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Abstract

In this thesis we have investigated the a�ects of events at deterministic times on
stock prices and option volatilities for medical companies. To do this we derive
an extension of the Black & Scholes option pricing formula that incorporates apriori
known events. From two implications of the model we have then analyzed if a sample
of events for medical companies exhibit these model implied characteristics. From
the model we have also derived a jump estimator that we analyze to see how the
estimated jump correspond to actual event day volatilities for the companies. Our
�ndings suggest that the model we look at seem to capture the e�ects of the events
on the prices of options. In the last part of the thesis we look at two di�erent delta
hedging schemes for companies with events. From the analysis of the two di�erent
schemes we conclude that using a volatility where we don't take into account the
jump volatility gives an on average lower hedging cost but at a much higher variance
in the outcome.
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Chapter 1

Introduction

Investing in medical or biotech companies is di�cult. Not only are the company's
products often very intricate and di�cult to understand but there is also a regulatory
uncertainty with investing in them. Each product that a medical company releases
to the market must go through immense testing and evaluation. In the end it is up to
the regulators to decide if the product is approved or not. If the drug or device that
the company has been developing is approved it will a�ect the company earnings in
the future since they now have rights to sell a new product. These approvals can
thus potentially have large e�ects on the company and its stock price. Due to the
binarity of approving or rejecting a drug or medical device and the importance for
future earnings, the information may lead to a situation where the stock price either
will jump up or down in a discontinuous way when it is given to the market. From an
investors perspective it would thus be interesting to know the amount of uncertainty
that is embedded in the release of regulatory decisions, before the information is
released.

In the US these approvals and rejections are all handled by the Food and Drug
Administration (FDA). Since the US market is the worlds largest market for phar-
maceuticals and medical devices there is a large number of companies that want to
launch their products here. As an example we can look at the release of the complete
response letter for the company Biodel Inc. and their product VIAject. A complete
response letter is in essence a rejection at that time but with the possibility that
the drug can be approved in the future. The actual date for the release of this in-
formation had been given to the company and the market many months ahead by
the FDA. The information of the complete response letter was given to the market
before closing on the 1 of November but the last trading day before that had been
on the 29 of October. The di�erence between the stock closing price on these two
days was a drop of 41.32%.

For option pricing this event thus creates some problems. Since the stock is not be-
having in a continuous way the Black & Scholes framework is not applicable without
some adjustments. One of the assumed properties for the Black & Scholes model to
actually work is that the stock has a continuous sample path. We can thus not expect
this framework to hold when modeling the underlying stock. The second problem is
that if we today where to price an option with maturity after the event this future
jump will have to be accounted for in the estimation of the implied volatility for the
option.
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In this thesis we will investigate how a priori known events a�ect stock prices and
option prices for medical companies trying to launch drugs in the US. To do this we
will look at a model of the stock price that is an extension of the Black & Scholes
model incorporating jumps at deterministically known times. With deterministically
known jumps we will mean jumps that we know the timing of when they will happen.
The distribution of the jumps will be modeled as normally distributed variables. We
will from the model then derive a closed form option pricing formula and discuss the
implications this formula have on implied volatilities. We will then analyze market
data for companies that have had FDA (NDA) events to see how these events a�ect
the actual prices of the stock and options and see if these model implications are
apparent in the market pricing of call options.

The last part of the thesis will be analyzing how to delta hedge options on stocks
that has deterministically timed jumps. We will here discuss di�erent choices of
volatility to be used to calculate the delta and test these strategies using monte
carlo simulation of the stock sample path.
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Chapter 2

Background

2.1 U.S. Food and Drug Administration

In the healthcare industry there is legislation for what a company needs to do before
launching a new drug or device to the market. The agency that oversees the legisla-
tion in the US is called the U.S. Food and Drug Administration (FDA) and they are
responsible for protecting the public health. In the US the legislation that companies
need to follow to receive the right to sell and market a drug or device is called the
Prescription Drug User Fee Act, PDUFA, and was enacted in 1992. This legislation
authorizes the FDA to collect fees from drug manufacturers. The FDA then use
these fees to pay for the process of approving drugs that are under investigation.
The enactment has increased the speed of the review process making it possible to
get new drugs to the market faster. Today FDA is normally given 10 months to
review a new drug. If the drug is selected for a priority review a 6 month review
period is allotted. All these time periods begin from the date a company sends in its
New Drug Application (NDA). The NDA is the vehicle that propose to the FDA if a
new pharmaceutical should be approved for sale and marketing. The NDA therefore
provide information to the FDA concerning: whether the drug is safe and e�ective
and if the bene�ts outweigh the risks; if the packing insert and labeling of the drug
is appropriate; and if methods and controls used in manufacturing is adequate.1

In addition to their own investigation through the NDA the FDA use external Ad-
visory Committees (Adcom) consisting of well-known academics and practitioners.
The Adcom is used to review the various material together with the FDA's own sta�.
In the end the Adcom's also advice the FDA on the drug they are investigating. The
advice from the Adcom is given to the market before the FDA decides to approve or
not.2

The material that the FDA use to review a new drug are tests done by the company
responsible for the drug. These tests are divided in three di�erent phases: Phase I,
II and III, with criteria's to proceed to the next phase. If the drug is not su�cient
in for example the phase I trial the company is not allowed to proceed to the phase

1US Department of Health & Human Services: http://www.fda.gov/Drugs/ResourcesForYou/

Consumers/ucm143534.htm
2US Department of Health & Human Services: http://www.fda.gov/Drugs/ResourcesForYou/

Consumers/ucm143534.htm
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II trial. The NDA is submitted by the company �rstly after the phase III trial.3

2.2 Discussion of event impact on stock prices

Every step in the process of receiving an approval increases the probability that the
company might get increased earnings. An increase, or reduction, of the probability
that the company might get an approval to sell and market a drug a�ects the com-
pany's stock prize since stock prices usually are regarded as present values of future
cash �ows.4 An approval to continue with a phase II trial, after a phase I trial, is
a sign that the drug can potentially be approved. The market therefore reevaluates
the future earnings and depending if it is positive or negative news the stock price
usually increases or decreases. The fact that the drug passes through the trials does
though not mean that the drug can be sold to the public. The last step in the process
is always to send in the NDA and get an approval from the FDA. Once the NDA
is submitted there can also be an Adcom meetings that can a�ect the price of the
stocks. If the Adcom is negative towards a drug this increases the possibility that
the FDA will not approve the drug, and vice versa if they are positive. The last step
is then for the FDA to approve or to disapprove the drug. The FDA can, in addition
to approving or disapproving, also give a complete response (CR) to the company.
This means that the company needs to further analyze the drug or device in more
clinical studies and tests.

The approval noti�cation can have di�erent impact on companies pending on how
large the potential income from the new drug is given the company's current earnings.
For a large medical company the approval of a small niche drug is most likely not
going to have any large impact on the earnings of the company, and it will hence
not have a large impact on the stock price. For smaller companies, and companies
with perhaps no drugs in the market, these approval events and data publications
can have a major impact and the stock price can have large jumps on this date.

3US Department of Health: & Human Services http://www.fda.gov/Drugs/ResourcesForYou/

Consumers/ucm143534.htm
4Corporate Finance by Johnathan Berk and Peter DeMarzo, 2007, Chapter 9.3
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Chapter 3

Previous research

3.1 Jump models

There are many scienti�c papers on the subject of incorporating jumps in the price
process of stocks. Many of these articles model the jump occurrence as random. In
this category of models we have the famous Merton article [11] from 1976. In this
article Merton extends the Black & Scholes model with a Poisson process to capture
abnormal price variations that the normal Black & Scholes model does not. In 2002
Kou [9] extended Mertons model such that the jumps have a double exponential
distribution instead of a lognormal distribution. Both of these models choose a
frequency for the jumps, i.e. the jumps are not known in advance.

We have found three papers on the subject of modeling known jumps, events that are
known in advance of them happening, for equities. Abraham and Taylor [1] discuss
the di�erences between scheduled and unscheduled events and their di�erent impact
on prices. They put forward a model, which they call the Event model, for option
pricing that take into account both of these types of events. The model is a jump
di�usion model with an added term for the scheduled jump.

In Dubinsky and Johannes [7] jumps in presence of earnings announcements are an-
alyzed. To model the behavior of these events, i.e. earnings announcements, they
develop two di�erent jump models, one with constant di�usive volatility and deter-
ministically timed jumps and one with stochastic volatility and deterministic jumps.
The authors also describe two jump estimators that they derive from the model. We
will in this thesis take a closer look at one of these estimators, namly the one they
call the term structure estimator.

The third paper by Radchenko [12] considers the problem of �nding hedging strate-
gies of European call options for a one-dimensional model of assets prices driven
by a Wiener process and jumps at earlier known time moments. The author be-
gins by a asset pricing model and then moves on to decompose the model using a
Föllmer-Schweizer decomposition that can be found in [8]. The Föllmer-Schweizer
decomposition is then used to �nd the solution to a minimization problem where the
author is trying to �nd the hedging strategy that minimizes the variance of a con-
tingent claim on a stock. The theory and method in the last part of the Radchenkos
paper is outside of the scope of this thesis and will not be used here. What we will
use is the setup of the model that Radchenko uses in his paper.
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Chapter 4

Models and theory

The goal of this chapter is to show how we can model the stock price dynamics
of stocks with deterministically timed events. We begin with the Black & Scholes
option pricing formula and the geometric browninan motion and then extend this
model with jumps (events) at known times.

4.1 Black & Scholes option pricing formula

The Black & Scholes option pricing formula, derived by Fischer Black and Robert
Merton in 1973 in their article The Pricing of Options and Corporate Liabilities, is
derived in [3]. It is the system of stochastic di�erential equations

dBt = rBtdt

dSt = αStdt+ σStdWt (4.1)

that is the starting point and fundamental building blocks in the derivation of the
Black & Scholes option pricing formula. Equation (4.1) is called a geometric brownian
motion and consists of a drift term α, a di�usion term σ and a brownian motion Wt.

Theorem 4.1 The price of a European call option with strik price K and time of

maturity T is given by the formula Π(t) = F (t, St), where

F (t, St) = StΦ[d1(t, St)]− e−r(T−t)KΦ[d2(t, St)]. (4.2)

Here Φ is the cumulative distribution function for the N(0,1) distribution and

d1(t, St) =
1

σ
√
T − t

[
log

St
K

+ (r +
1

2
σ2)(T − t)

]
d2(t, St) = d1(t, St)− σ

√
T − t

7



From Equation (4.2) we can extract the Black & Scholes implied volatility (IV). The
IV for an option is the market expectation of the volatility for the reminder of the
life of the option. To get the IV for an option one solves the equation

p = c(s, t, T, r, σ,K) (4.3)

where p is the market price of an option, s is the spot price of the underlying stock,
t is the time today, T is the maturity of the option, r is the risk free interest rate, σ
is the implied volatility and K is the strike price.

4.2 Doléans-Dade exponential

The following proposition is from [6]

Proposition 4.2 Let Xt be a Lévy process with Lévy triplet σ2, ν, γ. There exists a

unique cadlag process Zt such that

dZt = Zt−dXt

Z0 = z

Z is given by:

Zt = z exp

{
Xt −

1

2
σ2t

} ∏
0≤s≤t

(1 + ∆Xs) exp {−∆Xs} (4.4)

4.3 Geometric brownian motion with deterministically

timed events

We now introduce the dynamics of a deterministic jump to the GBM model described
in Equation (4.1). We do this by looking at the Lévy process Xt with di�erential

dXt = µdt+ σdWt + I {t = sj}Uj (4.5)

Here I {t = sj} is the indicator function being 1 if t is equal to the jump time
sj and Uj ∈ (−1, inf) is the jump distribution at the deterministic jump (news
announcement) instant sj . The other parts of this equation is the same as in the
GBM model in Equation (4.1).

If we solve Equation (4.5) we get that

dXt = µdt+ σdWt + I {t = sj}Uj

Xt =

∫ t

0
µds+

∫ t

0
σdWs +

∫ t

0
I {t = sj}Ujds

Xt = µt+ σWt +
∑
j:s≤t

Uj (4.6)
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Using Equation (4.4) we see that the Doléans-Dade exponential for the process in
Equation (4.6) is

Zt = z exp

{
Xt −

1

2
σ2t

} ∏
0≤s≤t

(1 + Uj) exp {−Uj}

Zt = z exp

µt+ σWt −
1

2
σ2t+

∑
j:s≤t

Uj −
∑
j:s≤t

Uj

 ∏
0≤s≤t

(1 + Uj)

Zt = z exp

{
µt+ σWt −

1

2
σ2t

} ∏
0≤s≤t

(1 + Uj) (4.7)

If we set Uj = exp {Yj}− 1 we can see that the last Equation (4.7) can be written as

Zt = z exp

{
µt+ σWt −

1

2
σ2t

} ∏
0≤s≤t

exp {Yj}

Zt = z exp

{
µt+ σWt −

1

2
σ2t

}
exp

 ∑
0≤s≤t

Yj


Zt = z exp

µt+ σWt −
1

2
σ2t+

∑
0≤s≤t

Yj

 (4.8)

Letting Yj be normally distributed we have a way to model stocks with events at
deterministica times.

We rewrite Equation (4.8) with Zt exchanged with ST (to indicate that this is the
process of the stock price S), setting z to St, letting T be the maturity time of a
European call option and Nd

T the number of jumps between t and T

ST = St exp

(µ− σ2

2
)(T − t) + σ(WT −Wt) +

Nd
T∑

j=1

Yj

 (4.9)

In [7], pages 11-12, there is a derivation of the equivalent martinguale measure for the
process in Equation (4.9). Under the equivalent martingale measure Q discounted
prices should be a martingale which means that they need to be both a martingale
between jump times and that the pre-jump expected stock price of the post-jump
stock price is equal to the pre-jump stock price. This indicates that the between
the jump times the drift of St under Q is rSt. If prices are to be Q martingale at
jump times we need to have EQ[Sτj |Fτj−] = Sτj−, which means that there can not
be any expected capital gain at a deterministic jump instant, EQ[∆Sτj |Fτj−] = 0.
This inturn leads to that EQ[eYj |Fτj−] = 1. In this thesis we do not construct the
martingale measure using the Girsanov Theorem, but draw from the conclusions in
[7], and state that if Yj = −1

2(σQ)2 + σQε where ε ∼ N(0, 1), discounted prices are
martingales under Q. This leads to the process in Equation (4.10)

9



ST = St exp

(r − σ2

2
)(T − t) + σ(WQ

T −W
Q
t ) +

Nd
T∑

j=1

Yj

 (4.10)

4.3.1 Distribution of stochastic parts in the price model

Let us �rst look at the distribution of the two random parts in Equation (4.10).

The �rst part we analyze is the Wiener process, WQ
T − WQ

t . We will drop the
superscript Q on the process from now on but think about Wt as Q-Wiener process.
We know that if we let any 0 ≤ t < T , the increments of WT −Wt ∼ N(0,

√
T − t).

The other random part in Equation (4.10) is due to the jump. This part is a non-
random series of independent normal random varaibles. Since Zt = −1

2(σj)
2 + σjε

we have that

Nd
T∑

j=1

Zj ∼ N

−1

2

Nd
T∑

j=1

(σj)
2,

√√√√√Nd
T∑

j=1

(σj)2


We now look at the the distribution of these two parts, and the non-stochastic parts
of the exponent in Equation (4.10), together. We will call this variable YT :

YT = (r − σ2

2
)(T − t) + σ(WT −Wt) +

Nd
T∑

j=1

Zj

YT ∼ N

(r − σ2

2
)(T − t)−

Nd
T∑

j=1

1

2
(σj)

2,

√√√√√σ2(T − t) +

Nd
T∑

j=1

(σj)2


To simplify this for the continuing derivation we breake out (T−t) from the standard
deviation and set

γ =

√√√√√σ2 + (T − t)−1

Nd
T∑

j=1

(σj)2

µ = r

From

YT ∼ N
[
(µ− 1

2
γ2)(T − t), γ

√
T − t

]
YT = (µ− 1

2
γ2)(T − t) + γ

√
T − tε where ε ∼ N(0, 1)

10



Having derived the distribution of YT we can easily derive a risk neutral pricing
formula for a contingent claim on a ST . The derivation of this pricing formula can
be done in the same manners as for the pricing formula in Theorem 4.1 (we have
done these calculations in the Appendix. From the derivation of the option pricing
formula in the Appendix we state the following theorem:

Theorem 4.3 The price of a European call option with strik price K and time of

maturity T that have a underlying security with events(having log normal distribution

with mean −1
2σ

2
j and standard deviation σj) at deterministically known time is given

by the formula Π(t) = F (t, St), where

F (t, St) = StΦ[d1(t, St)]− e−r(T−t)KΦ[d2(t, St)] (4.11)

Here Φ is the cumulative distribution function for the N(0,1) distribution and

d1(t, St) =
1

γ
√
T − t

[
log(

St
K

) + (r +
1

2
γ2)(T − t)

]
(4.12)

d2(t, St) = d1(t, St)− γ
√
T − t

γ2 = σ2 + (T − t)−1

Nd
T∑
j

(σj)
2 (4.13)

As we can see this closed form solution in Equation (4.11) is very similar to the
solution in Theorem 4.1. It is so similar because the random parts in Equation
(4.10) are all normally distributed.

The di�erence between the two models, the model in Theorem 4.1 and the model in
Theorem 4.3, is the form of the implied volatility. The deterministic jumps in the
model creates predictability in the implied volatility. If we introduce a single jump
(in our case this will be a NDA decision announcement) at tj , t < tj < T we see
that since γ2 = σ2 + (T − t)−1(σj)

2 this implies two testable characteristics for the
implied volatility for options on stocks with events at deterministic times.

1. Before an event annualized IV is γ2
tj− = σ2+(T−t)−1(σj)

2 and after γ2
tj = γ2 = σ2.

This therefore implies a discontinous decrease in the IV after the event.

2. The IV should increase into an event with a rate of (T − t)−1.

4.4 Jump estimator

From the implied volatility structure, γ2 = σ2 + (T − t)−1
NT∑
j

(σj)
2 we will now look

at jump estimators derived using this structure. It will be an ex-ante estimation of
the jump, based on implied volatilities.

The estimator was developed in [7] and we will it derive it here again.

We start by looking at the implied volatility of two at the money (ATM) options
with di�erent maturities, expiring after the event (jump). If there is a single event

11



before the options mature the IV of the ATM option at time t is (in annualized
units) γ2

t,T−t = σ2 + (T − t)−1(σQ)2. If we have two options with di�erent maturity,

T1 = T 1 − t and T2 = T 2 − t where T1 ≤ T2, we thus must have that γ
2
t,T1

> γ2
t,T2

,
since both σ and σj are constant in the model. If we have the two market IV, here
called γt,Ti for these two options we can thus solve this equation system

{
γ2
t,T1

= σ2 + T−1
1 (σj)

2

γ2
t,T2

= σ2 + T−1
2 (σj)

2

Solve the second equation for σ2 and insert in the �rst to get

γ2
t,T1 = γ2

t,T2 − T
−1
2 (σj)

2 + T−1
1 (σj)

2

Now solve for (σj)
2 which we now will call (σterm)2

(σterm)2(T−1
1 − T−1

2 ) = γ2
t,T1 − γ

2
t,T2

(σterm)2 =
γ2
t,T1
− γ2

t,T2

T−1
1 − T−1

2

(4.14)

As noted above γt,Ti is the market Black Scholed implied volatility with expiration
in Ti = T i− t days, where t is today. These IV can be calculated from options prices
in the market.

From this Black & Scholes model with deterministically timed jumps we have created
an estimator of the implicit jump size that the options market is pricing.
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Chapter 5

Emperical study of NDA events

In this chapter we will look at NDA events for drug companies that have applied to
launch products in the US. We will hence only focus on events for companies that
are in the last phase of their �ling for a new drug or medical device. We begin this
section with a case study to go through how a NDA event can a�ect a company's
stock price and IV. In this section we also describe the method of how we will �nd
the time series estimator.

5.1 Event case study and data discussion

To better understand the dynamics of an NDA event and the jump estimator we
have developed we provide a case study of the company Biodel Inc.

On the 1 of November 2010 Biodel Inc. received a complete response (CR) on its
NDA for its drug Linjeta and the company provided the news to the market during
trading hours in the US on the same day. Since the company did not have any
steady cash �ow during the period the CR was almost as severe as a rejection for the
market since it would mean more expenses for Biodel Inc., and the market started
wondering if the company could a�ord these extra costs.

The stock price of Biodel Inc. for the period 4 months before and up to the event
(and a week after) is shown in the Figure 5.1.

We can see that the on the day of the event the stock depreciated 41.32%, going from
$3.63 on the 29 of October to $2.13 on the 1 of November. We can also see from
Figure 5.1 that the distribution looks reasonably normally distributed if it would not
have been for the large jump on the day of the event.

Let's now look at what the information that the company gave to the market leading
up to the 29 of October. On the 30 of December 2009 Biodel Inc. announces that is
has submitted an NDA to the FDA. On the 12 of February Biodel Inc. releases the
results from company's two phase III studies, from which the conclusion is drawn
that Linjeta (then called VIAject) was more e�ective than human insulin and the fast
acting analogue insulin lispro. It is not until the 1 of March that the FDA announces
that they have accepted to review the drug. In the press release on the 1 of March
the FDA states that they expect time of action to be on the 30 of October 2010, 8
months later. At this time there is no open volume in any call option on the Biodel
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Figure 5.1: Return for the Biodel Inc. stock for a period of 4 months prior to the
event until 1 week after.

Inc. stock with maturity in either November or December, i.e. maturity after the
proposed release of the information. During the time between the �rst of March and
the 30 of November no substantial evidence that Linjeta would be either approved
or unapproved is given to the market. The FDA did not have an advisory committee
discussing the drug. On the 1 of November, before the markets open for trading in
the US, Biodel Inc. announces that they have received a complete response letter
from the FDA. In the letter the FDA asks for new phase III studies and more data
related to stability and manufacturing.1

In the Figure 5.2 the ATM IV is given for Biodel Inc. 4 months before the event
leading up to the event and 1 month after. The IV we have plotted in Figure 5.2
is taken from Bloomberg. Bloomerg calculates these IV's from a weighted average
of the volatilities of the two options with strike price closest to the spot price of the
underlying stock each day. The contracts used are the closest pricing contract month
that is expiring at least 20 business days out from today. The reason for choosing
this ATM IV data is beacuse the model that we have derived above does not take
into account any smile or skew e�ects that has been shown to exist for IV's.2 If we
therefore look at only the ATM volatilities these e�ect should not distort any a�ects
that the events might have on the IV. If we would have chosen to look at a �xed
strike, the potential drift of the spot price away from the strike price of the option
could cause these smile e�ects to increase the IV, an e�ect that we do not want.

From the Figure 5.2 we can see that the IV is increasing leading up to the event,
it peaks a few days before the event, and then there is a drop on the day of the

1Biodel press releases: http://investor.biodel.com/releases.cfm
2http://en.wikipedia.org/wiki/Volatility_smile
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Figure 5.2: Implied volatility of at the money options in Biodel 4 months ahead of
the event and 1 month after.

event. Since the contracts used are the closest pricing contract month at least 20
business days out from today we should not expect any increase in the IV until one
month ahead of the event if there are open contracts with maturity in September.
The reason for this is that if the closest pricing month date is before the event,
the event should not a�ect the price of the option given our model discussed in the
previous chapter. From 5.2 we can see that the IV doesnt increase much before the
19 of September (apart from the two spikes that we think are bad data points). The
reason for this is probably that before this date the maturity of the options used are
before the event date. We still think that Figure 5.2 is a good way visualize the time
series a�ect of the IV due to that for the last month the maturity of the options have
to be after the event, but it should have been even better if we could show the time
series ATM IV for contracts having maturity after the event. In the month prior to
the jump we see that the IV is increasing and we also notice the large volatility in
absolute terms, reaching almost 350%, a few days before the event.

We will now look the jump estimator for ATM options in Biodel Inc. The implied
IV's used in these calculations will be backed out from the actual market prices of
options using Equation (4.3).

Since the release of the information was on the 1 of November, we set t to be that
day. We will look at prices on the day before, t-1, which is on the 30 if October.
Since the stock at that time stood at $3.63 this will be ATM. The maturity for the
closest options was on the 19 of November, approximately 15 trading days away.
This leads T1 to be 0.0595 years.3 The maturity for the next closest option was on
the 17 of December, approximately 40 trading days away. This lead T2 to be 0.1587
years. Since there are no options with strike price $3.63 we have chosen to look at
the two closest options, strike price at $3 and $4. We have then averaged over the
implied volatilities of these two options to account for possible skew e�ects. This is
though just the case for the options maturing in November because prices for the $3
strike was not available for options maturing in December. For this maturity we have
chosen just to use the option with strike at $4. Biodel has never had any dividend
so this parameter is set to zero. The interest rate is chosen as the 1 year t-bill rate
on the 29 of October, 0.0022% (which is approximetly the same in both continuous

3We use that 1 year is 252 days
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and yearly compounding). The corresponding Black-Scholes implied volatilities for
these options were 331.21% (this is the average of the $3 and $4 strike options) and
244.89%. The jump estimator then becomes 68.82%.

If we compare the jump estimator to the realized return on the event day we see
esitmator 68.82% is larger than the actual time series jump of 41.32%.

One problem with this metholodgy is that if we do not use the exact same strike for
the options with di�erent maurity we could get smile or skew e�ects that distort the
maturity e�ect we are trying to look at. We therefore did the same calcualtion for
only the $4 strikes for the two maturities and the new jump estimator then became
66.02%. Using only the IV for the $3 strike for the �rst maturity and the $4 strike
for the second maturity resulted in a time series estimator of 71.56%. The di�erence
between the using the di�erent strikes is not that large in comparison to the di�erence
between the times series estimator and the actual time series jump of the stock price.

5.1.1 Results from the event study and further questions

From the case study of Biodel we �rstly notice that the FDA announced on the 1 of
March that they would announce the result of the NDA on the 30 of October. The
market therefore knew about this event before hand and should therefore take this
into account when pricing the options. As we showed in Figure 5.2 we could also
see that the rolling ATM volatility increased leading into event, and drops sharply
after it has occured, which is what we are expecting. In this example the markets
therefore seem to be pricing in the possibility of a jump. From the options we also
estimated the jump estimator to be 68.82%.

From the above results it would be interesting to look more closely at a larger num-
ber of companies with NDA events. We are most interested in seeing if he market
is anticipating the event, if the jump size can be estimated using our term struc-
ture estimator and how this estimated jump volatility compares to volatlity of the
underlying stock on the event day. As a pseudo problem we are also interested in
what factors that may a�ect the jump size. We have discussed that the size of the
company can have an e�ect so we analyze this some more.

5.2 Data and description of sample

We have chosen to look at 41 events, all of which are NDA events for companies trying
to launch a product in the US. Only NDA events are choose due to the fact that
accuratly timing the date for Adcoms is hard since they are usually not announced
in advance to a great extent. The event dates have been chosen from a database of
NDA events, collected by Bernstein Research, and are NDA events that happened
between 2009 and January 2011. For each company and event we have checked press
releases from the companies to determine the exact date and timing of the release of
the information to the market.

From the original list of events we have choosen to look at companies that had a total
call option volume on the day, or week, before the event day that was greater than
zero. This means that there actually where call options that were traded in these
companies in the days prior to the event. We do this to try to sort out companies
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that may have stale call option prices that hence may be di�erent from the actual
market price of the options. We have from these companies and events chosen to
look at companies with a market capitalization of less than 10 billion USD. We have
chosen to not include larger companies due to the cumbersome and time consuming
process of checking all the event dates. Choosing to look at smaller companies also
comes from our belief that these events should have a greater impact on the earnings,
and hence the stock price, than if we would have looked at a sample of companies
with larger market capitalization.

For the time series changes of IV's we have chosen to use Bloomberg calculated ATM
IV, the same type of data as we used in the case study and for the same reason as in
the case study. When we calculate the actual IV used to construct the term structure
estimator, we will use the call option prices and back out the implied volatility from
Equation (4.3), again in the same manner as we did in the case study.

5.3 Stock movement on event day

For all the stocks in the sample we have collected closing prices of the stock around
the event date. If the new information is given to the market after closing hours
on day t the return is calculated for t+1, hence by (St+1 − St)/St. This is given in
Figure 5.3. The largest positive single day return in this sample is 625.9% and the
largest negative single day return is -74.9%. We have cut the y-axis at 65% since the
next largest return was 65%. Of the total 41 companies 17 did not move more than
5% on the day of the event and 24 companies moved more than 10%, in absolute
terms.
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Figure 5.3: Plot of percentual return on the day of the event for all companies in the
sample.

Of the total number of companies in Figure 5.3 23 had a negative return on the day of
the event and 18 had a positive return. For the sample there is hence a bias towards
negative jumps. The average jump size in the sample is 8.4% but the median jump
-1.3%. The large di�erence in mean and median jump size is due to the 625.9% jump
described above. If we remove this price jump the mean would become -7.0%.

Table 5.1 present the distribution between favorable and unfavorable NDA decisions
for the sample.

17



Decision Number of outcomes

Favorable 12
Unfavorable 4
CR 25

Table 5.1: Statistics of di�erent outcomes from the NDA for the companies in the
sample.

There is a large number of CR (complete response) noti�cations in the sample. As we
discussed above this can be seen as a milder rejection of the drug since there is still a
possibility that the drug can be approved. The small number of unfavorable decisions
indicates could that the process of �ling for a new drug is rather well constructed,
companies unsure of recieving a favorable decision may be inclined not to �le in the
�rst place.

The fact that there are more negative decisions (unfavorable and CR) should also
explain why there are more companies having negative return than positive on the
event day. Even though a CR is not a rejection it is still not a good outcome from
the NDA since it usually leads to more costs for the company.

5.4 Implied volatility analysis

5.4.1 Implied volatility di�erence and actual event day return

We have in Figure 5.4 calculated the percentage di�erence between the ATM IV on
the day of the event, day t and the day before the event t-1, for the companies in
the sample. The calculation is (IVt−1 − IVt)/IVt. A large positive di�erence means
that the IV the day before the jump is larger than after the jump.4
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Figure 5.4: Percentage di�erence between the companies implied volatility on the
day before the event day and on the day of the event.

From Figure 5.4 we see that most of the companies have a large positive di�erence

4The IV data is taken from Bloomberg and is calculated in the same manner as in the case study

and used for the same reason
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in the IV between the days. In the sample of 41 companies there are 17 that have a
volatility change that is larger than 20%. The mean change in the sample is 39.6%.
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Figure 5.5: Plot of both the percentage change in the stock and the percentage
di�erence between the companies implied volatility on the day of the event and on
the day before the event day.

In Figure 5.5 we can see that for most of the companies that have had a jump in the
stock price, positive or negative, the implied volatility decreases. If there is no jump
in the stock price on the day of the event we could interpret this as the information
given did not lessen the uncertainty about the outcome of the NDA. This means that
the market could still be concerned over the future volatility of the underlying stock,
and will hence not decrease the IV. If this would have been a case were the stock
jumps unanticipated the volatility should increase, not decrease, since this should
indicate that the IV could be too low.
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Figure 5.6: Plot of both the percentage change in the stock and the percentage
di�erence between the companies implied volatility on the day of the event and an
average of prior implied volatilities.

In the Figure 5.6 we look at the relation between the mean IV and the IV on the
event day. The mean is here calculated as the mean of the volatility for at least 2
months prior to the event day. For some companies it was not possible to �nd ATM
IV:s that long back, so their means are calculated for a shorter time period. We can
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see that for the larger jumps there is a indication that the IV on the day before the
event is larger than the mean IV prior to the jump, pointing to the fact that the IV
have increased leading up to the event.

5.4.2 Implied volatlity di�erence and market capitalization

From Figure 5.7 the relationship between the market capitalization and the IV dif-
ference in percent is plotted. The volatility di�erence in percent is as in calculated
as in Figure 5.4. As expected the IV change is larger for smaller companies since
the events are usually more important for their earnings, in respect to their current
earnings.
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Figure 5.7: Plot of market the capitalization and the percentage di�erence between
the companies implied volatility on the day of the event and on the day before the
event day.

5.4.3 Jump estimator

We now look at the jump estimate derived from the options in these companies. The
calculations will be the same as in the Biodel Inc. case. We have just chosen one
strike and taken the same strike for both maturities. The strikes for the options are
chosen as close to the spot price of the stock on the day before the event as possible,
and the two maturities chosen are the two shortest of the available options. Some
companies did not have active trading in the shortest options on the day before the
event. If this was the case we moved back one day to see if there were prices given
quoted, which we did until we found good prices.5

We have in Table 5.2 listed the IV for the two options used and the term structure
estimator of the jump volatility. In Table 5.2 we see that 12 companies have NaN
for the term estimator. This is due too that the longer maturing option volatility
(IV2) is higher than the shorter (IV1) for these companies. Since Equation (4.14) is
the square root of the di�erence between the �rst and the second IV's, this number
becomes a complex number if the second IV is larger than the �rst. The reason for
the �rst IV to be smaller than the second can be that there is some other event that

5All option prices have been collected from Bloomberg.
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the market is pricing in that is after the �rst option expires. Since the term structure
only can handle one jump for the period it is evaluating, it will not be applicable in
these situations.

As we can could expect from the earlier analysis there are some companies were the
jump estimator is rather large. Look at company 5 for example. For this company
the IV was 372.21% for the shortest maturing option and 238.75% for the longest
option. Together with the information about how many days the options had until
maturity the term structure estimate was 96.53%, which is the highest in the sample.
This indicates that the market is assigning a implied jump of almost 100% for one
trading day between the two maturities of the options.

The last column in Table 5.2 is the actual change in the share price on the event day.
From the table we can see that of the 41 events 19 had term estimators that where
higher than the actual change in share price and 10 had lower term estimator than
the change in the share price.

5.5 Conclusions from examining events

From the analysis above we can conclude that the market is aware of the events and
they are pricing call options in accordance to the characteristics of the model that
we have discussed. Since the IV of call options seem to follow the characteristics we
have found the term strucuture estimate can become a e�ective tool to use when
assesing and investing in companies with deterministically timed events. Since these
events have such a big impact they should also be accounted for when calculating risk
measures for these companies. Looking at historical data could underestimate the
future risk of investing in the company. Using the jump estimator one could therefore
extract a jump estimator to be used when modeling the stock with deterministically
timed jumps.
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Company IV1(t-1) IV2(t-1) Term Stock price change

1 263.34 192.86 55.11 -72.5
2 211.5 168.88 52.62 67.4
3 203.91 107.38 59.25 -32.27
4 36.58 34.71 3.23 4.06
5 372.21 238.75 96.53 -41.32
6 252.50 185.64 57.86 26.43
7 70.19 66.40 10.08 -46.17
8 140.68 79.21 17.94 3.96
9 372.78 161.47 39.31 35.38
10 50.58 74.79 NaN -38.50
11 60.23 62.34 NaN 4.46
12 55.62 37.45 6.48 -1.32
13 221.38 164.36 43.27 -74.96
14 161.57 126.55 35.48 26.65
15 29.88 25.29 4.69 -2.52
16 227.95 121.97 30.33 15.99
17 105.05 122.41 NaN -24.71
18 25.16 26.01 NaN 0.50
19 21.77 24.05 NaN -1.29
20 197.89 109.45 15.4 -65.97
21 171.8 118.17 24.15 -7.98
22 59.32 59.30 0.45 -1.6
23 76.46 73.33 8.95 9.76
24 32.64 31.86 1.97 -5.17
25 56.07 56.52 NaN 4.33
26 62.45 64.29 NaN 3.87
27 244.41 175.09 55.04 -49.22
28 47.00 38.38 12.42 -1.83
29 171.15 106.97 22.96 -18.04
30 124.41 111.93 18.28 -1.057
31 110.85 79.58 10.57 -0.98
32 46.03 46.87 NaN 4.4
33 223.23 146.83 42.16 -16.92
34 89.62 57.60 20.21 -0.16
35 405.45 259.50 74.33 625.93
36 61.63 40.07 12.43 0.86
37 68.19 71.22 NaN -20.44
38 197.41 212.56 NaN -5.82
39 82.02 92.70 NaN 2.65
40 222.59 172.90 70.34 33.29
41 49.10 53.12 NaN 7.30

Table 5.2: Implicit volatilities for the companies the day before the event and term
structure estimate, all values in percent. The �rst two columns are implicit volatilities
for the two shortest maturing at the money options. The third column is the term
structure estimate. The last column is the actual time series percentage change in
the stock price for the event day.
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Chapter 6

Hedging events

6.1 Delta hedging

The delta of an option is the ratio of the change in the price of the option to the
change in the change in the price of the underlying security, assuming all other
variables remain unchanged. Matimatically delta is represented by

∆ =
∂C

∂S

Delta is therefore the slope of the curve that relates the option price to the underlying
security. A delta of 0.6 therefore means that if the stock price change by a small
amout the option price change about 60% of that amount.1 We should here stress
the importance that the stock only can move in a small amount for the delta to
accuratly describe any move in the option price.

The delta of an European call option is given by

∆ =
∂C

∂S
= Φ(d1(t, St))

where d1(t, St) is given in Theorem 4.1.

From a practical perspective the idea of delta hedging is to keep a portfolio delta
neutral to hedge away any directional trading risk, i.e. risk associated with the move-
ment of the underlying security. If a trader has sold a call option he can create this
delta neutral portfolio by �rstly calculating the delta of the option using the equation
Φ(d1(t, St)). The only parameter in this equation that the trader needs to estimate
is the volatility to be used. Usually this estimation is done by using the implied
volatility estimated from the market, or estimating from historical volatility of the
underlying. The trader then use this delta, calculated from the estimated volatility,
to buy or sell the underlying stock to create a delta neutral portfolio. Therefore,
if the trader has sold a call option and the delta of this option is 0.5, the trader
needs to buy 0.5 positions of the underlying to create a delta neutral portfolio. This
portfolio of a call option and position in the underlying is then rebalanced as many
times as the trader wants. The trader can, due to constraints, not hedge continously

1Fundamentals of Futures and Options Markets (6th edition) by John Hull, 2008, Chapter 15.4
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and need to do it discretly during the life of the option. Since we have derived the
closed form solution for the call price given events in Theorem 4.3 we can look at
the corresponding delta this model implies.

Using our closed form solution for the price of a call option we see that we have
a slightly di�erent delta formula when we model the stock price with jump that is
deterministic in time. For this model the delta is again given by:

∆ =
∂C

∂S
= Φ(d1(t, St))

but here

d1(t, St) =
1

γ
√
T − t

[
log(

St
K

) + (r +
1

2
γ2)(T − t)

]

where

γ2 = σ2 + (T − t)−1

Nd
T∑

j=1

(σj)
2

Since we have shown that we can use options in the companies to estimate the jump
we will now look at two di�erent schemes to delta hedge the options using the fact
that we can separate these two di�erent volatilities, the jump volatility and the stocks
underlying volatility.

6.2 General delta hedging scheme with daily rebalancing

Lets assume we have a call option C0 = C(S0, σ, 0) at time 0, where σ is the estimated
volatility used to price the option. Let a trader sell this option at time 0. He will
then collect the cash C0 at time zero. The delta of the portfolio is now the delta
of the option. To make the portfolio delta neutral the trader needs to buy delta
number of stocks in the underlying security. The trader thus have to borrow this
amount and pay the interest rate r. When this is done the portfolio is delta neutral,
if we assume that the stock only make small moves in each time step. If the trader
wants to rebalance the portfolio on a daily basis he need to calculate the delta of the
option the next day, using the new stock price. The trader then needs to rebalance
the portfolio depending on the di�erence between the �rst and the second day delta.
He either needs to buy or sell ∆(S1, t1, σ)−∆(S0, t0, σ) number of stocks at the spot
price at that day. The cash�ows for the whole process is thus:
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B0 = −∆(S0, t0, σ)S0

B1 = er∆tB0 − (∆(S1, t1, σ)−∆(S0, t0, σ))S1

B2 = er∆tB1 − (∆(S2, t2, σ)−∆(S1, t1, σ))S2

...

...

if ST > K

BT = er∆tBT−1 −K + (1−∆(ST−1, tT−1, σ))ST

if ST ≤ K
BT = er∆tBT−1 + ∆(ST−1, tT−1, σ))ST

At the last day the option will either be in our out of the money. If the option is in
the money the trader needs to pay the di�erence between the strike price and the
stock price at time T to the owner of the option. If the stock is out of the money at
time T he will just recieve the stocks value times his position (delta) on day T − 1.

The total cash�ow BT is thus the cost of the delta hegde. If we could hedge conti-
nously, and discounted with the interest rate r, this value would be the same as the
value of the option at time t0.

2

6.3 Discretization of Black & Scholes with deterministi-

cally timed jumps using Euler Scheme

To be able to simulate the model in Equation (4.10) a discretization of the model is
needed.

Starting with Equation (4.10) we see that the log price Xt = log(St) is

Xt = X0 + (r − 1

2
σ2)t+ σWt +

Nd
T∑

j=1

Yj (6.1)

The discretization of Equation (6.1) can then be done via a Eueler-sheme. This
Eueler-scheme can be written as

Xt+∆t = Xt+(r− σ
2

2
)∆t+σ

√
∆tW − 1

2
σ2
j I{t+∆t = sj}+σjI{t+∆t = sj}ε (6.2)

Here both W and ε are N(0, 1) distributed and independent. I{t + ∆t = sj} is as
before the indicator function, being one if t+ ∆t is the jump time sj .

2Fundamentals of Futures and Options Markets (6th edition) by John Hull, 2008, Chapter 15.4
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6.4 Hedging stocks with one deterministically timed event

We now look at the problems of delta hedging call options with one deterministically
timed event for the underlying stock. If a large jump realizes a portfolio that is setup
with delta based on the previous trading day will not be immune to this directional
move, due to the fact that the delta discussed above only is e�ective for small moves
in the stock price. Even though we realize that we can't be delta neutral over the
over the jump, we are interested in analyzng what happends if we use the delta
hedging scheme in Section 6.2

If we assume that the stock follows the the model in Equation (6.2), and that we are
looking at discrete times, we can see that the extra voltility and jump only a�ects
one day, the day of the jump. The stock therfore moves like a stock without jumps
and σ as volatilty term during all the other days during the time span we are looking
at. But when pricing the option we must take this jump into consideration before
the actual jump. So which volatility should we use to hedge the option?

Our �rst choice is to use the markets implied volatility, in our case it would be γ
from Equation (4.13). This choice of volatility thus have a pre jump volatility and a
post jump volatility. We are going to use the same scheme as we have discussed and
shown in the Section 6.2 above to hedge the option. This strategy should leave the
total portfolio delta neutral up until the day before the event and after the event.

The second method will be using only the σ, i.e. the volatilty without any jumps,
and use this volatility during the whole hedging scheme. We can think of this as the
actual volatility of the stock if the jump would not happened. This can also be seen
as chosing to hedge with the historical return volatility of the stock. This choice
of volatility used to calculate delta will not leave the portfolio delta neutral. These
kind of simulations and questions have been dicussed and analyzed in [2] for stocks
that does not jump.

6.5 Simulation setup

To hedge the options we will asume the following values for the variables necessary
to simulate the underlying process and estimate the cost of the delta hegde. We will
make no distinction between the drift in the stock price and the interest rate.

S0 K σj σ T Tjump r ∆t

100 100 0.7 0.4 2/12 20 0.05 T/40

Table 6.1: Values for the parameters used in the delta hedging simulations.

The parameter Tjump is the timing of the jump and is here assumed to be in the
middle of the maturity of the option. The choice of looking at a jump that is about
one month into an option comes from the fact that we did not �nd many options
with events and maturities after these events that had longer time until the event
would happen. The reason for this could be that traders are unwilling to quote prices
in these options further away from the events. The choice of the jump volatility σj
and normal volatility σ are chosen arbitrarily.
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We will in the below analysis �rstly look at three di�erent scenarios. One were the
stock has negative jump, one where the stock has a positive jump and one were the
stock does not jump.
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6.6 Scenario 1: negative jump

6.6.1 Hedging negative jump with γ

We start by looking at the scheme of hedging the call options with the actual implied
volatility that the options market is pricing the options with. This is hence γ2 =

σ2 + (T − t)−1
Nd
T∑

j=1
(σj)

2 in our model, where σ is the normal volatility of the option

and σj is the jump volatility. We here assume that we can know this volatility γ.
What this indicates is that we know σ and σj . We also see that this γ volatility is
not constant, even though σ and σj are constant. After the jump the volatility γ is
equal to σ.

The scenario we will go through is going to be a discrete hedging scheme of an option
expering in two months that has a jump at day 20, as speci�ed in Table 6.1. We are
hence looking at hedging the option daily for 40 days. From the discretization above
we simulate the stocks path and will in the below table show the result of the delta
hedging scheme.

Day Share price Delta Shares Cost of Cumulative cost Interest

purchased shares including interest

0 100 0.6447 0.6447 -64.4678 -64.4678 0.0134
1 104.2153 0.6657 0.021 -2.1865 -66.6677 0.0139
2 104.4672 0.6667 0.001 -0.1097 -66.7912 0.0139
3 104.5658 0.667 0.0003 -0.0319 -66.837 0.0139
4 102.5895 0.6571 -0.0099 1.0159 -65.8351 0.0137
5 102.4951 0.6565 -0.0007 0.067 -65.7817 0.0137
• • • • • • •
16 105.3783 0.6687 -0.008 0.8388 -67.5425 0.0141
17 104.6113 0.6648 -0.0039 0.4088 -67.1478 0.014
18 105.7461 0.6701 0.0053 -0.5649 -67.7266 0.0141
19 101.2702 0.6476 -0.0225 2.2804 -65.4603 0.0136
20 75.6159 0.01 -0.6376 48.2151 -17.2588 0.0036
21 73.2755 0.0038 -0.0062 0.4552 -16.8072 0.0035
22 73.3916 0.0031 -0.0007 0.0483 -16.7624 0.0035
23 74.629 0.0039 0.0008 -0.0568 -16.8227 0.0035
• • • • • • •
36 79.4382 0 0 0.0013 -16.5778 0.0035
37 82.0341 0 0 0 -16.5813 0.0035
38 84.0169 0 0 0.0004 -16.5844 0.0035
39 84.528 0 0 0.0001 -16.5878 0.0035
40 83.0243 0 0 0 -16.5912 0.0035

Table 6.2: Delta hedging scheme for sample path with negative jump using γ as the
volatility parameter for delta.

As we can see in the table the interestng part is on day 19 and 20. On day 20 the
stock jumps from 101.27 to 75.62. The delta of the option is reasonably stable around
0.65 before the jump, and there is hence not much rebalancing in the portfolio. After
the jump the delta goes down to close to zero and almost the whole position in the
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stock is sold.

6.6.2 Hedging negative jump with σ

The next strategy we will look at is using the volatility of the underlying stock if we

would discard the jump. In the equation γ2 = σ2 + (T − t)−1
Nd
T∑

j=1
(σj)

2 this would

correspond to the volatility σ. This is therefore lower than the γ before the jump
but equal to it after the jump. On the day before the event day, day 19 in Table 6.3,
the delta should therefore be lower than in Table 6.2 using γ as volatility parameter.
After the jump on day 20 almost the whole position in the stock is sold.

Day Share price Delta Shares Cost of Cumulative cost Interest

purchased shares including interest

0 100 0.5528 0.5528 -55.2777 -55.2777 0.0115
1 104.2153 0.6506 0.0979 -10.1998 -65.489 0.0136
2 104.4672 0.6569 0.0062 -0.6485 -66.1511 0.0138
3 104.5658 0.6598 0.0029 -0.3063 -66.4712 0.0138
4 102.5895 0.6144 -0.0454 4.6526 -61.8324 0.0129
5 102.4951 0.6123 -0.0021 0.2136 -61.6316 0.0128
• • • • • • •
16 105.3783 0.6974 -0.0381 4.0195 -72.3218 0.0151
17 104.6113 0.6789 -0.0185 1.9329 -70.404 0.0147
18 105.7461 0.7122 0.0333 -3.5163 -73.935 0.0154
19 101.2702 0.5804 -0.1318 13.3488 -60.6016 0.0126
20 75.6159 0.01 -0.5704 43.1289 -17.4853 0.0036
21 73.2755 0.0038 -0.0062 0.4552 -17.0338 0.0035
22 73.3916 0.0031 -0.0007 0.0483 -16.989 0.0035
23 74.629 0.0039 0.0008 -0.0568 -17.0493 0.0036
• • • • • • •
36 79.4382 0 0 0.0013 -16.8051 0.0035
37 82.0341 0 0 0 -16.8086 0.0035
38 84.0169 0 0 0.0004 -16.8118 0.0035
39 84.528 0 0 0.0001 -16.8152 0.0035
40 83.0243 0 0 0 -16.8187 0.0035

Table 6.3: Delta hedging scheme for sample path with negative jump using σ as the
volatility parameter for delta.

6.6.3 Comparing the two strategies for negative jump

We start by noticing that the hedging cost after day 20 are the same for both strate-
gies. This is what we expected to �nd since after the jump γ = σ. It is therefore
what happends before day 20 that is interesting to look at. We see that for the γ
strategy the delta is higher for day 0. This is because the volatilty used in calculate
the delta is higher than for the σ strategy. The γ strategy therefore makes us buy
more shares at day 0 than the σ strategy. As we see on day 19 the cumulative costs is
60.6 for the σ strategy but for the γ strategy approximetly 65.5, but we are holding
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more shares in the γ strategy. On the next day, day 20, the stock jumps down to
75.6. After this jump, on day 20, the delta of the two strategies are the same so from
then on the heding costs will be the same. From the the γ strategy we can see that
the cost for the 0.6476 shares on day 19 is 65.4603/0.6476 = 101.0814, but for the
σ strategy the average cost on this day was 104.41. It has therefore up until day 19
costed more per share for the σ hedging scheme. Since we have the same delta on
day 20 and afterwards, this means that when the almost all the positions are sold
on day 20 we will have a larger cost for the hedging strategy using σ.

In this example of a negative jump we therefore see that the sample path that the
stock take leading up to the jump is the factor that decides wich strategy that is the
least costly.
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6.7 Scenario 2: no jump

The second scenario we will look at is when the stock price does not jump.

6.7.1 Hedging no jump with γ

We once again start by looking at the γ strategy. We have exactly the same setup
as before expect that we are looking at a sample path without the jump. Looking at
day 20 in Table 6.4 we can see that the stock does not jump on this day. By looking
at day 40 we can see that the stock ends in the money (115.8425 > 100) and that
the whole position in the stock is sold on that day. Since we have sold an option we
have to give the option holder the the 15.84 that is over the strike price 100. We
hence only recieve 100 on the last trading day.

Day Share price Delta Shares Cost of Cumulative cost Interest

purchased shares including interest

0 100 0.6447 0.6447 -64.4678 -64.4678 0.0134
1 98.9104 0.6388 -0.0059 0.5825 -63.8988 0.0133
2 100.4673 0.6467 0.0079 -0.7959 -64.708 0.0135
3 102.3209 0.6559 0.0092 -0.9451 -65.6665 0.0137
4 104.1099 0.6646 0.0087 -0.903 -66.5832 0.0139
5 103.576 0.6618 -0.0028 0.2895 -66.3076 0.0138
• • • • • • •
16 92.1413 0.5978 0.0148 -1.3607 -60.3375 0.0126
17 92.7467 0.6011 0.0033 -0.3087 -60.6588 0.0126
18 97.337 0.6269 0.0258 -2.5093 -63.1808 0.0132
19 92.5481 0.5995 -0.0274 2.5363 -60.6577 0.0126
20 92.2335 0.2721 -0.3273 30.1926 -30.4777 0.0064
21 91.8534 0.2535 -0.0187 1.715 -28.7691 0.006
22 95.8248 0.382 0.1285 -12.3125 -41.0876 0.0086
23 97.294 0.432 0.0501 -4.8717 -45.9678 0.0096
• • • • • • •
36 105.1129 0.8432 0.2064 -21.6927 -89.4724 0.0186
37 108.5678 0.9696 0.1264 -13.7225 -103.2136 0.0215
38 113.312 0.9997 0.0302 -3.4167 -106.6518 0.0222
39 115.1728 1 0.0003 -0.032 -106.706 0.0222
40 115.8425 1 -1 100 -6.7283 0.0014

Table 6.4: Delta hedging scheme for sample path with negligible jump using γ as the
volatility parameter for delta.

6.7.2 Hedging no jump with σ

Using only σ we get the result in Table 6.5. We can here again see that the option
is in the money on the last trading day and that the stock position is closed on that
day. But, once again, since we have sold a call option we need to pay the di�erence
between the strike and the stock price to the holder of the option, only leaving us
with 100 on the last day.
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Day Share price Delta Shares Cost of Cumulative cost Interest

purchased shares including interest

0 100 0.5528 0.5528 -55.2777 -55.2777 0.0115
1 98.9104 0.5251 -0.0276 2.7334 -52.5559 0.011
2 100.4673 0.563 0.0379 -3.8047 -56.3715 0.0117
3 102.3209 0.6078 0.0448 -4.5868 -60.97 0.0127
4 104.1099 0.6502 0.0424 -4.4099 -65.3927 0.0136
5 103.576 0.6384 -0.0118 1.2244 -64.1819 0.0134
• • • • • • •
16 92.1413 0.2931 0.064 -5.9014 -31.3977 0.0065
17 92.7467 0.3059 0.0128 -1.1858 -32.5901 0.0068
18 97.337 0.4505 0.1446 -14.071 -46.6678 0.0097
19 92.5481 0.2883 -0.1622 15.0088 -31.6687 0.0066
20 92.2335 0.2721 -0.0161 1.4895 -30.1858 0.0063
21 91.8534 0.2535 -0.0187 1.715 -28.4771 0.0059
22 95.8248 0.382 0.1285 -12.3125 -40.7955 0.0085
23 97.294 0.432 0.0501 -4.8717 -45.6757 0.0095
• • • • • • •
36 105.1129 0.8432 0.2064 -21.6927 -89.1796 0.0186
37 108.5678 0.9696 0.1264 -13.7225 -102.9206 0.0214
38 113.312 0.9997 0.0302 -3.4167 -106.3588 0.0222
39 115.1728 1 0.0003 -0.032 -106.413 0.0222
40 115.8425 1 -1 100 -6.4351 0.0013

Table 6.5: Delta hedging scheme for sample path with negligible jump using σ as
the volatility parameter for delta.

6.7.3 Comparing the two strategies for no jump

From the Tables 6.4 and 6.5 we see that when we are using γ the delta is higher than
using σ and we are hence at day 0 buying more shares using the γ strategy. It is now
also interesting to note that since the stock is moving down coming up to day 20 the
delta for the σ strategy is also decreasing, but for the γ strategy it is still reasonably
high, and this bacause the volatility used to calculate the delta is higher. On day 20
the delta for the γ strategy drops sharply. The average cost for the stocks held for
the σ strategy at day 20 is 110.9364 and for the γ strategy 112.0066. We therefore
here see that the σ strategy is less costly in this scenario since the remaining costs
for hedging are the same for both strategies. The di�erence in the end is though not
that large, 6.4351 for the σ strategy and 6.7283 for the γ strategy.
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6.8 Scenario 3: postitive jump

We will now look at the last scenario where the stock takes a large upward jump at
the event time.

6.8.1 Hedging positive jump with γ

In Table 6.6 we can see that the jump at day 20 is large, the stock price moves from
99.5858 to 204.2846. At day 20 the stock is therefore in the money and the delta is
1 from this day and no more rebalancing is done. The only change going down to
day 40 is that the interest is increasing the hedging cost. At day 40 the stock is still
in the money so the position is closed and we recieve 100 since we have to give the
di�erence between the strike price to the holder of the option.

Day Share price Delta Shares Cost of Cumulative cost Interest

purchased shares including interest

0 100 0.6447 0.6447 -64.4678 -64.4678 0.0134
1 101.3342 0.6513 0.0067 -0.6746 -65.1558 0.0136
2 101.7924 0.6535 0.0021 -0.2174 -65.3868 0.0136
3 104.1349 0.6649 0.0114 -1.1921 -66.5925 0.0139
4 109.6737 0.6907 0.0257 -2.8234 -69.4298 0.0145
5 109.0758 0.6878 -0.0028 0.3106 -69.1336 0.0144
• • • • • • •
16 101.3694 0.6487 0.0051 -0.5173 -65.302 0.0136
17 101.5549 0.6495 0.0008 -0.0776 -65.3932 0.0136
18 101.7142 0.6501 0.0006 -0.064 -65.4708 0.0136
19 99.5858 0.6388 -0.0113 1.1238 -64.3607 0.0134
20 204.2846 1 0.3612 -73.7855 -138.1596 0.0288
21 198.9328 1 0 0 -138.1884 0.0288
22 196.7012 1 0 0 -138.2172 0.0288
23 198.3447 1 0 0 -138.246 0.0288
• • • • • • •
35 177.5459 1 0 0 -138.592 0.0289
36 173.4704 1 0 0 -138.6209 0.0289
37 169.925 1 0 0 -138.6498 0.0289
38 170.8202 1 0 0 -138.6786 0.0289
39 166.8036 1 0 0 -138.7075 0.0289
40 163.679 1 -1 100 -38.7364 0.0081

Table 6.6: Delta hedging scheme for positive jump using γ as the volatility parameter
for delta.

6.8.2 Hedging positive jump with σ

On day 20 in Table 6.7 delta is one since the option is deep in the money and the
strtegy thus tells us to buy a full position in the share. For the σ strategy we again
see that the option is in the money at maturity when the position in the stock is
closed, but again we only recieve 100 since the rest is paid to the option holder.
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Day Share price Delta Shares Cost of Cumulative cost Interest

purchased shares including interest

0 100 0.5528 0.5528 -55.2777 -55.2777 0.0115
1 101.3342 0.5844 0.0316 -3.2064 -58.4956 0.0122
2 101.7924 0.5952 0.0108 -1.0972 -59.6049 0.0124
3 104.1349 0.6501 0.0549 -5.7171 -65.3345 0.0136
4 109.6737 0.7648 0.1147 -12.583 -77.931 0.0162
5 109.0758 0.7558 -0.009 0.9858 -76.9615 0.016
• • • • • • •
16 101.3694 0.5833 0.0309 -3.1288 -59.6649 0.0124
17 101.5549 0.5891 0.0058 -0.5902 -60.2675 0.0126
18 101.7142 0.5943 0.0053 -0.5345 -60.8145 0.0127
19 99.5858 0.5243 -0.07 6.9715 -53.8556 0.0112
20 204.2846 1 0.4757 -97.1695 -151.0364 0.0315
21 198.9328 1 0 0 -151.0679 0.0315
22 196.7012 1 0 0 -151.0993 0.0315
23 198.3447 1 0 0 -151.1308 0.0315
• • • • • • •
36 173.4704 1 0 0 -151.5407 0.0316
37 169.925 1 0 0 -151.5723 0.0316
38 170.8202 1 0 0 -151.6038 0.0316
39 166.8036 1 0 0 -151.6354 0.0316
40 163.679 1 -1 100 -51.667 0.0108

Table 6.7: Delta hedging scheme for sample path with positive jump using σ as the
volatility parameter for delta.

6.8.3 Comparing the two strategies for positive jump

In this scenario we can see that there is a great di�erence between the two strategies.
The γ strategies total cost is 38.7364 but for the σ strategy the total cost is 51.667.
In this case the higher delta of the γ strategy lead to that this strategy held a larger
position in the stock prior to the large positive jump. This lead to that this strategy
had bought more of the stock at the prices before day 20 than in the σ strategy case.
This leads to that when the jump has occured the γ strategy does not need to buy as
many shares as in the σ case, and the cost hence becomes lower using this strategy.
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6.9 Repeated simulation of the hedging strategies

Now that we have shown how we setup the di�erent strategies, and how they behave
in di�erent scenarios, we want to test them against each other using monte carlo
simulation. Since we are interested in options that have roughly a two month matu-
rity we will stick to the model setup that we have above and do 20'000 simulations
of the stock price to test the di�erent strategies against each other.

In Figure 6.1 we have the distribution of returns for the di�erent sample paths. We
can from this see that there are some returns that are extrem, returns were the stock
increases 10 times its initial value. The mean return for the sample is 0.18%.
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Figure 6.1: Histogram of the returns for the sample paths for a stock simulated from
the Black & Scholes model with deterministic events.

We will now test our two di�erent hedging schemes on the simulated sample paths.
When performing the delta hedging schemes we will in this part discount the total
cost of the hedging strategy for all the sample paths. We will then, for each hedging
strategy, take the average of all the discounted hedging costs to get the mean cost
of the strategy, in today's money value.

If we use the pricing model in Theorem 4.3, and the parameters in Table 6.1, we get
the price for the option to be 28.3705. This price is of course independent of the
sample path, but the delta hedging schemes are not, which we have shown in the
previous sections.

Having evaluated the hedging schemes on the simulation we got the result that using
only σ strategy gave the lowest hedging cost of 28.0664. The strategy using the γ
strategy gave the mean hedging cost 28.3440.

If we look at other measures for the strategies we can see that even though hedging
using only σ is the least costly strategy on average, it also has the largest standard
deviation. This strategy has 29.94 in standard deviation in comparison to the 21.67
using γ. Hedging using only σ is also the most risky strategy if we look at the 99
percentile of the distribution of hedging costs for the strategy. The 99-percentile of
the distribution for the hedging costs using only σ was 150.84 but only 108.87 using
γ.

It is now interesting to see what happens if we move the event time. If we move the
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event to day 30 we get that the cheapest strategy is the σ strategy again with an
average hedging cost of 28.2548. The γ strategy had a hedging cost of 28.3212.

To see the di�erences between the di�erent strategies we will here present a table
with di�erent parameters of Tjump and the jump volatility σj .

Tjump Strategy Jump size

0.5 0.7 1.0

Day 10
Sigma 21.0699 28.4411 38.6901

Gamma 21.1072 28.4307 38.7659

Day 20
Sigma 21.1813 28.0664 38.7543

Gamma 21.1261 28.3440 38.8935

Day 30
Sigma 20.8370 28.2548 38.8047

Gamma 21.0405 28.3213 38.8065

Table 6.8: Matrix of discounted hedging costs using the di�erent hedging schemes.
Columns vary in jump size and rows vary in timing of jump. Bold letters mean that
this is the least costly strategy given the parameter setting for that simulation.

We �rst notice that for all jump sizes in Table 6.8 that the jump is close to the
maturity of the option, i.e. on day 30 in our example, the least costly strategy is to
use the σ scheme. It is also interesting to note that the lowest cost was given when
using only σ when the jump volatility was the largest, i.e. 1.0.

Again we have that the risk, given as volatility and percentile (or VaR), is larger for
the strategy using only σ. Simulating with the jump at day 20 and the jump volatility
σQ we got that the standard deviation for the σ strategy was 54.5437 and the 99
percentile was 243.2197. For the γ strategy the standard deviation was only 32.3972
and the 99 percentile 155.8839. For the small gain that one could earn by hedging
using the σ strategy in comparison to the large di�erence in risk, the conclusion can
only be that using γ to hedge should be the method to choose.

6.10 Conclusion from delta hedging strategies

In this analysis we have looked at using a regular delta hedging scheme with two
di�erent choices of volatilty to use when calculating the delta to hedge the option
with. One choice have been to use the full volatility γ and the second to only use
σ. The choice of σ is done to see what would happend if one did not take the jump
into consideration when delta hedging.

From our analysis of the two di�erent strategies of hedging stocks with jumps we
�nd that using the markets volatilty γ does not give the on average cheapest hedging
costs, but it is the least volatile and risky alternative. If one would only use σ to hedge
the option the portfolio would not be delta neutral before the jump but this strategy
was the one that had the lowest hedging cost in the most number of situations. The
negative side of chosing this strategy is though that the variance is much higher.
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Chapter 7

Conclusion

This thesis has analyzed the e�ects of jumps in the sample paths of stocks in health-
care and biotechnology companies. The jumps we were interested in examining was
jumps that were triggered by regulatory events, events that is known before they
happen.

To conduct the study of the jumps in these companies we therefore derived a model
to simulate the sample path of a stock with deterministically timed jumps. We did
this by extending the Black & Scholes model with a sum of variables modeled as
normal distributions. From the model we then derive a closed form option pricing
formula that is very similar to the Black & Scholes option formula, but were we have
separated the volatility into two terms. We called this volatility γ and it was made
up of both the normal volatility of the underlying stock and a jump volatility.

The setup of the model indicates two testable characteristics for the IV used to price
options on companies that have one event within the time span from today until
maturity. The characteristics are that volatilities should increase leading up to the
event and decrease discontinuously after the event.

To see if we could use the model to predict the size of the jump we looked at a jump
estimator that we called the term structure estimator that use the information of
two options with di�erent maturities to calculate the jump volatility.

To see if the market actually behaves like the modeled derived we looked at 41 NDA
events during the years 2009 until February of 2011. Using both stock prices, ATM
implied volatilities and option prices we could see that the market seem to be pricing
the options according to our characteristics of the volatility. We also found that using
the term structure estimator we could �nd the implied jump for the companies and
that this jump volatility was substantial for many companies. Using this estimator
could therefore be very useful when evaluating if to invest in the companies.

The last part of the thesis was concerned with the problem of delta hedging options in
companies with deterministically timed events. From the option pricing formula we
derived we saw that the delta of the option could be calculated in the same manner as
the usual Black & Scholes delta, but that the volatility used in the calculation could
be divided into two separate volatilities, a normal volatility and a jump volatility.
Due to the fact that the stock price might jump on the event day we conclude that
it is not possible to maintain a delta neutral position, using a stock and an option,
over the jump. Since the new jump model gave us the possibility to separate the two
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di�erent IV's we were interested in analyzing the di�erences in results from using
these two di�erent volatilities in a delta hedging scheme.

From analyzing the two di�erent choices of delta we found that the using the market's
volatility, γ in our case, was the least risky alternative. Using only σ was on average
the least costly alternative, but also much more risky. The small gain that the
strategy had over the γ strategy did not justify the larger risk for this strategy.

Since we have seen that these jump e�ects can have great impact, the analysis and
results in this thesis should be useful for traders, portfolio managers and risk analysts.
From a risk perspective the discretized model now makes it possible to simulate the
returns of companies with deterministically timed jumps. Using this model one
should get more accurate risk values for VaR and expected shortfall. For portfolio
managers the possibility to back out the implied jump could help them to better
asses if their beliefs are in line with the market.
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Chapter 8

Appendix

8.1 Proof of opition pricing formula

From Theorem 7.8 in [3] we know that the arbitrage free price of the claim Φ(ST ) is
given by Π(t; Φ) = F (t, St) where F is given by

F (t, St) = e−r(T−t)EQt,St [Φ(ST )]

where the Q-dynamics of S are described by equation (4.11).

Now, letting ST = Ste
YT , where St is deterministic, we have

F (t, St) = e−r(T−t)
∫ ∞
∞

Φ(Ste
(µ− 1

2
γ2)(T−t)+γ

√
T−tε)f(ε)dε

where f(ε) is the probability density function of a normal distribution.

Letting Φ(ST ) = max[ST −K, 0] we get that

EQt,St [max(Ste
YT −K, 0)] =

=

[
max(Ste

YT −K, 0) = Ste
YT −K if ε ≥

log(KSt )− (µ− 1
2γ

2)(T − t)
γ
√
T − t

= d

]
= 0 ·Q(Ste

(µ− 1
2
γ)(T−t)+γ

√
T−tε ≤ K)

+ e−r(T−t)
∫ ∞
d

Φ(Ste
(µ− 1

2
γ2)(T−t)+γ

√
T−tε) −K)f(ε)dε

= e−r(T−t)
∫ ∞
d

(Ste
(µ− 1

2
γ2)(T−t)+γ

√
T−tε) −K)f(ε)dε

= e−r(T−t)
1√
2π

∫ ∞
d

(Ste
(µ− 1

2
γ2)(T−t)+γ

√
T−tε) −K)e

−ε2
2 dε

= Ste
−r(T−t) 1√

2π

∫ ∞
d

e(µ− 1
2
γ2)(T−t)+γ

√
T−tε)e

−ε2
2 dε− e−r(T−t) 1√

2π

∫ ∞
d

Ke
−ε2
2 dε

(8.1)

We now look at the two integrals in equation (8.1) seperatly, and we begin with the
second integral.
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e−r(T−t)
1√
2π

∫ ∞
d

Ke
−ε2
2 dε =

= e−r(T−t)
1√
2π

(∫ ∞
−∞

Ke
−ε2
2 dε−

∫ d

−∞
Ke

−ε2
2 dε

)
= e−r(T−t)K(1− Φ(d))

where Φ(d) is the value of the cumulative normal distribution function at d.

We now solve the �rst integral in equation (4.12).

Ste
−r(T−t) 1√

2π

∫ ∞
d

(e(µ− 1
2
γ2)(T−t)+γ

√
T−tε)e

−ε2
2 dε =

= Ste
−r(T−t)e(µ− 1

2
γ2)(T−t) 1√

2π

∫ ∞
d

eγ
√
T−tεe

−ε2
2 dε

= Ste
−r(T−t)e(µ− 1

2
γ2)(T−t) 1√

2π

∫ ∞
d

eγ
√
T−tε+−ε2

2 dε

= Ste
−r(T−t)e(µ− 1

2
γ2)(T−t)e

γ2(T−t)
2

1√
2π

∫ ∞
d

e−
γ2(T−t)

2
+γ
√
T−tε+−ε2

2 dε

= Ste
−r(T−t)e(µ− 1

2
γ2)(T−t)e

γ2(T−t)
2

1√
2π

∫ ∞
d

e−
1
2

(ε−γ
√
T−t)2dε[

let y = ε− γ
√
T − t and dy = dε

]
= Ste

−r(T−t)e(µ− 1
2
γ2)(T−t)e

γ2(T−t)
2

1√
2π

∫ ∞
d−γ
√
T−t

e
−y2
2 dy

= Ste
−r(T−t)e(µ− 1

2
γ2)(T−t)e

γ2(T−t)
2

1√
2π

(∫ ∞
−∞

e
−y2
2 −

∫ d−γ
√
T−t

−∞
e

−y2
2

)
dy

= Ste
−r(T−t)+µT e

1
2

(T−t)(γ2−γ2)(1− Φ(d− γ
√
T − t)

= Ste
−r(T−t)+µT (1− Φ(d− γ

√
T − t)

Once again Φ(d−γ
√
T − t) is the value of the cumulative normal distribution function

at that point.

So far we thus have this solution:

EQt,St [max(Ste
YT −K, 0)] = Ste

−r(T−t)+µ(1−Φ(d−γ
√
T − t))−e−r(T−t)K(1−Φ(d))

Since,

1− Φ(d− γ
√
T − t) = Φ(−(d− γ

√
T − t)) = Φ

(
1

γ
√
T − t

[
log(

St
K

) + (µ+
1

2
γ2)(T − t)

])
,

and

1− Φ(d) = Φ(−(d)) = Φ

(
1

γ
√
T − t

[
log(

St
K

) + (µ− 1

2
γ2)(T − t)

])
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we set

d1(t, St) =
1

γ
√
T − t

[
log(

St
K

) + (µ+
1

2
γ2)(T − t)

]
d2(t, St) = d1 − γ

√
T − t

We then have that

EQt,St [max(Ste
YT −K, 0)] = Ste

−r(T−t)+µ(T−t)Φ(d1)− e−r(T−t)KΦ(d2)

but since µ = r we state Theorem 4.3.
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