Pricing Interest Rate Derivatives in the Multi-Curve Framework

Stochastic Basis Spread

Zakaria El Menouni
910504-8772

KTH - Royal Institute of Technology
SF299X - Degree Project in Mathematical Statistics

March 30th, 2015
Summary

1 Introduction
 The Interest Rate Market Transformation
 Consequences

2 The Multi-Curve Framework
 Pricing Interest Rate Derivatives: What has changed?
 Pricing Plain Vanilla Instruments: Deposits and Swaps

3 Case of a Stochastic Spread
 Modeling the Basis Spread
 Caplet Pricing
 Introducing Shifted Log-Normal and SABR Dynamics
 Model Calibration

4 Results

5 Discussion & Improvement Suggestions

6 Conclusion
Summary

1. Introduction
 The Interest Rate Market Transformation
 Consequences

2. The Multi-Curve Framework

3. Case of a Stochastic Spread

4. Results

5. Discussion & Improvement Suggestions

6. Conclusion
Pricing Interest Rate Derivatives in the Multi-Curve Framework

Introduction

The Interest Rate Market Transformation

- Divergence between interest rates \Rightarrow Appearance of a spread.
- Explosion of the spread in 2008 (August) and in 2011.
- Libor not considered risk-free anymore.
- Risky transactions.
• Interest rate divergence ⇒ Market subdivision.

• Expansion of collateralized transactions (Over Night rate as the risk-free rate).

• Replacement of the now risky Libor by the approximately risk-free Over night rate.

• Invalidity of the single-curve framework.

• Use of the Multi-curve framework: One discounting curve and different forward curves.
Summary

1 Introduction

2 The Multi-Curve Framework
 Pricing Interest Rate Derivatives: What has changed?
 Pricing Plain Vanilla Instruments: Deposits and Swaps

3 Case of a Stochastic Spread

4 Results

5 Discussion & Improvement Suggestions

6 Conclusion
Pricing procedure in the Multi-Curve framework

1. Construct the discount curve,
2. Construct the forward curves homogeneously with the tenors,
3. Use each forwarding curve to compute the FRA rates with tenor \(m \) for each coupon \(i \in \{1, \ldots, n\} \):

\[
FRA_m(t; T_{i-1}, T_i) = \frac{1}{\gamma_m(T_{i-1}, T_i)} \left(\frac{P_m(t, T_{i-1})}{P_m(t, T_i)} - 1 \right), \quad t \in [T_{i-1}, T_i)
\]

4. Compute the cash flows \(c_i \):

\[
c_i(t, T_i) = \mathbb{E}_t^{Q_{T_i}} [\Phi_i],
\]

5. Use the discount curve to compute the discount factors \(P_{d}(t, T_i) \),
6. Compute the \(t \)-price \(\phi(t) \) of the derivative of interest such that:

\[
\phi(t) = \sum_{i=1}^{m} P_d(t, T_i) \mathbb{E}_t^{Q_{T_i}} [\Phi_i].
\]
Definition: Deposit

A **deposit** is a zero coupon contract where a counterparty A lends a nominal N at T_0 to another counterparty, and at maturity T, receives the notional amount back as well as the interest accrued over the period $[T_0, T]$ at a simply compounded rate $R_m(T_0, T)$ fixed at a date $T_F \leq T_0$ and of tenor m.

Payoff:

$$\Phi_{Deposit}(T) = N(1 + R_m(T_0, T)\gamma(T_0, T)),$$

Price at time $t \in [T_F, T]:$

$$\Phi_{Deposit}(t) = P_m(t, T)E_{t}^{Q_m} [\Phi_{Deposit}(T)] = NP_m(t, T)(1 + R_m(T_0, T)\gamma(T_0, T)).$$
Definition: Swap

A **swap** is a T-maturity contract between two counterparties where they exchange a fixed rate for a floating rate, typically the Libor rate. Let $\Omega_T = \{T_0, T_1, ..., T_n\}$ be the cash flow schedule of the floating leg and $\Omega_S = \{S_0, S_1, ..., S_{n'}\}$ that of the fixed leg (with rate K). n and n' are the numbers of floating and fixed payments of the swap, respectively.

Fixed Leg (Ω_S)

- t
- S_0
- S_1
- S_2
- S_3
- \ldots
- $S_{n'}$

Floating Leg (Ω_T)

- t
- $T_0 = S_0$
- T_1
- T_2
- T_3
- \ldots
- T_n
Fixed Leg Cash Flows:
At the end of a period \([S_{j-1}, S_j]\), the fixed leg pays off:

\[NK \gamma_K(S_{j-1}, S_j). \]

Float Leg Cash Flows:
At the end of a period \([T_{i-1}, T_i]\), the float leg pays off:

\[N \gamma_{\text{float}}(T_{i-1}, T_i)L_m(T_{i-1}, T_i). \]

Price at time \(t \in [T_0, T] \):

\[
\Phi_{IRS}(t) = N \omega \left[\sum_{i=1}^{n} P_d(t, T_i) \gamma_{\text{float}}(T_{i-1}, T_i) \mathbb{E}_{Q}^{T_i}_{d} [L_m(T_{i-1}, T_i)] \right] - \sum_{j=1}^{n'} K P_d(t, S_j) \gamma_K(S_{j-1}, S_j),
\]
Example of a yield curve:

OIS discount curve as of 01/10/2014

Interest rates as of 01/10/2014
Pricing Interest Rate Derivatives in the Multi-Curve Framework

The Multi-Curve Framework

Pricing Plain Vanilla Instruments: Deposits and Swaps

EUR003M Index (Euribor 3 Month ACT/360)
EUSWEC Curncy (EUR SWAP (EONIA) 3 MO)
EUR003M Index - EUSWEC Curncy

Graph showing the price movements of EUR003M Index and EUSWEC Currency from 2005 to 2015.
Summary

1 Introduction

2 The Multi-Curve Framework

3 Case of a Stochastic Spread
 Modeling the Basis Spread
 Caplet Pricing
 Introducing Shifted Log-Normal and SABR Dynamics
 Model Calibration

4 Results

5 Discussion & Improvement Suggestions

6 Conclusion
Notations:
Let us consider a tenor m for the Ibor and the corresponding term structure $\{T^m_0, T^m_1, ..., T^m_N\}$, such that $\forall k \in \{1, ..., N\}, T^m_k - T^m_{k-1} = m$.

$$F^m_k(t) = F_d(t, T^m_{k-1}, T^m_k) = \frac{1}{\gamma^m(T^m_{k-1}, T^m_k)} \left(\frac{P_d(t, T^m_{k-1})}{P_d(t, T^m_k)} - 1 \right),$$

$$L^m_k(t) = FRA(t, T^m_{k-1}, T^m_k) = \mathbb{E}^{Q^m_t}_{t} [L_m(T^m_{k-1}, T^m_k)].$$

The spread is given by:

$$\forall t \geq T^m_0, S^m_k(t) = L^m_k(t) - F^m_k(t).$$

Aim: Adapt the Libor Market Model (LMM) to the Multi-Curve setting: We choose to model S^m_k and F^m_k and deduce L^m_k needed for the pricing.

Assumptions:

$$\forall t \geq T^m_0, S^m_k(t) \geq 0, F^m_k(t)$$ can be negative and F^m_k and S^m_k are independent.
Definition: Caplet

A caplet of maturity T_{k-1}^m is a call option indexed on a Libor rate of tenor m, $L_m(T_{k-1}^m, T_k^m)$, struck at K (with a strike K). $L_m(T_{k-1}^m, T_k^m)$ is fixed (determined) at T_{k-1}^m and payed at T_k^m. The payoff of the caplet at maturity T_{k-1}^m is:

$$\gamma_m(T_{k-1}^m, T_k^m) \left[L_m(T_{k-1}^m, T_k^m) - K \right]^+.$$

Index IBOR of tenor m

\[L_m(T_{k-1}^m, T_k^m) \]

Caplet maturing at T_{k-1}^m and paying off at T_k^m

\[\gamma_m(T_{k-1}^m, T_k^m)[L_m(T_{k-1}^m, T_k^m) - K]^+ \]
Notation: $Q^{T^m_k}$ the measure when the numeraire is $T \to P_d(., T)$.

Recall the price of an interest rate derivative (here a caplet) in the Multi-Curve framework:

<table>
<thead>
<tr>
<th>Caplet price at time $t \leq T^m_{k-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi_C(t, K; T^m_{k-1}, T^m_k) = \gamma_m(T^m_{k-1}, T^m_k) P_d(t, T^m_k) \mathbb{E}t^{Q^{T^m_k}} [(L_m(T^m{k-1}, T^m_k) - K)^+]$.</td>
</tr>
</tbody>
</table>

After some algebra, we obtain:

$$
\Phi_C(t, K; T^m_{k-1}, T^m_k) = \int_{-\infty}^{K} \Phi^{S}_C(t, K - y; T_{k-1}, T_k) f^{m}_{F}(T^m_{k-1})(y) dy
- S^m_k(t) \frac{\partial}{\partial K} \Phi^{F}_C(t, K; T_{k-1}, T_k) + \Phi^{F}_C(t, K; T_{k-1}, T_k).
$$

Where

$$
\Phi^{S}_C(t, K, T^m_{k-1}, T^m_k) = \gamma_m(T^m_{k-1}, T^m_k) P_d(t, T^m_k) \mathbb{E}_t^{Q^{T^m_k}} [(S^m_k(T^m_{k-1}) - K)^+],
$$

$$
\Phi^{F}_C(t, K, T^m_{k-1}, T^m_k) = \gamma_m(T^m_{k-1}, T^m_k) P_d(t, T^m_k) \mathbb{E}_t^{Q^{T^m_k}} [(F^m_k(T^m_{k-1}) - K)^+].
$$
We choose the following dynamics:

- **OIS forward rates: Shifted Log-Normal**

\[
 dF_k^m(t) = \sigma_k^m \left(F_k^m(t) + \frac{1}{\gamma_k^m} \right) dZ_k^m(t),
\]

(1)

- **The basis spread: SABR**

\[
\begin{align*}
 dS_k^m(t) &= [S_k^m(t)]^\beta_k V_k(t) dX_k(t), \\
 dV_k(t) &= \varepsilon_k V_k(t) dY_k(t), \quad V_k(0) = \alpha_k,
\end{align*}
\]

where \(\{X_k\}_{t \geq 0} \) and \(\{Y_k\}_{t \geq 0} \) are correlated standard Wiener processes under the \(Q_{d_k}^{T_m} \) measure, i.e. \(dX_k(t) dY_k(t) = \rho_k dt \) with \(\rho_k \in [-1, 1) \) and \(\alpha_k > 0, \varepsilon_k > 0, \beta_k \in (0, 1] \) are constants.
Pricing Interest Rate Derivatives in the Multi-Curve Framework

Case of a Stochastic Spread

Introducing Shifted Log-Normal and SABR Dynamics

After some algebraical manipulations, we replace the quantities appearing in the caplet price formula with their expressions and obtain:

\[
g(y, t, F^m_k(t)) = \left[\ln \left(\frac{y}{F^m_k(t) + \frac{1}{\gamma^m_k}} \right) + \frac{1}{2} \left(\sigma^m_k \right)^2 (T^m_{k-1} - t) \right]^2,
\]

\[
h(y, t, F^m_k(t), S^m_k(t)) = \frac{\Phi^{SABR}_C(t, K + \frac{1}{\gamma^m_k} - y; T^m_{k-1}, T^m_k)}{\sigma^m_k y \sqrt{2\pi(T^m_{k-1} - t)}} \exp \left\{ -\frac{g(y, t, F^m_k(t))}{2(\sigma^m_k)^2 (T^m_{k-1} - t)} \right\}
\]

\[
\Phi_C(t, K; T^m_{k-1}, T^m_k) \approx \int_{\frac{1}{\gamma^m_k}}^{K + \frac{1}{\gamma^m_k}} h(y, t, F^m_k(t), S^m_k(t)) dy
\]

\[
+ \gamma^m_k P_d(t, T^m_k) \left[\left(F^m_k(t) + \frac{1}{\gamma^m_k} \right) N(d^G_1) + \left(S^m_k(t) - K - \frac{1}{\gamma^m_k} \right) N(d^G_2) \right].
\]
\[d_1^G = \frac{\ln \left(\frac{F^m_k(t) + \frac{1}{\gamma_k^m}}{K + \frac{1}{\gamma_k^m}} \right) + \frac{1}{2} (\sigma_k^m)^2 (T^m_{k-1} - t)}{\sigma_k^m \sqrt{T^m_{k-1} - t}}, \]

\[d_2^G = d_1^G - \sigma_k^m \sqrt{T^m_{k-1} - t}. \]

Formula Assessment: A Monte Carlo Method with an antithetic variance reduction method.
Aim: Estimate the parameters α_k, β_k, ρ_k, ε_k and σ^m_k for each k using market data: Implied volatilities of EUR caps (underlying tenor 6M) as of 01/10/2014 (Strikes 1%, 1.5%, 2%, 2.5%, 3%).

1. Compute caplet market prices from the market caps’ implied volatilities,
2. Fix $\beta_k = 0.5$ for example.
3. Perform a least squares minimization:

\[
(\hat{\alpha}_k, \hat{\rho}_k, \hat{\varepsilon}_k, \hat{\sigma}^m_k) = \arg\min_{\alpha_k, \rho_k, \varepsilon_k, \sigma^m_k} \sum_i \left[\Phi_{\text{Model\ caplet}}(t, K_i, T) - \Phi_{\text{mkt\ caplet}}(t, K_i, T) \right]^2.
\]
Summary

1 Introduction

2 The Multi-Curve Framework

3 Case of a Stochastic Spread

4 Results

5 Discussion & Improvement Suggestions

6 Conclusion
Calibration errors as of 01/10/2014:

Calibration error for maturities 3Y and 4Y (as of 01/10/2014)

- **Strike**: 1.00%, 1.50%, 2.00%, 2.50%, 3.00%
- **Error**: 0,0000% to 2,5000%

- **3Y**: Red bars
- **4Y**: Blue bars

Calibration error for maturity 6Y (as of 01/10/2014)

- **Strike**: 1.00%, 1.50%, 2.00%, 2.50%, 3.00%
- **Error**: 0,0000% to 60,0000%

- **6Y**: Blue bars
3Y Caplet prices as of 01/10/2014

4Y Caplet prices as of 01/10/2014

- Market prices
- Formula
- MC
- Difference Model/Market
6Y Caplet prices as of 01/10/2014

- Market prices
- Formula
- MC
- Difference Model/Market
Results

Model Vs. Market Smile (3Y maturity)

Model Vs. Market Smile (4Y maturity)

Model Vs. Market Smile (6Y maturity)
Deterministic Spread:

3Y Caplet prices as of 01/10/2014

4Y Caplet prices as of 01/10/2014
6Y Caplet prices as of 01/10/2014

- Prices in the deterministic spread model
- Market prices
Summary

1. Introduction

2. The Multi-Curve Framework

3. Case of a Stochastic Spread

4. Results

5. Discussion & Improvement Suggestions

6. Conclusion
Results of the calibration as of 01/10/2014:

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Caplet 3Y</th>
<th>Caplet 4Y</th>
<th>Caplet 6Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expiration date</td>
<td>02/10/2017</td>
<td>01/10/2018</td>
<td>01/10/2020</td>
</tr>
<tr>
<td>$F_{k}^{6M}(t)$</td>
<td>0.169%</td>
<td>0.438%</td>
<td>1.157%</td>
</tr>
<tr>
<td>$L_{k}^{6M}(t)$</td>
<td>0.501%</td>
<td>0.784%</td>
<td>1.465%</td>
</tr>
<tr>
<td>$S_{k}^{6M}(t)$</td>
<td>0.333%</td>
<td>0.346%</td>
<td>0.308%</td>
</tr>
<tr>
<td>α_{k}</td>
<td>2.27%</td>
<td>2.05%</td>
<td>1.98%</td>
</tr>
<tr>
<td>β_{k}</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>ρ_{k}</td>
<td>0.99</td>
<td>-0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>ε_{k}</td>
<td>40.00%</td>
<td>0.35%</td>
<td>1.00%</td>
</tr>
<tr>
<td>σ_{k}^{6M}</td>
<td>0.1871%</td>
<td>0.236%</td>
<td>0.295%</td>
</tr>
</tbody>
</table>
Remarks:

- Week sensitivity to the correlation $\rho_k \Rightarrow$ Set $\rho_k = 0$,
- The correlation between Forward OIS rates and the stochastic volatility is set to zero \Rightarrow same volatility dynamics under different measures,
- The rates are low so the calibration becomes hard because of data lacking for low strikes.

Imagination suggestions:

- Perform a weighted calibration (emphasis on the region where the FRA rate falls),
- Calibrate using other data sets (choose another reference date).
Summary

1. Introduction
2. The Multi-Curve Framework
3. Case of a Stochastic Spread
4. Results
5. Discussion & Improvement Suggestions
6. Conclusion
Advantages:

- Tractability,
- Possibility of closed formula derivation and thus easy implementation and calibration,
- The model could be calibrated better in an unstressed market (non negative rates and/or higher rates) (F. Mercurio’s example).

Limitations:

- In our example (i.e. low rates), the model only works for low and average maturities,
- All market data (for all quoted strikes) cannot be fitted using this model because of the level of rates.