that the �tted distribution is roughly the same as the underlying
distribution.
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Figure 5.15: A parametric bootstrap of the large claims limit compared to
the absoulte value of the error. To make the graph a bit smoother a �oating
average has been added.
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Figure 5.16: A parametric bootstrap of the large claims limit compared to
the error generated by negative reservation errors. To make the graph a bit
smoother a �oating average has been added.
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Figure 5.17: A non-parametric bootstrap containing only error coming from
standard reserves. Absolute value loss function is used.

For further analysis we make two more plots of the the mean squared
error against u. One where there is only error coming from manual reserve
and one where there is only error coming from standard reserve.

5.2.4 Optimal large claims limit

If we look at �gure 5.12 and 5.15, they look quite di�erent from the �re
claims. The �gures both have a minimum of around 1, 500, 000. For the
non-parametric case, 1, 500, 000, has a variance of about 3.5356 · 1013 and
the standard deviation was estimated to 5.7569 ·106. In the parametric case,
1, 500, 000, had a variance of around 2.3465 ·1013 and the standard deviation
was estimated to 1.1269 · 106. What makes the motor claims special is that
they have a very skewed claim handling distribution.
If we look at �gures 5.17 and 5.18, we see that the manual reserving error is
steeper than the standard in the beginning. However the slope of the manual
reserve evens out to match the standard reserve around 1, 500, 000.

This is also a good example telling us that di�erent loss functions will pro-
duce di�erent results. Figure 5.13 and 5.16 look totally di�erent compared
to �gure 5.12 and 5.15. In the former we use the loss function generated by
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Figure 5.18: A non-parametric bootstrap containing only error coming from
manual reserves. Absolute value loss function is used.
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negative reserving errors, while in the latter we use the absolute value loss
function. Because of the positive skewness of the claim handler distribution,
one will have a much greater chance of having negative reserving errors if
the large claims limit is high. Having a high limit means that a lot of claims
will be standard reserved. Here, the probability of having a negative result
will be as probable as having a positive result. While a manually reserved
claim will have a much higher chance of having a positive result. Therefore
there will be less error when a lot of claims are manually reserved.
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5.3 Cargo claims

The data used are from cargo insurance claims from 1999 to 2010. We have
used 4000 (claims) as λ, when calculating the number of claims received
each year. The matrix of data has two columns. One column contains the
original reserve of a single claim, and the other contains the actual payment
of the same claim. The claims are considered to be closed and the payment
is considered to have been paid out in a lump sum.

5.3.1 Deciding the distribution for claimhandlers

We want to calculate α. Di�erent values of α in equation 3.11 is plotted in
a histogram until the graph looks approximately student-t-distributed. For
this data, α = 0.5 made equation 3.11 approximately look like the student-t
distribution. Altough slightly positively skewed. This can be seen in �gure
5.19. With a maximum likelihood estimation of the parameters we �nd:

µ = 60.3809

σ = 164.45

ν = 2.9 (5.5)

Where µ is the expected value, σ is the standard deviation and ν is the
degrees of freedom of the student-t-distribution.

We can also see that the qq-plot in �gure 5.20 looks ok. The real values
could be approximately the same distribution as the �tted values.
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Figure 5.19: With a trial and error approach α was found to be roughly 0.5.
This means that si−ri√

si
is roughly student-t distributed.
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Figure 5.20: The qq-plot seems approximately linear. This means that the
�tted distribution has roughly the same distribution as the real values coming
from equation 3.11.

5.3.2 Non-parametric bootstrapping

We try to use non-parametric bootstrapping to measure the large claims
limit. We create a loop that calculates the mean squared error for di�er-
ent u ranging from 0 to 3, 000, 000. The cargo claims looks to be generally
smaller than the other two types of claims. For every u a certain number of
steps are made. We start with u=0.

First, the standard reserve is calculated by drawing values from the claim
payments vector a large number of times. The ones below the large claims
limit u is then sorted out. The mean from these values is then calculated as
the standard reserve.

Second, we calculate how many samples, n, will be generated by sam-
pling one value from Po(λ). λ is calculated by taking ntot · p, where ntot
is the total number of insured and p is the probability of actually having a
claim. Call the number of claims in the claims vector k. p is approximated
to be k/ntot. This means λ = k.
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Third, we draw n random samples from the vector of claim payments.
For every sample si, if it is larger than the current u, give it a reserve by
drawing a sample from rmanuali = si+

√
si · t(µ, σ, ν). If the sample is smaller

than u give it the standard reserve rstandardi calculated earlier.

Fourth, we go through the n samples and give every generated value a
reserve. Calculate the loss function for every iteration by using ri and si.As
before we have chosen to use the loss functions of equation 3.4 and equation
3.6 with k2 = 0. The latter loss function will only punish negative reserva-
tion errors.

Fifth, do the second, third and fourth step a large number of times and
take an average of the result. This reduces the random factor involved.

We enlarge u and do all steps again. We do this procedure until u has
reached 3, 000, 000. Then we plot the loss function against its corresponding
u. This is shown in �gures 5.21 and 5.22.

Figure 5.21: A non-parametric bootstrap of the large claims limit compared
to the absolute value of the error. To make the graph a bit smoother a
�oating average has been added.
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Figure 5.22: A non-parametric bootstrap of the large claims limit compared
to the error generated by negative reservation errors. To make the graph a
bit smoother a �oating average has been added.

5.3.3 Parametric bootstrapping

We have to assume and test some distribution. The distribution should be
�tting the cargo insurance claim payments. Like with the motor claims,
the tail of cargo insurance claims does not look as large as for �re insurance
claims. Therefore we have again assumed a lognormal distribution. We tried
to �t the parameters to this distribution using maximum likelihood. The qq-
plot of �gure 5.23 looks fairly linear. In the tail, the �gure does not look
linear. In this case there was a trade of between a good �t close to zero and
a good �t in the tail. Having the distribution �t being linear close to zero
probably makes more sense. In real life, the extreme values will always be
unpredictable. Smaller values will usually have a more predictable behavior.
To catch this behavior a distribution that looks linear close to zero has been
chosen. The parameters for the lognormal distribution is estimated to be:

µ = 8.6

σ = 2.0 (5.6)
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Next, we simulate the loss functions compared to the large claims limit
by repeating the same steps as in the non-parametric bootstrapping. The
di�erence will be that instead of drawing samples from the actual vector of
samples we will generate samples and create a new vector from the �tted
distribution and draw samples from that.
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Figure 5.23: A qq-plot showing a �tted lognormal distribution against real
samples from cargo insurance claims. Until 107 the plot looks approximately
linear. The few observations in the tail does not look really linear. In this
case I had to make a trade of between �tting the tail correctly and �tting
the �gure close to zero correctly. I have assumed that the �tted distribution
is roughly the same as the underlying distribution.

For further analysis we make two more plots of the the mean squared
error against u. One where there is only error coming from manual reserve
and one where there is only error coming from standard reserve.
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Figure 5.24: A zoom of �gure 5.23.

5.3.4 Optimal large claims limit

Looking at �gure 5.21 and 5.25, the minimum looks to be almost zero. In
the parametric case one can more easily spot the minimum. It looks like
there would be a minimum somewhere between 75, 000 and 125, 000. The
non-parametric simulation an estimation of variance of about 1.9500 · 1013

and a standard deviation estimate of around 4.4159 · 106. The parametric
case had a variance of around 2.9121 ∗ 1013 and the standard deviation was
estimated to 5.3964 · 106. The reason for the appearance of the graphs is
most likely the fact that 94% of cargo claims fall below 100, 000. Their are
generally fewer "larger" claims than �re and motor. This will make the
standard reserve value quite low. When claims larger than 100, 000 start
being standard reserved, the error will grow quite rapidly. If we look at
�gures 5.28, we see that the manual reserving error drops rapidly in the
beginning due to the sheer amount of small claims. However the slope levels
out quickly and the standard reserve error of �gure 5.27 will be dominating.
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Figure 5.25: A parametric bootstrap of the large claims limit compared to
the absoulte value of the error. To make the graph a bit smoother a �oating
average has been added.
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Figure 5.26: A parametric bootstrap of the large claims limit compared to
the error generated by negative reservation errors. To make the graph a bit
smoother a �oating average has been added.
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Figure 5.27: A non-parametric bootstrap containing only error coming from
standard reserves. Absolute value loss function is used.

5.4 Mixed claims

Here we analyze if there is a point in di�erentiating among claim types. By
making simulations and models around di�erent claim types collectively, we
will be able to compare it to a model where all types are treated individually.
We have used the same data as for the �re, motor and cargo claims. In
order to make a comparison, we have chosen λ = 11, 000. Here λmixed =
λfire+λmotor+λcargo. This is supposed to simulate the total number of �re,
motor and cargo claims received during a certain period. It is also supposed
to simulate the distribution of di�erent claim types. For example we have
fewer �re claims than motor claims.

5.4.1 Deciding the distribution for claimhandlers

We use the same procedure as earlier. We want to calculate α. Di�erent
values of α in equation 3.11 is plotted in a histogram until the graph looks
approximately student-t-distributed. However, the data is positively skewed.
We therefore choose to use a generalized extreme value distribution, as with
the motor claims. For this data α = 0.5 made equation 3.11 approximately
look like the generalized extreme value distribution. With a maximum like-
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Figure 5.28: A non-parametric bootstrap containing only error coming from
manual reserves. Absolute value loss function is used.
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lihood estimation of the parameters we �nd:

k = 0.155645

σ = 1, 961.26

µ = 976.333 (5.7)

Where µ is the location parameter, σ is the scale parameter and k is the
shape parameter of the generalized extreme value distribution.

We can see that the qq-plot in �gure 5.11 looks ok. The real values
could be approximately the same distribution as the �tted values
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Figure 5.29: The qq-plot seems approximately linear. This means that the
�tted distribution has roughly the same distribution as the real values coming
from equation 3.11.

5.4.2 Non-parametric bootstrapping

We �rst try to use non-parametric bootstrapping to measure the large claims
limit. We create a loop that calculates the mean squared error for di�erent
u ranging from 0 to 3, 000, 000. For every u a certain number of steps are
made. We start with u=0.

First, the standard reserve is calculated by drawing values from the claim
payments vector a large number of times. The ones below the large claims
limit u is then sorted out. The mean from these values is then calculated as
the standard reserve.

Second, we calculate how many samples will be generated, n, by sam-
pling one value from Po(λ). λ is calculated by taking ntot · p, where ntot
is the total number of insured and p is the probability of actually having a
claim. Call the number of claims in the claims vector k. p is approximated
to be k/ntot. This means λ = k.

Third, we draw n random samples from the vector of claim payments.
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For every sample si, if it is larger than the current u, give it a reserve by
drawing a sample from rmanuali = si+

√
si · t(µ, σ, ν). If the sample is smaller

than u give it the standard reserve rstandardi calculated earlier.

Fourth, we go through the n samples and give every generated value a
reserve. Calculate the loss function for every iteration by using ri and si. As
before we have chosen to use the loss functions of equation 3.4 and equation
3.6 with k2 = 0. The latter loss function will only punish negative reserva-
tion errors.

Fifth, do the second, third and fourth step a large number of times and
take an average of the result. This reduces the random factor involved.

We enlarge u and do all steps again. We do this procedure until u has
reached 3, 000, 000. Then we plot the loss functions against its corresponding
u. This is shown in �gure 5.30 and 5.31.

Figure 5.30: A non-parametric bootstrap of the large claims limit compared
to the absolute value of the error. To make the graph a bit smoother a
�oating average has been added.
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Figure 5.31: A non-parametric bootstrap of the large claims limit compared
to the error generated by negative reservation errors. To make the graph a
bit smoother a �oating average has been added.

5.4.3 Parametric bootstrapping

The distribution should be �tting to all claim type at the same time. The
best option seem to assume a lognormal distribution. The parameters to this
distribution is estimated using maximum likelihood. The qq-plot of �gure
5.32 looks fairly linear. The parameters for the lognormal distribution is
estimated to be:

µ = 9.774

σ = 2.257 (5.8)

Next, we simulate the loss functions compared to the large claims limit
by repeating the same steps as in the non-parametric bootstrapping. The
di�erence will be that instead of drawing samples from the actual vector of
samples we will generate samples and create a new vector from the �tted
distribution and draw samples from that.
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Figure 5.32: A qq-plot showing a �tted lognormal distribution against real
samples from motor insurance claims. The plot looks linear. This means we
can assume that the �tted distribution is roughly the same as the underlying
distribution.
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Figure 5.33: A parametric bootstrap of the large claims limit compared to
the absoulte value of the error. To make the graph a bit smoother a �oating
average has been added.

For further analysis we make two more plots of the the mean squared
error against u. One where there is only error coming from manual reserve
and one where there is only error coming from standard reserve.

5.4.4 Comparison

To make a relevant analysis we need to compare the mixed claim simulation
with the individual simulations. In �gures 5.37 and 5.38 the upper graphs
show the mixed claim simulation and the lower graphs show the individual
estimates added together. This will simulate all claims received from the
di�erent claim types. It will make the graphs comparable. In both �gures,
a parametric bootstrap have been used.

In comparison the behavior of the mixed claims and individual claims
look very similar. The large claims limit with minimal error looks to be the
same in both graphs. However the scale of the error is quite di�erent. In
�gure 5.37, the mixed version is around 5 times larger than the other one.
In �gure 5.38 the mixed version is about twice as large.
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Figure 5.34: A parametric bootstrap of the large claims limit compared to
the error generated by negative reservation errors. To make the graph a bit
smoother a �oating average has been added.
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Figure 5.35: A non-parametric bootstrap containing only error coming from
standard reserves. Absolute value loss function is used.
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Figure 5.36: A non-parametric bootstrap containing only error coming from
manual reserves. Absolute value loss function is used.
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Figure 5.37: A comparison between the simulation of mixed claims compared
to �re, motor and cargo claims modeled individually and added together.
Absolute value loss function

The behavior of the �gures also look a lot like the motor claim simula-
tions. This is because their are a lot more motor claims (around 5000) than
�re claims (around 2000). The cargo claims are too small to be dominating.
This is probably one of the reasons for the larger error in the mixed claims
simulation. This is logical since the model has to make a compromise when
deciding both how the claim handlers will book their manual reserves and
when estimating the actual distribution of the future payments. As we can
see it will still catch the behavior that we see among the individual claims,
but it will in turn have a larger error compared to individual estimations.
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Figure 5.38: A comparison between the simulation of mixed claims compared
to �re, motor and cargo claims modeled individually and added together.
Loss function punishing only negative errors
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Chapter 6

Conclusions

The aim of the thesis was to �nd a theory around the optimal claims limit
and also to �nd a method of actually calculating this limit. The aim was
also to make an analysis on categorization of claim types.

6.1 Theory

Assumptions regarding data and the human factor of the claim handlers have
been made. What de�nes an optimal limit has been discussed. This can of
course be done in many ways. Di�erent de�nitions of loss functions have
been presented and discussed.

In order to simulate the models, several problems had to be dealt with.

Modeling the actions of the claim handlers is risky. Here one is modeling
human behavior. The model will be dependent on several aspects, for ex-
ample the quality and speed of claims handling. There are probably many
more aspects, but the model presented is perhaps good enough to predict
some kind of trend.

When simulating, two di�erent sampling methods have been described.
The �rst type, non-parametric bootstrapping, is an easy and fast way to
simulate complex distributions. Here we start with the actual historical
vector and sample directly from it with replacement. The major bene�t of
using this kind of model is that it is easy and fast to implement. However
no "new" values will be introduced and the largest value of historical data
will be the largest possible value in any sampled distribution. The second
type, parametric bootstrapping, is a bit harder to implement. Here we look
at the data and from it, we assume a distribution. Maximum likelihood
and qq-plotting are tools that can be used to calculate the parameters of
the assumed distribution. Choosing a distribution for the claims data is
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sometimes hard. Every type of claim will be somewhat di�erent. To get a
working model, some simpli�cations must always be done. In the thesis a
few di�erent typical distributions have been described.

6.2 Simulation

We have seen that di�erent claim types can behave quite di�erently. For
example we have seen that for motor claims, the claim handlers tend to
overestimate the actual reserve. There must be a logical explanation to this.
Perhaps expensive motor cases are very hard to estimate and the claim han-
dlers might reserve a "safe" amount, just in case.

The behavior was also di�erent when looking at the distribution of the
payments. Fire claims had a very large tail, while cargo claims tend to have
a very small one.

So how should one chose the optimal large claims limit?

Having individual claims limit calculations could reduce the error as we
have seen in our comparison. As long as the error is not to large and the
result is stable one can merge claim types into mixed models. Splitting up
the types too much might however be bad. There is always a systematic
error when making this kind of modeling and simulation. This systematic
error will grow larger and dominate the total error as we do more and more
claim type splits.

To reduce the workload of the claim handlers there is a point in having
a high large claims limit. Here it is also a question regarding stability. If
the error is su�ciently low and the result is somewhat stable, a higher limit
than the "optimum" might be preferred. The cost of administrating claims
by hand might outweigh the risk of loosing accuracy in estimations. There
will always be a con�ict regarding accuracy of the reserve versus cost of claim
handling. In the end it really is a business decision.

Hopefully this thesis will be relevant regarding some basic theory con-
cerning reserving and around the optimal large claims limit.
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