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Abstract 
 
This thesis examines the volatility forecasting performance of six commonly used forecasting 
models; the simple moving average, the exponentially weighted moving average, the ARCH 
model, the GARCH model, the EGARCH model and the GJR-GARCH model. The dataset 
used in this report are three different Nordic equity indices, OMXS30, OMXC20 and 
OMXH25. The objective of this paper is to compare the volatility models in terms of the in-
sample and out-of-sample fit. The results were very mixed. In terms of the in-sample fit, the 
result was clear and unequivocally implied that assuming a heavier tailed error distribution 
than the normal distribution and modeling the conditional mean significantly improves the fit. 
Moreover a main conclusion is that yes, the more complex models do provide a better in-
sample fit than the more parsimonious models. However in terms of the out-of-sample 
forecasting performance the result was inconclusive. There is not a single volatility model that 
is preferred based on all the loss functions. An important finding is however not only that the 
ranking differs when using different loss functions but how dramatically it can differ. This 
illuminates the importance of choosing an adequate loss function for the intended purpose of 
the forecast. Moreover it is not necessarily the model with the best in-sample fit that produces 
the best out-of-sample forecast. Since the out-of-sample forecast performance is so vital to the 
objective of the analysis one can question whether the in-sample fit should even be used at all 
to support the choice of a specific volatility model. 
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1 Introduction 
 
The study of finance is to a large extent a study of volatility1 and volatility really permeates 
finance. In the not too distant past, several theoretical models assumed constant volatility, see 
Merton (1969) and Black and Scholes (1973). Today it is a well-known fact that volatility of 
asset returns is time-varying and predictable, see Andersen and Bollerslev (1997). Volatility 
also has some commonly seen characteristics. Three important stylized facts about volatility is 
that volatility exhibits persistence, volatility is mean reverting and innovations have an 
asymmetric impact on volatility, see Engle and Patton (2001). 
 
Measuring and forecasting volatility of asset returns is vital for risk management, asset 
allocation, and option pricing. Risk management is to a large extent about measuring potential 
future losses of a portfolio, and to be able to estimate the potential losses, the future volatility 
must be estimated. The same holds for pricing options; when determining the price of an 
option the future volatility of the underlying asset is a very important parameter. In asset 
allocation the future volatility of different asset classes is an input in quadratic investment and 
hedging principles. Due to the high demand for accurate volatility forecasts there has been an 
immense interest amongst both practitioners and researchers to model the time varying 
volatility. 
 
For volatility forecasts there are two major sources, volatility models based on time series and 
the volatility implied from option prices. From a theoretical point of view the implied 
volatilities from options prices should contain all relevant, available information and thus be a 
good estimate of the future realized volatility. The evidence supporting that so is the case is 
however mixed. In option prices from which the volatility is implied there is, in general, a risk 
premium due to the fact that the volatility risk cannot be perfectly hedged, see Bollerslev and 
Zhou (2005). Moreover, one of the most quoted phenomenons illuminating the limitations of 
the classic Black-Scholes model from which the volatility is implied is the so-called smile 
effect. The smile effect is the effect when calculating the implied volatility for options with 
different strikes on the same underlying with the same time to maturity one does not 
necessarily get the same implied volatility. In general the implied volatility will be a u-shaped 
curve with a minimum implied volatility for at-the-money options. Thus, if the implied 
volatility would be used as a forecast of volatility, the same market is giving multiple 
forecasts for the future volatility of the same underlying during the same time period. 
Furthermore, implied volatilities are only available for specific time horizons for a very 
limited set of assets. Based on this the only objective source for volatility forecasts, available 
for all financial assets, are time series models which will be the object of study in this report. 
 
There are two major types of conditional heteroscedastic models. In the first type of volatility 
models the evolution of the variance is determined using an exact function and in volatility 
models of the second type the evolution of the variance is governed by a stochastic equation. 
This report will focus on volatility models of the first type, in which the volatility forecasts 
are determined using an exact function. Due to the enormous interest in forecasting volatility 
there is today a large number of different models that try to mimic the evolution and 

1 In financial jargon volatility usually refers to the standard deviation which is the square root of the variance. In 
this paper the standard deviation 𝜎 and the variance 𝜎2 will interchangably be referred to as volatility to simplify 
the terminology. Since the two measures are linked by a simple monotonic transformation this should cause no 
conceptual confusion. 
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characteristics of financial asset volatility. The Autoregressive Conditional Heteroscedasticity 
(ARCH) model introduced by Engle (1982) was one of the first models that provided a way to 
model conditional heteroscedasticity in volatility. The model was simple and intuitive but 
required usually many parameters to describe adequately the volatility process. Bollerslev 
(1986) extended the ARCH model to the Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) which had the same key properties as the ARCH but required 
far less parameters to adequately model the volatility process.  Both the ARCH and the 
GARCH model are able to model the persistence of volatility, the so-called volatility 
clustering but the models both assume that positive and negative shocks have the same impact 
on volatility. It is well known that for financial asset volatility the innovations have an 
asymmetric impact. To be able to model this behavior and overcome the weaknesses of the 
GARCH model Nelson (1991) proposed an extension to the GARCH model called the 
Exponential GARCH (EGARCH) which is able to allow for asymmetric effects of positive 
and negative asset returns. Another widely used extension of the GARCH model is the GJR-
GARCH proposed by Glosten, Jagannathan and Runkle (1993). 
 
Forecasting the future level of volatility is far from trivial and evaluating the forecasting 
performance presents even further challenge. Even if a model has been chosen and fitted to 
the data and the forecasts have been calculated, evaluating the performance of that forecast is 
troubling due to the latent nature of realized conditional volatility. A proxy for the realized 
volatility is therefore needed and moreover the choice of statistical measure is, as pointed out 
by Bollerslev, Engle and Nelson (1994), far from clear. 
 
In this paper the focus will be restricted to examining the forecasting performance of six 
commonly used forecasting models; the simple moving average, the exponentially weighted 
moving average, the ARCH model, the GARCH model, the EGARCH model and the GJR-
GARCH model. The dataset used in this report are three different Nordic equity indices; 
OMXS30, OMXC20 and OMXH25. OMX Stockholm 30 (OMXS30), OMX Copenhagen 20 
(OMXC20) and OMX Helsinki 25 (OMXH25) are the leading stock exchange indices at their 
respective markets and consist of the 30, 20 and 25 most actively traded shares, respectively. 
The data was provided by Nasdaq OMX®. 
 
The objective of this paper is to compare the volatility models in terms of the in-sample and 
out-of-sample fit. Three main themes are studied. First, the basic structure of the modeling 
framework will be investigated with respect to the error distribution and the conditional mean. 
The purpose is to gain insight in how the assumed error distribution and different models for 
the conditional mean impacts the in-sample and out-of-sample fit regardless of which specific 
conditional variance model is used. The second theme is to analyze whether more complex 
models, which are able to exhibit more of the stylized facts and characteristics of asset price 
volatility, provide a better in-sample fit and/or out-of-sample-fit than more parsimonious 
ones. The third and final theme is whether the model with the best in-sample fit also produces 
the best out-of-sample volatility forecast. The aim of the analysis is thus not evaluating 
whether the GARCH type volatility models do provide accurate forecasts but if the more 
complex models outperforms the more parsimonious ones. That GARCH type volatility 
models do provide strikingly accurate volatility forecasts was shown by Andersen and 
Bollerslev (1998) and is not the object of study in this paper. 
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This paper adds to the existing literature in primarily three important directions. First, the 
specific time period investigated is, until today, unique. Secondly, the sole focus on volatility 
modeling on Nordic equity indices provides an interesting insight to that specific market. 
Finally, some previous papers have tried to find the model with a superior predictive ability 
based on several different asset types such as foreign exchange, commodities and equities, see 
for example Hansen and Lunde (2001). By limiting the data used to be based on a single asset 
type, in this case equity indices, one increases the chance of distinguishing the superior 
model. This is due to the fact that there might be different models that are best at forecasting 
the volatility of the different asset types.   
 
The results were very mixed. There is not a single volatility model that is preferred based on 
all the loss functions used in this paper. An important finding is however not only that the 
ranking differs when using different loss functions but how dramatically it can differ. This 
illuminates the importance of choosing an adequate loss function for the intended purpose of 
the forecast. Moreover it is not necessarily the model with the best in-sample fit that produces 
the best out-of-sample forecast. Since the out-of-sample forecast performance is so vital to the 
objective of the analysis one can question whether the in-sample fit should even be used at all 
to support the choice of a specific volatility model. 
 
The remainder of this paper is organized as follows. In section 2 the methodology used and 
the data employed in this paper are described. Section 3 starts by presenting the key 
characteristics of volatility and its implications on modeling it. Section 3 continues by first 
presenting the basic structure of a volatility model and then the details of the specific models 
studied in this paper. Each volatility model is defined, their respective properties and 
weaknesses are discussed and an explicit expression of the forecasts of each model is 
presented. Section 4 explores the parameter calibration for the studied volatility models and 
presents ways to compare the in-sample model fit. Section 5 discusses the problems with 
evaluating the out-of sample forecasting performance of the different volatility models. It 
presents various models to use as a proxy for the latent daily realized volatility and also 
presents the loss functions used in the evaluation of the forecasting performance. In section 6 
the empirical results are presented and analyzed. Section 7 summarizes the report and presents 
the main conclusions and findings from the empirical results. Section 8 concludes the report 
and suggests topics for further research. 
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2 Data and methodology 
2.1 Methodology 
The objective of this paper is to compare the six volatility models presented in the 
introduction in terms of their in-sample fit and their out-of-sample forecasting performance. 
The meaning of in-sample and out-of-sample will be explained later in this section. The 
forecasting ability of these models will be compared using three financial time series, more 
specifically three Nordic equity indices. The Nordic equity indices used are; OMXS30, 
OMXC20 and OMXH25. OMX Stockholm 30 (OMXS30), OMX Copenhagen 20 (OMXC20) 
and OMX Helsinki 25 (OMXH25) are the leading stock exchange indices at their respective 
market and consist of the 30, 20 and 25 most actively traded shares respectively. To only 
include such few of the most actively traded shares guarantees that all the underlying shares 
have excellent liquidity. The excellent liquidity reduces the market microstructure effects 
such as the bid-ask bounce. The data was provided by Nasdaq OMX®. 
 
The reasoning for looking at the out-of-sample forecasting performance in addition to the in-
sample fit comes from the objective of the analysis. In forecasting it is not necessarily the 
model that provides the best in-sample fit that produces the best out-of-sample volatility 
forecast, which is the main objective of the analysis; see Shamiri and Isa (2009). Hence it is 
common to use the out-of-sample forecast to aid the selection of which model is best suited 
for the series under study; see Andersen and Bollerslev (1998), Hansen and Lunde (2001) and 
Brandt and Jones (2006). The so-called out-of-sample forecast refers to that the data used in 
the fitting of the model is different from the data used for evaluating the forecasts. Typically 
one divides the data into two subsets, one in which the model parameters are fitted (estimation 
subsample) and another subset used to evaluate the forecasting performance of the models 
(forecasting subsample). The basic structure is as follows: if the complete set consists of T 
number of data points, 𝑝1,𝑝2, … ,𝑝𝑇, the data is divided into the subset {𝑝1,𝑝2, … , 𝑝𝑛} and 
{𝑝𝑛+1,𝑝𝑛+1, … ,𝑝𝑇} where n is the initial forecast origin. A reasonably choice is 𝑛 = 2𝑇

3
, see 

Tsay (2008). Let h denote the maximum forecast horizon of interest, that is, one is interested 
in the 1-step up until the h-step ahead forecasts. Then the out-of-sample forecasting 
evaluation process, using a so-called recursive scheme, works as follows: 
 

1. Set 𝑚 = 𝑛 to be the initial forecast origin. Then fit each of the models using the data 
{𝑝1,𝑝2, … ,𝑝𝑚}. Now calculate the 1-step to h-step ahead forecasts from the forecast 
origin m using the fitted models. 

 
2. Compute the forecasts errors, for each of the 1- to h-step ahead forecast, for each 

model, as the difference between the forecasted volatility and the actual volatility. 
 

𝑒(𝑖,𝑚) = 𝜎𝑎𝑐𝑡𝑢𝑎𝑙,12 − 𝜎𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒,1
2 , 𝑖 = 1, 2. . ,ℎ 

 
3. Advance the origin by 1, that is 𝑚 = 𝑚 + 1 and start over from step 1. Repeat this 

process until the forecast origin m is equal to the last data point T. 
 
Once all the forecasts and respective forecasts errors for each of the models have been 
computed the only thing left is to use a loss function to evaluate the 1-step to h-step ahead 
forecasts for each of the models.  
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The forecasting scheme described above where the estimation sample grows as the forecast 
origin is increased, has the advantage that at each step all forecasts is based on all past 
information. However, in this study due to the computational burden, each model will only be 
fitted once, a so called fixed scheme. Each model will be fitted to the data until the initial 
forecast origin from which the forecasts can be computed. To compute the forecasts from the 
next data point, the same estimates for the parameters are used but when computing the 
forecasts from that origin the observations until that day are available, i.e. at each step only 
the data is updated with new information. Furthermore the forecast horizon will be set to one, 
thus the forecasts computed at each data point will only be the 1-day ahead forecasts. The 
focus of this report is to compare the different volatility models not to compare different 
forecasting horizons and due to space limitations the focus is restricted to 1-day ahead 
forecasts. The forecast performance for different forecast horizons based on the same model 
exceeds this papers scope. 
 
The rest of the paper will deal with the process described above in a chronological manner. In 
summary: each of the models, which are described further in section 3, is fitted to the data in 
the estimation subsample for each of the three datasets2. The fitting process for these models 
are described and discussed in section 4. Once the models have been fitted, the out-of-sample 
evaluation of the volatility forecasts is described and discussed in section 5. All of the 
empirical results, model fitting and out-of-sample forecast performance is then presented in 
section 6. 
 
The complete set of data used in this study is the daily price data for the three equity indices 
from 2002-01-02 until 2014-04-15. The data is divided into a nine year in-sample period and 
a two year, approximately, out-of-sample period. The in-sample period is 2002-01-02 until 
2010-12-30 and the out-of-sample period is 2011-01-03 until 2014-04-15. For the in-sample 
period the data are the daily closing prices for the three indices. In the out-of-sample period 
daily high and low prices will be used together with the daily closing prices when computing 
the proxy for the latent daily volatility. The reasoning for this will be fully explained in 
section 5.  
 
When studying financial time series most researchers study the return time series rather than 
the raw price data. In 1997 Campbell, Lo and MacKinlay gave two main reasons for this. 
First, the return of an asset is a complete, scale free summary of that particular investment 
opportunity. Secondly, the return series are much easier to handle than the raw price series 
since it has more attractive statistical properties. There are several different definitions of 
returns. In this paper the returns of study will be the log returns. The variables of interest are 
daily log returns, 𝑟𝑡, defined by the interdaily difference of the natural logarithm of the daily 
asset prices, 𝑝𝑡.  The daily returns are thus defined by 
 
 𝑟𝑡 = log(𝑝𝑡) − log(𝑝𝑡−1) = log �

𝑝𝑡
𝑝𝑡−1

� ( 1 ) 

 
and will be the time series of study in this paper. The rest of this section presents the three 
datasets and provides some descriptive statistics. 
 

2 The fitting process only apply to the GARCH type volatility models in the study. The Simple Moving Average 
and the Exponentially Weighted Moving Average forecast methods are non-parametric and thus do not require 
any parameter fitting. 
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2.2 Descriptive statistics 
 
2.2.1 OMXS30 
For OMXS30 there were 3,089 daily data points during the entire period 2002-01-02 until 
2014-04-15. The in-sample period from 2002-01-02 until 2010-12-30 consisted of 2,263 daily 
data points and the out-of-sample period from 2011-01-03 until 2014-04-15 consisted of 826 
daily data points. In Figure 1 the daily closing price during the entire period is plotted. The in-
sample period is plotted in blue and the horizontal red line indicates where the out-of-sample 
period starts which is then indicated by the black line. 
 

 
Figure 1: OMXS30 daily index level from 2002-01-12 until 2014-04-15. In total there are 3,089 observations. The 
blue line represents the index level during the in-sample period and the vertical red line indicates where the out-
of-sample period starts which is then represented by the black line. 

The main variable of study is as mentioned not the price process but the daily log return 
defined in equation (1). The left plot of Figure 2 shows the daily return for the in-sample 
period. The daily return series seems to be a stationary process with a mean close to zero but 
with volatility exhibiting relatively calm periods followed by more turbulent periods. This is 
one of the key characteristics mentioned in the introduction of asset return volatility and is 
referred to as volatility clustering. The right plot in Figure 2 shows the Sample 
Autocorrelation Function for the daily returns of lags 0 to 20. The Sample Autocorrelation 
function is a very useful tool and can be used for checking for serial correlation in the return 
data. Based on ocular inspection of the Sample Autocorrelation Function plot it is not 
completely clear whether the data is serially correlated or not, even though it has minor 
significant serial correlation at lag 3. 
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Figure 2: Left plot: Daily returns of OMXS30 from 2002-01-02 until 2010-12-30, which is the in-sample period 
consisting of 2,262 observations. Right plot: Sample Autocorrelation Function for the daily returns of lags 0 to 20 
and the 5% confidence level in blue. 

However the Ljung-Box Q-test null hypothesis that all autocorrelations up to the tested lags 
are zero is rejected for lags 5, 10 and 15 at a 5% significance level, see appendix A for 
explanation of the Ljung-Box Q-test. This suggests that a conditional mean model is required 
for this return series. The focus of this paper is the conditional variance and not the 
conditional mean but for the conditional variance model to work properly the conditional 
mean needs to be modeled as well. In section 3, three different conditional mean models will 
be presented and in the empirical study each of the conditional variance models will be used 
together with each of the conditional mean models to be able to see the effect of the 
conditional mean model on the forecasting performance.  
 
The next descriptive statistic is that of the squared returns. The left plot of Figure 3 shows the 
daily squared returns for the in-sample period where the volatility clustering is even more 
evident than in Figure 2. The right plot of Figure 3 shows the Sample Partial Autocorrelation 
Function which shows clearly significant autocorrelation. Engle’s ARCH test rejects the null 
hypothesis, that there is no autocorrelation, for lags 6 and even 14 at a 5% significance level 
and thus confirms that the squared returns are serially correlated, see appendix A for 
description of Engle’s ARCH test. 
 

 
Figure 3: Left plot: Daily squared returns of OMXS30 from 2002-01-02 until 2010-12-30, which is the in-sample 
period consisting of 2,262 observations. Right plot: Sample Partial Autocorrelation Function for the daily returns of 
lags 0 to 20 and the 5% confidence level in blue. 
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Next the empirical distribution of the return series is examined. In Figure 4 two q-q plots are 
presented. The left plot is a q-q plot of the empirical distribution of the daily returns (y-axis) 
against the best fitted normal distribution (x-axis). The plot to the right is a q-q plot of the 
empirical distribution (y-axis) against the best fitted t location-scale distribution (x-axis). 
 

 
Figure 4: Left plot: q-q plot of the empirical distribution (y-axis) against best fitted normal distribution (x-axis). 
Right plot: q-q plot of the empirical distribution (y-axis) against best fitted t location-scale distribution (x-axis). 

The left plot in Figure 4 shows clearly that even the best fitted normal distribution does not 
provide a particularly good fit as a reference distribution. The empirical distribution of the 
daily returns exhibits significantly heavier tails than the reference distribution which implies 
that another choice of parametric family should be considered. From the right plot of Figure 4 
it is evident that the t location-scale distribution3 is a much better fit and actually shows the 
opposite behavior that the empirical distribution has slightly lighter tails than the reference 
distribution. Though in the case of the right plot there are only a very limited number of 
points that are off the linear red line. In Table 1 some summary statistics of the return series is 
presented. 
 
Table 1: Summary statistics for OMXS30 daily returns in the in-sample period. 

 
Sample size Mean Variance Skewness Excess kurtosis Jarque-Bera 

OMXS30 2,262 0.00014502 0.00024859 0.203321332 6.982098267 14 
 
In Table 1 the sample size, unconditional mean, unconditional variance, skewness, excess 
kurtosis and result of Jargue-Bera test is presented. The mean and the variance will be 
conditionally modeled so the more interesting statistics are the skewness and the excess 
kurtosis which can be used to test whether the empirical distribution have kurtosis and 
skewness similar to a normal distribution. This was done with the Jargue-Bera test which 
rejected the null hypothesis that sample distribution comes from a normal distribution at the 
5% significance level, see appendix A for short description of Jargue-Bera test. This was in 
line with expectations from the ocular inspection of the q-q plots in Figure 4 which implied 
that the empirical distribution of the daily returns exhibit significantly heavier tails than the 
normal distribution. 
 

3 The t location-scale distribution is a non-standardized Student’s t-distribution, meaning with a modified mean 
and variance. 
4 A value of 1 implies that the null hypothesis was rejected. 
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The same analysis was done for the other two indices, OMXC20 and OMXH25, but the full 
analysis of those is available in appendix B to facilitate reading of the report. The main 
conclusions were the same and are presented in the following summary. 
 
2.2.2 Summary 
 
The analysis of the data suggests some common characteristics of the three datasets. Firstly, 
all of the equity indices do exhibit some weak serial correlation of lower order, in their daily 
returns and thus need a model for the conditional mean. Secondly, all the squared return series 
exhibit ARCH effects which motivate the use of GARCH type volatility models. Finally, the 
empirical distribution of the return series display significantly heavier tails than the normal 
distribution which implies that another choice of parametric family should be considered. 
 
Moreover some of the well-known key characteristics of asset return volatility are evident in 
all the covered datasets. The volatility is exhibiting periods of relative calm followed by more 
turbulent periods, referred to as volatility clustering and the volatility seems to be mean 
reverting to some extent. This shows that volatility is not diverging to infinity but is moving 
within some range. 
 
Based on these characteristics the basic structure for the modeling framework is presented in 
section 3. The section then continues by specifying the conditional mean models, conditional 
variance models and the error distributions that will be used in the forecasting models. 
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3 Forecasting models 
 
As mentioned in the introduction, it is a well-known fact that volatility of asset returns is 
time-varying and predictable, see Andersen and Bollerslev (1997). Volatility also has some 
commonly seen characteristics. Three of the most prominent stylized facts about volatility are 
that volatility exhibits persistence, volatility is mean reverting and innovations have an 
asymmetric impact on volatility, see Engle and Patton (2001). The volatility persistence based 
on empirical data suggests that volatility exhibits periods of relative calm followed by more 
turbulent periods and is also referred to as volatility clustering. Empirical data also suggests 
that volatility is mean reverting to some extent. Hence, volatility is not diverging to infinity 
but is moving within some range. The volatility’s asymmetric dependency of positive and 
negative shocks is also referred to as the leverage effect, first noted by Black (1976), which 
suggests that negative shocks have a larger impact on the volatility than an equal size positive 
shock. Any model that tries to forecast volatility should be able to incorporate as many of 
these characteristics as possible to accurately describe the conditional variance. 
 
The basic structure of volatility modeling is presented next which is followed by a more 
specific theory about the conditional mean and more importantly the different conditional 
variance models and their properties. 

3.1 Basic structure 
Let 𝑟𝑡 denote the daily log return defined in equation (1) section 2. The general idea of 
GARCH type volatility modeling is that 𝑟𝑡 is serially uncorrelated or exhibits some minor 
lower order serial correlation and thus need a model for the conditional mean. The aim of 
volatility models is to be able to capture this dependency in the return series. Consider the 
conditional mean 𝜇𝑡 and the conditional variance ℎ𝑡2 defined as 
 
 𝜇𝑡 = 𝐸(𝑟𝑡|𝐹𝑡−1), ℎ𝑡2 = 𝑉𝑎𝑟(𝑟𝑡|𝐹𝑡−1) = 𝐸[(𝑟𝑡 − 𝜇𝑡)2|𝐹𝑡−1] ( 2 ) 
 
where 𝐹𝑡−1 denotes the information set available at time t-1. As was evident in the descriptive 
statistics of the datasets in section 2 the serial dependence of the return series was quite weak 
and therefore suggests that the conditional mean should be able to be modeled by a relatively 
simple model, see Tsay (2002). If the conditional mean is assumed to follow a stationary 
ARMA(p, q) model, the model framework is described by 
 

𝑟𝑡 = 𝜇𝑡 + 𝑍𝑡,    𝜇𝑡 = 𝜙0 + �𝜙𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

−�𝜃𝑖𝑍𝑡−𝑖

𝑞

𝑖=1

 

 
for 𝑟𝑡 and where p and q are the nonnegative parameters of the ARMA(p, q) model. 
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3.2 Conditional mean 
The main focus of this paper is the conditional variance and not the conditional mean but for 
the conditional variance model to work properly the conditional mean needs to be modeled 
and understood as well. In this paper three different models for the conditional mean will be 
used. The zero mean model advocated by Figlewski (1997) where the conditional mean is  
 

𝜇𝑡 = 0, 
 
the constant mean model with the conditional mean given by 
 

𝜇𝑡 = 𝜙0 
 
where 𝜙0 is the unconditional mean of the in-sample period and the AR(1) mean model 
defined by 
 

𝜇𝑡 = 𝜙0 + 𝜙1𝑟𝑡−1. 
 
With the AR(1) conditional mean model the parameters are first calibrated to the in-sample 
period then the conditional means are computed and subtracted from the return series to get 
the mean adjusted return series 𝑍𝑡. 

3.3 Conditional variance 
The main object of study in this paper is the conditional variance which, using the same 
notation as in equation (2), is defined by 
 

ℎ𝑡2 = 𝑉𝑎𝑟(𝑟𝑡|𝐹𝑡−1) = 𝑉𝑎𝑟(𝑍𝑡|𝐹𝑡−1) 
 
where 𝑍𝑡  

𝑍𝑡 = 𝑟𝑡 − 𝜇𝑡. 
 
In this paper the focus will be restricted to examining the forecasting performance of six 
commonly used forecasting models; the simple moving average, the exponentially weighted 
moving average, the ARCH model, the GARCH model, the EGARCH model and the GJR-
GARCH model. Next, each model is presented and discussed. First the two non GARCH 
models included as benchmarks are presented. Even though they are in no sense GARCH the 
above model with the conditional mean and conditional variance holds. 
 
3.3.1 Simple Moving Average 
One of the simplest and most straightforward forecast models for conditional variance from 
period 𝑘 + 1 through 𝑘 + ℎ is the simple moving average of the squared return series.  The n 
day simple moving average at time k is defined by  
 

MAk(n) =
1
𝑛
� 𝑟𝑘−𝑗2
𝑛−1

𝑗=0

. 

 
This metric is the same as the historical variance over the n day historical period. Each of the 
squared observations is given an equal weight of 1

𝑛
 up until the k+1-n day and all observations 

before that day get a zero weight. One obvious question is what n should be for a h day ahead 
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forecast. A common convention is to use 𝑛 = ℎ. That means that the h day ahead forecast is 
given by the n day historical variance. Figlewski (1997) argued that calculating the historical 
variance over a significantly longer period generally yields lower forecast errors. Therefore, 
in this paper the 1 day ahead forecast, denoted hk2(1), using this model will be calculated as 
the simple moving average of the 10 last squared observations (n=10) and is given by the 
equation 
 

hk2(1) =
1

10
�𝑟𝑘−𝑗2
9

𝑗=0

. 

 
3.3.2 Exponential Weighted Moving Average 
Another simple way to forecast the conditional variance is the so called Exponentially 
Weighted Moving Average which is quite similar to the Simple Moving Average but with a 
different weighting scheme. The exponentially weighted moving average at time k is defined  
 

EWMAk =
1
Γ
�𝛽𝑗𝑟𝑘−𝑗2

𝐽

𝑗=0

 

 
where 
 

Γ = �𝛽𝑗
𝐽

𝑗=0

  

 
and J is the total number of data points available prior to k. As for the parameter n in the 
Simple Moving Average model here 𝛽 has to be defined. Riskmetrics™ use 𝛽 = 0.94 which 
is the value used in this paper. The one day ahead volatility forecast at time k is given by  
 

ℎ𝑘2(1) =
1
Γ
�𝛽𝑗𝑟𝑘−𝑗2

𝐽

𝑗=0

 

 
with the same notation as above. With this model it can easily be shown, by recursion, that the 
h day ahead forecast is the same as the one day ahead forecast 
 

ℎ𝑘2(h) = ℎ𝑘2(1) =
1
Γ
�𝛽𝑗𝑟𝑘−𝑗2 .
𝐽

𝑗=0

 

 
Both the Moving Average and the Exponential Weighted Moving Average are non-parametric 
since they do not require any model calibration; they are the same independent of the in-
sample data. These very blunt measures will be used as a benchmark for the four parametric 
models presented next. 
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3.3.3 The ARCH Model 
The Autoregressive Conditional Heteroscedasticity (ARCH) model introduced by Engle 
(1982) was one of the first models that provided a way to model conditional 
heteroscedasticity in volatility. The model was simple and intuitive but usually required many 
parameters to adequately describe the volatility process. In the ARCH model 𝑍𝑡 is assumed to 
have the following representation  
 

𝑍𝑡 = ℎ𝑡𝑒𝑡, {𝑒𝑡}~𝐼𝐼𝐷(0,1) 
 
where ℎ𝑡2 is the conditional variance and is a function of {𝑍𝑠, 𝑠 < 𝑡}, defined by 
 
 

ℎ𝑡2 =∝0+ �∝𝑖 𝑍𝑡−𝑖2

𝑝

𝑖=1

 

 
where ∝0> 0 𝑎𝑛𝑑 ∝𝑗≥ 0, 𝑗 = 1,2 … 𝑝 to guarantee that the conditional variance is positive. 
One parameter that has to be specified before fitting the model to the in-sample data is the 
order p. The order of the model needs to be specified for each of the parametric models. For 
the ARCH model the order p can be suggested by the Sample Partial Autocorrelation function 
of the squared returns were the Sample PACF should be insignificantly different from zero for 
lags greater than p. One weakness of the ARCH model is that it usually required quite a high 
order to accurately be able to model the conditional variance. For example, by looking at the 
Sample PACF for OMXS30 in Figure 3 the order p is suggested to be as high as 14 which is 
infeasible, or at least unpractical. For the GARCH, EGARCH and the GJR-GARCH the order 
cannot easily be estimated using the PACF or ACF. There are several studies showing that 
higher order versions of these models rarely perform better in terms of their out-of-sample 
volatility forecast, see Hansen and Lunde (2005) and Bollerslev et al. (1992). Based on this 
and due to the computational burden of incorporating higher order versions of all the models 
the analysis in this study will be restricted to lower order version. The models studied are the 
ARCH(3), GARCH(1,1), GARCH(1,2), GARCH(2,1), EGARCH(1,1) and the GJR-
GARCH(1,1). That the ARCH(3) is unable to fully model the volatility clustering is well 
known but is included as it has as many parameters as the GARCH(1,2), EGARCH(1,1) and 
the GJR-GARCH(1,1) and will be used as a benchmark that is expected to be clearly 
outperformed. 

3.3.3.1 Properties 
The strength of the ARCH model is that it manages to model the volatility clustering and the 
mean reverting characteristics. The ability to model volatility clustering can be seen in the 
definition of the conditional variance where it is evident that a large 𝑍𝑡−𝑖2  will give rise to a 
large ℎ𝑡2. In other words, large and small chocks tend to be followed by large and small 
chocks respectively of either sign. To further increase the understanding of the ARCH 
model’s dynamics it is worth noting that the ARCH(1) model can be rewritten as an AR(1) 
model on the squared residuals 𝑍𝑡2. The ARCH model however suffers from some major 
drawbacks. Firstly the ARCH model generally requires many parameters to correctly describe 
the volatility process. Secondly the ARCH model models the conditional variance with only 
the squared shocks as a variable and is thus not able to model the asymmetric effects of 
positive and negative shocks. Furthermore the ARCH model imposes restrictive intervals for 
the parameters if it should have finite fourth moments and is likely to over predict volatility 
since it responds slowly to large, isolated shocks. 
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3.3.3.2 Forecasting 
The forecasts of the ARCH model are obtained recursively as the forecasts of an AR model. If 
we consider an ARCH(p) model at the forecast origin k, the 1-step ahead forecast of ℎ𝑘+12  is 
 

ℎ𝑘2(1) = 𝛼0 + 𝛼1𝑍𝑘2 + ⋯+ 𝛼𝑝𝑍𝑘+1−𝑝2 . 
 
The 2-step ahead forecast is then given by 
 

ℎ𝑘2(2) = 𝛼0 + 𝛼1ℎ𝑘2(1) + 𝛼2𝑍𝑘2 + ⋯+ 𝛼𝑝𝑍𝑘+2−𝑝2 . 
 
Repeating this procedure yields the j-step ahead forecast for ℎ𝑘+𝑗2  is 
 

ℎ𝑘2(𝑗) =∝0+ �∝𝑖 ℎ𝑘2(𝑗 − 𝑖).
𝑝

𝑖=1

 

 
Where ℎ𝑘2(𝑗 − 𝑖) = Z𝑘+𝑗−𝑖2  if 𝑗 − 𝑖 ≤ 0. Thus if we consider an ARCH(3) model, which is the 
model used in this report, at the forecast origin k, the 1-step ahead forecast is 
 

ℎ𝑘2(1) =∝0+∝1 ℎ𝑘2(0) +∝2 ℎ𝑘2(−1) +∝3 ℎ𝑘2(−2) =∝0+∝1 Z𝑘2 +∝2 Z𝑘−12 +∝3 Z𝑘−22 . 
 
3.3.4 The GARCH Model 
Bollerslev (1986) extended the ARCH model to the Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) which had the same key properties as the ARCH but required 
far less parameters to adequately model the volatility process. In the GARCH model 𝑍𝑡 is 
assumed to have the same representation as in the ARCH model 
 
 𝑍𝑡 = ℎ𝑡𝑒𝑡, {𝑒𝑡}~𝐼𝐼𝐷(0,1) ( 3 ) 
 
but with a different model for ℎ𝑡 defined by 
 

ℎ𝑡2 =∝0+ �∝𝑖 𝑍𝑡−𝑖2

𝑝

𝑖=1

+ �𝛽𝑗ℎ𝑡−𝑗2

𝑞

𝑗=1

 

 
where ∝0> 0,∝𝑖≥ 0,𝛽𝑗 ≥ 0 𝑎𝑛𝑑 ∑ (∝𝑖+ βi) < 1.max (𝑝,𝑞)

𝑖=1  Where 𝛼𝑖 ≡ 0 𝑓𝑜𝑟 𝑖 > 𝑝 𝑎𝑛𝑑 𝛽𝑗 ≡
0 𝑓𝑜𝑟 𝑗 > 𝑞. 

3.3.4.1 Properties 
The properties of the GARCH model is quite similar to that of the ARCH but requires far less 
parameters to adequately model the volatility process. The GARCH model is able to model 
the volatility clustering but does not address the problem with the ARCH models lack of 
ability to model the asymmetric effect of positive and negative returns. The GARCH model 
also imposes restrictions on the parameters to have a finite fourth moment as was the case for 
the ARCH model. The GARCH model is similar to the ARCH model but with the addition of 
lagged conditional variances,ℎ𝑡−𝑗2 , as well as the lagged squared returns, 𝑍𝑡−𝑖2 . The addition of 
the lagged conditional variances avoids the need for adding many lagged squared returns as 
was the case for the ARCH model to be able to appropriately model the volatility. This greatly 
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reduces the number of parameters that need to be estimated. In fact, considering the 
GARCH(1,1) the conditional variance can be rewritten as 
  

ℎ𝑡2 =∝0+∝1 𝑍𝑡−12 + 𝛽1(∝0+∝1 𝑍𝑡−22 + 𝛽1ℎ𝑡−22 ) 
 
Or, by continuing the recursive substitution, as 
 

ℎ𝑡2 =
∝0

1 − βi
+∝1 �𝑍𝑡−1−𝑖2

∞

𝑖=0

β1𝑖  

 
which shows that the GARCH(1,1) model corresponds to an ARCH(∞) model with a certain 
structure for the value of the parameters of the lagged returns 𝑍𝑡−𝑖2 . Furthermore, just as the 
ARCH(1) could be seen as an AR(1) model of the squared returns the GARCH(1,1) model 
can in a similar way be rewritten as an ARMA(1,1) model on the squared returns. 

3.3.4.2 Forecasting 
The forecasts of the GARCH model are obtained recursively as the forecasts of an ARMA 
model. If we consider an GARCH(1,1) model which is one of the GARCH models under 
study at the forecast origin k, the 1-step ahead forecast of ℎ𝑘+12  is 
 

ℎ𝑘2(1) = 𝛼0 + 𝛼1𝑍𝑘2 + 𝛽1ℎ𝑘2 
 
When calculating multistep ahead forecasts the volatility equation (3) can be rewritten as 
𝑍𝑡2 = ℎ𝑡2𝑒𝑡2, which gives 
 

ℎ𝑡+12 =∝0+ (∝1+ β1)ℎ𝑡2 + 𝛼1ℎ𝑡2(𝑒𝑡2 − 1). 
 
If 𝑡 = 𝑘 + 1 the equation yields 
 

ℎ𝑘+22 =∝0+ (∝1+ β1)ℎ𝑘+12 + 𝛼1ℎ𝑘+12 (𝑒𝑘+12 − 1) 
 
with 𝐸(𝑒𝑘+12 − 1|𝐹ℎ) = 0, the 2-step volatility forecast is 
 

ℎ𝑘2(2) =∝0+ (∝1+ β1)ℎ𝑘2(1). 
 
The general j-step ahead forecast for ℎ𝑘+𝑗2 , at the forecast origin k, is 
 

ℎ𝑘2(𝑗) =∝0+ (∝1+ β1)ℎ𝑘2(𝑗 − 1), 𝑗 > 1. 
 
Repeating the substitutions for ℎ𝑘2(𝑗 − 1) until the j-step forecast can be written as a function 
of ℎ𝑘2(1) gives the explicit expression for the j-step ahead forecast 
 

ℎ𝑘2(𝑗) =
∝0 [1 − (∝1+ 𝛽1)𝑗−1]

1 − 𝛼1 − 𝛽1
+ (𝛼1 + 𝛽1)𝑗−1ℎ𝑘2(1). 

 
The derivation of the forecasts for the other two GARCH models in this study, GARCH(1,2) 
and GARCH(2,1) is similar but is omitted in the report. 
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3.3.5 The EGARCH Model 
Both the ARCH and the GARCH model are able to model the persistence of volatility, the so-
called volatility clustering but the models both assume that positive and negative shocks have 
the same impact on volatility. It is well known that for financial asset volatility the 
innovations have an asymmetric impact. To be able to model this behavior and overcome the 
weaknesses of the GARCH model Nelson (1991) proposed the first extension to the GARCH 
model, called the Exponential GARCH (EGARCH), which was able to allow for asymmetric 
effects of positive and negative asset returns. In the EGARCH(p,q) model 𝑍𝑡 is assumed to 
have the same representation as before, see equation (3) with the conditional variance now 
given by 
 

log (ℎ𝑡2) =∝0+ �[∝𝑖 𝑍𝑡−𝑖 + 𝛾𝑖(|𝑍𝑡−𝑖| − 𝐸(|𝑍𝑡−𝑖|))]
𝑝

𝑖=1

+ �𝛽𝑗log (ℎ𝑡−𝑗2 )
𝑞

𝑗=1

. 

 
Here no restrictions are imposed on the parameters to guarantee a nonnegative conditional 
variance. The EGARCH(1,1) is thus given by 
 

log (ℎ𝑡2) =∝0+∝1 𝑍𝑡−1 + 𝛾1(|𝑍𝑡−1| − 𝐸(|𝑍𝑡−1|)) + 𝛽1log (ℎ𝑡−12 ). 
 
To illustrate the ability to model for asymmetrical effects of positive and negative asset 
returns consider the function g defined by 
 

𝑔(𝑍𝑡) ≡∝1 𝑍𝑡−1 + 𝛾1�|𝑍𝑡−1| − 𝐸(|𝑍𝑡−1|)�. 
 
By the assumed properties of 𝑍𝑡, 𝑔(𝑍𝑡) has zero mean and is uncorrelated. The function can 
be rewritten as 
 

𝑔(𝑍𝑡) = (∝1+ γ1)𝑍𝑡𝐼(𝑍𝑡 > 0) + (∝1− 𝛾1)𝑍𝑡𝐼(𝑍𝑡 < 0) − 𝛾1𝐸(|𝑍𝑡|) 
 
where the asymmetrical effect of positive and negative asset returns is evident. Positive 
shocks have an impact (∝1+ γ1) on the logarithm of the conditional variance while negative 
shocks have an impact (∝1− 𝛾1). Typically ∝1< 0, 0 ≤ 𝛾1 < 0 𝑎𝑛𝑑 𝛽1 + 𝛾1 < 1. With this 
configuration negative shocks have a larger impact than positive shocks which is in line with 
empirical evidence by the so called leverage effect. 

3.3.5.1 Properties 
The EGARCH model requires no restrictions on the parameters to assure that the conditional 
variance is nonnegative. The EGARCH model is able to model volatility persistence, mean 
reversion as well as the asymmetrical effect. To allow for positive and negative shocks to 
have different impact on the volatility is the main advantage of the EGARCH model 
compared to the GARCH model.  

3.3.5.2 Forecasting 
If we consider an EGARCH(1,1) model, which is the model used in this report, at the forecast 
origin k, the 1-step ahead forecast of ℎ𝑘+12  is 
 

log (ℎ𝑘2(1)) =∝0+∝1 𝑍𝑘 + 𝛾1(|𝑍𝑘| − 𝐸(|𝑍𝑘|)) + 𝛽1log (ℎ𝑘2). 
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Since all of the parameters at the right hand side are known at time k the 1 day ahead 
volatility forecast is simply ℎ𝑘2(1) = ℎ𝑘+12 . The multi day ahead volatility forecast of the 
EGARCH(1,1) model is not as trivial as for the other models used in this paper and since the 
forecast evaluation will be based only on their 1 day ahead forecast the general expression for 
the multi day ahead volatility forecast of the EGARCH(1,1) model is omitted. 
 
3.3.6 The GJR-GARCH Model 
An alternative way of modeling the asymmetric effects of positive and negative asset returns 
was presented by Glosten, Jagannathan and Runkle (1993) and resulted in the so called GJR-
GARCH model. In the GJR-GARCH(p,q) model 𝑍𝑡 is assumed to have the same 
representation as before, see equation (3) with the conditional variance now given by 
 

ℎ𝑡2 =∝0+ �(αi𝑍𝑡−𝑖2 (1 − 𝐼[𝑍𝑡−𝑖 > 0]) + 𝛾𝑖𝑍𝑡−𝑖2 𝐼[𝑍𝑡−𝑖 > 0])
𝑝

𝑖=1

+ �𝛽𝑗ℎ𝑡−𝑗2

𝑞

𝑗=1

 

where ∝0> 0,∝𝑖≥ 0,𝛽𝑗 ≥ 0 𝑎𝑛𝑑 𝛾𝑖 ≥ 0 to guarantee that the conditional variance is 
nonnegative. The GJR-GARCH(1,1) is thus given by 
 

ℎ𝑡2 =∝0+ α1𝑍𝑡−12 (1− 𝐼[𝑍𝑡−1 > 0]) + 𝛾1𝑍𝑡−12 𝐼[𝑍𝑡−1 > 0] + 𝛽1ℎ𝑡−12 . 
 
As in the case of the EGARCH the asymmetrical effect of shocks can be seen by considering 
the function 
 

𝑔(𝑍𝑡) ≡ α1𝑍𝑡−12 (1− 𝐼[𝑍𝑡−1 > 0]) + 𝛾1𝑍𝑡−12 𝐼[𝑍𝑡−1 > 0]. 
 
Positive shocks thus have an impact γ1 on the logarithm of the conditional variance while 
negative shocks have an impact ∝1. Typically ∝1> 𝛾1 which imposes a larger weight for 
negative shocks than for positive shocks in line with the leverage effect. 
 

3.3.6.1 Properties 
The properties of the GJR-GARCH model are very similar to the EGARCH model which 
both are able to capture the asymmetric effect of positive and negative shocks. The GJR-
GARCH and the EGARCH may both be considered for the same series and it is hard to 
distinguish a criterion for choosing either one of the two models. 

3.3.6.2 Forecasting 
If we consider an GJR-GARCH(1,1) model, which is the model used in this report, at the 
forecast origin k, the 1-step ahead forecast of ℎ𝑘+12  is 
 

ℎ𝑘2(1) =∝0+ α1𝑍𝑘2(1 − 𝐼[𝑍𝑘 > 0]) + 𝛾1𝑍𝑘2𝐼[𝑍𝑘 > 0] + 𝛽1ℎ𝑘2. 
 
When calculating multistep ahead forecasts the volatility equation (3) can be rewritten using 
𝑍𝑡2 = ℎ𝑡2𝑒𝑡2 which gives 
 

ℎ𝑘2(2) = E[∝0+ α1𝑍𝑘+12 (1 − 𝐼[𝑍𝑘+1 > 0]) + 𝛾1𝑍𝑘+12 𝐼[𝑍𝑘+1 > 0] + 𝛽1ℎ𝑘+12 |𝐹𝑘]. 
 
With 𝐸(𝑒𝑘+12 − 1|𝐹ℎ) = 0, the 2-step volatility forecast is 
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ℎ𝑘2(2) =∝0+ �
∝1+ 𝛾1

2
+ 𝛽1�ℎ𝑘2(1). 

 
The general j-step ahead forecast for ℎ𝑘+𝑗2 , at the forecast origin k, is 
 

ℎ𝑘2(j) =∝0+ �
∝1+ 𝛾1

2
+ 𝛽1�ℎ𝑘2(𝑗 − 1). 

 
Repeating the substitutions for ℎ𝑘2(𝑗 − 1) until the j-step forecast can be written as a function 
of ℎ𝑘2(1) gives the explicit expression for the j-step ahead forecast 
 

ℎ𝑘2(j) =∝0 ��
∝1+ 𝛾1

2
+ 𝛽1�

𝑖
+ �

∝1+ 𝛾1
2

+ 𝛽1�
𝑗−1

ℎ𝑘2(1).
𝑗−2

𝑖=0
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3.4 The distribution of 𝒆𝒕 
For all of the GARCH type volatility models besides determining their order one must also 
assume a distribution for the error, 𝑒𝑡, to fully specify each model. In the parametric models 
𝑍𝑡 was assumed to have the representation 
 

𝑍𝑡 = ℎ𝑡𝑒𝑡, {𝑒𝑡}~𝐼𝐼𝐷(0,1). 
 
The error terms 𝑒𝑡 should be identically distributed and independent with zero mean and unit 
variance but what distribution it should follow must be specified. In this paper two different 
types of error distributions are considered, the standard normal distribution 
𝑒𝑡~𝑁(0,1) and the heavier tailed student’s t-distribution �𝑣/(𝑣 − 2) 𝑒𝑡~𝑡𝑣. The scale factor 
of 𝑒𝑡 when the error distribution is assumed to be a student-t distribution is introduced to 
make the variance of 𝑒𝑡 equal to 1. As was evident in the descriptive statistics in section 2 the 
return series is typically not normally distributed but display significantly heavier tails than 
the normal distribution which implies that another choice of parametric family should be 
considered which in this paper is done with the student t-distribution. Next the two 
distributions are defined in terms of their density function. 
 
3.4.1 Normal distribution 
The density function of the normal distribution is defined as 
 

𝑓(𝑧) =
1

√2𝜋𝜎
𝑒−

(𝑧−𝜇)2
2σ2 , −∞ < 𝑧 < ∞. 

 
3.4.2 Student t-Distribution 
The density function of the Student t-distribution is defined by 
 

𝑓(𝑧) =
Γ(𝑣 + 1

2 )

√𝑣𝜋Γ �𝑣2�
�1 +

𝑧2

𝑣
�
− (𝑣+12 )

, −∞ < 𝑧 < ∞ 

 
where v denotes the number of degrees of freedom and Γ denotes the gamma function, 
Γ(𝑥) = ∫ 𝑦𝑥−1𝑒−𝑦𝑑𝑦∞

0 . To get the standardized distribution the density function is scaled 

with �𝑣−2
𝑣

. 
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4 In-sample model fitting and evaluation 
 
Once the conditional variance models and their respective order have been specified the next 
step is to estimate the parameters in each of the models. Each of the GARCH type models is 
fitted to the in-sample data using the Maximum Likelihood Estimation method which given 
the dataset and a statistical model provides estimates for the parameters. Once the density 
function of 𝑒𝑡 is provided the estimation is easy to implement.  

4.1 Maximum Likelihood estimation 
The likelihood function is essentially a joint probability density function but instead of 
regarding it as a function of the data with the parameters given, 𝑔(𝑧1, 𝑧2, … , 𝑧𝑛|Θ), it is 
viewed as a function of the parameters with the data given, 𝐿(Θ|𝑧1, 𝑧2, … , 𝑧𝑛) where Θ is the 
set of parameters that are to be estimated. If the returns were independent of each other the 
joint density function would simply be the product of the marginal densities. In the GARCH 
model returns are of course not independent however, the joint density function can still be 
written as the product of the conditional density functions as 
 

𝑓(𝑧1, 𝑧2, … , 𝑧𝑛|Θ) = 𝑓(𝑧𝑛|𝐹𝑛−1)𝑓(𝑧𝑛−1|𝐹𝑛−2) … 𝑓(𝑧1). 
 
The Likelihood function is to be maximized with respect to the unknown parameters and is 
defined as 

𝐿(Θ|𝐹𝑛−1) = �𝜑(𝑍𝑡|𝐹𝑡−1)
𝑛

𝑡=1

 

 
where 𝐹𝑡 denotes the information available at time t and 𝜑 is the density function of 𝑒𝑡. 
Hence, the exact form of the likelihood function depends on the parametric form of the 
distribution of the innovations. Maximizing the likelihood function is equivalent to 
maximizing the logarithm of the likelihood function which is usually easier to handle and 
therefore the log likelihood functions will be the function of focus. With the innovations, 𝑧𝑘, 
assumed to be realizations from a normal distribution, the log likelihood function takes the 
specific form 
 

log[𝐿(Θ|𝐹𝑛−1)] = −
𝑛
2

log(2𝜋) −
1
2
� log(ℎ𝑖2) −

1
2
�

𝑧𝑖2

ℎ𝑖2

𝑛

𝑖=1

𝑛

𝑖=1

 

 
where the variance ℎ𝑖2 is substituted recursively with the specified conditional variance model. 
If the innovations are assumed to be realizations from the student t distribution instead, with v 
degrees of freedom, the log likelihood function is 
 

log[𝐿(Θ|𝐹𝑛−1)] = 𝑛 𝑙𝑜𝑔 �
Γ �𝑣 + 1

2 �

�𝜋(𝑣 − 2)Γ �𝑣2�
� −

1
2
� log (ℎ𝑖2) −

𝑣 + 1
2

� log [1 +
𝑧𝑖2

ℎ𝑖2(𝑣 − 2)]
𝑛

𝑖=1

𝑛

𝑖=1

 

 
where again the variance ℎ𝑖2 is substituted recursively with the specified conditional variance 
model. The maximization of the respective log-likelihood function was done with Matlab’s® 
function estimate. The maximization with respect to the parameters yields the optimal in-
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sample fit for each model. These parameters are then used for calculating the volatility 
forecasts for the respective model further explained in section 3. 

4.2 Evaluation of in-sample fit 
When the model fitting is completed there is a need to compare the goodness of fit for the 
different models. A comparison of how well each of the models fit the in-sample data can be 
done using different metrics depending on whether the models are nested or not. If the models 
are nested, meaning if the more complex model can be transformed into the simpler model by 
setting constraints on some of the parameters, the in-sample fit can be evaluated by using a 
likelihood ratio. A more general evaluation method is to use an information criterion that can 
compare any model’s fit to the same data. The basic idea of information criteria tests are that 
the maximum likelihood for each of the model is subjected to a penalty for its complexity, 
usually the numbers of parameters. How the penalty is calculated differs from different 
information criteria tests. In this paper two of the most well used criteria will be used, Akaike 
information criterion (AIC) and Bayesian information criterion (BIC). 
 
The Akaike information criterion is defined by 
 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝐿(𝜃) + 2𝑘 
 
where 𝑙𝑜𝑔𝐿(𝜃) is the maximized log likelihood function for a model with k numbers of 
parameters. The Bayesian information criterion is defined by 
 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐿(𝜃) + 𝑘𝑙𝑜𝑔(𝑁) 
 
with the same notation as for the AIC but with the additional parameter N which denotes the 
number of data points in the in-sample period. When comparing the in-sample fit of different 
models using the AIC and BIC information criteria tests the smaller value of the criterion the 
better. A model with a smaller AIC or BIC thus provides the best in-sample fit taking into 
account the numbers of parameters needed and for the BIC the number of data points used as 
well. 
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5 Out-of-sample evaluation of volatility forecast 
 
When the conditional variance models being studied have been fully specified with their 
respective order and error distribution, have been fitted to the in-sample data and the 1 day 
ahead forecasts for each of the days in the out-of-sample period has been computed, the out-
of-sample evaluation is the final step in the study performed in this paper. However, even 
with the future level of volatility forecasts computed, it is far from trivial to evaluate the 
forecasting performance of the different models. Even if a model has been chosen and fitted 
to the data and the forecasts have been calculated, evaluating the performance of that forecast 
is difficult due to the latent nature of conditional volatility, it is unobservable. A proxy for the 
realized volatility is thus needed and moreover the choice of statistical measure, as pointed 
out by Bollerslev, Engle and Nelson (1994), is far from clear. This section starts by revealing 
the problems with the inherently latent nature of volatility and advocates the use of a different 
volatility proxy than the squared observations, more specifically the High-Low Range. The 
second part of this section discusses the issues of what evaluation criteria to use when 
comparing the volatility forecasts with the proxy of the “true” volatility. Several different loss 
functions are presented and discussed. The section ends by specifying the loss functions used 
in this paper. 
 

5.1 Volatility proxies 
To understand the difficulties with estimating the “true” latent volatility consider the 
univariate random variable X following a zero mean normal distribution. The variance is 
defined as 
 

𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2] = 𝐸[𝑋2] − 𝐸[𝑋]2 𝑤ℎ𝑒𝑟𝑒 𝜇 denotes the mean. 
 
With a zero mean 𝜇 = 𝐸[𝑋] = 0  the variance is thus 𝑉𝑎𝑟(𝑋) = 𝐸[𝑋2] − 𝐸[𝑋]2 = 𝐸[𝑋2]. 
The empirical distributions of the squared realizations 𝑋2 from N(0,var) where var=0.5, 1 and 
2 respectively are shown in Figure 5. The empirical distributions are based on 100,000 
observations from the underlying process. 
 

 
Figure 5: The empirical distributions for squared realizations from N(0, var) where var= 0.5, 1 and 2 respectively. 
The empirical distribution is based on 100,000 observations from the underlying process. 
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In Figure 5 the empirical density exhibits less kurtosis with a higher level of variance. In 
addition the empirical density of squared innovations from a distribution with higher variance 
has a heavier right tail than the empirical density of observations from a distribution with 
lower variance which is expected since large squared innovations is more likely with a high 
variance. Using the daily squared innovation as a proxy for the underlying volatility is thus to 
use a single squared innovation to try to distinguish from which of the distributions in figure 5 
that specific innovation is a sample from. That is evidently a very blunt proxy and is likely to 
be extremely noisy.   
 
The variance can be estimated using a simple moving average which models the variance as 
the average of a fixed number of squared observations. In Table 2 the standard error, SE, for 
the moving average with a 100 day window is presented for six different levels of the 
underlying variance. 
 

Table 2: Standard error of variance estimations using MA(100) for 6 different values of the latent, unconditional 
variance. The standard error is calculated based on 100,000 observations from the underlying process of 
N(0,var). 

VAR 0.5 1 2 4 8 16 
SE 0.072042 0.143672 0.284956 0.566776 1.119889 2.286552 

 
In Table 2 it is evident that the moving average proxy of the volatility has a higher standard 
error the higher the underlying variance is. Hence, it is harder to be accurate, in an absolute 
sense, for the moving average model when estimating high variances. Another interesting 
aspect is how the length of the moving average window affects the reliability of the variance 
measure. In Figure 6 the empirical estimation error distribution for moving average models 
using 10, 30 and 100 day windows is presented. The underlying process was an N(0, 2) 
distribution and the error was computed as, ∈=MA(d)-2. The empirical distribution is based 
on 100,000 observations from the underlying process. 
 

 
Figure 6: The empirical estimation error distribution for Moving Average models using 10, 30 and 100 day 
windows. The underlying process was an N(0, 2) distribution and thus the error was computed as, ∈= 𝐌𝐀(𝐝) − 𝟐. 
The empirical distribution is based on 100,000 observations from the underlying process. 

In Figure 6 it is evident that with a constant variance the moving average estimate will be 
more accurate the more observations that are included, that is the longer the window used by 
the moving average. This can be seen as the variance estimation error distribution gets 
centered at zero and is more and more leptokurtic with an increasing window length. This is 
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expected and in line with the law of large numbers. Another interesting fact evident in Figure 
14 is that with a shorter window, the variance is in general underestimated which is seen by 
the left skew which is most prominent for the MA(10). 
 
To further underline the difficulties with estimating variance even when it is constant, that is 
not heteroscedastic, the ARCH(1) variance measurement error is investigated for different 
levels of variance. In Figure 7 the standard error of the ARCH(1) variance estimation is 
plotted for six different levels of the underlying variance. Since parameter calibration will be 
different depending on the specific observations the standard error was computed four times 
with a completely new set of observations for each of the variance levels. Therefore, four 
different values of the standard error will be presented for each variance level. A linear 
regression was then performed based on the mean of these four measurements at each 
variance level. 
 

 
Figure 7: The standard error of the ARCH(1) estimated variance for 6 different values of the latent, unconditional 
variance. The standard error is calculated based on 10,000 observations from the underlying process of N(0,var) 
where var=0.5, 1, 2, 4, 8 and 16. 

As was the case for the moving average variance estimation, evident in Table 2, the ARCH(1) 
proxy of the volatility has a higher standard error the higher the underlying variance is. It is 
therefore harder to be accurate, in an absolute sense, for the ARCH(1) model when estimating 
high variances. 
 
Based on the discussion in this section so far it is more difficult to be accurate the higher the 
underlying variance is both for the blunt moving average model and the ARCH(1) model. 
Moreover it is advantageous to include as many previous observations as possible when 
estimating a constant variance with the moving average model. In this paper the variance is 
assumed to be time varying, that is not constant, which even further complicates matters. 
When the variance is time varying there will be a trade-off between getting an accurate 
measure of the variance and getting a measure for the variance that truly reflects the variance 
at that particular time. The ability to model changes in time can be seen in appendix C where 
it is evident that the MA(50) is able to react to changes much faster than the MA(100), 
however the MA(100) has a lower variance estimation error which was exhibited in Figure 6. 
 
In this paper the conditional variance is the object of study and the variance is considered 
completely time varying and thus should be able to take different values at each time point. If 
only daily closing prices are available the only volatility proxy that fully emphasizes the time 
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varying property is the daily squared returns. The daily squared returns have for a long time 
and in a vast amount of papers been used as the proxy for the unobserved variance, see 
Cumby et al (1993), Figlewski (1997) and Jorion (1995, 1996). Squared returns are however 
an extremely noisy proxy of the latent realized variance which will be demonstrated. In Figure 
8 the squared returns from an N(0,16) distribution is plotted in blue. The unconditional 
variance of 16 is plotted in red. It is strikingly evident that the squared returns provides a 
highly variable proxy of the, in this case, constant volatility. 
 

 
Figure 8: Plot of the squared innovations from an N(0, 16) distribution in blue and the unconditional variance of 16 
in red. The plot is based on 500 observations from the underlying process. 

In Figure 9 the estimated variance of an ARCH(1) model and a MA(100) is plotted. The plot 
is based on 10,000 observations from an N(0, 16) distribution. In the figure it is evident that 
the ARCH(1) model is quite close to the constant unconditional variance of 16 whereas the 
MA(100) exhibits highly variable estimations of the variance. The motive for including 
Figure 9 is however that even if the ARCH(1) volatility estimates are used, which evidently 
are very close to the actual volatility of 16, evaluating those estimates using squared returns 
would still lead to the conclusion that the estimates are far from accurate since the squared 
returns are such a noisy proxy. 
 

 
Figure 9: The estimated variance by an ARCH(1) model and a Moving Average with a 100 day window. The plot 
is based on 10,000 observations from an N(0, 16) distribution. 
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The use of daily squared returns as a proxy led to very poor out-of-sample performance in 
spite of highly significant in-sample fitting, see Andersen and Bollerslev (1998). This led to 
the conclusion that the volatility models explained very little of the time variability of the 
volatility and thus had limited practical value. However Andersen and Bollerslev (1998) 
answered the skeptics and showed that the GARCH type volatility in fact provides strikingly 
accurate volatility forecasts when the out-of-sample forecasting performance was evaluated 
with a more suited proxy. They argued that there is in fact no contradiction between a good 
volatility forecast estimate and a poor predictive power for the daily squared returns. The 
advocated proxy was to estimate the daily volatility using cumulative squared intra-day 
returns. The intra-day returns are used as a proxy for the volatility in the following manner. 
Assume there are m equally spaced observations per trade day and denote the ith intra-day 
return during day t by 𝑟𝑖,𝑚,𝑡. The cumulative squared intra-day returns are then computed as 
 

𝜎𝑅𝑉,𝑚,𝑡
2� = �𝑟𝑖,𝑚,𝑡

2 .
𝑚

𝑖=1

 

 
If m=1 the cumulative squared intra-day return proxy is equal to the daily squared return 
proxy. With m=1 the proxy is unbiased but very noisy. As 𝑚 → ∞  𝜎𝑅𝑉,𝑚,𝑡

2� →𝑝 𝜎𝑡2 where 𝜎𝑡2 
denotes the true latent volatility. However, using the cumulative squared intra-day returns as a 
proxy for the realized daily volatility requires high frequency data which in many cases aren’t 
available or is only available for shorter time periods. Furthermore, such data is costly to 
obtain and time consuming to process. In addition, as noted by Dacorogna et al. (2001), the 
estimation of volatility from high frequency data is a complex issue due to market 
microstructure effect. Reliable open and close prices and intraday high and low prices are 
often available for most financial assets over long time horizons. There are volatility proxies 
that use such data instead of the high frequency data to estimate the volatility. In this paper 
only daily data was available resulting in that another proxy than the cumulative squared 
intra-day return proxy had to be used. A simplified proxy will be used, first introduced by 
Parkinson (1980) usually referred to as the High-Low range proxy. The high low range at day 
t denoted 𝑅𝐺𝑡 is defined as 
 

𝑅𝐺𝑡 = max
𝜏

(log(𝑝𝜏)) − min
𝜏

(log(𝑝𝜏)),   𝑡 − 1 < 𝜏 ≤ 𝑡 
 
where 𝑝𝜏 is the price level at time 𝜏 during the day. The log range is thus the difference of the 
logarithm of the highest price level during the given day and the logarithm of the lowest price 
during the same day. This range contains more information than the simple daily return based 
on the closing price since it incorporates how the price has fluctuated throughout the day. For 
example, on a day when the price fluctuates substantially during the day but the closing price 
still is close to the opening price, the daily return would suggest a day of low volatility while 
the log range would reflect the intraday price movements and thus imply correctly that the 
volatility was high. Assuming a geometric Brownian motion with zero drift and with a 
constant volatility 𝜎 the expected value of the squared log range is directly related to the 
volatility of the process by the following expression 
 

𝐸𝑡−1[𝑅𝐺𝑡2] = 4 log(2)𝜎𝑡2. 
 
 
 

26 
 



Hence, the Parkinson estimator for the volatility denoted 𝜎𝑃,𝑡
2�  is defined by 

 

𝜎𝑃,𝑡
2� =

(log(𝐻𝑡) − log(𝐿𝑡))2

4 log(2)  

 
where 𝐻𝑡, 𝐿𝑡 denote the daily high and low price respectively.  
An extension to Parkinson’s volatility estimator was provided by Garman and Klass (1980) 
which in addition to the daily high and low prices also utilized the information in the opening 
and closing prices. The estimator is defined as 
 

𝜎𝐺𝐾,𝑡
2� = 0.5 log �

𝐻𝑡
𝐿𝑡
�
2

− (2 log(2) − 1) log �
𝐶𝑡
𝑂𝑡
�
2

 

 
where 𝐻𝑡, 𝐿𝑡 denote the daily high and low price respectively and 𝐶𝑡,𝑂𝑡 denote the closing 
and opening price respectively. Under idealized conditions the Garman-Klass volatility 
estimator is a less noisy proxy than the Parkinson estimator. However empirical studies have 
shown that the Parkinson’s estimator performs well with real data, see Chou et al. (2010) and 
Alizadeh, Brandt and Diebold (2002). In addition the Parkinson’s estimator appears to be very 
robust to market microstructure effects, see Brandt and Diebold (2006). For these reasons the 
Parkinson’s estimator will be used as the proxy for the volatility in this paper. 
 

5.2 Forecast evaluation 
With the volatility proxy, 𝜎𝑃,𝑡

2� , and the 1 day ahead volatility forecasts, ℎ𝑡−12 (1), computed for 
each of the days in the out-of-sample period it is far from trivial to evaluate the performance 
of the respective volatility models which was pointed out by Bollerslev, Engle and Nelson 
(1994) and  Diebold and Lopes (1996). There is not a unique, universal criterion for selecting 
the “best” model but will depend on the preferences and the intended use of the forecasts. The 
preferences are usually expressed through a loss function. A well-used way to evaluate the 
out-of-sample fit is through the 𝑅2 of the Mincer-Zarnowitz (MZ) regression defined by 
 
 𝜎𝑃,𝑡

2� = 𝑎 + 𝑏ℎ𝑡−12 (1) + 𝑢𝑡 ( 4 ) 
 
where 𝜎𝑃,𝑡

2�  is the volatility proxy, ℎ𝑡−12 (1) is the one day ahead volatility forecast at time t-1, 
𝑢𝑡 is the conditional mean and a and b are the parameters to be estimated in the regression. An 
optimal, unbiased forecast would satisfy a=0, b=1 with an 𝑅2 close to 1. The MZ regression, 
equation 4, is very sensitive to extreme values of 𝜎𝑃,𝑡

2�  and thus the parameters will primarily 
be determined by these extreme values. This was illuminated by Engle and Patton (2000) who 
advocated the use of the log regression 
 
 log (𝜎𝑃,𝑡

2� ) = 𝑎 + 𝑏log (ℎ𝑡−12 (1)) + 𝑢𝑡 ( 5 ) 
 
which is less sensitive to outliers. However the 𝑅2 of the regressions is not an optimal criteria 
for the evaluation since it does not penalize a biased forecast, that is with 𝑎 ≠ 0 or 𝑏 ≠ 1. So 
purely based on the 𝑅2 a poor biased forecast can be preferred to a good unbiased forecast due 
to the parameters a and b not fulfilling the unbiased requirements. Thus in this paper, instead 
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of the 𝑅2 of the regressions defined in equation (4) and (5) the following four loss functions 
will be used in the models out-of-sample forecast performance evaluation 
 
 
 

𝑀𝑆𝐸 = 𝑛−1��𝜎𝑃,𝑡
2� − ℎ𝑡−12 (1)�

2
𝑛

𝑡=1

 
( 6 ) 

 
 

𝑅2𝐿𝑂𝐺 = 𝑛−1��log (
𝜎𝑃,𝑡
2�

ℎ𝑡−12 (1))�
2𝑛

𝑡=1

 
( 7 ) 

 
 

𝑃𝑆𝐸 = 𝑛−1��𝜎𝑃,𝑡
2� − ℎ𝑡−12 (1)�

2
ℎ𝑡−1−4 (1)

𝑛

𝑡=1

 
( 8 ) 

   
 

𝑀𝐴𝐷 = 𝑛−1� |𝜎𝑃,𝑡
2� − ℎ𝑡−12 (1)|

𝑛

𝑡=1

 
( 9 ) 

 
where n is the number of days in the out-of-sample period, 𝜎𝑃,𝑡

2�  is the volatility proxy at day t 
and ℎ𝑡−12 (1) is the one day ahead volatility forecast at time t-1. Before comparing these loss 
functions it is important to understand their economic interpretation and what they actually 
measure to be able to draw the right conclusions. The criteria MSE (6), 𝑅2𝐿𝑂𝐺 (7) and PSE 
(8) were all suggested by Bollerslev, Engle and Nelson (1994) and the MAD criteria (9) were 
suggested by Hansen and Lunde (2001). The criteria MSE (6) and 𝑅2𝐿𝑂𝐺 (7) is similar to the 
𝑅2 of the regressions defined in equation (4) and (5) respectively except for the constant term 
a. The Mean Square Error (MSE) is the average of the squared deviations of the forecast from 
the volatility proxy. Hence, one large deviation is given a much higher weighting than a sum 
of small deviations even if the sum of the deviations is equal to the one time large deviation. 
When evaluating volatility forecasting performance this can seem quite illogical since in 
general one large deviation is not more troublesome than a sum of small deviations that sum 
up to the size of the large deviation since the returns accumulate over time. Moreover single 
outliers will have a significant impact on the MSE criteria. The 𝑅2𝐿𝑂𝐺 still assigns higher 
weighting to large deviations but they are not as penalized as in the case of MSE. The 
Percentage Squared Errors (PSE) measures the average of the squared percentage deviation. 
The deviations are expressed as a percentage of the forecasted volatility. Hence the PSE takes 
into account the fact that it is harder to be accurate, in an absolute sense, when estimating high 
variances and thus measures the relative error as a percentage to account for this. The fact that 
it is harder to measure higher variances was evident in the previous sub section Volatility 
proxies where the standard error for the moving average and the ARCH model was 
investigated for different levels of volatility. The Mean Absolute Deviation (MAD) is 
interesting since it is very robust to outliers and this criteria actually gives equal weighting to 
a large deviation of size z as to a sum of several deviations accumulating to z. 
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6 Empirical Results 
 
In this section all of the empirical results are presented and discussed. As mentioned in the 
introduction the objective of this paper is to compare the volatility models in terms of the in-
sample and out-of-sample fit. There will be three main themes being studied, first the basic 
structure of the modeling framework will be investigated with respect to the error distribution 
and the conditional mean to gain insight in how the assumed error distribution and different 
models for the conditional mean impacts the in-sample and out-of-sample fit, regardless of 
which specific conditional variance model is used. The second theme is whether the more 
complex models which are able to exhibit more of the stylized facts and characteristics of 
asset price volatility provide a better in-sample fit and/or out-of-sample-fit than the more 
parsimonious models. The third and final theme is whether the model with the best in-sample 
fit also produces the best out-of-sample volatility forecast. This question will be investigated 
when considering the conditional mean and the error distribution as well as when considering 
the different conditional variance models. Hence the third theme will be investigated parallel 
with the two others. The aim of the analysis is to evaluate whether the more complex models, 
in terms of the conditional mean, error distribution and conditional variance, outperforms the 
more parsimonious ones not if the GARCH type volatility models do provide accurate 
forecasts. That GARCH type volatility models do provide strikingly accurate volatility 
forecasts was shown by Andersen and Bollerslev (1998) and is not the object of study in this 
paper. However, based on the 𝑅2 of the regressions defined in equation (4) and (5) the result 
available in appendix D suggest that the models provide good volatility forecasts. The 𝑅2, 
using the Parkinson’s proxy, are as high as 0.51 which is even higher than those found by 
Andersen and Bollerslev (1998). 
 
Since there are three different conditional mean processes compared and two different error 
distributions there will be six sets of results for each of the data sets OMXS30, OMXC20 and 
OMXH25. Hence there will be a total of 18 sets of results, moreover in each of the result set, 
data for all of the compared volatility models must be included both in terms of in-sample and 
out-of-sample performance. Due to this large quantity of data, the complete results are 
available in appendix D to facilitate reading and only essential parts are presented here.  

6.1 Impact of error distribution and conditional mean 
The first variable investigated is how the assumed error distribution affects the in-sample and 
out-of-sample fit. As discussed in section 3 one must assume a distribution for the error 𝑒𝑡 to 
fully specify each GARCH type volatility model. In this paper two different types of error 
distributions are considered, the standard normal distribution and the heavier tailed student’s 
t-distribution. In Table 3 the average AIC and BIC for all of the compared volatility models is 
presented. The average AIC and BIC is presented both assuming a normal error distribution 
and a student t distribution for each respective dataset. The AIC and BIC for each specific 
model and error distribution is available for all datasets in appendix D. 
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Table 3: Average AIC and BIC for the compared parametric volatility models assuming a normal and a student  
t error distribution. In each row the result based on the respective data series is presented. 

  AIC BIC 

  
Normal 
Distribution 

Student t 
Distribution 

Normal 
Distribution 

Student t 
Distribution 

OMXS30 -13128 -13174 -13108 -13148 
OMXC20 -13656 -13725 -13635 -13698 
OMXH25 -13476 -13510 -13455 -13483 

 
Keeping in mind that a smaller value of AIC and BIC is preferred it is clearly evident in Table 
3 that  assuming a student t distribution provides a better in-sample fit across all the datasets 
both in terms of the AIC and the BIC. The result is unequivocal and is not too surprisingly 
considering the q-q plots combined with the jarque-bera test in section 2 which implied that 
the empirical distribution of the return series displayed significantly heavier tails than the 
normal distribution. The big question is however not the in-sample fit but the out-of-sample 
fit which is used to compare the forecasting performance.  
 
In Table 4 the average MSE, R2LOG, MAD and PSE for the compared volatility models is 
presented assuming a normal error distribution and a student t distribution for each respective 
dataset. 
 
Table 4: Average MSE, R2LOG, MAD and PSE for the compared parametric volatility models assuming a normal 
and a student t error distribution. In each row the result based on the respective data series is presented. 

 
 
For all the four loss functions a smaller value is preferred. After the results in Table 3 which 
unequivocally suggested that assuming a student t distribution provides a better in-sample fit 
across all the datasets it is quite surprising that the MSE, R2LOG and MAD in Table 4 
suggest the opposite; that assuming a normal error distribution unequivocally provides a 
better out-of-sample fit in terms of the MSE, R2LOG and MAD loss functions. The only loss 
function that suggests assuming a student t distribution is preferred compared to assuming a 
normal distribution, is the PSE. Quite a lot can be understood from these results. First of all, it 
is not necessarily the model with the best in-sample fit that provides the best out-of-sample 
fit. Moreover what is even more striking is that using different loss functions not only gives 
different ranks for the models but can even imply completely opposite conclusions. This is a 
quite major finding. 
 
The next variable being studied is the conditional mean and how the model for the conditional 
mean affects the in-sample and out-of-sample performance. In Table 5 the average AIC for 
the compared volatility models with three different models for the conditional mean: Zero 
Mean, Constant Mean and AR(1) Mean. In each row the result based on the respective data 
series is presented. 
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Table 5: Average AIC for the compared volatility models with three different models for the conditional mean: Zero 
Mean, Constant Mean and AR(1) Mean. In each row the result based on the respective data series is presented. 

  AIC 
  Zero Mean Constant Mean AR(1) Mean 
OMXS30 -13147.05 -13151.95 -13152.73 
OMXC20 -13686.07 -13692.85 -13692.40 
OMXH25 -13487.46 -13495.35 -13496.56 

 
In Table 5 it is evident that a constant mean process outperforms a zero mean process for all 
the three datasets in terms of the in-sample measure AIC. Furthermore, for the OMXS30 and 
OMXH25 the AR(1) mean process improves the in-sample fit even further. For OMXC20 the 
AR(1) mean process does not improve the in-sample fit compared to the simpler constant 
mean process but is only marginally worse. As well as a better in-sample fit the conditional 
mean must also provide a better out-of-sample fit to add any value to the forecasting 
framework. 
 
In Table 6 the average MSE, R2LOG, MAD and PSE for the compared volatility models is 
presented with three different models for the conditional mean: Zero Mean, Constant Mean 
and AR(1) Mean. For all the four loss functions a smaller value is preferred and the smallest 
value for each loss function and data series is highlighted in green. 
 
Table 6: Average MSE, R2LOG, MAD and PSE for the compared volatility models presented with three different 
models for the conditional mean: Zero Mean, Constant Mean and AR(1) Mean. 

  MSE R2LOG 

  Zero Mean 
Constant 
Mean 

AR(1) 
Mean Zero Mean 

Constant 
Mean 

AR(1) 
Mean 

OMXS30 3.3672E-08 3.35133E-08 3.3747E-08 1.57097953 1.559021659 1.56671607 
OMXC20 1.923E-08 1.91972E-08 1.9415E-08 1.54577534 1.538384115 1.54130874 
OMXH25 4.3052E-08 4.26177E-08 4.3118E-08 1.3907512 1.379129764 1.3883509 
  MAD PSE 

  Zero Mean 
Constant 
Mean 

AR(1) 
Mean Zero Mean 

Constant 
Mean 

AR(1) 
Mean 

OMXS30 0.00011054 0.000109972 0.00011056 0.60713397 0.606701664 0.60533004 
OMXC20 8.5376E-05 8.51487E-05 8.5376E-05 0.6850329 0.683475906 0.6867216 
OMXH25 0.00013293 0.000132048 0.00013288 0.57935484 0.576144115 0.57724891 

 
From Table 6 it is clear that the constant mean model provides the best out-of-sample fit in 
terms of the MSE, R2LOG and MAD for the three data series. The only loss function 
suggesting another mean model is the PSE based on the OMXS30 data. Apart from that, the 
conclusion is that the constant mean model provides the best out-of-sample fit for all the three 
datasets. Again, it was not the model that provided the best in-sample fit that had the best out-
of-sample performance. However, here the AR(1) Mean model was only marginally better in-
sample than the constant mean model. An interesting point is that the zero mean model that 
was clearly outperformed in-sample is actually the second best model in terms of out-of-
sample performance when measured by the MSE. 
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6.2 Conditional variance models 
The previous subsection considered the impact of the conditional mean and the error 
distribution. Next the six different volatility models will be compared in terms of their in-
sample fit and out-of-sample forecasting performance. The variable under study here is the 
different models for the conditional variance in each of the volatility models. Each of the 
volatility model was presented and explained in section 3. The main theme is whether the 
more complex models which are able to exhibit more of the stylized facts and characteristics 
of asset price volatility provide a better in-sample fit and/or out-of-sample-fit than the more 
parsimonious models. Based on previous discussion in terms of in-sample fit assuming a 
student t error distribution and an AR(1) conditional mean was the preferred choice. Thus, 
when comparing the different volatility models in terms of their in-sample fit that will be the 
scenario presented here. 
 
In Table 7 the AIC for the different parametric volatility models is presented for each of the 
three data sets. The basic structure is assuming a student t error distribution and an AR(1) 
mean model. The smallest value in each column is highlighted in green and the largest value 
is highlighted in red. 
 
Table 7: AIC for the different volatility models for each of the three data sets OMXS30, OMXC20 and OMXH25. 
The smallest value in each column is highlighted in green and the largest value is highlighted in red. The basic 
structure is assuming a student t error distribution and an AR(1) mean model. 

  OMXS30 OMXC20 OMXH25 
MA10       
Exponential MA       
ARCH(3) -12989 -13596 -13327 
GARCH(1,1) -13186 -13745 -13529 
GARCH(1,2) -13180 -13743 -13540 
GARCH(2,1) -13186 -13742 -13516 
EGARCH(1,1) -13261 -13776 -13585 
GJR(1,1) -13251 -13763 -13578 

 
A smaller value of AIC is preferred and across the three data sets it is evident that the 
ARCH(3) has the worst in-sample fit and the EGARCH(1,1) has the best in-sample fit. The 
in-sample fit of the different volatility models for each data set assuming a normal error 
distribution and a different mean model is available in appendix D and the same pattern is 
evident there. The main conclusion here is that yes, the more complex models do provide a 
better in-sample fit than the more parsimonious models. The GARCH(1,1) clearly 
outperforms ARCH(3) and the EGARCH(1,1) and the GJR(1,1) clearly outperforms the 
GARCH(1,1). This is quite expected especially since, for example the ARCH model is nested 
in the GARCH model. So if the GARCH(1,1) model did not provide a better in-sample fit 
there would be no point in setting the extra parameter to anything other than zero which 
would then reduce the GARCH model to the simple ARCH model. Another interesting detail 
in Table 7 is that the higher order GARCH does not necessarily provide a better fit than the 
GARCH(1,1) which is in line with previous studies and briefly discussed in section 3. 
 
As emphasized throughout this paper in addition to the in-sample fit it is vital to look at the 
out-of-sample forecasting performance. The reasoning for this comes from the objective of 
the analysis which is to forecast volatility, not to model its behavior in the past. Based on the 
result comparing the error distribution and the conditional mean in terms of out-of-sample fit 
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assuming a normal error distribution and a constant conditional mean was the preferred 
choice. Thus, when comparing the different volatility models in terms of their out-of-sample 
performance that will be the setting presented here.  
 
In Table 8 MSE, R2LOG, MAD and PSE for the compared volatility models is presented 
based on OMXS30. For all the four loss functions a smaller value is preferred and the smallest 
value for each loss function is highlighted in green and the largest value is highlighted in red. 
 
Table 8: MSE, R2LOG, MAD and PSE for the compared volatility models based on OMXS30. The smallest value 
for each loss function is highlighted in green and the largest value is highlighted in red. The basic structure is 
assuming a normal error distribution and a constant mean model. 

OMXS30         
  MSE R2LOG MAD PSE 
MA10 3.6637E-08 1.26282 0.00010369 0.90665 
Exponential MA 3.3486E-08 1.34067 0.00010289 0.59486 
ARCH(3) 3.7806E-08 2.29117 0.00013449 0.68066 
GARCH(1,1) 3.1706E-08 1.53339 0.00010593 0.55379 
GARCH(1,2) 3.2369E-08 1.55659 0.00010744 0.57186 
GARCH(2,1) 3.1701E-08 1.53315 0.00010592 0.55383 
EGARCH(1,1) 2.6092E-08 1.46512 0.00010277 0.48574 
GJR(1,1) 3.3084E-08 1.49757 0.00011073 0.50954 

 
The exhibit in Table 8 is quite inconclusive. There is not a single volatility model that is 
preferred based on all the four loss functions. When focusing on the MSE however, the result 
is that the best model is the EGARCH and the ARCH(3) is the worst model. Furthermore the 
GARCH model is preferred to the ARCH model and the EGARCH is preferred to the 
GARCH which is in line with the finding in terms of the in-sample fit. This suggests that the 
more complex models do provide a better out-of-sample fit than the more parsimonious 
models in line with the findings for the in-sample fit. For this data set, the same conclusion is 
implied by the more robust measure MAD and a similar conclusion is also drawn when 
comparing the PSE with the exception of MA10 now being the worst model. So using MSE, 
MAD and PSE as loss functions the more complex models do provide a better out-of-sample 
fit than the more parsimonious models. An important finding is however how the ranking 
differs when using the R2LOG loss function. Based on this loss function ARCH is still 
considered the worst model but more strikingly the blunt non-parametric Moving Average 
with a 10 day window is the overall preferred model.  
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Table 9 presents the MSE, R2LOG, MAD and PSE for the compared volatility models based 
on OMXC20. The MSE and R2LOG gives the same ranking as was the case based on 
OMXS30 but the MAD and the PSE loss functions give significantly different ranking than 
when based on the OMXS30.  
 
Table 9: MSE, R2LOG, MAD and PSE for the compared volatility models based on OMXC20. The smallest value 
for each loss function is highlighted in green and the largest value is highlighted in red. The basic structure is 
assuming a normal error distribution and a constant mean model. 

OMXC20         
  MSE R2LOG MAD PSE 
MA10 2.0758E-08 1.32376 8.1899E-05 0.98464 
Exponential MA 1.8772E-08 1.38078 7.9222E-05 0.84234 
ARCH(3) 2.2695E-08 1.95662 0.00010074 0.55190 
GARCH(1,1) 1.8463E-08 1.53928 8.3542E-05 0.64894 
GARCH(1,2) 1.847E-08 1.53922 8.3558E-05 0.64924 
GARCH(2,1) 1.8473E-08 1.53836 8.352E-05 0.65082 
EGARCH(1,1) 1.6393E-08 1.46709 8.0701E-05 0.60166 
GJR(1,1) 1.8411E-08 1.52869 8.4132E-05 0.56151 

 
Table 9 makes the findings in Table 8 even more inconclusive. Now the three loss functions 
R2Log, MAD and PSE all suggest that the best model is the non-parametric MA10, 
Exponential MA and based on PSE the ARCH model is the overall preferred model. It is quite 
a contrast that one loss function suggests that a particular model is the worst and another loss 
function can suggest that same model to be the best. This illuminates the importance of 
choosing an adequate loss function for the intended purpose of the forecast. 
 
Finally in Table 10 the MSE, R2LOG, MAD and PSE for the compared volatility models 
based on OMXH25 is presented. Table 10 presents the most coherent ranking across the 
different loss functions yet. For all the loss functions the more complex models do provide a 
better out-of-sample fit than the more parsimonious models. The GARCH is preferred over 
the ARCH and the GJR and the EGARCH is preferred over the GARCH. Furthermore the 
worst model suggested by all of the four loss functions is either the non-parametric MA10 and 
the Exponential MA or the ARCH(3). 
 
Table 10: MSE, R2LOG, MAD and PSE for the compared volatility models based on OMXH25. The smallest 
value for each loss function is highlighted in green and the largest value is highlighted in red. The basic structure 
is assuming a normal error distribution and a constant mean model. 

OMXH25         
  MSE R2LOG MAD PSE 
MA10 4.8103E-08 1.29239 0.00013331 0.85867 
Exponential MA 4.5607E-08 1.34304 0.00013347 0.56969 
ARCH(3) 4.7754E-08 1.66242 0.00014415 0.67791 
GARCH(1,1) 4.1802E-08 1.38439 0.00013168 0.52741 
GARCH(1,2) 4.0251E-08 1.35188 0.00012774 0.54164 
GARCH(2,1) 4.1746E-08 1.38313 0.00013155 0.52757 
EGARCH(1,1) 3.3664E-08 1.30790 0.00012231 0.44834 
GJR(1,1) 3.8114E-08 1.25662 0.00012525 0.46686 
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The out-of-sample performance of the compared volatility models in terms of the different 
loss functions based on the three data sets presents a bit of a conundrum. It is far from evident 
which of the specific conditional volatility models that outperforms the other. First, the 
ranking of models based on a specific loss function differs for the three data sets. Secondly, 
for the OMXC20 and OMXS30 the best and worst model respectively depends heavily on 
which loss function is used. So to answer which model has the best out-of-sample 
performance one must first consider the specific data set used and then which loss function to 
use as the criteria. Moreover it is not necessarily the model with the best in-sample fit that 
produces the best out-of-sample forecast. Since the out-of-sample forecast performance is so 
vital to the objective of the analysis one can question whether the in-sample fit should even be 
used at all to support the choice of a specific volatility model. 
 
The out-of-sample fit of the different volatility models for each data set assuming a student t 
error distribution and a different mean model is available in appendix D and exhibits similar 
inconsistency in ranking the volatility models. 
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7 Summary and Conclusions 
 
In this section a short summary of the result is presented and the main conclusions are stated. 
 
In the Result section there were three main themes being studied, first the basic structure of 
the modeling framework was investigated, with respect to the error distribution and the 
conditional mean to gain insight in how the assumed error distribution and different models 
for the conditional mean and impacts the in-sample and out-of-sample fit regardless of which 
specific conditional variance model is used. The second theme was whether the more complex 
models which are able to exhibit more of the stylized facts and characteristics of asset price 
volatility provide a better in-sample fit and/or out-of-sample-fit than the more parsimonious 
models. The third and final theme was whether the model with the best in-sample fit also 
produces the best out-of-sample volatility forecast. 
 
The impact of the error distribution and the conditional mean was quite clear when looking at 
the in-sample fit. It was clearly evident that assuming a student’s t-distribution provides a 
better in-sample fit than assuming a normal distribution across all the datasets both in terms of 
the AIC and the BIC. The result is unequivocal and is expected considering the q-q plots 
combined with the jarque-bera test in section 2 which implied that the empirical distribution 
of the return series displayed significantly heavier tails than the normal distribution. 
Considering the conditional mean it was evident that a constant mean process outperforms a 
zero mean process for all the three datasets in terms of the in-sample measure AIC. 
Furthermore, for the OMXS30 and OMXH25 the AR(1) mean process improves the in-
sample fit even further. For OMXC20 the AR(1) mean process does not improve the in-
sample fit compared to the simpler constant mean process but is only marginally worse. So in 
terms of the in-sample fit assuming a student t distribution and modeling the mean improves 
the forecast model. However, when looking at the out-of-sample performance the result was 
quite strikingly different. With the in-sample performance in mind it was quite surprising that 
the out-of-sample performance measures MSE, R2LOG and MAD suggested that assuming a 
normal error distribution unequivocally provides a better out-of-sample fit. The only loss 
function that suggested assuming a student t distribution is preferred compared to assuming a 
normal distribution is the PSE.  Looking at the out-of-sample performance of the conditional 
mean model it was clear that the constant mean model generally provided the best out-of-
sample fit in terms of all the four loss functions. The conclusion is that the constant mean 
model provides the best out-of-sample fit for all the three datasets. Again it was not the model 
that provided the best in-sample fit that had the best out-of-sample performance. However, 
here the AR(1) Mean model was only marginally better in-sample than the constant mean 
model. An interesting point though is that the zero mean model that was clearly outperformed 
in-sample is actually the second best model in terms of out-of-sample performance when 
measured by the MSE. 
 
Quite a lot can be understood from this. First of all, it is not necessarily the model with the 
best in-sample fit that provides the best out-of-sample fit. Moreover, considering the case of 
the PSE comparing the error distributions, what is even more striking is that using different 
loss functions not only gives different ranks for the models but can even imply completely 
opposite conclusions. These are quite major findings and give rise to yet more questions. How 
is it possible that the model that is preferred based on the in-sample performance at the same 
time can be the worst performing model considering the out-of-sample metrics? Maybe even 
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more interesting is what would impose this: what does it mean that a model is worse in terms 
of the out-of-sample fit compared to the in-sample fit? One possible reason is the fact that the 
dynamics of the volatility might have changed during the quite long time horizon of the data. 
Not only does the volatility change over time but also the dynamics of the volatility, how the 
volatility evolves over time, might have shifted. The dynamics of volatility is not stationary 
and especially not over a time horizon from 2002 until 2014, just over 13 years. In addition, 
during that time period the world has witnessed one of the greatest financial crises of all times 
which quite likely have changed the dynamics of the market. Possible remedies are to reduce 
both the in-sample time horizon and maybe even more importantly reducing the out-of-
sample time horizon. Another reason for the discrepancy between the in-sample and the out-
of-sample performance might lie in the nature of model fitting. That a model that is 
backtested to perfection and has an extremely good in-sample fit can become sluggish and 
reacts slowly to changes in the volatility and sudden chocks while a model with a not so good 
in-sample fit might be more flexible and is able to more quickly allow for changes in 
volatility dynamics and chocks. There might also be a trade-off between fitting the model to 
the in-sample data and the models alertness to new inputs.  
 
Next the six different volatility models were compared in terms of their in-sample fit and out-
of-sample forecasting performance. The main theme is whether the more complex models 
which are able to exhibit more of the stylized facts and characteristics of asset price volatility 
provide a better in-sample fit and/or out-of-sample-fit than the more parsimonious models. 
Again, the in-sample results was very coherent and it was evident that the ARCH(3) has the 
worst in-sample fit and the EGARCH(1,1) has the best in-sample fit. The main conclusion 
here is that yes, the more complex models do provide a better in-sample fit than the more 
parsimonious models. The GARCH(1,1) clearly outperforms ARCH(3) and the 
EGARCH(1,1) and the GJR(1,1) clearly outperforms the GARCH(1,1). This is quite expected 
especially since, for example the ARCH model is nested in the GARCH model. If the 
GARCH(1,1) model did not provide a better in-sample fit there would be no point in setting 
the extra parameter to anything other than zero which would then reduce the GARCH model 
to the simple ARCH model. Another interesting result was that the higher order GARCH does 
not necessarily provide a better fit than the GARCH(1,1) which is in line with previous 
studies and is briefly discussed in section 3. 
 
In terms of the out-of-sample forecasting performance the results was very inconclusive. 
There is not a single volatility model that is preferred based on all the four loss functions. An 
important finding is however not just that the ranking differs when using different loss 
functions, but how dramatically it can differ. It is quite a contrast that one loss function 
suggests that a particular model is the worst and another loss function can suggest that same 
model to be the best. This highlights the importance of choosing an adequate loss function for 
the intended purpose of the forecast. 
 
The out-of-sample performance of the compared volatility models in terms of the different 
loss functions based on the three data sets thus suggests a bit of a challenge. It is far from 
evident which of the specific conditional volatility models that outperforms the other. First, 
the ranking of models based on a specific loss function differs for the three data sets. 
Secondly, for the OMXC20 and OMXS30 the best and worst model respectively depends 
heavily on which loss function is used. To answer which model has the best out-of-sample 
performance one must first consider the specific data set used and then which loss function to 
use as the criteria. Moreover, it is not necessarily the model with the best in-sample fit that 
produces the best out-of-sample forecast. Since the out-of-sample forecast performance is so 
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vital to the objective of the analysis, one can question whether the in-sample fit should even 
be used at all to support the choice of a specific volatility model. Obviously one does only 
have information up until the current day and not in the future. However, as done in this 
paper, one can divide the historical data into an in-sample period and an out-of-sample period. 
The result of this paper then suggests that one should put more emphasis on the out-of-sample 
performance due to the nature of the analysis: to model volatility in the future. This can be 
argued by the highly inconsistency of the in-sample performance compared to the out-of-
sample performance. Choosing the model with the best in-sample fit would not necessarily be 
the best choice of model in terms of the out-of-sample performance. 
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8 Suggestions for further research 
 
To further increase the understanding of volatility forecasting and its performance one could 
consider different forecasting schemes, look at different forecast horizons, consider more 
complex conditional mean models, investigate the use of other error distributions and extend 
the number of conditional variance models being studied. Furthermore, another proxy for the 
latent volatility could be used and one could focus on other asset classes than equity indices 
such as commodities or foreign exchange. However, based on the result in this paper the next 
step forward that is most likely to be the most rewarding is to investigate which loss functions 
that provide the most appropriate out-of-sample performance measure for the intended 
purpose of the forecast. The objective of the forecast, the intended purpose, must be 
considered if the result is to be of any use for portfolio managers, risk managers and other 
practitioners. It is not until an appropriate out-of-sample metric has been established that one 
can truly find the models with superior predictive ability.  
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Appendix A: Significance tests 
Ljung-Box Q-test 
The Ljung-Box Q test is a test for checking whether a specific time series are observed values 
from iid random variables. As opposed to the sample autocorrelation function, which can be 
used to check whether each sample autocorrelation 𝑝�(𝑗) falls inside the bounds ± 1.96

√𝑛
, the 

Ljung-Box Q test is a single statistic 
 

𝑄 = 𝑛(𝑛 + 2)�
𝑝̂2(𝑗)
𝑛 − 𝑗

.
ℎ

𝑗=1

 

 
If n is large and 𝑌1, … ,𝑌𝑛 is an iid sequence, the distribution of Q can be approximated as the 
sum of squares of the independent N(0,1) random variables, √𝑛𝑝̂(𝑗), 𝑗 = 1, … ,ℎ. That is the 
distribution of Q can be approximated as chi-squared with h degrees of freedom. A too large 
value of Q would suggest that the sample autocorrelations are too high for the data to be 
observations from an iid sequence. The iid hypothesis is rejected with ∝ significance level if 
𝑄 > 𝜒1−𝛼2 (ℎ), where 𝜒1−𝛼2 (ℎ) is the 1 − 𝛼 quantile of the chi-squared distribution with h 
degrees of freedom. 

Engle’s ARCH test 
Engle´s ARCH test is very similar to the Ljung-Box Q-test but tests whether the squared data 
is an iid sequence. The test statistics is the same as for the Ljung-Box Q-test but with the data 
autocorrelation replaced with the autocorrelation for the squared data, 𝑝̂𝑤𝑤. 
 

𝑄 = 𝑛(𝑛 + 2)�
𝑝̂𝑤𝑤2 (𝑘)
𝑛 − 𝑘

.
ℎ

𝑘=1

 

 
The iid hypothesis is rejected on the same basis that is with ∝ significance level if 𝑄 >
𝜒1−𝛼2 (ℎ), where 𝜒1−𝛼2 (ℎ) is the 1 − 𝛼 quantile of the chi-squared distribution with h degrees 
of freedom.. This test is performed on data to see whether the squared data is serially 
correlated which justifies modeling the conditional volatility using a GARCH type model. 

Jarque-Bera Test 
The Jarque-Bera test is a goodness-of-fit test which examines if the sample data have kurtosis 
and skewness similar to a normal distribution. The test statistics is JB which is defined by 
 

𝐽𝐵 =
𝑛
6
�𝑆2 +

1
4

(𝐾 − 3)2� 
 
where n is the sample size, S is the sample skewness and K is the sample kurtosis. If the 
sample data comes from a normal distribution JB should, asymptotically, have a chi-squared 
distribution with two degrees of freedom. The null hypothesis is that the sample data have a 
skewness of zero and an excess kurtosis of 3 which is what the normal distribution has. The 
Jarque-Bera test for the descriptive statistics was determined with Matlab’s™ built in function 
jbtest(x). Jbtest(x) test if the sample distribution comes from a normal distribution at the 5% 
significance level.  
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Appendix B: Descriptive statistics 
OMXC20 
For OMXC20 there were 3,079 daily data points during the entire period 2002-01-02 until 
2014-04-15. The in-sample period from 2002-01-02 until 2010-12-30 consisted of 2,256 daily 
data points and the out-of-sample period from 2011-01-03 until 2014-04-15 consisted of 823 
daily data points. In Figure B1 the daily closing price during the entire period is plotted. The 
in-sample period is plotted in blue and the horizontal red line indicates where the out-of-
sample period starts which is then indicated by the black line. 
 

 
Figure B 1: OMXC20 daily index level from 2002-01-12 until 2014-04-15. In total there are 3,079 observations. 
The blue line represents the index level during the in-sample period and the vertical red line indicates where the 
out-of-sample period starts which is then represented by the black line. 

The left plot of Figure B2 shows the daily return for the in-sample period. The right plot in 
Figure B2 shows the Sample Autocorrelation Function for the daily returns of lags 0 to 20. 
The Sample From the Sample Autocorrelation Function plot it is not completely clear based 
on ocular inspection whether the data is serially correlated or not, even though it has minor 
significant serial correlation at lag 3. However the Ljung-Box Q-test null hypothesis is 
rejected for lags 5 and 10 at a 5% significance level as for the OMXS30 however the null 
hypothesis is not rejected for 15 lags. This still suggests that a conditional mean model is 
required for this return series as well.  
 

 
Figure B 2: Left plot: Daily returns of OMXC20 from 2002-01-02 until 2010-12-30, which is the in-sample period 
consisting of 2,255 observations. Right plot: Sample Autocorrelation Function for the daily returns of lags 0 to 20 
and the 5% confidence level in blue. 
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The left plot of Figure B3 shows the daily squared returns for the in-sample period which 
exhibits volatility clustering as was the case for OMXS30. The right plot of Figure B3 shows 
the Sample Partial Autocorrelation Function which, by ocular inspection, clearly shows 
significant autocorrelation. Engle’s ARCH test rejects the null hypothesis for lags 5 and 12 at 
a 5% significance level and thus confirms that the squared returns are serially correlated. 
 

 
Figure B 3: Left plot: Daily squared returns of OMXC20 from 2002-01-02 until 2010-12-30, which is the in-sample 
period consisting of 2,255 observations. Right plot: Sample Partial Autocorrelation Function for the daily returns of 
lags 0 to 20 and the 5% confidence level in blue. 

In Figure B4 two q-q plots are presented. The left plot is a q-q plot of the empirical 
distribution of the daily returns (y-axis) against the best fitted normal distribution (x-axis). 
The plot to the right is a q-q plot of the empirical distribution (y-axis) against the best fitted t 
location-scale distribution (x-axis). 
 

 
Figure B 4: Left plot: q-q plot of the empirical distribution (y-axis) against best fitted normal distribution (x-axis). 
Right plot: q-q plot of the empirical distribution (y-axis) against best fitted t location-scale distribution (x-axis). 

The two q-q plots basically have the same shape as the q-q plots for OMXS30 and thus the 
same conclusions can be made. The empirical distribution of the daily returns exhibit 
significantly heavier tails than the normal distribution but is sufficiently close to the t 
location-scale distribution. In Table B1 some summary statistics of the return series is 
presented. 
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Table B 1: Summary statistics for OMXC20 daily returns in the in-sample period. 

 
Sample size Mean Variance Skewness Excess kurtosis Jarque-Bera 

OMXC20 2,255 0.00023297 0.00019459 -0.23732466 9.453134027 1 
 
The Jargue-Bera test rejects the null hypothesis that sample distribution comes from a normal 
distribution at the 5% significance level which was in line with expectations from the ocular 
inspection of the q-q plots in Figure 8 which implied that the empirical distribution of the 
daily returns exhibit significantly heavier tails than the normal distribution. 
 
OMXH25 
For OMXH25 there were 3,089 daily data points during the entire period 2002-01-02 until 
2014-04-15. The in-sample period from 2002-01-02 until 2010-12-30 consisted of 2,263 daily 
points and the out-of-sample period from 2011-01-03 until 2014-04-15 consisted of 826 daily 
points. In Figure B5 the daily closing price during the entire period is plotted. The in-sample 
period is plotted in blue and the horizontal red line indicates where the out-of-sample period 
starts which is then indicated by the black line. 
 

 
Figure B 5: OMXH25 daily index level from 2002-01-12 until 2014-04-15. In total there are 3,089 observations. 
The blue line represents the index level during the in-sample period and the vertical red line indicates where the 
out-of-sample period starts which is then represented by the black line. 

In Figure B6 the daily return for the in-sample period and the respective Sample 
Autocorrelation Function of lags 0 to 20 is presented. The Ljung-Box Q-test null hypothesis is 
rejected for lags 5 and 10 at a 5% significance level however the null hypothesis is not 
rejected for 15 lags. This still suggests that a conditional mean model is required for this 
return series as was required for the two former series.  
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Figure B 6: Left plot: Daily returns of OMXH25 from 2002-01-02 until 2010-12-30, which is the in-sample period 
consisting of 2,262 observations. Right plot: Sample Autocorrelation Function for the daily returns of lags 0 to 20 
and the 5% confidence level in blue. 

Figure B7 shows the daily squared returns for the in-sample period the respective Sample 
Partial Autocorrelation Function which, by ocular inspection, clearly shows significant 
autocorrelation. Engle’s ARCH test rejects the null hypothesis for lags 7 and 13 at a 5% 
significance level and thus confirms that the squared returns are serially correlated. 
 

 
Figure B 7: Left plot: Daily squared returns of OMXH25 from 2002-01-02 until 2010-12-30, which is the in-sample 
period consisting of 2,262 observations. Right plot: Sample Partial Autocorrelation Function for the daily returns of 
lags 0 to 20 and the 5% confidence level in blue. 

In Figure B8 two q-q plots are presented. The left plot is a q-q plot of the empirical 
distribution of the daily returns (y-axis) against the best fitted normal distribution (x-axis). 
The plot to the right is a q-q plot of the empirical distribution (y-axis) against the best fitted t 
location-scale distribution (x-axis). 
 
 

 
Figure B 8: Left plot: q-q plot of the empirical distribution (y-axis) against best fitted normal distribution (x-axis). 
Right plot: q-q plot of the empirical distribution (y-axis) against best fitted t location-scale distribution (x-axis). 
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The two q-q plots imply that the empirical distribution of the daily returns exhibit 
significantly heavier tails than the normal distribution which motivates the use of a more 
heavy-tailed distribution such as the t location-scale distribution. In Table B2 some summary 
statistics of the return series is presented. 
 

Table B 2: Summary statistics for OMXH25 daily returns in the in-sample period. 

 
Sample size Mean Variance Skewness Excess kurtosis Jarque-Bera 

OMXH25 2,262 0.00021855 0.00021217 0.00812616 7.242869425 1 
 
The Jargue-Bera test rejects the null hypothesis at the 5% significance level which implies, in 
line with the two other datasets, that the empirical distribution of the daily returns has 
significantly heavier tails than the normal distribution. 
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Appendix C: Moving Average 
 
In Figure C1 9 different simulated processes and their respective Moving Average with a 100 
step window is plotted. The simulated process is plotted in blue and the Moving Average is 
plotted in green. The ability to model changes in time can be seen by comparing the simulated 
process with its respective Moving Average. It is evident that when the simulated process is 
constantly increasing the moving average is underestimating the process and when simulated 
process is constantly decreasing the moving average is overestimating the simulated process. 
Furthermore the moving average has a similar pattern as the simulated process but is lagging. 

 
Figure C 1: Shows the Moving Average with a 100 step window for 9 different simulated processes. The 
simulated process is plotted in blue and the Moving Average is plotted in green. 

In Figure C2 the same simulated processes as in Figure C1 are plotted but now with their 
respective Moving Average with a 50 step window. The Moving Average with a 50 step 
window shows the same characteristic as was the case with a 100 step window, although there 
are a few differences. With a shorter window the moving average is not underestimating as 
much when the simulated process is constantly increasing and is not overestimating as much 
when the simulated process is constantly decreasing as was the case with a 100 step window. 
Furthermore the moving average is still lagging but not as much and reacts quicker to changes 
in the simulated process than was the case with a 100 step window. 
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Figure C 2: Shows the Moving Average with a 50 step window for 9 different simulated processes. The simulated 
process is plotted in blue and the Moving Average is plotted in green. 
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Appendix D: Empirical results 
 
Table D 1: Presents the in-sample and out-of-sample fit of the six compared volatility forecast models with 
OMXS30 as the underlying process and assuming a normal error distribution. Each of the three sub tables 
presents the results with different models for the conditional mean, more specifically zero mean, constant mean 
an AR(1) mean respectively( top to bottom). The first two columns in each of the sub tables AIC and BIC shows 
the Akaike and the Bayesian information criteria and measures the in-sample fit. The next 8 columns are different 
measures of the out-of-sample fit. The two columns under MZ regressions, r^2 proxy and Parkinson’s proxy 
shows the R squared of the Mincer-Zarnowitz regression using daily squared returns and Parkinson’s proxy 
respectively as the volatility proxy.  The r^2 proxy and Parkinson’s proxy under log regression similarly shows the 
R squared of the log regression using daily squared returns and Parkinson’s proxy respectively as the volatility 
proxy. The last four columns presents the values of the different loss functions used for each of the compared 
volatility models. In each column the “best” value is highlighted in green and the “worst” value is highlighted in red. 
For the AIC and BIC columns the lowest value corresponds to the best in-sample fit. For the four columns 
representing the R squared from a performed regression analysis the highest value corresponds to the best out-
of-sample fit. For the last four columns representing the compared loss functions the lowest value corresponds to 
the best out-of-sample fit. The last row in each of the three sub tables is simply the average value of the 
respective column. 
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Table D 2: Presents the in-sample and out-of-sample fit of the six compared volatility forecast models with 
OMXS30 as the underlying process and assuming a student t error distribution. Each of the three sub tables 
presents the results with different models for the conditional mean, more specifically zero mean, constant mean 
an AR(1) mean respectively( top to bottom). The first two columns in each of the sub tables AIC and BIC shows 
the Akaike and the Bayesian information criteria and measures the in-sample fit. The next 8 columns are different 
measures of the out-of-sample fit. The two columns under MZ regressions, r^2 proxy and Parkinson’s proxy 
shows the R squared of the Mincer-Zarnowitz regression using daily squared returns and Parkinson’s proxy 
respectively as the volatility proxy.  The r^2 proxy and Parkinson’s proxy under log regression similarly shows the 
R squared of the log regression using daily squared returns and Parkinson’s proxy respectively as the volatility 
proxy. The last four columns presents the values of the different loss functions used for each of the compared 
volatility models. In each column the “best” value is highlighted in green and the “worst” value is highlighted in red. 
For the AIC and BIC columns the lowest value corresponds to the best in-sample fit. For the four columns 
representing the R squared from a performed regression analysis the highest value corresponds to the best out-
of-sample fit. For the last four columns representing the compared loss functions the lowest value corresponds to 
the best out-of-sample fit. The last row in each of the three sub tables is simply the average value of the 
respective column. 
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Table D 3: Presents the in-sample and out-of-sample fit of the six compared volatility forecast models with 
OMXC20 as the underlying process and assuming a normal error distribution. Each of the three sub tables 
presents the results with different models for the conditional mean, more specifically zero mean, constant mean 
an AR(1) mean respectively( top to bottom). The first two columns in each of the sub tables AIC and BIC shows 
the Akaike and the Bayesian information criteria and measures the in-sample fit. The next 8 columns are different 
measures of the out-of-sample fit. The two columns under MZ regressions, r^2 proxy and Parkinson’s proxy 
shows the R squared of the Mincer-Zarnowitz regression using daily squared returns and Parkinson’s proxy 
respectively as the volatility proxy.  The r^2 proxy and Parkinson’s proxy under log regression similarly shows the 
R squared of the log regression using daily squared returns and Parkinson’s proxy respectively as the volatility 
proxy. The last four columns presents the values of the different loss functions used for each of the compared 
volatility models. In each column the “best” value is highlighted in green and the “worst” value is highlighted in red. 
For the AIC and BIC columns the lowest value corresponds to the best in-sample fit. For the four columns 
representing the R squared from a performed regression analysis the highest value corresponds to the best out-
of-sample fit. For the last four columns representing the compared loss functions the lowest value corresponds to 
the best out-of-sample fit. The last row in each of the three sub tables is simply the average value of the 
respective column. 

 

 
In Table D3 the R squared for the log regression based on the daily squared returns as a 
volatility proxy was zero when assuming a normal distribution and a zero mean. Thus the 
regression analysis failed to find any correlation between the volatility forecast and the 
volatility proxy. 
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Table D 4: Presents the in-sample and out-of-sample fit of the six compared volatility forecast models with 
OMXC20 as the underlying process and assuming a student t error distribution. Each of the three sub tables 
presents the results with different models for the conditional mean, more specifically zero mean, constant mean 
an AR(1) mean respectively( top to bottom). The first two columns in each of the sub tables AIC and BIC shows 
the Akaike and the Bayesian information criteria and measures the in-sample fit. The next 8 columns are different 
measures of the out-of-sample fit. The two columns under MZ regressions, r^2 proxy and Parkinson’s proxy 
shows the R squared of the Mincer-Zarnowitz regression using daily squared returns and Parkinson’s proxy 
respectively as the volatility proxy.  The r^2 proxy and Parkinson’s proxy under log regression similarly shows the 
R squared of the log regression using daily squared returns and Parkinson’s proxy respectively as the volatility 
proxy. The last four columns presents the values of the different loss functions used for each of the compared 
volatility models. In each column the “best” value is highlighted in green and the “worst” value is highlighted in red. 
For the AIC and BIC columns the lowest value corresponds to the best in-sample fit. For the four columns 
representing the R squared from a performed regression analysis the highest value corresponds to the best out-
of-sample fit. For the last four columns representing the compared loss functions the lowest value corresponds to 
the best out-of-sample fit. The last row in each of the three sub tables is simply the average value of the 
respective column. 

 

In Table D4 the R squared for the log regression based on the daily squared returns as a 
volatility proxy was zero when assuming a student t distribution and a zero mean. Thus the 
regression analysis failed to find any correlation between the volatility forecast and the 
volatility proxy. 
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Table D 5: Presents the in-sample and out-of-sample fit of the six compared volatility forecast models with 
OMXH25 as the underlying process and assuming a normal error distribution. Each of the three sub tables 
presents the results with different models for the conditional mean, more specifically zero mean, constant mean 
an AR(1) mean respectively( top to bottom). The first two columns in each of the sub tables AIC and BIC shows 
the Akaike and the Bayesian information criteria and measures the in-sample fit. The next 8 columns are different 
measures of the out-of-sample fit. The two columns under MZ regressions, r^2 proxy and Parkinson’s proxy 
shows the R squared of the Mincer-Zarnowitz regression using daily squared returns and Parkinson’s proxy 
respectively as the volatility proxy.  The r^2 proxy and Parkinson’s proxy under log regression similarly shows the 
R squared of the log regression using daily squared returns and Parkinson’s proxy respectively as the volatility 
proxy. The last four columns presents the values of the different loss functions used for each of the compared 
volatility models. In each column the “best” value is highlighted in green and the “worst” value is highlighted in red. 
For the AIC and BIC columns the lowest value corresponds to the best in-sample fit. For the four columns 
representing the R squared from a performed regression analysis the highest value corresponds to the best out-
of-sample fit. For the last four columns representing the compared loss functions the lowest value corresponds to 
the best out-of-sample fit. The last row in each of the three sub tables is simply the average value of the 
respective column. 
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Table D 6: Presents the in-sample and out-of-sample fit of the six compared volatility forecast models with 
OMXH25 as the underlying process and assuming a student t error distribution. Each of the three sub tables 
presents the results with different models for the conditional mean, more specifically zero mean, constant mean 
an AR(1) mean respectively( top to bottom). The first two columns in each of the sub tables AIC and BIC shows 
the Akaike and the Bayesian information criteria and measures the in-sample fit. The next 8 columns are different 
measures of the out-of-sample fit. The two columns under MZ regressions, r^2 proxy and Parkinson’s proxy 
shows the R squared of the Mincer-Zarnowitz regression using daily squared returns and Parkinson’s proxy 
respectively as the volatility proxy.  The r^2 proxy and Parkinson’s proxy under log regression similarly shows the 
R squared of the log regression using daily squared returns and Parkinson’s proxy respectively as the volatility 
proxy. The last four columns presents the values of the different loss functions used for each of the compared 
volatility models. In each column the “best” value is highlighted in green and the “worst” value is highlighted in red. 
For the AIC and BIC columns the lowest value corresponds to the best in-sample fit. For the four columns 
representing the R squared from a performed regression analysis the highest value corresponds to the best out-
of-sample fit. For the last four columns representing the compared loss functions the lowest value corresponds to 
the best out-of-sample fit. The last row in each of the three sub tables is simply the average value of the 
respective column. 
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