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Abstract

The purpose of this thesis is to investigate day-of-the-week e�ects for stock
index returns. The investigations include analysis of means and variances
as well as return-distribution properties such as skewness and tail behavior.
Moreover, the existences of conditional day-of-the-week e�ects, depending
on the outcome of returns from the previous week, are analyzed. Particular
emphasis is put on determining useful testing procedures for di�erences in
variance in return data from di�erent weekdays. Two time series models,
AR and GARCH(1,1), are used to �nd out if any weekday's mean return is
di�erent from other days. The investigations are repeated for two-day re-
turns and for returns of diversi�ed portfolios made up of several stock index
returns.

Keywords: Day-of-the-week e�ect, Levene's test, Brown-Forsythe test, GARCH,
AR, variance test, mean test
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Chapter 1

Introduction

The standard assumption in �nancial theory is that the distribution of stock
returns are identical for all weekdays, however, stock market shuts down
during Saturday and Sunday. This break provides the possibility of day-of-
the-week e�ect, i.e. some weekday is di�erent from other weekdays in the
stock market. If the day-of-the-week e�ect exists, some investors can take
an advantage from it to make arbitrage.

In the last three decades of �nancial researches, lots of work has been
carried out on the study of day-of-the-week e�ects. The work of Cross [7],
French [9], Harris [11] shows that returns of equity assets appear to be lower
on Monday comparing to other days of the week in the 1970s. And based
on the study of Lakoniskhok and Maberly [15], the average Monday return
of stocks is negative in the US and some emerging stock markets. Similarly,
Gibbons and Hess [10] document the day-of-the-week e�ects in treasury bill
returns. Besides Yamori and Kurihara [19] �nd that the day-of-the-week
e�ect exists in the 1980s for some currencies, but disappears for almost all
currencies in the 1990s in the New York foreign exchange market.

This thesis mainly study the day-of-the-week e�ects on the one-day re-
turn of the Swedish index OMX which have not been studied by other re-
searchers before. The other countries' indexes will also be examined to see if
there is any special �nding from them. Then it will extend to two days hold-
ing period and one-day return of a portfolio. The investigation will focus the
day-of-the-week e�ects on variance and mean return. The traditional way
for testing the equality of variance is F -test which bases on the assumption
that the data are normally distributed. However, the daily stock returns are
in fact non-normal. Levene [16] proposes another statistic used to assess the
equality of variances in di�erent samples and does not require normality of
the underlying data. The Levene's statistic is then modi�ed by Brown and
Forsythe [4] and their alternative formulation shows more robust depending
on the distribution of the underlying data. In this thesis, a comparison of
di�erent tests for variance will be carried out and applied to the return data.
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To test the equivalent of mean, two common time series are used: AR and
GARCH, see Al-Longhani and Chappell. [2]. How to decide a relatively
small yet accurate order is vital when applying the time series models and it
is analyzed and compared in details. When autocorrelation is found out in
the data, AR model always come �rst. Then, if ARCH e�ect is also found
out in the data, an improved time series model GARCH(1, 1) is needed to
get a more accurate result. If the ARCH e�ect is too large, the results
obtained from two models may be a big di�erence. This thesis will apply
both AR and GARCH models, and comparing the results between them.
The relationship of the day-of-the-week e�ects with the previous week return
is also studied, e.g whether the Monday e�ect shows up when the previous
market has risen. Cross [7], Keim-Stambaugh [14], and Ja�e-Wester�eld [13]
point out that Monday return is positively correlated with the previous week
return. This study presents the correlations between the daily week return
and the weekly return. Unfortunately, as with the weekend e�ect, the twist
is unable to be explained.

Chapter 2 describes the data, how it is modi�ed and also theories about
parametric models. Chapter 3 and 4 present the used methods and compare
them with the traditional t-test and F -test. Chapter 5 states the theory of
two time series models-AR and GARCH(1, 1) and also compares two com-
mon methods, AIC and PACF , used for order determination in time series
model. The data analysis part will be presented in Chapter 6. Parametric
models �tting, equality of variance testing, and also times series models for
testing the mean di�erence can be found in this chapter. Then the condi-
tional daily e�ect is examined in Chapter 7, i.e, if any day returns is related
to the previous week return. All the methods mentioned can be used in
many other situations, like the two more complicated examples presented in
Chapter 8 and 9: the two-day e�ect and one-day portfolio. Chapter 10 is the
conclusion of the �ndings. More studies using other indexes can be found in
appendix.
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Chapter 2

Financial data

2.1 Data resource

Six di�erent indexes are examined for the existing of the day-of-the-week
e�ect or conditional week e�ect. All the data are provided by Bloomberg.
The Swedish market is primarily studied, and the sample is the OMX Index
(OMX stockholm 30 Index) from Jan 1st 2001 to Mar 13th 2012.

Five other indexes are also analyzed, covering markets in Europe, Japan,
United States and HongKong. They are SAX Index (OMX Stockholm All-
Share Index), SX5E Index (EURO STOXX 50 (Price) Index), SPX Index
(Standard and Poor's 500 Index), NKY Index (Nikkei-225 Stock Average)
and HSI Index (Hang Seng Index), which are all daily closing prices from
Jan 1st 2001 to Mar 13th 2012. The results are presented in the appendix.
All the data are provided by Bloomberg and are dividend adjusted.

2.2 Return data

In �nance, return is the ratio of money gained or lost (whether realized or
unrealized) on an investment relative to the amount of money invested. Most
of the �nancial studies focus more on return rather than prices of the assets.
Campbell et al [6] gives out two reasons for that. First, for the average
investor, �nancial markets may be considered close to perfectly competitive,
so that the size of the investment does not a�ect price change. Therefore,
since the investment "technology" is constant-returns-to-scale, i.e. output
increases by that same proportional change in all inputs, the return is a
complete and scale-free summary of the investment opportunity. Second,
returns have more attractive statistical properties than prices which make
them easier to be handled.

The rate of return can be calculated over a single period, or expressed as
an average over multiple periods. Denoting the asset value on the t-th day
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by Pt, the single period arithmetic return, rt, for day t is given by

rt =
Pt − Pt−1
Pt−1

. (2.1)

When the frequency of measured asset prices is high, Eq. 2.1 can be approx-
imated by

rt = ln

(
Pt
Pt−1

)
. (2.2)

In the limit of in�nite asset price frequency and thus time between Pt and
Pt−1 tending to 0, this approximation gets exact and is referred to as continu-
ous compounding. The main advantage of continuously compounded returns
is that they are symmetric, while the arithmetic returns are not: positive
and negative percent arithmetic returns are not equal.

Eq. 2.2 assumes that the stock pays no dividends and does not take
into account splits. However, in �nancial databases, reported price series
are usually adjusted for splits and all cash dividends are reinvested into
the asset. This procedure facilitates the calculation of return series as the
adjusted price series already contain all distributions and Eq. 2.1 or 2.2 can
be directly applied to produce accurate return series.

2.3 Volatility

The precise de�nition of the volatility of an asset is an annualized measure of
dispersion in the stochastic process that is used to model the log returns. The
most common measure of dispersion of a distribution is the standard devi-
ation σ, which is a su�cient risk metric if returns are normally distributed.
When dispersion increases as the holding period of returns increases, the
standard deviation should be transformed into annualized terms to make
comparisons possible.

Under the standard assumption that successive returns are independent
from each other and are identically distributed, i.e. i.i.d. returns, risk and
return can be converted into annualized terms by multiplication by an an-
nualizing factor A. Formally:

Annualized mean = Aµ ,
Annualized variance = Aσ2 ,

Annualized standard deviation =
√
Aσ.

Since 252 risk days per year is commonly assumed, annualizing factor A =
252 is used for daily log returns.

2.4 Parametric model

Return data are random variables with unknown distributions. The standard
assumption is that returns are normally distributed.
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A parametric family of distribution functions is a set {Fθ : θ ∈ Θ} of
distribution functions, where θ is the parameter and Θ ⊂ Rk is the parameter
space. For the family of Normal distribution functions, it has parameters
(µ, σ2), parameter space R× (0,∞) ⊂ R2, and distribution function Φ((x−
µ)/σ).

However, when the return data are �tted with the Normal distributions,
one usually observes that the return data have heavier tails. Therefore,
it is commonly suggested to �t it with the Student's t-distribution. The
Student's t location-scale family has parameters (µ, σ, ν), parameter space
(0,∞)×R×(0,∞) ⊂ R3, and distribution function tν((x−µ)/σ) where tν(x)
is the distribution function of a standard Student's t distributed random
variables with ν degrees of freedom, see Hult et al [12].

After a parametric family is chosen, parameters can be estimated by
maximum likelihood estimation (MLE). Consider the observations (histori-
cal return data) z1, ..., zn of independent and identically distributed random
variables Z1, ..., Zn with the density function fθ0 , where the parameter θ0 is
unknown. In MLE the unknown parameter θ0 is estimated as the parame-
ter value θ maximizing the probability of the observed data. The maximum
likelihood estimator θ̂ :

θ̂ = argmaxθ

n∏
k=1

fθ(zk).

Since logarithm is strictly increasing, MLE is the same regardless of maxi-
mizing the likelihood or the log-likelihood function, so

θ̂ = argmaxθ

n∑
k=1

log fθ(zk).

In order to test whether it is reasonable to assume that the observations (his-
torical return data) form a sample follows a suggested reference distribution
F , a graphical test quantile-quantile plot (qq-plot) can be used.
A qq-plot is the plot of the points{(

F−1
(
n− k + 1

n+ 1

)
, zk,n

)
: k = 1, . . . , n

}
, (2.3)

where z1,n ≥ · · · ≥ zn,n are the ordered sample data.

This qq-plot (Eq. 2.3) is the plot of the empirical quantiles against the
quantiles of the reference distribution. If the data are generated by a prob-
ability distribution similar to the reference distribution then the qq-plot is
approximately linear.
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Chapter 3

Tests for Mean

Mean of the data is an important quantity to investigate. There are di�erent
ways to test whether the weekday data have di�erent means. In this chapter,
two kind of common used tests are introduced for various data situations.
Methods presented in this chapter will be used in Chapter 7 to test the
di�erence of mean.

3.1 The t-test

The t-test refers to the hypothesis test in which the test statistic follows a
Student's t-distribution if the null hypothesis is true. The t-statistic is

t =
Z

S
, (3.1)

where Z is a measure parameter shows the sensitive of the alternative hypoth-
esis, and S is a scaling parameter that allows the distribution of t (Eq. 3.1)
to be determined. In this thesis, one-sample t-test and unpaired t-test are
used. For one-sample t-test, Z and S in Eq. 3.1 are

Z =
X

σ/
√
n
, S =

σ̂√
n
,

where X is the sample mean of the data, n is the sample size, and σ̂ is the
sample standard deviation while σ is the population standard deviation of
the data.

According to the law of large numbers, the Student's t-distribution tends
to be normally distributed for large degrees of freedom, thus t-tests can be
applied here when the data are non-normally distributed but with large sam-
ple size. For comparing two groups with di�erent sample sizes, the unpaired
t-test is used in this thesis and the t-statistic is calculated as

t =
X1 −X2

S1,2
√

1/n1 + 1/n2
, (3.2)
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where

S1,2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
,

and Si is the estimator of the unbiased standard deviation of the i-th group
samples.

3.2 Welch's t-test

There are two types of error in hypothesis testing. Type I error occurs when
the null hypothesis H0 is true, but is rejected. A type II error occurs when
the null hypothesis is false, but it is accepted as true.

Signi�cance tests based on Normal theory, including the two-sample t-
test, assume homogeneity of variance of treatment groups. Failure to satisfy
this assumption, especially when sample sizes are unequal, alters Type I error
rates and power. When a larger variance is associated with a larger sample
size, the probability of a Type I error declines below the signi�cance level. In
contrast, the probability will increase, sometimes far above the signi�cance
level when the sample size is small. In practice, investigators do not often
know the values of population variances, see Zimmerman [21].

Welch's t-test is an adaptation of typical t-test intending for using with
two samples having possibly unequal variances. According to Welch [18],
unlike the two-sample t-test, Welch's t-test do not pool variances in compu-
tation of an error term, thus it is insensitive to equality of variances regardless
of whether the sample sizes are similar. It restores Type I error probabilities
close to the signi�cance level and also eliminates spurious increases or de-
creases of Type II error rates and power. Welch's t-test is better than typical
t-test when population variances and sample sizes are unequal, see Albers et
al. [1], Zimmerman [21]. The Welch's t-test is as follows:

t =
X1 −X2√

s21/N1 + s22/N2

, v =
(S2

1/N1 + S2
2/N2)2

S4
1/N

2
1 (N1 − 1) + S4

2/N
2
2 (N2 − 1)

, (3.3)

where Xi is the mean of the i-th sample, s2i is the unbiased estimator of the
variance of the i-th sample, Ni is the size of the i-th sample, i = 1, 2.

The t-statistic from Eq. 3.3 is calculated, and then the p-value of the null
hypothesis will be based on the degrees of freedom ν and the t-statistic.
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Chapter 4

Tests for Variance

Besides mean value, it is also important to test for the equality of variance.
Higher mean return does not mean better for investment. If there is a higher
variance on Monday return, higher �uctuation it is, then it means there is
a chance to get a higher positive return but also negative return. Sharpe
ratio is a main index to measure the risk premium per unit of deviation in
an investment asset.

S =
E[Ra −Rb]√
var[Ra −Rb]

, (4.1)

Where Ra is the asset return, Rb is the risk free rate of return. The bigger
value of S, the better performance it is. Besides mean, variance is also an
important part of sharpe ratio, which requires more attention.

Suggesting a null hypothesis that all weekdays have same variances, one
can check the p-value to see if the null hypothesis can be accepted or not.
When sample sizes are identical, the null hypothesis is homoscedasticity, but
when sample sizes are di�erent then the null hypothesis is equality of the
adjusted population variances,

H0 : (1− 1/n1)σ
2
1 = (1− 1/n2)σ

2
2 = ... = (1− 1/nk)σ

2
k.

We use p-value to check if the hypothesis is to be believed or not in certain
percent of probability. The p-value here is de�ned as the probability of
obtaining a value of the test statistic as extreme as, or more extreme than,
the actual value obtained when the null hypothesis is true. Thus, the p-value
is the smallest signi�cance level at which a null hypothesis can be rejected,
given the observed sample statistic. The methods presented here will be used
in Chapter 6 to test whether there is di�erence in the variance of weekday
data.
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4.1 Tests for variance

The daily returns of a stock index are de�ned as yij , for i = 1, ..., k, j =
1, ..., ni where k is the number of groups and ni is the sample size of the
i-th group. When the variances are compared among the weekdays, k will
be equal to 5 and i will stands for which weekday return the data belong to.

4.1.1 The F -test

The F -test in one-way analysis of variance is used to assess whether the
expected values of a quantitative variable within several pre-de�ned groups
are di�erent from each other.

F =
between group variability

within group variability
. (4.2)

In this case,

F =
(N −K)

∑k
i=1 (ȳi − ȳ)2 ni

(K − 1)
∑

ij (yij − ȳi)2
, (4.3)

where yij is the j-th observation in the i-th out of K groups, and N is the
overall sample size.

N =
k∑
i=1

ni.yi.

This F -statistic follows the F -distribution with (K − 1, N −K) degrees of
freedom under the null hypothesis. The F -statistic is then applied to the
F -distribution and the p-value for the null hypothesis can be calculated.

4.1.2 Levenes' test

Levene's test attempts to detect signi�cant di�erences among the means of
the absolute residuals, which are functions of the population variances and
sample sizes. The Levene's test does not require normality of the underlying
data, and is used for symmetric, moderate-tailed distributions. Levene's
test is de�ned as the one-way analysis of variance on the absolute residual
zij = |yij − ȳi|, where ȳi stands for the mean value of yij in i-th group. The
L-statistic is calculated as Eq. 4.3 with replacing y by z as following :

L =
(N −K)

∑k
i=1 (z̄i − z̄)2 ni

(K − 1)
∑

ij (zij − z̄i)2
, (4.4)

where zij = |yij − ȳi| with ȳi is the mean of yij in i-th group, z̄i is the mean
of the zij for group i, z̄ is the mean of all zij , K is the number of di�erent
groups to which the samples belong, ni is the number of samples in the i-th
group and N is the overall sample size.

When the L-statistic is calculated, it is applied into F -distribution as
F -statistic and the p-value for testing the null hypothesis is extracted.
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4.1.3 Brown-Forsythe tests

Brown and Forsythe [4] provide two alternative versions of Levene's test,
named Brown-Forsythe tests. The equations of test statistic are similar with
Levene's test as in Eq. 4.4 but di�erent in forming zij .

Brown-Forsythe test I: the mean ȳi in Eq. 4.4 is replaced by the median
y′i in forming zij , i.e. zij = |yij − y′i|.

Brown-Forsythe test II: the mean ȳi in Eq. 4.4 is replaced by the 10%
trimmed mean ỹi to form zij = |yij − ỹi|. To calculate ỹi of the values is
to sort all the values and then discard 10% of the smallest and 10% of the
largest values, then compute the mean of the remaining values.

Moreover, Brown and Forsythe perform a Monte Carlo studies before
which shows that 10% trimmed mean performs best when the tested data
followed a heavy-tailed distribution and the median performs best when the
tested data followed a asymmetric distribution, see Brown et al [4].

4.2 Comparison of di�erent tests

The F -test is commonly used for testing the equality of variances. However,
it is sensitive to non-normality. There are many paper already show that
the return data are far from Normal distribution but close to Student's t-
distribution. Therefore, some alternative tests such as Levene's test and
Brown-Forsythe test should be used.

To investigate whether these alternative tests show more robust when the
data are not normal, two sets of random data are generated from Student's
t-distribution with di�erent degrees of freedom and non-centrality parame-
ters, and Normal distributions with di�erent means and variances. F -test,
Levene's test and two types of Brown-Forsythe tests are applied individually
on testing the variances. The results below show how many pairs which have
di�erent variances are found out in 1000 times tests. Since the data used in
this thesis is around 500 pairs, here 500 data are tested.

As stated in Chapter 3, there are two types of errors, and here we will
investigate how the four tests react to the Type I and Type II errors. Tab. 4.1
� 4.3 show the type II errors the four tests make, while Tab. 4.4 and 4.5 shows
the type I errors.

In the tables below, t(ν) indicates the data being tested are generated
from Student's t-distribution with ν degrees of freedom. χ2(ν) stands for χ2

distribution with ν degrees of freedom.

Tab. 4.1 shows that when two data sets one follows Student's t-distribution
and another one follows Normal distribution, Levene's test and Brown-
Forsythe tests always perform better than F -test. And the closer Student's
t-distribution becomes to standard Normal distribution, the better Levene's
and Brown-Forsythe tests perform than F -test. Tab. 4.2 shows that when
the two data sets follows Student's t-distribution but with di�erent degrees
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of freedom, Levene's test and Brown-Forsythe tests always perform better
than F -test.

Concluding from the above results, Levene's test and Brown-Forsythe
test are more robust than F -test when data are non-normal, especially when
the variances are close. Therefore, Levene's and Brown-Forsythe tests are
more suitable when studying non-normally distributed �nancial return series.

Distributions F -test Levene's Brown-Forsythe I Brown-Forsythe II

t(10),N(0,1) 690 880 879 879
t(15),N(0,1) 359 585 586 585
t(30),N(0,1) 130 272 270 271
t(100),N(0,1) 50 137 133 137

Table 4.1: Number of the unequal variance pairs found in 1000 tests by
di�erent tests where 500 data are generated from t-distribution and from
Normal distribution

Distributions F -test Levene's Brown-Forsythe I Brown-Forsythe II

t(4),t(5) 497 632 631 633
t(10),t(11) 110 226 232 229
t(16),t(17) 87 172 174 170
t(22),t(23) 61 149 140 154

Table 4.2: Number of the unequal variance pairs found in 1000 tests where
500 data are generated from t-distribution with di�erent degrees of freedom

Distributions F -test Levene's Brown-Forsythe I Brown-Forsythe II

χ2(2),χ2(3) 916 788 703 739
χ2(4),χ2(5) 611 562 523 545
t(2),χ2(4) 748 781 746 766
t(3),χ2(3) 982 880 955 955

Table 4.3: Number of the unequal variance pairs found in 1000 tests where
500 pairs of data sets are generated from skewed distribution with di�erent
degrees of freedom or one is skewed while another one is not

Since the data used in this thesis shows a little skewed, χ2 distribution is
tested here as an example of skewed distribution. Tab. 4.3 shows that when
both of the data are skewed, F -test performs better than the other three
tests (more pairs of data are found). And when one of the set is skewed
while another is not, there is no signi�cant di�erence between all the four
tests.
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Distributions F -test Levene's Brown-Forsythe I Brown-Forsythe II

N(1,2),N(1,2) 50 90 91 86
t(4),t(4) 353 517 516 516
t(8),t(8) 123 217 216 216
χ2(4),χ2(4) 220 315 315 319

Table 4.4: Number of the unequal variance pairs found in 1000 tests by
di�erent tests where data are generated from same distributions

Distributions F -test Levene's Brown-Forsythe I Brown-Forsythe II

t(6),N(0,3/2) 971 583 578 571
t(10),N(0,5/4) 700 357 344 351
t(12),N(0,6/5) 540 297 294 291

Table 4.5: Number of the unequal variance pairs found in 1000 tests by
di�erent tests where data are generated from di�erent distributions with
same variance

For Student's t-distribution t(ν), variance equals to ν/(ν − 2) for ν > 2,
where ν is the degree of freedom, while for N(α, β), variance is β. 1000
tests are carried out on the 500 pairs of data generated from Student's t-
distribution and Normal Distribution with same variance. Tab. 4.4 shows
how many pairs of data would be found to have di�erent variance in 1000
tests when they follow the exactly same distribution. Tab. 4.5 shows how
many pairs of data are found to be di�erent in variance when there are the
same variance. It shows that when the data are from the same distribution,
F -test performs better than the other three, while it performs worse when
there are Student's t distribution and Normal distributions. And the larger
variance are, the smaller type I error are.

Size of data F -test Levene's Brown-Forsythe I Brown-Forsythe II

50,50 238 368 360 374
400,700 490 639 639 639
500,500 646 751 754 751
1000,1000 678 785 785 788

Table 4.6: Number of the unequal variance pairs found in 1000 tests by
di�erent tests where data are generated from t(2) and t(3)

In the Tab. 4.6 � 4.8, the results indicate that the bigger the sizes are,
the better performance of the tests when they are testing distributions with
di�erent variance, and the worse performance when there are same variance,
and when data sizes are di�erent, all four tests perform worse than compared
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Size of data F -test Levene's Brown-Forsythe I Brown-Forsythe II

50,50 221 365 390 382
500,700 480 614 599 639
500,500 983 867 945 918
1000,1000 991 922 975 955

Table 4.7: Number of the unequal variance pairs found in 1000 tests by
di�erent tests where data are generated from t(3) and χ2(3)

Size of data F -test Levene's Brown-Forsythe I Brown-Forsythe II

50,50 161 185 187 190
500,700 730 364 359 359
500,500 700 357 340 351
1000,1000 911 492 475 455

Table 4.8: Number of the unequal variance pairs found in 1000 tests by
di�erent tests where data are generated from t(10) and N(0, 5/4)

with when the sizes are same, yet F -test still performs worse in most cases
than the other three. Tab. 4.6 and 4.7 indicate the type II error while Tab. 4.8
shows the type I error.

Concluding from all the simulation tests above, none of all the tests
could provide 100% correct result, but when comparing them, Levene's test
and Brown-Forsythe I and II tests can often provide better results than F -
test in the case of non-Normal distribution. Therefore, due to the unknown
distribution of the data, the commonly used variance test F -test and also
the other three tests are both used in Chapter 6 in this thesis to reach a
more accurate result.
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Chapter 5

Time Series Model

5.1 Stationarity

The theory introduced below follows Tsay [17] closely. A time series {rt, t ∈
Z} is said to be strictly stationary if the distribution of (rt1 , ..., rtk) and
(rt1+t, ..., rtk+t) are the same for all t, where k is an arbitrary positive integer
and (t1, ..., tk) is a collection of k positive integers.

A time series {rt, t ∈ Z} is said to be weakly stationary if
(a) The mean function is constant

E(rt) = µ for all t ∈ Z,

(b) The covariance function

Cov(rt, rt−l) = Cov(r0, r−l) = γl , which only depends on l,

and the covariance γl = Cov(rt, rt−l) is called the lag-l autocovariance of rt
which has two properties : (a) γ0 = V ar(rt) and (b) γ−l = γl.

5.2 Autocorrelation function (ACF )

Assume rt is a weakly stationary return serie. When the linear dependence
between rt and its past values rt−i is of interest, the concept of correlation
is generalized to autocorrelation. The correlation coe�cient between rt and
rt−l is called the lag-l autocorrelation of rt and is commonly denoted by ρl,
which under the weak stationarity assumption is a function of l only. More
details can be found in Tsay [17].

ρl =
Cov(rt, rt−l)√
V ar(rt)V ar(rt−l)

=
Cov(rt, rt−l)

V ar(rt)
=
γl
γ0
. (5.1)
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5.3 Autoregressive model

When a return has a statistically signi�cant lag-p autocorrelation, the lagged
returns rt−i(i = 1, ..., p) are useful to predict the value of rt.
The AR(p) model is as follows:

rt = β0 + β1rt−1 + · · ·+ βkrt−p + at, (5.2)

where p is a non-negative integer and at is assumed to be a white noise series
with mean zero and variance σ2a.

The order p of an AR time series can be determined by two approaches.
The �rst one is using the partial autocorrelation function (PACF ). The
second one is utilizing the Akaike information criterion (AIC). Di�erent ap-
proaches may result in di�erent choices of the order p. However, one cannot
determine that one approach always outperforms the other in application.
They both play an important role in choosing an AR model for a given time
series.

5.4 Partial autocorrelation function (PACF )

The PACF of a stationary time series is a function of its ACF . Consider
the following AR models in consecutive order:

rt = φ0,1 + φ1,1rt−1 + e1t,
rt = φ0,2 + φ1,2rt−1 + φ2,2rt−2 + e2t,
rt = φ0,3 + φ1,3rt−1 + φ2,3rt−2 + φ3,3rt−3 + e3t,
rt = φ0,4 + φ1,4rt−1 + φ2,4rt−2 + φ3,4rt−3 + φ4,4rt−4 + e4t,
...

where φ0,j , φi,j , and {ejt} are the constant terms, the coe�cient of rt−i and
the error term of an AR(j) model respectively.

These models are in the form of a multiple linear regression and can
be estimated by the least squares method. The estimate ˆφ1,1 of the �rst

equation is called the lag-1 sample PACF of rt. The estimate ˆφ2,2 of the
second equation is the lag-2 sample PACF of rt, and so on.

From the de�nition, the lag-2 PACF ˆφ2,2 shows the added contribution
of rt−2 to rt over the AR(1) model rt = φ0 +φ2rt−1 + e1t. The lag-3 PACF
shows the added contribution of rt−3 to rt over an AR(2) model, and so on.
Therefore, for an AR(p) model, the lag-p sample PACF should not be zero,
but ˆφj,j should be close to zero for all j > p. This property can be used to
determine the order p. More details can be found in Tsay [17]

If one wants to test if the given partial correlation is zero at for example
5% signi�cance level, it can be done by comparing the sample PACF against
the critical region with the approximate upper and lower con�dence bounds,
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±1.96/
√
n, where n is the number of observations. This approximation relies

on the assumption that the number of observation is large (say n > 30) and
that the underlying process has a multivariate Normal distribution.

5.5 Akaike information criterion(AIC)

Akaike infomation criterion (AIC) is well-known to be used for determining
the order p of the AR process. Burnham and Anderson [5] give the follow-
ing expression of AIC. Given a set of candidate models for the data, the
preferred model is the one with the minimum AIC value. Hence AIC not
only rewards goodness of �t, but also includes a penalty that is an increasing
function of the number of estimated parameters. This penalty discourages
over�tting (increasing the number of free parameters in the model improves
the goodness of the �t, regardless of the number of free parameters in the
data-generating process).

AIC = −2× ln (max. likelihood) + 2× (number of parameters) (5.3)

Let X be a random variable with a continuous probability distribution
with density function f depending on a parameter θ. Then the likelihood
function is

L(θ|x) = fθ(x) (5.4)

In the case of least squares (LS) estimation, if all the models in the sets
assumed to have normally distributed errors with a constant variance, then
Eq. 5.3 can be reduced to

AIC(k) = n× ln(σ̃2) + 2× (number of parameters) (5.5)

where

σ̃2 =
RSS

n
=

∑
ε̂2i
n

= the MLE of σ2

and RSS stands for residual sum of squares, n is the number of observations
and ε̂i are the estimated residuals for a particular candidate model. Then a
model with the minimum AIC should be chosen. More details can be found
in the book written by Burnham and Anderson [5]. More speci�cally, when
AIC is used to determine the order of AR model, one computes the AIC(l)
for l = 0, ...,m, where m is a positive integer, then selects the order p that
has the minimum AIC value.

5.6 Comparison of AIC and PACF

As mentioned before, di�erent approaches may result in di�erent choices of
the order p. In order to clarify which one should be used here, a simple test is
carried out to test the reliability of AIC and PACF in di�erent situations.
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Two AR(3) models E.q. 5.6, 5.7 and two AR(3) models with GARCH(1, 1)
as conditional variance model E.q. 5.8, 5.9 are created. Model 1 and 3 are
chosen based on the coe�cient gained from the time series model �tting
with our data in Section 6.5. Model 2 and 4 are doubled the coe�cients in
model 1 and 3 respectively for checking the reliability of both methods if the
coe�cients are larger. The simulation are done by generating 500 or 2500
data points from each model, then �nd the PACF values and also do the
linear regression and calculate the AIC values by Eq. 5.5.

Model 1 : rt = −0.0134rt−1 − 0.0437rt−2 − 0.0679rt−3 + at, (5.6)

Model 2 : rt = −0.0268rt−1 − 0.0874rt−2 − 0.1358rt−3 + at, (5.7)

where at is assumed to be a white noise series with mean zero and variance
equal to one.

Model 3 : rt = 0.0014− 0.0210rt−1 − 0.0232rt−2 − 0.0434rt−3 + εt, (5.8)

Model 4 : rt = 0.0028− 0.0420rt−1 − 0.0464rt−2 − 0.0868rt−3 + εt, (5.9)

where
εt = σtzt, {zt} ∼ i.i.d.N(0, 1),

σ2t = 0.000002 + 0.905ε2t−1 + 0.0882σ2t−1,

For each model, we repeat the simulation for 100 times. For each simu-
lation, we record if AIC or PACF can correctly show us the correct order
of the data.

Model
500 data 2500 data

AIC PACF AIC PACF

1 26 32 49 36
2 51 59 72 50
3 1 7 12 3
4 6 31 65 13

Table 5.1: The number of times that AIC and PACF can �nd out the
correct order from 500 or 2500 simulated data out of 100 simulations

From Tab. 5.1, when the sample size is small, PACF performs better
than AIC. When the sample size is large, AIC performs better. And we can
see that AIC can perform better when the sample size is larger. Therefore,
we cannot say that one method is always outperforming than another, it
depends on the sample size. By comparing the models, we can also observe
that AIC and PACF both �nd out more correct order in model 2 over model
1 and model 4 over model 3. It means that they show more reliable when
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the coe�cients of the model are larger. However, we can also notice that the
number of times that two methods �nd out the correct order are quite small
especially when the sample size is small. Sometimes, it may happen that
PACF shows the correct order but AIC not in a large sample size or in the
reverse way. Therefore, when we do the order determination, we cannot just
trust either one of them totally. Instead we should put either one of them
in the �rst priority for the consideration depends on the sample size and
then we should check for another one if it also agrees with the result. For
example, if the sample size is large, AIC will be considered �rst, and then
we get the order p. If the PACF of order p is within the con�dence bounds
and very small, we should not still use this order and we should reconsider
maybe by PACF values to �nd a more correct and reasonable one.

5.7 Conditional heteroscedastic models

Volatility is an important factor in option trading and also many other �nan-
cial applications. Conditional heteroscedastic models are used for modeling
the volatility of an asset return. Two of those models, ARCH and GARCH,
will be presented here .

Before setting up a model, a test for conditional heteroscedasticity is
needed. Let εt = rt − µt be the residuals of the mean equation, then
the squared series ε2t is used for checking the conditional heteroscedastic-
ity (ARCH e�ect). The Lagrange multiplier test of Engle [8] can be used
for checking the ARCH e�ect. It is done by testing αi = 0 for i = 1, ...m,
like the usual F -statistic. The null hypothesis α1 = ... = αm = 0, in the
linear regression:

ε2t = α0 + α1ε
2
t−1 + ...+ αmε

2
t−m + et, t = m+ 1, ..., T,

where et denotes the error term, m is a prespeci�ed positive integer, and T
is the sample size.

5.7.1 Autoregressive conditional heteroskedastic model

The autoregressive conditional heteroskedastic model (ARCH) is introduced
by Engle [8]. This model includes the consideration weather the variance
depends on the past. The basic idea is that (a) the shock (or innovation) of an
asset return is serially uncorrelated, but dependent, and (b) the dependence
of the shock can be described by a simple quadratic function of its lagged
values. More details can be found in Tsay [17].
The ARCH(q) model is given by:

εt = σtzt, {zt} ∼ i.i.d.N(0, 1), σ2t = a0 +

q∑
i=1

(aiε
2
t−i), (5.10)

where a0 > 0 and ai ≥ 0 for i > 0.
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5.7.2 Generalized ARCH (GARCH) model

In empirical applications of the ARCH model, it often calls for a relatively
long lag in the conditional variance equation. Therefore, an extension of the
ARCH class model to allow for both a longer memory and a more �exible lag
structure is needed. The generalized ARCH model is introduced by Boller-
slev [3]. Besides the past sample variances, GARCH(p, q) process allows
lagged conditional variances to enter the linear function of the conditional
variance too.

The process {εt, t ∈ Z} is said to be a GARCH(p, q) process if it is
stationary and if

εt = σtzt, {zt} ∼ i.i.d.N(0, 1),

where

σ2t = a0 +

q∑
i=1

(aiε
2
t−i) +

p∑
j=1

(bjσ
2
t−j),

and a0 > 0, ai ≥ 0, bj ≥ 0.
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Chapter 6

Data analysis -

Day-of-the-week e�ect

6.1 Description of the data source

All the data are extracted from Bloomberg. Six di�erent indexes are cho-
sen to examine for the existence of the day-of-the-week e�ect. They are
OMX Index (OMX Stockholm 30 Index), SAX Index (OMX Stockholm All-
Share Index), SX5E Index (EURO STOXX 50 (Price) Index), SPX Index
(Standard and Poor's 500 Index), NKY Index (Nikkei-225 Stock Average)
and HSI Index (Hang Seng Index). Daily closing prices of all indexes from
1/1/2001(Mon) to 13/3/2012 (Fri) are used. All data are adjusted for cor-
porate actions such as dividends to assure fair return series.

Index Median Mean Variance Lowest Highest

OMX 1047.90 1045.47 96623 442.39 1627.19
SAX 306.92 311.03 9878 126.50 492.51
SX5E 3786.15 3774.44 608994 1958.94 5592.50
SPX 1307.35 1313.48 52705 795.83 1778.40
NKY 11550.89 12437.82 8291729 7697.85 19470.91
HSI 19326.43 21212.34 65341037 9264.55 40904.02

Table 6.1: Summary statistics for the daily price of the studied indexes

6.2 One-day weekday return

In order to examine the day-of-the-week e�ect, all prices are changed to
one-day log returns.

Rt = log

(
Pt+1

Pt

)
(6.1)
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(a) (b)

Figure 6.1: Time plots of (a) price for OMX index (b) one-day log returns
for OMX index

The return data of

log

(
Closing price on Monday

Closing price on Friday

)
will be considered as Monday return. As some of the weekdays are holidays,
the return data which include holidays in the formula for calculating the
return value are removed.

Index Mean [10−4] Variance [10−4] Kurtosis Skewness

OMX All 1.08 2.72 6.35 0.10
OMX Mon 1.71 3.43 8.16 0.33
OMX Tue -5.53 2.56 6.18 0.04
OMX Wed 5.19 2.72 4.46 -0.07
OMX Thu 6.38 2.72 4.85 0.00
OMX Fri -2.62 2.19 6.60 0.07

Table 6.2: Summary statistics for one-day returns of OMX

Tab. 6.2 shows a �rst study about the one-day return of OMX data.
Tuesday and Friday have negative mean returns while the others have posi-
tive mean returns and Thursday is the highest. The results also indicate that
Monday returns have slightly higher variance. Moreover, it is known that the
kurtosis of a Normal distribution is 3. By considering the kurtosis and the
histogram graphs of the weekdays (Fig. 6.2), one can observe that all week-
days have relatively high peaks and heavy tails, especially on Monday. It also
shows that their distributions are far from the Normal distribution. As for
the value of skewness, most of return distributions have positive value, the
histogram graphs however seem a bit left skewed, especially on the Monday
returns. The positive skewness may be due to some relatively large positive
values. By removing the 1-3 largest and smallest values of Monday returns,
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the value of skewness decreases to 0.20, 0.09, -0.08, respectively. This result
is consistent with the assumption above.

6.3 Parametric models

All the weekday return data are �tted with di�erent parametric families,
Normal distribution, location-scale Student's t-distribution and third-degree
polynomial of standard normal model. Maximum likelihood estimation (MLE)
is used to estimate the parameters for the Normal and Student's t while least
squares estimation is used for the last one.

6.3.1 Normal distribution

All the return data are �rst �tted to a Normal distribution and qq-plots
Fig. 6.3 are obtained. From the qq-plots, one can observe that all the return
data, especially Monday return data, are far from the Normal distribution
with heavy tails. Therefore, location-scale Student's t-distribution is then
�tted.

Weekday Return µ[10−4] σ[10−2]

Monday 1.71 1.85
Tuesday -5.53 1.60
Wednesday 5.19 1.65
Thursday 6.38 1.65
Friday -2.62 1.48

Table 6.3: Estimated parameters by MLE for �tting OMX one-day return
data with Normal distribution for di�erent weekdays

6.3.2 Location-scale Student's t-distribution

Then location-scale Student's t-distribution is used as reference distribution,
with results are presented in Tab. 6.4 and the qq-plots in Fig. 6.4. The
estimated standard deviation is calculated by the formula σ ×

√
ν/(ν − 2).

Tab. 6.5 shows the con�dence intervals at level 95% for the estimated pa-
rameters from MLE by using bootstrap method which is described in Hult
et al 's book [12].

From the qq-plots Fig. 6.4, one can observe that all the return data
�t reasonable well with Student's t-distribution. Moreover, Monday has the
lowest estimated degrees of freedom among all the weekday returns, so it has
the heaviest tail. Comparing the estimated standard deviation and standard
deviation obtained from the MLE with the Normal distribution, Monday
returns show a signi�cant di�erence while other weekdays have similar values.
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Weekday Return µ[10−4] σ[10−2] ν SD [10−2]

Monday 8.65 1.07 2.54 2.31
Tuesday -5.31 1.13 3.65 1.67
Wednesday 6.24 1.27 4.48 1.70
Thursday 5.98 1.24 4.28 1.70
Friday 1.09 1.04 3.62 1.55

Table 6.4: Estimated parameters by MLE for �tting OMX one-day return
data with a location-scale Student's t-distribution t(µ, σ2, ν) for di�erent
weekdays.

Weekday Return 95% CI of µ[10−4] 95% CI of σ[10−2] 95% CI of ν

Monday -2.94 � 20.50 0.95 � 1.19 1.70 � 3.05
Tuesday -16.04 � 5.97 0.99 � 1.26 1.91 � 4.49
Wednesday -7.14 � 19.72 1.11 � 1.41 1.86 � 5.69
Thursday -6.06 � 17.89 1.09 � 1.36 2.01 � 5.37
Friday -9.61 � 12.13 0.92 � 1.15 2.08 � 4.44

Table 6.5: Con�dence intervals at level 95% of the estimated parameters by
using bootstrap

6.3.3 Third-degree polynomial of standard normal model

Since the qq-plots Fig. 6.3 against the Normal distribution turn out like
a graph of a third-degree polynomial, it is reasonable to believe that the
one-day log return samples can be seen as outcomes of the random variable
g(Y ; θ), where Y is standard normally distributed, θ = (θ0, θ1, θ2, θ3), and

g(y; θ) = θ0 + θ1y + θ2y
2 + θ3y

3,

which is also called third-degree polynomial of standard normal model. The
quantile function of g(Y ; θ) is given by

F−1g(Y ;θ)(p) = θ0 + θ1Φ
−1(p) + θ2Φ

−1(p)2 + θ3Φ
−1(p)3.

The return data are then tried to �t with this model and obtain the results in
Tab. 6.6. By checking the value θ3 across di�erent weekdays in Tab. 6.6, one
can notice that Monday has a relatively higher value than others. It seems
that Monday has a relatively heavier tail comparing to other weekdays. It
is consistent with the �nding in Student's t-distribution where Monday has
the lowest degrees of freedom.

The qq-plots of the third-degree polynomial of di�erent weekdays are
plotted in Fig. 6.5. Comparing them to the qq-plot �tted with location-scale
Student's t-distribution(Fig. 6.4), they both give a good �t and it is di�-
cult to see the di�erence between two models. Then three di�erent models
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Weekday Return θ0[10−4] θ1[10−4] θ2[10−4] θ3[10−4]

Monday 1.60 106.82 0.11 25.56
Tuesday -6.40 113.21 0.89 15.92
Wednesday 6.69 132.86 -1.53 11.30
Thursday 5.90 128.62 0.49 12.69
Friday -0.49 104.51 -2.17 14.69

Table 6.6: Estimated parameters by least squares estimation for �tting OMX
one-day return data to the third-degree polynomial of standard normal for
di�erent weekdays

are plotted on the histograms of empirical distribution of di�erent week-
day returns for comparison. From Fig. 6.6, one can observe that Normal
distribution has the poor �t. Location-scale Student's t-distribution and
third-degree polynomial of the standard normal model both show better �t
since they both have more parameters.

6.4 Test for homogeneity in variance

In order to test for the homogeneity in variance of the one-day return data
among di�erent weekdays, F -test is carried out with the null hypothesis that
the population variances are equal and Tab. 6.7 is obtained. When 5% or
even 1% signi�cance level is used in F -test, the null hypothesis that Monday
has the same variance as all the other weekday returns can be rejected. Also,
the null hypothesis that Friday has the same variance with Wednesday and
Thursday are also rejected under 5% signi�cance level.

% Mon Tue Wed Thur Fri

Mon 100.00 0.07 0.66 0.68 0.00
Tue NaN 100.00 47.81 48.13 6.74
Wed NaN NaN 100.00 99.79 1.11
Thu NaN NaN NaN 100.00 1.14
Fri NaN NaN NaN NaN 100.00

Table 6.7: The p-values of the F -test for OMX one-day returns

As already shown, the return data are far from normally distributed, the
results from F -test may not be reliable. Therefore, the testing of the homo-
geneity in variance is also performed with Levene's and Brown-Forsythe tests.
Due to the unknown return data distribution, Levene's test and Brown-
Forsythe test with median and 10% trimmed mean are used here instead of
just using either one of them. Again, those test are all used for testing the
null hypothesis that the population variances are equal.
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% Mon Tue Wed Thur Fri

Mon 100.00 0.00 0.00 0.00 0.00
Tue NaN 100.00 99.88 86.45 6.90
Wed NaN NaN 100.00 86.49 6.72
Thur NaN NaN NaN 100.00 4.64
Fri NaN NaN NaN NaN 100.00

Table 6.8: The p-values of the Levene's test for OMX one-day returns

% Mon Tue Wed Thur Fri

Mon 100.00 0.00 0.00 0.00 0.00
Tue NaN 100.00 99.91 88.08 7.72
Wed NaN NaN 100.00 87.91 7.52
Thur NaN NaN NaN 100.00 5.49
Fri NaN NaN NaN NaN 100.00

Table 6.9: The p-values of the Brown-Forsythe test (median) for OMX one-
day returns

Referring to Tab. 6.8 � 6.10, and at 5% signi�cance level, the null hy-
pothesis that Monday has the same variance as all the other weekday returns
can be rejected in all tests. It agreed with the result from the F -test. How-
ever, these new tests show the null hypothesis is not rejected for Friday and
Wednesday return. Also, the null hypothesis for Friday and Thursday return
is only rejected in Levene's test and Brown-Forsythe test with 10% trimmed
mean but not in the Brown-Forsythe test with median. In addition, if one
check for the p-values between Tuesday and Wednesday, one can see that
they are all very close to 100% in Levene's and Brown-Forsythe tests. It
seems that Tuesday and Wednesday have almost the same variance.

Concluding from all these tsets, the null hypothesis that the variances are
all the same for all weekdays is rejected. Moreover, the p-values for Monday
returns are very close to zero so one can strongly believe that Monday has a
very di�erent variance than the other weekday returns.

The same tests are repeated with other index data. SAX, SX5E and HSI
indexes all show similar results as OMX that Monday return has a di�erent
variance with all the other weekday returns. While the American index SPX
index not only Monday but also Friday has di�erent variance with all the
others. For the index in Japan, NKY, the result is di�erent. It shows only
Tuesday and Thursday have di�erent variances.
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% Mon Tue Wed Thur Fri

Mon 100.00 0.00 0.00 0.00 0.00
Tue NaN 100.00 99.85 86.74 7.07
Wed NaN NaN 100.00 86.50 6.94
Thu NaN NaN NaN 100.00 4.80
Fri NaN NaN NaN NaN 100.00

Table 6.10: The p-values of the Brown-Forsythe test (10% trimmed mean)
for OMX one-day returns

6.5 Time series model

6.5.1 AR model

From the autocorrelation graph Fig. 6.7, one can observe that there exists
autocorrelation in the return data. Therefore, a mean equation is set up
as an autoregressive model with dummy variables for di�erent weekdays to
examine for the day-of-the-week e�ect.

Rt = α0 + α1DT + α2DW + α3DH + α4DF +

k∑
i=1

βiRt−i (6.2)

where DT , DW , DH and DF are dummy variables for Tuesday, Wednesday,
Thursday and Friday respectively.

Order 2 3 5 6 7

AIC [104] -2.2491 -2.2492 -2.2481 -2.2479 -2.2475
PACF -0.0431 -0.0682 -0.0531 -0.0534 0.0450

Order 10 17 18 19

AIC [104] -2.2449 -2.2388 -2.2389 -2.2385
PACF -0.0316 0.0401 -0.0440 -0.0529

Table 6.11: The values of AIC and PACF of OMX one-day returns with
di�erent orders

From Tab. 6.11, one can observe that order 3 has the smallest AIC value
-22 494 and the largest absolute PACF value 0.0682 among all the orders.
Therefore, AR(3) model will be appropriate here. Then the built in function
"regstats" in Matlab is used to get all the regression statistics.

From Tab. 6.12, all the p-values of the coe�cient of the dummies are
larger than 5% which mean the null hypothesis of the coe�cients equal to
zero in all the dummies are accepted. Therefore, it seems that there is no
day-of-the-week e�ect in the mean equation.
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parameter α0 α1 α2 α3 α4 β1 β2 β3
value [10−4] 2.67 -7.71 3.00 2.29 -5.59 -134.47 -437.13 -679.41
se[10−4] 7.10 9.97 9.91 9.95 10.06 191.02 190.36 190.30
t-statistic 0.38 -0.77 0.30 0.23 -0.56 -0.70 -2.30 -3.57
p-value(%) 70.76 43.92 76.21 81.77 57.81 48.15 2.17 0.04

Table 6.12: Summary Statistics of regression for OMX one-day returns
AR(3) model by using Matlab

The same procedures are repeated with other indexes. SAX, SX5E, SPX
and HSI index all show that they do not have any day-of-the-week e�ect.
However, NKY index shows a di�erent result. An AR model with order
6 is used as the mean equation for NKY. Even the smallest AIC value of
NKY appears in order 1, the PACF value of order 1 is within the con�dence
bounds, so order 6 which has the largest absolute PACF value 0.049 among
all the orders is chosen to get a more correct result. When 5% signi�cance
level is used, from Tab. 6.13, the null hypothesis for the coe�cient of the
Thursday dummy can be rejected. It means the day-of-the-week e�ect may
exist on Thursday. However, if 4% or even lower signi�cance level is used,
the null hypothesis for Thursday cannot be rejected. Therefore, this special
�nding is not strong enough to be concluded here.

parameter α0 α1 α2 α3 α4

value [10−4] -12.32 1.47 11.89 19.63 8.05
se [10−4] 7.08 9.97 9.74 9.73 9.73
t-statistic -1.74 0.15 1.22 2.02 0.83
p-value(%) 8.17 88.26 22.20 4.37 40.83

β1 β2 β3 β4 β5 β6
-211.61 178.88 -406.93 -292.27 184.51 493.38
195.99 196.03 196.05 195.99 195.92 195.86
-1.08 0.91 -2.08 -1.49 0.94 2.52
28.04 36.16 3.80 13.60 34.64 1.18

Table 6.13: Summary Statistics of regression for NKY one-day returns AR(6)
model by using Matlab

6.5.2 GARCH(1, 1)

By observing Fig. 6.7, it seems that the series is serially uncorrelated but
dependent. The Lagrange multiplier test by Engle [8] is performed to test
if there is evidence for conditional heteroscedasticity (ARCH e�ect) in the
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series. It rejects the null hypothesis that no ARCH e�ect in the resid-
ual of AR(3) at the 5% signi�cance level. Thus, indicating that there is
time varying conditional heteroscedasticity in the return data. Therefore, a
GARCH(1, 1) model with the mean equation Eq. 6.3 is used to examine if
there is any day-of-the-week e�ect.

Rt = α0 + α1DT + α2DW + α3DH + α4DF +
3∑
i=1

βiRt−i + εt, (6.3)

εt = σtzt , σ
2
t = a0 + a1ε

2
t−1 + b1σ

2
t−1, (6.4)

where DT , DW , DH and DF are dummy variables for Tuesday, Wednesday,
Thursday and Friday respectively. {zt} is assumed to be a sequence of i.i.d
random variables with standard Normal distribution.

parameter value [10−4] se [10−4] t-statistic p-value(%)

α0 14.02 5.12 2.74 0.62
α1 -17.44 7.04 -2.48 1.33
α2 -1.35 6.90 -0.20 84.49
α3 -4.64 6.95 -0.67 50.48
α4 -2.67 7.27 -0.37 71.37
β1 -209.90 205.97 -1.02 30.82
β2 -232.33 196.17 -1.18 23.64
β3 -433.57 196.61 -2.21 2.75
a0 0.02 0.00 4.50 0.00
a1 9049.60 85.00 106.46 0.00
b1 882.11 81.37 10.84 0.00

Table 6.14: Summary Statistics of GARCH(1, 1) model for OMX one-day
returns by using Matlab

The built in function "garch�t" in Matlab is used and the statistics are
obtained. From Tab. 6.14, the p-value of α1 is just 1.33%. Therefore, the null
hypothesis of no day-of-the-week e�ect on Tuesday is rejected at the 5% or
even 2% signi�cance level. While the null hypothesis of other weekdays still
cannot be rejected. Moreover, the values in all the coe�cients of dummies are
negative and Tuesday is the most lowest one which has -0.001744. Recalling
the result from AR model, which shows that there is no any day-of-the-week
e�ect, the result from GARCH model is inconsistent with the AR result.
Yang and Chang [20]

The same procedures are repeated with other indexes. The null hypoth-
esis of no day-of-the-week e�ect on Tuesday is also rejected on SAX and
HSI indexes which mean day-of-the-week e�ect on Tuesday also exist for
these two indexes. For SPX, SX5E and NKY indexes, no day-of-the-week
e�ect is evident. Comparing the results from AR model, the results from
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GARCH(1, 1) model are very di�erent. In the AR model, SAX and HSI do
not show any day-of-the-week e�ect on any weekday but they show day-of-
the-week e�ect on Tuesday in GARCH(1, 1). For NKY index, it shows that
it may have a little bit day-of-the-week e�ect on Thursday, but it no longer
exists when GARCH(1, 1) model is used. It seems that ARCH e�ect makes
a very large impact there.
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(a) (b)

(c) (d)

(e)

Figure 6.2: Histogram graphs �t with Normal distribution for (a) Monday (b)
Tuesday (c) Wednesday (d) Thursday (e) Friday one-day returns of OMX.
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(a) (b)

(c) (d)

(e)

Figure 6.3: The qq-plots with Normal distribution for (a) Monday (b) Tues-
day (c) Wednesday (d) Thursday (e) Friday one-day returns of OMX
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(a) (b)

(c) (d)

(e)

Figure 6.4: The qq-plots with Student's t-distribution for (a) Monday (b)
Tuesday (c) Wednesday (d) Thursday (e) Friday one-day returns of OMX
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(a) (b)

(c) (d)

(e)

Figure 6.5: The qq-plots with third-degree polynomial of standard normal
model for (a) Monday (b) Tuesday (c) Wednesday (d) Thursday (e) Friday
one-day returns of OMX
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(a) (b)

(c) (d)

(e)

Figure 6.6: Histograms of empirical distribution with the density for the
�tted Normal distribution (red line), location-scale Student's t-distribution
(green line) and third-degree polynomial of standard normal model (magenta
line) for (a) Monday (b) Tuesday (c) Wednesday (d) Thursday (e) Friday
one-day returns of OMX
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(a) (b)

(c)

Figure 6.7: (a) Sample autocorrelation function of the OMX one-day return
series, (b) Sample partial autocorrelation function of the OMX one-day re-
turn series (c) Sample partial autocorrelation function of the OMX squared
one-day returns
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Chapter 7

Conditional Analysis

Here the daily return to the return over the previous week return are stud-
ied. To de�ne previous week's return, the following example introduces the
methodology: Assuming today is Monday, July 18, and there is no holiday
over the previous week, the previous week's return will be measured from
the close of Friday, July 8 to the close of Friday, July 15 if no trading oc-
curs on the weekend. Holidays are handled in the following simple manner.
With no Saturday trading and a holiday on Friday, July 15, the previous
week's return will be measured from the close of Friday, July 8 to the close
of Thursday, July 14. As for a holiday on Friday, July 8, it will necessitate
an interval from the close of Thursday, July 7 to the close of Friday, July 15.

7.1 Analysis based on previous week return

Daily returns are classi�ed as being either above or below zero according
to the previous week returns. Average returns across these two subsamples
are presented in Tab. 7.1, 7.2. The one sample t-test is used to determine
whether the daily return is 0 or not and the results are presented in those
table also.

Monday Tuesday Wednesday Thursday

mean[10−3] -0.79 -1.85 -0.13 0.31
variance[10−4] 2.41 2.23 2.32 2.02
p-value(%) 39.94 4.09 88.90 72.02

Table 7.1: Daily return summary when the last week return is positive

From Tab. 7.1, 7.2, under a signi�cance of 5%, there is no Monday ef-
fect, and Monday's return is not in�uenced by previous week return. One
can observe that only Tuesday's return is in�uenced by the previous week
return but the Tuesday e�ect only exists when the previous week return is
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Monday Tuesday Wednesday Thursday

mean[10−3] 1.19 1.11 1.2 0.35
variance[10−4] 4.21 2.80 2.97 3.26
p-value( %) 35.35 28.85 25.25 75.62

Table 7.2: Daily return summary when the last week return is negative

positive not in the case of negative. Also, it shows that the Tuesday return
is signi�cantly below zero when previous week return is positive while it is
no di�erence than zero when the previous week return is negative.

Since the two subsamples of every weekday have di�erent size from each
other, normal t-test cannot be used. Welch's t-test is used here to test
whether the two subsamples in every weekdays have same mean values or
not.

Monday Tuesday Wednesday Thursday

t-statistic -1.25 -2.15 -0.96 -0.03
ν 478.18 515.09 513.19 487.92
p-value(%) 21.24 3.20 33.64 97.62

Table 7.3: Welch t-test for the subsamples of everyday return

Tab. 7.3 shows that for Tuesday, there is di�erence between the two
subsamples (based on whether previous week return is positive or negative),
while all the others have no di�erence.
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Chapter 8

Further study in longer holding

period

8.1 Two-day return

After the day-of-the-week e�ects in one-day returns of the indexes are in-
vestigated, it is interesting to study longer holding periods using the same
methodology to investigate existence of other time anomalies. Instead of one-
day returns, two days holding periods are considered here. The same models
and the same procedures are repeated but the studied series are changed to
two-day log returns instead of one-day in this part.

Rt = log

(
Pt+2

Pt

)
The return data of

log

(
Closing price on Wedesday

Closing price on Monday

)
will be considered as Wednesday two-day return.

Index Mean [10−4] Variance [10−4] Kurtosis Skewness

OMX All 1.87 5.37 5.47 -0.05
OMX Mon -4.58 5.39 4.84 -0.56
OMX Tue -3.36 5.96 7.11 0.41
OMX Wed -0.06 4.96 4.47 -0.09
OMX Thu 11.60 5.74 5.25 -0.07
OMX Fri 5.50 4.83 4.94 -0.04

Table 8.1: Summary statistics for two-day returns of OMX

Tab. 8.1 shows some summary statistics for the two-day returns of OMX
data. Thursday and Friday have positive mean returns while the others have
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negative mean returns and Thursday is the highest. The results also indicate
that Tuesday return has slightly higher variance. Moreover, it is known that
the kurtosis of a Normal distribution is 3. By considering the kurtosis and
the histogram graphs of the weekdays in Fig. 8.1, one can observe that all
weekdays have relatively high peaks and heavy tails. It also shows that
their distributions are far from normally distributed and have a better �t
with location-scale Student's t-distribution and third-degree polynomial of
standard normal model.

8.2 Tests for homogeneity in variance

The F -test, Levene's test and two type of Brown-Forsythe tests are used to
test for homogeneity in variance of the two-day return data among di�erent
weekdays.

% Mon Tue Wed Thur Fri

Mon 100.00 24.65 34.09 46.39 20.05
Tue NaN 100.00 3.43 66.42 1.47
Wed NaN NaN 100.00 9.03 73.94
Thu NaN NaN NaN 100.00 4.33
Fri NaN NaN NaN NaN 100.00

Table 8.2: The p-values of F -test for OMX two-day returns

% Mon Tue Wed Thur Fri

Mon 100.00 2.19 8.79 42.27 9.79
Tue NaN 100.00 0.01 13.19 0.01
Wed NaN NaN 100.00 1.17 96.33
Thu NaN NaN NaN 100.00 1.37
Fri NaN NaN NaN NaN 100.00

Table 8.3: The p-values of the Levene's test for OMX two-day returns

Tab. 8.2 - 8.5 are the results from di�erent tests. The null hypothesis
is again the variance of two weekdays are equal. When 5% signi�cance
level is used, the null hypothesis for Monday and Tuesday are rejected in
Levene's test and Brown-Forsythe test with 10% trimmed mean. While the
null hypothesis for Monday and Wednesday and also Monday and Friday
are just rejected in Brown-Forsythe test with median. As for Wednesday
and Thursday, the null hypothesis cannot be rejected in F -test, but can be
rejected for the other three tests. At last, the null hypothesis of Tuesday with
Wednesday, Tuesday with Friday and Thursday with Friday are all rejected
in all tests. Concluding from all these tests, the null hypothesis that the
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% Mon Tue Wed Thur Fri

Mon 100.00 7.84 2.56 78.68 3.33
Tue NaN 100.00 0.01 13.32 0.01
Wed NaN NaN 100.00 1.18 92.30
Thu NaN NaN NaN 100.00 1.59
Fri NaN NaN NaN NaN 100.00

Table 8.4: The p-values of the Brown-Forsythe test (median) for OMX two-
day returns

% Mon Tue Wed Thur Fri

Mon 100.00 3.01 6.79 49.00 7.68
Tue NaN 100.00 0.01 13.53 0.01
Wed NaN NaN 100.00 1.14 95.97
Thu NaN NaN NaN 100.00 1.35
Fri NaN NaN NaN NaN 100.00

Table 8.5: The p-values of the Brown-Forsythe test (10% trimmed mean) for
OMX two-day returns

variances are all the same for all weekdays is rejected and the p-values for
Tuesday and Friday two-day returns are very close to zero in all tests, so
one can strongly believe that they have a very di�erent variance. Moreover,
the rejection of the null hypothesis for two consecutive weekday return, e.g.
Tuesday and Wednesday return, maybe due to they both have one common
day inside as two days holding period is considered here.

8.3 Time series model

8.3.1 AR model

From the autocorrelation graph Fig. 8.2, we can observe that there exists au-
tocorrelation in the return data. Again, a mean equation as an autoregressive
model with dummy variables for di�erent weekdays is set up to examine for
the day-of-the-week e�ect.

Rt = α0 + α1DT + α2DW + α3DH + α4DF +
k∑
i=1

βiRt−i, (8.1)

where DT , DW , DH and DF are dummy variables for Tuesday, Wednesday,
Thursday and Friday respectively.

From Tab. 8.6, order 8 has the smallest AIC value -21 684 with PACF
value -0.068. Therefore, AR(8) model will be appropriate. Then the built-in
function "regstats" in Matlab is used to get all the regression statistics.
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Order 1 2 3 4 5 6

AIC [102] -210.70 -214.58 -215.81 -216.65 -216.65 -216.69
PACF [10−2] 45.46 -36.50 21.60 -18.47 5.66 -6.48

Order 7 8 9 12 18 19

AIC [102] -216.81 -216.84 -216.78 -216.63 -216.26 -216.16
PACF [10−2] 9.26 -6.80 2.78 -1.33 -7.84 -1.37

Table 8.6: The values of AIC and PACF of the OMX two-day returns with
di�erent orders

parameter α0 α1 α2 α3 α4

value [10−4] 0.51 -3.06 2.41 6.37 -3.60
se [10−4] 7.89 11.15 11.10 11.08 11.15
t-statistic 0.07 -0.27 0.22 0.57 -0.32
p-value(%) 94.81 78.35 82.81 56.55 74.70

β1 β2 β3 β4 β5 β6 β7 β8
value [10−2] 76.79 -64.69 44.38 -32.74 19.20 -17.83 14.39 -6.73
se [10−2] 1.92 2.41 2.69 2.80 2.80 2.69 2.41 1.92
t-statistic 39.96 -26.85 16.49 -11.69 6.85 -6.62 5.98 -3.51
p-value(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05

Table 8.7: Summary Statistics of regression for OMX two-day return AR(8)
model by using Matlab

From Tab. 8.7, all the p-values of the coe�cient of those dummies are
much larger than 5% which means the null hypothesis that the coe�cients
of all the dummies are equal to zero cannot be rejected. Therefore, it seems
that there are no day-of-the-week e�ect in the mean equation.

8.3.2 GARCH(1, 1)

The Lagrange multiplier test of Engle [8] is performed and it rejects the null
hypothesis that no ARCH e�ect in the residual of AR(8) at the 5% signi�-
cance level. It indicates that there is time varying conditional heteroscedas-
ticity in the two-day return data. Therefore, a GARCH(1, 1) model with
the mean equation Eq. 8.2 is used to examine if there is any day-of-the-week
e�ect in two-day return data.
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Rt = α0 + α1DT + α2DW + α3DH + α4DF +
8∑
i=1

βiRt−i + εt (8.2)

εt = σtzt , σ
2
t = a0 + a1ε

2
t−1 + b1σ

2
t−1 (8.3)

where DT , DW , DH and DF are dummy variables for Tuesday, Wednesday,
Thursday and Friday respectively. {zt} is assumed to be a sequence of i.i.d
random variables with standard Normal distribution.

parameter value [10−3] se [10−3] t-statistic p-value(%)

α0 1.55 0.54 2.84 0.46
α1 -1.59 0.79 -2.02 4.37
α2 -0.25 0.79 -0.31 75.35
α3 -0.28 0.77 -0.37 71.22
α4 -0.38 0.78 -0.49 62.57
β1 741.70 20.13 36.84 0.00
β2 -602.35 25.67 -23.47 0.00
β3 419.49 28.44 14.75 0.00
β4 -316.41 29.17 -10.85 0.00
β5 197.79 30.23 6.54 0.00
β6 -165.06 28.17 -5.86 0.00
β7 110.80 25.52 4.34 0.00
β8 -65.57 19.91 -3.29 0.10
a0 0.00 0.00 4.87 0.00
a1 883.64 10.47 84.39 0.00
b1 107.20 10.37 10.34 0.00

Table 8.8: Summary Statistics of GARCH(1,1) for OMX two-day returns by
using Matlab

The built in function "garch�t" in Matlab is used and then get the statis-
tics in Tab. 8.8. When 5% signi�cance level is used, the null hypothesis of
α1 will be rejected. It may indicate that there is day-of-the-week e�ect on
Tuesday for the two-day returns of OMX. However, the p-value of the test
on Tuesday two-day return is 4.37% which is close to 5%, so the result of
existing Tuesday e�ect is not particularly strong.
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(a) (b)

(c) (d)

(e)

Figure 8.1: Histograms of empirical distribution with the density for the
�tted Normal distribution (red line), location-scale Student's t-distribution
(green line) and third-degree polynomial of standard normal model (magenta
line) for (a) Monday (b) Tuesday (c) Wednesday (d) Thursday (e) Friday
two-day returns of OMX index
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(a) (b)

(c)

Figure 8.2: (a) Sample autocorrelation function of the OMX two-day return
series, (b) Sample partial autocorrelation function of the OMX two-day re-
turn series (c) Sample partial autocorrelation function of the OMX squared
two-day returns
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Chapter 9

Further study in

day-of-the-week e�ect in

portfolio

In the �nancial world, instead of investing in just one index, some will prefer
to invest in a portfolio. The investigation is extended to �nd out if there are
any day-of-the-week e�ects in a portfolio. There are uncountable numbers of
combinations of portfolio. Here, a simple portfolio is used as an example to
show how the tests and models can be applied in the case of using portfolio.

9.1 One-day return portfolio

A simple portfolio is set up by investing three indexes : OMX, SAX and SX5E
with equal weight on each index. These indexes are in the same timezone
so the time di�erence problem will not be considered when we are doing the
analysis. Also, one day holding period is chosen to be investigated.

Then the one-day log return of the portfolio will be

Rt =
1

3

(
log

POMX,t+1

POMX,t
+ log

PSAX,t+1

PSAX,t
+ log

PSX5E,t+1

PSX5E,t

)
where POMX,t , PSAX,t and PSX5E,t are the prices of OMX, SAX and SX5E
at time t respectively.

Tab. 9.1 shows some summary statistics for one-day returns of the port-
folio. Tuesday and Friday have a negative mean returns while the others
have positive mean returns and Thursday is the highest. The results also
indicate that Monday return has higher variance. Moreover, by considering
the kurtosis which is far from 3 and the histogram graphs of the weekdays in
(Fig. 9.1), one can observe that all weekdays, especially on Monday, have rel-
atively high peaks and heavy tails. Similar to those investigation in the pre-
vious sessions, the histogram graphs show again that their distributions are
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Mean [10−4] Variance [10−4] Kurtosis Skewness

All 0.52 2.37 6.75 0.06
Mon 0.45 3.15 8.47 0.41
Tue -4.07 2.18 6.35 -0.03
Wed 2.82 2.29 4.73 -0.18
Thu 4.89 2.33 4.70 -0.15
Fri -1.65 1.91 7.32 0.01

Table 9.1: Summary statistics for one-day returns of the portfolio

far from normally distributed and have a better �t with location-scale Stu-
dent's t-distribution and third-degree polynomial of standard normal model.

9.2 Test for homogeneity in variance

The F -test, Levene's test and two types of Brown-Forsythe tests are used to
test the homogeneity in variance of the one-day return data among di�erent
weekdays. Tab. 9.2 � 9.5 are the p-values resulted from those tests with the
null hypothesis of having the same variance. When 5% signi�cance level is
used, the null hypothesis for Monday with all the other weekdays can be
rejected in all tests. Also, the p-values of its are all almost or equal to zero.
It means all the tests support that Monday has a very di�erent variance than
the others. Moreover, this result is very similar to the result in OMX one-day
return, but the null hypothesis for Thursday and Friday is not rejected here
in Levene's test and Brown-Forsythe test.

% Mon Tue Wed Thur Fri

Mon 100.00 0.00 0.02 0.05 0.00
Tue NaN 100.00 58.07 42.32 12.12
Wed NaN NaN 100.00 80.09 3.52
Thu NaN NaN NaN 100.00 1.89
Fri NaN NaN NaN NaN 100.00

Table 9.2: The p-values of the F -test for the portfolio's one-day returns

9.3 Time series model

9.3.1 AR model

The autocorrelation graph Fig. 9.2 shows that there exists autocorrelation in
the return data which indicates an autoregressive model is needed. There-
fore, a mean equation as an AR model with dummy variables for di�erent
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% Mon Tue Wed Thur Fri

Mon 100.00 0.00 0.00 0.00 0.00
Tue NaN 100.00 81.31 97.75 19.22
Wed NaN NaN 100.00 83.46 28.09
Thu NaN NaN NaN 100.00 20.05
Fri NaN NaN NaN NaN 100.00

Table 9.3: The p-values of the Levene's test for the portfolio's one-day returns

% Mon Tue Wed Thur Fri

Mon 100.00 0.00 0.00 0.00 0.00
Tue NaN 100.00 82.55 97.63 19.56
Wed NaN NaN 100.00 80.17 27.83
Thu NaN NaN NaN 100.00 18.43
Fri NaN NaN NaN NaN 100.00

Table 9.4: The p-values of the Brown-Forsythe test (median) for the portfo-
lio's one-day returns

% Mon Tue Wed Thur Fri

Mon 100.00 0.00 0.00 0.00 0.00
Tue NaN 100.00 81.56 98.29 19.39
Wed NaN NaN 100.00 83.18 28.17
Thu NaN NaN NaN 100.00 19.99
Fri NaN NaN NaN NaN 100.00

Table 9.5: The p-values of the Brown-Forsythe test (10% trimmed mean) for
the portfolio's one-day returns

weekdays (Eq. 6.2) is set up to examine for the day-of-the-week e�ect.

From Tab. 9.6, order 3 has the smallest AIC value -22 853 and its PACF
value is much out of the con�dence bounds. Therefore, an AR(3) model will
be an appropriate choice. Then the built in function "regstats" in Matlab is
used to get all the regression statistics.

From Tab. 9.7, all the p-values of the coe�cients of the dummies are
much larger than 5% which means the null hypothesis that the coe�cient
equal to zero in all the dummies cannot be rejected. Therefore, it seems that
there is no day-of-the-week e�ect in the mean equation.
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Order 1 2 3 4 5

AIC [102] -228.52 -228.50 -228.53 -228.47 -228.49
PACF [10−2] -0.21 -4.45 -6.83 4.64 -6.46

Order 6 7 8 9 10

AIC [102] -228.44 -228.39 -228.30 -228.19 -228.13
PACF [10−2] -4.72 4.30 1.49 -1.61 -3.00

Table 9.6: The values of AIC and PACF of the portfolio's one-day returns
with di�erent orders

parameter α0 α1 α2 α3 α4

value [10−4] 1.10 -4.78 2.08 2.95 -3.35
se [10−4] 6.64 9.32 9.26 9.29 9.40
t-statistic 0.17 -0.51 0.22 0.32 -0.36
p-value(%) 86.79 60.80 82.20 75.09 72.11

parameter β1 β2 β3
value [10−4] -45.59 -437.82 -680.47
se [10−4] 191.01 190.72 190.79
t-statistic -0.24 -2.30 -3.57
p-value(%) 81.14 2.18 0.04

Table 9.7: Summary Statistic of regression for the portfolio's one-day return
AR(3) model by using Matlab.

9.3.2 GARCH(1, 1)

The Lagrange multiplier test of Engle [8] is performed and it rejects the null
hypothesis that no ARCH e�ect in the residual of AR(3) at the 5% signi�-
cance level. It indicates that there is time varying conditional heteroscedas-
ticity in the one-day return data. Therefore, a GARCH(1, 1) model with
the mean equation Eq. 6.3 and volatility equation Eq. 6.4 is used to examine
if there is any day-of-the-week e�ect in the portfolio's one-day return data.

The built in function "garch�t" in Matlab is used and get the statistics
in Tab. 9.8. When 5% signi�cance level is used, the null hypothesis for the
coe�cient of Tuesday dummy equal to zero can be rejected while the other
dummies cannot. It means that there may exist Tuesday e�ect for the one-
day return in the portfolio. However, it is not consistent with the result in
the AR model which accept the null hypothesis for all dummies. The ARCH
e�ect seems having a large impact here. Comparing with the result in the
one-day return of OMX which shows that there exists Tuesday e�ect in the
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parameter value [10−3] se [10−3] t-statistic p-value(%)

α0 1.09 0.47 2.35 1.89
α1 -1.33 0.65 -2.05 4.00
α2 0.03 0.63 0.05 96.40
α3 -0.15 0.63 -0.25 80.59
α4 -0.13 0.64 -0.20 84.43
β1 -16.25 21.42 -0.76 44.80
β2 -23.52 19.84 -1.19 23.59
β3 -41.09 19.62 -2.09 3.63
a0 0.00 0.00 4.64 0.00
a1 895.36 9.27 96.55 0.00
b1 97.71 8.99 10.87 0.00

Table 9.8: Summary Statistics of GARCH(1, 1) for the portfolio's one-day
returns by using Matlab

GARCH(1, 1) model, the Tuesday e�ect still exists when a portfolio where
there are on two Swedish and one European indexes with equal weight.
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(a) (b)

(c) (d)

(e)

Figure 9.1: Histograms of empirical distribution with the density for the
�tted Normal distribution (red line), location-scale Student's t-distribution
(green line) and third-degree polynomial of standard normal model (magenta
line) for (a) Monday (b) Tuesday (c) Wednesday (d) Thursday (e) Friday
one-day returns of the portfolio
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(a) (b)

(c)

Figure 9.2: (a) Sample autocorrelation function of the portfolio's one-day
return series, (b) Sample partial autocorrelation function of the portfolio's
one-day return series (c) Sample partial autocorrelation function of the port-
folio's squared one-day returns
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Chapter 10

Conclusion

This thesis mainly study the day-of-the-week e�ects on the one-day return
of the Swedish index OMX. The other countries' indexes are also being ex-
amined and the special �ndings are presented in Appendix.

To investigate the day-of-the-week e�ect among the stock index, two main
quantities of the data are studied: mean and variance. To test the di�erence
of variance, other than the commonly used F -test, three tests: Levene's test
and Brown-Forsythe I and II tests are also presented in Chapter 4. And
the comparison in Chapter 4 shows that in most cases when the data are
non-normal, or centralized, the Levene's test and Brown-Forsythe I and II
tests perform better than F -test no matter for type I or type II error.

In Chapter 6, by �tting OMX daily returns with some parametric mod-
els, return data are found to be non-normal with heavy tails, especially on
Monday. Also, they are �tted well with Student's t-distribution and third-
degree polynomial. Since the data showed non-normal, Levene's test and
Brown-Forsythe tests are used along with F -test in Section 6.4 to test the
homogeneity in variance of one-day returns. The results are consistent at
5% signi�cance level that OMX Monday return variance is di�erent from
other weekdays, while Friday and Thursday return variances are considered
di�erent in Levene's test and Brown-Forsythe tests with 10% trimmed mean
but not in other two tests. Results for other stock indexes, except NKY(see
appendix), they show similar Monday e�ect in variance.

Other than variance, the di�erence of mean is also tested. Section 6.5
presents two time series models: AR and GARCH(1, 1). AR model is sim-
pler and it shows that there are no mean di�erence in OMX one-day return,
while GARCH(1, 1) shows signi�cant Tuesday e�ect. As the ARCH e�ect
is proved existing in the return data, GARCH(1, 1) is more reliable than
AR. The di�erence of the results also indicates that ARCH e�ects make a
large impact in the data. There are two ways for the order determination
used in the time series models, AIC and PACF . The comparison part in
Chapter 5 shows that when the sample size is small, PACF is preferred,
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while AIC is more reliable when there is a large sample size in general.
Chapter 7 examines data in a di�erent way that whether daily returns

are a�ected by the previous week performance. Since the data sizes and
variance are di�erent, Welch's t-test as a modi�ed t-test is introduced and
used to test the means. And the results show that Tuesday return is negative
in 5% signi�cance level when the previous week return is positive, meaning
that some daily return can be a�ected by the weekly return, indicating the
correlation between the data.

All the methods used in Chapter 6 and Chapter 7 can be applied to
other stock indexes, as stated in the appendix, as well as other investment
horizons, like holding two-day instead of one-day (Chapter 8), or investing
in a portfolio instead of single stock (Chapter 9). Chapter 8 shows that in
two-day return analysis, the variances between two consecutive weekdays'
two-day return are di�erent at 5% signi�cance level. It may due to the
mutual day in them. Besides, Tuesday and Friday also show signi�cance
di�erence in variance. Also, there is no mean di�erence exists in AR model
while a weak Tuesday e�ect exists in GARCH(1, 1). Comparing with one-
day return, the data of two-day return for di�erent weekdays are more similar
to each other and there is obvious correlation within the data. In Chapter
9, a selected portfolio (OMX, SAX and SX5E) is analyzed. Monday one-day
return still shows di�erence in variances as in the single stock index and
the Tuesday e�ect in means still exists in the GARCH(1, 1) model for the
portfolio.

This thesis not only study the day-of-the-week e�ect, but also presents
methods that can be used in further studies. There are further problems
which can be investigated, like the correlation within the data and between
indexes, and how it a�ects the variance and mean. Also, one can check
whether the di�erence in time zones will a�ect the portfolio performance.
Besides, the weekly returns and yearly returns are all worth looking into.

56



Bibliography

[1] Albers W, Boon PC, Kallenberg WCM. The asymptotic behavior of tests
for normal means based on a variance pre-test. Journal of Statistical
Planning and Inference. 2000 7/1/;88(1):47-57.

[2] Al-Loughani N, Chappell D. Modelling the day-of-the-week e�ect in the

Kuwait Stock Exchange: a nonlinear GARCH representation. Applied
Financial Economics. 2001;11(4):353-9.

[3] Bollerslev T. Generalized autoregressive conditional heteroskedasticity.
Journal of Econometrics. 1986;31(3):307-27.

[4] Brown MB, Forsythe AB. Robust Tests for the Equality of Variances.
Journal of the American Statistical Association. 1974;69(346):364-7.

[5] Burnham KP, Burnham KP, Anderson DR. Model selection and multi-

model inference : a practical information-theoretic approach. 2nd ed ed.
New York, London: Springer; 2002. xxvi, 488 p. p.

[6] Campbell JY, Lo AW, MacKinlay AC. The econometrics of �nancial

markets. Princeton, NJ: Princeton University Press; 2007. 611 S. p.

[7] Cross F. The Behavior of Stock Prices on Fridays and Mondays. Finan-
cial Analysts Journal. 1973;29(6):67-9.

[8] Engle RF. Autoregressive Conditional Heteroscedasticity with Esti-

mates of the Variance of United Kingdom In�ation. Econometrica.
1982;50(4):987-1007.

[9] French KR. Stock returns and the weekend e�ect. Journal of Financial
Economics. 1980;8(1):55-69.

[10] Gibbons MR, Hess P. Day of the Week E�ects and Asset Returns. The
Journal of Business. 1981;54(4).

[11] Harris L. A transaction data study of weekly and intradaily patterns in

stock returns. Journal of Financial Economics. 1986;16(1):99-117.

57



[12] Hult H, Lindskog F, Hammarlid O, Rehn CJ. Risk and Portfolio Anal-

ysis. 2012.

[13] Ja�e JF, Wester�eld R. The Week-End E�ect in Common Stock Re-

turns: The International Evidence. Journal of Finance. 1985;40(2):433.

[14] Keim DB, Stambaugh RF. A Further Investigation of the Weekend Ef-

fect in Stock Returns. Journal of Finance. 1984;39(3):819.

[15] Lakonishok J, Maberly E. The Weekend E�ect: Trading Patterns of In-

dividual and Institutional Investors. Journal of Finance. 1990;45(1):231.

[16] Levene H.Robust tests for equality of variances. Stanford University
Press, pp.278-292

[17] Tsay RS. Analysis of Financial Time Series John Wiley and Sons; 2005.

[18] Welch BL. The Generalization of `Student's' Problem when Several Dif-

ferent Population Variances are Involved. Biometrika Trust. 1947;34:28-
35.

[19] Yamori N, Kurihara Y. The day-of-the-week e�ect in foreign exchange

markets: multi-currency evidence. Research in International Business
and Finance. 2004;18(1):51-7.

[20] Yang Y-L, Chang C-L. A double-threshold GARCH model of stock mar-

ket and currency shocks on stock returns. Mathematics and Computers
in Simulation. 2008 12/1/;79(3):458-74.

[21] Zimmerman DW. Conditional Probabilities of Rejecting H0 by Pooled

and Separate-Variances t Tests Given Heterogeneity of Sample Vari-

ances. Communications in Statistics - Simulation and Computation.
2004 2004/01/02;33(1):69-81.

58



Chapter 11

Appendix

This appendix will provide some special �nding from United States index,
SPX (Standard and Poor's 500 Index), and a Japan index, NKY ( Nikkei-225
Stock Average).

11.1 Standard and Poor's 500 Index (SPX Index)

(a) (b)

Figure 11.1: Time plots of (a) price for SPX index (b) one-day log returns
for SPX index

11.1.1 Test for Homogeneity in variance

From Tab 11.1 � 11.4, we can observe that the null hypothesis for both
Monday and Friday have the same variance as all the other weekday returns
are rejected in all tests at 5% signi�cance level. As this result is consistent
in all tests and the p-values is very close to or equal to zero, we can strongly
believe that they have a very di�erent variances.
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% Mon Tue Wed Thur Fri

Mon 100.00 0.93 0.11 0.36 0.00
Tue NaN 100.00 55.30 79.60 0.00
Wed NaN NaN 100.00 73.37 0.00
Thu NaN NaN NaN 100.00 0.00
Fri NaN NaN NaN NaN 100.00

Table 11.1: p-values of the F -test for SPX one-day returns

% Mon Tue Wed Thur Fri

Mon 100.00 0.01 0.00 0.00 0.00
Tue NaN 100.00 52.77 71.42 0.00
Wed NaN NaN 100.00 78.81 0.00
Thu NaN NaN NaN 100.00 0.00
Fri NaN NaN NaN NaN 100.00

Table 11.2: p-values of the Levene's Test for SPX one-day returns

% Mon Tue Wed Thur Fri

Mon 100.00 0.01 0.00 0.00 0.00
Tue NaN 100.00 58.33 86.45 0.00
Wed NaN NaN 100.00 70.06 0.00
Thu NaN NaN NaN 100.00 0.00
Fri NaN NaN NaN NaN 100.00

Table 11.3: p-values of the Brown-Forsythe Test (median) for SPX one-day
returns

% Mon Tue Wed Thur Fri

Mon 100.00 0.01 0.00 0.00 0.00
Tue NaN 100.00 53.14 74.40 0.00
Wed NaN NaN 100.00 76.14 0.00
Thu NaN NaN NaN 100.00 0.00
Fri NaN NaN NaN NaN 100.00

Table 11.4: p-values of the Brown-Forsythe Test (10% trimmed mean) for
SPX one-day returns

11.1.2 Time Series Model

As there exists autocorrelation in the one-day return data of SPX, a AR(7)
model with dummy variables for di�erent weekdays is chosen and the regres-
sion is carried out and get Tab. 11.6. When 5% signi�cance level is used, the
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Order 1 2 3 4 5 6

AIC [102] -233.05 -233.04 -232.96 -232.87 -232.76 -232.65
PACF [10−2] -9.67 -6.28 1.23 -2.85 -1.90 0.13

7 8 9 10 11 12

AIC [102] -232.64 -232.61 -232.49 -232.39 -232.29 -232.22
PACF [10−2] -6.04 5.51 0.87 -0.99 2.53 4.07

Table 11.5: The values of AIC and PACF of SPX one-day returns with
di�erent orders

parameter α0 α1 α2 α3 α4

value [10−4] -2.54 9.19 6.47 6.39 -2.90
se [10−4] 6.03 8.48 8.30 8.33 8.38
t-statistic -0.42 1.08 0.78 0.77 -0.35
p-value(%) 67.38 27.85 43.57 44.31 72.94

β1 β2 β3 β4 β5 β6 β7
-1025.42 -614.39 81.34 -293.37 -244.21 -64.36 -598.00
192.21 193.21 193.51 193.49 193.44 193.16 191.73
-5.33 -3.18 0.42 -1.52 -1.26 -0.33 -3.12
0.00 0.15 67.43 12.96 20.69 73.90 0.18

Table 11.6: Summary Statistics of regression of SPX one-day returns by
using Matlab

null hypothesis for all the coe�cients in the dummies are accepted. There-
fore, it seems that there is no day-of-the-week e�ect in the mean equation.
Then, as we check that there is ARCH e�ect in the series, GARCH(1, 1)
is then used and get Tab.11.7. The result of GARCH model is consistent
with the AR model that no any day-of-the-week e�ect in the mean equation
since the null hypothesis for all dummies are also cannot be rejected here.
As we also observe that the null hypothesis for the coe�cients for lag-2 to
lag-7 (β2 − β7) can all be accepted under 5% signi�cance level, we improve
our model to a GARCH(1, 1) model with a AR(1) mean equation. Then
the p-values for the dummies just change a little bit, but the result of no
day-of-the-week e�ect in the mean equation is still can be concluded from
this model.
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parameter value [10−4] se [10−4] t-statistic p-value(%)

α0 9.14 4.19 2.18 2.94
α1 -4.60 5.49 -0.84 40.26
α2 2.79 5.57 0.50 61.68
α3 -3.19 5.69 -0.56 57.53
α4 -9.07 5.66 -1.60 10.94
β1 -652.12 227.69 -2.86 0.42
β2 -389.99 200.35 -1.95 5.17
β3 -55.25 206.56 -0.27 78.91
β4 -266.72 192.01 -1.39 16.49
β5 -329.12 201.58 -1.63 10.26
β6 -271.24 195.53 -1.39 16.55
β7 -169.17 186.78 -0.91 36.52
a0 0.02 0.00 5.89 0.00
a1 8967.60 90.39 99.21 0.00
b1 930.88 84.30 11.04 0.00

Table 11.7: Summary Statistics of GARCH(1, 1) model for SPX one-day
returns by using Matlab

11.2 Nikkei-225 Stock Average (NKY Index)

11.2.1 Test for Homogeneity in variance

% Mon Tue Wed Thur Fri

Mon 100.00 0.58 7.91 71.71 12.45
Tue NaN 100.00 28.05 1.35 19.48
Wed NaN NaN 100.00 15.16 82.23
Thu NaN NaN NaN 100.00 22.70
Fri NaN NaN NaN NaN 100.00

Table 11.8: p-values of the F -test for NKY one-day returns

% Mon Tue Wed Thur Fri

Mon 100.00 29.82 58.33 26.50 56.58
Tue NaN 100.00 60.29 2.89 62.16
Wed NaN NaN 100.00 8.65 97.86
Thu NaN NaN NaN 100.00 8.19
Fri NaN NaN NaN NaN 100.00

Table 11.9: p-values of the Levene's Test for NKY one-day returns
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(a) (b)

Figure 11.2: Time plots of (a) price for NKY index (b) one-day log returns
for NKY index

% Mon Tue Wed Thur Fri

Mon 100.00 22.77 49.00 36.33 47.90
Tue NaN 100.00 58.30 3.16 59.59
Wed NaN NaN 100.00 9.94 98.51
Thu NaN NaN NaN 100.00 9.59
Fri NaN NaN NaN NaN 100.00

Table 11.10: p-values of the Brown-Forsythe Test (median) for NKY one-day
returns

% Mon Tue Wed Thur Fri

Mon 100.00 28.04 54.54 29.44 56.57
Tue NaN 100.00 61.42 3.09 59.37
Wed NaN NaN 100.00 8.84 97.56
Thu NaN NaN NaN 100.00 9.46
Fri NaN NaN NaN NaN 100.00

Table 11.11: p-values of the Brown-Forsythe Test (10% trimmed mean) for
NKY one-day returns

From Tab. 11.8 - 11.11, we can observe that NKY has a very di�erent
results with other indexes. The null hypothesis for Monday having a di�erent
variance with all the other weekdays' return is not rejected here. Even null
hypothesis for Monday and Tuesday having di�erent variance is rejected in
F -test in 5% signi�cance level but not in other three tests. As we already
know that the return data are non-normally distributed, so this result from
F -test is not so reliable here. Therefore, the result for Monday and Tuesday
return in NKY having di�erent variance is not so strong. As for the null
hypothesis for Tuesday with Thursday, we get a consistent result from all
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tests that it can be rejected in 5% signi�cance level. Therefore, we can
believe that Tuesday return has a di�erent variance as Thursday.

11.2.2 Time Series Model

Order 1 2 3 4 5 6

AIC [102] -217.42 -217.32 -217.27 -217.18 -217.08 -217.03
PACF [10−2] -2.00 1.34 -4.38 -2.78 1.89 4.90

7 8 9 10 11 12

AIC [102] -216.96 -216.86 -216.76 -216.66 -216.56 -216.47
PACF [10−2] 3.72 1.36 -1.14 2.37 2.09 -2.87

Table 11.12: The values of AIC and PACF of NKY one-day returns with
di�erent orders

parameter α0 α1 α2 α3 α4

value [10−4] -12.32 1.47 11.89 19.63 8.05
se [10−4] 7.08 9.97 9.74 9.73 9.73
t-statistic -1.74 0.15 1.22 2.02 0.83
p-value(%) 8.17 88.26 22.20 4.37 40.83

β1 β2 β3 β4 β5 β6
-211.61 178.88 -406.93 -292.27 184.51 493.38
195.99 196.03 196.05 195.99 195.92 195.86
-1.08 0.91 -2.08 -1.49 0.94 2.52
28.04 36.16 3.80 13.60 34.64 1.18

Table 11.13: Summary Statistics of regression of NKY one-day returns by
using Matlab

As there exists a little bit autocorrelation in the one-day return data
of NKY, a AR(6) model with dummy variables for di�erent weekdays is
chosen and the regression is carried out and get Tab. 11.13. When 5%
signi�cance level is used, the null hypothesis for the coe�cient of Thursday
(α3) is rejected while the other weekdays cannot. However, if 4% or even
lower signi�cance level is used, then the null hypothesis for Thursday no
longer can be rejected. Therefore, the Thursday e�ect in the mean equation
is not so strong. Then, as we check that there is ARCH e�ect in the series,
GARCH(1, 1) is then used and get Tab.11.14. The result of GARCH model
is not consistent with the AR model. In the GARCH model, it shows that
the null hypothesis for all weekday dummies, even the Thursday dummy,
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parameter value [10−4] se [10−4] t-statistic p-value(%)

α0 0.39 5.01 0.08 93.79
α1 -6.26 7.79 -0.80 42.15
α2 3.64 7.10 0.51 60.84
α3 10.69 7.14 1.50 13.46
α4 2.95 6.84 0.43 66.58
β1 -14.10 230.49 -0.06 95.12
β2 -148.95 213.16 -0.70 48.48
β3 8.34 202.64 0.04 96.72
β4 -160.39 201.10 -0.80 42.52
β5 160.36 199.94 0.80 42.26
β6 39.24 201.06 0.20 84.53
a0 0.04 0.01 4.36 0.00
a1 8734.60 111.65 78.23 0.00
b1 1118.20 93.04 12.02 0.00

Table 11.14: Summary Statistics of GARCH(1, 1) model for NKY one-day
returns by using Matlab

cannot be rejected under 5% signi�cance level. Therefore, it means that
there is no any day-of-the-week e�ect in the mean equation. As we also
observe that the null hypothesis for the coe�cient for lag-1 to lag-6 (β1−β6)
can all be accepted under 5% signi�cance level, we improve our model to a
GARCH(1, 1) model with no autocorrelation in the mean equation. Then
the p-values for the dummies just change a little bit, but the result of no
day-of-the-week e�ect in the mean equation is still can be concluded from
this model.
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