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Abstract

In several application fields today − genomics and proteomics are ex-
amples − we need models for selecting a small subset of useful features
from high-dimensional data, where the useful features are both rare and
weak, this being crucial for e.g. supervised classification of sparse high-
dimensional data. A preceding step is to detect the presence of useful
features, signal detection. This problem is related to testing a very large
number of hypotheses, where the proportion of false null hypotheses is
assumed to be very small. However, reliable signal detection will only be
possible in certain areas of the two-dimensional sparsity-strength param-
eter space, the phase space.

In this report, we focus on two families of distributions, N and χ2.
In the former case, features are supposed to be independent and nor-
mally distributed. In the latter, in search for a more sophisticated model,
we suppose that features depend in blocks, whose empirical separation
strength asymptotically follows the non-central χ2

ν-distribution.
Our search for informative features explores Tukey’s higher criticism

(HC), which is a second-level significance testing procedure, for comparing
the fraction of observed significances to the expected fraction under the
global null.

Throughout the phase space we investgate the estimated error rate, Êrr
= (#Falsely rejected H0+ #Falsely rejected H1)/#Simulations, where
H0: absence of informative signals, and H1: presence of informative sig-
nals, in both the N -case and the χ2

ν-cases, for ν = 2, 10, 30.
In particular, we find, using a feature vector of the approximately same

size as in genomic applications, that the analytically derived detection
boundary is too optimistic in the sense that close to it, signal detection is
still failing, and we need to move far from the boundary into the success
region to ensure reliable detection. We demonstrate that Êrr grows fast
and irregularly as we approach the detection boundary from the success
region.

In the χ2
ν-case, ν > 2, no analytical detection boundary has been

derived, but we show that the empirical success region there is smaller
than in the N -case, especially as ν increases.
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1 Introduction

Think of a microarray measurement of a human genome, and consider the pro-
posal that an extremely small fraction of the genes are over (or under) expressed
for cancer patients. Further, suppose that these over expressed genes are in fact
just slightly over expressed, with a weak amplitude, µ0. Then, apparently, it will
be an intricate task to determine whether a microarray measurement contains
over expressed “cancer genes”, or not − a task that is the main consideration
in this report.

This issue of high-dimensional measurements in rare and weak settings arises
in many modern applications, not only in genomics, but in e.g. proteomics,
cosmology, astronomy, and in robustness and covert communication problems
(see e.g. Donoho & Jin (2009) or Meinhausen & Rice (2006), and references
therein).

We face the problem of signal detection, a multiple testing problem where
the proportion of false null hypotheses usually is small. We test the global null
H0: absence of informative signals, against the global alternative H1: presence
of informative signals.

In most studies on the subject features are assumed to be independent and
normally distributed. However, we also encounter the problem assuming that
features depend in blocks. In this case, the empirical blockwise separation
strength is proven in Pavlenko et al (2012) to be χ2-distributed. Hence, we
study the N - and the χ2-cases.

We start by constructing a two-dimensional sparsity-strength parameter
space, and call it the phase space. Using likelihood ratio tests (LRT) we can
perfectly separate H1 from H0, but only in a subset of phase space, the success
region (Donoho & Jin (2004)). The success region is defined through the detec-
tion boundary, a curve splitting the success and failure regions; however, in the
χ2
ν-cases, ν > 2, no such detection boundary has been derived.

Our testing procedure, higher criticism (HC), was initially proposed by
Tukey in 1976. He adopted the term from the traditional method of higher
criticism for studying ancient literature, where not only the literature but the
circumstances it was written under is considered − a higher level study. The
idea here is to form “Z-scores of P-values”, performing second-level significance
testing. In contrast to LRT and most other multiple testing procedures, higher
criticism does not need information of the sparsity and strength parameters −
it is adaptive. Also, e.g. Cai et al (2011) have proven that higher criticism
perfectly separates H1 from H0 everywhere that LRT does, i.e. throughout the
success region. Hence, we say that higher criticism has the property of optimal
adaptivity.

The goal in this report is to empirically investigate the possibility of signal
detection throughout the phase space, in both the N - and χ2

ν-cases, using higher
criticism. Here, the qustions of interest are: Will the empirical results verify the
analytical ones, in particular considering the detection boundary? What does
the empirical success region and detection boundary look like in χ2

ν-cases, ν > 2,
where no analytical detection boundary has been derived? Is the success region
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appropriately described as a homogeneous region? For which dimensionality
does higher criticism start to exhibit its optimal performance?

1.1 N - or χ2-distributions − two models

1.1.1 The N -case

Consider the feature vector X = (X1, X2, . . . , Xp), where p ∼ 5 · 103 in genomic
applications (compare Pawitan et al (2005)), but can be up to ∼ 1011 in as-
tronomy (compare Meinhausen & Rice (2006)). In a first, most basic, model
formulation, we use the following two assumptions:

1. Features are independent and normally distributed.

2. Informative signals have a common and weak amplitude, µ0.

Now, suppose that Xi, (1 ≤ i ≤ p), has the probability ε of being informative
and (1− ε) of being uninformative. We model uninformative signals as N (0, 1),
and informative as N (µ0, 1), and then test H0: absence of informative signals
(ε = 0), versus H1: presence of informative signals (ε ∈ (0, 1)). The global null
hypothesis is:

H
(p)
0 : Xi

IID∼ N (0, 1), 1 ≤ i ≤ p, (1)

and the global alternative is

H
(p)
1 : Xi

IID∼ (1− ε)N (0, 1) + εN (µ0, 1), 1 ≤ i ≤ p, (2)

where ε, here, can be seen as the fraction of informative signals and µ0 as their
(common and weak) strength (Cai et al (2011)).

1.1.2 The χ2-case

Considering the human genome it is obviously very naive to treat all genes
as independent. Instead, we could expect them to depend in blocks; so that
one block of genes regulate a certain function, yet another block regulate an-
other function, and so on. The dependence within blocks are naturally much
stronger than between, why we assume that blocks are independent (Pavlenko
et al (2012)). With this it will be possible to filter out whole segments of genes
that are uninformative.

As mentioned above, the block structure implies χ2-distributed block strengths.
Hence, we postulate the following three assumptions:

1. Features are blockwise independent and block separation strengths are
χ2-distributed.

2. All blocks are of the same size, p0.

3. Informative blocks have a common amplitude, ω2
0 = µ2

0.
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Now, by analogy with (1) and (2), where X = (X1, . . . , Xb) is our set of b
features (blocks), p0 is the block size or degrees of freedom, b = p/p0, and ε is
the probability of a block Xi (1 ≤ i ≤ b) to be informative, we formulate the
global null and alternative for the χ2-case as:

H
(b)
0 : Xi

IID∼ χ2
p0(0), 1 ≤ i ≤ b, (3)

and,

H
(b)
1 : Xi

IID∼ (1− ε)χ2
p0(0) + εχ2

p0(ω2
0), 1 ≤ i ≤ b, (4)

where, again, ε can be seen as the fraction of informative blocks, and ω2
0 is their

(common and weak) strength.
The block size is usually 5 ≤ p0 ≤ 15, when working with feature vectors of

size p ∼ 106. If bigger, the number of blocks, b, would become too small to give
reliable results.

1.2 The phase space

In the phase space we parameterize sparsity and strength. We have already
introduced ε (for sparsity), and µ0 and ω2

0 (for strength), but, the phase space
is more conveniently parameterized on (0, 1)2. Thus, we transform ε into a
sparsity parameter, β, and µ0 and ω2

0 respectively into a strenght parameter, r.

1.2.1 The sparsity parameter, β

The sparsity parameter β is related to ε as follows.
In the N -case:

ε = ε(β) = p−β , 0 < β < 1 (5a)

In the χ2-case:
ε = ε(β) = b−β , 0 < β < 1 (5b)

1.2.2 The strength parameter, r

Cai et al (2011) argue that the detection problem behaves very differently in two
regimes: the dense regime, 0 < β < 1/2, and the sparse regime, 1/2 ≤ β < 1.
In the sparse regime ε � 1/

√
p, and the most interesting situation is when µ0

grows with p at a rate of
√

log p; with other growth rates, it is either too easy
or impossible to separate the two hypotheses. In contrast, in the dense case
where ε� 1/

√
p, the most interesting situation is when µ0 degenerates to 0 at

an algebraic order, so that moment-based statistics could be successful. (Note,
however, that moment-based statistics are still not preferred as β is in general
unknown.) On this basis, Cai et al (2011) relate the strength parameter r to µ0

and ω2
0 as:

µ0 = µ0(r;β) =

{
p−r, 0 < β < 1/2; 0 < r < 1/2 (dense)√

2r log p, 1/2 ≤ β < 1; 0 < r < 1 (sparse)
(6)
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Figure 1: An illustrative scheme over block structure. We normally have p <
104, 5 ≤ p0 ≤ 15, and b = p/p0 in genomic applications, thus a lot more blocks
than viewed here.

ω2
0 = ω2

0(r;β) =

{
b−2r, 0 < β < 1/2; 0 < r < 1/2 (dense)
2r log b, 1/2 ≤ β < 1; 0 < r < 1 (sparse)

(7)

Note that the parameters are undefined for 0 < β < 1/2 and 1/2 ≤ r < 1.
Intuitively, in this area informative signals are too weak; µ0 ranges from p−1/2

to p−1.

1.2.3 The detection boundary separates success and failure regions

If parameters are known, then in the success region it can be shown (see Cai et
al (2011)) that the likelihood ratio test (LRT) obeys

PH0(reject H0) + PH1(reject H1)→ 0, as p (or b) →∞, (8)
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where left hand sum of (8) can be interpreted as the sum of Type I and II
errors; hence we see that within the success region the LRT perfectly separates
the alternative from the null.

Specifically, Cai et al (2011) report that using LRT the following detection
boundary, r = ρ∗N (β), can be derived (see also Figure 2):

ρ∗N (β) =

 1/2− β, 0 < β < 1/2
β − 1/2, 1/2 < β ≤ 3/4
(1−

√
1− β)2, 3/4 < β ≤ 1

(9a)

Further, Donoho & Jin (2004) claim that in the χ2
2-case (note the subscript 2)

we have the same detection boundary, in the sparse regime:

ρ∗χ2
2
(β) =

{
β − 1/2, 1/2 < β ≤ 3/4
(1−

√
1− β)2, 3/4 < β ≤ 1

(9b)

The success region is now defined, in the dense regime, 0 < β < 1/2, as the area
below the boundary, r < ρ∗N (β); and, in the sparse, 1/2 < β ≤ 1, as the area
above, r > ρ∗N ,χ2

2
. See Figure 2.

The failure region is the complement of the success region, and there the left
hand sum in (8) approaches 1 for any test. It is worth noticing that the detection
boundary in (9) is the same considering supervised classification, where the goal
is to select a set of useful features that are most informative for class difference
(see Jin (2009)).

Note that the left hand sum of (8) is of high importance in this report, and

will be converted to its empirical version, Êrr, in Section 2.

1.3 Higher critcism

Considering the generally unrealistic requirement of known parameters (β, r)
of the LRT, we want to find an adaptive method that works even without
such oracle knowledge. Here higher criticism (HC) comes into the picture, a
non-parametric procedure for signal detection (as well as feature selection, see
Donoho & Jin (2009)), which, like the LRT, is successful in the entire success
region − i.e. has the property of optimal adaptivity.

1.3.1 The testing procedure

Let us now describe the procedure of higher criticism, in the N -case. It will
work identically in the χ2-case, see motivation below.

We have a set of p features, X = (X1, X2, . . . , Xp), from which we define
the empirical culmulative distribution function and empirical survival function
of Xi respectively:

Fp(t) =
1

p

p∑
i=1

1{Xi<t},

8



Figure 2: The detection boundary in (8) with the success region shaded (green).
The undefined area is due to signals being too weak.

F̄p(t) = 1− Fp(t).

Now, look at the standardized form of F̄p(t)− Φ̄(t), to compare the fraction of
obseved significances to the expected fraction under the global null:

F̄p(t)− Φ̄(t)√
Φ̄(t)(1− Φ̄(t))

√
p.

From this we can define the HC objective function, HCp(i), through the follow-
ing steps. Start by computing P -values of x = (x1, x2, . . . , xp),

πi = Φ̄(xi) ≡ P (N (0, 1) ≥ xi), 1 ≤ i ≤ p.
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Second, sort the P -values in the ascending order π(1) ≤ π(2) ≤ . . . ≤ π(p).
Consider the value t that satisfies Φ̄(t) = π(i). Since there are exactly i P -
values less than or equal to π(i), exaclty i features are greater than or equal to
t. Hence, for this particular t, F̄p(t) = i/p, which will hold for all t that satisfy
Φ̄(t) = π(i). And, now, the standardized form of F̄p(t)− Φ̄(t) becomes the HC
objective function

HCp(i) =
i/p− π(i)√
π(i)(1− π(i))

√
p, (10)

which is the “Z-score of the P -value”. Note that there are some different versions
of (10) that perform equally good (see Meinshausen & Rice (2006) for a general
discussion on bounding functions, alternative to π(i)(1− π(i))).

Next, we define the HC test statistic,

HC∗p = max
1≤i≤α0p

HCp(i)(t), (11)

where it is sufficient only to look at the α0p, α0 ∈ (0, 1], first indices and still
capture the peak of HCp(i) (we choose an appropriate αo in Section 2).

The idea is to investigate whether we can detect deviations from the null,
under which HC∗p has certain properties. If the global null hypothesis is true,

the distribution of its P -values is πi
IID∼ U(0, 1), and so asymptotically HCp(i) ∈

N (0, 1). Thus, in (11) we look for the largest standardized discrepancy between
the observed behaviour of π(i) and the expected under H0, and reject H0 when
HC∗p is large.

As seen in Shorack & Wellner (2009), results from empirical processes give
that when HCp(i) ∈ N (0, 1), HC∗p ≈

√
2 log log p, which grows to∞ very slowly.

In contrast, under the alternative, HCp(i) has an elevated mean for some i, and
HC∗p could grow to ∞ algebraically fast. Therefore, an appropriate criteria for
rejecting the null hypothesis is when

HC∗p ≥
√

2(1 + δ) log log p, (12)

for some δ. In Section 2, we find a way to empirically choose δ in order to
optimally separating H0 and H1 using higher criticism.

Cai et al (2011) show that the test criteria in (12) satisfies (8) throughout the
success region, meaning that where the LRT can successfully separate H1 from
H0, so can higher criticism. In Section 2 of this report, an empirical counterpart
to (8) is formulated, Êrr, in equal connection to (12), being the key expression
in the experiment.

Finally, note that also in the χ2-case P -values are uniformly distributed, the
HC objective function is asymptotically normal, and hence the HC test statistic
≈
√

2 log log b.
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1.3.2 Higher criticism mimicking ideal behaviour

Let us now consider the ideal case when data comes from

F (t) ∈ (1− ε)N (0, 1) + εN (µ0, 1),

with known parameters ε and µ0, and with

F̄ (t) = 1− F (t).

(Again, we look at only the N -case, but can easily translate the expressions to
fit the χ2-case.)

Then, by analogy with (10) and (11) we can define the ideal HC objective
function as

HCideal(t) =
F (t)− Φ(t)√
Φ(t)(1− Φ(t))

√
p, (13)

and the ideal HC test statistic as

HC∗ideal = max
t
HCideal(t). (14)

Here we explore the connection between the empirical and ideal cases discussed
in Cai et al (2011). For any fixed t,

E[HCp(i)] =

{
0, under H0,
HCideal(t), under H1,

p→∞. (15)

Now, with this connection between HCp(i) and HCideal(t) in (15), and because
HC∗p is a straight forward maximation of HCp(i), as HC∗ideal is of HCideal(t),
we expect HC∗p to approach HC∗ideal in probability, as p→∞, why we say that
HC mimicks ideal behaviour. This idea is presented in Figure 4.

1.3.3 Feature selection by thresholding with higher criticism

Higher criticism was initially proposed for multiple hypotheses testing as in the
signal detection problem, but has recently also been used for feature selection
(see Donoho & Jin (2009)). In feature selection the aim is not to detect but to
identify the informative signals, thereby selecting useful features.

Now, assuming that data is standardized, we order the observed features in
the decreasing rearrangement, x(1) ≥ x(2) ≥ . . . ≥ x(p), and define the higher
criticism threshold (HCT) as

HCT ∗p = x(i∗), i
∗ = arg max

i
HCp(i), (16)

or, analogously, for the ideal HC threshold,

HCT ∗ideal = F (t∗), t∗ = arg max
t

HCideal(t). (17)
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The HCT equals the observed xi∗ where i∗ maximizes the HC objective function.
The higher criticism feature selector then picks features corresponding to x(i)’s
that are greater than or equal to the threshold.

Interestingly, the threshold is automatically set somewhat higher than µ0

(or ω2
0 in the χ2-case), the strength of the informative signals. That way we

miss some of the useful features, but this is a beneficial tradeoff for capturing
less noise.

Continuing the argumentation at the end of Section 1.3.2, we here reason
that because of (15) and the straigt forward argument maximizing in (16) and
(17), we expect HCT ∗p ≈ HCT ∗ideal. Figure 4 demonstrates this idea.
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Figure 3: In all three graphs (p, β, r) = (105, 0.7, 0.3). Up: Simulated sig-
nals x(i), ordered, with 1 ≤ i ≤ pα0 (where the choice of α0 is discussed
in Section 2.3). Middle: Corresponding ordered π(i)-values of data. Down:
Corresponding HCp(i). We have i∗ = arg max

i
HCp(i) (vertical lines), and

HC∗p = max
1<i<α0p

HCp(i) (horizontal line).
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Empirism Ideal HC

E[HCp(i)] = HCideal(t)
p→∞

HCp(i) −→ HCideal(t)

↓ ↓

HC∗p HC∗ideal

↓ ↓

HCT ∗p HCT ∗ideal

Figure 4: Illustrative chart motivating our choice of higher criticism. Because
of the asymptotic connection between HCideal(t) and HCp(i), we also expect
HC∗p to approach HC∗ideal, and HCT ∗p to approach HCT ∗ideal in probability, as
p→∞.
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2 Method development

2.1 Designing the experiment

The aim to investigate signal detection throughout phase space leaves us several
choices. Constrained by computational time, we have to carefully choose the
amount of (β, r)-points to study, many points close to the detection boundary
or a more all-covering study thoughout phase space; the number of and which
χ2
ν-cases to study; the value of p and b; how to optimize the choice of δ; and so

on.
One possible way to go is by empirically classifying a (β, r)-point into suc-

cess or failure, thereby determining the empirical detection boundary observing
where we shift between success and failure points. However, labeling a point as
either successful or failing gives varying results depending on what upper limit
for success we choose for the sum of Type I and II errors, and, also, it poorly
describes the error probability at a certain point. Instead, points are best de-
scribed as more or less successful on a continous scale from 0 to 1, where we
count the fraction of Type I and II errors.

We decide on investigating the whole phase space, to get an overall picture
of the behaviour of the Type I and II errors. It will be an effortful task, but
with a profitable result.

2.2 The estimated error rate, Êrr

For a certain point (β, r) in phase space we compute an empirical counterpart

to the left hand side of (8), namely the estimated error rate (Êrr), which is an
empirical probability:

Êrr = (#Falsely rejected H0 + #Falsely rejected H1)/#Simulations, (18)

where we simulate H0 and H1 equally many times. Clearly, a small Êrr (close
to 0) indicates success of detection, while a large (close to 1) indicates failure.
An equvalent way of seeing (19) is as the empirical probability of Type I and II
errors.

A falsely rejected H0 occurs when we simulate under H0 but unexpect-
edly (compare with (12)) HC∗p ≥

√
2(1 + δ) log log p, (or with b instead of

p). Conversely, H1 is falsely rejected when under it, surprisingly, HC∗p <√
2(1 + δ) log log p.

2.3 Calibrating parameters

We start by specifying p and b. The choice of these parameters is essentially
constrained by the computational time of the algorithms.

Comparing the N -, χ2
2-, χ2

10-, and χ2
30-cases, we could either choose a fixed

p with a decreasing b as p0 increases, or we could choose to fix p = b. The first
alternative reflects reality, but, on the other hand, p = b compares the cases
under more similar conditions.
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With the time constraints mentioned, we choose p = b = 104, which is small
but still guarantees stable results.

Next, we choose α0 in the HC objective function, (11). In several articles,
see e.g. Donoho & Jin (2008) and (2009), α0 is chosen as 0.1. However, that
choice suits only the sparse case. Since we also deal with the dense case, and,
further, need to optimize the computational time of our algorithms, we choose
α0 as a function of ε. After careful studies of the location of the peak of the
HC objective function we come to choose α0 = 15ε, however with the constraint
0.05 < α0 < 0.8. This choice will essentially guarantee that the peak of the HC
objective function will be captured.

The optimal value of δ is the one which minimizes Êrr over the range δ =
0.2× [1, 2, . . . , 10]. However, there is another way of choosing the critical value
in (12), which we could test in future experiments. Cai et al (2011) suggest to
control the Type I error at a prescribed level α. We then simulate HC∗p -scores
under the null hypothesis N times, where Nα� 1 (e.g. Nα = 50). We let t(α)
be the top α percentile of the simulated scores, and use t(α) as the critcal value.
Cai et al argue that critical values determined this way are usually much more
accurate than

√
2(1 + δ) log log p.

3 Simulations

All computations are done using R (version 2.15). We use a strong computer
with a 10-core processor.

3.1 Developing algorithms

We investigate Êrr at equidistant points throughout the phase space, with 0.01
distance between points in the N -case and 0.03 in the χ2

ν-cases. In the algo-

rithms below we describe how we evaluate Êrr for one such point.
The first step is to evaluate Êrr on single time for one (β, r)-point. We

choose #Simulations = m1 = 100. The procedure is described in Algorithm 1
below.

Second, Algorithm 1 is repeated m2 = 100 or 500 times. From these m2

replications we need to take a specially designed average, because we observe
that the standard mean is not optimal. In Figure 5 we show one out of many
examples of a histogram of m2 = 50 replications of Algorithm 1. In Algorithm
2 below we describe how the average is taken.

Now, we observe that in the upper left corner of the sparse half of phase
space (roughly above the line r = β + 0.2, 0.5 ≤ β ≤ 0.8), we frequently get
an unwelcome extreme left tail of the HC objective function. It is a natural
behaviour since the signals there are very strong, making the denominator of
(11) very small, for a small i. In Algorithm 3 below we show one plausible way
to cut this tail off.
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Algorithm 1. Find Êrr for one (β, r)-point.

Input: β; r; distr = N , χ2
2, χ2

10, or χ2
30; p = b = 104; m1 = 100.

Output: Êrr
%if distr = χ2

p0 exchange p for b everywhere below

%in first for-loop simulate H0 and H1 m1 times respectively
for i = 1 to m1 do

%simulate H0:
draw p features from central distribution
calculate HC∗p
listH0 = listH0 +HC∗p
%simulate H1:
draw (1− ε)p features from central + εp from non-central distribution
calculate HC∗p
listH1 = listH1 +HC∗p

end
δ = 0.2× [1, . . . , 10]
for i = 1 to length (δ) do

critval =
√

2(1 + δ[i]) log log p
TypeI = count elements in listH0 ≥ critval
TypeII = count elements in listH1 < critval
Error = (TypeI + TypeII)
listError = listError + Error

end

%minimize listError, i.e. choose optimal δ which gives lowest Êrr

Êrr = min(listError)/m1
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Figure 5: Histogram of m2 = 50 replications of Algorithm 1. On x-axis: Êrr (for
(β, r) = (0.2, 0.3)). The pattern differs slightly for different (β, r). In Algorithm
2 we take a specially designed average of the m2 replications.

Algorithm 2. Take a specially designed average of m2 repetitions of Êrr.

Input: listErr, a list of m2 Êrr’s from m2 replications of Algorithm 1.
Output: (Average of) Êrr.

Êrr = mean{
mean(listErr),
median(listErr),
mean(three most frequent values in listErr)}

Algorithm 3. Remove unwelcome extreme left tail of HCp(i).

Input: HCp(i).
Output: HCp(i) with removed extreme left tail.
%exchange p for b in the χ2-case
%identify tail in the if condition
if HCp(1) > 10 or
[HCp(1) +HCp(2) +HCp(3)]/3 > HCp(i),∀{4 ≤ i ≤ 50} then

itail = minimum i s.t. HCp(i) < median(HCp(i), 1 ≤ i ≤ 100)
end
return HCp(i), itail ≤ i ≤ p
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3.2 Interpretation of results

All graphs referred to in Section 3.2 are found in Appendix.

3.2.1 Êrr throughout the phase space

Figure 6-9 show that the empirical success region is a lot smaller than we would
anticipate from the detection boundary in (9). Further, it is smaller in the
χ2
ν-case than in the N -case, and shrinks when ν grows. In the dense regime,
χ2-case, the empirical detection boundary appears to be “tilted”, the slope of
it is flatter than in the N -case.

Considering the overall small size of the empirical success regions, we raise
the question of what the behaviour of p (and b) looks like. Can it alone explain
why higher criticism does not perform as we would expect?

Further, in Figure 7 we can observe some sort of shift at β ≈ 0.07, and in
Figure 9 some sort of shift at β ≈ 0.9. The latter obsevation we can probably
explain by high sensitivity to p (or b) under extremely sparse circumstances.
With β ≥ 0.9 and p = 104 we have εp ≤ 3 informative signals. The former,
however, needs further investigation (we do not entirely exclude a systematic
error).

Let us also point out that we could obviously reduce the set of (β, r)-points
at which computations are done, in future experiments. In Figure 6-9 we could
exclude areas where Êrr is constant, e.g. the upper-right triangle in the dense
regime, and the lower-down triangle in the sparse.

3.2.2 Êrr at the detection boundary

In Figure 10 we have estimated Êrr wandering from left to right on the very
detection boundary, in the χ2-cases using the detection boundary in (9a).

We clearly see that our data follows some patterns that are magnified in the
N -case. The point sets cannot be fitted with polynomes. Nonetheless, Figure 10
demonstrate the inhomogeniety of the empirical success region, saying that it is
safer to be in the middle of the β-range for dense and sparse cases respectively.
In other words, we observe higher error probabilities in extremely sparse or
weak situations, at the ends of the detection boundary. Note that, again, in
the extremely sparse case, β ≥ 0.9, we have (by completary experiments not
presented in the graphs) indications of very high sensitivity to p (or b).

3.2.3 Exploring the asymptotic properties of ideal HC

Finally, we study the asymptotic behaviour of ideal HC, which need less com-
putational times than the empirical HC.

We again use the criteria in (12), where we now choose δ = 0, which logically
will be optimal, in the sence that it generates the largest success region. We
observe that if we elevate δ, the success region shrinks marginally. However, we
want to observe the optimal success regions for different values of p, why δ = 0
is a good choice here.

19



In Figure 11 we see the behaviour of ρ̂N
∗(β) for p = 104, 1010, 1016. In the

sparse case, clearly, between p = 104 and 1010 no radical changes are present,
and it is not until p ∼ 1016 that the curve starts to fit the analytical detection
boundary. In the dense case, however, we perform almost as good with p = 1010

as with p = 1016.
We also see in Figure 11 (a) that the line for p = 104 is very similar to

the yellow color gradient (Êrr = 0.5) in Figure 6 (a). In the sparse case we do
not have that similarity, which probably is an effect of the different parameter
configurations in (6) and (7).

4 Discussion and scopes for future

To further study signal detection with higher criticism we would investigate the
asymptotic behaviour more deeply, making it possible to explicitly express the
empirical success region as a function of (β, r; p, b, p0, tÊrr

), where t
Êrr

is the
upper limit for success for the fraction of Type I and II errors.

Also, we would want to extend our experiment, studying the Type I and II
errors separately. The two errors surely tend to zero at different rates, why data
from H0 will have a different empirical success region than data from H1.

The empirical results from the simulations show that for p in the same order
as for genomic applications (up to 104), and also for higher p ∼ 1011 as in
some astronomic applications (Meinhausen & Rice (2006)), higher criticism is
not successful near the detection boundary. Thus, in future work, we want to
find ways to improve the performance close to the boundary. It would also be
interesting to compare the performance of higher criticism (in both N - and χ2-
cases) with other multiple comparing procedures, such as false discovery rate
controlling, maximum- and range-comparing, and Bonferroni correction (see e.g.
Donoho & Jin (2004)).

However, the main issue for future work is to develop theories for the χ2
ν-case

(and possibly for some other distributions as well, such as the general Gaussian
or Subbotin distribution, see e.g. Donoho & Jin (2004), analog to those already
developed for the N -case. In these settings the detection boundary will be one
focus.

From signal detection we may turn to the closely related problems of fea-
ture selection and supervised classification, where we select useful features for
training of our classifier, thereby reducing complexity of the high-dimensional
model. It is also worth noting that HC-based feature selection is much simpler
than many other techniques, requiring no tuning parameter or cross-validation.
We have clear indications (see Jin (2009)) on signal identification being even
more limited than signal detection, why it would be also interesting to study
the area in phase space where signals are detectable but not identifiable.

Finally, we want to run the procedures on real data with n observations,
each with p features. Then, it can be very advantageous to first estimate β and
r for at least some of the observations, to ensure that data belongs to the success
region. There are techniques (however complicated) for estimating β and r in
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the N -case (see Meinhausen & Rice (2006)), but we will want to develop analog
techniques for the χ2-case.
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A Appendix

Figure 6: Color intensity map showing behaviour of Êrr from 0 (green) to 1
(red), as a function of β and r, in the dense regime. (a) N -case. (b) χ2

2-case.
(c) χ2

10-case. (d) χ2
30-case. In N -case: m1 = 100, m2 = 500, 502 points in

graph. In χ2-cases: m1 = 100, m2 = 100, 172 points in graph.
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(a) (b)

(c) (d)

Figure 7: Surfaces corresponding to graphs in Figure 6. Êrr as a function of β
and r, in the dense regime.
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Figure 8: Color intensity map showing behaviour of Êrr from 0 (green) to 1
(red), as a function of β and r, in the sparse regime. (a) N -case. (b) χ2

2-case.
(c) χ2

10-case. (d) χ2
30-case. In N -case: m1 = 100, m2 = 500, 99 × 50 points in

graph. In χ2-cases: m1 = 100, m2 = 100, 33× 17 points in graph.
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(a) (b)

(c) (d)

Figure 9: Surfaces corresponding to graphs in Figure 8. Êrr as a function of β
and r, in the sparse regime.
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(a)

(b)

Figure 10: Êrr on the boundary (9), computed at equidistant points in (a) dense
regime, 0 < β < 1/2; (b) sparse regime 1/2 < β < 1. From bottom: N -case
(black), χ2

2-case (blue), χ2
10-case (red), χ2

30-case (green). n1 = 100, n2 = 500.
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(a)

(b)

Figure 11: Detection boundary in (a) dense, (b) sparse N -case using ideal HC.
Red dashed line: analytical detection boundary; (-·-): p = 104; (- - -): p = 1010;
(—): p = 1016.
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