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Abstract

Residential households in the EU are estimated to have a savings po-
tential of around 27% [1]. The question yet remains on how to realize this
savings potential. Non-Intrusive Appliance Load Monitoring (NIALM)
aims to disaggregate the combination of household appliance energy sig-
nals with only measurements of the total household power load.

The core of this thesis has been the implementation of an extension to
a Gibbs sampling model with Hidden Markov Models for energy disaggre-
gation. The goal has been to improve overall performance, by including
the duration times of electrical appliances in the probabilistic model.

The �nal algorithm was evaluated in comparison to the base algorithm,
but results remained at the very best inconclusive, due to the model's
inherent limitations.

The work was performed at the Swedish company Watty. Watty de-
velops the �rst energy data analytic tool that can automate the energy
e�ciency process in buildings.
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1 Introduction

The world's current thirst for energy, with its environmental impacts and nega-
tive external e�ects, have made energy technologies into an extremely relevant
topic of research for the bene�t of humanity's future existence. As of today, the
world still mainly depends on non-renewable fossil fuels to cater for what in the
end boils down to our every day needs.

While a great amount of research is directed toward the development of
renewable resources, such as solar energy, wind power and the like, or even
making our existing processes of energy extraction increasingly e�cient, the
gained bene�ts are still far from making our energy consumption sustainable,
which raises concern towards a future when our current types of resources may
not exist as abundantly as today.

Perhaps to no surprise, private households have been observed to have some
of the largest capacities for improvement when it comes to e�cient energy usage.
Judging from a report by the Comission of the European Communities from
2006, residential households in the EU are estimated to have a savings potential
of around 27% of their annual energy use. This amounts to a quarter of the full
energy saving potential in all end-use sectors, including commercial buildings,
transport and the manufacturing industry [1]. From this, the question still
remains on how to best realize this savings potential.

In the domain of e�cient energy usage lies the idea of saving energy by �nd-
ing and providing detailed information about power consumption, to help make
better decisions about energy spendings. This is something that can also be
done at the individual household level by providing information on individual's
consumption patterns.

Appliance load monitoring (ALM) is an ongoing �eld of study that deals
in this matter, with the aim of providing direct feedback on household energy
consumption at an individual appliance resolution. ALM has had two major
approaches, that are described as Intrusive and Non-Intrusive ALM (shortened
as IALM and NIALM). The IALM approach is also referred to as distributed
sensing, as it focuses on measuring all household appliances separately. While
�eld surveys and direct measurements of individual appliances have been and
still are the most straight forward methods to acquire accurate energy usage
data, the need for a multitude of sensors and time consuming installations have
made IALM methods �nancially unapproachable [2]. Instead, some focus has
shifted toward methods that automatically infer appliance energy signals with
use of fewer sensors. Non-Intrusive Appliance Load Monitoring (NIALM), the
principles of which the invention is attributed to Hart, Kern and Schweppe of
MIT in the 1980's, aims to provide the desired functionality; to ably decompose
one whole aggregated household power load signal into its underlying electrical
appliances.

To estimate the component power loads of a household using nothing more
than measurements of the total power load is typically a complex task, as is sug-
gested by Figure 1 which depicts the individual load curves in a household with
around 20 appliances, as well as the aggregated signal of the same household for
comparison. At the core of NIALM is the idea that individual appliances have
recognizable energy signals, also referred to as signatures [13]. The NIALM
approach can vary depending on the appliance type, as well as what frequency
has been used to sample the energy signal. While more information is obtained
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from high resolution signals, the downside is the requirement of expensive mea-
surement apparatus to sample at the required frequencies, which can be up to
several kilohertz. For this reason, this thesis has been centred on NIALM at low
or ultra-low frequency sampling (order of magnitudes around 1 to 10−1 Hz).

The work behind this thesis was performed at a Swedish company that
specializes in developing NIALM methods using machine learning technologies.
The work was to its largest extent centred around Factorial Hidden Markov
Models (FHMM) and Gibbs sampling for power signal disaggregation. FHMMs
were introduced by Gharamani and Jordan, 1997, as an extension to the basic
Hidden Markov Model (HMM), and has proven useful in areas such as speech
recognition (Virtanen, 2006) and audio separation (Roweis, 2001).

One major weakness of conventional HMMs in the domain of NIALM is the
less than accurate representation of how long typical appliances are used on a
day to day basis. The ON or OFF -duration of an appliance is further referred
to as its state duration, and for the regular HMM this duration will always be
modelled as less probable the more time increases. Such state duration density
could, as mentioned, in many cases be deemed inappropriate to model real
life time series of appliances. Indeed, for household appliance state modelling
purposes, one can easily present simple heuristic arguments to show that many
household appliances have some state durations that are more likely than others.
For example, the time a person spends watching television could be modelled
after viewing habits, or a microwave oven's average run-time might be guessed
as two minutes. In general, many appliances would not seem to exhibit strictly
decreasing probability density functions for their state duration distributions.

The idea behind the implementation of this thesis has been taken from Ra-
biner's tutorial on HMMs [16], where explicit state durations are suggested as
a possible improvement in HMMs. For this reason, the Hidden Semi-Markov
Model (HSMM) is tried as a possible candidate to correctly model state dura-
tions. Semi-Markov chains try to include a representation of state duration and
could as such be deemed a better choice than Markov models for appliance state
durations.



1 INTRODUCTION 3

(a) Individual appliance measurements

(b) Total load measurement

Figure 1: The energy disaggregation problem.
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1.1 Purpose

The work described in this thesis was carried out at Watty. Watty is a Swedish
company that develops the �rst energy data analysis tool that can automate the
energy e�ciency process in buildings. Their solution uses the total energy use
in a building to evaluate its underlying systems and compare it to alternatives.

The work carried out at Watty has been divided between two areas; working
as a part of the team responsible for the development ant implementation of
Watty's base model for energy disaggregation, and developing the algorithm
discussed in this thesis.

The purpose of this thesis is to evaluate the results of a semi-Markov model
extension on Watty's base model for NIALM, with the �nal aim being to im-
prove overall energy disaggregation performance. Speci�cally, an algorithm that
takes into account state durations (also referred to as state lengths) of appli-
ances is researched and then added to the model. The subsequent performance
results are compared with the original model's performance results and used for
deciding whether or not to adopt the devised algorithm.

1.2 Outline

This thesis is organized as follows; �rst, section 2 gives the necessary introduc-
tion to Markov modelling as it is used in the rest of this work, while section 3
covers the functionality, structure and underlying assumptions of the original
model used by the company at which the thesis work was performed.

Next, section 4 provides description of the developed algorithm, as well as the
steps that lead to it's design. Finally, sections 5 and 6 summarize the collection
of results obtained from di�erent model runs.

Additional results, along with description of the datasets used are displayed
in appendices at the end of this thesis.
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2 Background

This section contains the necessary theory that is implemented in the model
in section 3. Section 2.1 provides a short introduction on graphical models, in
preparation for section 2.2 and 2.3, which lay For a more thorough treatment
of the Markov models presented below, see [4] and [16].

2.1 Short on graphical models

De�nition 1. The random variables X and Y are conditionally independent
given Z, denoted X ⊥ Y |Z, if and only if the conditional joint probability can
be written as a product of conditional marginal probabilities, or formally,

X ⊥ Y |Z ⇐⇒ P (X,Y |Z) = P (X|Z)P (Y |Z). (1)

De�nition 2. The chain rule for probability theory says that any joint prob-
ability distribution of the random variables X1, X2, . . . , Xn can be calculated as

P (Xn, . . . , X1) = P (Xn|Xn−1, . . . , X1) · P (Xn−1, . . . , X1) (2)

=

n∏
k=1

P (Xk| ∩k−1
j=1 Xj). (3)

A probabilistic graphical model is a way to represent a joint probability dis-
tribution by representing random variables as nodes, and dependence as node
edges in a graph. A graphical model is illustrated in Figure 2.

A B C

Figure 2: Directed graphical model.

In this �gure, the nodes A and B are connected by the edge AB, representing
that the random variables A and B are not independent of each other. The node
C however remains unconnected and this random variable is thus independent
of all other random variables in the model. The joint probability distribution is
therefore

P (A,B,C) = P (C|A,B)P (B|A)P (A) (4)

= P (C)P (B|A)P (A). (5)

The graphical model displayed in Figure 2 is a directed graphical model
(DGM), also known as a Bayesian network, where its edges are represented
as arrows of direction. The directions indicate a believed causal relationships
between the random variables, such as "B is caused by A".

Some de�nitions are useful when working with DGMs:

De�nition 3. The parents of a node are the set of nodes that direct into it.

De�nition 4. The children of a node are the set of nodes that direct away
from it.
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De�nition 5. A directed cycle is a sequence of connected nodes such that we
can get back to any node in the sequence by following the directed edges.

De�nition 6. A directed graphical model (DGM) is graphical model with
causal directions, but with no directed cycles.

For more on graphical models, see [10] and [15].

2.2 Discrete-time Markov models

For convenience, throughout this thesis the notation Xt will be used to signify
X(t), for a stochastic variable X depending on the variable t.

De�nition 7. In probability theory, a sequence of stochastic time based events,
{Xn;n ∈ N0}, with state space EEE is said to have the (�rst-order) Markov
property if

P (Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn) = P (Xn+1 = xn+1|Xn = xn),

∀n, where xn ∈ EEE denotes the outcome of the n:th event in the sequence.

Informally put, the conditional probability distribution of future states of
the process depend only upon the present state. For a �nite or countable state
space, the process is referred to as a (discrete-time) Markov chain.

De�nition 8. The transition probabilities at the event n, pi,j(n), of a
Markov chain with state space EEE, are de�ned as

pi,j(n) = P (Xn+1 = j|Xn = i), i, j ∈ EEE. (6)

So pi,j(n) is the probability to move from state i at event n, to state j at event
n+ 1. The conditional distribution of these probabilities can be represented in
matrix form, as de�ned below.

De�nition 9. The transition matrix PPP (n) of a Markov chain with state space
EEE = {1, 2, . . .}, is de�ned as

PPP (n) =


p1,1(n) p1,2(n) . . .

p2,1(n) p2,2(n) . . .

...
...

. . .

 .
2.2.1 Time-homogenous Markov chains

In the case where the transition probabilities are independent of time,

P (Xn+1 = i|Xn = j) = P (Xn = i|Xn−1 = j), i, j ∈ EEE, ∀n, (7)

the Markov chain is said to be time-homogenous. For such systems, the transi-
tion probabilities and transition matrix simplify to

PPP =


p1,1 p1,2 . . .

p2,1 p2,2 . . .

...
...

. . .

 . (8)
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2.2.2 Hidden Markov models

In hidden Markov models (HMM) the state Xn of the Markov model with state
space EEE is not directly observable. Instead, the observed stochastic process Yn
is a probabilistic function of the (underlying) state,

Yn = f(Xn) ∈ OOO, (9)

where OOO is the set of possible observations, also referred to as emissions. These
emissions are conditionally independent given the underlying state sequence
such that

P (Y0, Y1, . . . , Yn−1, Yn|X0, X1, . . . , Xn−1, Xn) (10)

=

n∏
i=0

P (Yi|Xi). (11)

A probabilistic graphical model representation of a HMM is displayed in Figure
3. The model displayed is a directed graphical model (DGM), with 2×T nodes,
for T number of events.

Xn−1 Xn Xn+1

Yn−1 Yn Yn+1

Figure 3: Hidden Markov model.

2.2.3 Factorial hidden Markov models

A generalization of HMMs was provided by Ghahramani and Jordan [5], in
which the hidden state Xt is represented as a collection of independent state
variables

Xt = (X
(1)
t , . . . , X

(m)
t , . . . , X

(M)
t ),

corresponding to the underlying Markov chains in M individual HMMs, each

with separate state space EEE(m) and emission process Y
(m)
t . The resulting obser-

vation from this model is a stochastic process Ȳt which is described as a function
of the individual emissions,

Ȳt = f(Y
(1)
t , . . . , Y

(M)
t ). (12)

The model is referred to as a factorial hidden Markov model (FHMM), and
its graphical model is illustrated in Figure 4. This model is a DGM, with
((2×M) + 1)× T nodes, for M appliances, and T time steps.
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X
(1)
t−2 X

(1)
t−1 X

(1)
t X

(1)
t+1 X

(1)
t+2

Y
(1)
t−2 Y

(1)
t−1 Y

(1)
t Y

(1)
t+1 Y

(1)
t+2

X
(2)
t−2 X

(2)
t−1 X

(2)
t X

(2)
t+1 X

(2)
t+2

Y
(2)
t−2 Y

(2)
t−1 Y

(2)
t Y

(2)
t+1 Y

(2)
t+2

Ȳt−2 Ȳt−1 Ȳt Ȳt+1 Ȳt+2

Figure 4: Factorial hidden Markov models.

2.2.4 Semi-Markov models

Markov processes can be extended by letting the duration between two follow-
ing states Xn and Xn+1 be stochastically modelled. A Markov renewal process
denotes the sequence of states as (Xn, Tn) where each state, Xn, from a Markov
chain, has an associated time of occurrence, Tn. Such a process is still Marko-
vian; meaning that the Markov property is preserved throughout the sequence,
and is illustrated in Figure 5.

State space, EEE

Time

X0

X1

X2

X3

T0 T1 T2 T3

τ1 τ2 τ3

Figure 5: Markov renewal process.

Using the notation for Markov renewal processes, we de�ne the semi-Markov
process below.
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De�nition 10. For a Markov chain with states Xn occuring at associated ran-
dom times Tn, the semi-Markov process Qt is de�ned as

Qt = Xn, t ∈ [Tn, Tn+1). (13)

Intuitively, one may think of the semi-Markov process as observations of
emission sequences for every occurring state in a Markov renewal process, see
Figure 6.

State space, EEE

Time

X0

X1

X2

X3

T0 T1 T2 T3

τ1 τ2 τ3

(a) Analogy of semi-Markov process to Markov renewal process.

Q1 Q2 Q3 Q4 Q5

Xn

Tn

Xn+1

Tn+1

(b) A semi-Markov process, here Q1 = Q2 = Q3 = Xn, and Q4 = Q5 = Xn+1 .

Figure 6: Semi-Markov process.

In order to simplify the notations for future usage, we introduce the notion
of the generalized state from [14],

Gn = (Xn, Ln), (14)

Qt = f(Gn), (15)

which includes a stochastic duration variable Ln = Tn+1 − Tn.
The process Qt is not Markovian, but the underlying state sequence Xn

in the Markov renewal process is. Therefore, since Qt is dependent on Xn,
the semi-Markov process will only transition between di�erent states when its
underlying Markov renewal process does. Using the generalized state notation
displayed above, it is easily shown that the ensuing transitions in a semi-Markov
process are also memoryless, since given a sequence of generalized states, the
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conditional probability distribution of the following state is

P (QTn+1
= qTn+1

|G0, G1, . . . , Gn), (16)

using De�nition 10, expression 16 translates as

= P (Xn+1 = qTn+1
|G0, G1, . . . , Gn) (17)

expanding notation,

= P (Xn+1 = qTn+1 |X0, X1, . . . , Xn = xn, L0, L1, . . . , Ln) (18)

using Ln = Tn+1 − Tn,

= P (Xn+1 = qTn+1
|X0, X1, . . . , Xn = xn, T1, T2, . . . , Tn+1 = tn+1) (19)

using Markov property of the Markov renewal process,

= P (Xn+1 = qtn+1
|Xn = xn) (20)

change of notation, τ = tn+1,

= P (Xn+1 = qτ |Xn = xn) (21)

using De�nition 10,

= P (Qτ = qτ |Qτ−1 = qτ−1), (22)

which holds if, and only if, qτ 6= qτ−1.
It will prove useful to refer to generalized states as state blocks, and as such

one is able to talk about a state block of length L in order to refer to a generalized
state G with duration L.

2.3 Gibbs sampling

Gibbs sampling is a Markov chain Monte Carlo (MCMC) algorithm for obtaining
a sequence of observations from a speci�ed multivariate probability distribution.
MCMC algorithms were invented as methods that simulate complex dynamic
systems, by generating samples from some constructed Markov chain. The
crucial step in using MCMC algorithms is to construct the Markov chain such
that its equilibrium distribution is the same as the distribution from the original
system that is being simulated. An early example of MCMC usage was the
simulation of a liquid in equilibrium with its gas phase, by Metropolis et al.
(1953), in what has become known as the Metropolis algorithm.

The Gibbs sampling algorithm was introduced by Geman and Geman (1984),
as a special case of the Metropolis-Hastings algorithm, a generalization of the
Metropolis algorithm mentioned above, devised by Hastings (1970). The algo-
rithm generates samples by sampling from the conditional distribution of the
desired equilibrium distribution, and is illustrated with one iteration below:

For a given multivariate probability distribution,

P (X1, X2, . . . , Xn−1, Xn), (23)

we denote the i:th sample from this distribution as X̂(i) = (x
(i)
0 , x

(i)
1 , . . . , x

(i)
n ).
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1. First, an initial sample

X̂(0) = (x
(0)
0 , x

(0)
1 , . . . , x(0)n )

is selected from the distribution in (23).

2. Next, each variable x
(1)
j is sampled from the conditional distribution

P (Xj |x(1)0 , x
(1)
1 , . . . , x

(1)
j−1, x

(0)
j+1, . . . , x

(0)
n ),

that is, the variable's distribution conditioned on all other variables in the
joint distribution (23). After a variable has been sampled, this most recent
value is used in the conditional distributions of the remaining variables.

3. Once all variables have been sampled individually, the resulting samples

constitute one Gibbs sample X̂(1) = (x
(1)
0 , x

(1)
1 , . . . , x

(1)
n ).

4. The procedure is then repeated with X̂(1) as the new initial sample.

For a su�ciently large amount of samples, the simulated distribution con-
verges to the joint distribution that was being sought for. Because reaching the
stationary distribution of the Markov chain can possibly be time consuming, it
is common to ignore the �rst few Gibbs samples, in what is referred to as the
burn-in period. Also, in order to avoid auto-correlation between successive sam-
ples, one may decide to generate the joint distribution by only keeping samples
generated after a certain number of iterations in the sampler algorithm, in what
is known as choosing the step-size of the Gibbs sampler. Determining a good
burn-in period and step-size is a task di�cult in itself.

For more on Gibbs samplers and MCMC algorithms see [3], [6] and [15].



3 BASE MODEL 12

3 Base Model

The model's purpose is to describe the underlying processes which generate the
measured total electric load in individual households. Section 3.1 overviews the
assumptions in the initial model, and section 3.2 describes the implementation
details.

3.1 Model assumptions

3.1.1 Additive FHMM

The initial model used in the disaggregation algorithm is a FHMM as described
in section 2.2.3. The observed variable Ȳt, the total power load, is characterized
as a function of the individual emissions of the household's electrical appliances,

Y
(1)
t , . . . , Y

(m)
t , . . . , Y

(M)
t , such that

Ȳt = f(Y
(1)
t , . . . , Y

(m)
t , . . . , Y

(M)
t ), (24)

for a household withM individual appliances. More speci�cally, the total power
load is described as the sum of appliance emissions,

Ȳt =

M∑
m=1

Y
(m)
t , (25)

and is as such referred to as an additive FHMM, see [12]. The underlying Markov
models are assumed to each have the �nite state space EEE = {0, 1}, where 0 and
1 correspond to OFF - and ON -states respectively. Further, the processes are
assumed time-homogenous, see (7). Then, as previously described in section

2.2, each appliance behaves as a Markov chain X
(m)
t , with transition matrix

PPP (m) =

[
p
(m)
0,0 p

(m)
0,1

p
(m)
1,0 p

(m)
1,1

]
. (26)

An example of the dependences in the initial model for a household with two
underlying appliances is displayed in Figure 7 below.

3.1.2 Gaussian emissions

The appliance emissions, Y (m), are the values of the individual energy load in
appliance m. They are in the initial model assumed to be normally distributed
depending on each possible state of the device. Since, each device is modelled
as having only an OFF and ON state, the emission is described as

Y (m) ∼

{
N(µ

(m)
0 , σ

(m)
0 ), if X(m) = OFF

N(µ
(m)
1 , σ

(m)
1 ), if X(m) = ON

, (27)

where µ
(m)
0 , σ

(m)
0 , µ

(m)
1 , σ

(m)
1 , are the means and standard deviations of the emis-

sions for OFF - and ON -states respectively.
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ȳt−2 ȳt−1 ȳt ȳt+1 ȳt+2

Fridge

Y Fridge
t

Television

Y Television
t

Ȳt

Figure 7: An example of the initial FHMM with two underlying appliances.

3.2 Approach

A supervised machine learning approach is used to tackle the disaggregation
problem. First, a training data set of power load measurements over time from
various appliances is used for �tting the FHMM. In essence, this means that

(i) the power load measurements are categorized into a discrete set of states,

(ii) transition matrices are obtained for every appliance, through simple count-
ing of state changes,

(iii) emission parameters of the di�erent states are calculated, (means and vari-
ances).

For the base model, this training data set is composed of the daily supervised
measurements for each family.

Second, this �tted model is used to disaggregate an aggregate power load
signal from a test data set. This is done using a Gibbs sampling algorithm which
aims to generate the most probable samples of state and emission sequences in
order to describe the constituents of the aggregated power load signal, given
our �tted model. Supervised machine learning approaches are discussed more
in depth in [15].

3.2.1 State categorization

The original model approach categorizes each measurements as either an OFF -
or ON -measurement, depending on a threshold criterion. The threshold crite-
rion for an appliance m, θ(m), is de�ned as
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θ(m) =
1

2n

n∑
i=1

y
+(m)
i , (28)

where y+ are all power load measurements that are greater than zero. The
categorization of states is then given as follows,

X(m) ∼

{
OFF, if y(m) ≤ θ(m)

ON, if y(m) > θ(m)
. (29)

An example of this employed categorization is displayed in Figure 8. All ap-
pliance distributions, including a table of the empirical counts are displayed in
appendix D.
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Figure 8: Non-zero power measurements (Watts) for one family's refrigerator.
Bin size: 10 W. The dotted line indicates the threshold value, θ, that categorizes
the power measurements as either ON or OFF .

3.2.2 Gibbs sampling with the �tted FHMM

The Gibbs sampling method produces samples by successively sampling from
the conditional distributions of each individual random variables that constitute
the model, given all other random variables in the joint probability distribution,
see section 2.3. In the FHMM case, the produced samples are simulations from
the joint probability distribution of all state variables, given the total emission,
for each appliance and time step,
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P (XXX|Ȳ̄ȲY ), (30)

where

XXX =X
(1)
0 , X

(1)
1 , . . . , X

(1)
T−2, X

(1)
T−1,

X
(2)
0 , X

(2)
1 , . . . , X

(2)
T−2, X

(2)
T−1,

. . . ,

X
(M−1)
0 , X

(M−1)
1 , . . . , X

(M−1)
T−2 , X

(M−1)
T−1 ,

X
(M)
0 , X

(M)
1 , . . . , X

(M)
T−2, X

(M)
T−1,

is the set of state variables, and

Ȳ̄ȲY = Ȳ0, Ȳ1, . . . , ȲT−2, ȲT−1,

is the set of total emissions, (the household's power load measurements).
Thus, for every sub-iteration in the Gibbs sampling algorithm, each state

variable X
(m)
t is updated with a sample from the conditional probability distri-

bution,

P (X
(m)
t |XXX\X(m)

t , Ȳ̄ȲY ). (31)

At each time step t, any state variable X
(m)
t is only conditionally dependent of

its immediate previous and following state, X
(m)
t−1 and X

(m)
t+1 , due to the Markov

chain property. Also, a state X
(m)
t is conditionally dependent of its emission

Y
(m)
t , and of the measured total emission Ȳt, because of the respectively direct

and indirect causal connections that exist in the underlying chain structure

X
(m)
t → Y

(m)
t → Ȳt, see section A.1.1. Further, because all emissions Y

(m)
t sum

together to the total emission Ȳt, these variables form a so called v-structure,

see appendix A.1.2. This leads to all Y
(m)
t at a time step to be conditionally

dependent, given Ȳt.
Finally, for this reason, not given the individual emission chains YYY , a state

X
(m)
t is not conditionally independent of the other state variables at t, given Ȳ̄ȲY .
From this reasoning, it can now be seen that these variables are all part of

what is referred to as the Markov blanket of X
(m)
t .

De�nition 11. The Markov blanket of a node X is de�ned as the set of nodes
that render X conditionally independent of all the other nodes in the graph. [10]

The dependence structure is highlighted in Figure 9.
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t+1 X

(1)
t+2
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(2)
t−1 X

(2)
t X

(2)
t+1 X

(2)
t+2

Ȳt−2 Ȳt−1 Ȳt Ȳt+1 Ȳt+2

Figure 9: Dependence in a FHMM graphical model with two appliances, when

sampling the conditional distribution (31) for state X
(1)
t . Dependence relations

are illustrated with solid lines.

Following the above reasoning, the conditional probability in (31) simpli�es

to evaluating the conditional probability of X
(m)
t given only its Markov blanket,

P (X
(m)
t |X(m)

t−1 , X
(m)
t+1 , X

(1)
t , . . . , X

(m−1)
t , X

(m+1)
t , . . . , X

(M)
t , Ȳt), (32)

and with VVV = X
(1)
t , . . . , X

(m−1)
t , X

(m+1)
t , . . . , X

(M)
t ,

P (X
(m)
t |X(m)

t−1 , X
(m)
t+1 ,VVV , Ȳt). (33)

It can be shown (see appendix A.2.1), that this conditional probability may be
factorized as

Constant× P (X
(m)
t+1 |X

(m)
t )P (X

(m)
t |X(m)

t−1 )P (Ȳt|X(m)
t ,VVV ). (34)

This factorization expresses the original conditional distribution (31) as a prod-
uct of a the conditional transition probabilities, and the conditional emission
probabilities, which are easily sampled from the prior distributions in the �tted
model.

3.2.3 User-de�ned aspects of the Gibbs algorithm

Parts of the Gibbs sampler algorithm are user-de�ned, and/or speci�c to our
model:

(i) The initial values are set by sampling the state variables from uniform
probability distributions over the state space.

(ii) In each sub-iteration, the state variables are updated for one appliance
at a time, in order of increasing time. The chosen order of appliances is
randomized.

3.2.4 Gibbs sampling results

The collection of obtained Gibbs samples forms simulated distributions of an in-

dividual appliance's emission Y
(m)
t at each time step. Ultimately, the estimated

appliance emissions ŷt are calculated as the expected value of this distribution,

ŷ
(m)
t = E[Y

(m)
t ]. (35)
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This method corresponds to taking the expected Gibbs sample, and is a common
practice in Gibbs sampling, see [3] and [6].

3.2.5 Add-one smoothing

In cases where there is no data in the training data set, for a certain appliance
state, (such as an appliance never being turned on for example), the resulting
�tted model will never have the ability to predict this state transition, should
it occur in the test data set. This is known as the zero count problem or the
sparse data problem, and it is analogous as an illustration of the philosophical
problem of induction [15].

In order to counter this limitation of the model's state space, a commonly
practised technique known as add-one smoothing is applied. This solution adds
one to all empirical counts in the model, thereby �tting the model to enable
predictions of all possible samples in the state space.

For a model with state space EEE = {OFF,ON} the ON transitioning prob-
abilities, being �tted with the count of ON → OFF transitions N1 and the
ON → ON transitions N2, as

pON,OFF =
N1

N1 +N2
, pON,ON =

N2

N1 +N2
, (36)

become, with add-one smoothing,

pON,OFF =
N1 + 1

N1 +N2 + 2
, pON,ON =

N2 + 1

N1 +N2 + 2
. (37)

It is not di�cult to see that if N1 is 0, and N2 is large,

pON,OFF → 0, pON,ON → 1, (38)

which demonstrates that the e�ect of add-one smoothing diminishes for a large
training data set.
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4 Method

This section accounts for the implementations that were performed during the
course of this work. In subsection 4.1, the implementations which are the ba-
sis for this thesis are presented. Section 4.2 reviews the preparatory analysis
of state durations in the data sets, and section 4.3 describes the algorithmic
modi�cations on the original model.

4.1 Model extension

The major weakness of conventional HMMs is the modelling of state duration
[16]. The inherent duration, l, of a state i given the base model, is geometrically
distributed with probability mass function

Pi(l) = (pi,i)
l−1(1− pi,i). (39)

As mentioned in the section 1, this state duration density could in some cases be
deemed inappropriate to model real life appliance data. Instead, it is believed
that the state duration of an everyday household appliance can be modelled
according to some unknown distribution. As such, a semi-Markov model is
proposed as a replacement for the underlying Markov model in the base model,
and the new model is subsequently referred to as a factorial hidden semi-Markov
model (FHSMM).

The claim is that semi-Markov models outperformMarkov models in terms of
representation of the true underlying state sequences for household appliances.
In order to model these changes, we introduce an extra layer of nodes (state
variables), as well as some changes in the notation of the base model.

For a FHSMM, we let the individual emissions (24) represent emissions from
the semi-Markov process, {Qt; t ∈ N0}, such that

QQQ =Q
(1)
0 , Q

(1)
1 , . . . , Q

(1)
T−2, Q

(1)
T−1,

Q
(2)
0 , Q

(2)
1 , . . . , Q

(2)
T−2, Q

(2)
T−1,

. . . ,

Q
(M−1)
0 , Q

(M−1)
1 , . . . , Q

(M−1)
T−2 , Q

(M−1)
T−1 ,

Q
(M)
0 , Q

(M)
1 , . . . , Q

(M)
T−2, Q

(M)
T−1,

is the set that represent all of the underlying states that decide the total emis-
sion process, {Ȳt; t ∈ N0}. As seen in section 2.2.4, these states are described

as emissions from the generalized state processes, {G(m)
n ;n ∈ N0}, with X(m)

n

henceforth representing the state variable in the generalized state process for
appliance m, see equations (14) and (15).

4.1.1 Explicit state duration

Using the semi-Markov extension of the FHMM, the aim is to model the oc-
currence of state transitions by using appropriate duration densities instead of
the inherent duration distribution. A generative approach for specifying explicit
state durations was described in [16], as follows:
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1. Start with an initial stateQ0 = q, from a speci�ed initial state distribution.

2. Sample a duration l from this state's duration density Pq(L) .

3. Generate the observation sequence Y0, Y1 . . . , Yl−1, from the joint obser-
vation density P (Y0, Y1 . . . , Yl−1|Q0 = q). Because of the conditional in-
dependence in HMMs described in section 2.2.2, we may sample each of
these observations Yt separately, from P (Yt|Qt = q) .

4. Last, a new state Ql is sampled from a transition matrix, corrected for no
chances of self-transitions, pq,q = 0,∀x. Steps 2-4 are repeated a desired
amount of times.

As this method is designed toward generating a chain of semi-Markov emissions,
it is not compatible per default with the Gibbs sampling method described in
section 3.2.2. As described in section 2.3, the Gibbs sampling method should
aim to generate samples from an equilibrium distribution of state sequences
that corresponds to a given sequence of total emissions Ȳ̄ȲY . In this case, the
equilibrium distribution is believed to be a semi-Markov chain.

This approach has been applied in the algorithm proposed below, and is
described more in depth in section 4.3.

1. Given a set of total observations Ȳ̄ȲY , start with an initial sample from the
conditional distribution P (QQQ|Ȳ̄ȲY )

2. Begin a Gibbs sampling process, where each iteration samples a state qt
at time index t, by sampling a corresponding generalized state Gi from
the conditional distribution of generalized states at index t, P (G|QQQ\qt, Ȳ̄ȲY ).
The state qi here corresponds to the state variable of the generalized state
Gi.

In the calculation of the conditional distribution P (Gi|QQQ\qi,YYY , Ȳ̄ȲY ), the semi-
Markov property prohibits the underlying states from self-transitioning, simi-
larly to step 4 in the �rst method described above, see section 4.3.2 for further
detail.

4.2 State duration pre-analysis

A previous study by Hyungsul et al. [9] advocates the idea that geometric
durations are unsuitable to model ON -state durations, and considers the gamma
distribution Γ(k, θ), with density function

f(x) =
1

Γ(k)
xk−1 1

θk
e−x/θ, x > 0, (40)

for a duration x, as a better model. This report further suggests that OFF -
durations are better modelled as bimodal distributions, due to most electrical
appliances often being o� for a longer period during night time.

The data set was pre-processed (see appendix B) and split into periods of
maximum 24 hours for each separate household. Thereafter, distributions of
ON - and OFF -durations were plotted for a range of the most common of ap-
pliances in the various data sets. Considering the possibility that some duration
data overlaps between periods, the duration data at the beginning and end of
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each period was discarded (referred to as censoring the observations at the
boundaries in [8]). As such, the obtained distributions are believed to accu-
rately represent state durations that occur within the 24 hour periods, and will
be referred to as "daily" data.

By discarding the beginning and end duration data, one also avoids the
problem of �tting the distributions with state durations that are of the length
of a full day. State durations with length of a full day or more are possible
occurrences in the data sets, and was observed to be due to two causes: Either
from missing data in the data set, or due to some appliances that are turned on
very rarely, and therefore have extreme OFF -durations, spanning up to multiple
days. It should be noted that this second type of duration is not possible to
model, as a result of the data pre-processing and subsequent choice in period
length.

The daily duration distributions are displayed in appendix E.

4.2.1 Fitting duration distributions

Similarly to [9], distributions were �tted from the data using maximum likeli-
hood estimation (MLE).

In order to decrease the impact of extreme tail values on the ML estimation,
the distribution was cut of at the 95:th percentile and all higher measurements
were discarded. The e�ect of this is illustrated in �gure 10 below.

0 2 4 6 8 10 12 14
Duration (minutes)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

b
a
b
ili

ty
 d

e
n
si

ty

95-percentile fit
100-percentile fit

Figure 10: Probability densities from ML estimations pre-analysis. The solid
red curve is the density function for the duration distribution �tted up to the
95th percentile. The dotted red curve is the gamma density function when
�tting the same appliance with all duration data. The appliance �tted is the
microwave 1 from REDD.
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For comparison, the ML exponential distribution, Exp(λ), with probability
density function

f(x) =
1

λ
e−x/λ, x > 0, (41)

for a duration x, was also estimated, as this distribution is the continuous ana-
logue of the inherent geometrical distribution. The �tness of these distributions
on the data is compared using the log-likelihood ratio (LLR),

LLR = log
maxk,θP (durations|Gamma(k, θ))

maxλP (durations|Exp(λ))
. (42)

Some estimated ML parameters, as well as LLR results are shown in Table 1,
for the full datasets see Tables 4-5 in appendix C. The amount of samples used
to estimate the ML distribution is also displayed. As can be seen, this sample
amount varies greatly between some appliances, a result of the preprocessing
discussed in the beginning of this section. For the MLE, a higher sample count
of the empirical distribution warrants a better �t to the true underlying dis-
tribution, and therefore gives a better estimate of the underlying distribution
parameters displayed in the tables.

As can be seen, many appliance durations with high sample count have
large, positive LLR values, which then motivates the gamma distribution as a
choice of explicit state duration distribution. An example of state distribution
histograms with �tted gamma distribution is displayed in Figure 11.

For results presented in section 5, only appliances with high sample count
and high LLR was chosen to evaluate the FHSMM. The selected appliances are
the ones displayed in Table 1. Their histograms with �tted gamma distributions
are displayed in appendix E.

ON-duration distributions

Label Households Samples λ k θ LLR

microwave 1 4 3848 0.574 0.602 2.896 3.27E+03
stove 1 4 3537 0.572 0.510 3.431 3.10E+03
refrigerator 1 5 2164 0.059 3.301 5.139 6.08E+05
lighting 1 6 1180 0.156 0.496 12.951 4.33E+04
lighting 3 4 854 0.182 0.152 36.211 2.20E+04
furance 1 3 656 0.100 0.219 45.550 6.17E+04

(a)

OFF -duration distributions

Label Households Samples λ k θ LLR

microwave 1 4 3809 0.284 0.233 15.081 3.39E+04
stove 1 4 3544 0.556 0.410 4.389 3.40E+03
refrigerator 1 5 2145 0.033 4.119 7.333 1.94E+06
lighting 1 6 1189 0.084 0.352 33.644 1.61E+05
lighting 3 4 808 0.082 0.116 105.631 1.16E+05
furance 1 3 661 0.101 0.182 54.217 6.07E+04

(b)

Table 1: REDD selection of appliance duration distributions ML parameters,
sorted by total number of samples.
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(a) Refrigerator, ON -state distribution.
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(b) OFF -state distribution.

Figure 11: Refrigerator duration times in minutes, REDD dataset.
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4.3 Algorithm

Below is a brief overview of the steps in the algorithm used to account for state
durations.

1. Find the posteriori distributions of state durations in each appliance.

2. Compute the conditional probabilities, for each appliance's state node in
the network, from the probability densities of the distributions �tted in
step 1.

3. Sample from this conditional distribution.

Step 1 has already been discussed in section 4.2.1, and so this section goes into
the details of step 2 and 3.

4.3.1 Quantization of prediction probabilities

Because the model consists of discrete Markov chains, and the �tted duration
distributions are continuous, the duration probability densities were quantized
into a discrete sets of probability masses.

Pq(L = l)︸ ︷︷ ︸
discrete

= Pq(l − δ ≤ l1 < l + δ)︸ ︷︷ ︸
continuous

, (43)

for state q , where δ is a chosen bin size, selected as half the frequency of power
measurements. All duration probabilities in section 4.3 are calculated using this
assumption.

4.3.2 Computing conditional probabilities

In the FHSMM case, the produced samples are simulations from the joint prob-
ability distribution of all state variables, given the total emission, for each ap-
pliance and time step,

P (QQQ|Ȳ̄ȲY ), (44)

where, for every sub-iteration in the Gibbs sampling algorithm, each state vari-

able Q
(m)
t is updated with a sample from the conditional probability distribu-

tion,

P (Q
(m)
t |QQQ\Q(m)

t , Ȳ̄ȲY ). (45)

With G(m)G(m)G(m) = {G(m)
0 , G

(m)
1 , . . .}, GGG = {G(m)G(m)G(m) : m = 1, . . . ,M}, and G−(m)G−(m)G−(m) =

GGG\G(m)G(m)G(m), we may see that expression (45) is equivalent to

P (Q
(m)
t |G−(m)G−(m)G−(m),G(m)G(m)G(m)\Q(m)

t , Ȳ̄ȲY ). (46)

Similarly to the FHMM, the state block Gn at time t of an appliance is not
conditionally independent of the individual emission, nor of the other appliances
state blocks at time t, given the total emission, Ȳt. However, given the semi-

Markov property, the state variable Q
(m)
t will not be dependent solely of the

immediate previous state, but of the whole previous state block.
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Following the above reasoning, the conditional probability in (45) simpli�es

to evaluating the conditional probability of Q
(m)
t given the state block directly

before it, A, the state block directly after it, B, the total emission, Ȳt, and
all other appliance's state blocks occurring at time t, referred to as VVV . The
simpli�ed expression is displayed below, as

P (Q
(m)
t |A,B,VVV , Ȳt). (47)

It can again be shown (see appendix A.2.2), that this conditional probability
may be factorized as

Constant× P (Q
(m)
t |A,B)P (Ȳt|Q(m)

t ,VVV ), (48)

which expresses the original conditional distribution (31) as a product of

1. the conditional total emission probability given the sampled state Q
(m)
t

and all other state blocks at time t,

2. the conditional probability of the state Q
(m)
t given the previous and next

state blocks.

For the �rst factor, we make the assumption that the individual emissions Y
(m)
t

are only dependent of the state at time t. This in turn makes the total emissions,
Ȳt, independent of previous and next state,

P (Ȳt|Q(m)
t ,VVV ) = P (Ȳt|Q(1)

t , Q
(2)
t , . . . , Q

(m)
t , . . . , Q

(M−1)
t , Q

(M)
t ), (49)

and this conditional probability is in fact the same as the conditional emission
probability of the base model, in (34). The problem reduces to evaluating the

second factor; P (Q
(m)
t |A,B).

It can easily be seen that this evaluation is heavily dependent of the con-

�guration of states in the block sequence (A,Q
(m)
t , B). As illustrated in Figure

12, sampling di�erent outcomes of Q
(m)
t gives rise to di�erent con�gurations of

state sequences.
There are four distinct cases of state sequences,

(A,Q
(m)
t , B) = (. . . , qt−1, qt, qt+1, . . .),

three of them which are displayed in Figures 12b-12d:

1. qt−i = . . . = qt−1︸ ︷︷ ︸
A

6= qt 6= qt+1 = . . . = qt+j︸ ︷︷ ︸
B

,

2. qt−i = . . . = qt−1︸ ︷︷ ︸
A

= qt 6= qt+1 = . . . = qt+j︸ ︷︷ ︸
B

,

3. qt−i = . . . = qt−1︸ ︷︷ ︸
A

6= qt = qt+1 = . . . = qt+j︸ ︷︷ ︸
B

,

4. qt−i = . . . = qt−1︸ ︷︷ ︸
A

= qt = qt+1 = . . . = qt+j︸ ︷︷ ︸
B

,
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for some i, j ∈ Z.

0 0 Q
(m)
t 2 2

(a) Sampling state Q
(m)
t .

0 0 0 2 2

Ln = 3 Ln+1 = 2

(b) Case Q
(m)
t = 0 .

0 0 1 2 2

Ln−1 = 2 Ln+1 = 2Ln = 1

(c) Case Q
(m)
t = 1 .

0 0 2 2 2

Ln−1 = 2 Ln = 3

(d) Case Q
(m)
t = 2 .

Figure 12: Example of segment con�gurations during sampling, for a model
with state space EEE = {0, 1, 2}.

These four cases are evaluated separately in accordance with section 2.2.4:

• If qt−1 6= qt, then there is a Markov transition from state qt−1 to state qt.
These transition probabilities are easily determined in the same manner
as the base model.

• If qt = qt+1 = . . . = qt+l−1 = qt+l, (with qt = x), then this sequence of
states originates from a common state block (X = x, L = l + 1). The
probability of this state block,

P (X = x, L = l + 1) = Px(L = l + 1), (50)

is obtained from a pre-�tted state duration distribution.

With transition probabilities denoted as in (8), and state duration probabilities

denoted as in (50), the conditional probability P (Q
(m)
t = q|A,B), for

A = (X = a, L = i),

B = (X = b, L = j),

may be evaluated in each one of the separate cases, as

1. Pa(L = i) · pa,q · Pq(L = 1) · pq,b · Pb(L = j),
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2. Pa(L = i+ 1) · pa,b · Pb(L = j),

3. Pa(L = i) · pa,b · Pb(L = j + 1),

4. Pa(L = i+ j + 1).

4.3.3 Conditional probability at chain edges

As the sample FHSMM is produced over a �nite interval [1, T ], for each daily
data (see section 4.2), we refer to the times t = 1 and t = T as the edges of the
sample FHSMM. For the block sequences, as described in the previous section,
there will always be some state blocks beginning, and some ending, at these
edges. In such cases, an edge block G, with observed state and duration (X =
x, L = l) is not observed beyond the edge, and it cannot be determined whether
its duration exceeds L = l. Therefore, its duration probability is calculated as

Px(L ≥ l), (51)

which translates as, since the durations are discrete,

Px(L ≥ l) = 1− Px(L < l) (52)

= 1−
l−1∑
j=1

Px(L = j). (53)
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5 Results

This section presents the performed experiments in section 5.1, along with their
respective results. These are ordered by �rst presenting binary classi�cation
scores in section 5.2, then showing a REDD-score comparison insection 5.3,
then prediction convergence results are diplayed in section 5.4. Finally, section
5.5 displays results of how the models compared in appliance wise energy signal
disaggregation.

5.1 Experiment

The experiment follows the procedure described in section 3.2. The FHMM and
FHSMM were �tted using a training data set consisting of all data from �ve of
the six households in REDD. This �tted model was then used to disaggregate
aggregated data from the test data set, which consisted of all data from the
single household not included in the training data set. The results were cross-
validated, by repeating the above procedure while using di�erent combinations
of the six households.

The appliances used were taken as the �rst n appliances from the following
set: {lighting 1, refrigerator 1, microwave 1, stove 1, lighting 3, furance 1}.
The appliances in this set were chosen in accordance with section 4.2.1.

The experiment was subject to two types of parameter variations:

1. Generating 25, 50, 75 and 100 Gibbs samples, for a model �tted with 6
appliances.

2. Fitting the model with 1-6 appliances, for 100 Gibbs samples.

5.2 Binary classi�cation test

Using binary classi�cation, as described in [15], ON -states were categorized as
positives, and OFF -states were categorized as negatives. The prediction of each
state node in the sample was compared with the true state in the test data set.

This comparison has four types of outcomes illustrated in a so called con-
tingency table, Table 2, below.

True state

ON OFF

Predicted state
ON True positive (TP) False positive (FP)

OFF False negative (FN) True negative (TN)

Table 2: Contingency table of classi�cation comparisons.

From this table, an appliance predicted as OFF , although it in reality was ON ,
would be a False negative (FN). The statistical measures ultimately evaluated
were Accuracy, Precision, Recall and F1 score.
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The accuracy of the classi�cation is the proportion of correct classi�cations
to all classi�cations in the contingency table. It is calculated as

Accuracy =
TP + TN

TP + FP + FN + TN
. (54)

The precision is the proportion of correctly identi�ed ON -states to the total
amount of classi�ed ON -states. It is calculated as

Precision =
TP

TP + FP
. (55)

The recall is the proportion of correctly identi�ed ON -states to the total amount
of true existing ON -states. It is calculated as

Recall =
TP

TP + FN
. (56)

The F-score is the harmonic mean of precision and recall. It is a widely used
measure, that measures the ON -state classi�cation rate with respect to both
recall and precision. It is calculated as

F-score =
2 · Precision · Recall
Precision + Recall

. (57)

The classi�cation was performed for all daily data in all households, after the
experiments presented in section 5.1, and the resulting scores have been linearly
interpolated and are displayed in Figures 13-14.

5.3 REDD-score

A performance measure used by Kolter and Johnsson [11] in their work on the
REDD is a measure of the total energy correctly assigned. It will in this thesis
be referred to as the REDD-score, and is de�ned as

REDD-score = 1−
∑T
t=1

∑M
m=1 |ŷ

(m)
t − y(m)

t |
2
∑T
t=1

∑M
m=1 y

(m)
t

. (58)

Here, ŷ
(m)
t denotes the algorithm's prediction, as described in section 3.2.4.

This measure was evaluated for the experiments in section 5.1, and the
results are displayed in Figure 15.
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Figure 13: Binary classi�cation scores with varying amount of Gibbs samples.
REDD, 6 appliances.
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Figure 14: Binary classi�cation results with varying number of appliances.
REDD, 100 Gibbs samples.
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Figure 15: REDD score results.

5.4 Model convergence

To evaluate how well the Gibbs sampling algorithm converged, the log-probability
of each subsequent Gibbs sample was calculated. For the FHMM, this was done
by calculating the log-probability of all sampled observations, together with the
log-probability of all sampled underlying state transitions, by using the values
from the �tted model.

For an appliancem, by letting α
(m)
k represent the transition probability from

t = k to t = k + 1, and β
(m)
k represent the emission probability at time t = k,

the log-probability of the FHMM can be easily represented as

log (P (sample)) =

M∑
m=1

(
T−1∑
t=1

log(α
(m)
t ) +

T∑
t=1

log(β
(m)
t )

)
, (59)

for M �tted appliances, and sample interval [1, T ].
Using the same notation as above, with the di�erence that αk now refers

to the underlying state chain of a semi-Markov chain (see section 2.2.4), and

introducing γ
(m)
k to represent the duration probability of the generalized state

at the k:th step of the underlying state chain, the log-probability of the FHSMM
is represented as

log (P (sample)) =

M∑
m=1

(
N−1∑
n=1

log(α(m)
n ) +

T∑
t=1

log(β
(m)
t ) +

N∑
n=1

log(γ(m)
n )

)
,

(60)

for N underlying generalized states. The log-probabilities were determined for
100 subsequent Gibbs samples, for all daily data in all households. The results
are displayed in Figure 16. Each plotted line in the �gure represents the log-
probability for a sampled day in one of the six households.
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Figure 16: Log-probabilities for increasing amount of Gibbs samples. Each line
represents the log-probability of a household's sampled day.
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5.5 Energy disaggregation results

5.5.1 Total energy use comparison

The total per-appliance energy usage, for all days and households in the dataset,
was estimated using 100 Gibbs samples. The results are shown in Figures 17-18.
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Figure 17: Estimated and true total energy usage per appliance, for all days
and households in the dataset.
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(a) FHMM

(b) FHSMM

Figure 18: Estimated and true total energy usage per appliance, for all days
and households in the dataset.
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5.5.2 Averaged energy usage time series

The total per-appliance energy usage was estimated using 100 Gibbs samples,
for all days and households in the dataset. The mean results at every time of day,
for all produced daily data predictions was then computed, in order to produce
the dataset average energy time series. The results are displayed in stack plots,
which when summed over the vertical axis produce the total averaged energy
signal. The results are displayed in Figures 19-20.
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(a) Dataset (true averaged signal).
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(b) FHMM prediction.

Figure 19: Averaged time series, over all days and households. Displayed as a
stack plot, where each energy signal is vertically stacked to produce the total
power load.
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(a) Dataset (true averaged signal).
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(b) FHSMM prediction.

Figure 20: Averaged time series, over all days and households. Displayed as a
stack plot, where each appliance signal is vertically stacked to produce the total
power load.
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5.5.3 Model behaviour at a single data point

The FHMM and FHSMM were used to estimate the component signals for the
daily data of one single day from one household. This was done using 100 Gibbs
samples, with two appliances.

The total per-appliance energy usage estimations are displayed in Figure 21.
The appliance wise energy signals are displayed in Figures 22-23. Finally, the
daily data stack plot time series are displayed in Figures 24-25.
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Figure 21: Estimated and true total energy usage per appliance, one household,
one day.
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(a) FHMM.

00:00:00

02:46:40

05:33:20

08:20:00

11:06:40

13:53:20

16:40:00

19:26:40

22:13:20

01:00:00

Time of day (HH:MM:SS)

0

20

40

60

80

100

120

140

160

180

true

pred
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Figure 22: Time series comparison, lighting 1, one household, one day.
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(a) FHMM.
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Figure 23: Time series comparison, refrigerator 1, one household, one day.
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(b) FHMM prediction.

Figure 24: Time series, one household, one day. Displayed as a stack plot, where
each appliance signal is vertically stacked to produce the total power load.
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(b) FHSMM prediction.

Figure 25: Time series, one household, one day. Displayed as a stack plot, where
each appliance signal is vertically stacked to produce the total power load.
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6 Conclusions

Thise section overviews the results from section 5 in sections 6.1-6.5. Sections
6.6 and 6.7 provides the �nal conclusions, and suggestions for further work in
the future.

6.1 Binary classi�cations

The binary classi�cation results in Figure 13, for all families and all dates,
displayed little to no increase in score when increasing the amount of Gibbs
samples for both models. The FHMM performed better in all scores but the F-
score. The hopes were that the amount scores would increase with the amount
of Gibbs samples, but the results were somewhat inconclusive.

For an increasing amount of appliances in Figure 14, the disaggregation
task would seem more complex, and indeed the FHMM performances exhibited
decreasing trends. The FHSMM displayed a big performance drop in accuracy,
precision and F-score, when disaggregating {lighting 1, refrigerator 1, microwave
1} compared to just disaggregating {lighting 1, refrigerator 1 }, but on the
other hand increased its recall. Since recall was the only score to increase, this
implies from the de�nitions in section 5.2 that more states where categorized
as ON . One could possibly infer that the FHSMM had speci�c problems with
categorizing the microwave's signal. Overall, the binary classi�cation results
would discourage the choice of FHSMM as a replacement for the base model.

6.2 REDD score analysis

Increasing the amount of Gibbs samples seemed favourable to the FHSMM,
when it came to improving the total energy correctly assigned. Also, similarly
to what was observed in section 6.1, the score was found to drop suddenly when
adding the microwave to the aggregated power signal. Again, in this analysis
the FHMM showed superior results to the FHSMM.

6.3 Convergence analysis

The log-probability of both models during the sampling process exhibited in-
creasing trends, as would be expected, over the �rst 100 Gibbs samples. Three
major di�erences can be seen in Figure 16.

1. The FHSMM generally starts o� with with lower log-probabilities.

2. Some household days converge much faster than with the FHMM.

3. The FHSMM convergence lines are more "shaky", suggesting that each
new sample is more prone to greater di�erences from the previous sample.

The �rst point can be attributed as an e�ect of the uniform distribution used
to start the Gibbs sampler, see section 3.2.3.

It remains unclear whether or not the FHSMM would have performed better
or worse than the FHMM if more than 100 Gibbs samples had been generated.
The results for less than 100 Gibbs samples would suggest the FHMM as a better
model choice, seeing as its bulk of obtained log-probabilities was generally less
negative than the FHSMM.
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6.4 Total energy disaggregation results

The energy disaggregation results were the most conclusive, in regard to the
purpose of this thesis. These results displayed the estimated signals in relation-
ship to the true signals. The resulting comparison provided a more intuitive feel
for how well the models performed.

The number of correctly predicted states as in section 6.1, although inter-
esting, is not necessarily linked to the rejection or acceptance of the model in
a commercial setting. From this view, it is much more important to correctly
classify the largest amounts of actual energy usage. The bar plots in Figure 17,
show that the FHMM performed better than the FHSMM on the whole dataset,
from an energy usage point of view. The estimations of energy usage for the
most power-hungry appliance, the refrigerator, where more than twice the true
value.

This last result was also observed in the averaged time series in Figures 19-
20. In these �gures, the FHSMM estimated the average power signal to often
more than twice of its actual value.

6.5 Comparison of model behaviour

For the estimations of energy signals in a single day, it could be seen that
both models performed poorly at exact disaggregation of lighting, but much
better when disaggregating the refrigerator. For lighting, it was clear that the
models' predicted ON -state emissions were much lower than the true ON -state
emissions for this particular day.

One possible reason for this is that the emissions for lighting 1 are not
clustered around two states ON and OFF , but more, as can be seen in Figure
38 in appendix D. As there is limited information about the REDD, it was
not possible to know what kind of appliances were measured, and as such it is
possible that lighting 1 is in fact a collection of several appliances (lamps and
other light bulbs). In such a case, our model is clearly limited as it is constructed
to handle appliances with no more than two states.

Another possible explanation is that since the estimate is the expected value
of all Gibbs samples, see section 3.2.4, it could be that this result is an average
including many individual "bad" sample estimates.

6.6 Accepting or rejecting the implemented model

It became clear from the experiments performed that the FHMM was the more
able model for disaggregating the chosen appliances. However, the results re-
mained unsatisfactory, in that they seemed to great extent be heavily dependent
on the chosen appliances and preprocessing of the data.

Because the FHSMM discarded data at the edges of the daily data, section
4.2, the FHMM was able to use a larger training set than the FHSMM, some-
thing which should then have given the FHMM an advantage in its predictions.

Further, it has not been clari�ed if the Gibbs sampling method was car-
ried out long enough for it to converge toward the equilibrium distribution.
Handbooks on Gibbs sampling suggest tens of thousands of Gibbs samples [3];
amounts that were unfortunately not feasible given the current algorithm. Also,
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a burn-in of 10 samples was used, together with a step size of 1, given the analy-
sis in section 6.3, experiments with larger burn-in could have been more optimal
for the FHSMM.

In the end, the FHSMM was rejected as a result of the performed experi-
ments.

6.7 Further work

Section 6.6 touches on many unanswered questions by the implemented algo-
rithm.

• The existence of appliances with more than two states, makes it important
to enhance the model's abilities to handle multiple states.

• The Gibbs sampling method should be tested with parameter variations,
such as varying burn-in and step size, as well as larger sampling amounts.

• Evidently, more and larger data sets would also be useful to shed light on
the possible shortcomings and bene�ts of the model.

• Because this thesis has dealt with explicit state durations, an interesting
future extension would be to evaluate other probability distributions than
the gamma distribution to model the state durations.

• The work of Johnson and Willsky on Bayesian Nonparametric Hidden
Semi-Markov Models [8] has been presented as successful in the imple-
mentation of state durations. Future work would center on researching
their applied algorithm.
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A Proofs and calculations

A.1 Conditional dependence in some graphical models

A.1.1 Chain structure

X Y Z

Figure 26: Chain structure X → Y → Z. The shaded node represents the
observed variable.

Given a chain-structured graphical model [15] X → Y → Z as displayed in
Figure 26, the joint probability distribution is, (using the chain rule for proba-
bilities),

P (X,Y, Z) = P (X)P (Y |X)P (Z|Y ), (61)

or likewise,

P (X,Y, Z) = P (Z)P (Y |Z)P (X|Y ), (62)

which illustrates that indirect connections also imply a dependence between
nodes, if the in between lying nodes are not observed, and as such if Y 6⊥ Z and
X 6⊥ Y , then

X 6⊥ Z. (63)

A.1.2 V-structure

X Z

Y

Figure 27: V-structure X → Y ← Z. The shaded node represents the variable
conditioned upon.

Given a v-structured graphical model [15] X → Y ← Z as displayed in Figure
27, the joint probability distribution is

P (X,Y, Z) = P (X)P (Z)P (Y |X,Z). (64)

The conditional probability distribution of X and Z given Y calculates as,

P (X,Z|Y ) =
P (X)P (Z)P (Y |X,Y )

P (Y )
. (65)

Thus,

X 6⊥ Z|Y. (66)
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A.2 Factorizing the conditional probability distribution

A.2.1 FHMM

We want to �nd the probability distribution of the state variable X
(m)
t in a

FHMM, for an appliance m at time t, given its Markov blanket. This translates
as the conditional probability distribution

P (X
(m)
t |X(m)

t−1 , X
(m)
t+1 , X

(1)
t , . . . , X

(m−1)
t , X

(m+1)
t , . . . , X

(M)
t , Ȳt), (67)

and with VVV = X
(1)
t , . . . , X

(m−1)
t , X

(m+1)
t , . . . , X

(M)
t ,

P (X
(m)
t |X(m)

t−1 , X
(m)
t+1 ,VVV , Ȳt). (68)

Further, we will denote the previous state variable X
(m)
t−1 as α, and the next

state variable X
(m)
t+1 as β. Finally we will denote X

(m)
t simply as X. Expression

(68) simpli�es as

P (X|α, β,VVV , Ȳt), (69)

and the Markov blanket is displayed in Figure 28 below.

α X β

X
(1)
t

...

X
(M)
t

Ȳt

Figure 28: Dependence structure.

Using Bayes' theorem, we can see that

P (X|α, β,VVV , Ȳt) =
P (X)P (α, β,VVV , Ȳt|X)

P (α, β,VVV , Ȳt)
(70)

∝ P (X)P (α, β,VVV , Ȳt|X) (71)

and because β ⊥ α,VVV , Ȳt|X, (from β's Markov blanket),
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= P (X)P (β|X)P (α,VVV , Ȳt|X) (72)

and following the same reasoning for α,

= P (X)P (β|X)P (α|X)P (VVV , Ȳt|X) (73)

(chain rule),

= P (X)P (β|X)P (α|X)P (Ȳt|X,VVV )P (VVV |X) (74)

and from the de�nition of FHMMs, section 2.2.3, X ⊥ VVV ,

= P (X)P (β|X)P (α|X)P (Ȳt|X,VVV )P (VVV ) (75)

∝ P (X)P (β|X)P (α|X)P (Ȳt|X,VVV ) (76)

(Bayes' theorem),

=
P (α)P (X|α)

P (X)
P (X)P (β|X)P (Ȳt|X,VVV ) (77)

∝ P (X|α)P (β|X)P (Ȳt|X,VVV ). (78)

Hence, the original expression has been factorized into the following components:

1. P (X|α), a transition probability from state variable α to state X ,

2. P (β|X), a transition probability from state X to state variable β,

3. P (Ȳt|X,VVV ), a probability of observing Ȳt, given all states at time t,

4. a constant term, for di�erent X, other parameters unchanged.

A.2.2 FHSMM

We want to evaluate the conditional probability of the state Q
(m)
t , for appliance

m at time t, given its preceding state block A, its following state block B, the
total emission Ȳt, and all other appliance's state blocks occurring at time t,

referred to as VVV . We will denote Q
(m)
t simply as Q. The simpli�ed expression

is displayed below, as

P (Q|A,B,VVV , Ȳt), (79)

Using Bayes' theorem, we can see that

P (Q|A,B,VVV , Ȳt) =
P (Q)P (A,B,VVV , Ȳt|Q)

P (A,B,VVV , Ȳt)
(80)

∝ P (Q)P (A,B,VVV , Ȳt|Q) (81)
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and because A,B ⊥ VVV , Ȳt|Q, (from A and B's Markov blankets),

= P (Q)P (A,B|Q)P (VVV , Ȳt|Q) (82)

(chain rule),

= P (Q)P (A,B|Q)P (Ȳt|Q,VVV )P (VVV |Q) (83)

and from the de�nition of FHMMs, section 2.2.3, Q ⊥ VVV ,

= P (Q)P (A,B|Q)P (Ȳt|Q,VVV )P (VVV ) (84)

∝ P (Q)P (A,B|Q)P (Ȳt|Q,VVV ) (85)

(Bayes' theorem),

=
P (A,B)P (Q|A,B)

P (Q)
P (Q)P (Ȳt|Q,VVV ) (86)

∝ P (Q|A,B)P (Ȳt|Q,VVV ). (87)

Hence, the original expression has been factorized into the following components:

1. P (Q|A,B), the conditional probability of the stateQ
(m)
t given the previous

and next state blocks,

2. P (Ȳt|Q,VVV ), the conditional probability of observing Ȳt, given Q and the
state blocks for all other appliances at time t,

3. a constant term, for di�erent Q, other parameters unchanged.
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B Data set

The Reference Energy Disaggregation Data set (REDD) is a freely available data
set containing detailed power usage information from several homes, which is
aimed at furthering research on energy disaggregation [11]. The dataset com-
prises measurements from six households, measured over several weeks. The
measurements used from this dataset were resampled to a regular frequency of
20 seconds.

The appliances were ranked according to power usage, as a percentage of
the whole data set. The top ten appliances are displayed in Table 3.

Label Rel. power usage

Refrigerator 1 3.82 %
Furance 1 1.72 %
Dishwasher 1 0.75 %
Microwave 1 0.70 %
Air conditioning 2 0.58 %
Air conditioning 3 0.57 %
Washer dryer 3 0.55 %
Washer dryer 1 0.49 %
Electric heat 1 0.40 %
Washer dryer 2 0.37 %

Table 3: Top ten appliances, ranked according to power usage, as a percentage of
all power measurements. The avid reader will spot the misspelling of "furnace",
which was kept throughout this report for consistency with the used dataset.

B.1 Resampling REDD

The measurements in the REDD dataset were found to have varying frequency,
(with the lowest frequency documented as about 1 Hz). As the model required
the �tting to be done with regularly measured data, all data from REDD was
preprocessed accordingly. First, the dataset was up-sampled to regular frequen-
cies (2 Hz) with a forward �ll method to remove gaps in the data. In the second
step, the data was down-sampled to the low frequency interval of our choice. As
down-sampling method, the median of each segment was chosen as the sample.
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C ML distribution tables

Table 4: REDD ON -durations: Estimated parameters for the exponential (λ)
and gamma (k, θ) distributions, and LLR. Also displayed is the number of sam-
ples used for the estimation of these parameters.

ON-duration distributions, REDD

Label Samples λ k θ LLR

bathroom g� 1 11438 1.060 0.843 1.119 -4.08E+02
dishwaser 1 6095 1.216 1.212 0.679 7.19E+02
electric heat 1 5123 1.127 1.154 0.769 3.17E+02
kitchen outlets 2 4430 0.284 0.292 12.075 3.95E+04
microwave 1 3848 0.574 0.602 2.896 3.27E+03
stove 1 3537 0.572 0.510 3.431 3.10E+03
bathroom g� 2 2743 1.079 0.479 1.934 -4.92E+02
smoke alarms 1 2465 0.329 0.283 10.735 1.46E+04
mains 2 2259 0.117 0.561 15.210 1.53E+05
refrigerator 1 2164 0.059 3.301 5.139 6.08E+05
kitchen outlets 1 1535 0.815 0.439 2.795 -1.53E+02
outlets unknown 2 1454 0.626 0.432 3.697 6.77E+02
washer dryer 1 1386 0.375 0.373 7.159 5.61E+03
mains 1 1361 0.096 0.699 14.889 1.40E+05
lighting 1 1180 0.156 0.496 12.951 4.33E+04
outlets unknown 1 991 0.225 0.374 11.899 1.57E+04
lighting 3 854 0.182 0.152 36.211 2.20E+04
furance 1 656 0.100 0.219 45.550 6.17E+04
disposal 1 394 0.605 0.392 4.223 2.39E+02
lighting 4 378 0.080 0.279 44.810 5.70E+04
electronics 1 296 1.333 0.638 1.176 -2.27E-01
washer dryer 3 250 0.448 4.782 0.466 7.08E+02
air conditioning 1 203 0.294 0.525 6.468 1.64E+03
kitchen outlets 3 184 0.414 1.478 1.634 5.61E+02
air conditioning 3 169 0.549 0.253 7.182 1.68E+02
air conditioning 2 162 0.435 0.393 5.851 4.12E+02
washer dryer 2 131 0.305 0.076 43.301 9.18E+02
lighting 5 131 0.033 0.556 54.948 1.21E+05
lighting 2 101 0.008 1.387 88.601 1.52E+06
subpanel 2 87 0.044 2.086 10.791 4.35E+04
outlets unknown 3 61 0.108 0.078 119.341 4.92E+03
kitchen outlets 4 48 0.576 3.520 0.493 5.04E+01
oven 1 47 0.415 1.682 1.434 1.50E+02
oven 2 47 0.415 1.682 1.434 1.50E+02
outdoor outlets 1 45 1.007 1.629 0.609 4.80E+00
miscellaeneous 1 7 0.102 4202.500 0.002 6.54E+02
electric heat 2 2 0.029 2.185 15.559 2.30E+03
subpanel 1 0 0.000 0.000 0.000 0.00E+00
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Table 5: REDD OFF -durations: Estimated parameters for the exponential
(λ) and gamma (k, θ) distributions, and LLR. Also displayed is the number of
samples used for the estimation of these parameters.

OFF -duration distributions, REDD

Label Samples λ k θ LLR

bathroom g� 1 11401 1.265 1.005 0.787 1.10E+03
dishwaser 1 6015 0.798 0.191 6.564 -2.61E+03
electric heat 1 5104 1.307 1.064 0.719 7.08E+02
kitchen outlets 2 4389 0.211 0.205 23.119 8.07E+04
microwave 1 3809 0.284 0.233 15.081 3.39E+04
stove 1 3544 0.556 0.410 4.389 3.40E+03
bathroom g� 2 2728 0.292 0.315 10.891 2.25E+04
smoke alarms 1 2468 1.355 0.759 0.972 1.71E+02
mains 2 2275 0.106 0.607 15.492 1.89E+05
refrigerator 1 2145 0.033 4.119 7.333 1.94E+06
kitchen outlets 1 1503 0.267 0.166 22.551 1.56E+04
outlets unknown 2 1413 0.156 0.251 25.534 5.15E+04
washer dryer 1 1372 1.027 0.993 0.981 -4.64E-01
mains 1 1358 0.053 0.880 21.497 4.77E+05
lighting 1 1189 0.084 0.352 33.644 1.61E+05
outlets unknown 1 950 0.082 0.233 52.319 1.36E+05
lighting 3 808 0.082 0.116 105.631 1.16E+05
furance 1 661 0.101 0.182 54.217 6.07E+04
disposal 1 367 0.047 0.204 104.351 1.64E+05
lighting 4 349 0.016 0.431 148.395 1.42E+06
electronics 1 297 0.509 0.577 3.407 4.36E+02
washer dryer 3 240 1.047 1.134 0.843 9.10E+00
air conditioning 1 177 0.061 0.219 74.937 4.64E+04
air conditioning 3 162 0.127 0.238 32.999 9.17E+03
kitchen outlets 3 146 0.020 0.311 159.022 3.57E+05
air conditioning 2 140 0.056 0.179 99.870 4.40E+04
washer dryer 2 120 0.444 0.146 15.458 2.53E+02
lighting 5 114 0.013 0.580 135.900 7.08E+05
subpanel 2 90 0.037 3.816 7.134 6.60E+04
lighting 2 72 0.004 1.194 228.774 5.37E+06
outlets unknown 3 55 0.395 0.062 41.167 1.36E+02
oven 1 39 0.237 3.133 1.345 5.50E+02
oven 2 39 0.237 3.133 1.345 5.50E+02
outdoor outlets 1 39 0.929 0.178 6.039 -2.15E+01
kitchen outlets 4 33 0.013 0.328 228.538 1.85E+05
miscellaeneous 1 13 0.067 61.708 0.242 2.84E+03
subpanel 1 0 0.000 0.000 0.000 0.00E+00
electric heat 2 0 0.000 0.000 0.000 0.00E+00
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D Emission distributions

This section displays the emission distributions of the appliances, as discussed
in section 3.2.1. Table 6 is a summary of the empirical distribution counts.
Figures 29-34 show the positive emission distributions as histograms, with the
threshold value θ displayed as a dotted line, where appropriate. Bin size is 10
W, and all �gures exclude the �rst bin (0-10 W).

Emission counts

Label Household θ (W) Count:y+ > θ Count:y+ ≤ θ Count:y+ > θ

microwave 1 1 9.80 2088 154618 156706
stove 1 1 10.47 62 3093 3155
refrigerator 1 1 26.24 37574 119128 156702
lighting 1 1 22.87 86506 56959 143465
lighting 3 1 6.89 36709 119451 15610
furance 1 3 4.97 1519 191510 193029

Table 6: Count of categorized emissions, with respect to each appliance's thresh-
old value θ, for the selection of appliances from REDD.
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Figure 29: Microwave 1
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Figure 30: Stove 1
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Figure 31: Refrigerator 1



D EMISSION DISTRIBUTIONS 54

50 100 150 200 250 300 350
Power (Watts)

0

10000

20000

30000

40000

50000

C
o
u
n
t

Figure 32: Lighting 1
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Figure 33: Lighting 3
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Figure 34: Furance 1
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E Duration distributions

This appendix displays the duration distributions of ON and OFF -states in
the appliances from Table 1. The distributions are cut of at the 95th percentile,
and the red curve represents the ML gamma density function.
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Figure 35: Microwave 1. Above: ON -durations. Below: OFF -durations.
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Figure 36: Stove 1. Above: ON -durations. Below: OFF -durations.
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Figure 37: Refrigerator 1. Above: ON -durations. Below: OFF -durations.
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Figure 38: Lighting 1. Above: ON -durations. Below: OFF -durations.
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Figure 39: Lighting 3. Above: ON -durations. Below: OFF -durations.
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Figure 40: Furance 1. Above: ON -durations. Below: OFF -durations.
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