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Abstract

Trading large volumes impact the price of the traded asset which implies a cost
when the position is liquidated. Because of this large investors, such as hedge
funds, need estimates of the expected market impact of their positions. I suggest a
model for the market impact of trading and use this model to analyze and compare
different liquidation strategies. I specifically consider liquidating large fractions
of a long-short equity portfolio. I consider two common liquidation strategies and
compare these to another strategy I introduce in this thesis; optimized liquidation
which is the solution to an optimization problem. The results show that it is pos-
sible to reduce expected market impact costs from liquidation while keeping the
remaining portfolio within pre-specified risk limits.
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1 Introduction
Financial assets are similar to any other traded good in that prices are determined by
supply and demand. At any given price, there are only a limited number of potential
buyers and sellers and thus a limited volume that can be traded at that price. If an in-
vestor wants to buy (or sell) a larger volume he will only be able to trade a fraction of
that volume at the original market price and as he proceeds to buy (or sell) the rest of
his position he will have to accept less favorable prices in order to attract counterparties.

The way trading affects the price of the traded asset is often referred to as the market
impact of trading. Market impact is generally not relevant for small investors. How-
ever, for investors that trade in larger volumes market impact implies an additional cost
of trading and needs to be considered.

One of the larger investors in the market is the hedge fund industry. A hedge fund
is a collective investment scheme that gets its capital from other investors, both private
investors and institutions. The aggregate capital allows the fund to invest aggressively
in positions they consider profitable. Although buying and selling large positions al-
ways require consideration about market impact, it is especially relevant when the fund
for some reason needs to liquidate a large fraction of its positions within a relatively
short time frame. A typical example of this is when one of the fund’s large investors
withdraws his money. With a broad variety of investment strategies, deciding which
positions to liquidate is not trivial. On one hand, the portfolio manager wants to sell the
most liquid positions to avoid the cost of market impact. On the other hand, if only the
most liquid positions are sold, then this will often change the properties of the portfolio
in an unfavorable way for the remaining investors.

To balance these opposites, a portfolio manager needs to have a liquidation strategy
ready for when this situation arises. This is not only important from a managing point
of view. To keep and attract investors, a fund needs to be able to provide information
about what costs investors will face when they withdraw their capital.

In this thesis I suggest a model for the market impact of trading and use this model
to compare different strategies for liquidating a large fraction of a portfolio. Specifi-
cally, I consider long-short equity portfolios.

1.1 Outline
• In Section 2 I introduce definitions relevant for this thesis.

• In Section 3 I suggest a model for the market impact of trading by presenting
results from a large number of empirical studies.

• In Section 4 I show what this model implies for the cost of trading.

• In Section 5 I formalize the liquidation problem that was briefly mentioned in
the introduction.
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• In Section 6 I present two case studies where I implement the models that have
been introduced.

• In Section 7 I present results.

• In Section 8 I conclude.

2



2 Definitions
In this section I define concepts that will be important in this thesis.

2.1 General framework
The investment universe available to a hedge fund is vast. I limit this universe by
assuming the fund can only invest in stocks and in a money asset which is perfectly
liquid. The money asset is supposed to reflect any positions where the hedge fund
stores capital rather than invest it. Typically, the risky positions in the portfolio are
active investment decisions whereas some capital is kept in assets whose expected re-
turns are secondary to them being as liquid and risk free as possible. Because of this, I
assume the interest of the money asset is zero.

Consider a portfolio that have positions in n stocks. The number of shares held in
each stock is given by the weights

h(t) = (h1(t), h2(t), ..., hn(t))

The weights can be negative in which case they are called short positions (positive
weights are called long positions). The spot prices of the stocks are

S(t) = (S1(t), S2(t), ..., Sn(t))

The portfolio further consists of a position h0(t) in a perfectly liquid money asset S0(t)
with zero interest rate, i.e. S0(t) = 1 for all t.

The mark-to-market value of this portfolio at time t is:

V (t) = h0(t) +

n∑
i=1

hi(t)Si(t)

Furthermore, the net asset value (NAV) of the portfolio is equal to its mark-to-market
value. The NAV is an important concept that will be used frequently in this thesis.

2.2 Risk measures
At Brummer & Partners, risk is calculated in the standard way in units of some cur-
rency. However, it is often presented as a fraction of the NAV of the portfolio consid-
ered. Below I will give formal definitions of the various risk measures to be used in
this thesis but in later sections I will discuss risk in relative rather than absolute terms.
To emphasize this difference I include two simple examples below.

2.3 Net Exposure
The net exposure of an equity portfolio measures any long or short bias of the portfolio.
It only includes the exposure of the stock positions, any risk free position is excluded.
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Definition 1. Consider a portfolio Vp(t) consisting of the weights h (t) =
(
h1(t), ..., hn(t)

)
in stocks with spot prices S (t) =

(
S1(t), ..., Sn(t)

)
and the weight h0(t) in the risk free

asset S0(t) = 1, ∀t. The net exposure of the portfolio is defined as

Net Exposure [Vp(t)] =

n∑
i=1

hi(t)Si(t)

Example 1. Consider two stocks, S1(t) and S2(t), both with spot prices 100 SEK.
Furthermore, consider a portfolio Vp(t) consisting of a short position of 100 shares
in S1(t), a long position of 200 shares in S2(t) and 10000 SEK in the risk free asset
h0(t). The absolute net exposure of this portfolio is

Abs. Net Exposure [Vp(t)] =

n∑
i=1

hi(t)Si(t) = −100 · 100 + 200 · 100 = 10000

The NAV of the portfolio is given by

V (t) = h0(t) +

n∑
i=1

hi(t)Si(t) = 20000

The relative net exposure (relative the NAV) is given by

Rel. Net Exposure [Vp(t)] =

∑n
i=1 hi(t)Si(t)

h0(t) +
∑n
i=1 hi(t)Si(t)

= 0.5

If the portfolio did not hold any capital in the risk free asset (i.e. h0(t) = 0), then the
NAV would be equal to 10000 and relative net exposure of the portfolio would be

Rel. Net Exposure [Vp(t)] =

∑n
i=1 hi(t)Si(t)

h0(t) +
∑n
i=1 hi(t)Si(t)

= 1

2.4 Gross exposure
The gross exposure is a measure of the leverage of the portfolio. It is defined in a way
similiar to the net exposure.

Definition 2. Consider a portfolio Vp(t) consisting of the weights h (t) =
(
h1(t), ..., hn(t)

)
in stocks with spot prices S (t) =

(
S1(t), ..., Sn(t)

)
and the weight h0(t) in the risk free

asset S0(t) = 1, ∀t. The gross exposure of the portfolio is defined as

Gross Exposure[Vp(t)] =

n∑
i=1

|hi(t)|Si(t)

Example 2. Consider the same portfolio as in Example 1. The absolute gross exposure
of this portfolio is

Abs. Gross Exposure [Vp(t)] =

n∑
i=1

|hi(t)|Si(t) = 100 · 100 + 200 · 100 = 30000
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The NAV of the portfolio is the same as in Example 1

V (t) = h0(t) +

n∑
i=1

hi(t)Si(t) = 20000

The relative gross exposure (relative the NAV) is given by

Rel. Gross Exposure [Vp(t)] =

∑n
i=1 |hi(t)|Si(t)

h0(t) +
∑n
i=1 hi(t)Si(t)

= 1.5

If the portfolio did not hold any capital in the risk free asset (i.e. h0(t) = 0), the NAV
would be equal to 10000 and the relative gross exposure of the portfolio would be

Rel. Gross Exposure [Vp(t)] =

∑n
i=1 hi(t)Si(t)

h0(t) +
∑n
i=1 hi(t)Si(t)

= 3

2.5 Value-at-Risk
Value-at-Risk is the value such that the probability of experiencing a loss larger than
this value (over a given time horizon) is the given probability level. Many definitions
include a loss variable L defined as

L∆ = −
(
V (t+ ∆)− V (t)

)
where ∆ is the time horizon of interest. Below is a (slightly modified) definition from
[1].

Definition 3. Given some confidence level α ∈ (0, 1) and time horizon ∆, the Value-
at-Risk of a portfolio Vp(t) at a confidence level α is given by the smallest number l
such that the probability that the loss L exceeds l is not larger than (1 - α). Formally,

VaRα,∆ = inf{l ∈ R : P (L∆ > l) ≤ 1− α}

There are a vast number of ways to estimate the VaR of a portfolio. A common ap-
proach is to assume that the loss variable L∆ is normally distributed. This assumption
does not agree with empirical findings (the lack of heavy tails in the normal distribution
underestimates large price fluctuations). Nonetheless, this assumption is frequently
used in the industry. The reason for this is that it is a reasonable approximation and
that it significantly simplifies computations. In practice, the Value-at-Risk of a position
would be calculated in a number of different ways to address this problem. The normal
assumption leads to a very simple expression for the Value-at-Risk which is presented
in the following corollary.

Corollary 1. If the loss variable L above is normally distributed, L ∈ N(µL, σ
2
L),

then the Value-at-Risk is given by

VaRα,∆ = µL + σLΦ(1− α)

where Φ is the standard normal cumulative distribution function.

Proof 1. The proof is left for the appendix.
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2.6 Beta
Beta is a measure of the relation between the log returns of a given asset (or portfolio)
and the overall stock market. It can be described as a volatility adjusted correlation.
In practice, beta is typically measured against a relevant index rather than against all
existing stocks.

Definition 4. Consider log returns Rp of a portfolio Vp(t) and log returns Rb of the
overall stock market (or possibly an index). The beta of the portfolio Vp is defined as

βp =
Cov(Rp, Rb)

V ar(Rb)

2.7 Tracking Error
Tracking Error (TE) is a measure of how closely one portfolio “tracks” another portfo-
lio. It is most often used as an ex post measure of the performance of some portfolio
relative a benchmark portfolio, such as an index. In that case it compares a series of
realized returns over some time interval. In this thesis I will instead consider the less
used ex ante measure; the expected tracking error.

Definition 5. Consider a portfolio Vp(t) and a benchmark portfolio Vb(t) with (ran-
dom) log returns Rp(∆) and Rb(∆) respectively over the time interval (t, t+ ∆). Fur-
thermore, assume the marginal distribution functions of the stochastic variables Rp(∆)
and Rb(∆) are fb(r) and fp(r) respectively. The expected tracking error of the portfolio
Vp(t) relative the portfolio Vb(t) is given by

TE =

√∫
R

(
fb(r)− fp(r)

)2
dr
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3 The market impact function
Consider a trader liquidating a large position during a relatively short time interval (say
hours or days). It can be argued that during this short time interval, the long term drift
of the asset due to fundamentals only has a second order effect on price movements.
Instead, the price movements are largely due to the change of supply and demand in
the market resulting from the large order. For notational clarity I assume, without loss
of generality, that the trader starts liquidating his positions at time 0 and I propose the
following price process for the asset

S(t) = S(0)
(

1 + εf(x(t); Ω) + ξ
)

(1)

Here, S is the (mid) price of the asset a time t, ε denotes the sign of the trade (posi-
tive for buy trades and negative for sell trades1) and f(x(t); Ω) is a (not yet specified)
function describing the market impact of trading. The function depends on the volume
x that has been transacted up until time t and also a set of other variables, for now
denoted by Ω. With this notation it is obvious that the market impact function is di-
mensionless. The last term, ξ is an error term with zero mean. It can be interpreted as
reflecting the rest of the market activity during trading.

Trivially,
E
[
S(t)

]
= S(0)

(
1 + εf(x(t); Ω)

)
The intuitive way of deriving the market impact function is by performing statistical
tests on empirical data. However, this approach is problematic. To perform such a
study, detailed data about a significant number of large orders is needed. The funds
at Brummer & Partners refrain from trading very large orders exactly because of the
market impact that I intend to model. Fortunately, there exist a number of empirical
studies where researchers have been given access to large data sets of large orders.
In this thesis I will review a number of these studies and combine their results with
intuition and theoretical arguments to derive a model for market impact.

3.1 Differences between assets
Speaking of the market impact function is misleading. Different assets have com-
pletely different properties and likely impact the market in different ways. Some assets
are standardized and traded on centralized exchanges whereas other assets are traded
off-exchange in private agreements (often referred to as over-the-counter assets). Find-
ing market impact functions for all different assets would obviously be preferable but

1It is intuitive that a large sell (buy) order will increase the supply (demand) of a stock in the market
and thus decrease (increase) prices. However, since every trade has a buy and a sell side it is not obvious
what is meant by “sell orders” and “buy orders”. It is common practice to make the distinction based on
which side that initiates the trade. The side that initiates the trade is called liquidity taker whereas the passive
side is called liquidity provider. Moro et al. [10] compares market impact between orders that are executed
by liquidity takers and liquidity providers. They find that both strategies give a positive market impact
but impact is larger for the liquidity taker. The major difference between these two strategies is that only
liquidity taking guarantees that the order is actually executed. Thus, large orders are typically executed by
taking liquidity.
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the large number of assets makes this impossible.

This thesis will focus on the impact of trading stocks, which is the asset that has, by
far, been studied the most in academic papers. However, even for stocks there is not
necessarily a universal impact function. Stocks can be traded in different ways and this
might affect the impact of the trade.

The advances of computer technology during the last decade have allowed a signifi-
cant growth of the electronic financial market. Today, most stock exchanges keep an
electronic trading platform where agents can trade in a limit order book (LOB). In a
LOB any agent in the market is allowed to place limit orders that offer to buy (or sell)
a certain number of shares of a stock at a maximum (or minimum) price. The highest
buy offer is called the best bid price and the lowest sell offer is called the best ask price.
Any agent in the market is also allowed to place market orders that execute immedi-
ately against the best price in the LOB. If the volume of the market order is larger than
the volume offered at the best price, the remaining volume will execute against a less
favorable price and this will lead to a price change of the stock. Agents placing limit
orders are often referred to as liquidity providers whereas agents placing market orders
are referred to as liquidity takers.

If an order is small enough it can be executed in one transaction at the best price.
However, the available volume at the best prices is typically small. A quick look at the
Nasdaq Nordic Stock Exchange shows that it is typically less than a percent of the daily
volume for large cap stocks and a few percent of the daily volume for mid and small
cap stocks. To reduce market impact it has become common practice to split orders
(even of modest sizes) and execute them incrementally over time.

Splitting orders introduces a time dependence on the impact of trading. Intuitively,
if an order is executed slowly it allows liquidity providers to enter the market during
the execution. This increases the supply (or demand) of the asset being bought (or
sold). Thus, a more patient trading strategy is expected to decrease the impact of the
order. However, slow execution has a disadvantage. Holding the position over a longer
time interval implies a larger market risk. Because of this, there is a tradeoff between
the expected cost of liquidation and the market risk of trading slowly.

Besides trading in the LOB, agents can also execute their positions outside the elec-
tronic market in a privately negotiated transaction, often referred to as a block trade.
This is typically done for very large orders but can also be done if the initiator of the
trade wants to avoid the market risk associated with order splitting.

There are obviously other ways stocks can be traded but this generalization captures
the great majority of trades. Since stocks can be traded in different ways, empirical
studies also differ in what they measure, the variables they consider and the results
they get. However, there is a consensus about the dependence on the traded volume.
More or less all studies show that impact is a concave function of the traded volume.
A concave function has a negative second derivative. The functions suggested in the
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studies also have a positive first derivative. These two properties imply that the impact
is an increasing function of the traded volume but that it increases slower and slower.
This is true for individual orders, split orders and block trades. An example of such a
function is plotted in Figure 1. Some studies argue that market impact is a logarithmic

Figure 1: Graph of a concave function with positive first derivative

function but the majority propose a power law

f(x(t); Ω) ∼ x(t)ϕ (2)

with the notation introduced above. As mentioned x(t) is the volume executed up until
time t. The function is concave if the exponent ϕ is between zero and one.

3.2 Empirical studies
The majority of the studies about market impact considers individual trades, split orders
or block trades. In this section I will summarize some of the studies and fit the results
to equation (2). As mentioned, all studies have different approaches to the subject and
fitting all results to one equation is naturally an approximation.

3.2.1 Individual trades

Hausman, Lo and MacKinlay [3] consider six stocks from the New York and Ameri-
can Stock Exchanges from January 4 to December 30 of 1988. The data set consists of
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time-stamped trades, trade size and bid/ask quotes. They find a concave impact func-
tion for all stocks but do not try to fit the results to a function.

Lillo, Farmer and Mantegna [4] used the Trade and Quote (TAQ) database to analyze
roughly 113 million transactions and 173 million quotes from the 1000 largest compa-
nies on the New York Stock Exchange between 1995 and 1998. They find ϕ ≈ 0.5 for
smaller volumes and 0.2 for large volumes.

Farmer, Patelli and Zovko [5] use a data set from the London Stock Exchange be-
tween August 1998 and April 2000, which includes a total of 434 trading days and
roughly six million events. They find ϕ ≈ 0.3.

Hopman [6] considers a data set from the Paris Bourse between January 1995 to Oc-
tober 1999. The data set contains all the order submitted to the exchange and all the
best quotes available at any time. He considers 30 minute intervals and finds ϕ ≈ 0.4
depending on the urgency of the order.

Potters and Bouchaud [7] refer to the study by Lillo, Farmer and Mantegna [4] and
argue that the lower value of ϕ for larger volumes indicate that a logarithmic function
might fit the impact function better. They analyse three stocks from the Paris Bourse
and fit the results to a logarithmic function.

3.2.2 Split orders

The BARRA Market Impact model is considered somewhat of an industry standard
and was derived by Torre and Ferrari [8]. They consider TAQ data from the NYSE,
aggregate trades on a half hour time interval and find ϕ ≈ 0.5.

Gabaix et al. [9] have used TAQ data from the New York, London and Paris stock
markets and found ϕ ≈ 0.5, although for relatively short time intervals (around 15
minutes).

Moro et al. [10] considers transactions on the London Stock Exchange between Jan-
uary 2002 and December 2004 as well as transactions on the Spanish Stock Exchange
from January 2001 to December 2004. They find that ϕ ≈ 0.5 for the Spanish Stock
Exchange and a slightly larger value for the London Stock Exchange.

Almgren et al. [11] use a data set consisting of almost 700,000 US stock trade or-
ders executed by Citigroup Equity Trading desks. They consider almost 700,000 US
stock trade orders executed by Citigroup Equity Trading desks and divide impact in
a permanent part that changes as the order is executed and a temporary part that de-
cays immediately after a transaction has been executed. The permanent part is to be
interpreted as the market impact of trading and the temporary part as representing fixed
costs and possibly any part of the impact that decays after the trade. For the temporary
part they find ϕ ≈ 0.6 and for the permanent part they find ϕ ≈ 0.9.
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Engle, Ferstenberg and Russell [2] consider a sample of more than 200,000 orders
executed by Morgan Stanley and measure, not market impact, but transaction cost.
They find transaction cost (relative the volume liquidated) increases approximately as
a square root function of volume. Under the assumption that fixed costs (mainly the
bid-ask spread) are linear in volume, this implies a square root market impact function.

3.2.3 Block trades

Block trades in the upstairs market have been studied by Keim and Madhavan [12].
They use trading history from an investment management firm which contains trade
dates, trade prices, number of shares traded and commissions paid for all block trades
in which the firm participated between 1985 and 1992. They find a concave dependence
on volume but do not try to fit the results to a function.

3.3 Why is the market impact function concave?
There are a number of plausible explanations why market impact is concave. For indi-
vidual trades, it has been suggested that the information of small trades hold approx-
imately the same information as large trades. This implies that relative their volume,
small trades impact the market more than large trades. Farmer et al. [14] suggests
concavity is due to selective liquidity taking. This means that traders are more likely to
place large market orders when the available liquidity is favorable, implying that large
volumes do not have a smaller relative impact per se, but rather that large volumes are
only traded when they do not have a large impact.

Another explanation can be derived from the empirical finding that order flow2 is au-
tocorrelated which was found independently by Lillo and Farmer [15] and Bouchaud
[16]. The fact that order flow is autocorrelated implies that future order flow is pre-
dictable and this raises an obvious question; if buying pushes prices up, selling pushes
prices down and the sign of future orders are predictable, how do returns remain unpre-
dictable? The return on a tic-by-tic scale is equal to the expected impact of buys and
sells weighted with the respective probability of their occurrence. Farmer and Lillo ar-
gue that impact is not fixed but depends on the markets predictions of the future order
flow. More specifically, a buy order followed by a series of buy orders must have a
smaller impact (on average) for returns to remain unpredictable. It is suggested that
this is caused by liquidity providers changing their quotes but it is emphasized that this
is only one possible explanation of many.

It should be pointed out that the market impact function is not concave for very small
volumes. Any volume that can be executed against available liquidity at the best price
will not have any impact on the spot price. Thus, the market impact function should
be slightly S-shaped. The majority of studies considered in this section argue that im-
pact is concave even for very small volumes. The fact that the available liquidity at
the best prices is typically less than a percent of the daily volumes is an indication of

2The order flow refers to the series of signed trades in the market. The sign of a trade is positive if it is
initiated by the buyer and negative if it is initiated by the seller.
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this. In the other end of the spectrum, for volumes corresponding to large fractions of
the market capitalization of a company, it might be assumed that a concave function
does not model impact very well. However, such volumes imply responsibility for the
strategic decisions of the company and are more relevant for venture capitalists than
hedge funds.

3.4 Time dependence
It is intuitive that the time taken to liquidate a position (often referred to as the trading
velocity) affects market impact. Still, few papers have attempted to empirically fit the
time dependence to a function. As mentioned previously, trading over time introduces
a dependence on the way trading is done. Is the trader liquidating her positions with a
constant trading velocity? Is she trying to match the available liquidity with her orders?
Is she using some other strategy known only to herself? There are essentially endless
ways in which a large order can be executed over a given time interval.

The majority of studies assume traders use a constant trading velocity. For instance,
this is assumed in the study by Almgren et al. [11] previously introduced. They intro-
duce a time dependence in their market impact model by assuming that impact should
not be measured as a function of the volume alone, but rather as a function of the frac-
tion of the volume that is “normally” traded during the relevant time interval. Thus,
they measure the dependence, not on volume, but on the variable

X

V T

where X is the traded volume, V is the daily volume and T is the time interval consid-
ered. By introducing this variable they implicitly assume that trading over an n times
longer time interval is equivalent to trading in an n times deeper market. The reasoning
behind this argument is fairly intuitive. However, the expression implies that trading
one days volume over one day has the same impact as trading a very small fraction of
the daily volume during an equally small time interval. It is apparent that this expres-
sion gives unreasonable results if used for very short time intervals.

In contrast, Engle, Ferstenberg and Russell [2] find only a weak dependence on trading
velocity when measuring transaction costs in their extensive study.

Studies about price manipulation investigate specific trading strategies in more detail.
The purpose is to investigate if models for market impact allow for price manipula-
tion strategies with positive expected profits. A model introduced by Bouchaud et al.
[16] and generalized by Gatheral [18] hypothizes that the impact of trading continu-
ously reverts back to the pre-execution price level. In one way this is reasonable since
it assumes trading only temporarily impacts the price from some fundamental value.
However, it is difficult for the market to tell whether an order is executed because the
trader holds superior information about the company or simply because he wants to liq-
uidate his position to raise cash. Furthermore, it is not unlikely that price manipulation
strategies with positive expected payoffs exist. The fact that there exist regulations in
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this area is indicative that the strategies might be potentially profitable.

Seemingly, there is no consensus about how market impact depends on the trading
velocity other than that a more rapid execution increases costs.

3.5 Other variables explaining market impact
Other than the volume and the trading velocity, the most used variable is the volatil-
ity. In the BARRA market impact model [8] Torre argues that higher volatility implies
larger market impact but he does not fit any functional form. Grinold and Kahn [19]
introduce a model for transaction costs, seperate market impact from other costs and
scale impact between stocks with the volatility. They state that their model fits nicely
with the trader rule of thumb that “it costs one day’s volatility to trade one day’s vol-
ume”. Almgren et al. [11] argue that by trading a stock over time a trader participates
in the “normal” motion of the stock and that the volatility is a good proxy for this. They
do not present statistical results but argue that volatility is the most important scaling
variable between stocks.

The bid-ask spread has an obvious effect on the transaction cost but not necessarily
on market impact. It is true that the spread tends to widen when markets become
illiquid in crises but this effect is also captured in the volatility which also generally
increases in stressed markets. Introducing a dependence on both the bid-ask spread and
the volatility might be superfluous.

There are also arguments for conditioning impact on the market captialization. This
dependence is to some extent captured in the dependence on the daily volume but the
market capitalization also shows the hidden liquidity. Almgren [11] finds a weak de-
pendence on the market capitalization, but with large error bars. Bikker et al. [20] finds
that the dependence on market capitalization pales in comparison to volatility.

3.6 LOB modeling
I will briefly mention another approach from recent studies that are able to measure
impact more accurately than the studies considered so far. Instead of conditioning
impact on the volume traded, impact is conditioned on a microscopic variable; the
order flow imbalance. This variable is a measure of the imbalance between supply
and demand in the order book. Cont et al. [13] considers a data set consisting of
one calendar month (April, 2010) of trades and quotes (TAQ) data for 50 stocks and
claim that the order flow imbalance is able to explain impact to a far higher degree than
conditioning it on macroscopic variables. This is intuitive since microscopic variables
describe the actual structure of the limit order book at any time. However, from a
risk management perspective there is a major disadvantage with using microscopic
variables. A condition for the model in this thesis is that it should be based on variables
that are easily available and relatively easy to measure - this is generally not the case
with the order flow imbalance.
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3.7 Modeling market impact
The previous section shows that there is overwhelming evidence that market impact is
a concave function of the traded volume. The exact functional is unknown but empiri-
cal studies indicate that it is a power law with an exponent close to 0.5. This is also in
line with various transaction cost models that propose that market impact contributes
to transaction costs as a square root function of the traded volume.

There is less consensus about the dependence on the trading velocity. Some mod-
els have been proposed but they either give unreasonable results (Almgren), consider
microscopic variables (LOB modeling) or are to a large extent theoretical (price manip-
ulation). The lack of robust empirical results concerning the time dependence means
that including it in the model will significantly decrease the validity of the results.

I avoid this by considering a fixed time interval for the liquidation, thereby eliminating
the time dependence from the model. This is not necessarily a significant limitation of
the model. A reasonable assumption is that the volume determines the absolute impact
of a trade and that the trading velocity only scales the impact. If the scaling is equal for
all stocks this implies that deriving the optimal weights to liquidate for any time inter-
val will give the optimal weights to liquidate for all time intervals. The time interval
chosen will only scale the total cost of the liquidation.

In the beginning of this section I introduced the following model for the stock price
as a function of the market impact of our trading.

S(t) = S(0)
(
1 + ε f

(
x(t); Ω

)
+ ξ(t)

)
With the arguments and empirical results presented in the section above I propose the
following model for market impact.

f(x(t); Ω) = σd

√
|x(t)|
V

Here σd is the daily volatility, V is the daily volume and x(t) is the volume executed
up until time t. Thus, market impact is a square-root function of the traded volume and
it is scaled with the volatility and daily volume of the stock. A more volatile stock is
expected to have a larger market impact and a stock that is more frequently traded is
expected to have a smaller impact.

Introducing the market impact function in the model for the stock price gives

S(t) = S(0)
(
1 + ε σd

√
|x(t)|
V

+ ξ(t)
)

and trivially

E
[
S(t)

]
= S(0)

(
1 + ε σd

√
|x(t)|
V

)
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Figure 2 shows the expected future spot price as a function of the number of daily
volumes liquidated during the time interval (0, T ). The stock has a spot price of 100
and a daily volatility of 1%.

Figure 2: The expected spot price of a stock at time T as a function of the number of
daily volumes bought and sold during the time interval (0, T )
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4 Transaction costs
Most transaction cost models split costs up in different parts. Generally,

Transaction cost = Commission + Bid-ask spread + Market impact costs

The commission term reflects the fixed costs to be paid to a broker if trading is out-
sourced. This term can be excluded if the portfolio manager places orders himself.
The second term addresses the fact that a stock is never traded at the mid price, but
rather at the best bid or best ask price. This thesis will disregard the first two terms
and only focus on transaction costs coming from the market impact of our trading. The
argument for this is that commission and spread costs are linear in trade size and easily
added to the cost resulting from market impact. Also, the market impact cost will tend
to dominate for large orders.

4.1 Transaction costs due to market impact
Consider liquidating a volume X (which can be negative) by splitting it up and exe-
cuting it over the time interval t ∈ (0, T ). Let x(t) denote the volume that has been
transacted up until time t (where x(0) = 0 and x(T ) = X). At each infinitesimal time
interval dt, the volume dx(t) will be executed at the spot price S(t). Thus, the cash
raised from using a given liquidation strategy x(t) is

Cash raised =

∫ T

0

S(t) dx(t)

To be able to model this expression as an integral I assume that continuous trading is
possible. This is obviously practically impossible since it requires splitting orders in
infinite small parts. However, continuous trading is a good approximation if orders
are split up in many pieces. The obvious benchmark to compare this value with is the
value of the position before the liquidation, i.e. X · S(0). I define the liquidation cost
as the difference between the mark-to-market value of the position before trading and
the cash that is actually raised from the liquidation.

Liq. cost = X · S(0)−
∫ T

0

S(t) dx(t) =

∫ T

0

(
S(0)− S(t)

)
dx(t)

As mentioned, I only consider the market impact part of transaction costs. The liqui-
dation cost, as defined here, is a part of this cost. However, as will be shown later in
this section, there is also an indirect cost related to market impact.

4.2 Square root market impact
The expression above is an ex post measure of the liquidation cost. The expected
liquidiation cost can be modeled by introducing a model for the stock price. I introduce
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the market impact model derived in Section 3.

E[Liq. Cost] =

∫ T

0

(
S(0)− E[S(t)]

)
dx(t)

=

∫ T

0

(
S(0)− S(0)(1 + εf(x(t)))

)
dx(t)

=−
∫ T

0

S(0) ε f(x(t)) dx(t)

=− ε

∫ T

0

S(0)σd

√
|x(t)|
V

dx(t)

=
σdS(0)√

V

2

3
|X|3/2

which is given in units of some currency. Notably, according to this model, the liquida-
tion cost is independent of the liquidation strategy x(t). There are an infinite number
of ways to liquidate a given volume during a given time interval and different liquida-
tion strategies likely imply different impact on the market. I assume, like many other
studies, that the trader uses a constant trading velocity. This is in line with how trading
is actually done in practice3.

The derivation above shows that the absolute cost increases as a power law with expo-
nent 3/2. However, the cost relative the value of the position liquidated (more specifi-
cally its mark-to-market value when trading begins) is given by

1

|X| · S(0)

σdS(0)√
V

2

3
|X|3/2 ∼ |X|1/2

This is in line with the “square root” cost function suggested in literature [19], [21].

4.3 Indirect cost
The situations considered so far have only focused on positions that are liquidated
completely. However, in many situations a portfolio manager will liquidate only a
fraction of a position. If trading impacts spot prices, this is going to change the mark-
to-market value of the shares that remain in the portfolio after the liquidation. More
specifically, consider holding a volume Y in an asset and then liquidating a smaller
volumeX during the time interval t ∈ (0, T ). I define the indirect cost as the decreased
mark-to-market value of the remaining shares.

Indirect cost =
(
Y −X

)(
S(0)− S(T )

)
3Two common ex post benchmarks for the cash raised from a liquidation is the volume weighted average

price (VWAP) and the time weighted average price (TWAP). They are calculated at the end of the day
when the exchange closes. A broker that executes an order on behalf of a customer can often guarantee the
customer the VWAP or TWAP of his position. TWAP corresponds to a constant trading velocity (in time)
and WVAP corresponds to matching the intradaily volume.
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Introducing the market impact function derived in the previous section gives the ex-
pected indirect cost as

E[Indirect cost] =
(
Y −X

)(
S(0)− E[S(T )])

)
=
(
Y −X

)(
S(0)− S(0)

(
1 + ε σd

√
|x(t)|
V

))
)

=
(
Y −X

)
S(0)

(
− ε σd

√
|x(t)|
V

)
The indirect cost can also be negative, which is equivalent to a profit. For example, a
manager who holds a large volume in a stock can purchase further shares to increase the
mark-to-market value of his position. This is not surprising and there are examples of
this happening in practice. As a matter of fact, this strategy is called price manipulation
and is to some extent regulated. Secondly, this does not imply a profit in a strict sense.
To actually realize the profit the manager will have to liquidate the positions, again
impacting the market. Still, this cost will be relevant for this thesis since hedge funds
use spot prices to estimate the net asset value of their portfolios.

4.4 Total liquidation cost
The total liquidation cost in this setting will be sum of the liquidation cost and the
indirect cost.

E[Total liq. cost] =
σdS(0)√

V

2

3
|X|3/2 +

(
Y −X

)
S(0)

(
− ε σd

√
|x(t)|
V

)
This expression explains the decrease in the NAV of the portfolio from the liquidation.
It is different from the market impact part of the general transaction cost model intro-
duced in the beginning of this section. No previous model takes the indirect cost into
account when measuring transaction costs. The indirect cost is not really a cost, but it
does decrease the NAV of the portfolio and I include it in the model.
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5 The liquidation problem
The market impact framework can be extended to a portfolio setting. I will consider the
situation where a hedge fund considers liquidating a relatively large fraction of its posi-
tions due to investor withdrawals. Since trading involves transaction costs the manager
would prefer to liquidate assets with little market impact or, even better, avoid trading
altogether. However, liquidating only some of the positions will change the relative
weighting and overall properties of the remaining portfolio. Also, paying investors
without liquidating any risky positions will generally increase the risk of the remaining
portfolio. Thus, which liquidation strategy to use is not trivial.

5.1 Formalizing notation
Consider a portfolio at time 0 (without loss of generalization) with the weights

h(0) = (h1(0), h2(0), ..., hn(0))

in stocks with spot prices

S(0) = (S1(0), S2(0), ..., Sn(0))

The portfolio also consists of a position h0(0) in a perfectly liquid money asset S0(0)
with zero interest rate. I.e. S0(t) = 1 for all t.

Next, consider liquidating some fractions of the risky positions during the time interval
t ∈ (0, T ).

∆h(0) = (∆1h1(0),∆2h2(0), ...,∆nhn(0))

The domain of ∆i is

∆i ∈ [0, hi(0)] if hi(0) > 0

∆i ∈ [−hi(0), 0] if hi(0) < 0

I will motivate this below. At time T , the new weights in the risky positions are given
by

h(T ) =
(
(h1(0)−∆1h1(0)), (h2(0)−∆2h2(0)), ..., (hn(0)−∆nhn(0))

)(
(1−∆1)h1(0), (1−∆2)h2(0), ..., (1−∆n)hn(0)

)
In the following sections I summarize how withdrawals and a possible subsequent liq-
uidation affect various properties of the portfolio.

5.2 The new spot price
The expected spot price of stock i, at time T is given by

E
[
Si(T )

]
= Si(0)(1 + ε σi

√
|∆ihi(0)|

Vi
), i ∈ 1, ..., n
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5.3 Cost of trading
The cost of trading was derived in the section above. With the notation introduced in
this section, the expected total liquidation cost is

E[Total liq. cost] =

n∑
i=1

σiSi(0)√
Vi

2

3
|∆ihi(0)|3/2

+
(
hi(0)−∆ihi(0)

)
S(0)

(
− ε σi

√
|∆ihi(0)|

Vi

)
5.4 The NAV of the portfolio
The expected NAV of the portfolio immidiately after the liquidation is equal to the
NAV before the liquidation less the total liquidation cost. I denote this V−(T ). At this
point, a fraction k of the NAV will be paid out to investors. I denote the NAV of the
remaining portfolio by V+(T ).

E[V−(T )] = V (0)− E[Total liq. cost]

and
E[V+(T )] = (1− k) · E[V−(T )]

From the expression forE[V−(T )] it is apparent that the total liquidation cost is equva-
lent to the decrease of the NAV of the portfolio due to the liquidation.

5.5 Portfolio risk measures
The risk measures I will consider are net exposure, gross exposure and Value-at-Risk.

5.5.1 Net Exposure

The expected net exposure of the remaining portfolio is given by

Net Exposure =

∑n
i=1 hi(T )E[Si(T )]

E[V+(T )]

=

∑n
i=1(h1(0)−∆1h1(0))Si(0)(1 + ε σi

√
|∆ihi(0)|

Vi
)(

1− k
)(
V (0)− E[Total liq. cost]

)
5.5.2 Gross Exposure

The expected gross exposure of the remaining portfolio is given by

Net Exposure =

∑n
i=1 |hi(T )|E[Si(T )]

E[V+(T )]

=

∑n
i=1 |h1(0)−∆1h1(0)|Si(0)(1 + ε σi

√
|∆ihi(0)|

Vi
)(

1− k
)(
V (0)− E[Total liq. cost]

)
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5.5.3 Value-at-Risk

I use the normal assumption to compute the (expected) Value-at-Risk of the remain-
ing portfolio. The VaR will depend on the new spot prices and the new weights in
the portfolio. I assume that the covariance matrix of the stocks at time T is best esti-
mated by the covariance matrix at time 0. Arguments can be made that the liquidation
should affect the volatilities and correlations of the stocks. However, I assume that the
covariance matrix captures the behavior of the stocks under normal market conditions
and that the liquidation only temporarily disrupts these conditions. With these assump-
tions, the Value-at-Risk of the remaining portfolio, at a confidence level α and over the
time interval (T, T + ∆), is given by

V aRα,∆ =
µL + Φ(1− α)σL

E[V+(T )]
=

µL + Φ(1− α) · σL(
1− k

)(
V (0)− E[Total liq. cost]

)
Here, µL and σL are the expected value and standard deviation of the loss variable L
introduced in Section 2. To have use of this expression, the values of these two pa-
rameters need to be computed. At this point it should be mentioned that it is common
practice to disregard the expected value in the expression above. For short time inter-
vals the expected value is typically small compared to the standard deviation. Another
reason is that the expected value exhibits more seasonality than the volatility, it is less
robust over time and more difficult to estimate.

It still remains to calculate the volatility of the loss variable L. Stock prices are typi-
cally modeled as geometric stochastic processes. This implies the following expression
for L∆

L∆ =−
(
V (T + ∆)− V (T )

)
=−

( n∑
i=1

hi(T )Si(T )eRi(∆) −
n∑
i=1

hi(T )Si(T )
)

=−
n∑
i=1

hi(T )Si(T )
(
eRi(∆) − 1

)
Here, Ri(∆) = Ri(T, T + ∆) is the log return of stock i over the interval (T, T +
∆). For short time intervals, this expression can be approximated with a linearization.
Noting that ex ≈ 1 + x for small x the following approximation can be made

L∆ =−
n∑
i=1

hi(T )Si(T )
(
eRi(∆) − 1

)
≈−

n∑
i=1

hi(T )Si(T )
(
1 +Ri(∆)− 1

)
=−

n∑
i=1

hi(T )Si(T )Ri(∆)
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By assumtion, the returns Ri are normally distributed; Ri(∆) ∈ N(µi, σ
2
i ). The vari-

ance of the loss variable is given by

σ2
L =Var[L∆]

= Var[−
n∑
i=1

hi(T )Si(T )Ri(∆)]

=

n∑
i=1

n∑
j=1

Cov
(
hi(T )Si(T )Ri(∆), hj(t)Sj(t)Rj(∆)

)
=

n∑
i=1

n∑
j=1

hi(T )hj(T )Si(T )Sj(T )σiσjρi,j

Here ρi,j is the correlation coefficient between return Ri(∆) and Rj(∆). This is the
variance of the portfolio at time T . When we start the liquidation at time 0, the stock
prices Si(T ) are stochastic and the expected variance is given by

V ar[L∆] =

n∑
i=1

n∑
j=1

hi(T )hj(T )E[Si(T )]E[Sj(T )]σiσjρi,j

The expected VaR of the portfolio at T is given by introducing the variance in the
expression for the VaR above (and excluding the expected value).

5.6 Constraints on the weights to liquidate
I also impose restrictions on the weights that can be liquidated. More specifically, I
do not allow increasing the absolute volume in any stock, nor liquidating more than
the volume we hold. The reason for this is, as mentioned, that this is equivalent to
price manipulation. Price manipulation is a vast area of its own and would make the
investment universe significantly larger. It will also likely give extreme solutions since
it would allow negative costs. Formally,

∆i ∈ [0, hi(0)] if hi(0) > 0

∆i ∈ [−hi(0), 0] if hi(0) < 0

5.7 Different liquidation strategies
Choosing which liquidation strategy to use is a balance between minimizing the cost
of trading and keeping the properties of the portfolio intact for the remaining investors.
I will consider three approaches; the naive approach, proportional liquidation and op-
timized liquidation.

The naive approach is to simply pay investors without liquidating any risky positions.
The obvious advantage with this approach is that it does not involve any trading costs.
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However, paying out money without liquidating any risky positions decreases the NAV
of the portfolio without decreasing the market exposure. This increases the risk of the
portfolio. If a withdrawal increases the risk of the portfolio for the remaining investors,
this encourages investors to withdraw their money before anyone else. This is obvi-
ously not a preferable consequence of a liquidation strategy.

Proportional liquidation, on the other hand, means the manager scales the portfolio
down by liquidating equal fractions of each position. This strategy has the advantage
that the properties of the remaining portfolio remain more or less unchanged4. The fact
that these properties have been deliberately chosen by the (supposedly skilled) man-
ager is further argument for a proportional liquidation strategy. However, this is still
not necessarily the optimal liquidation approach. Firstly, proportional liquidation is not
always even possible; assets cannot be divided into arbitrarily small parts. Secondly, I
will find that proportional liquidation is relatively expensive compared to other liquida-
tion strategies. Thus, it can be argued that it is motivated to deviate from proportional
liquidation if this implies a lower expected cost.

How much to deviate from proportional liquidation depends on the preferences of the
portfolio manager or the risk manager. By formulating an optimization problem with
relevant constraints it is possible to find solutions that imply smaller transaction costs
without changing the properties of the portfolio beyond some pre-specified limit. I de-
fine optimized liquidation to be the result of this optimization problem. It is not obvious
which constraints to use. From a risk manager point of view it is important that the re-
maining portfolio satisfies all specified risk limits. For a portfolio manager, however,
it is probably more important to keep a certain “profile” of the portfolio. This could
for example mean that the portfolio should have a certain exposure to a specific asset,
exposure to companies in a certain geographical area or that the portfolio manager is
unwilling to liquidate certain positions that he considers profitable. However, it would
be difficult to generalize this in mathematical terminology. I will instead formulate
the constraints from a risk manager point of view. To address the portfolio manager’s
point of view, I will compare the tracking error of the remaining portfolio relative the
pre-liquidation portfolio. This is a (somewhat crude) measure of how similar the two
portfolios are.

4Actually the cost of trading will change the properties of the portfolio. However, only slightly.
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6 Case studies
To illustrate the liquidation problem I consider two case studies. First, I form a toy
portfolio consisting of two stocks that I use to show graphically how trading different
combinations of the positions affect the properties of the remaining portfolio.

I also consider a portfolio consisting of four stocks from the Nasdaq Omx Nordic.
They have been chosen to represent a portfolio that consists of some liquid and some
more illiquid stock positions. I use that portfolio to make a more thorough analysis of
the problem.

6.1 A two stock portfolio
Consider a portfolio consisting of two stocks and a cash postition. The stocks are
weighted so that the portfolio is perfectly net neutral. The properties of the portfo-
lio is given in Table 1. The risk measures are calculated as specified in Section 5.
Furthermore, the covariance matrix Σ of the stocks daily log returns is given by

Stocks A Stock B Cash
Spot price 100 125 1
Daily volume 1000 1250 –
Weights -2500 2000 25000
% of Gross 50 50 -
% of NAV -100 100 100
NAV 25000
Net Exp. 0 %
Gross Exp. 200 %
Value-at-Risk 3.8 %

Table 1: Properties of two stock portfolio

Σ = 10−4 ·
(

1.44 1.20
1.20 6.250

)
This implies that the daily volatility of the stocks (the square root of the variances in
the covariance matrix) is 0.12 and 0.25 respectively.

6.1.1 Total liquidation cost

The cost of trading depends on the market impact function which scales with the
volatility and the daily volume. Since the stocks have otherwise similar properties
Stock B is expected to be more expensive to trade since it is more volatile. This is seen
in Figure 3 which shows the cost of liquidation as a function of the number of shares
of Stock A and Stock B liquidated.
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Figure 3: Cost of trading: The figure shows the total liquidation cost (relative the NAV
of the pre-liquidation portfolio) as a function of the number of shares liquidated of
Stock A and Stock B. Stock B has a higher volatility and is therefore more expensive
to liquidate.

One thing that is apparent from the figure is that it generally is cheaper to liquidate
only one of the positions rather than a combination of the two. This is because the con-
cavity of the cost function implies a decreasing marginal cost. This can be illustrated
graphically. Assume a portfolio manager wants to decrease the gross exposure of his
portfolio by 50%. Figure 2 shows the cost of doing this for all linear combinations of
Stock A and Stock B. I.e. the figure shows the cost of liquidating

αSA(0) + (1− α)SB(0) = 25000, α ∈ [0, 1]

The figure clearly shows that it is generally less expensive to only liquidate one posi-
tion than to liquidate a combination of two positions. Notably, proportional liquidation
(corresponding to the value 0.5 on the x-axis) is relatively expensive. The fact that it
generally is less expensive to liquidate only one stock will become apparent in the next
case study, where I solve an optimization problem.
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Figure 4: Comparing liquidity cost: The figure shows the total liquidation cost (relative
the NAV of the pre-liquidation portfolio) of liquidating 50 percent of the mark-to-
market value of the stock positions for all linear combinations of Stock A and Stock B.
Notably, proportional liquidation (corresponding to 0.5 at horisontal axis) is relatively
expensive.

6.1.2 Risk measures

I consider three risk measures, the Value-at-Risk, the net exposure and the gross ex-
posure. Figure 5 shows the Value-At-Risk of the portfolio after we liquidate a given
fraction of our stock positions. The VaR also depends on the fraction of the NAV that is
paid out to investors after the liquidation. In this figure, I consider the situation where
this amount is zero. If some fraction is paid out, the VaR-surface would have the same
shape, only scaled.
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Figure 5: Value-at-Risk: The figure shows the VaR of the remaining portfolio when
a given fraction of Stock A and Stock B is liquidated. Liquidating only Stock B will
decrease the VaR since the remaining portfolio is then left with a higher relative weight
in Stock A, which is less volatile.

The figure shows that if all shares are sold, then the VaR becomes zero since we do
not have any risky positions left. Figure 6 shows the same graph from another angle.
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Figure 6: Value-at-Risk: This is the same figure as Figure 4, only from a different
angle.

Figure 7 and Figure 8 show the net and gross exposure of the remaining portfolio.
Again, I consider the situation where no fraction of the NAV is paid out to investors
after the liquidation.
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Figure 7: Net Exposure: The figure shows the net exposure of the remaining portfolio
when a given fraction of Stock A and Stock B is liquidated. Liquidating Stock A will
leave the remaining portfolio net positive since the portfolio holds a short position in
Stock A
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Figure 8: Gross Exposure: The figure shows the gross exposure of the remaining port-
folio when a given fraction of Stock A and Stock B is liquidated. Liquidating shares in
any stock will decrease the gross exposure.

The figures in this section illustrate the properties of the problem that is to be
solved. Figure 3 and Figure 4 show that the cost of liquidating only one stock is gener-
ally less expensive than to liquidate a combination of two stocks with the same mark-
to-market value. However, Figures 6-8 show that liquidating shares in only one of the
stocks increases the risk more than liquidating a combination of two stocks. Thus, the
figures illustrate the balance that has to be made between reducing the market impact
cost of trading and managing the risk of the remaining portfolio. This problem will be
discussed in more detail in the following section, where I consider a portfolio of four
stocks.

6.2 A four stock portfolio
I consider four stocks from Nasdaq Omx Nordic; H&M, Danske Bank, Eniro and DSV.
I use data from 2011-02-01 to 2011-08-20 to estimate the daily volume, volatility and
covariance matrix of the stocks. I estimate the daily volume with a 30 day average.
The properties of the stocks and the portfolio is given in Table 2.

The portfolio is approximately net neutral with a leverage slightly above two. The
stocks are supposed to represent an equity portfolio consisting of a mix of stocks that
are traded more and less frequently and have different volatilities. The covariance ma-
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H&M Danske Bank Eniro DSV Cash
Spot price 188 77.0 16.7 100 1
Daily Volatility 1.54% 2.33% 3.33% 1.70% 0
Daily Volume 5.3 M 2.3 M 0.9 M 1.2 M -

Portfolio properties
Weights (in million shares) 3 -5 4.25 -2.5 6 · 108

Weights (in daily vol.) 0.566 -2.17 4.72 -2.08 -
Exposure (percent of gross) 44.4 30.3 5.60 19.70 -
Exposure (percent of NAV) 94.0 -64.2 11.8 -41.7 100
NAV (of portfolio) 6.0 · 108

Risk measures (percent of NAV)
Net Exposure 0 %
Gross Exposure 217 %
Value-at-Risk 3.29 %

Table 2: Properties of the four stock portfolio

trix of the one day log returns of the stocks is given by

Σ = 10−4 ·


2.39 0.85 1.30 0.89
0.85 5.43 2.84 1.99
1.30 2.84 11.1 2.10
0.89 1.99 2.10 2.87


6.2.1 The liquidation problem

I summarize the liquidation problem that has been discussed throughout the thesis.
There are a number of properties that are preferable for a liquidation strategy.

1. The total liquidation cost should be as small as possible. This cost is equal to the
decrease in the NAV of the portfolio.

2. From a risk manager point of view, the risk of the remaining portfolio must not
exceed any pre-specified risk limits.

3. From a portfolio manager point of view, the remaining portfolio should have a
profile similar to the original portfolio.

The properties are to some extent incompatible and the problem can be formalized
as an optimization problem. I will consider the total liquidation cost as the objective
function to minimize and take the risk manager point of view and introduce various
risk measures as constraints. To address the portfolio manager, I will analyze the result
by comparing the tracking error of the portfolio before and after the liquidation. The
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resulting optimization problem can be expressed, heuristically

minimize expected total liquidation cost
s.t. Value-at-Risk ≤ pre-specified limit

Gross exposure ≤ pre-specified limit
Net Exposure ≤ pre-specified limit

Weights liquidated ∈ Allowed domain

The objective function to minimize is intuitive since the total liquidation cost (as de-
fined) is equal to the expected decrease in the NAV of the portfolio from the liquidation.
Since investors are paid after the NAV of the portfolio has been re-estimated, this cost
affects both investors withdrawing their capital and the investors that remain.

The objective function and risk measures have been explicitly expressed in Section
5. For this case study I will use the following risk limits (all relative the NAV of the
portfolio).

• Value-at-Risk: 4 %

• Net exposure: +/- 50 %

• Gross exposure: 250 %

Furthermore, I will consider the liquidation over a time interval of one day, i.e. T = 1.
As mentioned in Section 3.7 it is necessary to consider a fixed time interval since there
are no robust results regarding the time dependence of market impact. The reason
the time interval chosen is one day is because that, at Brummer & Partners, that time
interval is representative of the time intervals over which large orders are typically
liquidated.

6.3 Method
The optimization problem is highly non-linear; both the objective function and the
constraints. There are a number of different algorithms that can be used to solve op-
timization problems of this type. I have used sequential quadratic programming (SQP).

SQP is one of the most effective methods for solving non-linear constrained opti-
mization problems [22]. It is an iterative algorithm which solves, at each iteration,
a quadratic programming problem. I have used the SQP-algorithm that is implemented
in the software MATLAB. In the results section I plot the cost function and various
constraints as a function of the fraction of the NAV that is to be paid out to investors.
Because of this, I have solved the optimization problem for a large number of such
values.

The optimization problem has several local minima which makes the outcome from
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the algorithm highly dependent on the first guess. Because of this, a lot of time has
been spent trying different start guesses and comparing results. Fortunately, the lo-
cal minima are not found arbitrarily in the feasible region. The minima are typically
found when one stock is liquidated to the largest possible extent and one (or more)
other stock is liquidated further just so that the result satisfies the risk constraints. To
find the global minima I used start guesses for different combinations of stocks that
have this property, and compared the results. I also used random start guesses to find
local minima that do not have this property in the unlikely event that any of these local
minima are actually the global minimum (which they were not).

The difficulty in finding the global minimum will lead to problems when generaliz-
ing this framework to a real portfolio that typically consists of a significantly larger
number of positions. However, it is not necessarily of outmost importance to find the
global minimum for problems of this type. A portfolio manager will likely be satisfied
if he can find any reasonable liquidation strategy that has a significantly lower expected
cost than some other strategy he considers.
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7 Results
The different liquidation strategies considered in this thesis (the naive approach, pro-
portional liquidation and optimized liquidation) give significantly different results. In
this section I analyse the total liquidation cost, different risk measures and tracking
error of the remaining portfolio when the different strategies are used.

7.1 Total liquidation cost
The total liquidation cost of the naive approach is identically zero for all fractions of the
NAV paid out to investors. It should be expected that proportional liquidation implies
significant liquidation costs, whereas the costs for optimized liquidation is smaller.

Figure 9: Total liquidation cost: The figure shows the expected total liquidation cost
for different liquidation strategies as a function of the fraction of the NAV that is to be
paid out to investors. Optimal liquidation is always less expensive than proportional
liquidation. The cost of the naive approach is identically zero and omitted from the
graph.

7.2 Risk measures
It should be expected that the risk from proportional liquidation changes only slightly
due to the transaction costs that decreases the NAV. The optimized liquidation on the
other hand will avoid trading until the first constraint becomes active. Finally, for the
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naive approach, risk will increase out of control as the NAV is decreased while the
market exposure remains unchanged. The only risk measure that is left unchanged is
the net exposure. This is because the absolute net exposure is always zero. However,
only a slight deviation from zero of the absolute net exposure will lead to a significant
relative net exposure. The plots of the risk measures can help explain the shape of the
optimized cost in Figure 9. The general tendency of the optimization algorithm is to
liquidate shares in only one stock to the furthest possible extent. At some point, a risk
constraint becomes active and the algorithm will find that it needs to liquidate shares
in another stock to satisfy the constraints. After presenting plots of the risk measures I
will summarize which contraints that are active for each fraction of the NAV and what
this implies for the optimized liquidation strategy.
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Figure 10: Value-at-Risk: The figure shows the expected VaR of the remaining port-
folio as a function of the fraction of the NAV that is to be paid out to investors. Pro-
portional liquidation implies only a slight increase in the VaR, coming from the fact
that transaction costs will decrease the NAV. Optimal liquidation will never increase
the VaR above the prespecified limit of 4 per cent. The naive approach of not trading at
all will imply increasing risk as money is being paid out from the NAV. The risk from
this approach is asymptotically infinite.
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Figure 11: Net Exposure: The figure shows the expected Net Exposure of the remaining
portfolio. The expected net exposure of the naive approach is zero since the expected
absolute risk exposure is zero. However, the portfolio is highly leveraged and a small
deviation in any of the stock prices will lead to a significant net exposure of the port-
folio. The expected net exposure of the proportional liquidation is slightly non-zero
due to the difference in impact of the different stocks. The behavior of the optimized
liquidation will be discussed in the next section.
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Figure 12: Gross Exposure: The figure shows the expected Gross Exposure of the
remaining portfolio. The figure will be discussed in more detail in the following section

7.3 Order of liquidation
Figure 13 shows the fractions of each stock position that is liquidated, as a function of
the NAV to be paid out to investors. This figure can be used, together with the figures
showing the risk measures, to analyze what the optimization algorithm suggests for
each fraction of the NAV.

For small volumes, no risk constraint is active and the algorithm suggests simply pay-
ing investors cash without liquidating any of the stock positions. For a fraction of
the NAV of about 15 %, the gross exposure constraint becomes active. At this point
the algorithm suggests liquidating H&M which is the stock with the smallest expected
market impact.

The next constraint that becomes active is the Value-at-Risk at about 22 %. At this
point there are two ways to go; either liquidating a small volume in another stock
or keep liquidating H&M. However, in order to liquidate more shares in H&M it is
necessary to liquidate disproportionally larger volumes in order to reduce the market
exposure relative the NAV. Simply put, in order to be able to pay out an additional 100
SEK, it might be necessary to liquidate stock positions worth 150 SEK to keep the risk
constraints satisfied. If another stock is liquidated, the latter sum might only be 125
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SEK but that might still imply a larger cost due to market impact. Indeed, the algorithm
suggests liquidating H&M further and the increasing derivative of H&M in the graph
at this point indicates that it really is liquidated disproportionally (as suggested).

At about 25 % the net exposure constraint becomes active. At this point, it is necessary
to liquidate a short position to keep this constraint satisfied. The algorithm suggests
liquidating DSV which has the lowest marginal expected total liquidation cost of the
short positions.

At about 30 % the algorithm suggests changing strategy drastically. It finds that it
is less expensive to liquidate all of DSV than to keep liquidating in a similar manner.
This result is to some extent expected since this strategy allows liquidating a smaller
absolute volume and still satisfy the Value-at-Risk constraint. After this, the suggested
strategies are rather predictable. The concavity of market impact implies a decreas-
ing marginal (expected) total liquidation cost. Because of this, the algorithm suggests
liquidating shares in as few stocks as possible. Thus, the stocks with larger expected
market impact (specifically Eniro) will not be considered for anything but for very large
fractions of the NAV.

The analysis shows that the concavity of market impact (combined with the constraints)
can lead to some extreme results. Notably, for about 25 % of the NAV, the algorithm
suggests not liquidating any fraction of DSV. However, for about 30 % it suggests liq-
uidating the DSV position completely. Considering the relatively non-robust model for
market impact this is naturally an undesirable property. Nonetheless, the difference
between the value of the objective function at different local minima is typically rather
small. Both values are also significantly better than that of the benchmark strategy
(proportional liquidation). Thus, the optimization shows that it is possible to signifi-
cantly reduce the expected total liquidation cost by considering liquidation strategies
different from proportional liquidation.
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Figure 13: Order of liquidation: The figure shows the fraction of each stock position
that the optimization algorithm suggests should be liquidated. It is plotted as a function
of the fraction of the NAV that is to be paid out to investors.

7.4 Tracking error
In the case study above, a portfolio V (0) at time 0 is, to some extent, liquidated during
the time interval (0, T ) so that the new portfolio V (T ) has potentially very different
properties. More specifically, any change in prices of the stocks and weighting in the
portfolio will change the distribution of the (log) return of the portfolio.

At time T , the future return of the portfolio can be modeled as

V (T + ∆) = V (T )eR
V (∆)

where RV (∆) is the log return of the portfolio during the time interval (T, T + ∆).
In the case study above I have considered performing the liquidation during one day
so that T = 1. Furthermore, at time T I consider the distribution of the portfolio over
the next day so that ∆ = 1. However, in the derivation below I will use T and ∆ for
notational clarity.
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An explicit expression for this stochastic variable is given by

RV (∆) = ln
(V (T + ∆)

V (T )

)
= ln

(h0(T ) +
∑n
i=1 hi(T )Si(T )eRi(∆)

h0(T ) +
∑n
i=1 hi(T )Si(T )

)
where Ri(∆) is the log return of stock i. The expected stock prices Si(T ) and portfo-
lio weights hi(T ) naturally depend on the specific liquidation strategy used during the
time interval (0, T ).

Since the relative weighting (and thus distribution) of the pre-liquidation portfolio has
been deliberately chosen by the portfolio manager, it is interesting to compare that
distribution to that of the post-liquidation portfolio. More specifically, I consider two
scenarios.

Scenario 1 (benchmark scenario): I consider the situation where no investors with-
draw any money, no money is paid out and the portfolio weights remain unchanged. In
this scenario no liquidation is performed and the changes in stock prices are only due
to “normal” market movements. I make the assumption that, for short time intervals,
the drift of any stock is negligable, i.e. E[Si(T )] ≈ Si(0). Thus, the log return Rb(∆)
of the benchmark portfolio Vb(T ) during the time interval (T, T + ∆) is given by

Rb(∆)|Si(T )=Si(0) =ln
(Vb(T + ∆)

Vb(T )

)
=ln

(h0(0) +
∑n
i=1 hi(0)Si(0)eRi(∆)

h0(0) +
∑n
i=1 hi(0)Si(0)

)
Scenario 2 (liquidation scenario): In scenario 2, investors withdraw money, a fraction
of the portfolio is liquidated (using some liquidation strategy) and stock prices and
portfolio weights change from the liquidation. Denote by Spi (T ) = E[Si(T )] the
expected stock prices and by hpi (T ) the new portfolio weights with a given liquidation
strategy. Then, the log return return Rp(∆) of the portfolio Vp(T ) during the time
interval (T, T + ∆) is given by

Rp(∆)|Sp
i (T ),hp

i (T ) =ln
(Vp(T + ∆)

Vp(T )

)
=ln

(hp0(T ) +
∑n
i=1 h

p
i (T )Spi (T )eR

p
i (∆)

hp0(T ) +
∑n
i=1 h

p
i (T )Spi (T )

)
I compute the tracking error of the portfolio in scenario 2 relative the benchmark port-
folio by using Definition 5. To do this, the distribution of the log returns Rp(∆) and
Rb(∆) are needed. Furthermore, to estimate these distributions, the distributions of the
stocks are needed. I make the assumption that historical log returns are representative
of future log returns. More specifically, I consider the stochastic vector of log returns
for the four stocks

R(∆) =
(
R1(∆), R2(∆), R3(∆), R4(∆)

)
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and estimate the distribution of this vector with the historical outcomes

ri = (r1,i, r2,i, r3,i, r4,i

)
i = 1, ..., 145

I have 146 daily closing prices for the stocks and thus 145 daily log returns.

This is called an empirical distribution. The advantage with this approach is that it
is easy to implement and that there is no need to statistically infer the distribution and
dependence of the vector R. However, the success of the approach relies heavily on
the quality and quantity of data. Introducing more data will increase the validity of
any calculation made if the additional data is representative. However, increasing the
data set typically means including outcomes from the more distant past, outcomes that
might not have this property.

With this approach, the explicit expression for the tracking error is

TE =

145∑
i=1

(
pb(r)− pp(r)

)2
where pb(r) = P (Rb(∆) = r).

Figure 14 shows the tracking error of the remaining portfolio relative the benchmark
portfolio for the different liquidation strategies considered. I plot the tracking error
as a function of the fraction of the NAV that is paid out to investors. One expects
the proportional liquidation strategy to track the original portfolio perfectly. However,
transaction costs will decrease the NAV and make the tracking error non-zero. The
tracking error of the optimized liquidation strategy will be larger. Finally, the naive
approach will have a very volatile distribution since log returns are calculated relative
the NAV of the portfolio.
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Figure 14: Tracking Error: The figure shows the tracking error of the remaining port-
folio relative the original portfolio. The tracking error for the proportional approach
becomes slightly positive due to transaction costs. The tracking error from optimized
liquidation is significantly larger. The tracking error for the naive approach is asymp-
totically infinite.

7.5 Beta
I will also include an analysis of the beta of the remaining portfolio. Beta can be
described as a volatility adjusted correlation between an asset (or a portfolio) and the
overall stock market. The beta of the new portfolios are calculated relative the Nasdaq
Omx Nordic index, using Definition 4. The returns of the remaining portfolios are
calculated as in the section above and I use historical log returns for Nasdaq Omx
Nordic index (of the corresponding day the corresponding day).

Figure 15 shows the beta of the remaining portfolio for the different liquidation
strategies as a function of the NAV that is to be paid out to investors.
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Figure 15: Beta: The figure shows the beta of the remaining portfolio (as a percentage
of the NAV). The beta of the naive approach is asymptotically infinite. The beta of the
optimized liquidation resembles that of the net exposure.
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8 Conclusion
In this thesis I suggest a market impact function and use this function to compare dif-
ferent ways of liquidating a large fraction of a long-short equity portfolio. Specifically,
I consider the situation where the portfolio belongs to a hedge fund and the liquidation
is due to large withdrawals by investors. I have introduced three different liquidation
strategies that I call the naive approach, proportional liquidation and optimized liq-
uidation. The naive approach means paying investors without liquidating any stock
positions, proportional liquidation means liquidating equal fractions of each stock po-
sition and optimized liquidation is the liquidation strategy found by the solving an
optimization problem.

I find that the naive approach implies no market impact but significantly increases
the risk of the remaining portfolio. Proportional liquidation keeps the distribution of
the remaining portfolio intact (relative the pre-liquidation portfolio) but implies a rel-
atively high cost due to market impact. Optimized liquidation has a smaller expected
cost than proportional liquidation and keeps the risk of the remaining portfolio within
pre-specified limits. However, optimized liquidation tends to change the distribution of
the (log) return of the portfolio. The results show that the naive approach is undesirable
unless very small volumes are considered. As for the other two approaches, the results
in no way indicate that any one approach is superior to the other. Rather, which strat-
egy to choose depends on the preferences of the manager in charge of the liquidation.
The decision boils down to a choice between decreasing expected costs and keeping
the relative weighting and overall properties of the portfolio intact.

The results depend heavily on the validity of the market impact function suggested in
the thesis. In particular, I suggest that market impact is a concave function of the traded
volume which implies a decreasing marginal cost of trading. This property further im-
plies that proportional liquidation is relatively expensive and that the optimization al-
gorithm tends to suggest trading in as few positions as possible. This naturally implies
large changes in the relative weighting of the portfolio. There is ample evidence of the
concavity of market impact and this part of the model (and the results derived) is robust.

Apart from the dependence on the traded volume there is little consensus about how
to model market impact, in particular with which parameters to scale the function and
how it depends on the trading velocity. Because of this the actual values suggested as
expected costs, although reasonable, might not be perfectly accurate.

8.1 Future work
The lack of robust empirical results call for the need of more empirical studies. The
possibilities to obtain relevant data will likely increase with the increased use of elec-
tronic trading. The dependence on the trading velocity is especially interesting. This
will allow modeling the expected cost of trading as a function of time and then compare
this with the increased market risk of holding the position over a longer time interval.
Finally, investigating other ways of formulating the optimization problem would ad-
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dress portfolio managers with other preferences. In particular, using the tracking error
as the objective function and the expected cost as a constraint would appeal to anyone
who prioritizes keeping the relative weighting of the portfolio intact.
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Appendix

Proof of Corollary 1
Under the assumption that the loss variable L is normally distributed, the expression
for the Value-at-Risk can be simplified. The proof is based on introducing the standard
normal variable Z and noting the following equality (in distribution)

L∆ = µL + σLZ

Proof 1.

VaRα,∆ = inf{l ∈ R : P (L∆ > l) ≤ 1− α}
= inf(l ∈ R : P (µL + σLZ > l) ≤ 1− α)

= inf(l ∈ R : P (Z >
l − µL
σL

) ≤ 1− α)

={l′ =
l − µL
σL

}

= inf(µL + σLl
′ ∈ R : P (Z > l′) ≤ 1− α)

=µL + σL inf(l′ ∈ R : P (Z > l′) ≤ 1− α)

=µL + σLΦ(1− α)
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