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Abstract

In his five books during 1990–2009, starting with Portfolio Management
Formulas, Ralph Vince made accessible to mechanical traders with lim-
ited background in mathematics various important concepts in the field of
money management. During this process, he coined and popularized the
terms “optimal f” and “leverage space trading model.”

This thesis provides a sound mathematical understanding of these con-
cepts, and adds various extensions and insights of its own. It also provides
practical examples of how mechanical traders can use these concepts to
their advantage. Although beneficial to all mechanical traders, the exam-
ples involve trading futures contracts, and practical details such as the
back-adjustment of futures prices are provided along the way.
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Introduction

Mechanical traders are familiar with trading systems. These systems take in a
certain amount of money and produce an amount of money that is indeterminate
in advance. A mechanical trader repeatedly plays a system he deems to have an
edge, hoping to make profits in the long run.

The primary purpose of this thesis is to formalize the concept of a trading
system and to obtain various useful theoretical results about it in the field of
money management. These results have in the trading community become known
broadly as the “leverage space trading model” and contain the concept of the
“optimal f”—both terms coined and popularized by Vince (1990–2009). The
secondary purpose of this thesis is to demonstrate with practical examples how
traders can use the theory to their benefit.

Chapter 1 formalizes the concept of a trading system and provides a math-
ematical recipe for obtaining that portion of our capital that we should place
into each trade if we wish to maximize the long-term exponential growth of our
capital. This portion, also referred to as the position size, can turn out to be
greater than 1. In other words, the theory allows for taking on leverage when this
is what is required in order to maximize the exponential growth. In fact, taking
on leverage is nothing particularly special under the theory, but a natural and
inherent part of it.

Chapter 2 provides an example of how the theory can be applied in practice.
First, a historically profitable trading system is constructed. The theoretical
apparatus from chapter 1 is then used to approximate the optimal position size.
The trading system that we construct in this chapter involves trading futures
contracts, and we outline along the way the important practical concept of the
back-adjustment of futures prices.

Chapter 3 discusses the topic of diversification, i.e. how we should play more
than one trading system at once. Under our theory, “diversification” is nothing
but a natural extension of the theory of position sizing in chapter 1 to multiple
dimensions. Chapter 4 provides an example of how such diversification can be
carried out in practice.

Chapter 5 analyzes the concept of a drawdown, which is a measure of drops
that occur in our capital as time goes by. Drawdowns are what traders perceive
as being their “risk,” and we explain how they can be constrained. Chapter 6
provides a practical example of this.

1



2 Introduction

Finally, chapter 7 irons out two loose ends. First, we explain how to properly
take into account contract sizes and margin requirements. (Up to this point, we
will have been tacitly assuming that we can trade fractions of contracts.) Second,
we provide detailed step-by-step instructions that mechanical traders can refer to
during their trading operations; these steps explain how our theory fits into the
picture, and what further research has to be carried out that is not covered in
this thesis.



1

Position Sizing: Theory

1. Introduction

A trading system is a thing, or a machine, that takes in a dollars and ejects
a(1 +X) dollars, where X is a random variable describing the percentage return
of the system. This is depicted in figure 1.

a a(1 +X)

Figure 1. A Trading System.

The percentage returns from different plays in a trading system are assumed
to be independent and identically distributed. The random variable X is assumed
to be either discrete or continuous; to have a finite expectation; and to have a
positive probability of being positive and a positive probability of being negative.
It is also assumed that there exists an L > 0 such that X has a zero probability
of being below −L and a positive probability of being between −L and −L + ε
inclusive, for arbitrarily small ε > 0. As an example, if X is continuous, its density
could look as shown in figure 2. The number L will informally be referred to as

−L 0

Figure 2. An Example of a Return Density of a Trading
System with a Continuous Return Distribution.

3



4 Position Sizing: Theory

the “largest possible loss,” even though it can have a zero probability of occurring;
for discrete X, this probability is of course positive.

The assumption about X having a positive probability of being positive and
a positive probability of being negative is a natural one. If this were not the case,
there would hardly be a need for any theory: If we were guaranteed to lose, we
would never trade; and if we were guaranteed to win, we could always play with
our entire capital and more besides.

The reason for the assumption of X having a largest possible loss L will become
clear in section 4. For now, note that this assumption is not unreasonable. For
example, if a system involves buying a stock, we could have L = 1 (i.e. no chance of
more than a 100% loss). If, in addition, a stop-loss order is employed, L could very
well be less than 1. Short positions without stop-loss orders could be impossible
to deal with in theory (since the largest possible loss could be infinite); but in
practice, a reasonable compromise such as L = 2 could be applied.

2. The Concept of Time Preference

It should be mentioned that the concept of time preference is not included in our
theory. The reason is that we do not necessarily know in advance how long time
it is going to take a trading system to eject. This means, in particular, that the
concept of a “risk-free interest rate” is not included in the theory. Money that is
not at work in a trading system is assumed to remain constant. Criteria outside
of this theory (or work done by someone else to incorporate time preference into
the theory) will have to determine the placement of money in a risk-free bank
account. When we mention such things as “time” or “long-term” in this thesis,
we may be informally referring to the number of plays in a trading system.

3. Betting Strategy

A question now arises: How should we play a given trading system? Kelly (1956)
suggested that we should place the same proportionally fixed portion of our avail-
able capital into each play, and derived for discrete return distributions the portion
that maximizes the long-term exponential growth of our capital curve. Breiman
(1961) showed for discrete return distributions that this fixed-portion strategy is
indeed the “best” possible strategy to employ in various long-term senses. Finkel-
stein and Whitley (1981) generalized Breiman’s results about particular long-term
benefits of this strategy to arbitrary return distributions with finite expectations.
For these reasons, we will exclusively focus our attention to fixed-portion trading
in this thesis.

4. The Function G(f)

Starting with one dollar, we now begin repeatedly playing a given trading system.
We denote the percentage return from play n with Xn. We have already decided
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to play with a proportionally fixed portion of our capital. To that end, we let f/L
be the portion of our available capital that we use in every play, where f is some
number in (0, 1); this construction will be explained momentarily. We denote our
starting capital with C0 = 1 (one dollar), and our capital after n plays with Cn.
Clearly, then, our capital after n plays is provided recursively by

Cn =
(

1− f

L

)
Cn−1 +

f

L
Cn−1(1 +Xn) = Cn−1

(
1 +

f

L
Xn

)
,

which can be written in closed form as

Cn =

n∏
i=1

(
1 +

f

L
Xi

)
.

The ideas of the largest possible loss L, and of using the portion f/L to trade
with in every play, appeared in Vince (1990). Their purpose should now be more
clear. First, we are made sure that our capital always stays positive, which will
be of benefit below when we are assured that we are not taking the logarithm of
a nonpositive number. Second, we get the aesthetical benefit of working with a
fraction f on the unit interval (0, 1). Finally, note that if L < 1, we have f/L > 1
for some values of f . In other words, the theory allows taking on leverage. As
we just mentioned, however, it never allows too much aggressiveness—we never
take so much leverage that our capital could possibly become nonpositive. (The
reason for not allowing f = 1 is to eliminate the possibility of the capital ever
becoming zero. The case of f = 0 is not allowed because it is uninteresting.)

We now define the random variables Gn with

Cn = enGn .

In other words, Gn is the exponential growth of our capital curve after n plays.
We wish to understand what happens to Gn in the long run. To that end, we
rewrite the above equation as follows:

Gn =
1

n
logCn =

1

n
log

n∏
i=1

(
1 +

f

L
Xi

)
=

1

n

n∑
i=1

log
(

1 +
f

L
Xi

)
.

Before continuing, we want to show that E|log(1 + fX1/L)| < ∞. To that
end, we look at the function x 7→ |log(1 + fx/L)|, which is shown in figure 3. The
fact that log(1 + fx/L) < fx/L for x > 0, along with E[X1] being finite (as was
assumed in section 1), establishes the convergence of E|log(1 + fX1/L)| towards
infinity. And since −L/f < −L, and L is the largest possible loss of X1, there is
no other concern about convergence. This establishes what we wanted.

Now, since E|log(1 + fX1/L)| <∞, the Kolmogorov strong law of large num-
bers (see Gut (2005), page 295) tells us that

Gn
a.s.−−→ E log

(
1 +

f

L
X1

)
as n→∞.
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x
−L/f 0

∣∣∣ log (1 + f

L
x
)∣∣∣

Figure 3. The function x 7→ |log(1 + fx/L)|.

This motivates the definition of a new function,

G(f) := E log
(

1 +
f

L
X1

)
, (1)

which we call the long-term exponential growth function of our trading system.
Intuitively, we understand that we are supposed to find an f on (0, 1) that

maximizes G(f) if we wish to obtain the greatest long-term exponential growth
for our capital. This intuition is theoretically confirmed in the next section.

5. The Importance of G(f)

The following theorems provide us with a deeper understanding of the importance
of the function G(f). Analogous theorems (with different proofs) are provided in
Thorp (1969), page 285, for the simple case of coin tossing.

Theorem 1. (a) If G(f) > 0, then Cn
a.s.−−→∞ as n→∞.

(b) If G(f) < 0, then Cn
a.s.−−→ 0 as n→∞.

(c) If G(f) = 0, then lim supn→∞Cn =∞ a.s. and lim infn→∞Cn = 0 a.s.

In practice, this theorem tells us that if G(f) > 0, we will make infinite fortunes
in the long run. However, if G(f) < 0, we will go broke in the long run. Finally,
if G(f) = 0, our capital will fluctuate wildly between 0 and ∞ as time goes by.

Proof. Define ξi := log(1+fXi/L). We know that Xi is nondegenerate, i.e. that
the outcome of Xi is not known in advance (this was assumed in section 1). There-
fore, ξi is also nondegenerate. Now define the nondegenerate random walk (Sn)
with Sn := ξ1 + · · · + ξn. We know that logCn = Sn, which gives us Cn = eSn .
We also know that G(f) = E[ξ1]. The entire theorem now follows from proposi-
tion 9.14 in Kallenberg (2002), page 167, which tells us that Sn

a.s.−−→∞ if E[ξ1] > 0,
Sn

a.s.−−→ −∞ if E[ξ1] < 0, and lim supn→∞(±Sn) =∞ a.s. if E[ξ1] = 0.

Let us now imagine that we play a given trading system in two ways simul-
taneously—one dollar going into plays where we use the fraction f = f1, and
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another dollar going into plays where we use the fraction f = f2. We denote the
two capital trajectories with Cn(f1) and Cn(f2) respectively.

Theorem 2. If G(f1) > G(f2), then Cn(f1)/Cn(f2)
a.s.−−→∞ as n→∞.

In practice, this theorem tells us that if we have two fractions f1 and f2 such that
G(f1) > G(f2), we will miss out on infinite fortunes in the long run if we trade
with the fraction f2.

Proof. The idea is similar as in the proof of theorem 1. Define

ξi := log
(

1 +
f1
L
Xi

)
− log

(
1 +

f2
L
Xi

)
.

We know that Xi is nondegenerate. Hence, ξi is nondegenerate. Define the
nondegenerate random walk (Sn) with Sn := ξ1 + · · · + ξn. Note that E[ξ1] =
G(f1) − G(f2) > 0. From proposition 9.14 in Kallenberg (2002), page 167, it
follows that Sn

a.s.−−→∞. But since

Sn =

n∑
i=1

[
log
(

1 +
f1
L
Xi

)
− log

(
1 +

f2
L
Xi

)]
= log

Cn(f1)

Cn(f2)
,

it follows that Cn(f1)/Cn(f2)
a.s.−−→∞.

To summarize this section, theorem 1 tells us that we should trade with a
fraction f such that G(f) > 0. If we do this, we will make infinite fortunes in
the long run. If we do not, we will either get unpredictable results or go broke.
Theorem 2 tells us that if we trade using an f that does not maximize G(f),
we will miss out on infinite fortunes in the long run compared to what we could
have gained by performing the maximization—even if we are already set to make
infinite fortunes.

6. The Shape of G(f)

We have seen the importance of the function G(f), which is given by

G(f) = E log
(

1 +
f

L
X1

)
.

In this section, we obtain some general results about the shape of G(f). In the
process, we also obtain an interesting result about our trading system’s return
expectation, E[X1]. We start by finding the first two derivatives of G(f).

If X1 is continuous with density ρ(x), we find for f in (0, 1) that

G(f) =

∫ ∞
−L

log
(

1 +
f

L
x
)
ρ(x) dx,

G′(f) =
1

L

∫ ∞
−L

x

1 + fx/L
ρ(x) dx,
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and

G′′(f) = − 1

L2

∫ ∞
−L

x2

(1 + fx/L)2
ρ(x) dx.

On the other hand, if X1 is discrete where the outcomes x1, . . . , xr can occur with
probabilities p1, . . . , pr, we find for f in (0, 1) that

G(f) =
r∑
i=1

pi log
(

1 +
f

L
xi

)
,

G′(f) =
1

L

r∑
i=1

pi
xi

1 + fxi/L
,

and

G′′(f) = − 1

L2

r∑
i=1

pi
x2i

(1 + fxi/L)2
.

In both the continuous and discrete case, we immediately notice that

G′(h) −−−−→
h→0+

1

L
E[X1] and G′′(f) < 0 for all f ∈ (0, 1).

This means that the slope of G(f) starts out at E[X1]/L near zero, and that
thereafter, as f → 1, the slope is strictly decreasing. From these observations, we
can deduce the various possible shapes of G(f).

We first consider the case of the return expectation, E[X1], being zero or
negative. In this case, G(f) can look as shown in figure 4. Curves (a) and (b)
correspond to a zero return expectation, and curves (c) and (d) correspond to a
negative one. Curves (a) and (c) approach finite values as f → 1, whereas curves
(b) and (d) approach −∞. From the results in section 5 above, we immediately

0 1
f

(a)

(b)

(c)

(d)

Figure 4. The Function G(f) for Trading Systems
with Nonpositive Return Expectations.
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f

(e)

(f)

(g)

(h)

Figure 5. The Function G(f) for Trading Systems
with Positive Return Expectations.

notice that we will go broke in the long run no matter what f we choose. We have
therefore theoretically confirmed what traders are already aware of—that trading
with a negative return expectation is an exercise in futility. We have also shown
the futility of trading with a zero return expectation.

If E[X1] is positive, G(f) can look as shown in figure 5, where all the curves
begin with a positive slope, corresponding to the positive return expectation.
Curves (e), (f), and (g) approach finite values as f → 1, whereas curve (h) ap-
proaches −∞. On curve (e), we will get most growth for f that is arbitrarily
near 1. On the other three curves, the most growth is obtained with an f be-
tween 0 and 1. Curves (g) and (h) are particularly interesting; for each of them,
there exists a fraction f∗ such that G(f∗) = 0, below which we will be profitable,
and above which we will face a disaster.

We now make an important observation about discrete return distributions.
The functionG(f) for a discrete return distribution, where the outcomes x1, . . . , xr
can occur with probabilities p1, . . . , pr, was found above to be

G(f) =

r∑
i=1

pi log
(

1 +
f

L
xi

)
.

We know in this case that there exists an xi such that xi = −L and pi > 0, i.e.
that the largest possible loss L has a positive probability of occurring. Hence, we
immediately notice that G(f) → −∞ as f → 1. This implies that for discrete
return distributions with positive return expectations, G(f) can only take on
shape (h) in figure 5. (If the return expectation is nonpositive, G(f) can only
take on shapes (b) or (d) in figure 4.) Most traders will in practice only be using
discrete distributions to analyze their trading systems (which is what we do in the
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next chapter). Such traders will, therefore, only encounter shape (h) in figure 5
when analyzing their profitable trading systems.

The value of f that maximizes shape (h) in figure 5 is what Vince (1990–2009)
has popularized as the “optimal f .” This term is becoming ever more established
in the trading community, so we will hereafter write it without the surrounding
quotes.

7. Over- or Underestimating Profits or Losses

We consider again a trading system with a discrete return distribution, where the
outcomes x1, . . . , xr can occur with probabilities p1, . . . , pr, and

G(f) =
r∑
i=1

pi log
(

1 +
f

L
xi

)
.

Let us now imagine that we overestimate the profits of this system by adding a
new outcome xr+1, with xr+1 > xi for all i ∈ {1, . . . , r}, that can occur with
probability pr+1, such that each xi, i ∈ {1, . . . , r}, can now occur with probability
pi(1 − pr+1). The exponential growth function corresponding to this scenario of
overestimated profits is given by

G∗(f) =

r∑
i=1

pi(1− pr+1) log
(

1 +
f

L
xi

)
+ pr+1 log

(
1 +

f

L
xr+1

)
= G(f) + pr+1

[
log
(

1 +
f

L
xr+1

)
−

r∑
i=1

pi log
(

1 +
f

L
xi

)]
.

Since x 7→ log x is an increasing function, we immediately notice that G∗(f) >
G(f) for all f . This means that overestimating profits (in the way we have done
it) will “push G(f) upwards.”

We next show that if G′(f1) = 0 and (G∗)′(f2) = 0, then f2 > f1; this means
that overestimating profits (in the way we have done it) will “shift the optimal f
to the right.” Note that

(G∗)′(f) = G′(f) +
pr+1

L

(
xr+1

1 + fxr+1/L
−

r∑
i=1

pi
xi

1 + fxi/L

)
.

Now, assume that G′(f1) = 0. It can easily be shown that x 7→ x/(1 + bx), for
some constant b > 0, is an increasing function (for x > −1/b), from which it
follows that (G∗)′(f) > G′(f) for all f , which gives us (G∗)′(f1) > 0. With a
second differentiation, it is easily shown that (G∗)′(f) is a decreasing function,
which tells us that if (G∗)′(f2) = 0, we must have f2 > f1.

We have therefore shown that overestimating the profits of a trading system
(in the way we have done it) results in us overestimating the exponential growth of
our system at every f , and believing that the optimal f is larger than it actually
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f
1

(a) (b)

Figure 6. The Effects on the Function G(f)
of Over- or Underestimating Profits.

is. This is depicted with arrow (a) in figure 6. On the flip side, underestimating
the profits (by removing the largest possible gain) will result in us believing the
opposite, as depicted with arrow (b) in the same figure.

Let us now consider what happens if we, instead of overestimating profits,
overestimate losses. To that end, let us add to the original return distribution—
where x1, . . . , xr can occur with probabilities p1, . . . , pr—a new outcome x0, with
x0 < xi for all i ∈ {1, . . . , r}, that can occur with probability p0, such that
each xi, i ∈ {1, . . . , r}, can now occur with probability pi(1− p0). We denote the
largest possible loss corresponding to this scenario of overestimated losses with
L∗ := −x0. The exponential growth function for this scenario is

G∗(f) = p0 log
(

1 +
f

L∗
x0

)
+

r∑
i=1

pi(1− p0) log
(

1 +
f

L∗
xi

)
=

r∑
i=1

pi log
(

1 +
f

L∗
xi

)
+ p0

[
log
(

1 +
f

L∗
x0

)
−

r∑
i=1

pi log
(

1 +
f

L∗
xi

)]
.

Before continuing, we note that it is, in this case, rather meaningless to com-
pare G(f) directly with G∗(f). The reason is that these functions are based on
different largest possible losses, and that f measures, in each case, the position
size in relation to the largest possible loss. Comparing G(f) with G∗(f) would
thus be akin to comparing apples with oranges.

Define the functions H : (0, 1/L) → R and H∗ : (0, 1/L∗) → R with H(g) :=
G(gL) and H∗(g) := G∗(gL∗). These functions describe the exponential growths
of the trading systems corresponding to G and G∗ respectively, as functions of
the actual position sizes. It is therefore more appropriate to compare H and H∗.
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g

(a) (b)

Figure 7. The Effects on the Function H(g)
of Over- or Underestimating Losses.

We find that

H(g) =
r∑
i=1

pi log(1 + gxi)

and

H∗(g) =

r∑
i=1

pi log(1 + gxi) + p0

[
log(1 + gx0)−

r∑
i=1

pi log(1 + gxi)

]
.

Using similar methods as we used when we were overestimating profits, we can
easily show that H∗(g) < H(g) for all g ∈ (0, 1/L∗); and that if (H∗)′(g1) = 0 for
some g1 ∈ (0, 1/L∗) and H ′(g2) = 0 for some g2 ∈ (0, 1/L), then we must have
g1 < g2.

This establishes that overestimating the losses of a trading system (in the
way we have done it) results in us underestimating the exponential growth of our
system for every g that is now allowed, and believing that our optimal position
size is smaller than it actually is. This is depicted with arrow (a) in figure 7. On
the flip side, underestimating the losses (by removing the largest possible loss)
will result in us believing the opposite, as depicted with arrow (b) in the same
figure.

We conjecture that the effects shown in figures 6 and 7 continue to hold under
more general types of over- and underestimations than we have mathematically
shown here. Hopefully, someone else will analyze this conjecture.

The real-life implications of this section are that if we are ever unsure about the
exact shape of G(f), we are safer to underestimate profits than to overestimate
them, and safer to overestimate losses than to underestimate them. Underesti-
mating losses is particularly dangerous; it may end up allowing us to take on too
aggressive position sizes—ones that will eventually make our capital negative.
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8. Extension to a Nonstationary Environment

In practice, we can rarely play the same trading system infinitely many times, as
we have been doing above. This section provides an extension of our theory to a
nonstationary environment.

Assume that we have access to infinitely many trading systems indexed with

m ∈ {1, 2, . . .}. Let Nm be the number of times we play system m, and let X
(m)
i be

the random variable describing the percentage return of play i in system m. All
of these random variables are assumed to be independent of each other. However,
percentage returns from the different systems do not necessarily have the same
distribution. Continuing this natural extension of what we have already covered in
the case of a single trading system, let Lm be the largest possible loss of system m,
fm be the fraction that we use to trade with in this system, and Gm(fm) be its
long-term exponential growth function. Note that

Gm(fm) = E log
(

1 +
fm
Lm

X
(m)
1

)
.

Let us now start trading with the amount C0 = 1 (one dollar). It is easily
seen that our capital after playing M trading systems is given by

CM =
M∏
m=1

Nm∏
i=1

(
1 +

fm
Lm

X
(m)
i

)
.

Define the random variables GM , which represent the exponential growth of our
capital after trading M systems, with

CM = exp

(
GM

M∑
m=1

Nm

)
. (2)

We find that

GM =
1∑M

m=1Nm

log

[ M∏
m=1

Nm∏
i=1

(
1 +

fm
Lm

X
(m)
i

)]

=
1∑M

m=1Nm

M∑
m=1

Nm∑
i=1

log
(

1 +
fm
Lm

X
(m)
i

)
.

The following lemma, which can be found in Gut (2005), page 288, provides
us with information about the average of infinitely many independent random
variables that are not necessarily identically distributed.

Lemma 1. (The Kolmogorov sufficient condition.) Let Y1, Y2, . . . be independent
random variables with mean 0 and finite variances σ2n, n ≥ 1, and set Sn =∑n

k=1 Yk, n ≥ 1. Then,

∞∑
n=1

σ2n
n2

<∞ =⇒ Sn
n

a.s.−−→ 0 as n→∞.



14 Position Sizing: Theory

We can use this lemma to our benefit if we assume that

∞∑
m=1

Nm∑
i=1

Var
(

log(1 + fmX
(m)
1 /Lm)

)(∑m−1
j=0 Nj + i

)2 <∞, (3)

where we have set N0 := 0. This assumption is true for all practical purposes:

First, the quantity Var(log(1+fmX
(m)
1 /Lm)) is finite for each m. (This is an easy

consequence of the fact that (log(1 + x))2 < x for all x > 0.) Second, there is
no reason to believe that this quantity will, in practice, ever approach infinity as
m→∞.

Using this assumption and lemma 1, we find that

1∑M
m=1Nm

M∑
m=1

Nm∑
i=1

[
log
(

1 +
fm
Lm

X
(m)
i

)
−Gm(fm)

]
a.s.−−→ 0 as M →∞. (4)

Before continuing, the following lemma is in order.

Lemma 2. Let Y1, Y2, . . . be random variables such that

1

n

n∑
i=1

(
Yi − E[Yi]

) a.s.−−→ 0 as n→∞,

(a) If lim infn→∞ E[Yn] > 0, then
∑n

i=1 Yi
a.s.−−→∞ as n→∞.

(b) If lim supn→∞ E[Yn] < 0, then
∑n

i=1 Yi
a.s.−−→ −∞ as n→∞.

Proof. We only prove (a); the proof of (b) is similar. Take some c > 0 such that
c < lim infn→∞ E[Yn]. We know that finitely many E[Yn] are below or equal to c
and that infinitely many E[Yn] are above c. Therefore, there exists an N such
that

n∑
i=1

E[Yi] ≥ nc for all n ≥ N,

which gives us

1

n

n∑
i=1

(
Yi − E[Yi]

)
≤ 1

n

n∑
i=1

Yi − c for all n ≥ N.

We know that the left-hand side of this inequality almost surely approaches zero.
This implies that

∑n
i=1 Yi

a.s.−−→ ∞, for otherwise the inequality would be contra-
dicted.

The following theorems confirm the importance of the exponential growth
functions for the individual trading systems.

Theorem 3. Given inequality (3), the following holds:
(a) If lim infm→∞Gm(fm) > 0, then CM

a.s.−−→∞ as M →∞.
(b) If lim supm→∞Gm(fm) < 0, then CM

a.s.−−→ 0 as M →∞.
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In practice, this theorem tells us that if we maintain “sufficiently positive” values
for Gm(fm), we will make infinite fortunes in the long run, and that if we maintain
“sufficiently negative” values for Gm(fm), we will go broke in the long run.

Proof. Apply lemma 2 on formulas (2) and (4).

Let us now imagine that we play the trading systems in two ways simultane-
ously—one dollar going into plays where we use the fraction fm for system m, and
another dollar into plays where we use the fraction f∗m for system m. We denote
the two capital trajectories with CM and C∗M respectively.

Theorem 4. Given inequality (3), the following holds: If lim supm→∞Gm(fm) <
lim infm→∞Gm(f∗m), then C∗M/CM

a.s.−−→∞ as M →∞.

In practice, this theorem tells us that if we maintain Gm(f∗m) “sufficiently higher”
than Gm(fm) and trade using the fractions fm, we will miss out on infinite fortunes
in the long run compared to what we could have made by using the fractions f∗m.

Proof. Formula (4) holds for arbitrary fractions fm, which gives us

1∑M
m=1Nm

M∑
m=1

Nm∑
i=1

[
log
(

1 +
f∗m
Lm

X
(m)
i

)
− log

(
1 +

fm
Lm

X
(m)
i

)
−
(
Gm(f∗m)−Gm(fm)

)] a.s.−−→ 0 as M →∞.

Notice also that

0 < lim inf
m→∞

Gm(f∗m)− lim sup
m→∞

Gm(fm)

= lim inf
m→∞

Gm(f∗m) + lim inf
m→∞

(
−Gm(fm)

)
≤ lim inf

m→∞

(
Gm(f∗m)−Gm(fm)

)
.

Now, since

log
C∗M
CM

=

M∑
m=1

Nm∑
i=1

[
log
(

1 +
f∗m
Lm

X
(m)
i

)
− log

(
1 +

fm
Lm

X
(m)
i

)]
,

it follows from lemma 2 that C∗M/CM
a.s.−−→∞ as M →∞.

9. Summary

The concept of a trading system was defined in section 1. Section 2 mentioned
that the concept of time preference is not included in our theory. Section 3 cited
research that has been done on the “superiority” of trading with a fixed portion
of one’s capital. In section 4, we decided to trade with a fixed portion f/L of
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our capital, where L is the largest possible loss of our system and f is a number
in (0, 1). We then found out that every trading system has a corresponding
function G(f), as defined by equation (1), page 6. Section 5 established the
importance of G(f); we found out that unless G(f) > 0, we are in a dangerous
place to be, and that we should maximize G(f) if we want to get the greatest
long-term exponential growth for our capital. Section 6 showed all the possible
shapes that G(f) can take, showed why one of these shapes is the only one that
most traders will actually encounter in practice, and explained the concept of the
optimal f . Section 7 analyzed the effects on G(f) of over- or underestimating
profits or losses. Finally, section 8 showed that in a nonstationary environment
where we periodically move from one trading system to another, G(f) for each
individual system continues to be of importance.
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10. Introduction

The purpose of this chapter is to provide a starting point for applying in practice
the theory developed in the previous chapter.

We start by constructing a real-world trading system that operates on a real
financial market. Note that there is nothing overly special about our trading
system; traders will ultimately supply their own systems. The only reason we
construct a system here is to make this thesis interesting and self-contained for
readers new to mechanical trading.

Our trading system operates on futures contracts, and we use the opportunity
to explain an important practical concept known as the “back-adjustment” of
futures prices. This has little to do with our theory per se, and we cover it
primarily for self-containment purposes. Another reason to cover this subject is
that we have not seen it adequately explained anywhere else.

We then proceed to approximate the return distribution of our system using
historical data, find the corresponding approximated G(f), and then trade histor-
ically with a few values of f and observe the difference in performance. We stress
that further applied research has to be carried out before one starts to trade for
real using these concepts. Such research is beyond the scope of this thesis, but a
good starting point is provided in section 45, page 55.

11. Definitions

Before we construct our trading system, we need to define a few concepts. Let
(xt)

∞
t=1 be a time series. (For notational simplicity, we allow t to be unbounded

from above. In practice, when examining finite historical data, t is bounded from
above.) Let d ≥ 1 be some integer.

The d-day simple moving average of the time series at day s ≥ d is defined
with

MA
(
(xt)

∞
t=1, d

)
s

:=
xs−d+1 + · · ·+ xs

d
.

In other words, the simple moving average on a particular day is just the average

17
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of the d data points prior to and including that day. The d-day exponential moving
average of the time series at day s ≥ d is defined recursively with

EMA
(
(xt)

∞
t=1, d

)
s

:=

{
MA

(
(xt)

∞
t=1, d

)
s

if s = d,

xsK + EMA
(
(xt)

∞
t=1, d

)
s−1(1−K) if s > d,

where

K :=
2

d+ 1
.

This definition of the exponential moving average can be found in Elder (1993),
page 122. The simple moving average and the exponential moving average are
similar in that they both measure some kind of an average of past data points.
However, the latter is more “advanced” in the sense that it gives the highest
weighting to the most recent data and slowly fades out the weighting of older
data.

(Note our use of “days” as time periods above and onwards. The reader should
note that there is nothing special about days, and that any time period—such as
years, weeks, hours or minutes—could in theory be used instead. The only reason
we refer to days is that the trading systems we construct in this thesis make
use of days. Longer term traders and high-frequency traders alike can adapt the
discussion to suit their own needs.)

In the financial markets, four prices are recorded for every day t: The opening
price ot, the highest price ht, the lowest price lt, and the closing price ct.

1 We can
represent a collection of such daily data with the sequence (ot, ht, lt, ct)

∞
t=1. The

true range at day s ≥ 2 is defined with

TR
(
(ot, ht, lt, ct)

∞
t=1

)
s

:= max(hs − ls, |cs−1 − hs|, |cs−1 − ls|).

In other words, the true range on a given trading day after the market has closed
is the “distance” the market has undergone since it closed on the previous trading
day. The d-day average true range at day r ≥ d+ 1 is defined with

ATR
(
(ot, ht, lt, ct)

∞
t=1, d

)
r

:= EMA
{[

TR
(
(ot, ht, lt, ct)

∞
t=1

)
s+1

]∞
s=1

, d
}
r−1.

In other words, the average true range on a given day after the market has closed
is the exponential moving average of true ranges from the “recent” past. The
average true range is, therefore, nothing but a measure of market volatility in
the “recent” past. The average true range is defined, albeit slightly differently, in
Covel (2007), page 80, and in Faith (2007), page 252; the former uses a simple
moving average instead of an exponential moving average, and the latter uses a
different formula for calculating the exponential moving average (it uses K = 1/d
instead of K = 2/(d+ 1)).

1We will not dwell on what kind of “prices” these are. Some historical data sets show averages
of bid-ask spreads. More commonly though, data sets show actual prices, i.e. exchange-ratios
at which actual economic transactions took place. (See Elder (1993), chapter 2, on how prices
are formed in the marketplace. A deeper analysis on how this process results from purposeful
human behavior is a subject of economics; see e.g. Mises (1949) and Rothbard (1962).)
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12. The Trading System Constructed

We will make use of trading rules known in the literature as the “Donchian trend
following system,” named after the futures trader Richard Donchian. In Faith
(2007), page 139, these rules are described as follows: We enter a long [short]
position if the market reaches the highest [lowest] point it has been for the past
20 days, under the conditions that if the 25-day exponential moving average is
above [below] the 350-day exponential moving average, we are only allowed to take
a long [short] position. We exit a long [short] position when the market reaches
the lowest [highest] point it has been for the past 10 days. We furthermore employ
a stop-loss order of two 20-day average true ranges from our entry; in other words,
we instruct our broker to automatically exit our position before we experience a
more loss than two 20-day average true ranges.

We can imagine many different ways to interpret these rules, if we are to
precisely write them down as instructions for a computer. We have chosen the
interpretation illustrated by the following pseudocode:

Trading days: t = 1, . . . , n
k ← an index in [1, n] that guarantees enough past data
a′: a variable to hold the average true range at trade entry

loop through trading days t = k, . . . , n
o ← opening price for this day

if we have a signal from the previous day to exit a trade
do so now at the price o

end if

if we have a signal from the previous day to enter a long or short trade
do so now at the price o

end if

h ← highest price for this day
l ← lowest price for this day

if a long trade is on
x ← (entry price of trade)− 2a′

if l < x, exit trade at price x
end if

if a short trade is on
x ← (entry price of trade) + 2a′

if h > x, exit trade at price x
end if

h1 ← highest highest price for the past 10 days (including this day)
l1 ← lowest lowest price for the past 10 days (including this day)

if a long trade is on and l = l1
post a signal to exit the trade the next day

end if

if a short trade is on and h = h1
post a signal to exit the trade the next day
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end if

h2 ← highest highest price for the past 20 days (including this day)
l2 ← lowest lowest price for the past 20 days (including this day)
a ← this day’s 20-day average true range
e1 ← this day’s 25-day exponential moving average of closing prices
e2 ← this day’s 350-day exponential moving average of closing prices

if no trade is on or an exit signal has been posted
if e1 > e2 and h = h2

post a signal to enter a long trade the next day
a′ ← a

end if
if e1 < e2 and l = l2

post a signal to enter a short trade the next day
a′ ← a

end if
end if

end of loop

(We have, for the sake of simplicity, ignored slippage, commissions, and other
transaction costs. These can easily be added by minor modifications to the above
code, at places where we enter and exit trades.)

Applying these rules on a given market will provide us with a trading system.
Applying them on historical prices of the market will provide us with a collection
of trades. The percentage returns from these historical trades will, then, provide
us with a rough approximation of the return distribution of the trading system.
This, in turn, will allow us to approximate G(f) and thus the optimal f for the
trading system.

We have chosen to apply the rules on corn futures from July 1, 1959 to Au-
gust 13, 2010. (The contracts were traded on the Chicago Board of Trade, later
CME Group, with the ticker symbol C. The data was obtained from Commodity
Research Bureau.) Unfortunately, there is no such thing as a single “corn futures
price” that traders can trade in perpetuity. They have to regularly roll from one
futures contract to the next in order to avoid having to take actual delivery of
the underlying commodity. The next section describes how we take this practical
issue into account. It turns out that it affects how we calculate the percentage
returns of our trades.

13. The Back-Adjustment of Futures Prices

Figure 8 shows the prices of two futures contracts on corn, one expiring in Septem-
ber 1986 and the other in December 1986. (The price is quoted in cents per bushel
of corn, and one contract is for 5,000 bushels; see Rogers (2004), page 228. Each
bar, “ ”, in the figure represents the opening, highest, lowest, and closing prices
for a trading day; the vertical line connects the highest and lowest prices, the
“left-lobe” represents the opening price, and the “right-lobe” represents the clos-
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Figure 8. Two Futures Contracts on Corn in 1986.

ing price.) Suppose, by way of example, that we initiate a long position in one
September contract on April 18 at 200 cents. On September 8, about a week
before the contract expires, we exit our position at 154 cents. Immediately after
exiting, we initiate a new long position in the December contract at 165.5 cents.

What was our total loss in these transactions? If we are rusty on how futures
contracts work, we might think that we first lost money by entering the contract
at 200 cents and exiting it at 154 cents, losing 200 − 154 = 46 cents per bushel,
and that we lost additional 165.5− 154 = 11.5 cents per bushel when rolling over
to the next contract at a higher price. This, however, is not how futures contracts
work. If we recall that a futures contract does not cost anything to enter into,
and that we only participate in its price fluctuations while we are bound by it, we
see clearly that we lost “only” 46 cents per bushel. We did not lose 11.5 cents per
bushel when rolling between the contracts, because we did not participate in the
price difference between them.

This is the reason for why we want to stitch together the historical prices
the of the futures contracts in such a way that we eliminate the price gaps when
rolling between contracts, the goal being to obtain an accurate depiction of the
profits and losses of our trading operations. First, we have to decide when we
will roll between contracts. We have decided to roll between contracts about one
month prior to expiration. More precisely: We get out of a contract at the closing
price on the last trading day of the second-last month during which the contract
trades, and at the opening price on very next trading day enter the next contract,
i.e. the contract having the second-earliest expiry date on that day.

We do the stitching by back-adjusting the prices in the following way: We
start with the latest futures contract in our data set and go back to the day where
we exited the previous contract. We shift the entire price series of the previous
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Figure 9. Actual and Back-Adjusted Futures
Prices of Corn from 1959 to 2010.

contract up or down such that, on that day, the closing price of the previous
contract equals the closing price of the later contract. We continue this process
until we reach the beginning of our data set.

Figure 9 shows the actual and back-adjusted futures price series for corn (the
figure actually shows weekly closing prices connected with straight lines). Notice
the dramatic difference that the price gaps between futures contracts—price gaps
that we as traders are never exposed to—create over a long period of time.

It should be clear by now how we actually calculate the percentage return of
a given trade. The formula is quite simple:

(−1)s × back-adjusted exit price− back-adjusted entry price

actual entry price
,

where s = 0 if the trade is long or s = 1 if the trade is short. The numerator
represents the profit or loss that we as traders actually experience. If we were
to use actual prices in the numerator instead of back-adjusted prices, we would
obtain a completely distorted view of the performance of our trading system—we
would be pretending as if we participate in the price gaps upon rolling between
futures contracts, when in fact we do not.

None of this discussion affects the validity of the pseudocode in the previous
section. In fact, that entire pseudocode is supposed to be run on the back-adjusted
price series. Of course, we should also record the actual entry price of each trade
so we can obtain its percentage return (as we are about to do in the next section).

To conclude this section, we stress that back-adjusted prices are not actual
prices of any real financial instrument. They are, in and of themselves, completely
meaningless. As we have seen, they are merely a useful practical construct that
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allows us to accurately calculate the performance of a trading system that involves
entering and exiting futures contracts. In fact, it is quite possible for back-adjusted
prices to be negative. But this does not matter, since what we are concerned with
is the difference between back-adjusted prices at two different points in time—a
difference that represents the profit or loss that we as traders actually experience.

(It should be obvious that there are other ways of eliminating the price gaps
between future contracts than to perform back-adjustment. One such way is
forward-adjustment, where we start with the oldest data point and work our way
towards the latest data point. All of these methods are as good as any other.)

14. Obtaining the Return Distribution and the Function G(f)

Running our pseudocode as explained in the previous section, we obtain a series of
r = 318 trades with percentage returns x1, . . . , xr. The smallest return is −0.1023
and the largest 0.3354. We can visualize the return distribution by creating a
histogram of all the returns, as shown in figure 10. (The intervals in this figure
are closed to the left and open to the right. For example, the return 0 lands in
the interval [0, 5).)

We now make the rough assumption that the return distribution of our trading
system is exactly the discrete distribution provided by the historical data that we
have obtained. In other words, we assume that the x1, . . . , xr are the only possible
outcomes, and that each xi has the same probability pi = 1/r of occurring. The
distribution is therefore assumed to have the largest possible loss of L = 0.1023,
and the expected value of the distribution assumed to be given by

∑r
i=1 xipi,

which we compute to be 0.01204.
We now have everything we need to obtain a rough approximation of the

function G(f). Recall from the previous chapter that G(f) is in general provided
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Figure 10. A Histogram of Our Percentage Returns.
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by

G(f) = E log
(

1 +
f

L
X
)
,

where X is a random variable describing the percentage return of our trading
system. In our present case, this becomes

G(f) =
r∑
i=1

pi log
(

1 +
f

L
xi

)
=

1

r

r∑
i=1

log
(

1 +
f

L
xi

)
.

The function G(f) that we obtain is shown in figure 11. We find the optimal f
to be 0.44. The fraction f∗ at which G(f∗) = 0 is found to be f∗ = 0.90. (These
values were computed by applying the Newton-Raphson root-finding algorithm
on G′(f) and G(f) respectively.)

f
1

0.44

0.02

Figure 11. The Function G(f) for Our Trading System.

15. Trading with Different Values of f

Let us now start with one dollar, and trade our system using three different values
of f that, judging from figure 11, we believe to know something about: 0.2, 0.44
and 0.95. Figure 12 shows the results (the scale between 0 and 1 on the vertical
axis is linear, whereas the scale above 1 is logarithmic).

Figure 12 is in and of itself, regardless of any mathematical theory, rather
remarkable. It tells us that if we would have traded our system using f = 0.44,
we would have 1412-folded our initial capital, and that using f = 0.2, we would
have 197-folded it. Note that the actual portions of our capital that we use for
each trade in these cases are, respectively, 0.44/L = 4.3 and 0.2/L = 2.0. In other
words, both cases involve taking on leverage.
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Figure 12. Capital Curves for Different Values of f .

16. Further Applied Research

The assumption we made in section 14 that the return distribution of our trading
system is provided exactly by the discrete distribution obtained from our historical
trades is obviously very suspect; we are assuming that we are trading with a single
fixed trading system for about half a century! What this implies in particular
is that, for all this time, the return distribution is stationary and the returns
independent of each other. In so far as we are planning on using this supposed
single system for trading in the future (we should not!), we are also assuming
that the particular historical period we considered represents what the market
will always look like.

The reader should take this chapter for what it is, and understand its lim-
itations. Its only purpose is to provide a glimpse into the world of mechanical
trading and to provide a basic starting point as to how our theory fits into the
picture. Addressing the above issues is beyond the scope of this thesis, but needs
to be done before we start trading for real. A good starting point for further
applied research is provided in section 45, page 55.

17. Summary

In section 11, we defined various concepts that are commonplace in the world of
trading. In section 12, we constructed an actual trading system that operates on a
real financial market. Section 13 discussed the back-adjustment of futures prices,
a practical technicality for futures traders. In sections 14 and 15, we approximated
the return distribution of our trading system, found the corresponding G(f), and
then proceeded to trade using a few values of f . This is where we saw clearly
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how dramatic an effect the fraction f can have on a trader’s capital curve in the
long run. Finally, in section 16, we explained the limitations of our discussion and
mentioned that we are far from finished when it comes to applied research.
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Diversification: Theory

18. Introduction

This chapter explains how traders can allocate their capital across multiple trading
systems. This will be a natural extension of the theory in chapter 1 to multiple
dimensions. Instead of only one trading system, we now have access to a portfolio

of K trading systems indexed with k ∈ {1, 2, . . . ,K}. We denote with X
(k)
n the

percentage return from play n in system k.
For now, we make the assumption that all the K systems have the same

frequency, i.e. that for each n, play n of system k1 takes the same time to eject as
play n of system k2, for different k1 and k2. In other words, we are able to diversify
our initial capital across the different systems, wait for all of them to eject at the
same time, diversify the proceeds into the systems again, and so on in perpetuity.
Of course, this is usually impossible to do in reality, since different trading systems
usually do have different frequencies. We will generalize our theory to cover this
more realistic case in section 24, page 36.

All the assumptions that were made in chapter 1 about the return distribution
of a single trading system continue to hold for each of the K systems. Note, how-

ever, that X
(k1)
n and X

(k2)
n , for each n and different k1 and k2, are not necessarily

independent and do not necessarily have the same distribution. We assume that
the return distributions of the systems are either all continuous or all discrete,
which provides us with either a continuous or a discrete joint distribution.

Continuing our extension, let Lk be the largest possible loss of system k, and
let fk be the fixed fraction that we use to trade with in this system, such that
fk/Lk is the actual portion of our capital, possibly greater than 1, that we use for
every play in this system.

We assume that fk ≥ 0 for all k, with fk > 0 for some k. (All of them being
zero is not interesting.) We also assume that (f1, . . . , fK) is contained in the set

B :=

{
(f1, . . . , fK)

∣∣∣ P(1 +
K∑
k=1

fk
Lk
X

(k)
1 ≤ 0

)
= 0

}
.

This condition guarantees that our capital stays positive, as we will see in the

27
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next section. Note that if (f1, . . . , fK) is contained in B, then so is t(f1, . . . , fK)
for all t ∈ (0, 1). More generally, note also that B is a convex set.

We also make the assumption that there exists an ε > 0 such that

P(X
(1)
1 < −ε, . . . ,X(K)

1 < −ε) > 0.

This assumption guarantees that B is bounded, and will make parts of the follow-
ing discussion somewhat more elegant than they otherwise would have been. This
assumption is also likely to hold for most portfolios that traders will encounter in
practice. (Those who do not like this assumption can either let ε be arbitrarily
small, or simply get rid of it and adapt the following discussion accordingly.)

19. The Function G(f1, . . . , fK)

Denoting our starting capital with C0 = 1 (one dollar), our capital after n plays
in each trading system (a total of nK plays) is provided recursively by

Cn = Cn−1

(
1−

K∑
k=1

fk
Lk

)
+ Cn−1

K∑
k=1

fk
Lk

(1 +X(k)
n ) = Cn−1

(
1 +

K∑
k=1

fk
Lk
X(k)
n

)
,

which can be written in closed form as

Cn =
n∏
i=1

(
1 +

K∑
k=1

fk
Lk
X

(k)
i

)
.

(This is where the reader will notice the importance of (f1, . . . , fK) being con-
tained in the set B for guaranteeing that our capital stays positive.)

We define the random variables Gn, which represent the exponential growth
of our capital curve after n plays, with

Cn = enGn ,

which we rewrite as

Gn =
1

n
logCn =

1

n
log

n∏
i=1

(
1 +

K∑
k=1

fk
Lk
X

(k)
i

)
=

1

n

n∑
i=1

log

(
1 +

K∑
k=1

fk
Lk
X

(k)
i

)
.

Now, since

log

(
1 +

K∑
k=1

fk
Lk
xk

)
<

K∑
k=1

fk
Lk
xk for x1, . . . , xK > 0,

we can use similar arguments as we used in the case of a single trading system,
on page 5, to show that

E
∣∣∣log

(
1 +

K∑
k=1

fk
Lk
X

(k)
1

)∣∣∣ <∞.
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The Kolmogorov strong law of large numbers (see Gut (2005), page 295) then
tells us that

Gn
a.s.−−→ E log

(
1 +

K∑
k=1

fk
Lk
X

(k)
1

)
as n→∞,

which motivates the definition of the function

G(f1, . . . , fK) := E log

(
1 +

K∑
k=1

fk
Lk
X

(k)
1

)
,

which we call the long-term exponential growth function of our trading systems.

20. The Importance of G(f1, . . . , fK)

The following two theorems are natural extensions of theorems 1 and 2 in sec-
tion 5, page 6, to our present multidimensional setting. The proofs are completely
analogous, and are left as exercises for the reader.

Theorem 5. (a) If G(f1, . . . , fK) > 0, then Cn
a.s.−−→∞ as n→∞.

(b) If G(f1, . . . , fK) < 0, then Cn
a.s.−−→ 0 as n→∞.

(c) If G(f1, . . . , fK) = 0, then

lim sup
n→∞

Cn =∞ a.s. and lim inf
n→∞

Cn = 0 a.s.

Let us now imagine that we play our trading systems in two ways simultane-
ously—one dollar going into plays where we use the fraction fk for system k, and
another dollar going into plays where we use the fraction f∗k for system k. We
denote the two capital trajectories with Cn and C∗n respectively.

Theorem 6. If G(f∗1 , . . . , f
∗
K) > G(f1, . . . , fK), then C∗n/Cn

a.s.−−→∞ as n→∞.

To summarize this section, theorem 5 tells us that we should trade with frac-
tions f1, . . . , fK such that G(f1, . . . , fK) > 0. If we do this, we will make infinite
fortunes in the long run. If we do not, we will either get unpredictable results or
go broke. Theorem 6 tells us that if we trade using fractions f1, . . . , fK that do
not maximize G(f1, . . . , fK), we will miss out on infinite fortunes in the long run
compared to what we could have gained by performing the maximization.

21. The Shape of G(f1, . . . , fK)

It would be rather difficult to visualize the entire (K + 1)-dimensional surface
G(f1, . . . , fK) for K = 3, and virtually impossible for K > 3. Before we provide
an important general result about this entire surface, we begin by letting u =
(u1, . . . , uK) be an arbitrary unit vector with uk ≥ 0 for all k, and then looking
at how G(f1, . . . , fK) behaves along the straight line t 7→ tu for t ∈ (0, bu), where
bu := suptu∈B t. By doing this, we are back to analyzing a function of one variable,
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and it turns out that this approach provides us with a good initial “feel” for the
behavior of G(f1, . . . , fK).

Thus, our object of interest is the function

Gu(t) := G(tu) = E log

(
1 + t

K∑
k=1

uk
Lk
X

(k)
1

)
, t ∈ (0, bu).

If the X
(k)
1 are continuous with the joint density ρ(x1, . . . , xK), we see that

Gu(t) =

∫ ∞
−LK

· · ·
∫ ∞
−L1

log

(
1 + t

K∑
k=1

uk
Lk
xk

)
ρ(x1, . . . , xK) dx1 · · · dxK .

On the other hand, if each X
(k)
1 is discrete with possible outcomes xk,ik , where

ik ∈ {1, 2, . . . , rk}, and the joint distribution is given by

P
(
X

(1)
1 = x1,i1 , . . . , X

(K)
1 = xK,iK

)
=: pi1,...,iK ,

we see that

Gu(t) =

r1∑
i1=1

· · ·
rK∑
iK=1

pi1,...,iK log

(
1 + t

K∑
k=1

uk
Lk
xk,ik

)
.

In both cases, we can easily differentiate to obtain

G′u(s) −−−−→
s→0+

K∑
k=1

uk
Lk

E[X
(k)
1 ] and G′′u(t) < 0 for all t ∈

(
0, bu).

This shows that the surface G(f1, . . . , fK) behaves, along any straight line going
out from the origin, in a somewhat similar manner as G(f) did for a single trading

0 bu
t

*
*

Figure 13. The Function Gu(t) for
∑K

k=1 ukE[X
(k)
1 ]/Lk ≤ 0.
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t

bu

*

Figure 14. The Function Gu(t) for
∑K

k=1 ukE[X
(k)
1 ]/Lk > 0.

system in chapter 1: The slope of Gu(t) starts out at
∑K

k=1 ukE[X
(k)
1 ]/Lk near

zero and is thereafter strictly decreasing. The various possibilities for the shape

of Gu(t) are shown in figure 13 for the case
∑K

k=1 ukE[X
(k)
1 ]/Lk ≤ 0, and in

figure 14 for the case
∑K

k=1 ukE[X
(k)
1 ]/Lk > 0. In the discrete case, the only

possible shapes are the ones marked with an asterisk.

We now turn our attention back to the entire surface G(f1, . . . , fK). Let
(f1, . . . , fK) and (f∗1 , . . . , f

∗
K) be two arbitrary points in its domain, and consider

the straight line that goes through these points:

`(t) := (1− t)(f1, . . . , fK) + t(f∗1 , . . . , f
∗
K), t ∈ [0, 1].

We find that

G(`(t)) = E log

(
1 +

K∑
k=1

fk + t(f∗k − fk)
Lk

X
(k)
1

)
.

In both the continuous and the discrete case, it is easy to show that

d2G(`(t))

dt2
< 0, t ∈ (0, 1).

Since our straight line was arbitrarily chosen, we have established that the surface
G(f1, . . . , fK) is strictly concave. From this, we have the following result:

Theorem 7. The surface G(f1, . . . , fK) has at most one local maximum. If such
a local maximum exists, it is the global maximum of the entire surface.
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Although interesting from a theoretical perspective, this theorem actually has an
important practical application: It tells us that if we have found a local maximum
using a computer, we do not have to waste any further computational resources
to search for other maxima, because we know that we have already found the
(global) maximum.

The above discussion should give us a feel for how “regular,” in some sense,
the surface G(f1, . . . , fK) is in general—even for large K.

22. Over- or Underestimating Profits or Losses

This section is a natural extension of section 7, page 10, to multiple dimensions.
Not surprisingly, we will end up obtaining analogous results along each line going
out from the origin. This will, in turn, provide us with information about the
surface in general.

Recall that if our trading systems have discrete return distributions, and the
joint distribution is given by

P
(
X

(1)
1 = x1,i1 , . . . , X

(K)
1 = xK,iK

)
= pi1,...,iK ,

then we have

Gu(t) =

r1∑
i1=1

· · ·
rK∑
iK=1

pi1,...,iK log

(
1 + t

K∑
k=1

uk
Lk
xk,ik

)
.

Let us now, without any loss of generality, imagine that we overestimate the
profits of the first system (k = 1). (We can choose any other system by reordering
the index k.) We do this overestimation by adding a new outcome x1,r1+1 to the
first system, with x1,r1+1 > x1,i1 for all i1, such that

P
(
X

(1)
1 = x1,r1+1, X

(2)
1 = x2,i2 , . . . , X

(K)
1 = xK,iK

)
=: pr1+1,i2...,iK ,

P
(
X

(1)
1 = x1,i1 , . . . , X

(K)
1 = xK,iK

)
= pi1,...,iK

(
1− pr1+1,i2...,iK∑r1

i1=1 pi1,...,iK

)
,

where pr1+1,i2...,iK <
∑r1

i1=1 pi1,...,iK for all i2, . . . , iK . The exponential growth
function corresponding to this scenario is given by

G∗u(t) =

r1∑
i1=1

· · ·
rK∑
iK=1

pi1,...,iK

(
1− pr1+1,i2...,iK∑r1

i1=1 pi1,...,iK

)
log

(
1 + t

K∑
k=1

uk
Lk
xk,ik

)

+

r2∑
i2=1

· · ·
rK∑
iK=1

pr1+1,i2...,iK log

(
1 + t

u1
L1
x1,r1+1 + t

K∑
k=2

uk
Lk
xk,ik

)
,



Diversification: Theory 33

t

(a) (b)

bu

Figure 15. The Effects on the Function Gu(t)
of Over- or Underestimating Profits.

which we rewrite as

G∗u(t) = Gu(t) +

r2∑
i2=1

· · ·
rK∑
iK=1

pr1+1,i2...,iK

[
log

(
1 + t

u1
L1
x1,r1+1 + t

K∑
k=2

uk
Lk
xk,ik

)

− 1∑r1
i1=1 pi1,...,iK

r1∑
i1=1

pi1,...,iK log

(
1 + t

K∑
k=1

uk
Lk
xk,ik

)]
.

Using similar ideas as in section 7, we find—given u1 6= 0—that G∗u(t) > Gu(t)
for all t, and that if G′u(t1) = 0 and (G∗u)′(t2) = 0, then t2 > t1. Note, however,
that if u1 = 0, there is no difference between G∗u(t) and Gu(t).

Since u was chosen arbitrarily, we have obtained the following results: If we
overestimate the profits of one of our systems (in the way we have done it), we will,
as long as we place a nonzero portion of our capital into that system, overestimate
the exponential growth of our portfolio. We will also believe that the optimal point
is located farther away from the origin than it actually is.

On the flip side, if we underestimate the profits of one of our systems (by
removing its largest possible gain), we will, as long as we place a nonzero portion
of our capital into that system, underestimate the exponential growth of our
portfolio. We will also believe that the optimal point is located closer to the
origin than it actually is.

For a given line t 7→ tu with u1 6= 0, these scenarios are depicted, respectively,
with arrows (a) and (b) in figure 15. (Of course, the “optimal point” in this figure
may not be the actual optimal point for our portfolio, since there are, for K > 1,
infinitely many other u to choose from.)

We now proceed to see what happens if we overestimate the losses of the first
system (k = 1) by adding to it a new outcome x1,0 with x1,0 < x1,i1 for all i1,
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s
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Figure 16. The Effects on the Function Hu(s)
of Over- or Underestimating Losses.

such that

P
(
X

(1)
1 = x1,0, X

(2)
1 = x2,i2 , . . . , X

(K)
1 = xK,iK

)
=: p0,i2...,iK ,

P
(
X

(1)
1 = x1,i1 , . . . , X

(K)
1 = xK,iK

)
= pi1,...,iK

(
1− p0,i2...,iK∑r1

i1=1 pi1,...,iK

)
.

The idea is similar as in section 7: Comparing G(f1, . . . , fK) and the correspond-
ing growth function for the scenario of overestimated losses is akin to comparing
apples with oranges, since adding a larger loss to the first system completely
changes the meaning of f1. To get around this, we define

H(g1, . . . , gK) := G(g1L1, . . . , gKLK).

We then look at H along the line s 7→ su, where u = (u1, . . . , uK) is an arbitrary
unit vector with uk ≥ 0 for all k, by defining Hu(s) := H(su). We can now
compare Hu(s) with the corresponding growth function for the scenario of over-
estimated losses—H∗u(s). Since it involves no new ideas or techniques, we leave
it as an exercise for the reader to show, in the case u1 6= 0, that H∗u(s) < Hu(s),
and that if (H∗u)′(s1) = 0 and H ′u(s2) = 0, then s1 < s2.

Arrow (a) in figure 16 shows the effect on Hu(s) of overestimating losses (in
the way we have done it). Arrow (b) in the same figure shows the effect of under-
estimating losses (by removing the largest possible loss from the first system). By
now, the reader should understand exactly what this means, without any verbose
elaboration.

We have thus seen evidence that the same general principles that we mentioned
in section 7 continue to hold in multiple dimensions: If we are unsure about what
G(f1, . . . , fK) is, we are (for our individual systems) safer to underestimate profits
than to overestimate them, and safer to overestimate losses than to underestimate
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them. Underestimating losses continues to be particularly dangerous, because it
may result in our capital becoming negative.

23. Extension to a Nonstationary Environment

This section is a natural extension of section 8, page 13, to multiple dimensions.
Everything is completely analogous, so we will cover things very quickly, leaving
all the details (including proofs to theorems) as exercises for the reader.

We assume that our K trading systems now change as time goes by; we play a
first “batch” of K systems N1 times, move on to a second batch of K systems and
play it N2 times, and so on in perpetuity. The percentage return from the i-th

play in the k-th system in the m-th batch of K systems is denoted with X
(k,m)
i .

Thus, the m-th batch of K systems corresponds to the percentage returns

X
(1,m)
i , . . . , X

(K,m)
i ,

where i runs through {1, 2, . . . , Nm}. Naturally, for fixed k and m, the random

variables X
(k,m)
i are independent and identically distributed; for fixed k, they are

independent but not necessarily identically distributed; and for fixed m and i,
they are not necessarily independent and not necessarily identically distributed.
Continuing this natural extension, we let Lk,m be the largest possible loss of the
k-th system in the m-th batch of K systems, and fk,m be the fraction that we use
to trade with in this system. Let Gm(f1,m, . . . , fK,m) be the exponential growth
function of the m-th batch of K systems. Note that

Gm(f1,m, . . . , fK,m) = E log

(
1 +

K∑
k=1

fk,m
Lk,m

X
(k,m)
1

)
.

Beginning our trading operations with the capital C0 = 1 (one dollar), our
capital after playing M batches of systems is given by

CM =
M∏
m=1

Nm∏
i=1

(
1 +

K∑
k=1

fk,m
Lk,m

X
(k,m)
i

)
.

Defining the random variables GM with CM = exp(GM
∑M

m=1Nm), we find that

GM =
1∑M

m=1Nm

M∑
m=1

Nm∑
i=1

log

(
1 +

K∑
k=1

fk,m
Lk,m

X
(k,m)
i

)
.

Given the realistic assumption that

∞∑
m=1

Nm∑
i=1

Var
(

log(1 +
∑K

k=1 fk,mX
(k,m)
i /Lk,m)

)(∑m−1
j=0 Nj + i

)2 <∞, (5)
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where N0 := 0, the Kolmogorov sufficient condition (lemma 1, page 13) gives us

1∑M
m=1Nm

M∑
m=1

Nm∑
i=1

[
log

(
1 +

K∑
k=1

fk,m
Lk,m

X
(k,m)
i

)
−Gm(f1,m, . . . , fK,m)

]
a.s.−−→ 0 as M →∞.

The following theorems confirm the importance of the exponential growth
functions for the individual batches of trading systems.

Theorem 8. Given inequality (5), the following holds:

(a) If lim infm→∞Gm(f1,m, . . . , fK,m) > 0, then CM
a.s.−−→∞ as M →∞.

(b) If lim supm→∞Gm(f1,m, . . . , fK,m) < 0, then CM
a.s.−−→ 0 as M →∞.

In practice, this theorem tells us that if we maintain “sufficiently positive” values
for Gm(f1,m, . . . , fK,m), we will make infinite fortunes in the long run, and that
if we maintain “sufficiently negative” values for Gm(f1,m, . . . , fK,m), we will go
broke in the long run.

Let us now imagine that we play the trading systems in two ways simultane-
ously—one dollar going into plays where we use the fractions fk,m, and another
dollar into plays where we use the fractions f∗k,m. We denote the two capital
trajectories with CM and C∗M respectively.

Theorem 9. Given inequality (5), the following holds: If

lim sup
m→∞

Gm(f1,m, . . . , fK,m) < lim inf
m→∞

Gm(f∗1,m, . . . , f
∗
K,m),

then C∗M/CM
a.s.−−→∞ as M →∞.

In practice, this theorem tells us that if we maintain Gm(f∗1,m, . . . , f
∗
K,m) “suffi-

ciently higher” than Gm(f1,m, . . . , fK,m) and trade using the fractions fk,m, we
will miss out on infinite fortunes in the long run compared to what we could have
made by using the fractions f∗k,m.

In this section, we have provided an extension of our theory to a nonstationary
environment. In the next section, we revert back to the simpler case of a single
fixed G(f1, . . . , fK) surface.

24. The Frequencies of Trading Systems

Until now, we have been assuming that all of our K trading systems have the same
frequency (see section 18, page 27). In reality though, the systems are very likely
to have different frequencies, as depicted in figure 17. (The figure depicts the first
trades of two systems; where the trade of the upper system begins at time t1 and
ejects at t3; and the trade of the lower system begins at t2 and ejects at t4; such
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Figure 17. Trading Systems with Different Frequencies.

that t1 < t2 < t3 < t4.) At first, it may seem that this situation is incompatible
with our theory. For instance, what should we do with the capital that comes
out the upper system? Should we wait until the lower system ejects? Although it
is possible that we could somehow reconcile this with our theory, such attempts
should strike us as rather awkward. After all, G(f1, . . . , fK) is the expected value
of a certain function of K random variables, and it would not seem very natural
to measure their dependencies (including, say, their correlations) with respect to
occurrences that did not even occur at the same time.

We can resolve this confusion by making our trading operations more dynamic,
such that we reallocate our capital every single time any of our systems begins
or ejects. If one system is not active while another one is, we imagine that the
former is active anyway—with a zero return. This is depicted in figure 18.

0

t1 t2

C0

t2 t3

C1

0

t3 t4

C2 C3

Figure 18. The Confusion of Different Frequencies Resolved.

Clearly, splitting up the trades of a particular system—i.e. splitting one gray
block into two or more gray blocks, as shown in our figures—is going to change
the return distribution of the system. For our theory to continue working in this
situation, it is important that this splitting does not introduce any dependency
between the blocks. (In practice, if traders find that splitting up their trades
introduces a dependency, they should try to create new systems that exploit this
dependency to their advantage.)

We end this section by analyzing what effect it has on a particular system
to add zero returns into it, i.e. adding white “zero trades” to it as shown in
figure 18. Imagine that we are back to analyzing a single trading system with a
return distribution X, a largest possible loss L, and a growth function G(f) =
E log(1 + fX/L). Imagine that we create a new trading system with a return
distribution X∗ that has a certain probability q of being zero and a probability
(1 − q) of being determined by X. The growth function of this new system is
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given by

G∗(f) = E log
(

1 +
f

L
X∗
)

= q · 0 + (1− q)E log
(

1 +
f

L
X
)

= (1− q)G(f).

Thus, we see that adding zero outcomes to a system merely scales the func-
tion G(f) vertically, while all of its major properties, such as its optimal point
and its root, stay exactly the same. In other words, the general behavior stays
exactly the same; the only thing that changes is the time it takes to obtain that
behavior.

25. Summary

In this chapter, we extended the entire theory we developed in chapter 1 to mul-
tiple dimensions. Sections 19 and 20 defined G(f1, . . . , fK) and established its
importance. Section 21 gave a good feel for its shape; particularly interesting was
theorem 7, page 31, about the number of local maxima on G(f1, . . . , fK). Sec-
tion 22 discussed the over- or underestimation of profits or losses, and section 23
covered nonstationary environments. Finally, section 24 explained how our theory
can be applied even when our K trading systems have different frequencies.
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Diversification: Practice

26. Introduction

In this chapter, we construct a new trading system, in addition to the one we
constructed in chapter 2, and show how the theory developed in the previous
chapter can assist us in allocating our capital into a portfolio consisting of both
systems.

27. A Two-System Portfolio

Since the construction of trading systems is not the subject of this thesis, our
second system will for the sake of simplicity consist of the exact same rules as
those of the first one—the rules in section 12, page 19—but applied on a different
market. We have chosen cotton futures, during the same time period as the one
we chose for the corn futures, i.e. July 1, 1959 to August 13, 2010. (The cotton
futures were traded on the New York Board of Trade, later IntercontinentalEx-
change, with the ticker symbol CT; their data was, as for the corn futures, obtained
from Commodity Research Bureau. Note that we remove from the data set all
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Figure 19. A Scatter Plot of the Returns of Our Two Systems.
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days in which both markets are not open.) We will refer to the first system from
chapter 2 as the “corn system” and this second system as the “cotton system.”

In accordance with the discussion in section 24, page 36, about splitting up
trades and adding “zero trades,” we produce all the trades of our two-system
portfolio. (Note that if one system exits during the day due to a stop-loss, we
have to exit the other at the closing of that day. This is due to the nature of the
historical data, which consists only of opening, highest, lowest, and closing prices
for each day.)

We can visualize the joint return distribution by looking at a scatter plot of the
returns, as shown in figure 19. There are a total of 957 points on this scatter plot.
The smallest returns for the corn and cotton systems are, respectively, −0.1738
and −0.1217. The largest returns are, respectively, 0.5772 and 0.3589. (It should
come as no surprise that these figures for the corn system differ from the ones in
chapter 2; this is due to the splitting of trades and the adding of “zero trades.”)

28. Obtaining G(f1, f2)

If X(1) and X(2) are random variables denoting, respectively, the percentage re-
turns of the corn and cotton systems, we have from the previous chapter the
general formula

G(f1, f2) = E log

(
1 +

f1
L1
X(1) +

f2
L2
X(2)

)
for the exponential growth function of our two-system portfolio.
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Figure 20. The Surface G(f1, f2) for Our Two-System Portfolio.
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Let r := 957 be the number of points on our scatter plot (figure 19), and
denote the points with (x1,1, x2,1), . . . , (x1,r, x2,r). The largest possible losses of
the corn and cotton systems are, respectively, L1 = 0.1738 and L2 = 0.1217.

We now approximate G(f1, f2) of our two-system portfolio in a similar manner
as we did for G(f) of the corn system in chapter 2: We assume that the joint return
distribution of our two-system portfolio is exactly the discrete joint distribution
provided by our scatter plot. In other words, we assume that each point (x1,i, x2,i)
has the same probability 1/r of occurring. We thus obtain the approximation

G(f1, f2) =
1

r

r∑
i=1

log

(
1 +

f1
L1
x1,i +

f2
L2
x2,i

)
,

which is shown in figure 20.

29. Trading at the Optimal Point

We find that our G(f1, f2) is maximized at (f1, f2) = (0.62, 0.25). (This was com-
puted by applying the two-dimensional Newton-Raphson root-finding algorithm
on the gradient of G(f1, f2).)

Figure 21 shows our capital curve when trading our two-system portfolio at
this optimal point. The figure also shows the optimal curve for the corn system
(the same as the one in figure 12, page 25), and the optimal curve for the cotton
system. (The curve for the cotton system was, of course, obtained using exactly
the same methods that we used for the corn system in chapter 2.)

Note that the cotton system is, all by itself, not nearly as good as the corn
system; the former only 14-folds our initial capital, whereas the latter 1412-folds
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it. However, by combining the two, we are able to gain a significant performance
boost—we end up 6183-folding our initial capital.

30. Further Applied Research

Similarly to what we mentioned in section 16, page 25, about chapter 2, the reader
should take this present chapter for what it is and understand its limitations. We
certainly have not created any bulletproof moneymaking machine. Not only do
all the same caveats continue to hold, but new ones have been introduced. For
instance, we never performed any checks—as section 24, page 36, calls for—on
whether splitting up the trades of the corn and cotton systems introduces any
dependencies. Section 45, page 55, should provide a good starting point for further
applied research.

31. Summary

In section 27, we constructed a two-system portfolio. In section 28, we obtained
the function G(f1, f2) for the portfolio. In section 29 we traded the portfolio
optimally and compared the performance with trading the systems individually.
Finally, in section 30, we stressed the limitations of our discussion.
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Drawdown Constraining: Theory

32. Introduction

Until now, we have been focusing solely on “growth aspect” of our story. Readers
may have been deceived into believing that a trader’s goal should always be to
maximize G(f1, . . . , fK). (This chapter is written in the general setting of trading
K systems, as shown in chapter 3. In the case of K = 1, readers can easily
substitute the simpler notation from chapter 1, if they prefer.) Note, however,
that we never actually mentioned that traders should perform the maximization;
we only mentioned that they should do so if they want to obtain the optimal
growth. This, however, is a very big “if.”

Figure 22 introduces the concept of a drawdown, which is the maximum “peak
to bottom” drop that occurs in our capital curve during a particular time period.
As we will show in this chapter, the farther (f1, . . . , fK) is from the origin, along
a given K-dimensional straight line going out from the origin, the greater the
drawdowns in our capital curve will be. Based on our intuitions, this is what we
would expect to hold, and we have in fact already seen an example of this—in
figure 12, page 25.
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Figure 22. A Drawdown.
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Some readers may be wondering why we should bother with analyzing draw-
downs at all. After all, if we are trading at the optimal point, we will in the long
run make infinitely more money than at any other point! The problem, however,
is that too large drawdowns can be very painful psychologically.2 Although indi-
vidual traders with confidence in their strategy may be able to tolerate relatively
large drawdowns, they will usually want some control over them. The situation
is often more serious for traders managing money for less tolerant clients, who
may be prone to angrily withdrawing their funds should they experience too large
drawdowns.

Managing drawdowns is therefore of utmost importance to traders. Indeed,
drawdowns are what traders perceive as being their “risk.” This chapter provides
the theoretical apparatus behind drawdown constraining, and the next chapter
provides a practical example.

33. The Drawdown Defined

Recall, from chapter 3, that our capital after n plays in each of K trading systems
is given by

Cn =

n∏
i=1

(
1 +

K∑
k=1

fk
Lk
X

(k)
i

)
,

where fk ≥ 0 for all k, fk > 0 for some k, and (f1, . . . , fK) ∈ B. (See section 18,
page 27.)

The drawdown of our capital after N plays, expressed as a percentage, is then
defined with

DN := sup
n∈{1,...,N}

sup
m∈{0,...,n−1}

Cm − Cn
Cm

.

For example, DN = 0.2 means that the drawdown during the first N plays is
20%. Note that a positive drawdown signifies a drop in our capital, and that the
drawdown is always less than 1.

34. The Impossibility of Long-Term Drawdown Constraining

The following theorem shows that it is impossible to constrain drawdowns in any
meaningful way over an infinite time horizon, because any positive drawdown will
eventually take place.

Theorem 10. For all d ∈ (0, 1), we have P(DN > d)→ 1 as N →∞.

2Controlling one’s own emotions is considered by many to be a far more important element of
successful trading than one’s trading strategy. For some insights on this topic, see the interviews
in Schwager (1989, 1992) with some of the world’s most successful traders. See also Douglas
(2000).
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Proof. Take y ∈ (0, 1) such that q := P
(
Cn < yCn−1

)
> 0, and let n∗ > 0 be a

large enough integer such that yn
∗
< 1− d. We then see that

P(DNn∗ > d) = P

(
sup

n∈{1,...,Nn∗}
sup

m∈{0,...,n−1}

Cm − Cn
Cm

> d

)

= P
(

inf
n∈{1,...,Nn∗}

inf
m∈{0,...,n−1}

Cn
Cm

< 1− d
)

≥ P
( N⋃
n=1

{ Cnn∗

C(n−1)n∗
< yn

∗
})

= 1− P
( N⋂
n=1

{ Cnn∗

C(n−1)n∗
< yn

∗
}c
)

= 1−
N∏
n=1

P
({ Cnn∗

C(n−1)n∗
< yn

∗
}c
)

= 1−
N∏
n=1

[
1− P

({ Cnn∗

C(n−1)n∗
< yn

∗
})]

≥ 1−
N∏
n=1

[
1− P

( n∗−1⋂
m=0

{ Cnn∗−m
Cnn∗−(m+1)

< y
})]

= 1−
N∏
n=1

[
1−

n∗−1∏
m=0

P
({ Cnn∗−m

Cnn∗−(m+1)
< y
})]

= 1− (1− qn∗
)N → 1 as N →∞,

which shows that P(DN > d)→ 1 as N →∞.

35. Short-Term Probabilistic Statements

We saw in the previous section that we cannot obtain any long-term “almost sure”
results for constraining drawdowns, as we were able to do for capital growth in
chapters 1 and 3.

To control our drawdowns, we have to content ourselves with making some kind
of short-term probabilistic statements. For instance, we can set up a constraint
like this: “I want there to be less than a 5% probability of the drawdown becoming
greater than 20% in the next 50 trades.” More generally, for a probability b, a
drawdown d, and a number of trades N , this constraint would be

P(DN > d) < b.

Suppose, then, that (f1, . . . , fK) is the optimal point but does not satisfy our
drawdown constraint. What other point should we choose instead? For high K,
there is obviously no shortage of points to try. The next section suggests some
natural canditates.
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36. Moving Closer to the Origin

This section confirms the intuition of ours that if we are dissatisfied with the
potential drawdown for a particular (f1, . . . , fK), we can ameliorate the situation
by choosing a point on the straight line from the origin to (f1, . . . , fK) that is
closer to the origin.

To show this, we first fix the outcomes of the returns X
(k)
i to the numbers x

(k)
i .

We do this because our end result will in effect be deterministic; no matter what
the returns end up being, the drawdown would always have been lower if we would
have chosen an allocation point that is, along a straight line, closer to the origin.

We next restate the fractions fk as being located on a particular straight line
going out from the origin (similarly to what we did when analyzing the func-
tion Gu(t) in chapter 3). To that end, let u = (u1, . . . , uK) be a unit vector with
uk ≥ 0 for all k.

Our fixed capital after n plays can now be written as

cn(u; t) :=
n∏
i=1

(
1 + t

K∑
k=1

uk
Lk
x
(k)
i

)
, t ∈ (0, bu),

where bu := suptu∈B t, and our fixed drawdown after N plays can be written as

dN (u; t) := sup
n∈{1,...,N}

sup
m∈{0,...,n−1}

cm(u; t)− cn(u; t)

cm(u; t)
.

For convenience, the fixed capital and drawdown are being written with the pa-
rameter u and as functions of the variable t. After all, t determines the distance
of our allocation point from the origin, which is precisely the quantity that we are
interested in.

The main result now follows after a lemma.

Lemma 3. Let a > 0 be a number. Then, for all y ≥ −1/a and all t1, t2 such that
0 < t1 < t2 < a, we have (1 + t2y)t1/t2 ≤ 1 + t1y.

Proof. This is nothing but a variation of the generalized version of Bernoulli’s
inequality shown in Steele (2004), page 31.

Theorem 11. dN (u; t) > 0 for any t ∈ (0, bu) implies
(a) that dN (u; t) > 0 for all t ∈ (0, bu), and
(b) that t 7→ dN (u; t) is a strictly increasing function.

Proof. Note first that the drawdown dN (u; t), for all t, can be written as

dN (u; t) = 1− inf
n∈{1,...,N}

inf
m∈{0,...,n−1}

cn(u; t)

cm(u; t)

= 1− inf
n∈{1,...,N}

inf
m∈{0,...,n−1}

n∏
i=m+1

(
1 + t

K∑
k=1

uk
Lk
x
(k)
i

)
.
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(a) Assume that dN (u; t1) > 0 for some t1. This implies that there exists a j

such that t1
∑K

k=1 ukx
(k)
j /Lk < 0. For some arbitrary t2, we then clearly have

t2
∑K

k=1 ukx
(k)
j /Lk < 0, which gives

inf
n∈{1,...,N}

inf
m∈{0,...,n−1}

n∏
i=m+1

(
1 + t2

K∑
k=1

uk
Lk
x
(k)
i

)
≤ 1 + t2

K∑
k=1

uk
Lk
x
(k)
j < 1,

which implies that dN (u; t2) > 0.

(b) Pick some t1, t2 such that 0 < t1 < t2 < bu, and use lemma 3 (with a := bu)
to obtain for each i that

(
1 + t2

K∑
k=1

uk
Lk
x
(k)
i

)t1/t2
≤ 1 + t1

K∑
k=1

uk
Lk
x
(k)
i .

Multiplying on both sides for arbitrary n,m with m < n, we obtain

[ n∏
i=m+1

(
1 + t2

K∑
k=1

uk
Lk
x
(k)
i

)]t1/t2
≤

n∏
i=m+1

(
1 + t1

K∑
k=1

uk
Lk
x
(k)
i

)
.

Since t1/t2 > 0, we can take infimum twice on both sides to obtain

(1− dN (u; t2))
t1/t2 ≤ 1− dN (u; t1).

Now, assume that dN (u; t2) > 0. Then, 1−dN (u; t2) ∈ (0, 1), and since t1/t2 < 1,
we find that

dN (u; t1) < dN (u; t2).

37. The Allowed and Forbidden Regions

From the above sections, we deduce that any particular drawdown constraint
implies the existence of a “boundary” in B, “below” which our constraint will be
satisified and “above” which it will not. The boundary will thus partition B into
an “allowed region” and a “forbidden region.” This is depicted in figure 23 for
K = 2.

The exact shape of the boundary of the allowed region will, of course, depend
on the joint return distribution of the K trading systems. In practice, for high K,
we will not necessarily have resources to compute the entire boundary; we can
in this case, as we have seen, search for the optimal point, and then (unless the
optimal point satisifies our constraint) head towards the origin along a straight
line until we hit the boundary.
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Figure 23. The Allowed and Forbidden Regions.

38. Summary

It would have been nice if we could have obtained some long-term “almost sure” re-
sults for constraining drawdowns, as we did for capital growth in chapters 1 and 3.
Unfortunately, section 34 showed that this is impossible. When constraining draw-
downs, we have to content ourselves with short-term probabilistic statements, as
mentioned in section 35. Section 36 suggested that if we are not satisfied with
the drawdowns that a particular (f1, . . . , fK) may result in, we can try moving
closer to the origin along a straight line. Finally, section 37 showed that any
drawdown constraint gives rise to corresponding allowed and forbidden regions in
which (f1, . . . , fK) may and may not be, respectively.



6

Drawdown Constraining: Practice

39. Introduction

The largest drawdown in the optimal capital curve of the two-system portfolio
that we constructed in chapter 4—the topmost curve in figure 21, page 41—is
91%. Some might find this rather aggressive. In this chapter, we attempt to
constrain the drawdowns when trading our portfolio, using the ideas from the
previous chapter. But before we do that, we describe how we can calculate the
probability P(DN > d) using Monte Carlo simulations.

40. Monte Carlo Simulations

We are interested in calculating the probability P(DN > d) using Monte Carlo
simulations. Define the random variable Y := I{DN>d}, where “I” denotes the
indicator function. Let Y1, . . . , Yn be independent and identically distributed ran-
dom variables with the same distribution as Y . (The letter n denotes the number
of simulations in the chapter. This should not cause any confusion, even though
this letter has been used for other purposes before.) Note that

P(DN > d) = E[Y ].

Denote with zδ the 1− δ quantile of the standard normal distribution, and define

Ȳn :=
1

n

n∑
i=1

Yi.

According to the discussion in Glasserman (2004), appendix A, P(DN > d) can
now be estimated with

Ȳn ± zδ/2
sn√
n
,

where

sn :=

√√√√ 1

n− 1

n∑
i=1

(Yi − Ȳn)
2
.
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The above interval is an asymptotically valid 1 − δ confidence interval for the
quantity P(DN > d). In other words, the probability that the interval covers
P(DN > d) approaches 1 − δ as n → ∞. For moderately high n, this interval
should give us at least some idea of the accuracy of our simulation.

Since Y = I{DN>d}, we simulate each Yi by simply generating a random capital
curve up to CN . If the largest drawdown in this capital curve exceeds d, we have
Yi = 1; otherwise we have Yi = 0. Hence,

∑n
i=1 Yi is the number of capital curves

that have a drawdown exceeding d. Since n is the total number of simulated
capital curves, it should now make sense that Ȳn = 1

n

∑n
i=1 Yi is an estimate for

P(DN > d).

41. Drawdown Constraining

Suppose, when trading our two-system portfolio from chapter 4, that we want to
control the probability of the drawdown in our capital curve being greater than
40%. We do this by calculating the probability P(DN > d), with d = 0.4 and
N = r = 957, for a few different allocation points on the straight line from the
origin to the optimal point (0.62, 0.25). We can let t ∈ (0, 1) correspond to such an
allocation point t(0.62, 0.25). We simulate a capital curve up to CN by randomly
(and uniformly) choosing, at each step, among the r = 957 different points on the
scatter plot in figure 19, page 39.

The following table shows a few values we find for P(DN > d) at a few alloca-
tion points. We use n = 100,000 simulations; and a 95% confidence interval, i.e.
δ = 0.05, which makes zδ/2 = 1.96.
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t Ȳn zδ/2sn/
√
n

1.0 1.0 0.0
0.6 1.0 0.0001
0.3 0.696 0.003
0.1 0.001 0.0002

The resulting capital curves are shown in figure 24. We see that by moving the
allocation point closer to the origin, we are indeed able to reduce the drawdowns;
the drawdowns are, as t descends, 91%, 71%, 43%, and 17%. However, we sacrifice
a lot of growth in the process; the end values of the capital curves are 6183, 1597,
97, and 6. This, of course, is a manifestation of the age-old adage that if one
wants a particular reward, one has to be willing to take the risks associated
with that reward. Which t we choose depends on our appetite for risk, in this
case our drawdown tolerance. (Of course, this is not entirely accurate. For a
given t ∈ (0, 1), there may well be points outside the straight line where the
growth stays the same but the risk reduces, or where the risk stays the same but
the growth increases. Finding such points would require further computational
research.)

42. Summary

In this short chapter, we first covered how to use Monte Carlo simulations to
calculate the probability that the drawdowns in a capital curve exceed a certain
level. We then demonstrated how we can constrain the drawdowns when trading
the two-system portfolio that we constructed in chapter 4.
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Loose Ends

43. Introduction

This chapter covers two loose ends. First, we look at how futures traders can
take into account contract sizes and margin requirements. Second, we provide
step-by-step instructions for traders who are preparing to apply our theory in
practice.

44. Contract Sizes and Margin Requirements

Until now, we have been assuming that we can trade fractions of futures contracts,
and that we go broke when our capital drops to zero. In practice though, we go
broke when we cannot even trade one contract, or when we get a margin call from
our broker. In this section, we suggest a method that makes sure we can trade in
perpetuity under these realistic conditions.

Let C be our currently available capital (i.e. Cn, for some n that does not
concern us here). Suppose we have constructed a portfolio of K trading systems
that we have decided to trade with, and let fk/Lk be the portion that we have
decided to commit of our capital into each trade of system k. Suppose also that
we are just about to enter trades in our systems.

Let Sk be the current price of one futures contract of market k, i.e. the mar-
ket that system k operates on. Let furthermore Mk denote the initial margin
requirement per contract in this market; we assume that this is a fixed quantity.
(Readers may at this point want to revise the mechanics of futures markets; see
e.g. Hull (2006), chapter 2. In particular, they should be familiar with initial
and maintenance margins.) For example, if the quoted price of market k is cur-
rently 800 cents/bushel, each contract is for 5,000 bushels, and the initial margin
requirement per contract is $2,000, we have Sk = $40,000 and Mk = $2,000.

We want to make sure that we can trade in perpetuity. We can accomplish
this by imagining that our available capital is only C −

∑K
k=1 xkMk instead of C,

where xk is the proper number of contracts (yet to be determined) that we commit
to in market k. If we then apply our theory, we guarantee that we will always have
enough capital to cover the initial margin. In particular, since the maintenance

53
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margin is always lower than the initial margin, we will never get a margin call.
Our goal is to find the xk. For each k, we have the relation

fk
Lk

(
C −

K∑
κ=1

xκMκ

)
= xkSk,

which we rewrite as

xk
SkLk
fk

+

K∑
κ=1

xκMκ = C.

This can be written with matrix notation:

M1 +
S1L1

f1
M2 · · · MK

M1 M2 +
S2L2

f2
· · · MK

...
...

. . .
...

M1 M2 · · · MK +
SKLK
fK


 x1

...
xK

 =

 C
...
C

 .

Using the Sherman-Morrison formula (see Hager (1989)), we now easily obtain for
each k the solution

xk =
C

fk
SkLk

1 +
K∑
κ=1

Mκfκ
SκLκ

.

We conclude this section by providing an example that demonstrates how
we can apply this result in practice. (Note that all the figures, except for the
contract sizes, are hypothetical. However, they are realistic in the sense that they
are approximately based on the figures that applied at the time of this writing.)

Example. We have accumulated a trading stake of C = $20,000, and we are in-
terested in trading the portfolio of corn and cotton systems that we constructed
in chapter 4. We wish to trade at one of the levels of reduced drawdowns that
we obtained in chapter 6, namely (f1, f2) = 0.3(0.62, 0.25), which corresponds to
f1/L1 = 1.07 and f2/L2 = 0.62. The currently quoted contract prices (of the par-
ticular contracts we are just about to enter) for corn and cotton are, respectively,
800 cents/bushel and 80 cents/pound. The contracts sizes are, respectively, 5,000
bushels and 50,000 pounds. Therefore, S1 = S2 = $40,000. We furthermore know
that the margin requirements are M1 = M2 = $2,500.

Using the above formula, we compute x1 = 0.48 and x2 = 0.28. Since we
cannot trade fractions of contracts, we have to use x1 = x2 = 0. We see that we
cannot even enter into one contract in either corn or cotton. We thus come to
the conclusion that we have no business trading this portfolio, given our limited
capital and our particular level of risk.
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Example (Continued).
However, if we can accumulate a larger stake, say C = $250,000, we find that

x1 = 6.05 and x2 = 3.48. If our capital drops by 50%, to C = $125,000, we find
x1 = 3.03 and x2 = 1.74. If, in addition, the margin requirements are hiked up
by 40%, to M1 = M2 = $3,500, we find x1 = 2.91 and x2 = 1.68. And if, in
addition, the prices of the contracts rise by 40%, to S1 = S2 = $56,000, we have
x1 = 2.16 and x2 = 1.24. It thus looks like we can somewhat safely start trading
the portfolio with a starting capital of $250,000.

Smaller traders can rejoice in the fact that there are “mini-versions” available
of many futures contracts. For instance, CME Group provides a mini-sized corn
contract of 1,000 bushels. Although IntercontinentalExchange does not seem to
provide a mini-sized cotton contract, CME Group provides mini-sized contracts
for many other products, including wheat, soybeans, crude oil, natural gas, gold,
silver, and copper.

45. Step-by-Step Instructions for Traders

The following steps outline the activities of mechanical traders, how our theory
fits into the picture, and what additional research has to be done along the way
that was not covered in this thesis.

1. Construct a portfolio of K trading systems, and use historical data to ap-
proximate their joint return distribution. Chapters 2 and 4 went through
this process for K = 1 and K = 2 respectively.

2. If desired, optimize the portfolio to the historical data. For example, in
our case, optimization could have found out that the 20 days that we chose
for entry breakouts (in section 12, page 19) is not the best figure to use.
Optimization is covered e.g. in Faith (2007), pages 163–177, and in Vince
(1990), chapter 2.

3. Analyze how robust the portfolio is, i.e. how well the historical performance
is likely to hold up in the future. One way to do this is to simulate alterna-
tive histories and see how the portfolio would have performed under those
conditions. See e.g. Faith (2007), chapter 12, and Chande (2001), chapter 8.

4. Statistically test the return distributions of our individual systems for clear
evidence of dependencies. If such evidence is found, we should try to find
the source of the dependencies and create new systems that exploit them to
our benefit. Dependency tests are covered e.g. in Vince (1990), pages 26–40,
and Balsara (1992), pages 175–177.

5. We now have a fairly good view of our portfolio’s joint return distribution,
and hence the surface G(f1, . . . , fK), for a certain time into the future. If
we are still somewhat unsure, we can gain more safety by overestimating
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losses or underestimating profits, as we discussed in section 22, page 32
(and section 7, page 10, for K = 1).

6. Decide how large drawdowns will be acceptable to us, and find an appropri-
ate (f1, . . . , fK) to trade with. This was covered in chapter 6.

7. When we find, in light of new evidence, that the joint return distribution
has changed, we compute a new G(f1, . . . , fK) and adjust our (f1, . . . , fK)
accordingly. Our drawdown tolerance may also change with time, which
also results in an adjustment of our (f1, . . . , fK). Recall that this process of
dynamically changing G(f1, . . . , fK) and (f1, . . . , fK) as time goes by was
given a theoretical footing in section 23, page 35 (and section 8, page 13,
for K = 1).

46. Summary

In this chapter, we explained how to properly take into account contract sizes and
margin requirements; we found out that if we have a too small starting capital or
too strict drawdown constraints, we may not be able to trade a given portfolio at
all. The chapter also outlined the various steps that mechanical traders will go
through during their trading operations.



Summary

Chapter 1 introduced the highly important function G(f), which describes the
long-term exponential growth of our capital curve, where f measures how much of
our capital we place into each play of our trading system. Chapter 3 extended this
function to the surface G(f1, . . . , fK), where we are now simultaneously playing
K trading systems, and each fk measures how much of our capital we place
into system k. We showed that it is crucial to choose an (f1, . . . , fK) such that
G(f1, . . . , fK) > 0. If we do, we will make infinite fortunes in the long run; if
we do not, we will go broke or get unpredictable results. Chapter 5 showed how
constraining drawdowns further narrows down our choices for (f1, . . . , fK).

Chapters 2, 4, 6, and 7 explained how the theory can be applied in practice.
Without these chapters, this thesis would have been a mere theoretical exercise of
limited use to practitioners. Now, practitioners can at least program our examples
into a computer, check their results against ours, and then move on to apply the
ideas on their own, superior, trading systems.

We have seen that it is absolutely essential for traders to be aware of where
they are located on the surface G(f1, . . . , fK); infinite fortunes are on the line,
in the long run. Our theory provides a framework that traders can use to nav-
igate themselves along this surface. It is this framework that Vince (2009) has
popularized as the “leverage space trading model.” This term should make sense.
After all, we are navigating ourselves along a (K + 1)-dimensional surface, or
“space,” and our position on this surface describes exactly how much leverage we
are (or are not) taking. As we mentioned in the introduction, leverage is nothing
particularly special under our theory, but a natural and inherent part of it.
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