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Abstract

As accurately as possible, creditors wish to determine if a potential debtor will
repay the borrowed sum. To achieve this mathematical models known as credit
scorecards quantifying the risk of default are used. In this study it is investigated
whether the scorecard can be improved by using reject inference and thereby in-
clude the characteristics of the rejected population when refining the scorecard.
The reject inference method used is parcelling. Logistic regression is used to es-
timate probability of default based on applicant characteristics. Two models, one
with and one without reject inference, are compared using Gini coefficient and es-
timated profitability. The results yield that, when comparing the two models, the
model with reject inference both has a slightly higher Gini coefficient as well as
showing an increase in profitability. Thus, this study suggests that reject inference
does improve the predictive power of the scorecard, but in order to verify the results
additional testing on a larger calibration set is needed.



Sammanfattning

Långivare strävar efter att, så korrekt som möjligt, avgöra huruvida en potenti-
ell gäldenär kommer att återbetala en erhållen kredit. I avsikt att uppnå detta och
kvantifiera risken av en kreditförlust nyttjas matematiska modeller betecknade som
scorekort. I denna studie undersöks om scorekortet kan förbättras genom reject in-
ference, det vill säga metoden att inkorporera data från nekade kreditansökanden
när scorekortet förfinas. Reject inference-metoden som används heter parcelling.
Logistisk regression används för att uppskatta sannolikheten av en kreditförlust ba-
serat på den ansökandes karakteristika. Två modeller skapas, en baserad enbart på
godkända köp och den andra med data från såväl nekade köp som godkända, där
jämförelser görs mellan modellernas Ginikoefficient och uppskattade lönsamhet.
Erhållna resultat ger, vid jämförelse av modellerna, att modellen med data från
såväl godkända som nekade kunder både uppvisar en något högre Ginikoefficient
och en ökad lönsamhet. Resultaten från denna studie indikerar således att reject in-
ference förbättrar scorekortets prediktiva förmåga, men för att verifiera resultaten
erfordras ytterligare tester med en större kalibreringsgrupp.
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1 Introduction

When a person applies for credit the creditor requires a method for determining
whether the request is to be approved or rejected. Mathematical models known as
credit scorecards (henceforth only denoted as scorecards) are tools that estimate
the probability of how the potential debtor will behave if the sought after credit is
granted. The scorecards need input variables, i.e. the personal data, e.g. age and
income, associated with this particular applicant in order to decide the outcome
of the petition, but the exact implementation of this procedure is different for all
creditors.

In those instances when credit is granted the applicant’s repayment behaviour
will be observed by the creditor, and it can be established if the credit was good (the
applicant paid the money back) or bad (a default by the applicant). Evidently, re-
payment behaviour cannot be documented when the credit request is denied, which
creates an inherently biased representation of what characteristics lead to a good
credit. This can constitute a problem if new rules for credit risk assessment in the
updated scorecard are constructed solely from data of previously accepted appli-
cants. Unintentionally, this way one may screen perfectly good applicants merely
because the initial decision model rejected them and the ensuing refinements only
utilise data from those approved.

Should the model be applied exclusively on that part of the population featuring
approved characteristics, this would not be an issue. However, since generally the
model is meant to be used on the whole population, neglecting this bias may result
in unwanted rejections. In order to devise a scorecard with an efficiency as high
as possible creditors would prefer to include the data from the spurned population;
the technique known as reject inference enables this.

Reject inference is the procedure when the outcome of earlier rejected appli-
cants is modelled in order to be able to label them as good or bad. This way, the
creditor is able to improve the existing scorecard without the aforementioned bias.

The aim of this thesis is to investigate the possibility for reject inference on
the data of aspiring purchasers of goods from various online stores that use the
service of the company Klarna. This company’s service is to enable the customer
to purchase the desired goods from the e-store in question, get it sent home, and first
then pay for it; the whole credit risk is thus transferred from the store to the credit
providing company. Therefore it lies in the company’s interest to, as accurately as
possible, be able to model the credit worthiness of these would-be consumers of
goods.

It is to be noted that the above stated problem not exclusively pertains to credit
scoring, but exists in various other fields where a selection in some way is per-
formed and further observations are impossible unless the object in question was
included in the sample.
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2 Missing Data and Its Implications for Reject Inference

2.1 Three Missing Data Scenarios

The need for reject inference arises because of missing outcome performance, i.e.
the creditor is unable to observe if rejected applicants are good or bad. Three
commonly used missing data scenarios, initially derived by Little and Rubin in
[7], are now introduced. The following description is based on the missing data
scenario summary in [4, pp. 2-5].

For each applicant a vector of variables x = (x1, . . . , xk) is observed, where
this data may stem from the applicant or from other sources. A variable a ∈ {0,1}
is assigned to each applicant, where a = 0 denotes an accepted credit and a =
1 a rejected credit. For accepted applicants an additional variable y ∈ {0,1} is
introduced, which is missing for rejected ditto. Here, y = 1 indicates a bad credit
and y = 0 a good credit. The three types of missing data scenarios will be described
below. The variable y is set to be

• missing completely at random (MCAR) if P(a = 0) = P(a = 0 ∣ x, y), i.e.
acceptance is independent of both the data and outcome performance;

• missing at random (MAR) if P(a = 0) ≠ P(a = 0 ∣ x) = P(a = 0 ∣ x, y), i.e.
acceptance is dependent on the data but independent of outcome perfor-
mance;

• missing not at random (MNAR) if P(a = 0) ≠ P(a = 0 ∣ x) ≠ P(a =
0 ∣ x, y), i.e. acceptance is dependent on both the data and outcome per-
formance.

Table 2.1: Missing outcome performance framework.

MCAR is applicable when choices were made totally randomly, e.g. by tossing a
(perfect) coin. This is, for understandable reasons, not widely used in practice, but
may be used initially to get a first data sample to work with.

For the other two scenarios, selection criteria are based on x. First out is the
case MAR, which is common in practice and occurs when a selection model is
fully automated, such that y is observed only when some function of the xis, i =
1, . . . , k exceeds a specified threshold or cut-off value. From the MAR assumption
an important property follows:

P(y = 0 ∣ x,a = 0) = P(y = 0 ∣ x,a = 1) = P(y = 0 ∣ x), (2.1)

i.e. the distribution of the observed y is the same as the distribution of the missing
y at any fixed value x.

A third possibility is the MNAR scenario—the most complicated case—where
acceptance is influenced by extraneous factors not recorded in x, e.g. an under-
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writer overriding the decision of the system or an initially declined customer sway-
ing the outcome by perseverance. In this case

P(y = 0 ∣ x,a = 0) ≠ P(y = 0 ∣ x,a = 1), (2.2)

meaning that the distribution of the observed y differs from the distribution of the
missing y at any x where an extraneous factor influenced the decision.

In cases MCAR and MAR, data is labelled as being ignorably missing, in effect
meaning that analysis can be performed only on observed performance. On the
other hand, for the MNAR cases, data is said to be non-ignorably missing, i.e. there
is selection bias and the mechanism behind the missing data ought to be included
in the model to get good results.

2.2 How Applications Are Accepted

It is pertinent to provide a brief description of the mechanisms behind the procedure
determining if the credit applications used as data in this report are to be accepted
or rejected. As soon as an order is placed by a customer the provided data is an-
alysed automatically by different algorithms and subject to certain policies. Prior
to any calculations applications failing to meet certain minimum requirements, e.g.
that customer age has to be 18 or higher, are rejected. If the order is found not to
be a policy reject its probability of default is calculated and transformed to a score,
which determines if the application is accepted. So far everything is automated
and the MAR scenario applies. However, now another policy engine starts, the
fraud policy, and if the application is flagged by it it will appear on the manual
surveillance list for further inspection. If the decision agent regards the application
as dubious he or she can override the scorecard’s verdict to approve and instead
reject the order.

The two different types of overrides, low side overrides and high side overrides,
are explained in [12]. The former applies when the creditor grants credit to the
applicant despite the score falling into a range generally not acceptable. The latter
is the converse, i.e. when credit is denied in spite of the score being acceptable.

In regard of these definitions it is clear that the overrides fall on the high side.
These overrides could be a reason for concern but, following Hand and Henley in
[5, p. 526], as long as the relevant applicant population is defined exclusively of
those eliminated by a high side override, in general they will not lead to biased
samples. In this study, the number of manually rejected purchases is but a minute
fraction of the total amount. From this follows that the MAR scenario seems to
fit quite well, and a reject inference procedure applicable for this scenario will be
used.
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3 Reject Inference Procedure

3.1 Parcelling

In [10] several reject inference procedures are described, and in this test the focus
is on parcelling, which [8, p. 6] categorises as an extrapolation technique. The
reasoning behind the choice of parcelling over another method is that it is quite
intuitive and its implementation is not too elaborate. Furthermore, since the aim of
this study is to provide an answer to the question if it is advantageous to include
reject inference in a future refinement of the model, the inherent randomness of
the parcelling algorithm will give an inkling of how much better or worse the new
model can get when reject inference is applied. A description of the parcelling
algorithm follows, where table 3.1 provides the data used in this study and, addi-
tionally, serves as a visualisation of the algorithm in question.

First, there has to be an existing scorecard rejecting or accepting applicants.
The response variable of the scorecard is a score, and this score is then further
categorised into several intervals, where the number of intervals are decided by the
analyst. See section 3.2 for how the scores are allocated in this study. When this
is done historical applicants from a specified time window are looked at and then
assigned to their corresponding score intervals. For all accepted cases the good or
bad outcome is known, whereas the outcome is missing for the rejected applicants.
The probability of the accepted applicant being good is given as PG = G/A, with G
denoting the number of good orders and A the number of accepted. In the same way
PB = B/A, with B as the number of bad orders, is the probability of the applicant
being bad. Another quantity of interest is the approval rate PA = A/(A+R), where
R is the number of rejects.

After this has been done, all rejects are scored with the existing model and
assigned their corresponding expected PG and PB for each interval. Within each
interval i PGRi of the rejects are labelled as good and PBRi as bad. The assignment
in each score interval is random. The analyst here has the possibility of adjusting
PB in order to account for a possible difference in bad rate amongst the rejects
compared to the accepted. See eq. (3.1). Given that the existing scorecard works
as it should it seems reasonable to assume that the bad rate amongst the rejected is
somewhat higher.

The third step is to incorporate the rejects into the accepts, where PG and PB

decide the probability of each reject to be labelled as good or bad, respectively.
When all this is done the data set comprises both accepts and rejects, and the re-
sponse variable of all observations has an entry.

3.2 Score Intervals and Adjustment of the Bad Rate

As mentioned in section 3.1, an explicit number of intervals have to be set for the
reject inference procedure. With the scorecard in this study the score the applica-
tions receive ranges from 400 to 800, but scores of either extreme are rare. Because
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Score B G A PB PB,ad j PA R
400-500 285 371 656 0.4345 0.4422 0.0914 6,524
501-540 507 3,141 3,648 0.1390 0.1484 0.4035 5,394
541-580 784 21,970 22,754 0.0345 0.0506 0.8544 3,877
581-620 660 41,599 42,259 0.0156 0.0300 0.9628 1,633
621-660 119 45,593 45,712 0.0026 0.0026 0.9920 369
661-700 20 34,323 34,343 0.0006 0.0006 0.9957 150
701-800 1 4,772 4,773 0.0002 0.0002 0.9973 13

Table 3.1: The scores in this table are assigned by the existing scorecard, not from the
derived model; this is an overview of the input data. The columns are the score, num-
ber of bad purchases (B), number of good purchases (G), number of approved purchases
(A), probability of a purchase being bad (PB), adjusted bad rate (PB,ad j), probability of a
purchase being accepted (PA), and the number of rejected purchases (R).

no interval should end up with zero or just a handful of orders, all below or equal
to 500 are set to fall into the first interval, from then on each interval is set to have
a score range of 40 until 700 is reached, and the last one contains all above 700.

Furthermore, a bad rate needs to be set for the rejects; either the same as for the
accepted purchases or higher as a conservative measure. In this study the existing
bad rate in each segment is adjusted by the known bad rate from a calibration set of
orders that were accepted regardless of scorecard verdict according to the formula

P(i)B,ad j =
miP(i) + αniP

(i)
oot

mi + αni
, i = 1, . . . , k, k ∈ N, (3.1)

where P(i)B,ad j is the adjusted bad rate, P(i) the bad rate of the accepted, mi the
number of accepted orders in the segment, P(i)oot the bad rate in the calibration set,
ni the number of purchases in the out of time sample, α a scaling factor, and k the
number of intervals. The basis for this adjustment is found in the assumption that
the bad rate of the calibration set is believed to more accurately capture the bad rate
amongst the rejects than the bad rate of the accepted purchases. The scaling factor
is set to α = mi/ni in order to give the orders from the calibration the same weight
as those from the training set. If ni = 0 or a value just above zero for interval i, then
P(i)B,ad j = P(i), explaining the equality between the columns for the highest score
ranges.

3.3 Variable Requirement and Random Assignment

Crook and Banasik warn about a potential pitfall in [2, pp. 4-5]: Care has to be
taken that the explanatory variables of the old scorecard are a subset of the ex-
planatory variables considered as input for the new model, since otherwise data
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will fall into the category MNAR rendering an omitted variable bias in the esti-
mated parameters. This just mentioned requirement is satisfied in the setting of
this study.

An intrinsic property of the parcelling technique, stressed by Montrichard in [8,
p. 7], is its random approach to label the rejects as good or bad, in effect meaning
that the training data will change for new runs of the algorithm. See section 6
and section 7 for a more thorough discussion about the implications of the random
assignment.

4 Data

4.1 Overview

As data set online purchases in Finnish stores in 2011 are used. The orders do
not stem from the whole year, but an exact time window will not be specified
because of confidentiality. Purchases with dates from the later two thirds of the
time window are used as training set for both models, i.e. with and without reject
inference. These data are what is used to train the models. The calibration set
comprises purchases from the whole time window that were accepted regardless of
scorecard outcome, where the calibration and training set are disjoint even though
they stem from overlapping time periods. With the available data the orders in the
calibration set make up a set as close as possible to rejected purchases that still
were accepted. Hence, the calibration set enables a way to verify if the model
derived with reject inference is superior in terms of predicting applications that
would not generally have been accepted by the scorecard. Lastly, there is an out of
time validation set consisting of the orders from the first third of the time window.
See section 5.6 for further details about the validation process.

Around two sevenths of the total amount of purchase attempts are rejected.
However, a relatively large proportion of these rejects are not viable to enter into
the reject inference procedure, since it is common that a customer with a rejected
purchase within seconds or minutes tries to place the same order again—sometimes
with the exact same provided details, but oftentimes with the details slightly al-
tered. Hence, in order to avoid multiple counting, renewed attempts of the same
purchase are discarded. The removal of these rejections is done with a technique
set up for this purpose. Whenever the contact details of a rejected purchase attempt
are too similar, or identical, to a previous rejection within a certain time limit, the
new rejection is not considered viable for this study since there is no new informa-
tion contained within.

There are also quite a few of the accepted purchases that do not qualify. What
they all have in common is that none of them fall into either of the categories good
or bad, instead they are indeterminate, i.e. no outcome can be observed. The rea-
sons vary from case to case; two possibilities are that for some reason the store
never shipped the goods, or the customer claims that the goods never arrived and
thus refuses to pay. All accepted purchases where neither a bad nor a good out-
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come can be observed are disregarded. Table 4.1 shows a summary of how many
observations there are in each of the above mentioned data sets after the removal
of duplicate rejections and indeterminate accepted.

Data Set Obs A R
Training Set 172,105 154,145 17,960
Validation Set 69,404 69,404 0
Calibration Set 1,218 N/A N/A

Table 4.1: The number of observations in each data set. The letters A and R designate the
number of accepted and rejected, respectively.

4.2 Segmentation of the Training Set

A clear definition is needed to separate good purchases from bad purchases. Con-
ceptually this is straightforward, but in reality some customers pay a very long time
after their due date and first after several reminders and debt collection. In this re-
port a purchase is labelled as bad if it has not been paid within 90 days after due
date.

An overview of the purchase distribution over the intervals of the score range
in the training set is shown in table 3.1. Based on this data the two models, one
with reject inference and one without, are derived.

The data presented in table 3.1 show that rejects are more common in the lower
score ranges and that their number decreases successively for higher scores—as it
ought to be. At first it may seem surprising that there are any rejects at all in
the highest score range, but this can be explained by there being an upper amount
limit per purchase and that not too many separate purchases may be placed by the
same customer before some money is paid. The acceptance rate increases when the
score increases, whereby in the lowest range only around one in ten is approved
whereas in the three highest ranges there are almost no rejections. The bad rate
and its adjusted value are not completely alike in all instances, especially in the
score ranges 541-580 and 581-620 there are some differences indicating that the
calibration set has a higher proportion of bad applications in these score ranges
compared to the training set. The column for the number of accepted shows that
the mean score does not separate two equally big halves of the applicant population,
but rather that the mean score is skewed to the higher score range.
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5 Statistical Model

5.1 Types of Variables

There are different kinds of variables for describing the observations made on the
subjects or objects in the study. A summary of existing naming conventions is com-
piled in [3]. In this text the term response variable is used for measurements that
are free to vary in response to the explanatory variables where, here, the former is
the good/bad label assigned to paying or defaulting customers, and the latter com-
prises the characteristics of the applicants. Both response and explanatory variables
vary in type; table 5.1 lists the possibilities.

• Nominal variables, e.g. yes, no; tundra, desert, rainforest. If there are
only two possible values the variable is dichotomous, otherwise poly-
chotomous.

• Ordinal variables when there exists a natural ordering between the cate-
gories of the variable, e.g. freezing, chilly, warm, hot. Both nominal and
ordinal can be referred to as categorical variables.

• Continuous variables when the observations, in theory, stem from a con-
tinuum, e.g. age or time.

Table 5.1: Variable classification.

Additionally, explanatory variables, of any aforementioned type, can be con-
founding or interacting. In [6, pp. 55-58] Kleinbaum explains that the former is
when a third variable distorts the relation between two variables due to a distinct
connection with the two other variables, and the latter when the concurrent influ-
ence of two variables on a third is not additive. When devising the model in this
report no analysis of confounding or interaction variables are included.

5.2 Logistic Regression

Many different credit scoring techniques exist, and this study will focus on logistic
regression since the response variable is dichotomous. Furthermore, as reasoned in
[11, p. 6], logistic regression has been shown to work equally well as other, more
elaborate, procedures, and it has often been used successfully in the past. Because
of the dichotomous response variable ordinary linear regression is unsuitable for
various reasons. One reason is that if linear regression is used, the predicted values
can become greater than one and less than zero, values theoretically inadmissible,
which cannot happen with logistic regression. Another is due to the assumption of
homoscedasticity, constant variance of the response variable, in linear regression.
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In the case of a dichotomous response variable, the variance decreases the higher
number of observations have one and the same outcome.

The situation where the aim is to investigate in which way explanatory vari-
ables influence the outcome of a dichotomous response variable arises in numerous
applications, e.g. in epidemiologic research and in credit scoring, where the latter
example is of primary interest in this text. Generally, the explanatory variables can
be labelled as X1, . . . ,Xp, p ∈ N, and in the case when p > 1 the just described sit-
uation is a multivariable problem and a mathematical model is needed to describe
the often complex interrelationships amongst the variables. Many such models ex-
ist, e.g. logistic regression, artificial neural networks, decision trees, discriminant
analysis, etc., but in this text the focus will be on logistic regression. An outline of
the model, based on [3] and [6], follows.

The logistic model is based on the logistic function

f (z) = 1
1 + e−z , { limz→−∞ f (z) = 0,

limz→∞ f (z) = 1.
(5.1)

Considering the limits in eq. (5.1) together with it being a continuous function, it
follows that f (z) ∶ R → [0,1]. From the logistic function the logistic model is
derived. Let z = β0 + β1X1 + . . . + βpXp, p ∈ N, and consider the dichotomous
response variable R (in credit risk context: R = 0 denotes a good credit and R = 1 a
bad credit). The modelled probability can be expressed as a conditional probability,
and if it equals the logistic function, the model is defined as logistic, i.e. if

P(R = 1 ∣ X1, . . . ,Xp) =
1

1 + e−(β0+∑
p
i=1 βiXi)

, p ∈ N, (5.2)

where the βis, i = 0, . . . , p, act are the unknown parameters that are to be estimated
from the data. With the aim to introduce less cumbersome notation, the conditional
probability in eq. (5.2) is henceforth simplified as P(X) B P(R = 1 ∣ X1, . . . ,Xp).
Often the logistic model P(X) is presented in an alternative form called the logit,
which merely is the simple transformation

logit P(X) = ln
⎛
⎝

P(X)
1 − P(X)

⎞
⎠
= β0 +

p

∑
i=1
βiXi. (5.3)

Hence, the logit simplifies to a linear sum.
Another point of interest regarding this representation is the ratio P(X)/(1 −

P(X)), since this gives the odds for the response variable for a subject with ex-
planatory variables specified by X. It follows that the logit is the log odds. With
this terminology, an interpretation of the intercept β0 can be derived: β0 is the log
odds when there are no Xi, i = 1, . . . , p; the background log odds. This value could
be utilised as a starting point when comparing different odds for a varying number
of Xi, i = 1, . . . , p.

Generally speaking, whenever there is a mathematical function g, not neces-
sarily linear, relating the expected value of the independent response variables Yk
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to a linear function of the explanatory variables X1, . . . ,Xp, p ∈ N of the form

g[E(Yk)] = β0 + XT
kβ, k = 1, . . . ,n, n ∈ N, (5.4)

and where Yk belongs to the exponential family of distributions the model is said
to be a generalised linear model. In this text Yk ∼ Bin(n,P(Xk)), and since the
exponential family includes the binomial distribution the model considered is a
generalised linear ditto.

With the notation used in eq. (5.3), the maximum likelihood (sometimes ab-
breviated ML) procedure is used for estimating the parameters θ = [β0, . . . , βp]T ,
p ∈ N. Let y = [Y1, . . . ,Yn]T , n ∈ N denote the random vector of the response vari-
able and denote the joint probability density function by f (y; θ). Algebraically, the
likelihood function L(θ; y) is equivalent to f (y; θ), but the emphasis is switched
from y, with θ fixed, to the converse. The value θ̂ that maximises L is called the
maximum likelihood estimator of θ. Maximising the likelihood function is equiva-
lent to the often computationally less demanding task of maximising its logarithm,
the log-likelihood function l(θ; y) B ln L(θ; y). Thus, the maximum likelihood
estimator is

θ̂ = arg max
θ∈ΩΘ

l(θ; y), (5.5)

with ΩΘ as the parameter space. It is to be noted that maximum likelihood estima-
tors have the invariance property, i.e. the maximum likelihood estimator for any
function g(θ) is g(θ̂).

A matter to be considered when performing logistic regression, is if to use
the conditional (LC) or the unconditional (LU) algorithm for calculating the like-
lihood function. The ratio between the number of explanatory variables, p, in the
model and the number of observations, n, in the study is what determines which
approach to apply. As a general rule, the unconditional formula is advantageous
when the number of explanatory variables is small in comparison to the number
of observations, i.e. p ≪ n, and vice versa for the conditional formula. There is
no exact definition of what is small and what is large in this context; the analyst
will simply have to choose if the ratio does not belong to either extreme. In the
study in this report, however, it is immediately obvious that the unconditional ap-
proach is preferable since the number of applicants (observations) is huge. The
unconditional formula describes the joint probability of the study data as

LC =
n0

∏
k=1

P(Xk)
n

∏
k=n0+1

[1 − P(Xk)], n0,n ∈ N, (5.6)

which in words is the product of the joint probability for the cases k = 1, . . . ,n0
where the response variable is true, R = 1, and the joint probability for the cases
k = n0 + 1, . . . ,n where the response variable is false, R = 0.

After the parameters of the model have been estimated, the fit and adequacy of
the model remains to be determined. One way of achieving this is to compare it
with a saturated model, i.e. a model with the same distribution and link function
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as the derived model, but where the number of observations, n, and parameters,
p, are equal. If, however, r of the observations are replicates of each other, then
the maximum number of parameters estimated in the saturated model is m = n − r.
Let θmax denote the parameter vector for the saturated model, and with maximum
likelihood estimator θ̂max. An intrinsic property of L is that the more parameters a
model has, the better the fit to the data will be, i.e. L(θ̂max; y) ≥ L(θ̂; y), with θ as
the parameters in the model of interest from now on called the null model, which
is similar to the R2-property in multiple linear regression. The likelihood ratio

λ = L(θ̂max; y)
L(θ̂; y)

(5.7)

serves as a way to assess the goodness of fit for the model. For the same reasoning
as the one leading to eq. (5.5), in practice lnλ is used. Moreover, the fact that 2 lnλ
approximately has a chi-squared distribution with k = m − p degreees of freedom,
leads to the definition of the deviance or log-likelihood statistic

D = 2[l(θ̂max; y) − l(θ̂; y)], (5.8)

making it evident that a smaller deviance indicates a better fit.
Since the deviance shares properties similar to that of the χ2 statistic, a common

test to assess goodness of fit is to compare the deviance with the χ2
m−p value, where

n is the number of observations in the sample and p the number of parameters in
the model (including the intercept β0).

5.3 Variable Transformation

The explanatory variables in the customer data set are of different types; they can
be nominal, ordinal or continuous. As an example, the variable age is continuous,
whereas others are simply dichotomous. A list comprising all the explanatory vari-
ables considered will not be published due to their sensitive nature. In those cases
where the explanatory variable is not obviously categorical it is transformed into a
cumulative dummy variable.

The transformation into cumulative dummy variables is done as follows. The
original variable is split into several intervals and the score range is investigated
for each. When two adjacent intervals have significantly overlapping score ranges
the two intervals are merged. When no more intervals are merged one interval
in either of the far ends of the spectrum is discarded and the rest is considered
to be one dummy variable. Then the interval next to the previously discarded
one is disregarded as well, and together the remaining intervals make up the next
dummy variable. The procedure is continued until only the last interval remains.
An example is shown in figure 5.1 for the explanatory variable age. Say that the
first interval consists of all aged 18 to 22, the next interval all aged 23 to 27, etc.
The first dummy variable may then comprise all aged 23 and more, the second
all aged 28 and more. This way, all explanatory variables in the model will be
categorical. These variables are used to train the model.
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Figure 5.1: Example of cumulative dummy variables for the explanatory variable age.

5.4 Weight of Evidence and Information Value

Weight of evidence is often used in credit scoring as a measure of how well an
attribute separates good from bad transactions, and in [1, p. 192] and [10, p. 81] it
is defined as

Wi = ln(distr. of goodi

distr. of badi
) = ln( Ni

∑n
i=1 Ni

/ Pi

∑n
i=1 Pi

), i = 1, . . . ,n, (5.9)

where P denotes an occurrence (i.e. positive), N a non-occurrence (i.e. negative), i
signifies the attribute under evaluation (e.g. an attribute of the explanatory variable
age could be age less than 25 years), and n is the total number of attributes. A
weight of evidence below zero implies that this particular attribute isolates a greater
proportion of bad observations compared to good observations, and vice versa for
a positive weight of evidence. Weight of evidence only accounts for the relative
risk, it does nothing to address the relative contribution of each attribute. To this
end, another measure called information value is used. Once again following [1,
p. 193] and [10, p. 81] its definition is

IV =
n

∑
i=1

(distr. of goodi − distr. of badi) ⋅ ln(
distr. of goodi

distr. of badi
) =

=
n

∑
i=1

( Ni

∑n
i=1 Ni

− Pi

∑n
i=1 Pi

) ⋅Wi, i = 1, . . . ,n, (5.10)

where P denotes an occurrence (i.e. positive), N a non-occurrence (i.e. negative), i
signifies the attribute under evaluation, n is the total number of attributes, and Wi is
the weight of evidence. An intrinsic property of IV is that it is always non-negative.
The higher the value of IV the better the predictive power of this explanatory vari-
able.
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5.5 Performance Measures

5.5.1 Gini Coefficient and AUC

When evaluating a case it is deemed to be either good or bad, and so either rejected
or approved. Later on it is possible to determine which of these cases that were
correctly classified: true positives (cases thought to be bad that were bad), true
negatives (cases thought to be good that were good), false positives (cases thought
to be bad, but they were good), and false negatives (cases thought to be good, but
they were bad). Common practice is to refer to false positives as a type I error and
to false negatives as a type II error. A graphical summary of the above is shown
in table 5.2. In credit risk context the false positive rate is the rate of occurrence
of positive test results in applications known to be good. This definition makes the
false positive rate equal to 1−specificity of the test. Similarly, the true positive rate
is the rate of occurrence of positive test results in applications known to be bad,
which explains why the true positive rate is also called the sensitivity.

H0 false (is good) H0 true (is bad)
Fail to reject H0 (thought to be bad) False positive True positive
Reject H0 (thought to be good) True negative False negative

Table 5.2: A table depicting the possible outcomes of hypothesis testing. The null hypoth-
esis may be anything, but in credit risk context in this study the null hypothesis is that the
application is bad.

Some way of assessing how well the scorecard is able to separate good from
bad applications is required. For this the Gini coefficient will be used, and its
definition is the area between the receiver operating characteristic (ROC) curve
and the diagonal, as a percentage of the area above the diagonal. The x-axis of
the ROC curve is the false positive rate and its y-axis is the true positive rate.
Thus the ROC is represented by plotting the fraction of true positives out of the
positives versus the fraction of false positives out of the negatives, and the Gini
coefficient ranges from 0 (no separation between good and bad at all) and 1 (perfect
separation). An example is shown in figure 5.2.

A measure akin to the Gini coefficient is the AUROC (Area Under Receiver Op-
erating Characteristic) or, more commonly, the AUC, which is defined as the area
under the ROC curve—exactly as its name implies. Equal to the AUC is the prob-
ability that a classifier will rank a randomly chosen positive instance higher than a
randomly chosen negative one. A model no better than a random guess would have
an AUC of 0.5 whereas a value of 1 indicates the, unlikely, occurrence of perfect
predictions. Similar interpretation applies to values less than 0.5 implying that the
model is getting it wrong with some consistency, with 0 meaning perfectly wrong
predictions. The AUC is related to the Gini coefficient, Gc, via the simple formula
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Gc = 2AUC − 1. The above definitions are described more thoroughly in, e.g., [1,
pp. 203-207].

Figure 5.2: An example of the ROC curve from which both Gini coefficient and AUC is
calculated.

5.5.2 Profitability

A different way to measure model efficiency is in terms of profitability—a funda-
mental property of most businesses. The main point here is that even if an order
is paid in the end it must not necessarily generate a profit for the company, e.g.
dunning costs could be large, and thus the purchase maybe should not be regarded
as a good purchase. Because of the consumer being able to choose from a wide
range of different payment possibilities the exact gain or loss per transaction is
quite intricate to calculate. Hence, an estimation of the profitability is used in this
study.

The models are compared on monetary losses where each transaction labelled
as bad and getting a score over a certain cut-off value is modelled as adding its
price to the total monetary loss of the model. At present the acceptance rate is
around 85 percent and hence the cut-off value is chosen so that the 85 percent of
the applications with the highest score are accepted in each set. The just described
procedure is a simplification in several ways.

1. The loss of each transaction will not be equal to how much money the con-
sumer is supposed to pay, since the company, e.g., has to add costs for send-
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ing invoices and reminders or, possibly, subtract costs because the invoice
may be partly paid.

2. A hard cut-off based solely on score is not the way it works at the company.
When buying the customer has the option to choose from many different
payment options, and depending on selected payment method a customer
with a score normally rejected may be accepted anyhow.

3. Even though the purchase is labelled as bad after 90 days, as mentioned
earlier, does not exclude the possibility that the customer will pay later. The
probability of a loss given default (LGD) of the customer behind a purchase
with the bad label decreases with a higher score. See, e.g., [9] for a more
detailed coverage of LGD.

Despite the just listed shortcomings the estimated loss will give an indication of
how profitable the model is.

The exact amount of the losses will not be presented because of that informa-
tion being regarded as sensitive, instead the loss ratio

RL =
Lri

Lwri
(5.11)

defined as the ratio between the estimated pecuniary loss with reject inference,
Lri, and the estimated pecuniary loss without reject inference, Lwri, will serve as a
performance measure. If RL < 1 a model with reject inference would yield a lower
loss than one without, whereas if RL > 1 a model with reject inference would yield
a higher loss.

5.6 Model Selection and Validation

The final model is derived with stepwise regression based on the information value
of the explanatory variables. The variable with the highest information value is
added first to the model and checked if it provides a significant contribution, fol-
lowed by the variable with the second highest information value, etc. This process
is continued until the marginal information value of the variable to be added is
negligible. In this report the limit of a marginal information value less than 10−6

is chosen since by then the possible improvements of the model are diminutive.
The level of significance is set to 0.05. In each step it is also checked if any of the
previously added variables no longer contributes significantly to the model; if so,
that variable is removed.

A potential problem that can arise when training the model is that the end
model may fit the training data set very well, but this does not necessarily mean
that the fit would be as good for another data set that the model has not been trained
on. To overcome this issue the model can be evaluated with the method of cross
validation explained in [13].
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The basic idea is what is implemented in the holdout method: to not use the
whole data set for model training purposes, instead the data set is split into two
parts, training sample and holdout sample, where the former is used to train the
model and the latter is used to validate the derived model. The main problem with
this method is that the outcome to a great extent may depend on how the random
split between the two samples is made, i.e. the variance of the outcome may be
quite high.

An improved method is k-fold cross validation, which in effect means that the
data set is split into k subsets and where one of the subsets acts as the holdout
sample and the remaining k − 1 subsets together form the training sample. The
whole process is repeated k times. With this method the variance is decreased, and
continues to decrease the higher the value of k.

In the model selection procedure a ten-fold cross validation procedure is imple-
mented in each step of the process. When the best model has been chosen another
validation is performed on the out of time validation set mentioned in section 4.1.
A manual control of the included explanatory variables is made to ascertain that a
variable that should add a negative contribution to the model really does so. This is
a sanity check of the just performed number crunching. Furthermore, if one vari-
able is missing that is thought to enhance the model this variable is added manually
to check if it enhances the model. If the variable improves the model it is added.

Once the final model has been selected the deviance statistic described in sec-
tion 5.2 is applied to assess whether there is evidence for a lack of fit at a level of
significance of 0.05. If there is a lack of fit the model has to be revised.

6 Results

6.1 Histograms

In figure 6.1 histograms of the training set data of all, only good, and only bad
credit applications, respectively, are shown for the model that incorporates reject
inference. Figure 6.2 and figure 6.3 show the same type of histograms, but for
the data from the validation and calibration set, respectively. Additionally, for the
training set histograms of all accepted and of all rejected orders, respectively, are
depicted in figure 6.4.

What is emphasised by figures 6.1, 6.2 and 6.3 is that the model manages
to give bad applications another score distribution than good applications, even
though the assigned score by no means is perfect; a distinct overlap of scores is
seen. The calibration set proves to be the most difficult set in which to accurately
distinguish between good and bad transactions, but this is no surprise since that set
is chosen because it is as close as possible to a set of orders that were approved
even though the initial scorecard would have rejected them. Recall the definition
of the calibration set in section 4.1.

Figure 6.4 is of a slightly different nature; it gives a graphical representation of
how the model derived with reject inference manages to distinguish accepted from
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Figure 6.1: Histograms of the training set (TS) data scored by the reject inference model.
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Figure 6.2: Histograms of the validation set (VS) data scored by the reject inference model.
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Figure 6.3: Histograms of the calibration set (CS) data scored by the reject inference
model.

19



Figure 6.4: Histograms of the training set data scored by the reject inference model. The
upper plot shows the accepted applications and the lower plot the rejected applications.
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rejected orders. The outcome is that the newly derived model seems to agree with
the old model: rejected orders get a lower score. It is important to note that the
rejected/accepted label still is the one assigned by the old model.

As a form of check that the assumption of the calibration set being an approx-
imation of rejects with a known outcome is not completely false, it is evident that
the shape of the distribution of the rejected orders in figure 6.4 more closely resem-
bles that of the calibration set in figure 6.3 than any of the other sets. However, it
is far from a very good fit. The problem the models have with assessing the correct
outcome of the orders in the calibration set is quantified via the Gini coefficient in
the next section.

6.2 Gini Coefficient, ROC Curves and Profitability

The derived models with and without reject inference are compared on Gini co-
efficient for the training set, validation set, and calibration set in table 6.1 and on
profitability, more specifically the estimated loss ratio, in table 6.2. As stated in
section 3, because of the random assignment of reject outcome in the reject infer-
ence algorithm the altered input data will cause the results to fluctuate from run to
run. The values shown for the reject inference model are therefore the mean of ten
runs.

Model Giniµ (TS ) Giniµ (VS ) Ginis (VS ) Giniµ (CS ) Ginis (CS )
RI 0.8429 0.7612 0.0035 0.3081 0.0197
No RI 0.7890 0.7582 0 0.2667 0

Table 6.1: Gini coefficients for the models, with and without reject inference, for training
set (TS), validation set (VS) and calibration set (CS). Note that for the reject inference
model the Gini coefficient varies from run to run, which is why the mean values are shown
indexed by a µ. Furthermore, the standard deviation indicated by s is added to the table.
The Gini coefficient values of the training set are of less interest because of overfitting
issues.

RL

Mean Standard Deviation
VS 0.9462 0.0680
CS 0.9060 0.1783

Table 6.2: The profitability of the models with and without reject inference is measured in
terms of estimated loss ratio, RL, for the validation set (VS) and the calibration set (CS).
The values shown are the mean and standard deviation of ten runs.
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Table 6.1 compares the models on their Gini coefficient telling how well the
models separate bad from good applications. The Gini coefficient values of the
training set are not as interesting as the other values since the former may be overfit
to some degree, but the rather large difference between the two still gives an inkling
that the predictive results of the model with reject inference may be slightly better.
The Gini coefficients of the validation set varied very little between runs, which
is shown by the small variance, but the difference in the Gini coefficients of the
calibration set is a bit larger, also indicated by a higher variance. Regarding the
mean values it is clear that there is only a very minor difference between the values
of the Gini coefficient for the validation set, suggesting that correct assessment of
accepted purchases is not enhanced particularly much by reject inference, but there
is a slight improvement. The difference in Gini coefficient for the calibration set,
i.e. orders with characteristics similar to rejects, on the other hand indicates that
bad and good applications can be distinguished from each other to a higher degree
with reject inference than without.

These results are corroborated by table 6.2 where the values of the estimated
loss ratio, RL, of the two models show that the losses in the validation set are lower
with reject inference than without by a factor 0.946, and lower by a factor 0.906 in
the calibration set. Once again the standard deviation is higher for the calibration
set showing a greater spread between the values, but at the same time the mean is
better for the calibration set than for the validation set. It is to be noted that there
were observations of RL higher than 1 in both sets. Thus, sometimes the random
assignment of the parcelling algorithm worsens the outcome compared to a normal
model without reject inference.

The just discussed Gini coefficients are calculated as the area under the ROC
curve, see figures 6.5, 6.6 and 6.7. These figures elucidate the numbers in table 6.1
and show that for both the training and the calibration set the Gini coefficient is
higher with reject inference, whereas for the human eye there is no discernible
difference for the validation set. Because many different runs where made, and
the figures look very much alike, only one reject inference model is depicted. The
shown reject inference model has a Gini coefficient close to the mean of all.

7 Analysis

7.1 Analysis of Results

From the results in tables 6.1 and 6.2 it is seen that, on average, both the predictive
power and the profitability of the model is enhanced when reject inference is ap-
plied. Regarding only the accepted purchases the improvement is not particularly
large, but on the calibration set the difference is more easily discernible and it is
to be noted that the improvement is aimed primarily at the type of orders that are
rejected, i.e. those that the calibration set is supposed to represent.
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Figure 6.5: A plot of the ROC curves for the model with reject inference and for the one
without reject inference. The straight line symbolises a model that assigns the good/bad
label completely at random. Data is from the training set.

Figure 6.6: A plot of the ROC curves for the model with reject inference and for the one
without reject inference. The straight line symbolises a model that assigns the good/bad
label completely at random. Data is from the validation set.
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Figure 6.7: A plot of the ROC curves for the model with reject inference and for the one
without reject inference. The straight line symbolises a model that assigns the good/bad
label completely at random. Data is from the calibration set.

7.2 Analysis of Method and Assumptions

Previous analysis of reject inference by Crook and Banasik in [2, p. 24] concluded,
inter alia, that useful results of reject inference primarily depend on precise estima-
tion of the bad ratio, whereas elaborate tweaking of the model is secondary. These
findings indicate that a likely source of error could be the estimation of the bad
ratio in eq. (3.1) and in the assumptions preceding it. The exact dismemberment of
the score range into several smaller intervals is one factor influencing the derived
bad ratio, and its implementation is here mostly based on uniformity of the score
ranges with the only exceptions, the two intervals in either end, to ensure that no
intervals end up with very few or zero applications.

Optimal would be to have an extensive sample of rejected orders with known
outcome, but with the available data this is unattainable. Hence the calibration set
is used as a replacement, but its observations are suboptimal in several ways. One
drawback is that these orders only can stem from a small subset of the total number
of online stores that make up the total sample of the training set. See table 7.1 for
a summary. The number of stores in the two sets are clearly very much unalike,
but all of the stores in the calibration set range from big to huge in number of
customers, so they still make up a sizeable part of the total number of orders in the
training set. Another issue is the small size of the calibration set; in this study it
merely comprises 1,218 purchases, many times less than the number of purchases
in the training or validation set. The small size of the calibration set makes the
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result more prone to fluctuations. Increasing the time window to sample the data
from would in turn increase the reliability of the results.

Number of Stores
Calibration Set 13
Training Set 1,101

Table 7.1: A summary of how many stores the training and calibration set consist of,
respectively.

Additionally, it has to be considered that the definition of an order being la-
belled as bad if it has not been paid within 90 days after due date is not perfect
since there always are some customers paying later. A similar problem arises be-
cause some of the indeterminate orders eventually will be marked as bad when the
real reason behind the non-payment or contestation is discovered.

7.3 Possible Extensions

In [8, p. 7] it is argued that the inherent randomness of the parcelling algorithm
is a reason for concern. A better reject inference algorithm would be fuzzy aug-
mentation that has a deterministic assignment of rejects to either the good or the
bad label. Thus, implementing this reject inference technique instead of parcelling
could be a way to get more stable results.

The time window of the data set has to be considered too, since e.g. seasonal
variations or campaigns may influence purchase patterns and thereby the results.
Another possible extension is to perform a stratified sampling of data from a much
larger data set with a time window of, e.g., one year, and use this data set as in-
put for training the model. Similarly, the validation set could comprise purchases
from more diverse dates. A problem with a larger time window from is that since
the company is growing and acquiring new customers regularly, too old data may
misrepresent the customers of today.

The investigation could also be extended by trying to include the indeterminate
observations and model them appropriately, since it is not unreasonable to assume
that there are common behaviours amongst the customers behind these purchases.
A way to mitigate the impact of the indeterminate orders is to extend the number
of days from before a purchase is labelled as bad from 90 to a higher value.

8 Conclusion

The findings in this report indicate that a scoring model would benefit from in-
corporating reject inference. However, in order to validate the results and make
them more general two modifications would be beneficial. One is to implement
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a deterministic reject inference procedure to stabilise the results, and the other is
additional testing on a training data sample from a larger time window and with a
calibration set with an increased number of observations.
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