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Abstract

During the �nancial crisis that began in 2008, even whole countries and very large companies
defaulted or were on the verge of defaulting. The turmoil made risk managers and regulators
more vigilant in scrutinising their risk assessment. The probability of default (PD) is an essential
parameter in measuring counterparty credit risk, which in turn has impact on pricing of loans
and derivatives. The last decade, a method using Markov chains to estimate rating migrations,
migration matrices and PD has evolved to become an industry standard. In this thesis, a holistic
approach to implementing this approach in discrete and continuous time is taken. The results
show that an implementation in continuous time has many advantages. Also, it is indicated
that a bootstrap method is preferred to calculate con�dence intervals for the PDs. Moreover, an
investigation show that the frequently used assumption of time-homogeneous migration matrices
is most probably wrong. By studying expansions and recessions, speci�c expansion and recession
migration matrices are calculated to mitigate the impact of time-inhomogeneity. The results
indicate large di�erences of estimated PDs over the economic cycle, which is important knowl-
edge to be able to quote correct prices for �nancial transactions involving counterparty credit risk.
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Chapter 1

Introduction

During the recent years, the �nancial markets have been unusually volatile. In the turmoil of
the last �nancial crisis that began in 2008, many companies defaulted on their debt and thereby
caused huge credit losses to their counterparties. Furthermore, among the companies that did
not default there were many credit rating downgrades. A lower credit rating implies that the
probability of default has increased. This causes changes to their Credit Valuation Adjustment
(CVA), which is the market value of counterparty credit risk. The higher counterparty credit
risk, the more the protection against default of that counterparty should cost, e.g. in form of
a credit default swap. During the crisis even very large companies and whole countries, usually
seen as safe, were on the verge of defaulting or defaulted. This was something sellers of credit
default swaps had not priced in. The e�ects rippled through the closely entangled �nancial mar-
kets and a real fear of a system collapse spread. The system collapse never materialised, but
the crisis served as a wake-up call for many market participants who never would have thought
that something like that could happen. As a result, regulators, investors and participants in the
�nancial markets have become more vigilant in dealing with and assessing the credit risks that
they face when buying or selling contracts with other market participants.

There are many sources of risk for a �nancial company, usually divided into three major groups:
market risk, credit risk and operational risk. The amount of risk a company faces have an impact
on the bu�er capital that it is required by regulators to put aside as a cushion in case the risks
would materialise. One important input when measuring the credit risk is the probability of
default (PD) of a counterparty. This thesis will focus on credit risk and in particular PD. The
PD is also an important input when pricing loans and derivatives bought or sold to a speci�c
counterparty. If a value is exposed towards a counterparty (e.g. in form of a loan or derivative
contract), it requires putting aside bu�er capital to account for the loss given default of that
counterparty. Both the PD and the exposure are important when calculating loss given default.
Since capital has a cost in form of e.g. interest, it is more expensive to have exposures to coun-
terparties with high PD. This in turn a�ect the quoted prices. The impact on pricing is just
one of the reasons why it is important to companies in general, and �nancial companies such as
banks in particular, to have an accurate estimate of the PD of its counterparties.

There are di�erent ways of calculating or estimating the probability of default. As an example,
one can use market implied methods such as backing out the PD from credit spreads. Another
example is the Merton's structural model, where assets are modelled as a geometric Brownian
motion and debt as a single outstanding bond with a certain face value at a given maturity time
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CHAPTER 1. INTRODUCTION

T. If the value of the assets are less than the outstanding debt at time T, then a default is deemed
to have occurred. However, this thesis will focus on an approach that is widely used among risk
managers. The approach to be investigated uses the credit rating and its migrations to asses the
probability of default. Credit ratings are set by rating agencies such as Standard and Poor's or
Moody's, but larger banks and �nancial companies often have their own internal rating system
used on its counterparties.

In particular, rating migrations will be estimated using a Markov chain framework, where migra-
tion (transition) matrices are used to extrapolate the cumulative transition probabilities forward
in time. This approach has been around since the beginning of the 21st century, but has evolved
during the years. In short, this approach can be implemented in both discrete and continuous
time. One study that is often referred to is the work by Lando and Skødeberg (2002), where they
looked at di�erences between the discrete and continuous method. Also, articles such as the one
by Jafry and Schuermann (2004) have been published that suggest di�erent ways of comparing
transition matrices to each other. When a PD is estimated, it is also important to know how
accurate the estimate is. Work by Christensen et al. (2004) and Hanson and Schuermann (2005)
had a focus on trying to estimate con�dence intervals (CIs) for PDs. They also compared dif-
ferent methods of estimating CIs. One frequently used assumption is that the transition matrix
is time-homogeneous, which is indicated by later research to be a simpli�cation. Therefore, the
most recent research has been focused on testing the time-homogeneity assumption and trying
to mitigate inhomogeneities or model them. However, there is no consensus regarding how one
should account for time-inhomogeneity properly.

This thesis will have a focus on theory, problems and questions that arise when implementing a
Markov chain approach to estimating rating migrations and PDs in practice. Therefore, it will
take a holistic view on the whole implementation process, meaning it will touch upon many areas
that are research �elds in their own rights. First of all, a theoretical framework for the Markov
chain is presented, as well as its application to the credit migration framework. Theoretical
background to the tests performed will also be presented. The areas touched upon range from
how to handle data issues to comparing matrices with each other in discrete and continuous time
to suggesting a method aimed at mitigating the impact of time-inhomogeneity.

In more detail, some methodology is presented regarding adjustment of the data set. The data
set used in this thesis is of course not identical to what other researchers might use, but it still
provides useful comments on issues that has to be considered. Also, throughout the thesis, re-
sults from using a discrete and continuous calculation method will be compared. Moreover, the
full data sample will be divided into subsamples and tested to make sure that the estimated
transitions on average are dependent on rating rather than something company speci�c. One
approximation method of calculating in continuous time will also be examined to see how accu-
rate it is. If accurate, it could ease the implementation for those not using computer softwares
such as R or Matlab. Also, con�dence intervals will be calculated and compared using two
di�erent methods. As a part of a time-inhomogeneity investigation, di�erences between matrices
will be measured. The homogeneity assumption will also be statistically tested using a χ2 test
and a comparison of con�dence intervals. Moreover, the inhomogeneity investigation will also
be conducted on a subset containing companies from defensive sectors to see if that mitigates
impact of inhomogeneities. If so, it would suggest that it would be su�cient to only use a homo-
geneous migration matrix if exposed to that type of companies. If the homogeneity assumption
is accurate, then it would make risk managers' job easier. Finally, a study of cumulative PD
curves from annual migration matrices is undertaken to determine what data should be included
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CHAPTER 1. INTRODUCTION

when calculating expansion and recession migration matrices. The use of expansion and recession
matrices are thought to mitigate the impact of inhomogeneities, and will be further elaborated
on as a suggestion for further studies.

The analysis performed in this thesis shows that the continuous method is superior to the dis-
crete method in terms of e�ciently capturing migrations in the data. It also suggests that the
approximation method should only be used on time frames up to 1 year. The splitting into
subsets show that migrations on average are not dependent on company speci�c data. More-
over, the study on con�dence intervals suggest that a bootstrap approach is recommended to be
used, both in discrete and continuous time. The methods used in the time-inhomogeneity study
clearly shows that inhomogeneities are present, and that defensive sectors are exposed to inho-
mogeneities essentially to the same extent. Finally, the study on cumulative PD curves indicates
what years to be included in the expansion and recession migration matrices. The di�erences
between those two are rather striking, and shows the importance of taking time-inhomogeneity
into consideration for short-term counterparty exposures.

The outline of this thesis will be as follows: In chapter 2, the theoretical Markov chain framework
and its application to credit migrations will be presented. Chapter 2 will also contain some
theoretical tools used in testing, as well as an overview on previous research relevant for the
thesis. The theory from chapter 2 will later be applied and used on credit rating data. Chapter
3 describes the data set used, tabulating e.g. number of �rm years and non-diagonal movements.
Moreover, it describes the �elds of the data set and how observations are created. In chapter
4, the methodology used when implementing the theory on rating data will be presented. This
also includes necessary adjustments to account for certain issues that have occurred along the
implementation process. Examples are adjustments to overlapping observations and how to
handle defaults that recover. Furthermore, this chapter will contain information on methods to
calculate and test some of the results. In chapter 5 the results of this study will be presented
with comments describing the outcome. In chapter 6 there is a thorough discussion around the
interpretation of the results. Moreover, the main conclusions will be presented in chapter 6, as
well as some suggestions for further studies.
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Chapter 2

Theory and application

In this chapter, the necessary theoretical framework will be presented. At the end of the chapter,
there is an overview of some previous studies in research �elds relevant for this thesis.

2.1 Hypothesis testing

Statistical hypothesis testing is a method of statistical inference. Collected data is used to sta-
tistically determine which of either a null hypothesis or an alternative hypothesis is accepted in
favour of the other given a certain signi�cance level. The signi�cance level, often denoted α, is
the probability threshold below which the null hypothesis will be rejected. The null hypothesis
is commonly denoted as H0 and the alternative hypothesis is commonly denoted as H1.

There are di�erent ways to reject or accept a H0. One way is to use a relevant test statistic T
and calculate an observed test statistic tobs. Depending on the signi�cance level and what dis-
tribution the data is deemed to follow, T statistics and their values can be found tabulated. The
tobs is then calculated from data and depending on its value, the H0 is either rejected or accepted.

Another way is to calculate the p-value from the data. The p-value is the probability of having
taken the wrong decision when rejecting H0. Thus, if a calculated p-value is below the signi�-
cance level α, then H0 should be rejected.

Associated with hypothesis testing are the so called Type I error and Type II error, which can
be found explained in Table 2.1.

Table 2.1: Table explaining the Type I Error and Type II Error associated with hypothesis testing.

H0 is true H1 is true
Reject null hypothesis Type I Error Correct decision
Accept null hypothesis Correct decision Type II Error

A key part in using hypothesis testing is to meticulously de�ne H0 and H1, so that the resulting
rejection/acceptance of H0 is meaningful to the investigated property.
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2.1. HYPOTHESIS TESTING CHAPTER 2. THEORY AND APPLICATION

Con�dence intervals

One use of con�dence intervals is to be able to determine how certain a speci�c estimation is.
As an example, a 95% con�dence interval of a parameter is the interval where 95% of the values
or outcomes from this parameter will be. Con�dence intervals can also be used to determine
whether two estimates of the same parameter are statistically di�erent from each other or not.
These are the two main purposes that con�dence intervals will be used in this report. Moreover,
two di�erent methods to calculate con�dence intervals will be used and are presented immedi-
ately below. One method is the Wald con�dence intervals, and the other is a bootstrap method.
Finally, a short description of the Kolmogorov-Smirnov two-sample test will be presented. The
test is used later in Appendix B to compare Wald con�dence intervals to their bootstrapped
counterparts.

Wald con�dence interval

The Wald con�dence interval is an analytic con�dence interval where the underlying assumption
is that the observed variable follows a binomial distribution.

As a relevant example, let the random variable X be such that it describes if a company defaults
or not. This random variable can in discrete time be assumed to follow a binomial distribution.
If n is the number of trials, and PD is the probability of default for one time step, then the
expected value µ of defaulted companies after one time step is n · PD. Moreover, the variance
σ2 is n · PD(1− PD).

Now consider a situation where we have an observed sample of independent and identically
distributed Xis of size n. The Xis have mean µ and variance σ2 and we are interested in
estimating the Xis sample mean, i.e. the estimated probability of default P̂D. Then

P̂D =
X1 +X2 + · · ·+Xn

n
(2.1)

For large enough n, the Central Limit Theorem (CLT) states that the distribution of P̂D is close
to the normal distribution with mean µ and variance σ2

n . The µ and σ2 describe the mean and
variance of Xi. In the case of estimating the sample mean, i.e. the probability of default, then
according to the CLT P̂D follow the normal distribution below.

P̂D ∼ N

(
P̂D,

P̂D(1− P̂D)

n

)
(2.2)

The construction of a (1 − α)% con�dence interval for P̂D is now straight forward. The Wald
con�dence interval, CIW is then

CIW ± κ

√
P̂D(1− P̂D)

n
(2.3)

where κ is the (1− α
2 ) quantile of the standard normal distribution.
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2.2. THE MARKOV CHAIN MODEL CHAPTER 2. THEORY AND APPLICATION

Bootstrapped con�dence interval

Consider the case where a sample of observed values exists, but it is unknown what distribution
they follow. When there is no analytical way to calculate con�dence intervals, one option is to
use a resampling method called bootstrapping. The empirical distribution of observed values
can then be chosen to serve as an approximation of the true distribution, from which values are
drawn with replacement. The bootstrapping technique allows for estimation of the accuracy of
some distribution parameter, such as the sample mean. This can then can be used to calculate
e.g. con�dence intervals.

The standard bootstrapping procedure is the one used in this thesis to estimate con�dence
intervals for the probability of default. Consider having a sample of n observations. Then, out of
the original sample, observations are drawn with replacement one at the time to construct a new
sample of size n. The new sample gives an estimate of the PD. Then this procedure is repeated
N number of times to get N estimates of the PD. These N values now form an estimate of the
PD's distribution. Constructing a (1− α)% two-sided symmetric con�dence interval out of this
distribution is done by simply ordering the values from the lowest to highest and choosing the
α
2 percentile and the (1− α

2 ) percentile.

Kolmogorov-Smirnov

The two-sample Kolmogorov-Smirnov (K-S) test can be used to statistically test whether two
samples follow the same distribution. The mathematical proof behind the test is not within the
scope of this thesis, but an outline of how to use it in hypothesis testing is outlined immediately
below.

Let F1,n(x) and F2,n′(x) be the cumulative distribution functions of the two samples with size
n and n′, respectively. A set of distances between F1,n(x) and F2,n′(x) is obtained by simply
calculating |F1,n(x) − F2,n′(x)|. Then, the test statistic Dn,n′ used is the supremum, or loosely
speaking the maximum, of the set of di�erences.

Dn,n′ = sup
x
|F1,n(x)− F2,n′(x)|

The concept behind the test is that if F1,n(x) and F2,n′(x) follow the same distribution, then
the Dn,n′ should converge to 0 as n goes to in�nity. The null hypothesis that the two samples
follow the same distribution is rejected if

Dn,n′ > c(α)

√
n+ n′

nn′
(2.4)

where c(α) can be found tabulated for di�erent signi�cance levels α.

2.2 The Markov chain model

In this section, de�nitions and aspects of the Markov chain theory will be presented. If the
reader is familiar with Markov chain theory, then it is possible to jump to section 2.3 where the
framework is applied.
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2.2. THE MARKOV CHAIN MODEL CHAPTER 2. THEORY AND APPLICATION

2.2.1 Markov chain

De�nition 2.1: (Markov chain)

A Markov chain is a stochastic process {Xi}i≥0 that forms a sequence of random variables
X0, X1, ..., with outcomes x0, x1, ... on the �nite or countable set S that satis�es the Markov
property.

De�nition 2.2: (State space)

The �nite or countable set S forms the state space of the Markov chain, i.e. the set of possible
outcomes of Xi. Each possible outcome xi ∈ S is called a state.

De�nition 2.3: (Markov property)

For a stationary discrete Markov chain, satisfying the Markov property means that

Pr(Xn+1 = x | X0 = x0, X1 = x1, ..., Xn = xn) = Pr(Xn+1 = x | Xn = xn)

for all stages n and all states x0, x1, ..., xn+1.

Thus, the next stage n + 1 only depends on the stage n, creating serial dependence on the ad-
jacent stage as in a "chain". Note the di�erence between stages and states; stages are the steps
with which the Markov chain progresses, whereas the states are the possible outcomes in each
stage.

The Markov property is sometimes referred to as the �rst order Markov condition, or that a
sequence is memoryless.

De�nition 2.4: (Stationarity or Time homogeneity)

The term stationary Markov chain, in a time setting sometimes referred to as a time-homogeneous
Markov chain, implies that

Pr(Xn+1 = a | Xn = b) = Pr(Xn = a | Xn−1 = b) (2.5)

Thus, the transition probability is independent of the stage n. Note however that a time-
homogeneous Markov chain is not independent of the length between stages. In a time setting
where the stages are time points, this would mean that the Markov chain is independent over
time, but not independent of time step length. Naturally, the shorter time step, the less probable
it is that the stochastic process has moved during that time.

De�nition 2.5: (Transition probability)

The transition probabilities are de�ned as follows:

Pr(X1 = j | X0 = i) = pij and Pr(Xn = j | X0 = i) = p
(n)
ij

corresponding to the single-step transition probability and the transition probability in n steps,
respectively. More speci�cally, pij is the probability of making a transition (moving) from state
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2.2. THE MARKOV CHAIN MODEL CHAPTER 2. THEORY AND APPLICATION

i to state j. In a time setting, each step n could be de�ned as e.g. one year. Then pij would be
the probability of transitioning from state i to state j in one year's time.

De�nition 2.6: (Transition matrix)

For a �nite state space S, we now de�ne the transition matrix P over N states as

P =


p11 p12 · · · p1N
p21 p22 · · · p2N
...

...
. . .

...
pN1 pN2 · · · pNN



where the entries pij are transition probabilities as in De�nition 2.5: Transition probability.

Theorem 2.1: (Properties of the transition matrix)

a)
∑N
j=1 pij = 1 for i = 1, 2, ..., N

b) pij ≥ 0 ∀ i, j = 1, 2, ..., N

The claim in a) follows from the de�nition of pij , since the sum of the probabilities of either
staying in the current state or moving to any other state in the state space must be equal to one.
The claim in b) is obvious since the pijs are probabilities and therefore non-negative.

Theorem 2.2: (Stage transitions)

Let P (n) be the matrix containing all the state transition probabilities pij , i = 1, 2, ..., N ,
j = 1, 2, ..., N at stage n. Then, following Enger and Grandell (2006),

a) P (m+n) = P (m)P (n) m,n ∈ N
b) P (n) = Pn n ∈ N

The formula in a) means that the transition matrix P at stage m+ n is the same as multiplying
the transition matrix at stage m with the transition matrix at stage n. Note that since m and
n are non-negative, it is not possible to run this process backwards through stages or time points.

The formula in b) means that the transition matrix in stage n is obtained by multiplying the
one-step (from stage 0 to stage 1) transition matrix P by itself n times. This gives us the tools
to calculate transition matrices forward throughout the stages. In a time setting, each stage
represents a speci�c time point, i.e. multiplying P with itself shows the transition probabilities
forward in time at di�erent time points. Transitioning through time is an essential result used in
thesis. Moreover, the statements in a) and b) are not very intuitive, therefore the proof is found
immediately below.

Proof:
a) We prove a) by showing that the elements of P (m+n) are obtained by a matrix multiplication
of P (m) and P (n). I.e. for any states i, j in the state space S

8



2.2. THE MARKOV CHAIN MODEL CHAPTER 2. THEORY AND APPLICATION

p
(m+n)
ij =

∑
k∈S

p
(m)
ik p

(n)
kj (2.6)

where the right-hand side of equation (2.6) is in fact the result of multiplying row i in P (m) onto
column j in P (n). The whole matrix multiplication and thereby the P (m+n) matrix is obtained
by varying i and j. One can also think of the rationale behind the equation (2.6) as follows:
Assume we want to calculate the probability of transitioning from state i to state j in (m + n)
steps. That probability is the sum of all possibilities of transitioning from state i to an arbitrary
intermediary state k in m steps, and then onward from k to state j in n steps. This is precisely
equation (2.6). We get

p
(m+n)
ij = Pr(Xm+n = j | X0 = i) =

∑
k∈S

Pr(Xm = k,Xm+n = j | X0 = i) =

=
∑
k∈S

Pr(Xm = k | X0 = i)Pr(Xm+n = j | Xm = k,X0 = i) =

= {Markov property} =
∑
k∈S

Pr(Xm = k | X0 = i)Pr(Xm+n = j | Xm = k) =

=
∑
k∈S

p
(m)
ik p

(n)
kj

�

b) We can rewrite

P (n) = P (n−1+1) = {Theorem 2.2a)} = P (n−1)P (1) = P (n−1)P 1 =

= P (n−2)P 2 = · · · = Pn

�

As mentioned, when combining a) and b) we see that by simply multiplying the transition matrix
by itself m times, the transition probabilities for the next m stages are obtained. Note also that
P 0 = I (the identity matrix).

Theorem 2.3: (State distributions) Let p̄(n)i be the vector containing row i of P (n). I.e. the
transition probability distribution for state i at stage n. Then

p̄
(n)
i = p̄

(0)
i Pn (2.7)

which describes that the transition probability distribution for state i at stage n is obtained by
multiplying the distribution for state i at stage 0 with the transition matrix for stage n. Since

p̄
(0)
i = [00 · · · 010 · · · 0] ∈ 1×N

where N is the number of states and the 1 is at column i, this shows that p̄(n)i is obtained by
extracting row i from Pn.

9
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Proof:

p̄
(n)
i = Pr(Xn = i) = {Law of total probability} =

=
∑
k∈S

Pr(X0 = k)Pr(Xn = i | X0 = k) =
∑
k∈S

p̄
(0)
i p

(n)
ki =

= p̄
(0)
i P (n) = {Theorem 2.2 b)} = p̄

(0)
i Pn

�

Discrete-time Markov chain

For a discrete-time Markov chain (DTMC) each stage n corresponds to certain given time points,
with constant time step between them. As an example, one can let the time between two time
points (stages) be 1 year, so that pij(1) denotes the probability of moving from state i to state
j in one year's time. In general, the probability of transitioning from state i to state j during a
time t, will be denoted pij(t). The transition matrix over a time t will be denoted P (t).

When talking about Markov chains in a time setting we will henceforth talk about stages in the
chain as time points and also call the di�erence between two stages one time step.

Continuous-time Markov chain

For a continuous-time Markov chain (CTMC), some additional theoretical framework is needed.
Instead of considering transition probabilities at �xed time points as in the discrete framework,
we now consider a stochastic variable T , the time spent in each state. Moreover, instead of
transition probabilities for a �xed time step, we are now considering transition rates. The larger
the transition rate, the sooner in time the transition is expected to take place. In the continuous
case, the time spent, T , in each state follows an exponential distribution, with the transition rate
as rate parameter.

To clarify the di�erence between discrete and continuous time Markov chains, one can think of
how each chain would be simulated. In the discrete case, each state would have certain �xed
probabilities to have transitioned to other possible states (including the current state) at a �xed
future time point. The total probability (including staying in its current state) is of course 1.
Thus taking a random number between 0 and 1 could simulate in which state the process will
be at the next �xed time point.

For the continuous case, each possible state would be associated with a certain transition rate.
To simulate the Markov chain's movements through time, one simply calculate a realisation of
the stochastic time spent in its current state before it transitions to each of the other possible
states. Thus, a "time spent" T1, ..., TN will be obtained for each other possible state 1, ..., N .
The shortest time min{T1, ..., TN} will decide to which state the Markov chain transitions into,
and how long it takes before that happens.

Thus, the discrete Markov chain will be said to be in certain states at certain �xed time points,
whereas the continuous time Markov chain will move between the states at irregular times.
Furthermore, when using the discrete time Markov chain we want estimates of the transition
probabilities, whereas estimates of the transition rates are desired for the continuous time Markov

10
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chain. If the transition rates for a CTMC are available, then one can also calculate how the
transition probabilities change in continuous time.

Theorem 2.4: (Continuous stage transitions)

A useful result, which is the continuous version of Theorem 2.2: Stage transitions (and proven
similarly) is that

P (t+ s) = e(t+s)Q = P (t)P (s) (2.8)

Where Q is the generator matrix, as de�ned immediately below.

De�nition 2.7: (Generator matrix)

Let {Xt}t≥0 denote the CTMC, which is a stochastic process in continuous time satisfying the
Markov condition. Let P (t) be the transition matrix in continuous time, S the state space as in
De�nition 2.2 and Q the transition rate matrix. Q is sometimes also referred to as the intensity
matrix, the in�nitesimal generator matrix or simply generator matrix.

Q =


q11 q12 · · · q1N
q21 q22 · · · q2N
...

...
. . .

...
qN1 qN2 · · · qNN


where the elements qij denotes the rate at which the process transitions from state i to state j.
A more detailed derivation and description of qij and qii is given in Theorem 2.6: Generator and
transition matrix relation. The elements pij of P (t) are de�ned as Pr(Xt = j | X0 = i), similar
to the discrete case.

Theorem 2.5: (Properties of the generator matrix)

The intensity matrix Q should satisfy the following properties:

1. 0 ≤ −qii ≤ ∞

2. qij ≥ 0 for all i 6= j

3.
∑
j qij = 0 for all i ⇐⇒ qii = −

∑
j qij for all i 6= j

Theorem 2.6: (Generator and transition matrix relation)

Consider a time step h. Following the derivations outlined in Enger & Grandell (2006), it follows
from the de�nition of intensities that

qij = lim
h→0+

pij(h)− 0

h
i 6= j

qii = lim
h→0+

pij(h)− 1

h

11
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or in matrix form:

Q = lim
h→0+

P (h)− I
h

(2.9)

Noting that P (0) = I, the de�nitions of qij , qii and Q are the derivatives of pij , pii and P with
respect to time.

From Theorem 2.4: Continuous stage transitions, we get that

P (t+ h) = P (t)P (h) = P (h)P (t)

or equivalently

P (t+ h)− P (t) = P (t)(P (h)− I) = (P (h)− I)P (t)

Dividing by h and letting h→ 0+ yields

P ′(t) = P (t)Q = QP (t) (2.10)

These are called the Kolmogorov forward and Kolmogorov backward equations, respectively.
The Kolmogorov forward and backward equations are �rst order di�erential equations, with
unique solution

P (t) = etQ (2.11)

Note that etQ is a matrix exponential, de�ned as the power series etQ ≡
∑∞
k=0

(tQ)k

k! .

Theorem 2.7: (In�nitesimal de�nition of CMTC)

The in�nitesimal de�nition of the CTMC is as follows:

Assume that the stochastic process Xt is in state i at time t. Then for h → 0 and s < t, Xt+h

is independent of Xs and

Pr(Xt+h = j | Xt = i) = δij + qijh+ o(h)

where o(h) denotes the little-o notation, which implies that the function o(h) goes towards 0

faster than h itself, i.e. limh→0+
o(h)
h = 0. The δij is the Kronecker delta de�ned as

δij =

{
1 for i = j
0 for i 6= j

Thus, for h small enough
Pr(Xt+h = j | Xt = i) ≈ δij + qijh (2.12)

or in migration matrix form
P (h) ≈ I +Qh (2.13)

Note the similarity with the intensity de�nition in eq. (2.9). One bene�t of this approximation
is that it allows for computation of the migration matrix P a small time step into the future via
the generator matrix Q without using the in�nite series of a matrix exponential.

12
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2.2.2 Some properties of the Markov chain

In this section, some properties of the Markov chain that later might be referred to will be de�ned.

Accessibility: A state j is said to be accessible from a state i if there is a non-zero probability
for a system starting in state i to eventually transition into state j. This is denoted i→ j. Note
that the process is allowed to pass through several other states along the way.

Communication: A state i is said to communicate with a state j if i → j and j → i. This
is denoted i ↔ j. A set of states C is said to de�ne a communicating class if all states in C
communicates with each other and no state in C communicates with any state outside C.

Irreducibility: A Markov chain is said to be irreducible if it is possible to get to any state from
any state, i.e. if the Markov chain state space forms one single communicating class.

Transiency: A state i is said to be transient if there is a non-zero probability that the Markov
chain never will return to state i. If a state is not transient, then it is said to be recurrent.

Absorbing: A state i is said to be absorbing if it is impossible to leave the state, i.e. if pii = 1
and pij = 0 for i 6= j. If every state can reach an absorbing state, then the Markov chain is an
absorbing Markov chain.

Periodicity: A state i is said to be periodic with period k if any return to state i must occur
in multiples of k time steps, for k > 1. If k = 1 then it is said to be aperiodic, and returns to i
can occur at irregular times.

2.3 Credit migration matrices

Credit migration matrices are used to describe and predict the movement that a company (or
other rated assets such as bonds) takes through di�erent credit rating classes. This report is,
however, focuses on the credit migration of companies. Studying credit migration matrices is at
the very heart of credit risk management. The publicly available reports on rating migrations
published by Standard & Poor's (S&P) and Moody's are studied frequently by risk managers
[16] and rating migration matrices are very important input in many credit risk applications. It
is therefore crucial to get an accurate estimation of the migration matrix.

In this chapter the Markov chain theory will be used to show how one can build up a theoretical
framework around credit migration. Di�erent methods of estimating credit migration matrices
in discrete and continuous time will be presented and compared, as well as further theory and
information regarding the rating input and default de�nitions.

2.3.1 Applying the Markov chain model

The state space S consists of the di�erent credit ratings available. E.g. for S&P's ratings
S ={AAA, AA, A, BBB, BB, B, CCC, CC, C, D}, where ratings AA through CCC can be
modi�ed with (+/−) to show the relative standing within the rating category. Let N be the
number of states for the chosen credit rating framework, i.e. the number of possible ratings. Let
M denote the migration matrix. M corresponds to the transition matrix P in the Markov chain

13
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theory, where entries pij in the rating migration framework denotes the probability of making a
transition from rating (state) i to rating (state) j during the speci�ed time period.

Also, let G denote the generator matrix, i.e. the matrix corresponding to Q in the CTMC frame-
work. The entries qij are de�ned analogously, where the states i and j in the rating migration
setting are two di�erent ratings.

The default state D is often assumed to be absorbing, so that once a company has entered that
state it cannot leave. Praxis is to have the highest rating furthest to the left and then let them
descend towards the lowest rating, D, in the rightmost column. Thus

M =


p11 p12 · · · p1(N−1) p1N
p21 p22 · · · p2(N−1) p2N
...

...
. . .

...
...

p(N−1)1 p(N−1)2 · · · p(N−1)(N−1) p(N−1)N
0 0 · · · 0 1


and

G =


q11 q12 · · · q1(N−1) q1N
q21 q22 · · · q2(N−1) q2N
...

...
. . .

...
...

q(N−1)1 q(N−1)2 · · · q(N−1)(N−1) q(N−1)N
0 0 · · · 0 0



If the default state is absorbing it will eventually (given enough time) cause all companies to
end up in default. As mentioned by Jafry & Shuermann (2003), the time it takes for a credit
migration process to end up close to its steady-state is very long in economic terms. It also
relies on assumptions such as time-inhomogeneity of the migration matrix, which is questionable
over longer time periods. In reality the economic conditions change, and thereby altering the
migration matrix, long before a default steady-state implied by an assumed constant migration
matrix occurs.

There are di�erent methods of estimating the entries of the M matrix. The two most commonly
used and referred to are the so called cohort (discrete time) and duration (continuous time)
methods. This thesis will focus solemnly on these two.

2.3.2 The cohort method

Let t0, t1, ..., tn be discrete time points such that an arbitrary time interval tk+1 − tk = ∆tk,
where ∆tk is constant. As described by Christensen et al. (2004), the estimator of pij(tk) over
one time period is then

p̂ij(tk) =
nij(∆tk)

ni(tk)
(2.14)

where nij(∆tk) is the number of companies that have moved from state i to state j between time
tk and tk+1, and ni(tk) are the number of companies in state i at time tk.
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If we further assume that the Markov chain considered is time-homogeneous and that data is
available from time t0 to time tN then e.g. Christensen et al. (2004) have shown that the
Maximum Likelihood (ML) estimator is

p̂ij =

∑N−1
k=0 nij(∆tk)∑N−1
k=0 ni(tk)

(2.15)

The above equation (2.15) describes averaging of the transition probability estimators found in
all N time periods of length ∆tk.

From the properties of the migration matrix, Theorem 2.1 a), we know that

p̂ii = 1−
∑
j 6=i

p̂ij (2.16)

The estimations of pij and pii then form the migration matrix M(∆tk) for the time window ∆tk
used. If ∆tk = 1 (year), then M(1) is the 1-year migration matrix. The assumption of time-
homogeneity is used to aggregate and extrapolate transitions and probabilities over di�erent
time periods. To calculate migration probabilities over a 2.5 year interval, extrapolation through
matrix multiplication is needed and then one has to interpolate between year 2 and year 3.

If the assumption of time-homogeneity is removed, one can still estimate pij for a speci�c time
period [t, T ] by

p̂ij(t, T ) =
nij(t, T )

ni(t)
(2.17)

where the nij is the number of companies that have migrated from state i to state j during the
time interval [t, T ] and ni is the number of companies in rating category i at time t. However,
this type of estimate is not straight forward to aggregate or extrapolate.

Noteworthy is also that there are of course cases where companies go from being non-rated to
receiving a rating within a time period, and also a rating withdrawal of a company in the data
sample. In the cohort method, there is often the assumption that these types of events are non-
informative and the rating data for a�ected companies is therefore excluded from the sample at
those particular times.

2.3.3 The duration method

Following Lando & Skødeberg (2002), one can obtain the ML estimation of M by �rst obtaining
the ML estimation of generator matrix G and then applying the matrix exponential function on
this estimate, scaled by time horizon.

Under assumption of time-homogeneity, the ML estimator of elements qij between time t and T
in G is given by

q̂ij(t, T ) =
nij(t, T )∫ T
t
Yi(s)ds

for i 6= j (2.18)
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Where nij(t, T ) is the total number of companies that have migrated from state i to state j
during the time period [t, T ] and Yi(s) is the number of companies in rating class i at time s.

From the properties of the generator matrix (see Theorem 2.5) we get that

q̂ii = −
∑
j 6=i

q̂ij ∀ i (2.19)

The estimations of qij and qii form the elements of the generator matrix G, from which the
migration matrix for an arbitrary time t, M(t), is calculated as

M(t) = etG =

∞∑
k=0

(tG)k

k!
= I + (tG) +

(tG)2

2!
+ · · · (2.20)

Just as with the cohort method, disregarding time-homogeneity in the duration method is not
straight forward and requires more theoretical and empirical work. Transitions to and from the
unrated category are seen as non-informative.

2.3.4 Comparison of the cohort and duration methods

One drawback with the cohort method is that the estimators give probability zero to an event
if there are no records of such an event in the data. As mentioned in Lando (2004), this makes
the estimators poor in capturing rare events.

The advantages of choosing the duration method over the cohort method have been mentioned
in a number of papers, e.g. Lando & Skødeberg (2002). As stated earlier, the cohort method as-
signs zero probability to events not present in the data. However, by using the duration method
and the generator matrix one gets small but non-zero probability for these events. It is of course
relevant from a risk perspective to be able to capture rare events even if they are not present in
the data set.

Another bene�t from using the duration method is that there is no problem with the so called
embedding problem. The embedding problem is the problem of �nding a generator G that is
consistent with M , i.e. that M(t) = etG exactly. The problem occurs because not every discrete
Markov chain can be realized as a continuous-time chain interpolated from a discrete transition
matrix. Israel et al. (2001) states some conditions under which a generator G does not exist,
and the problem is further elaborated on in Lando (2004). One of the conditions in Israel et al.
(2001) occurs frequently with real data, and that is:
There exists states i and j such that i→ j, but pij = 0.

This is not reasonable since a continuous Markov chain must have either pij ≥ 0 for all t, or
pij = 0 for all t. As stated in Lando (2004), what can happen over a period of time may also
happen over arbitrarily small periods of time.

A further bene�t of using the duration method is that e.g. the cumulative probability of default
for an arbitrary time t can be calculated directly through the formula M(t) = etG. It also allows
to calculate the cumulative probability of default down to a speci�c day (depending on data used
in estimations), whereas interpolation is inevitable with the cohort method. This is of course
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good for practical purposes.

Furthermore, the duration method allows use of an arbitrary length of the estimation window
no matter the time period length of the desired migration matrix. This is not the case with the
cohort method, where e.g. 1-year estimation window(s) are used to estimate a 1-year migration
matrix. One could technically choose to mimic this duration method bene�t with the cohort
method by estimating and interpolating a large amount of 1-day migration matrices, however
this is not very practical.

Finally, the duration method captures migrations in continuous time. One example can be that
non-rated companies gets a rating and enters the data set, then the Yi(s)-term in equation (2.18)
"reacts" to this faster. It also better captures how many companies there are in a certain rat-
ing class i, since there is a time integral looking at actual time spent in the rating class rather
than a �xed observation of the number of �rms at the start of an estimation window. Therefore
the duration method more e�ciently uses all the data in the data set. The ability to choose
estimation window arbitrarily with the duration method further enhances the e�ciency from a
practical point of view.

One potential drawback with the duration method is that calculating the matrix exponential
etG requires calculating an in�nite series expansion, which is not possible in practice. It can
also be cumbersome if someone is forced to use lesser re�ned computer programs. Computer
software such as Matlab have very accurate approximations of matrix exponentials that are
fast to compute. However, if one have to use e.g. Excel (that has no fast approximation of the
matrix exponential), a remedy to the somewhat unwieldy in�nite series expansion might be the
in�nitesimal de�nition of the CMTC, as de�ned in Theorem 2.7. This is because it allows calcu-
lation of a migration matrix from a generator matrix without using the in�nite series expansion.
Later on, the impact on the estimated results will be examined when using the exact de�nition
compared to the in�nitesimal de�nition (which is an approximation).

2.3.5 Default de�nition

The de�nition of default may have some di�erences between companies, but the European Union
and the Basel Committee publishes legislative acts and regulations on how to calculate certain
capital requirements and when to conclude that an obligor is in default. In Regulation (EU) No
575/2013,[6], one can under Article 178 �nd a de�nition of when a default should be considered
to have occurred.

To put it simple, an institution should consider a default to have occurred if:

a) the obligor is unlikely to pay its credit obligations (principal, interest or fees) to the institution
in full

b) the obligor is past due more than 90 days on any material credit obligation to the institution.

Another way to de�ne a default when dealing with swaps and derivative contracts is to look at
what is said to be a "credit event" that would trigger a settlement under a Credit Default Swap
(CDS) contract. These events are stated in the International Swap Dealers Association (ISDA)
agreements. The most common credit events (see [18]) are the following:
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i) Bankruptcy - The entity has �led for relief under bankruptcy law (or equivalent law)

ii) Failure to pay - The reference entity fails to make interest or principal payments when due,
after grace period expires (if grace period is applicable)

iii) Debt restructuring - The con�guration of debt obligations is changed in such a way that the
credit holder is unfavourably a�ected (maturity extended and/or coupon reduced)

The take-away point from these de�nitions is that, depending on the internal de�nitions, reasons
that a company defaults may vary. A default may occur for reasons ranging from suspicion of
not being repaid in full or being late with payments to �ling a bankruptcy. With this in mind,
there is the possibility that a company that has been given a default rating may recover and
receive a performing rating again. This, of course, contradicts the assumption that the default
state is absorbing, which is further elaborated on in chapter 4.3.

2.3.6 Understanding the rating input

In this report, probability of default will be estimated using credit rating input from a wide
range of di�erent companies. Even if one were to make some adjustments later on due to macro
conditions or company pro�le, it is relevant to know how the rating input is determined to begin
with. Understanding the rating input might also help to interpret the results.

There are two important distinct classi�cations of rating systems; through-the-cycle (TTC) and
point-in-time (PIT).

The PIT rating describes the actual creditworthiness of a company for a certain time period.
This makes it dependent on e.g. macroeconomic cycles, since obviously the rating should gener-
ally be better for a majority of companies (and PD less) if there are good times ahead compared
to if there is a recession ahead. The PIT rating should evaluate all available information at the
time, and then set a PD that is constant over the considered time period ahead.

If a rating is TTC, the aim is that companies should have the same rating through the whole
economic cycle. As mentioned in Andersson & Vanini (2010), the TTC ratings are sometimes
referred to as stressed ratings since they should stay the same over time, especially during a
period of �nancial distress. In contrast to the PIT PD, the TTC PD should vary over time for
a certain rating grade.

Thus, one expects a migration matrix where the ratings are TTC to be heavier on the diagonal
than the corresponding migration matrix estimated with PIT ratings. Therefore, one should
in theory see more migrations between performing (non-defaulted) ratings in a PIT migration
matrix over time, whilst the PIT PD should change little over time. On the other hand the op-
posite is reasonable for a TTC migration matrix, i.e. not that many observations of movements
between rating grades, but a movement of the PD over time within each rating class.

In reality though, most rating models are a mix between the two and it is of course very hard to
get a model to be 100% TTC.
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There is also a di�erence between calculated and approved ratings. Calculated rating is some-
thing that a model suggests based on input parameters. However, often an expert judgement can
override the quantitatively set rating. The expert might take into account other more soft values
about the company's management, or in other ways use his or hers deeper knowledge about the
company in question. The impact of this is however not the focus of this report.

Finally, there might be di�erent rating models that feeds rating data to the same database. The
level TTC versus PIT may not always be determined for each speci�c model and it may also vary
between the models. The reasons for having di�erent rating models is of course that di�erent
companies might need to have di�erent input parameters or parameter weights. Nevertheless,
the goal of the di�erent rating models is the same, namely to estimate an as accurate rating
as possible. Therefore, the actual ratings should not behave particularly di�erent between the
models. However, it is still important to keep in mind in case there are some special limitations
to a certain model.

2.4 Time-inhomogeneity

One often made assumption is that the Markov process is time-homogeneous. That implies that
the migration matrices will stay the same over time, which makes the estimations easy to ex-
trapolate.

However, there is evidence that rating migrations are not time-homogeneous. The degree of
PIT/TTC is one explanation but there may be other reasons as well. For instance, rating mod-
els develop over time and becomes more sophisticated and better to discriminate between good
and bad borrowers. Both Bangia et al. (2002) and Rachev & Trueck (2009) shows that default
rates vary over time, and that di�erent migration matrices are obtained if they are estimated dur-
ing recession or expansion. Also the Annual Global Corporate Default Study from Standard &
Poor's shows that the default rates vary a lot over time (see e.g. Chart 21 in the 2012 report [24]).

Even though evidence of time-inhomogeneity has been present in the academic literature for
some time, there is no standard way to try to mitigate or account for it. In this report, the
internal data set will be tested for time-inhomogeneity.

2.5 Short on previous studies

This section will brie�y go through the evolution of some previous studies within the �eld of
credit migrations related to this thesis.

In their work on credit risk spreads, Jarrow, Lando and Turnbull (1997) were the �rst to model
transition probabilities and defaults using a Markov chain framework on a �nite state space that
represented di�erent rating classes. Their work increased the attention on using transition ma-
trices and Markov chains to model credit migrations. Already at this time, a generator matrix
was proposed to create a homogeneous Markov chain in continuous time.

In 2001, Israel, Rosenthal and Wei published an article on how to �nd generators for Markov
chains via empirical transition matrices. Their article focus much on when a generator exist. As
an example, they found and formulated conditions regarding the so called embedding problem.
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That means a generator matrix does not exist in certain cases, and therefore cannot be computed
via the relation M(t) = etG. This is discussed more in section 2.3.4.

Lando and Skødeberg published their article Analyzing rating transitions and rating drift with
continuous observations in 2002, which has been frequently referred to in later research. In
their article, they look at both discrete and continuous time Markov chains and describe some
di�erences. They also note that the embedding problem often occurs in real data. Moreover,
they �nd evidence of non-Markov behaviour such as rating drift. One reason to rating drift can
be that rating agencies are reluctant to downgrade several rating grades at one time, but rather
downgrade the rating one step two or three times in a rather short interval. Rating drift is not
the focus of this thesis, but is alongside time-inhomogeneity a topic that has been popular to
investigate in more recent times. Note that a non-Markov behaviour causes time-inhomogeneity,
which is a somewhat broader area.

Bangia, Diebold and Schuermann publish an article in 2002, focused on rating migrations through
the business cycle. They try to reject the Markov assumption through eigenvalue analysis, but
�nd that hard. However, they introduce eigenvalue analysis as a way of comparing and measur-
ing migration matrix di�erences as they evolve over time.

In 2004, Lando publishes his book Credit Risk Modeling - Theory and Applications, which is a
good overview of di�erent models, results etc. at that time. A chapter on rating migrations via
Markov chain models can be found but no ground breaking new steps are taken. Some concepts
are elaborated on a little further.

At this time, focus is also put on more practical problems with the Markov chain models. One
example is Christensen et al. (2004), who try to estimate con�dence intervals for rating transi-
tion probabilities with a special focus on rare events. They suggest a bootstrap procedure, where
they use a model to simulate �ctive rating histories. Furthermore, they look at the non-Markov
behaviour that Lando and Skødeberg found evidence of in 2002. Moreover, they note that real
data sets often su�ers from a lack of data, which makes con�dence set estimations di�cult for
rare events. One example of a rare event can be the default of an investment grade rated com-
pany, i.e. a migration from an investment grade rating directly to the default rating. In 2005,
Hanson and Schuermann also publish a thesis where they look at di�erent ways of estimating
con�dence intervals. In one part they look at analytical options, such as the Wald con�dence
interval, Agresti-Coull con�dence interval and Clopper-Pearson con�dence interval. However,
they also look at bootstrapping procedures and �nds that they are in most cases tighter than
the analytical options. The only advantage they see in e.g. the Wald interval is that by using
it one is able to derive genuine (analytical) con�dence intervals. They suggest bootstrapping
on actual rating histories rather than simulating them as Christensen et al. (2004). Moreover,
Trueck and Rachev (2005) also publish an article where they estimate con�dence intervals with
the purpose of calculating credit Value-at-Risk. They use the methods proposed by Christensen
et al. (2004) and Hanson and Shuermann (2005). As it turns out, they also speak in favour of
bootstrapping since e.g. Wald intervals depend so heavily on the number of �rm years, which is
evident in equation B.1.

Also in 2004 Jafry Schuermann publish their article Measurement, estimation and comparison
of credit migration matrices, focused on measuring di�erences between matrices. They present
di�erent types of norms, such as the L1 norm, the L2 norm and di�erent variations of these. One
example of a variation is to subtract the identity matrix from the migration matrix, something
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they introduce as "mobility matrix". The mobility matrix roughly resembles the generator ma-
trix. They also develop a measure based on singular value decomposition.

In 2009, Trueck and Rachev publish a book called Rating based modeling of credit risk that put
together much of the current �ndings and results, much like Lando's book did �ve years earlier.
The book presents a good overview over a number of areas.

Di�erent attempts of detecting, testing and modelling non-Markov behaviour and time-inhomogeneity
has been done in more recent years. Kiefer and Larson (2006) test time-homogeneity using the χ2

test originally introduced by Anderson and Goodman (1957). They �nd that time-homogeneity
is easy to reject over longer time periods.

Bluhm and Overbeck (2007) tries to drop the homogeneity assumption of the generator matrix,
and allows it to evolve over time. By calibrating parameters after observed data, they alter the
generator matrix and get a PD term structure that �ts well with the observed PD term structure.
However, as they point out, their method is an interpolation approach rather than extrapolation
approach. This is because their method only allows for a �t within an observed time period.

Andersson Vanini (2010) attempts to account for time-inhomogeneity by estimating direction and
speed of migrations within the migration matrix, to create a regime-shifting migration matrix.
Moreover, regarding the speed and direction, they provide a small discussion on the di�erences
of Point-in-time and Through-the-cycle ratings. Their work is somewhat based on previous work
by Andersson in 2007 and 2008. The regime shifting matrix can keep static generators by using
two markov chains, one for upgrades and one for downgrades. They aim at an application in
form of credit derivatives, and therefore introduce stochastic time changes and dynamics to the
Markov chains. Their focus is out of scope of this thesis, but their ideas are nevertheless very
interesting.

The academic research today is much focused on trying to �nd ways to describe and model non-
Markov behaviour and time-inhomogeneity stemming from e.g. the di�erent economic conditions
over a business cycle. To this date, there is no real consensus regarding exactly how to handle
the problem of time-inhomogeneity when using the Markov chain approach to estimating rating
migrations.
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Chapter 3

The data set

In this chapter, a description of the data set and some data statistics will be presented.

3.1 Data description

The dataset is a time series of rating changes taken from an internal database of business coun-
terparties. The rating input is believed to be a mix of TTC and PIT. The estimated distribution
between TTC and PIT is not possible to disclose in this report, and is of no great importance
since estimations has to be made on this type of TTC/PIT mix regardless of the distribution
between them. Furthermore, it consists solely of approved ratings. The data set also contains
numerous rating models. The di�erent models are aimed at rating di�erent types of companies,
e.g. �nancial institutions or real estate companies. Other models might be of an older type that
is no longer used. Another fact to have in mind is that the models have evolved over time and
have become more and more sophisticated.

The database of course contains a lot of information, but there has been a �rst round of �ltering
from the database to receive what will be referred to as "the original data" in this report.

The original data only contains counterparties that have received an internal rating. The coun-
terparties that receive an internal rating are all legal entities with liabilities towards the company
that exceeds a certain threshold. The threshold is set rather low, meaning that even small com-
panies are included.

The di�erent data �elds that exist in the data set, and that each data point (each observation)
has, are:

customer_id - A code used to identify each di�erent customer
nace_code - (Nomenclature des Activités Économiques dans la Communauté Européene), a code
that classi�es which sector the economic activity of the customer belongs to
rating_model - The internal rating model used to when rating was calculated
rating_value - The actual rating grade the customer received
date_from - The date when the rating was set
date_to - The date where the rating set at date_from ceases to be valid
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The customer_id is there to be able to distinguish between di�erent counterparties and to be
able to get each customer's rating history throughout the years.

The nace_code will be used to classify which companies that are so called "defensive sector
companies" and which are not. This knowledge will later be used to test whether business sector
has impact on the results, which is relevant information regarding the time-homogeneity assump-
tion. It might be so that some sectors are more or less sensitive to the economic cycles, which
makes the time-homogeneity assumption less or more accurate. Whether the time-homogeneity
assumption is accurate is of course relevant for investors keen on using it, since homogeneity is
more straight forward and allows for an easier implementation.

The rating_model is relevant for cleansing and sorting data, which is further elaborated on in
section 4.1.4: Di�erent rating models. It is also relevant if one want to exclude certain rating
models due to that they are outdated, or maybe that some issues have been found with certain
models.

For obvious reasons, the rating_value, date_from and date_to are relevant for the migration
estimations.

A new data point is only created when there is a change in customer_id, nace_code, rating_model
or rating_value. The date_from is set as either the initial date (�rst observation), or as the
new date of the observation when something changed. The date_to is initially set by the ones
that determined the rating, so the rating is valid until that date. However, if a change appears
this is treated as newer and more accurate information and therefore overwrites the old obser-
vation even if the change occured before the initially set date_to.

Below is an example that clari�es how the date transformation works when the previously men-
tioned �elds change. Note how the date_to of the �rst observation changes when it is overlapped
by the new more accurate observation containing a rating downgrade.

Example 3.1: A company is being downgraded before the end date of the previous rating.

Figure 3.1: An example of two observations before date transformation.

Figure 3.2: An example of the same two observations after date transformation.

The data set in its original form contained about one million data points spread over the years
2002-2013. However, due to the quality of the data, the data set had to be cleansed even af-
ter the �rst round of �ltering from the database. More details about the process of cleansing
and adjusting the data set can be found in section 4.1 in the methodology chapter. After the
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cleansing and adjustments the �nal data set which is the foundation for all estimates contained
about 90% of the original amount data points. In the section immediately below, descriptive
statistics of the �nal data set for the cohort and duration estimations is presented. The statistics
are focused on non-diagonal movements as actual movements on the diagonal are not measured
for the duration method.

3.1.1 Descriptive statistics

Table 3.1: Descriptive statistics over �nal data during years 2002-2007, split by estimation method.
Cohort year 2002 is set as index 100 for �rm years and non-diagonal movements.

Year 2002 2003 2004 2005 2006 2007
Cohort Firm years 100 304 364 386 397 457

Non-diagonal movements 100 289 207 320 344 327
Upgrade movements (%) 54.3% 53.3% 60.0% 59.1% 55.6% 56.8%
-of which recoveries 0.2% 1.6% 2.5% 1.6% 2.6% 1.3%

Downgrade movements (%) 45.7% 46.7% 40.0% 40.9% 44.4% 43.2%
-of which defaults 5.5% 6.9% 4.5% 3.2% 2.6% 3.5%

Duration Firm years 169 340 399 449 492 652
Non-diagonal movements 124 313 497 386 460 499
Upgrade movements (%) 50.4% 51.6% 54.9% 58.5% 56.8% 56.3%
-of which recoveries 0.9% 1.9% 2.2% 1.8% 2.6% 1.7%

Downgrade movements (%) 49.6% 48.4% 45.1% 41.5% 43.2% 43.7%
-of which defaults 7.6% 6.7% 3.9% 3.2% 2.6% 3.0%

Table 3.2: Descriptive statistics over �nal data during years 2008-2013, split by estimation method.
Cohort year 2002 is set as index 100 for �rm years and non-diagonal movements.

Year 2008 2009 2010 2011 2012 2013
Cohort Firm years 493 483 548 626 650 18

Non-diagonal movements 278 369 381 355 348 4
Upgrade movements (%) 47.5% 30.4% 54.0% 57.4% 50.3% 38.7%
-of which recoveries 0.8% 0.5% 0.9% 1.2% 0.9% 0.4%

Downgrade movements (%) 52.5% 69.6% 46.0% 42.6% 49.7% 61.3%
-of which defaults 4.0% 5.8% 4.2% 4.6% 6.6% 1.3%

Duration Firm years 661 605 662 723 723 712
Non-diagonal movements 500 638 576 521 498 371
Upgrade movements (%) 46.9% 30.9% 50.8% 53.6% 47.1% 51.2%
-of which recoveries 1.1% 0.9% 1.1% 1.3% 1.1% 1.7%

Downgrade movements (%) 53.1% 69.1% 49.2% 46.4% 52.9% 48.8%
-of which defaults 4.1% 6.1% 4.6% 4.5% 6.6% 4.8%
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Chapter 4

Methodology

This chapter describes the process from obtaining a data set to producing the results. It describes
adjustments that has been done to the data set, as well as methods that has been used to test
and measure the results. Furthermore, it gives more background as to why certain adjustments,
tests and methods have been used.

4.1 Adjusting the data set

As mentioned in chapter 3, the data set had to be cleansed even after the �rst round of �ltering
from the database. The below sections describe how and why this cleansing was done.

4.1.1 Removing problematic observations

Some observations during the years 2002 and 2003 contained ratings of a di�erent type, and not
the type of ratings used otherwise. The ones clearly of another type only accounted for 0.08%
of the observations originally within year 2002 and 2003. However, due to the features of the
ratings, there could also be a few ratings hidden within the data that were not possible to sort
out. The number of rating observations possibly hidden was calculated to be about 0.005% of
the observations during years 2002 and 2003. Because of the small number and the fact that they
were likely to be spread out evenly within the di�erent ratings, this will not cause a problem.
Also, a few observations were found where di�erent ratings were given to the same company the
same day. To mitigate this, some rules were set up to decide which observation is the most likely
to be correct, e.g. to check which observation that had the newest set of so called NACE codes
(for an explanation of what a NACE code is, see section 4.1.3).

4.1.2 Mapping ratings

Due to the sensitive nature of the internal dataset, the original ratings have been mapped to
ratings similar to those used by Standard and Poor's (S& P). This it to somewhat disguise the
original features of the internal data set. Exactly how the mapping was done is not possible to
disclose in this report, but the highest to lowest ratings were mapped into the new ratings {AAA,
AA, A, BBB, BB, B, CCC, D}. The highest rating is AAA, and then they follow in descending
order to CCC and �nally D which is the defaulted rating. The rating names are inspired by
Standard and Poor's rating system, but should in no respect be taken to ful�l requirements
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set by S& P. However, I will refer to "investment grade ratings" as ratings AAA to BBB, and
"speculative grade ratings" as BB to CCC, as in the S& P framework.

4.1.3 Mapping NACE codes

The NACE code (Nomenclature des Activités Économiques dans la Communauté Européene) is
a standardised way of classifying economic activities within the European union. Therefore, it
is useful when separating companies into di�erent industries.

The NACE code is formatted as the following example: Q86.23, where

Section : Q Human Health & Social Work Activities

Division : 86 Human Health Activities

Group : 86.2 Medical & Dental Practice Activities

Class : 86.23 Dental Practice Activites

Thus, Q is the most general classi�cation, which is then followed by integers, and up to two
decimals as the most detailed description of economic activity.

The code number has however been revised from what is known as revision 1.1 (rev. 1.1) to
revision 2 (rev. 2) during the period that the data was collected. Since the original data has
been collected from several sources, this caused some observations that were recorded more than
once, since the di�erent NACE codes was treated separately when sourcing the observations from
the database. To be able to later split the data set, it is essential that NACE codes follow the
same framework. I.e. it is necessary to translate all rev. 1.1 codes to rev. 2 codes.

Even though Eurostat stated a date from when the new revision 2 should be implemented,
this sharp date is not clearly present in the data. Furthermore, some businesses have actually
changed their business over the years which rightfully should give them di�erent NACE codes.
Unfortunately, some NACE code numbers exist in both rev. 1.1 and rev. 2, but mean completely
di�erent things. Moreover, it is desirable to get rid of observations that are copies apart from the
NACE code, since it will give the impression of two migrations when it actually is one. Unless
mitigated, this will distort the results. Getting as many correct NACE codes as possible is also
desirable when looking into time-inhomogeneity for non-cyclical counterparties, since they decide
the data set split. Therefore, using correspondence tables from Eurostat, the following steps was
taken to mitigate this issue to the greatest extent possible:

� One-to-one list mapping

The one-to-one list mapping used the fact that sometimes, one unique number in rev. 1.1
had one unique counterpart in rev. 2. This meant that these could safely be mapped
regardless of the date_from and date_to.

� Unique list mapping

The unique list mapping meant that some numbers were found only in rev. 1.1 but not
in rev. 2. These were mapped according to the correspondence table regardless of the
date_from and date_to.
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� Pre-e�ective date mapping

The pre-e�ective date mapping used the e�ective date of the new revision 2, Before the
e�ective date of rev. 2, NACE codes could safely be mapped with the correspondence
tables, as these early reported numbers should have used revision 1.1. A closer look at the
data revealed that some rev. 1.1 NACE codes were lagging behind even after the e�ective
date. These are the ones that we want to mitigate with the one-to-one and unique list
mapping.

� Cleansing of codes 99, 98 and 0

Cleansing of NACE codes 99, 98 and 0, meant in practice that observations with these
codes were removed if there was an identical copy of it, except that it had a NACE code
other than these three. It was discovered while manually cleansing the data for problematic
ratings that often the codes 99, 98 and 0 occurred as copies. Furthermore, the codes 99
and 98 are more of a "miscellaneous-type" code, and the code 0 does not even exist in the
NACE framework.

� Reduction from class codes to division codes

The last bullet point, reduction from class codes to division codes, is due to the fact that
reporting of NACE codes could sometimes vary slightly for the same business. One example
is "Q88.10 - Social work activities without accommodation for the elderly and disabled"
and "Q88.99 - Other social work activities without accommodation". These are essentially
the same (especially in an economic cycle point of view) even though they have di�erent
codes. Since there are a lot of di�erent codes and not enough data to get good estimates of
all of them, only the �rst two numbers were used in the �nal stage of NACE code cleansing.
The fact that some NACE codes probably still are wrong due to data quality makes this
rationalisation even more reasonable when aiming for stable results. This also makes sense
in the economic cycle point of view and furthermore allows discarding of "copies" such as
the example in this bullet point.

As mentioned, all mapping was done via correspondence tables provided by Eurostat (see [7]).
However, since the rev. 2 is more detailed than rev. 1.1, there will inevitably be some one-to-
many transformations. After investigating this a bit further, it was concluded that a map to one
of the many class choices is in the absolute majority of the cases enough to put the mapping
into the right division. For the purpose of the NACE codes, namely selecting divisions that are
sensitive to the economic cycles, this was deemed to be su�cient.

The cleansing and mapping of NACE codes above solved about 65% of all problematic observa-
tions. It was further noted in the correspondence table that the mapping between rev. 1.1 and
rev. 2 was from a higher to lower number in 70% of the cases. Thus, by sorting correctly and
then correcting overlapping dates, the overlapping should have removed the observation desired
to remove in 70% of the remaining problematic cases. Therefore, it is at this stage estimated that
at least 90% of the NACE codes were mapped correctly. Furthermore, some of the last problem-
atic cases were probably correct already, which may increase the number of correct mappings a
slight bit more.
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4.1.4 Di�erent rating models

The data set contains ratings where the calculated rating came from di�erent rating models, 14
in total. Some models are designed to rate di�erent types of companies and some have replaced
older models over the years. Because of this, some observations might have been identical apart
from the rating model, since rating model also was treated separately in the database sourcing.
Therefore, it is important to know which models that should be prioritised when they overlap or
are copies apart from the rating model name.

The prioritisation was made by looking at the data set too see the minimum, maximum and
average date for each model, to be able to get a view on which models were newer and more
accurate. The �nal prioritisation was done by also consulting internally. The �nal list was used
for sorting observations just before overlapping observations was �xed (see section 4.1.5), thus
the higher prioritised models overwrote the lesser prioritised ones.

Furthermore, after a �rst round of estimations, some strange patterns that had been seen in the
data set emerged more clearly in the migration matrices. This was found to stem from a certain
rating model which had some special features, e.g. less granular rating possibilities. As an ex-
ample, this could mean that a company only could receive rating AAA and A, but not AA. The
exact features of this model can not be publicly disclosed, but nevertheless they were deemed
to not be suitable for estimation of migration matrices. The observations from this model was
removed, which shows the importance of investigating each rating model's properties.

4.1.5 Overlapping observations

Overlapping observations can distort the results and is not desirable. After all cleansing of the
data set was done, the �nal step taken was to make sure that the date_from and date_to did not
overlap. Sorting of the data had been done to make sure that higher prioritised rating models and
NACE codes should overwrite lesser prioritised observations if they overlap. The overwriting was
then done as described in chapter 3, Example 3.1. Thus, the �nal data set allows for individual
companies to have gaps in their rating history, but never parallel rating histories.

4.2 Transitions to and from non-rated state

In practice, companies can transition from having rating "Non-Rated" or "Unrated" to be given
a rating de�ned in the rating migration matrix (in the state space) and vice versa. This can
occur if the ratings that are examined, AAA to D, have certain conditions that has to be met
in order to receive a rating. The conditions can e.g. be based on size of the company or, if the
company is a counterparty with outstanding loans or trades, an exposure risk threshold.

These transitions to and from non-rated states are therefore out of scope of the ratings migrations
under examination. More formally, these types of transitions does not occur within the state
space S that the model is used for. Therefore, they are seen as non-informative and those
transitions are removed from the data set. Worth to mention is that this a�ects the duration
method estimates less compared to the cohort method, since ratings are observed much more
frequently and therefore more information is kept.
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4.3 Handling defaults that recover

As discussed regarding the de�nitions of default in the regulations, a default does not imply
that a company in reality is in such a bad shape that it will never operate again. As mentioned
previously, delayed payments might set a company in default. This in turn also a�ects it's sub-
sidiaries or parent companies as well as outstanding loans and/or derivative contracts that these
companies might have, in accordance with EU regulations.

The applied Markov chain model found in theory normally treats the default state as absorbing,
i.e. once a company has defaulted it cannot leave the defaulted state. In practice, though, a de-
faulted company recovers every once in a while. It can e.g. be so that it has found new investors
that can cover its cash �ows for an extended period of time, and therefore is back in business.
The company then receives a new performing (non-defaulted) rating.

This of course collides with the absorbing state assumption. However, the company that recovers
from default have been reassessed based on its new (economic) conditions, conditions that did
not exist before. One can therefore think that the reassessed company has been given the rating
that best �ts its current conditions, and is therefore di�erent to the company that deserved the
default rating. Due to this, it is still reasonable to view recovered defaulted companies as new
observations and therefore there is no contradiction in using the absorbing assumption.

Furthermore, the absorbing assumption ensures that the cumulative probability of default is
increasing with time. As described in Lando (2004) [15], removing the absorbing state would
change the interpretation of the estimated PD values. Removing the absorbing condition would
result in an estimation of being in default at a certain time, whereas keeping the absorbing con-
dition would result in an estimation of having defaulted at a certain time. The latter describes
the cumulative PD, which is the desirable estimation to use from the risk manager's point of
view, see e.g. Lando (2004).

4.4 More weight to recent years

As mentioned earlier, rating models evolve over time. With this in mind, more recent ratings
produced from recent models might be more relevant and accurate. Thus, one might want to give
more weight to recent observations or recently estimated migration matrices since they might be
a better estimate of the future in terms of rating model output. Furthermore, estimates where
more data points have been used are more certain than estimates where less data points have
been used. As an example, the cohort estimate for 2013 is not very certain, since the data points
in that sample is far smaller than any other year.

By looking at the �rm years found in descriptive data statistics in Chapter 3, it is evident that
the observation universe grows larger with time. When estimating an average migration matrix,
this will automatically give more weight to more recent years where more recent rating mod-
els have been used. If the number of �rm years changed drastically combined with a drastic
change of economic conditions, this might give too large weights to unlikely events and thereby
skew estimates for the average matrices. However, for the data set used in this report there has
been a steady build-up of �rm years. There has also been a mix of recessions and expansions,
spread out over the time scope of the data set both for recent years and for the whole time span.
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Therefore, by giving each single observation point equal weight, more weight is gradually given
to more sophisticated rating models. It is also makes the weight proportional to the number of
observations, which is reasonable from a probabilistic point of view. Equal weight to each single
observation is therefore used in this report, but as mentioned, this is something that at least
should be considered before calculating migration matrices.

4.5 Estimation and validation set

After the �nal cleansing, the data set was divided temporarily into two, one estimation set and
one validation set. All companies were listed by a company id and then sorted A to Z. From this
list, every second company was put into the validation set. The remainder formed the estimation
set. This kind of separation was made to make the separate sets have observations reasonably
even spread out over the whole estimation window, ensuring that they were not in totally di�er-
ent parts of the economic cycle.

The purpose of the validation test is to check that estimations from one set of companies have a
good enough �t on a completely di�erent set of companies. The two sets are taken from roughly
the same 12-year time period, and using roughly the same rating models. This means that the
economic and rating model conditions should be about the same between the two sets. Thus, the
setting of this test is that either the time-homogeneity assumption is on average valid, or that
one have modelled the state of the economy etc. roughly correct. If the estimations between the
two sets are very similar, then we have shown that the estimates are not company-speci�c on
average, which of course is desirable.

In this report, the average migration matrices for both cohort and duration method will be
compared. These estimates could then be seen as quite general since the past 12 years has seen
both expansions and recessions and therefore might be a good average representation of times
to come. This approach of comparing averages is more plausible than comparing speci�c years
when one does not want the possible e�ect of economic cycles.

4.6 Estimation in Matlab

When all data had been cleansed and adjusted, the actual estimation of migration matrices were
done in Matlab. Furthermore, estimating their con�dence intervals via a bootstrap method
requires Matlab (or similar software), since it will involve calculating several thousands of
migration matrices.

4.6.1 Migration matrices

Depending on what migration matrix that was supposed to be estimated, data was split into
di�erent Excel �les that was then read into Matlab where all the calculations were done. The
theory stating exactly how to calculate is found in Chapter 2.

Brie�y, the entries of the cohort migration matrix was estimated by

p̂ij(tk) =
nij(∆tk)

ni(tk)
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where i and j are rating states and tk is January 1st each observed year k. Furthermore nij(∆tk)
is the number of migrations between ratings i and j between year tk and tk+1, and �nally ni(tk)
is the number of companies in rating i at time tk. The calculations result in a one year migration
matrix since ∆tk = 1 year.

For the average matrix, all data from 2002 to 2013 was used, where observations of rating had
been done each January 1st.

When calculating using the duration method, migration rates in the generator matrix were es-
timated using equation (2.18) and equation (2.19). To calculate the matrix exponential, the
Matlab function expm was used. As with the cohort method, di�erent Excel �les were read into
Matlab depending on the time frame used. For an annual matrix, only data for a single year
was used, whereas all available data was used for the average matrix.

The results were then checked against estimations that had previously been done more manually
step-by-step in Excel to verify that the code worked properly.

4.6.2 Con�dence intervals

Two methods of calculating con�dence intervals (CIs) are presented in this thesis, see section 2.1.
The �rst method is the analytical Wald CI. The second, however, is calculation via a bootstrap
technique. Hanson and Shuermann (2005) suggest bootstrapping on realised rating histories, as
they regard a rating history as "the basic data unit from the perspective of PD estimation". The
method used here contrasts to both theirs and to the method proposed by Christensen et al.
(2004) by using one rating migration as the basic data unit and use realised rating migrations.
This also ensures that the same amount of data is used in each bootstrap, as a contrast to Hanson
and Shuermann (2005) where the number of �rm years could vary slightly.

The bootstrap procedure is done viaMatlab, in accordance with the theory presented in section
2.1. In every con�dence interval calculation, a sample containing 1000 bootstrap replications
is used. To clarify, one observed empirical sample is bootstrapped 1000 times (creating 1000
bootstrap replications). From each bootstrap replication, one migration matrix is estimated.
Thus there are 1000 estimated migration matrices that form the con�dence interval for each
rating migration. There is no predetermined number of bootstrap replications that has to be
used, but is rather dependent on the computer power and time available.

4.7 Investigating time-inhomogeneity

The investigation of time-inhomogeneity will be separated in two main sections, detecting time-
inhomogeneity and testing time-inhomogeneity. Detection is thought of as how one could see
evidence of time-inhomogeneity in the data sample, whereas the testing part is how to actually
say something statistically about the time-homogeneity assumption. Since this report is more
focused on application, testing is more relevant. Two ways of statistically being able to say
something about the time-homogeneity assumption will be presented, each with a little di�erent
angle.
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4.7.1 Detecting time-inhomogeneity

There are several ways of detecting that time-inhomogeneity is present, where most of them are
based on comparing annual matrices to the average matrix. Either distances between matrices
(norms) or their eigenvalues/eigenvectors are compared, as in Jafry and Shuermann (2004), Yang
(2008), Trueck and Rachev (2009) or Lencastre et al (2014). Jafry and Shuermann (2004) also
develop a measure based on singular value decomposition. Moreover, there are also several small
variations of the above concepts.

Developing and comparing measures of how the matrices di�er is a substantial task in its own
right. Furthermore, what these measures have in common is that they give relative values of how
matrices compare to each other, but no real statistical test to determine if there is a signi�cant
di�erence. Moreover, Yang (2008) also point out that they don't discriminate between upgrades
and downgrades, and does not give useful economic information about a rating movement. For
these reasons, investigating di�erent ways of detecting time-inhomogeneity is not the focus of
this report. However, we will present one way of doing so by calculating the L2 norm. The
method is describe immediately below.

Matrix L2 norm

One way of detecting time-inhomogeneity is to measure the cell-by-cell distance between the
annual matrices and the average matrix. The cell-by-cell distance can be calculated with e.g.
di�erent norms such as the L2 norm, as mentioned in Jafry and Shuermann (2004). The L2 norm
is easy to understand as the sum of all norms described below in equation (4.1) is the standard
deviation of the annual matrices. The L2 norms serve as a baseline estimation. Ideally (if the
homogeneity assumption is correct) the distance should be zero for each cell in each year, but
at least it is desired to only show small variations. The major drawback is that there is no real
way of measuring how small is "small", or what the di�erence should be between two L2 norms
for it to be large enough to indicate time-inhomogeneity. Neither can it state how certain that
indication is, as with most of the measurement techniques (see Yang (2008)).

Nevertheless, this type of distance measuring at least shows a relationship between the di�erent
migration matrices. Since variations of distance measuring between matrices is seen quite often
in the literature, the L2 norm which is easy to understand will be calculated and presented in
chapter 5. As described in Jafry and Shuermann (2004), Yang (2008) and Trueck and Rachev
(2009), the L2 norm between two matrices M1 and M2 is calculated as

∆ML2(M1,M2) ≡

√∑N
i=1

∑N
j=1(M1,i,j −M2,i,j)2

N(N − 1)
(4.1)

where N is the number of ratings and i, j are rating states. The −1 in equation (4.1) is because
the defaulted state is excluded from the calculation, since it always is equal between migration
matrices.

4.7.2 Testing for time-homogeneity

The assumption of time-homogeneity is common in practice, as several papers previously have
mentioned, e.g. Lando and Skødeberg (2002). However, authors such as Jafry and Schuermann
(2004), Kiefer and Larson (2006) note that the assumption of time-homogeneity probably isn't
valid, and it is known that it is a somewhat simpli�ed view. Nevertheless, it is important to test
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the assumption as its accuracy will be di�erent for each data sample.

Two tests are presented in this thesis, one χ2 test and one based on bootstrapped con�dence
intervals. Each test has a di�erent approach to the time-homogeneity assumption. If homoge-
neous, then every element in the migration matrix should be constant. The χ2 test is designed
to test whether we can reject a null hypothesis that the annual migration matrices are equal to
the average migration matrix, which they should be given time-homogeneity. The test involves
calculating di�erences of every element in the matrices.

The other test is to compare 95% con�dence intervals of PD estimates to see if they give sig-
ni�cantly di�erent estimates between two adjacent years. If two estimations di�er signi�cantly,
then this means that it is very unlikely that they could produce the same estimate. As we just
mentioned, time-homogeneity implies that estimates are constant. If two estimates cannot be
the same, then it cannot be constant. Because of the rather cumbersome task of comparing every
element and its con�dence interval in several matrices, this test will focus on the PD estimates.

Thus, one test compares whole annual matrices over the whole time span to see if they can be
the same as the average matrix. The other test looks at PD estimates of adjacent years to see if
they possibly could produce the same estimates.

Chi-square test

A way of statistically testing time-homogeneity is to use a χ2 test. The test was originally stated
by Anderson and Goodman (1957), but several other authors have used it more recently too.
e.g. Kiefer and Larson (2006) and Trueck and Rachev (2009).

Following the approach described by Anderson and Goodman (1957), the test is designed to see
whether transition probabilities are constant. The full sample are divided into T independent
subsamples, which in our case means t = 1, 2, .., 12, for the T = 12 years from 2002 to 2013.
We now want to test if the migration matrices from the subsamples di�er signi�cantly from the
average migration matrix calculated using the whole sample.

Let p̂ij(t) denote the transition probability from rating i to rating j during year t. Let also p̂ij
denote the corresponding transition probability estimated with the full sample. Furthermore let
ni be the number of �rm years for rating i. Our null hypothesis, H0, is

H0 : p̂ij(t) = p̂ij ∀i = 1, 2, · · · ,m ∀j = 1, 2, · · · ,m, ∀t = 1, 2, .., T (4.2)

and the test statistic

χ2 =

T∑
t=1

m∑
i=1

m∑
j=1

ni(t)
(p̂ij(t)− p̂ij)2

p̂ij
(4.3)

is shown by Anderson and Goodman (1957) to follow the χ2-distribution with m(m− 1)(T − 1)
degrees of freedom. In our case, m = 8 since there are eight rating states. Thus, if our observed
test statistic calculated in equation (4.3) above exceeds the tabulated χ2(7·8·11)-value at a certain
signi�cance level, then we can reject the null hypothesis at that signi�cance level. Rejecting the
null hypothesis means that we can reject the assumption of time-homogeneity.
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Con�dence intervals

By estimating migration matrices for speci�c years and using the con�dence intervals associated
with each estimate, it is possible to see if the estimations di�er signi�cantly from each other. If
they do, it is likely that time-inhomogeneity is present. However, it gives us no exact number on
how likely it is that there is time-inhomogeneity, such as a p-value.

Nevertheless, the approach of using con�dence intervals gives us another interesting angle on
time-homogeneity. The χ2 test is used to see whether the annual matrices di�er from the "true"
matrix, which is estimated by the average matrix. They are not supposed to be di�er signif-
icantly if the time-homogeneity assumption is correct. However, by the de�nition of a homo-
geneous Markov chain, the estimated probabilities in each cell of the migration matrix should
be constant. Thus, if estimations of e.g. pBBB,D di�er signi�cantly from each other between
di�erent years, then we can say that time-inhomogeneity is present, since they should be able to
produce the same estimate.

Therefore, another test for time homogeneity will be a bootstrap method together with con�dence
interval comparisons. Naturally, one source of time-inhomogeneity is that rating models evolve
over time as mention in Lencastre et al (2014) and discussed in section 4.1.4. To focus on the state
of the economy and to avoid a possible e�ect of rating models to the greatest extent possible,
only adjacent years will be considered. The years considered will also be recent in time. This is
because we have seen volatility in recent years (increases probability to �nd inhomogeneity), but
also because the rating models in recent years are more relevant. Furthermore, it is su�cient
to �nd one signi�cantly di�erent estimation to say that we have found time-inhomogeneity.
However, comparing every single cell's con�dence intervals is cumbersome, and we will therefore
focus on the most important estimations for this thesis, namely the PD estimations. Con�dence
intervals will be compared for both the cohort and duration method.

4.7.3 Defensive sectors and time-homogeneity

As described by a recent article in Forbes (see [8]), the traditional advice to prepare for possible
market corrections is to invest in defensive stocks or sectors. The idea is that no matter the
state of the economy, people will have to eat, drink and take their medicines. Thus, companies
that produce these kinds of products should be better o� than others in downturns, at the cost
of maybe not giving as high returns when the market is up. Defensive companies are sometime
also called "non-cyclical", as they are supposedly less correlated to the economic cycle compared
to the average company. By applying this logic to rating migrations, companies within these
types of sectors might be experiencing less migrations over the business cycle since they have a
more stable cash �ow. Therefore, it is possible that the time-homogeneity assumption is more
applicable when looking at defensive sectors. To test whether this assumption is true is relevant
to those that have credit risk exposures towards defensive sectors. If it turns out that the time-
homogeneity assumption is true for these sectors, then this would ease the burden of applying a
Markov chain migration approach, since they would not have to care about how to account for
possible time-inhomogeneity.

In this thesis, it will therefore be investigated if companies within defensive sectors are less ex-
posed to time-inhomogeneity. A subset of defensive companies is formed and will go through the
same time-inhomogeneity investigation as the full data sample.

34



4.7. INVESTIGATING TIME-INHOMOGENEITY CHAPTER 4. METHODOLOGY

To be able to construct a subset, we look at the NACE code which describes the economic
activity of a company. By using the NACE codes, companies within agriculture, manufacture of
food products, pharmaceuticals, health care, certain real estate activities etc. was chosen to the
subset. The size of the defensive companies subset is about 55% of the full sample. It is desirable
to not make the subset too small, as this would cause problems when splitting it further into
annual data sets. For a complete list the chosen defensive sectors, see Appendix C.

4.7.4 Recession and expansion matrices

If time-inhomogeneity is shown to be present in the data, and if past data is deemed as a good
representation of times to come, then it will likely be present in the future as well. Solving the
issue of time-inhomogeneity is not straight forward, some attempts have been done as we saw in
section 2.5: Previous studies. However, there is no consensus about a feasible method.

As this report is focused on the application of a Markov chain credit rating migration ap-
proach, the suggestion to solution must be somewhat easy to implement. Deep analysis of
time-inhomogeneity behaviour and modelling of such is a research �eld in its own right and not
within the scope of this thesis. A suggestion to mitigate the impact of probable future time-
inhomogeneity is to use di�erent migration matrices for di�erent states of the economy.

The average matrix might be a good estimation for longer term estimations, or estimation in
"average" economic climate. The average matrix is based on 12 years of data between 2002 and
2013. During that time the economy has seen both recessions and expansions, low and high
volatility climates and therefore has been exposed to a variety of conditions likely to appear in
the future as well. However, for time periods shorter than an average business cycle, say 5 years,
the future economic climate is likely to have an impact of credit migrations. Getting a proper
estimation of cumulative PD curves is of course essential from a risk perspective, but also from
an economic perspective in terms of holding the right amount of capital.

For recessions and expansions, however, the suggestion is to use matrices estimated only using
data from recession and expansion periods. Together with rules on when to use them, they could
probably mitigate the impact of time-inhomogeneity. This is further elaborated on in section
6.3: Suggestion for further studies. To choose what data to use, focus is put on the main goal
of rating migration estimations, namely the cumulative PD curves. A PD curve for a certain
rating will be calculated for each annual matrix estimated using data from 2002 to 2013, i.e. 12
PD curves in total. Note that every element of the matrix is used to calculate the PD curves,
which is another reason for looking at them rather than e.g. just the PD column of 1-year tran-
sition matrices. Therefore, the PD curves will be used to decide what data to use. The decision
regarding which rating to look at fell on rating B. One reason for using that rating is because
observations to the defaulted state has been seen more frequently there than in higher ratings.
Thus, estimations of PDs are more certain. Furthermore, companies that are not very well o�
rating wise might be more sensitive to �uctuations in the economic climate and therefore make
a clearer distinction between the PD curves. Also, the number of observed �rm years are larger
for rating B than for e.g. rating CCC. A larger number of �rm years is of course better to make
sure that the accuracy of the estimations are better.

To conclude, recession and expansion matrices will be calculated to possibly mitigate the impact
of future time-inhomogeneity. The PD curves for rating B, calculated from each annual matrix
will be used to decide what data should be used to estimate these matrices.
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Chapter 5

Results

In this chapter, the results from the estimations are presented, with some details deferred to
Appendix A: Con�dence intervals, and Appendix B: Wald and bootstrapped CI comparison.
Migration matrices have been coloured to make it easier for the reader to see the matrix struc-
ture. All migration matrices are 1-year migration matrices. When reading migration matrices,
ratings in the rows to the left are the previous ratings, and the columns are the ratings that
counterparties migrate to. Thus, when looking at �gure 5.1, the number 10.69% with row rating
A, and column rating BBB means that a company with a rating A has a 10.69% probability of
being in rating BBB in one year's time.

The chapter is divided into a �rst part showing the migration matrices for the estimation and
validation sets. Then, average matrices for the whole data set are calculated and compared.
Moreover, PDs and their con�dence intervals are tabulated. Furthermore, cumulative PD curves
are then calculated for the average matrices, where some results associated to them are shown in
tables. The third part of the results chapter shows the study on the in�nitesimal approximation,
which is a way of calculating migration matrices from continuous data without using the in�nite
series expansion.

The fourth part is the time-inhomogeneity investigation, which has several subsections including
measurements and statistical tests. Then, the same investigation on the defensive companies
subset follows. Finally, a study of annual PD curves for rating B is presented, and recession and
expansion migration matrices are calculated.

5.1 Performance on validation set

This section contains the matrices for the estimation and validation data sets, where data on their
bootstrapped con�dence intervals is deferred to Appendix A. The purpose is to show whether
the methodology of estimating migration matrices to estimate rating movements of unknown
companies seems reasonable. The economic conditions and the rating models will be reasonably
similar between the two sets, but they contain unique sets of companies.

Consider �gures 5.1 and 5.2. In the terminology of Markov chains, both matrices have the default
state D as absorbing. Apart from the defaulted state, all the other states except AAA to CCC in
the validation set matrix are communicating. In the validation data set, there are no observations
of a AAA rated company being downgraded directly to CCC, but CCC is accessible from AAA.
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Figure 5.1: Migration matrix where all data in the estimation data set has been used. Calculated with
the cohort method.

Figure 5.2: Migration matrix where all data in the validation data set has been used. Calculated with
the cohort method.

This is one of the conditions that cause the embedding problem, which we see present here in
the cohort estimation. The probability is zero even though the validation set contains about
several hundred thousand observations spread over 12 years. In the migration matrix where the
estimation set has been used, all states (except D) communicate with each other. The Markov
chain is not irreducible because of the absorbing default state. All states except D are transient
since there is a non-zero probability that they never return to that state, because of the non-zero
probability that they eventually end up in the absorbing state.

As can be seen from the estimations, the matrices are very similar, which is exactly what we were
hoping for. This means that on average, the estimations depend on rating rather than company
speci�c features, which is the aim of this Markov chain estimation approach. This test was done
�rst, to motivate that we can now allow the estimation and validation sets to be joined. When
doing all other estimations we of course want to have as many observations as possible at our
disposal and use all our data.

To further motivate that the validation and estimation data sets give (statistically) the same
estimations, a calculation of their 95% con�dence intervals was made. This was done via a boot-
strapping procedure, as described in section 4.7.2. The tables showing the intervals are found in
Appendix A, and it can be seen that the con�dence intervals for every every single distinct pij
overlap. Thus, we cannot statistically make a di�erence between those estimates.

The estimation and validation data sets were also used to calculate migration matrices with the
duration approach.
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Figure 5.3: Migration matrix where all data in the estimation data set has been used. Calculated with
the duration method.

Figure 5.4: Migration matrix where all data in the validation data set has been used. Calculated with
the duration method.

Again, both matrices look similar. A closer look at the bootstrapped 95% con�dence intervals
found in Appendix A reveals that all the estimated entries are statistically indistinguishable be-
tween both matrices.

Furthermore, we can see that all states (apart from the absorbing defaulted state) are commu-
nicating and are transient. Moreover, the condition which creates the embedding problem is not
present when using the duration method. Henceforth, description of migration matrices using
the terminology of Markov chains will be left to the reader.

Since the matrices are similar for both cohort and duration methods, the data set is now joined
to one for further use. This data set is the one referred to as the "�nal data set" in Chapter 3.

5.2 Average matrices

The average matrices presented below are the ones where all data has been used, for both cohort
and duration method.

The two methods give somewhat di�erent estimations, as can be seen in �gures 5.5 and 5.6,
which shows the migration matrices. To get a better feeling of how the estimations di�er, a
matrix where the cohort estimations are divided by the duration estimations was calculated, see
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Figure 5.5: Migration matrix where all data in the has been used, calculated with the cohort method.

Figure 5.6: Migration matrix where all data in the has been used, calculated with the duration method.

�gure 5.7. Figure 5.7 have some numbers in bold font, which indicates where the cohort method
and duration method have given statistically di�erent estimations. By statistically di�erent, we
mean that the 95% bootstrapped con�dence intervals of the cohort and duration estimates do
not overlap. For reference, the con�dence intervals can be found in Appendix A.

The matrix created by dividing the cohort and duration migration matrices show that 34 out of
56, or roughly 61% of the entries, are statistically di�erent estimations. One can also see that
the cohort method estimates have a heavier diagonal and much lighter tails.

Figure 5.7: Matrix where cohort average estimation is divided by the duration average estimation.
Numbers in bold describe where the cohort and duration methods have given a statisti-
cally di�erent estimation. The default row has been left out since they are identical by
construction.
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5.2.1 Probability of default

This subsection focuses on what is the main goal of the estimations - to be able to calculate
probability of default and cumulative probability of default curves. The estimated PDs can be
found in the last column of the migration matrices. In tables 5.1 and 5.2, PD estimates and
their calculated con�dence intervals are presented. The table containing estimates by the cohort
method have both Wald and bootstrapped con�dence intervals. In table 5.1, it can be seen
that the Wald CIs and bootstrapped CIs look very similar. For the sake of comparison and to
make it easier for the reader, only bootstrapped CIs will henceforth be tabulated for the cohort
and duration methods. A closer study on exactly how similar Wald CIs and their bootstrapped
counterparts are can be found in Appendix B.

Table 5.1: Table over PD estimates from the cohort method, including estimated 95% con�dence in-
tervals and interval lengths.

Cohort
Rating PD estimate CIWald CIBoot Length CIWald Length CIBoot
AAA 0.02% [0.00%,0.03%] [0.00%,0.04%] 0.03% 0.04%
AA 0.03% [0.01%,0.05%] [0.01%,0.05%] 0.03% 0.04%
A 0.04% [0.03%,0.05%] [0.03%,0.05%] 0.02% 0.02%
BBB 0.30% [0.28%,0.32%] [0.28%,0.32%] 0.04% 0.04%
BB 0.98% [0.94%,1.02%] [0.94%,1.02%] 0.08% 0.08%
B 3.93% [3.79%,4.08%] [3.79%,4.08%] 0.29% 0.29%
CCC 7.60% [7.22%,7.97%] [7.22%,7.94%] 0.74% 0.72%

Table 5.2: Table over PD estimates from the duration method, including estimated 95% con�dence
intervals and interval lengths.

Duration
Rating PD estimate CIBoot Length CIBoot
AAA 0.03% [0.01%,0.04%] 0.03%
AA 0.04% [0.03%,0.05%] 0.02%
A 0.10% [0.09%,0.11%] 0.02%
BBB 0.31% [0.30%,0.32%] 0.03%
BB 1.03% [1.00%,1.06%] 0.06%
B 5.07% [4.95%,5.21%] 0.26%
CCC 10.66% [10.28%,11.08%] 0.80%

By multiplying the cohort migration matrix with itself and each time extracting the PD-column,
cumulative PDs for each year are obtained. These are plotted up to year 10 in �gure 5.8. For the
duration method, cumulative PDs are extracted from the migration matrix calculated via the for-
mulaM(t) = etG. The continuous cumulative PDs for up to year 10 are then plotted in �gure 5.9.

As indicated by the migration matrices and PD tables, the cumulative PDs are higher for the
duration method than for the cohort method, especially for the lowest rating B and CCC. The
estimated PDs for all years using the average matrices, and also the ratio duration/cohort PD
estimation can be found in table 5.3, table 5.4 and table 5.5.
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Figure 5.8: Graph showing cumulative PDs during a 10-year period for the cohort method. Based on
the average cohort migration matrix.

Figure 5.9: Graph showing cumulative PDs during a 10-year period for the duration method. Based
on the average duration migration matrix.
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Table 5.3: Table showing estimated cumulative PDs for 10 years into the future using the average
matrix obtained by the cohort method.

Year 1 2 3 4 5 6 7 8 9 10
AAA 0.02% 0.04% 0.08% 0.13% 0.19% 0.26% 0.34% 0.43% 0.53% 0.64%
AA 0.03% 0.07% 0.14% 0.22% 0.33% 0.47% 0.64% 0.84% 1.07% 1.33%
A 0.04% 0.14% 0.28% 0.48% 0.73% 1.03% 1.37% 1.75% 2.17% 2.62%
BBB 0.30% 0.69% 1.15% 1.68% 2.25% 2.87% 3.51% 4.17% 4.85% 5.54%
BB 0.98% 2.02% 3.08% 4.15% 5.20% 6.23% 7.23% 8.20% 9.13% 10.04%
B 3.93% 7.24% 10.05% 12.46% 14.55% 16.38% 18.00% 19.44% 20.74% 21.92%
CCC 7.60% 13.71% 18.67% 22.72% 26.05% 28.81% 31.13% 33.09% 34.76% 36.20%

Table 5.4: Table showing estimated cumulative PDs for 10 years into the future using the average
matrix obtained by the duration method.

Year 1 2 3 4 5 6 7 8 9 10
AAA 0.03% 0.07% 0.13% 0.21% 0.31% 0.42% 0.55% 0.69% 0.85% 1.02%
AA 0.04% 0.11% 0.21% 0.36% 0.54% 0.77% 1.04% 1.36% 1.71% 2.10%
A 0.10% 0.26% 0.48% 0.76% 1.11% 1.52% 1.97% 2.48% 3.02% 3.61%
BBB 0.31% 0.74% 1.28% 1.90% 2.58% 3.32% 4.10% 4.90% 5.72% 6.55%
BB 1.03% 2.20% 3.44% 4.69% 5.94% 7.17% 8.36% 9.52% 10.63% 11.71%
B 5.07% 9.31% 12.86% 15.86% 18.42% 20.62% 22.53% 24.20% 25.68% 27.01%
CCC 10.66% 18.77% 25.00% 29.85% 33.66% 36.70% 39.16% 41.18% 42.87% 44.29%

Table 5.5: Table showing the ratio between estimated cumulative duration PDs and estimated cumu-
lative cohort PDs.

Year 1 2 3 4 5 6 7 8 9 10
AAA 172% 169% 166% 165% 164% 163% 162% 161% 161% 160%
AA 131% 149% 158% 163% 164% 164% 163% 161% 160% 158%
A 234% 189% 170% 159% 152% 147% 144% 141% 139% 138%
BBB 104% 108% 111% 113% 115% 116% 117% 117% 118% 118%
BB 106% 109% 111% 113% 114% 115% 116% 116% 116% 117%
B 129% 129% 128% 127% 127% 126% 125% 124% 124% 123%
CCC 140% 137% 134% 131% 129% 127% 126% 124% 123% 122%
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5.3 In�nitesimal approximation comparison

In this section, the results of using an in�nitesimal approximation of the continuous-time Markov
chain will be compared to the results when the exact de�nition is used. The di�erence lies within
the calculation of the migration matrix M.

The exact de�nition uses M(t) = etG for each t, where etG is a matrix exponential de�ned by

the power series etG ≡
∑∞
k=0

(tG)k

k! .

On the other hand, the in�nitesimal de�nition of a CMTC, which is an approximation, de�nes
the migration probability between rating i and j, pij , for a short time step h as pij = δij + gijh.

Below in �gure 5.10 and �gure 5.11 are graphs of cumulative PD-curves calculated with the exact
and the approximative in�nitesimal de�nition. Note that the approximations are giving linear
cumulative PD curves. The ratings are split to two graphs due to the di�erent magnitude of
their PDs. The time step was chosen to be 1 day, which essentially is the smallest measurement
unit in the data sample. The G matrix and it's entries is estimated using the full sample, i.e.
the G matrix is the one corresponding to the average M duration matrix.

Figure 5.10: Graph showing cumulative PDs for ratings AAA through BB during a 10-year period for
the duration method. Calculations of PDs are done via both the exact method and the
approximative in�nitesimal de�nition of a CMTC.

As seen in both the formulas in this section and the �gures 5.10 and 5.11, the in�nitesimal ap-
proximation is a linear approximation. Cumulative PD-curves calculated exactly have concave
shaped curves for the lowest ratings and convex shaped curves for the highest ratings. In be-
tween lies fairly linear shaped PD-curves. This means that over time, the ratings that are fairly
linear (such as rating BB here) will be relatively better estimated by the approximation method.
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Figure 5.11: Graph showing cumulative PDs for ratings B and CCC during a 10-year period for the
duration method. Calculations of PDs are done via both the exact method and the
approximative in�nitesimal de�nition of a CMTC.

However, we can still see that already after 5 years the approximation PD curves that are rela-
tively closest to their corresponding exact PD-curves (e.g. rating BB) have a relative di�erence
of about 15 to 20%. After about 8 years, the CCC linear approximation hits the probability roof,
PD = 1, of defaulting. This is of course not realistic and highlights a �aw of using the linear
approximation.

5.4 Investigating time-inhomogeneity

In the following sections, results from the time-inhomogeneity investigation will be presented.
This includes measures for detecting inhomogeneities and testing the time-homogeneity assump-
tion. The methods to detect and test will be used on the full data sample, but later also on a
subsample of companies from defensive sectors.

5.4.1 Detecting time-inhomogeneity

The measure used to detect time-inhomogeneity in this report is the L2 norm, for reasons stated
in section 4.7.1. The L2 norms between the average matrix and annual matrices for years 2002-
2013 for both the cohort and duration method are plotted in �gure 5.12. Note that for the cohort
method, the number of �rm years during 2002 and 2013 are substantially lower than the other
years, see table 3.1 and table 3.2.

Figure 5.12 shows that some years are less similar to the average matrix than the other years.
Possibly 2005, but especially 2009 is a clear example of an annual matrix more di�erent that
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Figure 5.12: Graph showing the L2 norm between annual matrices and the average matrix, for both
the cohort and duration method.

others for both methods. Year 2002 and 2013 is very di�erent when the cohort method is used,
probably due to the low amount of observations during these years.

5.4.2 Testing for time-homogeneity

This section contains results related to testing of time-homogeneity. The �rst test is a χ2 test as
designed by Anderson and Goodman (1957). The second approach to test for time-homogeneity
is to examine the con�dence intervals of the estimations calculated from two adjacent years' data.

χ2 test

In the methodology chapter, section 4.7.2, the theory of the χ2 test for time-homogeneity is
presented. If the calculated χ2 value exceeds the tabulated value with 7 · 8 · 11 = 616 degrees
of freedom, then we can reject the null hypothesis that transition probabilities are constant over
time.

The tabulated value of the χ2 distribution at the 99% level with 616 degrees of freedom is
χ2
0.99(616) ≈ 701, obtained by the Matlab function chi2inv(0.99,616). Thus, if the values

calculated by formula (4.3) exceeds 701, then we can reject the null hypothesis.
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Table 5.6: Table of calculated (observed) χ2 values when comparing annual matrices to the average
matrix. Values are calculated based on matrices estimated with both the cohort and the
duration method using the full data sample.

Calculation method Cohort Duration
Observed χ2 value 25666 25981

As shown in table 5.6, the observed values are much larger than the tabulated χ2
0.99(616) value.

Thus we can reject the null hypothesis that migration matrices are constant at the 99% level. We
also note that the test statistic number calculated with duration estimates are somewhat larger.
Further elaboration on the results will be found in the discussion chapter in section 6.1.3.

Con�dence intervals

In this section, bootstrapped 95% con�dence intervals for PD estimates during the years 2009,
2010, 2011 and 2012 will be presented. Year 2013 is not included due to the small sample size
for the cohort method. Adjacent years are compared to minimise impact of rating models.

Below are tables containing the bootstrapped con�dence intervals and a "Yes" or "No", indicating
if they are statistically di�erent or not.

Table 5.7: Table over bootstrapped 95% PD con�dence intervals for years 2009 and 2010. Calculations
are based on the full sample, and are tabulated for both cohort and duration methods.

Rating Cohort 2009 Cohort 2010 Di�erent Duration 2009 Duration 2010 Di�erent
AAA [0.00%, 0.00%] [0.00%, 0.09%] No [0.01%, 0.02%] [0.01%, 0.13%] No
AA [0.00%, 0.00%] [0.00%, 0.00%] No [0.07%, 0.11%] [0.02%, 0.03%] Yes
A [0.06%, 0.15%] [0.01%, 0.05%] Yes [0.22%, 0.31%] [0.05%, 0.10%] Yes
BBB [0.61%, 0.80%] [0.18%, 0.30%] Yes [0.95%, 1.12%] [0.28%, 0.37%] Yes
BB [1.60%, 1.92%] [0.83%, 1.06%] Yes [2.10%, 2.40%] [1.06%, 1.26%] Yes
B [4.83%, 6.00%] [4.55%, 5.62%] No [7.51%, 8.68%] [5.98%, 7.02%] Yes
CCC [6.37%, 8.87%] [4.72%, 6.63%] No [12.00%, 14.70%] [8.88%, 10.92%] Yes

Table 5.8: Table over bootstrapped 95% PD con�dence intervals for years 2010 and 2011. Calculations
are based on the full sample, and are tabulated for both cohort and duration methods.

Rating Cohort 2010 Cohort 2011 Di�erent Duration 2010 Duration 2011 Di�erent
AAA [0.00%, 0.09%] [0.00%, 0.00%] No [0.01%, 0.13%] [0.00%, 0.00%] Yes
AA [0.00%, 0.00%] [0.00%, 0.00%] No [0.02%, 0.03%] [0.01%, 0.01%] Yes
A [0.01%, 0.05%] [0.01%, 0.06%] No [0.05%, 0.10%] [0.04%, 0.08%] No
BBB [0.18%, 0.30%] [0.13%, 0.21%] No [0.28%, 0.37%] [0.19%, 0.27%] Yes
BB [0.83%, 1.06%] [0.75%, 0.96%] No [1.06%, 1.26%] [0.80%, 0.97%] Yes
B [4.55%, 5.62%] [3.75%, 4.73%] No [5.98%, 7.02%] [5.37%, 6.31%] No
CCC [4.72%, 6.63%] [6.80%, 8.90%] Yes [8.88%, 10.92%] [9.08%, 11.24%] No
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Table 5.9: Table over bootstrapped 95% PD con�dence intervals for years 2011 and 2012. Calculations
are based on the full sample, and are tabulated for both cohort and duration methods.

Rating Cohort 2011 Cohort 2012 Di�erent Duration 2011 Duration 2012 Di�erent
AAA [0.00%, 0.00%] [0.00%, 0.07%] No [0.00%, 0.00%] [0.01%, 0.12%] Yes
AA [0.00%, 0.00%] [0.00%, 0.05%] No [0.01%, 0.01%] [0.01%, 0.02%] Yes
A [0.01%, 0.06%] [0.01%, 0.05%] No [0.04%, 0.08%] [0.08%, 0.14%] Yes
BBB [0.13%, 0.21%] [0.51%, 0.66%] Yes [0.19%, 0.27%] [0.27%, 0.36%] Yes
BB [0.75%, 0.96%] [1.12%, 1.38%] Yes [0.80%, 0.97%] [1.10%, 1.30%] Yes
B [3.75%, 4.73%] [5.36%, 6.46%] Yes [5.37%, 6.31%] [9.52%, 10.88%] Yes
CCC [6.80%, 8.90%] [6.61%, 8.90%] No [9.08%, 11.24%] [13.12%, 15.85%] Yes

As apparent by tables 5.7, 5.8 and 5.9, signi�cantly di�erent estimates can be found with both
methods between all years. Furthermore, the duration method has easier to pick up signi�cant
di�erences, especially for the highest ratings.
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5.5 Defensive companies investigation

In this section, results from the time-inhomogeneity investigation of the subset containing defen-
sive companies will be presented. The results will be compared to those of the whole sample, to
see if there is the time-homogeneity assumption is better for the defensive subset.

5.5.1 Average defensive matrices

By using the whole subset spanning 2002 to 2013, the following average matrices was calculated
using the cohort and duration methods, respectively. The are similar to the average matrices
of the full sample, as is to be expected since they measure migrations over a whole business cycle.

Figure 5.13: Average migration matrix calculated with the cohort method, based on the defensive
companies subset.

Figure 5.14: Average migration matrix calculated with the duration method, based on the defensive
companies subset.

5.5.2 Detecting time-inhomogeneity

Analogously with section 5.4.1 for the whole sample, the L2 norm between the average matrix
and the annual matrices will be calculated based on observations from the defensive companies
subsample. These are plotted for the cohort and duration method, together with the correspond-
ing results from section 5.4.1 where the whole sample was used.

From �gure 5.15, it can be seen that the L2 norms calculated with the defensive subsample is
practically similar to those calculated with the full sample.
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Figure 5.15: Graph showing the L2 norm between annual matrices and the average matrix, for both
the cohort and duration method. The lines labelled subsample is the numbers based on
the defensive subsample.
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5.5.3 Testing for time-homogeneity

χ2 test

The χ2 test for the defensive companies subsample is performed exactly as the one where the full
sample was used. The test statistic is calculated using formula (4.3) to see whether we can reject
that annual matrices and the average matrices are the same, i.e. to reject time-homogeneity.
To reject the null hypothesis that transition probabilities are the same on the 99% level, the
calculated χ2 value has to exceed the tabulated value χ2

0.99(616) ≈ 701.

Table 5.10: Table of calculated (observed) χ2 values when comparing annual matrices to the average
matrix. Values are calculated based on matrices estimated with both the cohort and the
duration method using the defensive companies subsample.

Calculation method Cohort Duration
Observed χ2 value 15288 17246

From the table 5.10, it is evident that we can reject the null hypothesis using both the cohort
and duration method. Yet again the cohort method gives a somewhat lower χ2 value compared
to the duration method.

Con�dence intervals

Comparison of con�dence intervals for the defensive companies subsample is performed analo-
gously with the time-inhomogeneity investigation for the full sample. That is, two 95% boot-
strapped CIs for a certain PD estimated with two adjacent years data are compared to decide
whether they are statistically di�erent or not. If they are di�erent, then it is likely that time-
inhomogeneity is present. The results are shown in tables 5.11, 5.12 and 5.13).

Table 5.11: Table over bootstrapped 95% PD con�dence intervals for years 2009 and 2010. Calcula-
tions are based on the defensive sectors subsample, and are tabulated for both cohort and
duration methods.

Rating Cohort 2009 Cohort 2010 Di�erent Duration 2009 Duration 2010 Di�erent
AAA [0.00%, 0.00%] [0.00%, 0.15%] No [0.01%, 0.01%] [0.00%, 0.13%] No
AA [0.00%, 0.00%] [0.00%, 0.00%] No [0.07%, 0.10%] [0.03%, 0.04%] Yes
A [0.03%, 0.14%] [0.01%, 0.08%] No [0.22%, 0.35%] [0.05%, 0.12%] Yes
BBB [0.63%, 0.91%] [0.17%, 0.31%] Yes [0.97%, 1.22%] [0.27%, 0.39%] Yes
BB [1.49%, 1.92%] [0.80%, 1.11%] Yes [2.01%, 2.40%] [1.04%, 1.31%] Yes
B [4.71%, 6.28%] [4.99%, 6.51%] No [7.25%, 8.66%] [6.02%, 7.39%] No
CCC [5.75%, 8.92%] [4.22%, 6.79%] No [10.67%, 14.27%] [8.87%, 11.66%] No

From tables 5.11, 5.12 and 5.13 it is clear that time-inhomogeneity is present as several estima-
tions of adjacent years are signi�cantly di�erent. The duration method captures di�erences more
often than the cohort method. Compared to the calculations with the full sample, the duration
calculation based on the defensive subset has a little harder to �nd signi�cant di�erences.
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Table 5.12: Table over bootstrapped 95% PD con�dence intervals for years 2010 and 2011. Calcula-
tions are based on the defensive sectors subsample, and are tabulated for both cohort and
duration methods.

Rating Cohort 2010 Cohort 2011 Di�erent Duration 2010 Duration 2011 Di�erent
AAA [0.00%, 0.15%] [0.00%, 0.00%] No [0.00%, 0.13%] [0.00%, 0.00%] Yes
AA [0.00%, 0.00%] [0.00%, 0.00%] No [0.03%, 0.04%] [0.01%, 0.01%] Yes
A [0.01%, 0.08%] [0.00%, 0.07%] No [0.05%, 0.12%] [0.03%, 0.09%] No
BBB [0.17%, 0.31%] [0.12%, 0.24%] No [0.27%, 0.39%] [0.19%, 0.30%] No
BB [0.80%, 1.11%] [0.69%, 0.96%] No [1.04%, 1.31%] [0.76%, 0.97%] Yes
B [4.99%, 6.51%] [3.69%, 4.98%] Yes [6.02%, 7.39%] [5.56%, 6.86%] No
CCC [4.22%, 6.79%] [6.91%, 9.85%] Yes [8.87%, 11.66%] [9.32%, 12.13%] No

Table 5.13: Table over bootstrapped 95% PD con�dence intervals for years 2011 and 2012. Calcula-
tions are based on the defensive sectors subsample, and are tabulated for both cohort and
duration methods.

Rating Cohort 2011 Cohort 2012 Di�erent Duration 2011 Duration 2012 Di�erent
AAA [0.00%, 0.00%] [0.00%, 0.00%] No [0.00%, 0.00%] [0.00%, 0.12%] Yes
AA [0.00%, 0.00%] [0.00%, 0.00%] No [0.01%, 0.01%] [0.01%, 0.02%] Yes
A [0.00%, 0.07%] [0.01%, 0.06%] No [0.03%, 0.09%] [0.05%, 0.11%] No
BBB [0.12%, 0.24%] [0.46%, 0.66%] Yes [0.19%, 0.30%] [0.27%, 0.38%] Yes
BB [0.69%, 0.96%] [1.12%, 1.46%] Yes [0.76%, 0.97%] [1.14%, 1.41%] Yes
B [3.69%, 4.98%] [5.38%, 6.98%] Yes [5.56%, 6.86%] [9.75%, 11.65%] Yes
CCC [6.91%, 9.85%] [6.02%, 8.82%] No [9.32%, 12.13%] [13.34%, 16.87%] Yes
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5.6 Expansion and recession matrices

In this section, estimates of PD curves for di�erent annual matrices will be presented to deter-
mine and calculate migration matrices to be used in expansion and recession economic climates.

As discussed in section 4.7.4, cumulative PD curves for rating B will be used to decide what data
should be the base for estimation of expansion and recession matrices. The resulting PD curves
for the cohort and duration methods are found i �gures 5.16 and 5.17. As a clari�cation, PD
estimates at year 10 is tabulated in table 5.14.

Looking at the plotted PD curves, we note that the 2013 curve is way lower than any other year's
curve in the cohort method plot. However, that year has very few observations so the estimate
is not reliable and can be ignored. Also, 2002 has a substantially lower amount of observations
than the other years.

From the PD curves, clusters containing high PD and low PD emerge. The cohort method sug-
gests 2002, 2009 and 2012 as recession years and 2004, 2005, 2006, 2007, 2008 as expansion years.
The clustering in the duration method plot suggests 2009 and 2012 as recession years and 2005,
2006 and 2007 as expansion years. Note that the duration method register movements more
e�ciently. Moreover, the years suggested by the duration method were also practically the ones
suggested by the cohort method. Therefore, data for 2009 and 2012 will be used to calculate
the recession matrices, and the expansion matrices will be calculated using data from 2005, 2006
and 2007.

Table 5.14: Table showing the year 10 rating B cumulative PDs, calculated with di�erent annual
matrices using both the cohort and duration method.

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cohort 35.8% 25.8% 16.3% 16.0% 14.2% 15.5% 15.1% 34.9% 24.6% 21.9% 32.8% 1.9%
Duration 34.0% 25.6% 21.5% 16.6% 15.0% 14.3% 21.8% 47.4% 30.2% 28.6% 45.8% 34.3%

The recession and expansion matrices for the two methods can be found in �gures 5.18, 5.19,
5.20 and 5.21. It can be seen from these �gures that the PD column di�er substantially between
recession and expansion, as well as the ratings around the diagonal.
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Figure 5.16: Graph showing cumulative PDs during a 10-year period for rating B. The curves are based
on the 12 annual migration matrices calculated with the cohort method.

Figure 5.17: Graph showing cumulative PDs during a 10-year period for rating B. The curves are based
on the 12 annual migration matrices calculated with the duration method.
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Figure 5.18: Recession matrix calculated with the cohort method using data from 2009 and 2012.

Figure 5.19: Expansion matrix calculated with the cohort method using data from 2005, 2006 and
2007.

Figure 5.20: Recession matrix calculated with the duration method using data from 2009 and 2012.

Figure 5.21: Expansion matrix calculated with the duration method using data from 2005, 2006 and
2007.
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Chapter 6

Discussion

In this chapter, the �ndings and results obtained in chapter 5 is analysed. First, a thorough
examination and interpretation of the results is presented. Thereafter, the main conclusions and
implications of this thesis is reported. Then, the �nal part contains some suggestions for further
studies that is deemed to be interesting and relevant.

6.1 Interpretation of results

In this section, a discussion of the results is presented to interpret the �ndings and more clearly
point out what was seen in the results chapter.

6.1.1 Cohort and duration methods in general

First of all, we note that for both methods the migration matrices for estimation and validation
sets indicated that, on average, the Markov chain method does not depend on company speci�c
properties but rather the internal rating. This is obviously necessary for the method to be used
at all. The results motivated a merge of the two data sets into one full data sample. On a side
note, also splitting the data into a defensive companies subset gave on average practically the
same estimations, which further strengthens the arguments for a merge.

Looking at tables 3.1 and 3.2 in the data description section, we can see that �rm years and
o�-diagonal movements are very di�erent between the methods, a clear indication of the better
data e�ciency of the duration method. In fact, the number of o�-diagonal movements are about
52% higher with the duration method, even after excluding years 2002 and 2013.

An impact of the duration method's higher e�ciency is that the estimations between the two
methods di�er. In many cases, as we saw in �gure 5.7, the estimations di�er signi�cantly. Fur-
thermore, the duration method gives higher estimations to migrations further o� the diagonal.
We also note that, as seen from table 5.5, the duration method consistently gives higher cumula-
tive PD values for all ratings. This is not entirely in line with [9] who only found this behaviour
at the lowest rating levels. However, since the duration method gives higher estimates far o� the
diagonal and registers more movement in general than the cohort method, it seems logical that
the PDs should be higher.
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Moreover, the embedding problem which could be seen in several annual cohort matrices and the
cohort validation matrix is not present when using the duration method. The duration method is
also capable of estimating con�dence intervals for all migration probabilities, since all the entries
in the migration matrix are non-zero.

The suggestion is therefore to, if possible, use the duration method. The only drawback is that
it is harder to calculate without a software such as Matlab or R. The in�nitesimal approximation
that could have mitigated this problem was shown to be quite crude. The approximation works
best for mid rated companies as their PD curves are more linear. The �gures 5.10 and 5.11 show
how the approximation diverge from the exact calculation method. Depending on the level of
desired accuracy, �gures 5.10 and 5.11 can serve as a guideline for how long timespan the ap-
proximation method can substitute the exact method. Based on the �gures, a general suggestion
is to use the approximation method only if the desired time span is no longer than one year.

6.1.2 A note on Wald and bootstrapped CIs

In Appendix B, a study that compares Wald con�dence intervals (CIs) to bootstrapped CIs is
presented. A note on the results is that for the ratings BBB to CCC, the bootstrapped CIs were
close to Gaussian and had a good �t with their analytical Wald counterparts. The results are in
line with Hanson and Schuermann (2005) who �nd the same for the speculative ratings. For the
highest ratings, many PD observations will be found the be zero when using the cohort method,
i.e. there will be many bootstrapped replications stacking up at zero probability of default. The
ordinary Gaussian distribution with a mean very close to zero can of course (depending on the
standard deviation) produce negative values. For this reason, a Wald con�dence interval must be
used with some care for these cases, and one has to take into account that a PD of zero is the �oor.

Furthermore, where there are no observations of default in the whole data set, both the Wald
CIs and the bootstrap method will give degenerate CIs, i.e. it will just be mean zero and a zero
interval length. As seen in Appendix B, table B.3, there are a number of fairly low p-values. This
means that there is still a decent chance of having done the right decision if rejecting that the
Wald CI distribution and the bootstrap CI distribution are the same. The Wald CI essentially
only takes one value is account, namely the average PD of the sample. The remaining results are
based on defaults having a binomial distribution and that we have iid observations, which might
not be true considering the inhomogeneities found. The bootstrap on the other hand uses the
actual empirical sample in every replication. Several previous researchers such as Christensen
et al. (2004), Trueck and Rachev (2005) and Hanson and Schuermann (2005) speak in favour
of the bootstrap method. The only advantage with the Wald CIs is that it is fast and easy to
compute without any computer software such as R or Matlab. Considering the discussion im-
mediately above, using bootstrap is the suggestion we will give in this thesis too. However, this
decision should not have to be taken very often, as the duration approach is the preferable way
of estimating rating migrations. With the duration approach, there is no analytical alternative,
which leaves only the bootstrapping alternative.

To sum up the �ndings regarding Wald and bootstrapped intervals, Wald CIs and bootstrapped
CIs are very similar for the ratings BBB to CCC. This is in line with previous �ndings from
Hanson and Schuermann (2005). However, the Kolmogorov-Smirnov two-sample tests showed
that there is a decently large probability that the Wald CI distribution and the bootstrapped CI
distribution are not the same. Thus, we prefer to use bootstrapped intervals as this approach
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uses the whole empirical sample rather than only the average PD and assumptions regarding the
distribution, plus it can be used analogously also on investment grade ratings.

6.1.3 Time-inhomogeneity investigation

The presence of time-inhomogeneity has been investigated with three methods, L2 norm, χ2

test and comparison of con�dence intervals. The methods have been used on both the full data
sample and the defensive companies subsample. Immediately below follow a discussion on the
results found with these investigation methods.

L2 norm

The L2 norm was calculated both for the whole sample and for the defensive companies sub-
sample. It was also calculated using both cohort and duration methods to estimate migration
matrices. The norm is a measure of the cell-by-cell di�erence between the annual matrices and
the average matrix. It does not put any weights depending on distance from the diagonal, but
rather measuring sheer di�erences. The formula 4.1 describes how to calculate the L2 norm.
Figure 5.15 show all calculations. It can be noted that the norms were fairly similar between
the full sample and the defensive companies subset. Also, years 2005 and 2009 seemed to be less
similar to the average matrix than other years. For the cohort method, 2002 and 2013 were very
di�erent too, but it is reasonable to believe that this is due to the low amount of data. Moreover,
we note that the defensive companies subset is roughly 40% smaller, which probably can cause
larger di�erences. However, the di�erences in L2 norms are hard to draw conclusions from other
than that there are di�erences. Therefore, the investigation of time-inhomogeneity is moved on
to χ2 tests and comparison of con�dence intervals.

χ2 test

Below is a discussion of the results from the χ2 tests found using both the full sample and the
defensive companies subsample.

As stated in table 5.6 and 5.10, the observed test statistic was far larger than the tabulated
value. Thus, the null hypothesis that annual matrices and the average matrix are the same could
be easily rejected (and thereby the homogeneity assumption). One reason for the relatively large
observed values is the sheer size of the data set which makes us very "sure" about our estima-
tions. This can be seen from the formula 4.3, where the number of �rm years for a certain rating,
ni(t), is multiplied with a ratio (p̂ij(t)− p̂ij)2/p̂ij) that quanti�es the di�erence. Thus the annual
matrix estimations does not have to di�er much from the average matrix for the χ2 test statistic
in formula (4.3) to produce large numbers.

The results are in line with Kiefer and Larsson (2006) who used the same test on S&P corporates
and municipal bonds. As an example, they had 20 years of data on S&P corporates. If they
made only 4 transitions with a 5-year transition matrix over the 20 years, they could still reject
time-homogeneity with a p-value of essentially zero.

In the calculations done in this thesis, a large data set and 12 annual transitions are used.
Thus, the high numbers are reasonable. The χ2 test thereby suggests that time-inhomogeneity
is present within the data, regardless of using all data or just the defensive companies subset.
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With regards to the di�erence in observed χ2 values between the full sample and the defensive
subsample, much can be explained by the di�erence in sample sizes. The observed χ2 values
with the full sample was 53% (cohort) and 73% (duration) larger. However, the full sample is
about 73% larger in terms of �rm years which scale up the matrix di�erences linearly. Since the
defensive companies sample is smaller, it is likely to have a little bit more sparse matrices. By
taking these both factors into account, it seems reasonable that the full sample and the defensive
subsample has roughly the same level of time-inhomogeneity present.

Con�dence intervals

Tables 5.7 to 5.9 and 5.7 to 5.13 show comparisons of adjacent years' con�dence intervals. If
the con�dence intervals do not overlap, then the estimations can be said to be statistically dif-
ferent. Statistically di�erent estimations indicate that time-inhomogeneity is likely to be present.

The tables show that both cohort and duration methods �nd statistically di�erent estimations
in all adjacent year pairs investigated. This is also true for the defensive companies subset.
One �nding is also that the duration method is better at picking up di�erences than the cohort
method. This is reasonable since the duration method is more sensitive to rating changes and
more e�ciently use the data. Another visible pattern is that the cohort method has di�culties
picking up di�erences for the highest ratings AAA to A, whereas the duration method register
statistically di�erent estimates in most of those cases.

With regards to comparing the full sample and the defensive sample, we can observe four cases
where the duration method can't see a di�erence in estimations using the defensive subsample
that it previously saw using the full sample. These are ratings B and CCC when comparing 2009
to 2010, rating BBB when comparing 2010 to 2011 and �nally rating A when comparing 2011
to 2012. The question is now, is it a result of the companies within the defensive subset or is it
a consequence of its smaller sample size?

The main point is still that we clearly saw inhomogeneity in both samples, but it is interesting to
at least make some approximative calculation of how the answers would change if the subsample
had the same number of observations as the full sample. Of course the intervals are dependent
on actual observations, but it is also dependent on sample size. Following two suggestions could
approximate the answer:

� Assume that, since the actual PD estimates are quite similar, the intervals of the subsample
might have been as tight as those in the full sample.

� Use the study of Wald intervals, and assume that the similarities between Wald CI and
bootstrap CI that were found in ratings A to CCC still hold for the duration approach.
The Wald interval size is heavily dependent on the number of �rm years. By calculating
the number of �rm years for the speci�c cases, we can change the factor 1/

√
nR in the

Wald CI formula accordingly to account for the smaller sample size.

Both the above approaches gave the same result, namely that we now saw a clear di�erence on
rating B 2009/2010 and a slight di�erence for rating BBB 2010/2011. The duration method still
couldn't see any statistically signi�cant di�erence regarding rating CCC 2009/2010 and rating A
2011/2012. Thus, it seems as when using the defensive companies subset, the duration method
has a little harder to obtain statistically signi�cant di�erences. In 2 out of 17 cases where saw a
di�erence using the whole sample, we did not see it in the defensive companies subsample. From
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the CI comparison point of view, this means means a little less time-inhomogeneity. Neverthe-
less, the defensive companies subsample saw signi�cant di�erences in PD estimations between all
years, using both cohort and duration method. Therefore, we can say that time-inhomogeneity
is present in the defensive companies subsample.

To conclude the whole section on time-inhomogeneity investigation, the investigations of L2

norms, χ2 values and con�dence intervals all point in the same direction. It shows that time-
inhomogeneity is present and that even sectors thought of as defensive are exposed to these
�uctuations in credit migration probabilities to essentially the same extent as other sectors.

6.1.4 Expansion and recession matrices

To be able to decide which years' data to be used as a base to calculate expansion and recession
matrices, a study of cumulative PD curves was used. There are two main reasons why the decision
was made based on PD curves. The �rst is that it is hard to see exactly which annual matrices
that describe recessions and expansions. When calculating cumulative PD curves every cell is
used. This makes it easier to see the impact on estimated PD from all migration probabilities
within the matrix. The second reason why we are looking at cumulative PD curves is because
they are the �nal product that is used to calculate for instance expected losses. In other words,
it is the cumulative PD curves that matters for the risk managers. A fairly low rating (B) was
chosen to be examined. One reason for choosing rating B was that lower rated companies proba-
bly are more sensitive to the economic cycle, which then could distinguish this e�ect more clearly
in the graphs. Furthermore is has more observations in total than e.g. rating CCC, but also a
fair amount of observations that defaulted. This make the estimations in this region more certain.

After examining the PD curves, the clustering of cumulative PD after 10 years made the decision
which years to include in what matrix. The decision fell on 2009 and 2012 as recession years,
and 2005, 2006 and 2007 as expansion years. These years were pointed out by both the cohort
and duration method.

The expansion and recession matrices was calculated to be used as tools to mitigate the e�ect
of time-inhomogeneity. It also clearly shows the di�erence in PD estimations obtained when dif-
ferent years are used as a base for migration matrix calculations. Moreover, it gives a hunch on
how big the di�erence in migrations can be during recessions and expansions. This is important
when PD estimates are used to calculate e.g. expected loss on an exposure with shorter time
horizon. In times of expansion, less capital could be hold as a bu�er for expected losses, while
it is the opposite in times of recession. The amount of capital to be held a�ect the prices of e.g.
derivatives transactions, which is why this knowledge is important to be able to quote correct
prices.

6.2 Conclusions and implications

This section summarises the main implications and conclusions that could be drawn from the
methods, results and discussions in this thesis.

The splitting into an estimation and a validation data set, but also into a defensive companies
subsample showed that migration probabilities are on average not dependent on company speci�c
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data, but rather on internal rating. This is of course desired for the Markov chain approach, and
shows a usefulness in making PD estimations based on internal rating. The result motivated a
merge between the estimation and validation subsets into one whole data set.

Data gathered on e.g. �rm years and o�-diagonal movements clearly shows the data e�ciency
gains when using the duration method, compared to the cohort method. The suggestion is
therefore to use the duration method if possible, which likely requires some software such as R
or Matlab. The investigation of an in�nitesimal approximation to avoid using softwares as the
above showed that this approach is only feasible for shorter time horizons, depending on desired
accuracy. The suggestion is to only use the approximation when considering time frames of at
most 1 year into the future.

An e�ect of the di�erent data e�ciency was that migration matrices calculated with the cohort
and duration methods gave several statistically di�erent estimations, even though calculations
were based on the same time frame. As expected, the duration method migration matrix was
heavier further from the diagonal compared to the cohort migration matrix. As a result of larger
migration probabilities further o� the diagonal, caused by data e�ciency gains in registering
more migrations, the duration approach gave higher cumulative PD estimations for all ratings.

The comparison of Wald CIs and bootstrapped CIs showed that for ratings BBB to CCC, the
bootstrapped CIs �t the analytical Wald CIs very well. This was in line with previous research.
However, the fact that bootstrapped intervals uses every empirical observation to a greater ex-
tent, plus its usefulness when estimating higher rated companies speaks in favour of using the
bootstrap method as a �rst choice. Moreover, when using the duration approach, no analytical
Wald CIs can be computed. Therefore, using bootstrap on both cohort and duration migration
matrices is the preferred choice and by using the same method it makes comparisons easier.

All three methods of investigating time-inhomogeneity (L2 norm, χ2 test and comparison of CIs)
suggest that time-inhomogeneity is present in the data. This applies to the full sample, but also
to the defensive companies subsample. The defensive subsample showed on a bit less inhomo-
geneity when looking at the χ2 test and the con�dence intervals. However, much of that e�ect
can be referred to the fact that the defensive companies subset had a smaller amount of data.
Nevertheless, inhomogeneities were present in all compared years when using migration matrices
and their CIs based on both cohort and duration calculation methods. The implication is that
this is something that has to be taken into account by all risk managers, even those who only
have exposures towards defensive sectors.

Using recession and expansion matrices is suggested as a tool to mitigate the impact of time-
inhomogeneity. This approach is further elaborated on in section 6.3. A study of cumulative PD
curves was used to decide what data should be the base for calculating recession and expansion
matrices. When calculated, the recession and expansion matrices clearly showed the e�ect of
economic cycle on e.g. estimated 1-year PDs. The di�erences are important, as the estimated
PDs dictate the amount of capital bu�er needed to put aside for e.g. expected losses. This knowl-
edge is therefore important to be able to quote correct prices on transactions such as loans and
derivatives that requires bu�er capital to be put aside to cover the risk of counterparty credit risk.

60



6.3. SUGGESTIONS FOR FURTHER STUDIES CHAPTER 6. DISCUSSION

6.3 Suggestions for further studies

This report has taken an application approach to estimating cumulative PDs through matrix
migrations, and has a broad focus on appeared issues and necessities when implementing the
Markov chain framework to rating migrations in practice. Many of the application components
such as estimating matrices, means of measuring di�erences between matrices, calculating con�-
dence intervals and statistically testing outcomes are research �elds in their own right. However,
the issue of time-inhomogeneity is a pressing one. The current researchers try to �nd solutions
to this problem at the moment, and it is certainly an important �eld. To be able to take the
next big leap in the Markov chain approach to estimating credit migration, this has to be solved.
We have seen from previous studies that there has been several attempts to solve this issue, but
there is no real consensus on a feasible approach.

From an application point of view, an extension of this analysis is to build upon the time-
inhomogeneity issue and �nd better ways to estimate or simulate migration matrices, since this
is one of the main issues with this approach. However, the �rst step would be to �nd some
solution that is relatively easy to implement in practice. One way that is easy to implement is
simply to, as suggested, use di�erent migration matrices for expansions and recessions. First o�,
one would like to test expansion and recession matrices on future data. As discussed in section
6.1.4, the di�erent PD estimations in time of recession and expansion can make a huge impact
on the price of e.g. derivatives. Therefore, it is essential to make the right prediction of PD,
which we have seen di�er a lot from expansion to recessions. To test the mitigating e�ect of
using these matrices would be highly interesting. This was not possible in this thesis due to
the limited number of years in the data set. The feasibility of using expansion and recession
matrices is of course dependent on how good the decisions can be when to use them. The issue
to be solved is therefore how to decide when these matrices are to be used. In the longer run,
for instance 8-10 years which roughly can be considered one economic cycle, it might be a good
approximation to just go with the average matrix (tests on future data would be desirable also
here). The time scope where the recession and expansion matrix decision issue has to be solved
is therefore rather up to 5 years.

The �rst and quite blatant suggestion is that the solution could be based on internal views.
One might simply have an own view on how the economy (and thereby rating migrations) might
change the coming years and choose migration matrices accordingly. Otherwise, if this is to be
implemented in a large institution, it might be possible to incorporate an internal macro group's
or an internal credit research group's views to decide upon what type of economic climate that
lies ahead. Migration matrices are then picked accordingly.

The second suggestion is to use some kind of market implied approach or macro factors to deter-
mine the migration matrices. One approach could be to �nd some publicly published variables
that can serve as proxies to estimate the future economic climate. Suggestions could be e.g.
industrial production or industrial capacity utilisation. Also, if one believes that the stock mar-
ket is correlated with rating migrations, it might be feasible to try to use stock indices or the
VIX index which moves quicker than stock indices and is a little forward looking. Possibly, a
downturn in stock prices might happen before companies are in such bad shape that they get
downgrades or default. However, it might be so that these variables are not capable to predict
rating migrations 4 or 5 years from now. Therefore, I suggest that credit spreads or prices of
credit default swaps (CDS) could be examined. These have predetermined maturities, for CDSs
most lie between 1 to 10 years (5 is typical, see [28]). Thus, it should be possible to �nd data for
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the relevant time span. They also target credit quality more speci�cally, which is more closely re-
lated to credit rating migrations. Furthermore, examining credit spreads or CDSs could make it
easier to conduct industry-speci�c research. One simply splits the data into industry categories,
and thereby get better speci�c estimations for counterparties belonging to a given industry. In
my personal point of view, I think that the credit spread or CDS alternative is interesting and
would have that approach as my main suggestion for further studies.

To conclude, a suggestion for taking the whole �eld of calculating rating migrations using Markov
chains further and thereby also the application approach further, is to investigate the time-
inhomogeneity issue. From an application point of view, a �rst step would be to test if the
approach of using recession and expansion matrices is feasible. If so, then the problem is to �nd
decision rules on when to use them. A �rst but blatant suggestion to solution is to use internal
views. It can be either the investor's own view or some internal expert group's, such as a credit
research group. The second and more interesting suggestion is to use either publicly available
factors as proxies for the future macro environment, or to use a more market implied approach
with credit spreads and credit default swaps. However, the macro proxy variables might have
more di�cult to forsee the farther end of the 5-year interval than e.g. CDSs which should have
data over a whole economic cycle. Moreover credit spreads and CDSs probably are more closely
related to credit migrations. Therefore, I suggest investigating their relation to credit migrations
and their usefulness in trying to predict credit migrations for time horizons shorter than 10 years.
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Appendix A

Results - con�dence intervals

This appendix contains result tables over bootstrapped 95% con�dence intervals for whole ma-
trices that were deemed to be a bit too unwieldy to have in the results chapter. The purpose
is to make the reader able to verify some of the claims that were made when presenting the
results, e.g. that cohort and duration matrices gave signi�cantly di�erent migration probability
estimations in a large number of cases.
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Appendix B

Wald and bootstrapped CI

comparison

This appendix shows a brief study of the Wald con�dence intervals compared to the bootstrapped
con�dence intervals for the cohort method. The purpose is to suggest whether a bootstrap
method is necessary or if the analytical Wald con�dence interval is enough when using the co-
hort method. The study is deferred to the appendix pages as practitioners probably will use the
duration method more, plus the fact that di�erent con�dence interval calculation methods are
not the main focus of this thesis.

We have already seen in table 5.1 that the Wald CIs and the bootstrapped CIs for the average
cohort matrix were very similar. Con�dence intervals were also calculated for the annual matri-
ces 2009, 2010, 2011 and 2012 that was part of the time-inhomogeneity study. These years will
be studied again as they are the most recent and has the highest number of observations. As
can be seen from the tables B.1 and B.2, the 95% con�dence intervals yet again look very similar.

Table B.1: Table over Wald CIs and bootstrapped 95% CIs for years 2009 and 2010. Calculations are
based on the full sample.

Rating Bootstrap 2009 Wald 2009 Bootstrap 2010 Wald 2010
AAA [0.00%, 0.00%] [0.00%, 0.00%] [0.00%, 0.09%] [0.00%, 0.09%]
AA [0.00%, 0.00%] [0.00%,0.00%] [0.00%, 0.00%] [0.00%, 0.00%]
A [0.06%, 0.15%] [0.05%, 0.15%] [0.01%, 0.05%] [0.00%, 0.05%]
BBB [0.61%, 0.80%] [0.60%, 0.80%] [0.18%, 0.30%] [0.19%, 0.30%]
BB [1.60%, 1.92%] [1.60%, 1.93%] [0.83%, 1.06%] [0.82%, 1.05%]
B [4.83%, 6.00%] [4.84%, 6.02%] [4.55%, 5.62%] [4.57%, 5.61%]
CCC [6.37%, 8.87%] [6.31%, 8.83%] [4.72%, 6.63%] [4.67%, 6.63%]

According to the theory of Wald con�dence intervals, the estimated PD for a rating R should
follow a normal distribution as in equation (B.1)

P̂DR ∼ N

(
P̂DR,

P̂DR(1− P̂DR)

nR

)
(B.1)
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Table B.2: Table over Wald CIs and bootstrapped 95% CIs for years 2011 and 2012. Calculations are
based on the full sample.

Rating Bootstrap 2011 Wald 2011 Bootstrap 2012 Wald 2012
AAA [0.00%, 0.00%] [0.00%, 0.00%] [0.00%, 0.07%] [0.00%, 0.07%]
AA [0.00%, 0.00%] [0.00%, 0.00%] [0.00%, 0.05%] [0.00%, 0.04%]
A [0.01%, 0.06%] [0.01%, 0.05%] [0.01%, 0.05%] [0.01%, 0.05%]
BBB [0.13%, 0.21%] [0.12%, 0.21%] [0.51%, 0.66%] [0.51%, 0.66%]
BB [0.75%, 0.96%] [0.75%, 0.96%] [1.12%, 1.38%] [1.12%, 1.37%]
B [3.75%, 4.73%] [3.77%, 4.71%] [5.36%, 6.46%] [5.32%, 6.47%]
CCC [6.80%, 8.90%] [6.78%, 8.95%] [6.61%, 8.90%] [6.63%, 8.91%]

where the nR is the number of �rms that began that year in rating R.

To determine whether this is a good assumption for percentiles other than the ones we just
studied, we can test if the bootstrapped sample appears to be from a distribution as described
by equation (B.1). We will use a Kolmogorov-Smirnov (K-S) two-sample test, as described in
section 2.1. One sample will be the bootstrapped empirical sample, the other will be a generated
normal distribution sample with the mean and variance dictated by the Wald theory.

Ratings AAA and AA will not be tested, as the bootstrapped samples will have piles of stacked
observations at zero probability which will blur the test results. The null hypothesis is that
the bootstrapped empirical sample and the generated normal distribution sample have the same
distribution. Both samples have the same size, 1000 observations.

To K-S two-sample test is calculated using the Matlab function kstest2, with signi�cance
level 5%. That means that if the calculated p-value is less then 0.05, then the null hypothesis is
rejected. Thus, we only reject the null hypothesis (that they come from the same distribution)
if the risk of taking the wrong decision when rejecting null hypothesis is less than 5%. In table
B.3, H and p-values are tabulated. If H = 1, then the null hypothesis is rejected. If H = 0, then
the null hypothesis is accepted.

Table B.3: Table over Kolmogorov-Smirnov test outputs for years 2009, 2010, 2011 and 2012. Calcu-
lations are based on the full sample.

Rating 2009 [H,p] 2010 [H,p] 2011 [H,p] 2012 [H,p]
A [0, 0.23] [1, 0.00] [1, 0.00] [1, 0.00]
BBB [0, 0.18] [0, 0.49] [0, 0.79] [0, 0.98]
BB [0, 0.72] [0, 0.13] [0, 0.39] [0, 0.95]
B [0, 0.26] [1, 0.00] [0, 0.33] [0, 0.64]
CCC [0, 0.88] [1, 0.01] [0, 0.95] [0, 0.09]

From table B.3, we can see that the null hypothesis is rejected in 25% of the cases, with most
rejections on the rating with lowest PD. However, there are a couple of more ratings with
relatively low p-value. To clarify the similarities and di�erences between Wald and bootstrapped
CIs, cumulative distribution functions from two rejected and two accepted tests are shown in
�gures B.1, B.2, B.3 and B.4. They represent the best and worst p-values for both rejected and
accepted null hypothesis. Whether the analytical con�dence intervals are good substitutes for
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the bootstrapped ones is depending on each investor's or researcher's preferences. At least the
Wald CIs seem to have a good �t to the bootstrap for the ratings BBB to CCC. These results
are in line with Hanson and Schuermann (2005) who also �nd that the speculative grade rating
distributions are "surprisingly close to normal (Gaussian)". The Wald CIs are also easy and fast
to compute.

Figure B.1: Cumulative distribution functions for a bootstrapped PD estimation sample and its gen-
erated Gaussian counterpart.
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Figure B.2: Cumulative distribution functions for a bootstrapped PD estimation sample and its gen-
erated Gaussian counterpart.

Figure B.3: Cumulative distribution functions for a bootstrapped PD estimation sample and its gen-
erated Gaussian counterpart.
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Figure B.4: Cumulative distribution functions for a bootstrapped PD estimation sample and its gen-
erated Gaussian counterpart.
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Appendix C

Defensive sectors

Below follow the list of NACE sections and divisions that were chosen to form the defensive
companies subset.
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