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Abstract

A credit portfolio where each obligor contributes infinitesimally to the risk is said to be

infinitely granular. The risk related to the fact that no real credit portfolio is infinitely

granular, is called name concentration risk.

Under Basel II, banks are required to hold a capital buffer for credit risk in order

to sustain the probability of default on an acceptable level. Credit risk capital charges

computed under pillar 1 of Basel II have been calibrated for a specific level of name

concentration. If a bank deviates from this benchmark it is expected to address this

under pillar 2, which may involve increased capital charges.

Here, we look at some of the difficulties that a bank may encounter when computing

a name concentration risk add-on under pillar 2. In particular, we study the granularity

adjustment for the Vasicek and CreditRisk+ models. An advantage of this approach is

that no vendor software products are necessary. We also address the questions of when

the granularity adjustment is a coherent risk measure and how to allocate the add-on

to exposures in order to optimize the credit portfolio. Finally, the discussed models are

applied to real data.

Keywords: Credit Risk; Basel II; IRB formula; Concentration risk; Name concentration;

Idiosyncratic risk; Granularity adjustment; Vasicek model; CreditRisk+ model; Coher-

ence; Euler capital allocation
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Notation and Abbreviations

CCFi credit conversion factor of obligor i

COMMi commitment of obligor i

Di default variable of obligor i

DLGDi downturn LGDi

EADi exposure at default of obligor i

ẼADi random exposure at default of obligor i

ELGDi expected loss given default of obligor i

FX(x) cumulative distribution function of the random variable X

fX(x) probability density function of the random variable X

GAq(L) granularity adjustment of L at the confidence level q

HHI(L) Herfindahl-Hirschman index of L

i.i.d. independent and identically distributed

K regulatory capital for credit risk as a share of total EAD

L loss variable of a credit portfolio

Li loss variable of obligor i

LGDi loss given default of obligor i

Mi effective maturity of obligor i

m number of risk factors

n number of obligors in the credit portfolio

OUTi current outstanding amount to obligor i

PDi probability of default of obligor i

PIT point-in-time

RWAi risk-weighted asset of obligor i

TTC through-the-cycle

ULq(L) unexpected loss of L at confidence level q

si EADi as a share of total EAD

V(X) variance of the random variable X

VLGDi variance of the loss given default of obligor i

w.p. with probability

Z = (Z1, . . . , Zm)> vector of risk factors

λi liabilities of obligor i

Φ(·) cumulative distribution function of the standard normal distribution

ϕ(·) probability density function of the standard normal distribution



1 Introduction

All banks face risks. In fact, in order to profit banks actively take on risks. By diversifying

stochastic cash flows banks can offer its costumers deterministic cash flows. This is

demanded since the costumers then can make more long-term plans for the future. From

this point of view the idea of banks is the same as that of insurance companies: making

the future more predictable. Risk management is concerned with how these stochastic

cash flows are managed and aims to create shareholder value in a competitive market.

1.1 Bank regulation

From a societal point of view one may say that the function of banks is to effectively

allocate capital between consumers and investors by diversifying risk. As an intermediary

of capital, banks play an important role in the economy.

A credit migration of a company implies credit migrations of its lenders, which in its

turn implies credit migrations of the lenders’ lenders, and so forth. Default dependence

may also be caused by other business links than borrower-lender relationships, e.g., buyer-

seller interactions. The probability of default of a company conditional on the default

of another company, is known as default contagion. That is why defaults of banks are

devastating for the economy. The consequences of a bank failure are augmented by the

considerable lending between banks. In the credit crunch that erupted 2007, banks were

unable to assess the credit quality of other banks and hence the lending between banks

dried up.

Banks can achieve economies of scale since larger banks can diversify their portfolios

more effectively. This enhances the impact of default contagion due to bank failures. As

banks become larger we can expect fewer but more severe bank failures. Presumably, the

the major lesson of the Great Depression in the 30s is to not let bank failures take place.

Therefore, in the recent financial crisis, measures were taken by governments to prevent

bank failures.

A deterioration of the credit quality of a bank may induce bank runs, i.e., a con-

siderable part of the bank’s customers withdraw their money at the same time due to

the fear that the bank won’t fulfill its obligations. If a bank run takes place, it doesn’t

really matter whether the fear is well-founded or only based on rumors, the result will

always be the same, bank failure. No bank can survive if all their customers withdraw

their money at the same time. Thus, a bank run is a self-fulfilling prophecy, increases

the likelihood of bank failures and destabilizes the economy. This may give governments

reasons to implement a tax-funded deposit insurance since it would remove the motives

for bank runs.
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To sum up, we have observed two shortcomings of the banking system. The immensely

negative consequences to the economy that from follow bank failures and the unstable

nature of the banking system due to bank runs. However, these market failures can be

eliminated through effective measures taken by governments. Bank runs can be prevented

by deposit insurance and bank failures by government bailouts.

Since both deposit insurances and bailouts are tax-financed it may seem reasonable for

governments to impose regulations that enforces banks to uphold prudent risk appetites.

However, it should be clear that bank failures most likely will take place anyhow. The

risks faced by banks cannot easily be assessed. If we enter a casino the probabilities of

the games are known to us. But we cannot determine the probabilities of the risks that

the banks face, all we can do is to make an educated guess. History, however, has shown

that this is everything but an easy task.

In order to understand the risk management of a bank it isn’t sufficient to only

consider it from a societal point of view. One also has to look at it from the shareholders’

perspective. After all, the risk management of a bank works in the interests of the

shareholders. There is, however, no obvious way to determine the optimal risk appetite

for a company. It is easily understood that the risk appetite that creates the most

shareholder value, which is just another way of posing the same question, depends on a

multitude of factors. However, it may be worthwhile to point out a few important factors.

Decreasing the risk or increasing the expected profit of a company, ceteris paribus, creates

shareholder value. A clearly defined risk appetite will make investors more informed about

the risks they are taking and if the risk appetite isn’t changed too often, the investors

won’t have to rebalance their portfolios often, which reduces transaction costs.

There is an inherent trait of risk taking among companies that can achieve economies

of scale. A competitive advantage can be gained through expansion, but expansion can

only be reached through risk taking. This reasoning is analogical to Texas hold’em where

you either play aggressive, in which case you win big or lose fast, or you take small risks

and bet little by little, in which case you will most likely lose, but slowly. If we look at this

from a game theoretical point of view we can infer that all players will play aggressively.

Additional lending always increases the risk of banks. The expected profit, however,

will only increase as lending increases to a certain extent after which it will decrease.

The reason is that additional lending also increases the risk, which will affect the bank’s

cost of borrowing money. The level of lending for which the expected profit is maximized

provides a natural risk appetite for banks. But if large banks are going to be bailed out

anyhow, additional lending doesn’t entail any risk and the banks should always be able

to borrow at a low cost. Thus, moral hazard makes an effective regulation of the risks

that large banks face even more important.
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1.2 A Brief History of the Basel Accords

Bank regulation has in various forms existed for a long time but it is not until the first

Basel Accord (Basel I) of 1988 that a more unified framework has been established. In

order to establish a competition among banks on equal terms it is important for the

regulatory framework to be widely spread. The Basel Accords, however, only constitute

recommendations for regulations that states may or may not ratify. The main focus in

Basel I was credit risk, i.e., the risk of losses due to default among the bank’s obligors. But

in 1996 an amendment to Basel I was published which included market risk, i.e., the risk

of losses due to changes in the value of the bank’s assets. The second Basel Accord (Basel

II) was published 2004 and included several new kinds of risks, of which operational risk

was given special emphasis. Operational risk is defined as the risk of losses due to failed

internal processes, such as fraud and programming errors. Basel II was fully implemented

in Sweden in 2007. The third Basel Accord (Basel III) was published in 2010 and contains

very much the same division of risks as Basel II. One of the major changes in Basel III

is the countercyclical capital buffers. These are supposed to be larger during economical

expansion and smaller during recession, which would mitigate economic cycles and crises.

The implementation of Basel III in Sweden will begin in 2013. Even though several more

kinds of risks have been included during the development of the Basel Accords, credit

risk remains the single most important kind of risk. One of the main results of the Basel

Accords is that they specify a minimum capital buffer that the banks must hold in order

to sustain an adequate credit quality.

In Basel I credit exposures were divided into a few categories, e.g., state, bank and

mortgages. The outstanding amount of every exposure was then multiplied with a number

that depended on the category assigned to the exposure. The total capital requirement

was then defined as the sum of the resulting quantities. As a consequence, it was more

profitable for banks to keep exposures of low credit quality since these would yield a

higher interest but the same capital requirement. Another problem was that the capital

requirement didn’t depend on diversification and, thus, didn’t give banks any incentive

to diversify their credit portfolios. The calculation of credit risk in Basel II is much more

sophisticated than in Basel I and the treatment of credit risk in Basel III is similar to

that of Basel II.

1.3 The Pillars of Basel II

Basel II is built on three pillars. Under pillar 1 banks compute a minimum capital require-

ment for credit, market and operational risk. The total minimum capital requirement,

also referred to as regulatory capital, is simply the sum of the regulatory capital for each
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specific kind of risk. Since the regulatory capital for credit, market and operational risk

are calculated as if they were independent it seems reasonable for the regulatory capital

to depend on how diversified the bank is among these risks. However, simplifications

have been made to make the pillar 1 computations tractable.

Under pillar 2, also referred to as the supervisory review process, a more holistic

approach is taken towards risk and it covers risk types not considered under pillar 1.

Relatively to pillar 1 the Basel II framework doesn’t provide much information about

how to assess the risks under pillar 2. As a consequence, the supervisory authorities have

to study the methods used by the banks to make sure that they are reasonable. The bank

gives details about their chosen methods in a report of the Internal Capital Adequacy

Assessment Processes (ICAAP). The third pillar is concerned with establishing market

discipline, primarily by increasing the transparency of banks by making information about

capital adequacy public.

Under pillar 1 the bank may choose Standardized Approach or one of the two more

advanced Internal Ratings-Based (IRB) approaches to compute regulatory capital1. In

the IRB approaches the banks may use own estimates of credit risk related data instead

of the often more conservative data provided by rating agencies. The IRB approaches

are subdivided into the Foundation Internal Ratings Based approach (FIRB) approach

and the Advanced Internal-Ratings Based (AIRB) approach. The difference is that the

bank uses more own estimates in the AIRB approach than in the FIRB approach. Both

approaches, however, use the same formula, which is called the IRB formula. If a bank

wishes to use one of the the IRB approaches this first has to be approved by the super-

visory authorities, why these approaches are more common among large banks.

1.4 Concentration Risk and Basel II

The computation of regulatory capital has been designed to meet the requirement of

portfolio invariance, i.e., the increase of regulatory capital for a new credit will be the

same regardless of the composition of the portfolio it is added to. This simplification

was made to make the computations sufficiently practical for regulatory purposes (BCBS

2006b, p.4). However, credit portfolios with exposure concentrated in a single country and

industry2 are usually considered to be more risky than portfolios that are well diversified

among sectors. This kind of risk is called sector concentration risk. We also have that

a portfolio with large exposures usually is considered more risky than a portfolio that

consists of more but smaller exposures. This kind of risk is called name concentration risk.

1Since only credit risk will be considered in the sequel, from this point we will by regulatory capital
mean regulatory capital for credit risk, unless otherwise stated.

2A specific geographical area and industry will henceforth be denoted sector.
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These risk types, sector and name concentration risk, aren’t necessarily independent. Any

two portfolios that are equal in every sense except in their distribution of large exposures

among sectors will usually not be considered to exhibit the same risk. The portfolio with

large exposures more concentrated among sectors will usually be considered more risky.

Sector and name concentration risk are together referred to as concentration risk and

is, due to the simplification made in the computations of the regulatory capital mentioned

above, not accounted for under pillar 1. However, it is to be accounted for under pillar

2 (BCBS 2005, p.4). Banks are free to choose any model to assess the concentration

risk but the result has to be considered reasonable by the supervisory authorities. No

particular model is recommended by the Basel framework. The computation of regulatory

capital was however calibrated to accurately estimate the credit risk for a number of large

internationally active banks. Unfortunately, no more information about the benchmark

portfolio is available. The commonly used benchmark for name concentration risk is the

infinitely granular portfolio.

It is difficult to say what methods of computing concentration risk that are most

common in the banking sector since this information isn’t public. The document Studies

on credit risk concentration (BCBS 2006b), however, gives an overview over some methods

used by financial institutions at that time. The Swedish Financial Supervisory Authority

(Finansinspektionen (FI)) gives in three memoranda (Edlund (2009a), Edlund (2009b)

and Edlund (2009c)) on its website some information on how FI computes concentration

risk. For banks using the IRB approach FI also suggests a particular method of computing

the add-on for name concentration risk (see Section 5.2.4).

1.5 Purpose

The objective of this thesis is to examine some of the existing methods to compute an

add-on3 with emphasis on the granularity adjustment and consider them in relation to the

challenges that arise in the implementation process, including capital allocation. Thus,

this objective is neither to cover all methods available, nor to determine the accuracy of

the methods. The thesis mainly considers banks with IRB permission but many results

can also be applied by banks that use the Standardized Approach. The objective is

merely to point out some of the characteristics of the models that may come in hand as

a bank is considering what method to implement. Thus, the thesis will not point out any

model as superior but provide information in what circumstances one method is to be

preferred over another. All models have advantages and disadvantages. The point is to

know what model to choose in what situation.

3If not otherwise stated, by add-on we mean the add-on computed under pillar 2 for name concen-
tration risk.
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1.6 Outline

In Section 2, two of the most common credit risk models, the Vasicek and CreditRisk+

models, are presented. The main objective of this section is to present how the default

event is modeled. In Section 3 we introduce the notion of risk measures, define a coherent

risk measure and discuss the use and misuse of risk measures. In Section 4 credit risk

in Basel II is presented in a more technical form than in Section 1. In Section 5 we

discuss different ways to estimate the add-on, with special emphasis on the granularity

adjustment for the Vasicek and CreditRisk+ models. We also study the granularity

adjustment in respect to coherence and how the retail portfolio can be included in the

computations. In Section 6 we examine different ways to allocate the add-on in order to

optimize the portfolio. Results from when the models have been applied to real data are

presented in Section 7 and then discussed in Section 8.

2 Credit Risk Models

Credit risk models can be either dynamic or static. Dynamic credit risk models are used

when the particular time of default is important, e.g., in the pricing of different kinds

of credit derivatives. In static credit risk models the total loss over some time horizon

due to defaults in the credit portfolio is considered. A typical time horizon in practice is

one year. In this thesis only static credit risk models will be considered but many results

carry over to dynamic credit risk models as well. Below we introduce some commonly

used notation.

EADi The random exposure at default (ẼADi) at some future time point is defined as

ẼADi = OUTi + CCFi · COMMi,

where the current outstanding amount (OUTi ≥ 0) and the commitment (COMMi ≥ 0),

i.e., the maximum amount that can be drawn by the obligor, are known quantities. A

revolving loan is an example where COMMi > 0 and a term loan is an example where

COMMi = 0. The credit conversion factor (0 ≤ CCFi ≤ 1) is random. Note that these

definitions imply that ẼADi ≥ 0.

The (expected) exposure at default (EADi) is defined as

EADi = E [ẼADi] = OUTi + E [CCFi] · COMMi.

LGDi The loss given default4 (LGDi ≥ 0) over some specified time horizon is the

4In some texts the recovery rate (RRi) is used instead and is defined as RRi = 1− LGDi.
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fraction of EAD that isn’t recovered in the event of default. LGDi is random and may

be greater than one due to legal and other costs, even though this is uncommon.

PDi The probability of default (0 ≤ PDi ≤ 1) over some specified time horizon can be

estimated by various methods. There exist two kinds of PDi: point-in-time (PIT) and

through-the-cycle5 (TTC). PIT PDi is the probability of default over some specified time

horizon given the state of the economy today (i.e., PDi is estimated using all available

information). TTC PDi is the average probability of default over a business cycle, i.e., the

probability of default over some specified time horizon where the state of the economy

is unknown. It would be natural to use PIT PDi if it would be known since this is

the PDi under the ”true” probability measure in the sense that it includes all available

information. However, since PIT PDi isn’t known, the reliability of PDi also has to be

taken into account when choosing measure.

Di The default variable (Di) over some specified time horizon is a random variable

that models the default event. It is natural to let Di be Bernoulli distributed and let Di

take the value one if obligor i defaults within the specified time horizon. In this case the

distribution of Di is

Di =

{
1, w.p. PDi,

0, w.p. 1− PDi,
(2.1)

where PDi usually is assumed to be known.

L The loss variable of obligor i (Li ≥ 0) over some specified time horizon is defined as

the outstanding amount that will not be retrieved due to default within considered time

period. The loss variable of a credit portfolio with n obligors (L) is defined as L =
∑n

i=1 Li

and an outcome of a loss variable is referred to as a loss.

Z The vector of random variables,
(
Z = (Z1, . . . , Zm)

)
, is said to be a vector of risk fac-

tors if the random variablesD1 |Z = z, . . . , Dn |Z = z, LGD1 |Z = z, . . . ,LGDn |Z = z

are mutually independent. In practice, risk factors typically represent macroeconomic

variables, industries or geographical regions. The rationale is that Di depends on the

state of the economy and that companies in the same sector often are more dependent.

The risk associated with the dependence between obligors is called systematic risk

and the risk that is associated with individual obligors is called idiosyncratic risk. Here,

we make an exact definition by defining the systematic risk of a portfolio as E[L |Z] and

the idiosyncratic risk as L−E[L |Z]. Also, we define the a priori distribution of L as the

distribution of L and the a posteriori distribution of L as the distribution of L |Z = z.

5TTC PDi is sometimes also called average PDi.
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ELGDi The expected loss given default (ELGDi) is defined as ELGDi = E[LGDi]. In

some texts LGDi is used to denote ELGDi. This notation will, however, not be used

here.

VLGDi The variance of the loss given default (VLGDi) is defined as VLGDi =

V(LGDi).
6 There is no regulatory demand for banks to estimate VLGDi. However,

a method proposed in BCBS 2001, § 447, is

VLGDi = 0.25 · ELGDi(1− ELGDi).

This estimation is sometimes also used for regulatory purposes and in industry models.

A great benefit is that it doesn’t require any additional workload to use.

2.1 The Loss Variable

There exist two principal approaches to assess the distribution of the loss variable: Monte

Carlo simulations and analytical methods. The main advantage of analytical methods

is that they aren’t at all as time-consuming as Monte Carlo methods, for which the loss

distribution may take days or even weeks to simulate. In analytical models, however,

additional assumptions often have to be made in order to achieve a closed-form solution.

In many applications the following assumption is used to reach a model that is simple

enough.

Assumption 2.1. Unless otherwise stated, we will assume that ẼADi = EADi, that

there exists a vector of risk factors Z and that LGD1, . . . ,LGDn are mutually independent

and independent of D1, . . . , Dn and Z.

Especially the assumption that LGD1, . . . ,LGDn are mutually independent and indepen-

dent of D1, . . . , Dn and Z is not entirely realistic. However, using Assumption 2.1 we get

that

L =
n∑
i=1

EADi · LGDi ·Di, (2.2)

L |Z =
n∑
i=1

EADi · LGDi · (Di |Z). (2.3)

Even if software solutions used by banks differ from each other in many aspects the

main modeling difference is how the distributions of Z and Di |Z are defined. The a priori

distribution is then fully determined by the a posteriori distribution and the law of total

probability. Depending on how Z and Di |Z are defined, a credit risk model may either

6In some texts VLGDi denotes the standard deviation of LGDi. This notation will, however, not be
used here.
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be a structural model7 or a reduced-form model8. In structural models the mechanism of

default is based on the Merton model (Merton 1974), where corporate debt is priced by

modeling it as a European put option on the asset value of the firm with EADi as the

strike price and using the results of Black and Scholes (1973). The Merton model can

also be used to estimate PDs of firms. In reduced-form models the actual mechanism

causing the default isn’t modeled directly. Instead Z and Di |Z are modeled to make

a good fit to historical data and to provide mathematical tractability. Two examples

of widely used reduced-form models are the CreditRisk+ model and the Credit Portfolio

View model and two examples of widely used structural models are the MKMV model and

the CreditMetrics model. One could also say that the difference between these models is

that the information used to asses the distribution of the loss variable for reduced-form

models is on a more macroscopic level than for structural models. In general, it is difficult

to say what detail level that is preferable. On the one hand, the more microscopic level

that is applied the more information is used, on the other hand it might happen that we

can’t see the wood for the trees and it’s better to get the big picture than to be exactly

wrong. In the two next sections, we will take a closer look at the CreditRisk+ model and

the Vasicek model, of which the latter underpins both the MKMV model and the IRB

formula.

2.2 The Multi-Factor Vasicek Model

Vasicek (1987) turned the Merton model upside down and used it to model the dependence

of default events instead of pricing corporate debt or estimating PDs, as was done by

Merton (1974). In the Vasicek model, we let λi ≥ 0 denote the value of the liabilities

of obligor i, which is a known quantity. The asset value of obligor i at time t, Vi,t, is

modeled as a multivariate geometric Brownian motion, i.e.,

dVi,t = µiVi,tdt+ Vi,t

m∑
k=1

σi,kdWk,t + ηiVi,tdBi,t, (2.4)

where µi, σi,1, .., σi,m, ηi are constants and W1,t, ..,Wm,t, Bi,t are mutually independent

Wiener processes. Of course, µi, σi,1, .., σi,n are not known a priori, but have to be

estimated. The Wiener processes W1,t, . . . ,Wn,t may be shared among obligors and often

represent different macroeconomical variables. In practice, these are typically shared to

a greater extent by companies in the same region or industry. The Wiener process Bi,t,

however, is only associated with obligor i and is not shared with other obligors. Thus,

7Structural models are also known as firm-value models, asset-value models, latent variable models
and threshold models.

8Reduced-form models are also known as default-rate models and mixture models.
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W1,t, ..,Wm,t are associated with systematic risk and Bi,t with idiosyncratic risk.

It isn’t obvious to use mutually independent Wiener processes, e.g., if one Wiener

process represents the economical development in Sweden and another the economical

development in Norway, then it seems reasonable that they are correlated. However, if

W1,t, ..,Wm,t in (2.4) were correlated it would be possible to rewrite the expression with

independent Wiener processes on the same form by changing σi,1, . . . , σi,m for i = 1, . . . , n

(see Björk 2009, Section 4.7). We can also write (2.4) on the form (see Björk 2009,

Proposition 5.2)

Vi,1 = Vi,0 exp

(
µi +

m∑
k=1

(σi,kZk −
1

2
σ2
i,k) + ηiεi −

1

2
η2
i

)
,

where Zi,1, . . . , Zi,n and εi are i.i.d. and N (0, 1) distributed. In the Vasicek model it is

assumed that Di is Bernoulli distributed where a default event, i.e., Di = 1 occurs if

Vi,1 < λi. Thus, we get that

PDi = P

(
Vi,0 exp

(
µi +

m∑
k=1

(σi,kZk −
1

2
σ2
i,k) + ηiεi −

1

2
η2
i

)
< λi

)

= P

(
σi,1Z1 + · · ·+ σi,mZm + ηiεi ≤ ln

λi
Vi,0

+
1

2

m∑
k=1

σ2
i,k +

1

2
η2
i − µi

)

= P

σi,1Z1 + · · ·+ σi,mZm + ηiεi√
σ2
i,1 + · · ·+ σ2

i,m + η2
i

≤
ln λi

Vi,0
+ 1

2

m∑
k=1

σ2
i,k + 1

2
η2
i − µi√

σ2
i,1 + · · ·+ σ2

i,m + η2
i



= Φ

 ln λi
Vi,0

+ 1
2

m∑
k=1

σ2
i,k − µi√

σ2
i,1 + · · ·+ σ2

i,m + η2
i

 .

From this we infer that obligor i defaults if

σi,1Z1 + · · ·+ σi,mZm + ηiεi√
σ2
i,1 + · · ·+ σ2

i,m + η2
i

≤
ln λi

Vi,0
+ 1

2

m∑
k=1

σ2
i,k + 1

2
η2
i − µi√

σ2
i,1 + · · ·+ σ2

i,m + η2
i

.

This condition can be rewritten in a way that is more suitable for our purposes. If we

use the notation

ρi =
σ2
i,1 + · · ·+ σ2

i,m

σ2
i,1 + · · ·+ σ2

i,m + η2
i

and αi,k =
σi,k√

σ2
i,1 + · · ·+ σ2

i,m
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we get that

σi,1Z1 + · · ·+ σi,mZm + ηiεi√
σ2
i,1 + · · ·+ σ2

i,m + η2
i

=
σi,1Z1 + · · ·+ σi,mZm√
σ2
i,1 + · · ·+ σ2

i,m + η2
i

+
ηiεi√

σ2
i,1 + · · ·+ σ2

i,m + η2
i

=
√
ρi ·

√
σ2
i,1 + · · ·+ σ2

i,m + η2
i

σ2
i,1 + · · ·+ σ2

i,m

· σi,1Z1 + · · ·+ σi,mZm√
σ2
i,1 + · · ·+ σ2

i,m + η2
i

+
√

1− ρi · εi

=
√
ρi ·

 σi,1√
σ2
i,1 + · · ·+ σ2

i,m

· Z1 + · · ·+ σm,1√
σ2
i,1 + · · ·+ σ2

i,m

· Zm

+
√

1− ρi · εi

=
√
ρi (αi,1Z1 + · · ·+ αi,mZm) +

√
1− ρiεi =

√
ρiα

>
i Z +

√
1− ρi εi,

where we have used the notation αi = (αi,1, . . . , αi,m)> and Z = (Z1, . . . , Zm)>. Since

ln λi
Vi,0

+ 1
2

m∑
k=1

σ2
i,k + 1

2
η2
i − µi√

σ2
i,1 + · · ·+ σ2

i,m + η2
i

= Φ−1(PDi),

we have that

Di =

{
1, if

√
ρiα

>
i Z +

√
1− ρi εi ≤ Φ−1(PDi),

0, if
√
ρiα

>
i Z +

√
1− ρi εi > Φ−1(PDi).

Whence it immediately follows that

ρi ∈ [0, 1],
m∑
k=1

α2
i,k = 1,

√
ρiα

>
i Z +

√
1− ρiεi ∼ N (0, 1).

We also notice that Di|Z = z, . . . , Dn|Z = z are mutually independent. Hence, Z is a

vector of risk factors. The a posteriori distribution is

P (Di = 1 |Z = z) = P
(√

ρiα
>
i Z +

√
1− ρi εi ≤ Φ−1(PDi) |Z = z

)
= P

(√
ρiα

>
i z +

√
1− ρi εi ≤ Φ−1(PDi)

)
= P

(
εi ≤

Φ−1(PDi)−
√
ρiα

>
i z√

1− ρi

)
= Φ

(
Φ−1(PDi)−

√
ρiα

>
i z√

1− ρi

)
. (2.5)

Formula 2.5 is sometimes also known as the Vasicek formula. If we let Z = Z we get the

single-factor Vasicek model.
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2.3 The Multi–Factor CreditRisk+ Model

In CreditRisk+ the actual mechanism causing the default isn’t modeled directly. Instead

the model has been chosen to provide a good fit to data and mathematical tractability.

Risk Factors. The risk factors are defined as independent random variables with Zj ∼
Γ(1/σ2

j , σ
2
j ) for j = 1, . . . ,m which implies that E[Zj] = 1 and V(Zj) = σ2

j .

A Posteriori Distribution. Let wi,k ≥ 0 for k = 0, . . . ,m, wi = (wi,1, . . . , wi,m) and∑m
k=0wi,k = 1. The a posteriori distribution is then defined as

P(Di = k |Z = z) =

(
PDi(wi,0 +w>i z)

)k
k!

· exp

[
−
(
PDi(wi,0 +w>i z)

)]
, (2.6)

where k ∈ {0, 1, 2, ...}. This is equivalent to Di |Z = z ∼ Po
(
PDi(wi,0 +w>i z)

)
.

The a posteriori distribution leads to the unnatural economical interpretation that an

obligor may default several times. This simplification, however, is a good approximation

of the Bernoulli distribution if PDi is small (see Lütkebohmert 2008, Section 6.2).

If we suppress the risk factor index, then for the single-factor setting we get that

wi,0 = 1− wi and Di |Z = z ∼ Po
(
PDi(1− wi + wiz)

)
.

2.4 Expected Loss

The expected loss (EL) is defined as EL = E[L]. Thus, the expected loss is

EL =
n∑
i=1

E
[
EADi · LGDi ·Di

]
=

n∑
i=1

EADi · ELGDi · E
[
Di

]
.

In the multi-factor Vasicek model we have that Di ∼ Be(PDi), which gives that E[Di] =

PDi. By the law of iterated expectations and that, if X ∼ Po(m) then E[X] = m, we

get that E[Di] = E[E[Di |Z] = E[PDi(wi,0 + w>i z)] = PDi in the CreditRisk+ model.

Thus, for both the multi-factor Vasicek model and the CreditRisk+ model we have that

the expected loss is

EL =
n∑
i=1

EADi · ELGDi · PDi.

Notice that the expected loss of a portfolio is portfolio invariant and can therefore be

computed by a bottom-up approach, which significantly eases the computations for banks.

Also, what matters more is that banks don’t have to aggregate the exposures to obligors

in order to compute the expected loss.
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2.5 Market-to-Market and Default Mode

Two credits, whose loss variables are identically distributed, may in fact have different

net present values. The explanation is that even if two credits have identically distributed

loss variables, the credit with a longer time to maturity has a greater risk of defaulting

at some point in time, not necessarily within the time horizon that is specified for the

loss variables. This fact is reflected by the concave shape of the yield curve, even though

it isn’t the only explanation of the shape. The effect of the time to maturity on the net

present value is accentuated for loans with low PD.

This leads to an alternative definition of the loss variable. Instead of defining the loss

variable as on page 12, where an obligor either defaults or not, we may define the loss

variable as the net present value of the losses at the end of the time interval considered.

If the latter definition is used, the loss variable is said to be in market-to-market mode

(MtM mode) and if the definition on page 12 is used, the loss variable is said to be in

default mode. Note that the loss can be negative in MtM mode due to credit migration,

whereas this is impossible in default mode.

There are several reasons why to prefer MtM mode to default mode when measuring

risk. A common argument is that since credits with longer maturities are riskier, this

should also be reflected in the distribution of the loss variable (see BCBS 2005, Section

4.6). Another argument is that MtM mode is more likely lead to smooth changes in the

risk measured over time. But there are also reasons why to prefer default mode to MtM

mode. If a bank wishes to sustain a certain credit quality for a given time period, it is

the default mode for that time period it ought to consider. Another deficiency of the

MtM mode can be illustrated by an example from the insurance industry. Using MtM

mode would then entail that the risk of selling life insurances to people in their 20s would

be considered the same as selling life insurances to people in their 80s. For a bank to

maximize its profit, which includes sustaining a desirable credit quality, it should consider

the loss variable in default mode for different time horizons.

3 Risk Measures

All information associated with the risk of a portfolio w.r.t. some future time point is

contained in its loss distribution. From this point of view, it seems natural to compare

the risk of two different portfolios by comparing their loss distributions. However, due to

two reasons this is not feasible. First, we don’t know the loss distribution, we can only

estimate it. Second, when considering risk we are usually not interested in all information

contained in the loss distribution, e.g., typically we don’t consider negative losses at all.
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If we instead use a risk measure, i.e., a function ρ : X −→ R ∪ {−∞,∞}, where X is

a set of random variables over a fixed probability space, we get around these obstacles.

Two examples of risk measures are the standard deviation and the expected loss.

When considering different portfolios for an investor, usually the portfolio with the

highest expected utility is chosen. To compute the expected utility of a portfolio its

distribution and the utility function of the investor have to be known. The problem

is then solved by return/risk optimization. However, on many occasions we want to

maximize the return given a target level of risk. From the reasoning about the risk

appetite we infer that this is also the case for banks. We recapitulate the two main

drivers for the risk appetite of banks:

• To meet regulatory demands.

• To achieve the credit rating that maximizes profits (borrowing/lending optimiza-

tion).

In the case when there is a target level of risk it is natural to let the risk measure denote

the amount of cash that has to be added to the portfolio in order to meet the risk target.

This means that instead of return/risk optimization, only return optimization is to be

performed. The risk is then accounted for implicitly, as a cost in form of the amount of

cash that has to be added to the portfolio. However, we are still faced by the problem of

how to define risk. Since the bank is interested in how its credit quality is perceived by

supervisory authorities and credit rating agencies, one way is to study how they define

risk. An intuitive way of defining the credit quality of a company would be to map the

estimated figure E [PDi · LGDi] to a credit rating. In reality, however, different credit

rating institutes use different estimations and information. However, it seems reasonable

that the credit quality of a company should depend both on PDi and ELGDi, but if there

is a strong dependence between PDi and ELGDi, it might be sufficient to estimate only

PDi. From a regulatory point of view it is, as concluded above, of utmost importance for

the economy to ensure a low risk of bank failure, i.e., to impose a limit on PDi for banks.

But the value of ELGDi is also of significance for regulators. After all, in the event of

a bank failure the taxpayers will pay for the bailout. Also, there are ways that banks

can increase their profit in which PDi remains unaltered but ELGDi increases. Some

common risk measures are presented next.

Value at Risk (VaR). The risk measure Value at Risk of X at a specified future time

point and at confidence level q ∈ (0, 1) equals the minimum amount of cash that needs

to be added to the portfolio today in order to achieve a PDi that is less or equal to q over

the specified time horizon. Or, in other words, here we define VaR as
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VaRq(X) = inf {x ∈ R : P(X > x) ≤ 1− q}.

If FX is continuous and strictly increasing we have that VaRq(X) = F−1
X (q).

Unexpected Loss9 (UL). The unexpected loss of X at a specified future time point

and at confidence level q ∈ (0, 1) is defined as

ULq(X) = VaRq(X)− E [X].

An interpretation is how much more capital than the expected loss that need to be added

to the portfolio in order to sustain a certain level of PDi.

Expected Shortfall (ES). The risk measure expected shortfall at a specified time point

and at confidence level q ∈ (0, 1) is defined as

ESq(X) =
1

1− q

∫ 1

q

VaRu(X) du.

If X is integrable, FL is continuous and q ∈ (0, 1) we also have that

ESq(X) = E [X |X ≥ VaRq(X)],

which means that then the expected shortfall of a portfolio with confidence level q is

the same thing as the expected value of X conditional on the event that the outcome is

greater or equal to VaRq(X) (McNeil et al. 2005, Lemma 2.16).

Thus, if we let X be a random variable with continuous and strictly increasing distribution

function that represents the value of the equity of a company and if default occurs when

Y = X − λ ≤ 0, where λ ≥ 0 is the value of the liabilities of the company, we get

that PD = FY (0), ELGD = ESFY (0)(−Y )/λ and EL = EAD · FY (0) · ESFY (0)(−Y )/λ.

Also, if we add VaRq(−Y ) in cash to the equity of the company, we get that PD = 1− q,
ELGD = ESq(−Y )/λ and EL = EAD·(1−q)·ESq(−Y )/λ. These relations are only meant

to illustrate the connection between credit quality and risk measures. Reality, of course,

is much more complex than in this setting, but hopefully these identities nevertheless can

serve instructive purposes.

To sum up, to meet its target PD a bank should, for an appropriate confidence level,

calculate VaRq(L). To meet its target ELGD it should also, for an appropriate confidence

level, calculate ESq(L). It may very well happen that the amount of cash to be added in

9In some texts UL also refers to other mathematical entities, such as the standard deviation of the
loss variable or an outcome of a loss variable that exceeds the expected loss. Sometimes mean-VaR
(VaRmean

q ) or economic capital (EC) are also used to denote UL, as defined here.
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order to meet the demand on PD doesn’t yield the same result as the computation of the

amount of cash necessary to meet the demand on ELGD. However, this may be resolved

by adding other forms of capital than cash to the portfolio. A property of risk measure

that often is desirable is coherence.

Coherent Risk Measures. The risk measure ρ is coherent if it satisfies the following

conditions, where X and Y are random variables

Translation invariance: ρ(X + λ) = ρ(X)− λ for all λ ∈ R.

If ρ measures the amount of cash that is necessary to add to the portfolio in order to

attain the desirable risk level then, of course, if we add the amount λ of cash to the

portfolio the capital requirement should decrease by the same amount.

Monotonicity: If X ≤ Y almost surely then ρ(X) ≤ ρ(Y ).

If the loss of one portfolio almost surely is greater or equal to another, then that portfolio

should also have a capital buffer that is greater or equal to that of the other.

Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

The economical interpretation of this is that a well diversified portfolio needs a smaller

capital buffer than a not well diversified portfolio.

Positive homogeneity10: For every λ ∈ R we have that ρ(λX) = λρ(X).

If we increase the amount invested λ times, the capital buffer should increase by the same

amount.

It is possible to construct examples where VaR violates the subadditivity property (Hult

et al. 2012, pp.176–178), and hence it is not a coherent risk measure. ES, on the contrary,

is a coherent risk measure (Hult et al. 2012, Proposition 6.6). Conceptually, this is

because VaR doesn’t consider the shape of the tail (for a lucid example, see Hull 2009,

pp.451–452), whereas ES does. One could also say that VaR takes PD into account but

not ELGD. The lack of the subadditivity property has lead to criticism against VaR.

However, it should be noted that VaR is subadditive and coherent in some settings.

Of course, in practice we can only estimate VaR and ES. Therefore it is essential that

an analysis of the estimation error is made, e.g., by resampling methods (e.g., bootstrap or

jackknife), by considering the dependence structure (e.g., using different copulas) or/and

by considering the shape of the tail(s). Thus, the analysis of the estimation error isn’t

simply to generate a confidence interval but also a qualitative consideration of the model

risk. Often, it is more difficult to estimate ES than VaR since the statistical error usually

is larger for ES. This is however not an argument against the use of ES, it merely says

10Sometimes, to reflect liquidity risk the property ρ(λX) > λρ(X) is preferred to positive homogeneity.
However, in credit risk we are interested in the cash flows from the obligors, not the market value of the
contracts.
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that it is difficult to predict large losses. Also VaR and ES are increasingly more difficult

to asses as q increases.

Risk measures of different portfolios are often estimated by historical data (this is

however not always the case since forward looking data such as implied volatility and

bond market prices may be included in the estimations). In practice, however, there are

often conceivable events not reflected in historical data, which can be resolved by scenario

simulation.

4 The Internal Ratings Based Approach

Banks may use either the Standardized Approach or the IRB approach to compute reg-

ulatory capital. To use the IRB approach, banks first have to apply for this at the

supervisory authorities. This explains why this approach is more common among large

banks. The IRB formula estimates the unexpected loss of the loss portfolio with a one-

year horizon and is based on the Vasicek model in MtM mode. To make computations

sufficiently tractable for regulatory purposes two assumptions have been made: there is

only one risk factor and the portfolio is infinitely fine grained.

4.1 The Asymptotic Single Risk Factor Model

In order for the computation of regulatory capital for credit risk to be sufficiently tractable,

portfolio invariance (see Section 1.4) is preferred. This has been resolved by applying the

asymptotic single risk factor (ASRF) model (BCBS 2005, p.4) that was developed by

Gordy (2003). The ASRF framework is based on the following two assumptions:

Assumption 4.1. The credit portfolio is infinitely fine-grained.

Assumption 4.2. There is only one risk factor, Z, and for that risk factor E(L |Z = z)

is continuously and strictly monotonously increasing or decreasing in z.

Following the outline of Hibbeln (2010, p.36) an infinitely fine-grained credit portfolio

can formally be defined as follows.

Definition 4.1. A credit portfolio is infinitely fine-grained if the the portfolio consists

of a nearly infinite number of obligors and if the conditions

lim
n→∞

n∑
i=1

EADi −→∞ and lim
n→∞

n∑
j=1

 EADj

j∑
i=1

EADi


2

<∞

are satisfied.
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Hibbeln (2010, pp.50-52) shows that for an infinitely granular portfolio we have that

P
(

lim
n→∞

(L(n) − E[L(n) |Z] = 0)
)

= 1,

where L(n) = L =
∑n

i=1 Li. As a result of this we have that (Gordy 2003, p.206)

lim
n→∞

VaRq(L
(n))− VaRq

(
E[L(n) |Z]

)
= 0.

If there only is one risk factor, Z, and E(L |Z = z) is continuously and strictly monotonously

decreasing11 in z, we have that (Hibbeln 2010, pp.53-54)

VaRq(E[L |Z]) = E[L |Z = VaR1−q(Z)].

Thus, if Assumption 4.1 and 4.2 are satisfied it follows that

lim
n→∞

VaRq(L
(n)) = lim

n→∞
E[L(n) |Z = VaR1−q(Z)]

= lim
n→∞

E

[
n∑
i=1

EADi · LGDi ·Di

∣∣∣∣ Z = VaR1−q(Z)

]

= lim
n→∞

n∑
i=1

EADi · ELGDi · E[Di | Z = VaR1−q(Z)].

This leads to the following definition of VaRASRF
q (L),

VaRASRF
q (L) = VaRq

(
E[L|Z]

)
=

n∑
i=1

EADi · ELGDi · E[Di | Z = VaR1−q(Z)].

From this we conclude that VaRASRF
q is a portfolio invariant risk measure. As mentioned

above, if the portfolio is invariant the summation over obligors may just as well be done

over exposures. Another desirable property is that VaRASRF
q is a coherent risk measure.

One should, however, bear in mind that Assumption 4.1 and 4.2 rarely are realistic. In

the sequel, we will however always assume that Assumption 4.2 is satisfied.

Since the expected loss doesn’t depend on how obligors are assigned to the exposures

of the portfolio (see section 2.4), the unexpected loss in the ASRF framework is defined

as ULASRF
q (L) = VaRASRF

q (L)− EL.

11If E(L |Z = z) would be continuously and strictly monotonously increasing in z we would instead
get that VaRq(E[L |Z]) = E[L |Z = VaRq(Z)], which is the case for the CreditRisk+ model.
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4.2 The IRB Formula

The IRB formula is basically a computation of the unexpected loss of the credit portfolio

in MtM mode at a 99.9 % confidence level and on a one-year time horizon (see BCBS

2005). The model that underpins the IRB formula is based on the Vasicek and ASRF

models. If we compute ULASRF
0.999 (L) for the Vasicek model in default mode we get

ULASRF
0.999 (L) = VaRASRF

0.999 (L)− EL

=
n∑
i=1

EADi · ELGDi · E [Di | Z = VaR0.001(Z)]−
n∑
i=1

EADi · ELGDi · PDi

=
n∑
i=1

EADi · ELGDi

(
Φ

(
Φ−1(PDi) +

√
ρi Φ

−1(0.999)
√

1− ρi

)
− PDi

)
. (4.1)

The IRB formula differs from (4.1) in three ways: downturn LGDs are used instead of

ELGDs, the formula is in MtM mode and is multiplied by a constant called the scaling

factor.

DLGDi The downturn LGD (DLGDi) is the expected loss given default conditional

on economical downturn conditions (BCBS 2005, p.5). Since the unrealistic assumption

that the LGDs are independent of Z has been made, the use of DLGDs when computing

VaRASRF
q (L) instead of ELGDs can be seen as an ad hoc adjustment by choosing a

conservative view on risk. Somewhat remarkably, however, DLGDs are used in the IRB

formula to compute both VaRASRF
q (L) and EL.

Maturity Adjustment In the IRB formula the loss variable of every exposure is

multiplied by the maturity adjustment that is defined as

1 + (Mi − 2.5)bi
1− 1.5bi

,

where bi = (0.11852 − 0.05478 ln(PDi))
2 and Mi is the effective maturity, defined in

BCBS 2006a, p.50. The purpose of the maturity adjustment is to map the formula to

MtM mode and has been estimated by regression from observations provided by Monte

Carlo simulations (BCBS 2005, p.10). The regression was done in such a way that the

maturity adjustment is linear in Mi. The linearization is a rather coarse simplification

since the exact maturity adjustment would be strongly concave (BCBS 2006b, p.12). We

notice that if the effective maturity is one, the default mode and MtM mode coincides.

Scaling Factor In order to maintain the aggregate level of regulatory capital when

Basel II was implemented, the scaling factor (1.06) was introduced in the IRB formula

(BCBS 2006a, § 14).
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Thus, the IRB formula is

ULIRB(L) = (4.2)

1.06 ·
n∑
i=1

EADi ·DLGDi

(
Φ

(
Φ−1(PDi) +

√
ρIRB
i Φ−1(0.999)√

1− ρIRB
i

)
− PDi

)
· 1 + (Mi − 2.5)bi

1− 1.5bi
.

The parameter ρIRB
i says how much exposure i depends on the state of the economy, Z,

and thus defines the dependence structure in the portfolio. Empirical data show that Di

is more dependent on Z if PDi is large (BCBS 2005, p.12). This is reflected in the IRB

formula where ρIRB
i is a function of PDi and increases as PDi decreases. The definition

of ρIRB
i in the IRB formula differs whether it is computed for a corporate, sovereign or

institutional exposure (C,S,I) or a retail exposure. The definition of ρIRB
i for corporate,

sovereign or institutional (C,S,I) exposures that aren’t small or medium-sized entities is

ρ
(C,S,I)
i = 0.12 · 1− e−50·PDi

1− e−50
+ 0.24

(
1− 1− e−50·PDi

1− e−50

)
. (4.3)

The definitions of ρIRB
i for other kinds of exposures can be found in Hibbeln (2010, pp.41-

42). From (4.3) we note that 0.12 < ρ
(C,S,B)
i < 0.24.

The FIRB and AIRB approaches. The difference between the FIRB approach and

the AIRB approach lies in which parameters that are provided by the supervisory au-

thorities and which parameters that are estimated by the bank. The parameters in the

IRB formula that have to be estimated are the PDs, DLGDs, CCFs, and the Ms. Among

these parameters, all but the PDs are provided by supervisory authorities in the FIRB

approach for non-retail exposures. In the AIRB approach, all parameters are estimated

by the bank. However, for retail exposures there is no difference between the FIRB and

AIRB approaches. In the IRB retail approach, the CCFs, PDs and the DLGDs are esti-

mated by the bank. The effective maturity is however provided by supervisory authorities

and is Mi = 1. Another interpretation of this is that the IRB formula for retail exposures

is computed in default mode instead of MtM mode.

Two terms that often are used in connection to regulatory capital are capital require-

ment and risk-weighted assets. The capital requirement, K, is defined as the regulatory

capital as a share of the total EAD of the portfolio and the risk-weighted assets (RWA)

of a credit portfolio is defined as RWA = 12.5 ·K ·
n∑
i=1

EADi.
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5 Name Concentration and Basel II

Regulatory capital has been calibrated for a well-diversified portfolio, typically associated

with a large internationally active bank (BCBS 2005, p.4 and BCBS 2006b, p.19). Since

the IRB formula has been derived in the ASRF framework it cannot correctly estimate the

unexpected loss for banks that differ from this benchmark in respect to sector and name

concentration. Thus, banks that differ from this benchmark should address this issue

under pillar 2 (BCBS 2005, p.4). However, the benchmark is not well-defined since the

data for which the IRB formula was calibrated aren’t publicly available (Hibbeln 2010,

p.184). This makes it difficult how to assess additional capital for sector concentration

risk. For name concentration risk, however, the infinitely granular portfolio is usually

used as benchmark (BCBS 2006b, p.16).

One should know that sector and name concentration risk are, in general, not inde-

pendent. In order to derive an add-on for concentration risk Assumption 4.1 and 4.2

have to be relaxed simultaneously. This has been done by Pykhtin (2004) for the Va-

sicek model. However, often the assumption of one risk factor and the assumption of an

infinitely fine-grained portfolio are relaxed separately, which gives rise to one add-on for

sector concentration risk and one add-on for name concentration risk, that together sum

up to the total add-on for concentration risk. This approximation seems to be widely

used throughout the industry (see BCBS 2006b), e.g., the Swedish Financial Authority

suggests a model to compute an add-on for name concentration risk where the assumption

of infinite granularity is relaxed separately (Edlund 2009b, p.4). Name concentration risk

will also be dealt with separately in this thesis and we will therefore in the sequel assume

that there only is one risk factor. There are, in principle, three different ways one can

approach name concentration risk under pillar 2:

• Monte Carlo simulations

• Regression models

• Model-based approximations

Large banks often make use of vendor software products to analyze credit risk. These are

often based on Monte Carlo simulations with several risk factors and make no assumptions

regarding the granularity of the portfolio. The Monte Carlo simulations by these software

products may be very time consuming. A scenario may take days, or even weeks, to

simulate. CreditRisk+, however, does not use Monte Carlo simulations but on the other

hand it only provides solutions in default mode. Another drawback of software products

is that they are difficult to reconcile with the computations of regulatory capital for credit
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risk. Other drawbacks are that software products are expensive and that there is no clear

way how to allocate the add-on capital.

Regression methods are often based on observations provided by Monte Carlo sim-

ulations. The Herfindahl-Hirschman index (HHI) is used in many common regression

methods of concentration risk and is defined as

HHI(L) =
n∑
i=1

s2
i ,

where sj = EADj/
∑n

i=1 EADi. Compared to software products the greatest advantage

of regression methods is computational speed. The greatest drawback is accuracy. It is

difficult to say for what portfolios the regression method provides a good accuracy and

therefore rather often has to be recalibrated. Model-based approximations don’t require

any software products and in some cases provide an accurate and fast way to compute

an add-on for name concentration risk. In BCBS 2006b, p.10 we find the following text:

The various methodologies, proposed by practitioners and researchers, for dealing with
name concentration risk can be generally classified into those that are more ad hoc, based
on heuristic measures of risk concentration, and those that are based on more rigorous mod-
els of risk. Model-based approaches are strictly preferable, as long as they are feasible to
implement.

5.1 Model-Based Approximations

To assess the add-on, a natural starting point is to extend the model that underpins the

IRB formula for granular portfolios. However, this is difficult for two reasons. First, the

use of DLGDs, the scaling factor and the maturity adjustment make the derivation of the

IRB formula opaque. It is difficult to extend the formula when we don’t know the exact

reasoning behind the calibration of the model. Second, even if the IRB formula would be

extended this would not provide a solution on how to include credits to the portfolio for

which the Standardized Approach has been applied.

Another way to approach this problem is to notice that the regulatory capital for

obligor i is an estimation of ULASRF
0.999 (Li) on a one-year time horizon in MtM mode (see

BCBS 2005, p.4–5). Thus, we face the problem to estimate UL0.999(L) − ULASRF
0.999 (L),

i.e., the add-on for name concentration risk. Notice that we are not confined to any

particular credit risk model since we don’t make any assumptions regarding the model

that has been used to derive the IRB formula, only that it has been derived within the

ASRF framework. Considering different model-based approximations there are a few

things to bear in mind when making the decision of what particular method to use.
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• Is the method sufficiently accurate?

• Does the method require more data than required to compute regulatory capital?

• Is the add-on a coherent risk measure?

• Does the method provide an answer in default or MtM mode?

By the accuracy of the method we mean how well the method approximates UL0.999(L)−
ULASRF

0.999 (L) with respect to the particular credit risk model that is being used. As shown

above, the IRB formula is coherent. However, if we leave the ASRF framework this is no

longer necessarily the case. Even if we want to approximate UL0.999(L) and this measure

in general isn’t coherent it still seems reasonable to choose a model in which UL0.999(L)

is a coherent risk measure.

The reason why default mode at all is considered is that MtM mode entails technical

difficulties. There exist several different model-based approximations of which some of are

presented in BCBS 2006b and Lütkebohmert (2008). Presumably, the most widely used

model-based approximations in the banking industry are those based on the granularity

adjustment, on which the focus will be in the remaining part of this thesis.

5.2 The Granularity Adjustment

The granularity adjustment (GA) for one-factor models is a model-based approximation

of the error in the computation of VaRq(L) due to Assumption 4.1 in the ASRF model12,

i.e., GAq(L) ≈ VaRq(L) − VaRASRF
q (L). It was first derived by Wilde (2001). Later the

derivation was simplified by Martin and Wilde (2002) who used the results of Gourieroux

et al. (2000). Pykhtin (2004) generalized the GA to a multi-factor setting. Here, we

present the derivation of GA by Martin and Wilde (2002).

For ε = 1 we have

VaRq(L)− VaRASRF
q (L) = VaRq

(
E[L |Z] + ε(L− E[L |Z])

)
− VaRq(E[L |Z)]). (5.1)

The granularity adjustment is simply a second-order Taylor approximation of (5.1) around

ε = 0.

12In this section it will be assumed that E[L |Z = z] is continuously and strictly monotonously de-
creasing in z. The derivation of the case when E[L |Z = z] is continuously and strictly monotonously
increasing in z is completely analogous. The only difference in (5.8) and (5.9) is that we have z = VaRq(Z)
instead of z = VaR1−q(Z).
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This gives that

GAq(L) =
∂

∂ε
VaRq

(
E[L |Z] + ε(L− E[L |Z])

)∣∣
ε=0

+
1

2

∂2

∂ε2
VaRq

(
E[L |Z] + ε(L− E[L |Z])

)∣∣
ε=0

. (5.2)

Gourieroux et al. (2000) showed that if (X, Y ) is a bivariate random vector with contin-

uous joint distribution we have that

∂VaRq(X + εY )

∂ε
= E

[
Y | X + εY = VaRq(X + εY )

]
,

∂2VaRq(X + εY )

∂ε2
=− V

(
Y | X + εY = VaRq(X + εY )

)
· ∂ ln fX+εY (z)

∂z

(
VaRq(X + εY )

)
− ∂

∂z
V(Y | X + εY = z)

∣∣∣∣
z=VaRq(X+εY )

.

Thus, for ε = 0 we get that

∂VaRq(X + εY )

∂ε

∣∣∣∣
ε=0

= E
[
Y | X = VaRq(X)

]
,

∂2VaRq(X + εY )

∂ε2

∣∣∣∣
ε=0

= −
[
V
(
Y |X = x

)
· ∂ ln fX(x)

∂x
+

∂

∂x
V(Y |X = x)

]
x=VaRq(X)

= − 1

fX(x)

∂

∂x

(
fX(x)V(Y | X = x

)∣∣∣∣
x=VaRq(X)

.

If we let X = E[L |Z] and Y = L− E[L |Z] we get that

∂

∂ε
VaRq

(
E[L |Z] + ε(L− E[L |Z])

)∣∣∣∣
ε=0

= E

[
L− E[L|Z]

∣∣∣∣ E[L|Z] = VaRq(E[L|Z])

]
= E

[
L− E[L|Z]

∣∣∣∣ Z = VaR1−q(Z)

]
= E

[
L |Z = VaR1−q(Z)

]
− E

[
L |Z = VaR1−q(Z)

]
= 0,

where we have used that E[L|Z] = VaRq

(
E[L|Z]

)
⇐⇒ Z = VaR1−q(Z), which follows

from that E(L |Z = z) is continuous and strictly monotonously decreasing in z. This

gives that
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GAq(L) = −1

2
· 1

fX(x)
· ∂
∂x

(
fX(x)V(Y |X = x)

)∣∣∣∣
x=VaRq(X)

. (5.3)

Now if we make the change of variable x(z) = E[L |Z = z] we get that

x = VaRq(X) =⇒ z = VaR1−q(Z), (5.4)

since VaRq(X) = VaRq

(
E[L |Z]

)
= E

[
L |VaR1−q(Z)

]
. We also get that

V(Y |X = x) = V

(
L− E[L |Z]

∣∣∣∣E[L |Z] = x

)
= V

(
L

∣∣∣∣E[L |Z] = x

)
= V(L |Z = z). (5.5)

Furthermore, we have that q = FX
(
VaRq(X)

)
= FX

(
VaRq(E[L |Z])) = FX

(
E[L |Z =

VaR1−q(Z)]
)

and 1 − q = FZ
(
VaR1−q(Z)

)
. If we let z = VaR1−q(Z) we get that

Fx
(
E[L |Z = z]

)
= 1 − FZ(VaR1−q(Z)

)
. Taking the derivative on both sides of this

equation with respect to z, we get that

fX(x) = − fZ(z)
∂
∂z

E[L |Z = z]
. (5.6)

If we let r(·) be a differentiable function and use the chain rule on r
(
x(z)

)
we get that

∂

∂x
r(x) =

1

x′(z)
· ∂
∂z

E[L |Z = z]. (5.7)

Using (5.4), (5.5), (5.6) and (5.7) we can write (5.3) on the form

GAq(L) = − 1

2fZ(z)
· ∂
∂z

(
fZ(z)V[L|Z = z]

∂
∂z

E[L|Z = z]

)∣∣∣∣
z=VaR1−q(Z)

. (5.8)

Formula (5.8) is the formula commonly known as the granularity adjustment13. Even

though we have derived the granularity adjustment in a VaR setting instead of a UL

setting this doesn’t matter since we have that

ULq(L)−ULASRF
q (L) = VaRq(L)−EL−

(
VaRASRF

q (L)−EL
)

= VaRq(L)−VaRASRF
q (L).

To ease notation we rewrite (5.8) with the notation fZ(z) = f(z), E[L |Z = z] = g(z)

and V[L |Z = z] = h(z). With this notation the granularity adjustment can be rewritten

as

13Another definition of the granularity adjustment is the add-on for name concentration risk proposed
in BCBS 2001, § 456. This definition will however not be used here.

30



GAq(L) =− 1

2f(z)
· d

dz

(
f(z)h(z)

g′(z)

) ∣∣∣∣
z=VaR1−q(Z)

= − 1

2f(z)

(
1

g′(z)

d

dz
(f(z)h(z)) + f(z)h(z)

d

dz

(
1

g′(z)

)) ∣∣∣∣
z=VaR1−q(Z)

= − 1

2f(z)

(
1

g′(z)
(f ′(z)h(z) + f(z)h′(z))− f(z)h(z)

g′′(z)

(g′(z))2

) ∣∣∣∣
z=VaR1−q(Z)

= −1

2

((
h(z)

f ′(z)

f(z)
+ h′(z)

)
1

g′(z)
− h(z)

g′′(z)

(g′(z))2

) ∣∣∣∣
z=VaR1−q(Z)

. (5.9)

In order to use the granularity adjustment in practice we have to impose a credit risk

model. In the following two chapters we will study the granularity adjustment for the

Vasicek and CreditRisk+ model.

5.2.1 The Vasicek Model

In this section we consider the granularity adjustment in a single-factor setting for the

Vasicek model, which for homogeneous portfolios was first derived by Pykhtin and Dev

(2002). Here, we follow the derivation of Hibbeln (2010, Section 4.2.1.2) for heterogeneous

portfolios. In the Vasicek model we have that Z ∼ N (0, 1) which gives that f ′(z) =

−zf(z). Using this and (5.9) we get that

GAVasicek
q (L) =

1

2

(
zh(z)− h′(z)

g′(z)
+ h(z)

g′′(z)

(g′(z))2

) ∣∣∣∣
z=Φ−1(1−q)

. (5.10)

If we use (2.3), (2.5) and the notation ui(z) =
(

Φ−1(PDi)−
√
ρi z√

1−ρi

)
, we get that

g(z) = E[L |Z = z] = E

(
n∑
i=1

EADi · LGDi ·Di

∣∣∣∣Z = z

)

=
n∑
i=1

EADi · ELGDi · E[Di |Z = z] =
n∑
i=1

EADi · ELGDi · Φ
(
ui(z)

)
.

Since we have that

V(LGDi ·Di |Z = z) = E
[
(LGDi ·Di)

2 |Z = z
]
−
(
E[LGDi ·Di |Z = z]

)2

= E[LGD2
i ] · E[D2

i |Z = z]− ELGD2
i ·
(
E[Di |Z = z]

)2

= (VLGDi + ELGD2
i ) · E[D2

i |Z = z]− ELGD2
i ·
(
E[Di |Z = z]

)2

= (VLGDi + ELGD2
i ) · Φ(ui(z))− ELGD2

i · Φ2
(
ui(z)

)
,
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we get that

h(z) = V[L |Z = z] = V

(
n∑
i=1

EADi · LGDi ·Di

∣∣∣∣Z = z

)

=
n∑
i=1

EAD2
i · V

(
LGDi ·Di

∣∣∣∣Z = z

)
=

n∑
i=1

EAD2
i ·
(

(VLGDi + ELGD2
i ) · Φ

(
ui(z)

)
− ELGD2

i · Φ2
(
ui(z)

))
. (5.11)

In order to compute h′(z), g′(z) and g′′(z), we need to know d
dz

Φ
(
ui(z)

)
and d2

dz2
Φ
(
ui(z)

)
d

dz
Φ
(
ui(z)

)
= −

√
ρi

1− ρi
· ϕ
(
ui(z)

)
,

d2

dz2
Φ
(
ui(z)

)
= − ρi

1− ρi
· ui(z) · ϕ

(
ui(z)

)
.

From this we conclude that

h′(z) = −
n∑
i=1

EAD2
i ·
√

ρi
1− ρi

· ϕ
(
ui(z)

)(
VLGDi + ELGD2

i

(
1− 2 · Φ

(
ui(z)

)))
, (5.12)

g′(z) = −
n∑
i=1

EADi · ELGDi ·
√

ρi
1− ρi

· ϕ
(
ui(z)

)
, (5.13)

g′′(z) = −
n∑
i=1

EADi · ELGDi ·
ρi

1− ρi
· ui(z) · ϕ

(
ui(z)

)
. (5.14)

Thus, the granularity adjustment for the Vasicek model in a one-factor setting is given by

(5.10) with h(z), h′(z), g′(z) and g′′(z) as in (5.11), (5.12), (5.13) and (5.14), respectively.

A derivation of the second order granularity adjustment for the Vasicek model can be

found in (Hibbeln 2010, Section 4.2.1.4).

The granularity adjustment presented by Emmer and Tasche (2005, (2.15)) is the

same granularity adjustment presented in this section with the additional assumption

that the LGDs are constants and thereby neglecting the variance of the LGDs.

5.2.2 The CreditRisk+ Model

In the one-factor setting of the CreditRisk+ model, following the notation of Section 2.3,

we have that the a posteriori distribution is
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P(Di = k |Z = z) =

(
PDi(1− wi + wiz)

)k
k!

· e−
(

PDi(1−wi+wiz)
)

for k ∈ {0, 1, 2, ...}.

Since Z ∼ Γ(1/σ2, σ2), we have that

f(z) =
z1/σ2−1

Γ(1/σ2)
· e
−z/σ2

σ2/σ2 , (5.15)

f ′(z) =
e−z/σ

2
z1/σ2−1

Γ(1/σ2)σ2(1/σ2+1)
·
(

1− σ2

z
− 1

)
, (5.16)

g(z) =
n∑
i=1

EADi · ELGDi · PDi(1− wi + wiz),

g′(z) =
n∑
i=1

EADi · ELGDi · PDi · wi, (5.17)

, g′′(z) = 0, (5.18)

h(z) =
n∑
i=1

EAD2
i ·PDi ·

(
1−wi+wiz

)(
ELGD2

i +VLGDi

(
1+PDi(1−wi+wiz)

))
, (5.19)

h′(z) =
n∑
i=1

EAD2
i · PDi · wi

(
ELGD2

i + VLGDi

(
1 + 2 · PDi(1− wi + wiz)

))
. (5.20)

Thus, the granularity adjustment in a single-factor setting for the CreditRisk+ model is

given by14 (5.9) with with f(z), f ′(z), g′(z), g′′(z), h(z) and h′(z) defined as in (5.15),

(5.16), (5.17), (5.18), (5.19) and (5.20), respectively, i.e.,

GACreditRisk+

q (L) = (5.21)(
1
σ2 − 1

z
( 1
σ2 − 1)

) n∑
i=1

EAD2
ixi(ELGD2

i + VLGDi(1 + xi))−
n∑
i=1

EAD2
i · PDi · wi(ELGD2

i + VLGDi(1 + 2x))

2 ·
n∑
i=1

EADi · ELGDi · PDi · wi
,

where x = PDi(1− wi + wiz), z = VaRq(Z) and Z ∼ Γ(1/σ2, σ2).

14In (5.9) we have q instead of 1− q.
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5.2.3 Pillar 2 Compliance

The regulatory capital for credit risk estimates ULASRF
0.999 (Li) in MtM mode for i = 1, . . . , n.

With this as a starting point, under pillar 2, we address the question how to estimate

UL0.999(L) − ULASRF
0.999 (L). We also want the models to be reconciled in the sense that if

we assume that the portfolio is infinitely fine grained, then we arrive at the solution that

UL0.999(L) is equal to the regulatory capital for credit risk.

This task seems difficult to accomplish for MtM mode. The situation is complicated

by the fact that we lack the data for which the maturity adjustment has been calibrated.

However, if we have access to vendor software products we can calibrate the granularity

adjustment to compute an add-on for MtM mode, as shown by Gordy and Marrone

(2012). Here, we follow another approach that doesn’t require vendor software products.

Instead we make the erroneous assumption that ULIRB(Li) is an estimation of ULASRF
0.999 (Li,)

in default mode. From this assumption we can use the regulatory capital to obtain

necessary parameters (ρi and wi) to compute the granularity adjustment for the Vasicek

and CreditRisk+ model. This approach has been used by Gordy and Lütkebohmert

(2007) for the CreditRisk+ model.

At first, it may seem natural to define ρi as ρIRB
i for the Vasicek model. This is however

not feasible since, as has been pointed out above, we do not make any assumptions about

the underlying model for regulatory capital. Thus, for the Vasicek model we solve the

following equation for ρi:

ULASRF
q (Li) = EADi · ELGDi

(
Φ

(
Φ−1(PDi) +

√
ρiΦ

−1(q)
√

1− ρi

)
− PDi

)
= ULIRB

q (Li), (5.22)

where q = 0.999. Solving equation (5.22) by completing the square we arrive at

√
ρi =

1

b2 + c2
i

(
− aib± ci

√
b2 + c2

i − a2
i

)
, (5.23)

where

ai = Φ−1(PDi), b = Φ−1(q) and ci = Φ−1

(
PDi +

ULIRB
q (Li)

EADi · ELGDi

)
.

However, (5.23) does not always yield a unique answer, e.g., if an obligor has the char-

acteristics EAD = 104, ELGD = 0.17, PD = 0.0003, ρIRB = 0.2 and M = 1 this implies

that
√
ρ in the Vasicek model is either 0.4518 or 0.9856. A way around this problem is

to use ρIRB
i as a proxy for ρi in the Vasicek model but this, of course, entails a loss of

fidelity.

Since E[X] = µ if X ∼ Po(µ), in the CreditRisk+ model we solve the following
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equation for wi:

ULASRF
q (Li) = EADi · ELGDi · E

[
Di |Z = VaRq(Z)

]
− EADi · ELGDi · PDi

= EADi · ELGDi

(
PDi

(
1− wi + wiVaRq(Z)

)
− PDi

)
= EADi · ELGDi · PDi · wi

(
VaRq(Z)− 1

)
= ULIRB

q (Li).

Thus, we have that

wi =
ULIRB

q (Li)

EADi · ELGDi · PDi ·
(
VaRq(Z)− 1

) . (5.24)

From this we conclude that there always exists a unique solution. This definition of wi

together with (5.21) is the formula derived by Gordy and Lütkebohmert (2007) and will

be discussed in the next section.

5.2.4 The Granularity Adjustment of Gordy and Lütkebohmert

The formula of Gordy and Lütkebohmert (2007) is equivalent to (5.21) with wi defined

as in (5.24). The resulting explicit formula for the granularity adjustment is

GAq(L) =
1

2
n∑
i=1

ULi

(
δ

n∑
i=1

(
γi
(
ULi + ELi

)
+
(
ULi + ELi

)2 · VLGDi

ELGD2
i

)

−
n∑
i=1

ULi

(
γi + 2

(
ULi + ELi

)VLGDi

ELGD2
i

))
, (5.25)

where ULi is short notation for ULIRB(Li), ELi is defined as in Section 2.4 and

δ =
(
VaRq(Z)− 1

)( 1

σ2
− 1

VaRq(Z)

(
1

σ2
− 1

))
,

γi =
EADi

ELGDi

· (ELGD2
i + VLGDi).

Gordy and Lütkebohmert (2007) also present an approximation of (5.25) that simplifies

the formula. If we factor out EADi in the sums in (5.25) and assume that ULi/EADi and

ELi/EADi are small we can approximate the formula by setting terms that are products

of these expressions to zero, which gives that
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GAq(L) ≈ GAApprox.
q (L) =

1

2
n∑
i=1

ULi

·
n∑
i=1

γi

(
δ
(
ULi + ELi

)
− ULi

)
. (5.26)

The accuracy of this approximation is discussed in Gordy and Lütkebohmert (2007,

Section 5). In order to use the granularity adjustment together with the CreditRisk+

model it is not sufficient to specify wi, we also have to specify σ2. In BCBS 2001, §
445, the value σ2 = 4 is used, which together with the value of VaR0.999(Z) yields the

value δ = 4.83. Alternative values of σ2 are discussed in Gordy and Lütkebohmert (2007,

pp.21–22). The Swedish Financial Authority suggests banks with IRB permission to use

(5.26) together with δ = 4.83 to compute the add-on for name concentration risk (Edlund

2009b, p.4).

Note that the connection between (5.25) and (5.26) is

GAq(L) = GAApprox.
q (L)+

1

2
n∑
i=1

ULi

·
n∑
i=1

(ULi+ELi)·
VLGDi

ELGD2
i

·
(
ULi(δ−2)+δELi

)
, (5.27)

which implies that the approximation (5.26) always is smaller than (5.25) if δ > 2.

5.2.5 Coherence

From (4.1) we note that ULASRF
q (L) is a coherent measure but this isn’t necessarily true

for ULASRF
q (L) + GAq(L). In fact, the risk measure we want to approximate, i.e., ULq(L)

is in general not subadditive. Still, coherent risk measures are often preferable. The aim

of this section is to determine whether ULASRF
q (L) + GAq(L) is a coherent risk measure

within the CreditRisk+ and Vasicek models. One can readily see that GAq(L) satisfies the

monotonicity and positive homogeneity properties and that ULASRF
q (L)+GAq(L) satisfies

the translation invariance property for the Vasicek and CreditRisk+ models. From this

we conclude that ULASRF
q (L) + GAq(L), for the considered models, is a coherent risk

measure iff GAq(L) is subadditive. It is easy to show that (5.25) is subbaditive. If we

write the numerator as
∑n

i=1 ai, the denominator as
∑n

i=1 bi and notice that ai, bi > 0,

we get

GAq(L1 + L2) =

∑n
i=1 ai∑n
i=1 bi

=

∑u
i=1 ai +

∑n
i=u+1 ai∑u

i=1 bi +
∑n

i=u+1 bi

=

∑u
i=1 ai∑u

i=1 bi +
∑n

i=u+1 bi
+

∑n
i=u+1 ai∑u

i=1 bi +
∑n

i=u+1 bi
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≤
∑u

i=1 ai∑u
i=1 bi

+

∑n
i=u+1 ai∑n
i=u+1 bi

= GAq(L1) + GAq(L2),

where u and n − u are the numbers of obligors in L1 and L2, respectively. Thus, we

conclude that ULASRF
q (L) + GAq(L), together with GAq(L) defined as in Gordy and

Lütkebohmert (2007), is a coherent risk measure. In the same fashion, it can be shown

that ULASRF
q (L) + GAq(L) is a coherent risk measure if GAq(L) is defined as in (5.26).

The granularity adjustment for the Vasicek model, however, is not subadditive. In fact,

the granularity adjustment together with the Vasicek model may result in a negative

add-on, which of course is an unwanted property. An example of this is a homogeneous

portfolio with ELGD = 0.45, PD = 0.2, ρ = 0.7 and VLGD defined as in Section 2.

The formula for the granularity adjustment with the Vasicek model can for homogeneous

portfolios explicitly be expressed as15

GAq(L) =
EAD

2

(
ELGD2 + VLGD

ELGD

(
Φ(x)

ϕ(x)
·

Φ−1(α)(1− 2ρ)− Φ−1(PD)
√
ρ

√
ρ
√

1− ρ
− 1

)
− ELGD · Φ(x)

(
Φ(x)

ϕ(x)
·

Φ−1(α)(1− 2ρ)− Φ−1(PD)
√
ρ

√
ρ
√

1− ρ
− 2

)
,

where x =
(
Φ−1(PD) +

√
ρΦ−1(q)

)
/
√

1− ρ and we have suppressed the obligor index i

in the notation. A derivation of this expression can be found in16 Hibbeln (2010, Section

4.5.5). From this we conclude that we could have the case where GAq(L) = a ·EAD and

a < 0. Let this be the case for L1 and L2 that are identical portfolios but have different

obligors. Then we get that

GAq(L1 + L2) = a · EAD > 2a · EAD = GAq(L1) + GAq(L2).

Thus, the granularity adjustment for the Vasicek model is not a coherent risk measure.

However, it is difficult to say if this has any practical significance or if it only considers

stylized portfolios. A way around this problem would be to use a formula that is derived

in a similar fashion to the granularity adjustment but for ESq instead of VaRq. For the

Vasicek model this results not only in a coherent risk measure, but also in a simpler

formula. This approach is considered in Hibbeln (2010, Section 4.3) but will not be

considered here.

15Note that this formula for the add-on motivates the use of HHI. The formula can be expressed as
GAq(L) = EAD · a, where a depends on ELGD, VLGD, PD and ρ. Also, if HHI is multiplied by total
EAD and by a constant, b, we get that HHI = EAD · b, where b is a parameter to be estimated from
observations, usually provided by Monte Carlo simulations.

16Note that it seems like two of the plus signs should be replaced by minus signs after the last equal
sign in the derivation.

37



5.2.6 The Retail Portfolio

Credits can be divided into four categories: corporate, sovereign, institutional and retail

credits. Risk assessment is often preferable from a holistic point of view. In practice,

however, name concentration in retail portfolios is usually considered separately due

to practical reasons. Banks are allowed to pool exposures with similar characteristics

(Hibbeln 2010, p.42) in order to compute regulatory capital for retail credits. Because of

this it is often difficult to retrieve obligor specific information for retail exposures, which

is necessary to compute an add-on for name concentration risk. It is however usually

assumed that the retail portfolio does not have any name concentration risk. In BCBS

2001, § 427 we find the following text:

427. The granularity adjustment should, in principle, be applied at the most aggregate
portfolio level possible. As a practical matter, we propose that it should be applied to
the non-retail portion of total bank exposure. By its very nature, retail business is highly
unlikely ever to worsen the granularity of a bank portfolio. Unless a bank has a very high
proportion of its portfolio in retail loans, neither is it likely that the retail portion of the
portfolio would greatly reduce the measured granularity of the total portfolio. The proposed
treatment of granularity, therefore, is a conservative approach, but one that we believe is
reasonable for the vast number of banks with well-managed risk management systems.

The method proposed by the Swedish Financial Authorities, (5.26), also excludes the

retail portfolio from the computations (Edlund 2009b, p.4). Thus, the add-on for name

concentration risk is computed as the sum of the add-on for the retail portfolio and the

add-on for the remaining part of the credit portfolio, i.e., GAq(L(C,S,I)) + GAq(LRetail) =

GAq(L(C,S,I)) + 0. However, as we will see, if we assume that the add-on for the retail

portfolio is negligible, then it is indeed a simple matter to compute an add-on with

the granularity adjustment for the CreditRisk+ model with respect to the total credit

portfolio. We also show that if the add-on is computed as in (5.25) or (5.26), then

including the retail portfolio always results in a smaller add-on.

Let the number of obligors in the corporate, sovereign and institutional portfolio be

u and the number of obligors in the total portfolio to be n. Considering (5.21), we notice

that if we write the numerator as
∑n

i=1 αi and the denominator as
∑n

i=1 βi the granularity

adjustment for the total portfolio with the CreditRisk+ model can be written as

GAq(L(C,S,I) + LRetail) =

n∑
i=1

αi

n∑
i=1

βi

=

u∑
i=1

αi

n∑
i=1

βi

+

n∑
i=u+1

αi

u∑
i=1

βi +
n∑

i=u+1

βn

. (5.28)

The assumption that the add-on for the retail portfolio is negligible can be formalized as
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0 = ULq(LRetail)− ULASRF
q (LRetail) ≈ GAq(LRetail) =

n∑
i=u+1

αi

n∑
i=u+1

βi

.

This gives that

∣∣∣∣∣
n∑

i=u+1

αi

u∑
i=1

βi +
n∑

i=u+1

βn

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=u+1

αi

n∑
i=u+1

βn

∣∣∣∣∣ = 0, (5.29)

where we also use that βi > 0 for i = 1, . . . , n. Thus, if we make the assumption that∑n
i=u+1 αi/

∑n
i=u+1 βi = 0, use (5.28) and (5.29) we get that

GAq(L(C,S,I) + LRetail) =

u∑
i=1

αi

n∑
i=1

βi

.

Thus, the only difference to when the retail portfolio is excluded is that we include all

obligors in the summation in the denominator. Also, since it doesn’t matter on what level

the retail exposures are aggregated the pooling of obligors does not constitute a problem.

For (5.25) and (5.26) we also have that αi > 0, which means that in this case the add-on

always will be smaller if the retail portfolio is included.

6 Capital Allocation

The profitability of a decision made in a particular business unit may depend on decisions

made in other business units of the same company. This gives rise to the problem of how

to make business units work in a coordinated way in order to maximize the utility of the

shareholders. Performance measures, such as RAROC, the Sharpe ratio, different risk

measures and Jensen’s alpha can in different ways be used to define preference among

portfolios and evaluate performance of business units. However, since we already have

defined the risk implicitly as a cost (see Section 3) we define the optimal portfolio to

be the portfolio that maximizes the profit of the bank. A common way to solve this

problem is to allocate capital (profits, costs, buffer capital, etc.) within the company in

such a way that if all business units maximize their own profits, then the business units

also maximize the profit of the company. In this respect, capital allocation of regulatory

capital for credit risk is unproblematic thanks to the property of portfolio invariance.
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However, there is no obvious way how to allocate the add-on for name concentration risk.

Capital Allocation Principle Consider the case where we have L1, . . . , Ln investment

opportunities. Let the vector α represent how much is invested in each investment

opportunity and let ρ be a risk or performance measure. To ease notation, let ρ take α as

an argument instead of α>L. With this notation we have that ρ(αi |α) for i = 1, . . . , n

is a capital allocation principle if it satisfies the full allocation property, i.e.,

ρ(α) =
n∑
i=1

ρ(αi |α).

First Approach Let t0 < t1 < t2 . . . be time points and consider a company that at tj

holds the portfolio αtj and that at each time point is given an investment opportunity,

xi,tj = xi,tjei where ei is a standard basis vector, which it may accept or reject. If

the company accepts the deal we get that αtj+1
= αtj + xi,tj and if it rejects the deal,

αtj+1
= αtj . In this setting, it would be natural to define the capital allocation principle

as the marginal risk contribution, i.e.,

ρmarg(αi |α) = ρ(α)− ρ(α− αiei).

However, if ρ is positive homogeneous, subadditive and differentiable Tasche (2004,

Proposition 2) showed that

ρ(α) ≥
n∑
i=1

ρmarg(αi |α).

With equality iff ρ is exactly additive. Thus, the marginal contribution capital allocation

principle does not satisfy the full allocation property for coherent risk measures.

Second Approach As in the first approach, let t0 < t1 < t2 . . . be time points and αtj
denote the portfolio of a company at time tj. The company rebalances its portfolio at

every time point such that αtj+1
= αtj + ∆xtj where ∆xi = (∆x1,tj , . . . ,∆xn,tj)

> and

|∆xtj | ≤ ε, where ε is small. If we assume that the portfolio is positive homogeneous we

have that
ρ(αj) = α>j ∇ρ(αj). (6.1)

Thus, if ρ is positive homogeneous and we linearize ρ around αj we get

ρ(αtj+1
) = ρ(αtj + ∆xtj) ≈ ρ(αtj) + ∆x>∇ρ(αtj) = α>tj∇ρ(αtj) + ∆x>∇ρ(αtj)

= (αj + ∆xtj)
>∇ρ(αtj) = αtj+1

∇ρ(atj).

This means that if we use the capital allocation principle
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ρ(αi |α) = αi
∂ρ

∂αi
(α),

it is easy find out much how much ρ(α) will change if we change αi with a small amount.

The full allocation property follows directly from (6.1) and the capital allocation principle

is called Euler capital allocation principle. Other motivations for the Euler principle can

be found in Tasche (2008, p.5).

Since the granularity adjustment with the Vasicek and CreditRisk+ models are positive

homogeneous it is possible to use the Euler principle as a capital allocation principle. In

this case, using the Euler principle implies that it is easy to determine how much the

add-on for name concentration risk changes if we change EADi with a small amount.

Euler allocation and the Granularity Adjustment for the CreditRisk+ model

If we apply the Euler capital allocation principle to the granularity adjustment for the

CreditRisk+ model and use the notation of section 5.2.4 we get

∂GAq(L)

∂xj
=

2ajxj
n∑
i=1

bixi − bj
n∑
i=1

aix
2
i(

n∑
i=1

bixi

)2 ,

where xi = EADi, bixi = 2ULi and

aix
2
i = δ

(
γi(ULi + ELi) + (ULi + ELi)

2 · VLGDi

ELGD2
i

)
−ULi

(
γi + 2(ULi + ELi) ·

VLGDi

ELGDi

)
.

If we use the approximation (5.26) we get a different value for ai

aix
2
i = γi

(
δ(ULi + ELi)− ULi

)
.

Note that ai and bi are independent of xi. However, Euler allocation cannot be used

if we include the retail portfolio since the granularity adjustment then isn’t positive

homogeneous.

Euler allocation and the Granularity Adjustment for the Vasicek model

If we apply the Euler capital allocation principle to the granularity adjustment for the

Vasicek model and the notation xi = EADi, we get that

∂GAq(L)

∂xj
=
xi
(
aig(xi)− civ(xi)

)
− 1

2

(
bif(xi)− u(xi)

)(
g(xi)

)2 +
biu(xi)v(xi)(
g(xi)

)3 ,

where
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f(xj) =
n∑
i=1

aix
2
i , g(xj) =

n∑
i=1

bixi, u(xj) =
n∑
i=1

cix
2
i , v(xj) =

n∑
i=1

dixi,

ai = ciΦ
−1(q)− ϕ(si)

√
ρi

1− ρi

(
VLGDi + ELGD2

i

(
1− 2Φ(si)

))
,

bi = ϕ(si)ELGDi

√
ρi

1− ρi
,

ci = Φ(si)
(
ELGD2

i + VLGDi

)
− Φ2(si)ELGD2

i ,

di = ϕ(si)siELGDi ·
ρi

1− ρi
,

si =
Φ−1(PDi) +

√
ρiΦ

−1(q)
√

1− ρi
.

New capital allocation principles are preferably implemented gradually in order to avoid

too drastic changes in the incentives of the business units. This can be achieved simply

by choosing a linear combination of the present and the new allocation. It is easy to see,

indeed, that this satisfies the full allocation property.

Let a and b be the present and the new allocations, respectively, and let both alloca-

tions satisfy the full allocation property, i.e. a>1 = b>1 = γ, where 1 is an n× 1 vector

of ones and γ the add-on for name concentration risk. Then, if x ∈ [0, 1] we have that

xa>1 + (1− x)b>1 = xγ + (1− x)γ = γ.

7 Results

In this section discussed models are applied to the credit portfolio of Nordea for a specific

time point. First, assumptions and simplifications made in the data retrieval step are

explained. Next, in Table 1, add-ons for name concentration risk under pillar 2 in Basel II

are computed with the granularity adjustment for the Vasicek and CreditRisk+ models.

For the CreditRisk+ model, the retail has also been included. Finally, in Figure 1 and

Figure 2, the add-ons have been allocated to obligors with Euler capital allocation. Data

have been processed in SAS.
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7.1 Data retrieval

In order to make an analysis of the credit portfolio, obligor specific data first had to

be retrieved and exposures aggregated to obligors. To accomplish this, a number of

simplifications and assumptions had to be made:

• All obligors are assigned to a super-obligor, which gives rise to a partition of the

set of obligors. It is, however, not clear whether obligors can default independently

within the sets of the partition. Therefore, analyses have been made on two port-

folios, one which is divided in sub-obligors and one which is divided super-obligors.

Since name concentration reaches its minimum and maximum in these cases, these

portfolios are denoted by Min and Max.

• DLGDs have been used instead of ELGDs. However, DLGDs might actually be

preferred to ELGDs in order to meet pillar 2 requirements since DLGDs are used

in the IRB formula (see section 4.2).

• Since we have that PD = 0 for sovereign exposures in the Basel II framework, these

do not affect the loss distribution and therefore are excluded from computations.

Thus, corporate, institutional and retail credit data are retrieved in the first step.

For corporate and institutional data, exposures are aggregated to obligors, whereas

retail data are aggregated to large groups with similar characteristics.

• All retail exposures have been assigned ρIRB = 0.15. However, this is only correct

for residential mortgage exposures (Hibbeln 2010, p.42), but since most exposures

are of this kind this is unlikely to affect the result significantly.

7.2 Add-on

The following simplifications and assumptions were made to compute the add-ons:

• It is assumed that VLGDi = 0.25 · ELGDi(1− ELGDi) (see section 2).

• ρIRB
i has been used in the Vasicek model (see section 5.2.3).

Name concentration add-ons for pillar 2 in Basel II have been computed with the gran-

ularity adjustment for the Vasicek and CreditRisk+ models. For the CreditRisk+ model,

computations have also been made when the retail portfolio is included (see Section 5.2.6).

We note that the Vasicek model results in the smallest add-on. The difference can be ex-

plained by different model calibrations, how σ and ρi have been chosen (see Section 5.2.3).

In line with (5.27), we have that the simplified formula of Gordy and Lütkebohmert re-

sults in a slightly smaller add-on than the non-simplified version. In contradiction to the
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Max Min

NR R NR R

Vasicek 100 80

Gordy & Lütkebohmert 142 113 114 90

Gordy & Lütkebohmert, simplified 140 112 112 89

Table 1: Name concentration add-on in percent of the add-on for the Vasicek model. For Max
computations have been made on a super-obligor level and for Min computations have been
made on a sub-obligor level. NR denotes no retail and R denotes retail, i.e., whether or not
the retail portfolio has been included in the computations (see section 5.2.6). Vasicek has been
computed as in section 5.2.1 with ρi = ρIRB

i , Gordy & Lütkebohmert has been computed as
in (5.25) and Gordy & Lütkebohmert, simplified as in (5.26).

excerpt in section 5.2.6 from BCBS 2001, § 427, the add-on is substantially reduced if

the retail portfolio is included in the computations.

7.3 Capital Allocation

In order to analyze different capital allocations we define snci (single-name concentration

factor) for i = 1, . . . , n as

(allocated capital of add-on for name concentration risk)i = snci · ULIRB(Li). (7.1)

The difference between Euler allocation for the simplified and non-simplified formulae

of Gordy and Lütkebohmert is barely discernible in Figure 1 and Figure 2. As seen in

Table 3, if we want to decrease the add-on by changing the outstanding amount to an

obligor (exposure at default of obligor i, EADi) by a small amount, then EADi should

be decreased only for around 0.5 % of the obligors whereas EADi should be increased for

remaining obligors. However, this small fraction of obligors constitute around 45 % of

max(snc1, . . . , sncn) min(snc1, . . . , sncn)

Max Min Max Min

Vasicek 100 102 -5.6 -4.4

Gordy & Lütkebohmert 152 132 -7.4 -6

Gordy & Lütkebohmert, simplified 150 128 -7.4 -5.8

Table 2: Smallest and largest snci in Figure 1 and Figure 2 in percent of the largest snci for

the Vasicek model in Figure 1.
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Figure 1: The order of obligors has been randomized but is the same for the plots above. Euler

allocation has been applied for the plots (see section 6). Computations have been done on a

super-obligor level.

total EAD. Thus, the capital allocation of the add-on will be most noticeable for a few

and very large obligors. From Table 2, we note that the magnitude of snci can be much

greater for positive allocations than for negative allocations.

100 ·#{snci > 0}/n 100 ·
n∑
i=1

EAD · Isnci>0/
n∑
i=1

EAD

Max Min Max Min

V 0.58 (15) 0.39 (20) 48 (40) 41 (43)

GL 0.59 (17) 0.41 (22) 49 (40) 42 (44)

GL s. 0.58 (17) 0.41 (23) 48 (40) 42 (44)

Table 3: Share in percent of number and EAD of obligors with snci above zero in Figure 1 and

Figure 2. Numbers in parentheses denote the share of institutional obligors in percent.
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Figure 2: Same result as in Figure 1 but on a sub-obligor level.

8 Conclusion

Banks are concerned with the risk of large losses primarily for two reasons: to meet

regulatory demands and to obtain a target level of credit quality, i.e., the trade-off between

borrowing costs and capital buffer size that maximizes profits. In many cases, banks prefer

a unified view on risk, which means that the bank’s and the supervisory authorities’ risk

perspectives are reconciled.

In Basel II, the capital charge for credit risk under pillar 1 (regulatory capital for

credit risk) is portfolio invariant, i.e., regulatory capital increases by the same amount

independently to what portfolio a credit exposure is added. To achieve this property,

the regulatory capital of a credit portfolio is an estimation of the unexpected loss (the

difference between expected loss and Value at Risk) for a particular diversification among

geographical areas, industries and sizes of outstanding amounts to obligors. If a bank

deviates from this benchmark, this is to be addressed under pillar 2 and the potential add-

on is called concentration risk. Diversification among geographical areas and industries

(sector concentration) and diversification among sizes of outstanding amounts to obligors
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(name concentration) are often treated independently for simplicity, i.e., independent add-

ons are obtained by relaxing the assumptions of sector and name concentration separately.

The infinite granular portfolio is often used as a benchmark to assess an add-on for name

concentration risk.

In principle, there exist three approaches to assess an add-on for name concentra-

tion risk: Monte-Carlo simulations, model-based approximations and regression meth-

ods. Monte-Carlo simulations are often time consuming, difficult to reconcile with the

regulatory framework and often require expensive software. Regression methods require

Monte-Carlo simulations for calibration and re-calibration and are often not as accurate

as model-based approximations.

A model-based approximation that has gained great publicity is the granularity ad-

justment, which is a second order Taylor approximation around the infinite granular port-

folio. In order to compute an add-on with the granularity adjustment it has to be done

w.r.t. a credit risk model. Here we have considered two models: the CreditRisk+ model

and the Vasicek model. In Section 5.2.5 we have shown that the former is coherent when

parameters are specified as in (5.25) (the Gordy and Lütkebohmert formula) and (5.26)

(the simplified Gordy and Lütkebohmert formula), whereas the latter isn’t. We have also

shown how the retail portfolio can be included in the computations for the CreditRisk+

model and that this, when parameters are specified as in in (5.25) and (5.26), always

results in a smaller add-on (see Section 5.2.6). See Gordy and Lütkebohmert (2007) and

Hibbeln (2010) for information on the accuracy of the models.

Applying the discussed methods on a real credit portfolio we note that the Vasicek

model results in the smallest add-on and that the difference between the simplified and

non-simplified formula of Gordy and Lütkebohmert is small. We also note that the

simplified formula results in a smaller add-on than the non-simplified formula, which is

in line with (5.27). If the retail portfolio is included in the computations of the Gordy

and Lütkebohmert formulae, the add-on is substantially smaller.

Capital charges for credit risk are often allocated to exposures. For regulatory capital

this is natural since it is portfolio invariant. Name concentration risk, however, is not

portfolio invariant and there doesn’t exist any obvious way to allocate the add-on to

obligors. Here we have chosen to look closer on Euler allocation, which has the property

that if all sub-units maximize their profits, then the profit of the bank is maximized as

well. If the size of the outstanding amount for an obligor is changed by a small enough

proportion then the capital allocated to that obligor changes by the same proportion and

the full allocation property is preserved, i.e., the allocated capital still sums up to the

add-on.

An interesting result is that if we apply Euler allocation for the two mentioned models
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on a real credit portfolio, almost all obligors will have a negative capital allocated to

them for name concentration risk. Only around 0.5 % of the obligors will have a positive

capital allocation. However, these obligors together constitute around 45 % of the total

outstanding amount.

Implementing new allocation principles it is important to prevent large sudden changes

in the business operations. One way to solve this is to implement a linear combination

of the present allocation and the new allocation and then gradually progress towards the

new allocation.

To sum up, we note that in order to meet pillar 2 requirements there are several reasons

to prefer the formulae of Gordy and Lütkebohmert, (5.25) and (5.26), to the granularity

adjustment for the Vasicek model. First, the formulae of Gordy and Lütkebohmert are

coherent, whereas this is not true for the Vasicek model. Also, it is not clear how to

specify the parameter ρi in the Vasicek model. Even if the Vasicek model results in

a considerably more complex formula it is still very easy to implement. However, the

complexity makes the formula more opaque and less fitted for qualitative reasoning.

Another interesting approach, which hasn’t been considered here, is to use ES instead of

VaR. More information of this approach with the Vasicek model can be found in Hibbeln

(2010, Section 4.3).

Since financial risk always should be considered from a holistic perspective it seems

reasonable to include the retail portfolio in the computations, which for the formulae of

Gordy and Lütkebohmert always implies a smaller add-on. However, this does not seem

to be a widely used approach in the industry.

It is not at all clear how to allocate the add-on to exposures. Euler allocation provides

a natural approach only if the scenario in Section 6 corresponds to reality. Also, if Euler

allocation is to be implemented one difficulty is to decide how often the allocation is to be

updated. How to allocate the add-on if the retail portfolio is included in the computations

remains an unsolved problem. If reality doesn’t correspond to the scenario in Section 6

it might in fact be impossible to optimize the credit portfolio by capital allocation, due

to the full allocation property. However, this can be solved by evaluating business units

with other performance measures than capital allocation.

A few suggestions on further research topics are:

• Extend the granularity adjustment for the Vasicek model to include the retail port-

folio.

• Determine conditions for existence and uniqueness of the solution to (5.22). Also,

even if there in some cases exist two solutions two this equation, only one seems to

be reasonable. Is this always the case?
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• Develop an allocation principle for the case when the retail portfolio is included in

the computations of the add-on.

• Evaluate other performance measures than capital allocation.

• Evaluate what difference it makes to use DLGDs instead of ELGDs in the compu-

tations.
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