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Abstract

This thesis is set in the intersection between separate types of financial markets, with
emphasis on joint risk modelling. Relying on empirical findings pointing toward the ex-
istence of dependence across equity and corporate debt markets, a simulation framework
intended to capture this property is developed. A few different types of models form
building blocks of the framework, including stochastic processes describing the evolution
of equity and credit risk factors in continuous time, as well as a credit rating based model,
providing a mechanism for imposing dependent credit migrations and defaults for firms
participating in the market. A flexible modelling framework results, proving capable of
generating dependence of varying strength and shape, across as well as within studied
markets. Particular focus is given to the way markets interact in the tails of the distri-
butions. By means of simulation, it is highlighted that dependence as produced by the
model tends to spread asymmetrically with simultaneously extreme outcomes occurring
more frequently in lower than in upper tails. Attempts to fit the model to observed mar-
ket data featuring historical stock index and corporate bond index values are promising
as both marginal distributions and dependence connecting the investigated asset types
appear largely replicable, although we conclude further validation remains.
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Chapter 1

Introduction

Over the past few decades, the financial industry has experienced a rapid growth in its
need for sophisticated quantitative models in risk management and derivatives pricing.
Explanations for this growing demand include derivatives markets quickly expanding in
size and complexity, as well as sophistication of regulatory frameworks for financial insti-
tutions. Academia and practitioners alike have responded to the turns of the industry by
means of steady advancements in financial mathematics, though at times with difficulties
keeping up pace. Following the most recent financial crisis, the need for coherent and
reliable mathematical models has been further highlighted.

While much of recent literature within quantitative finance has dealt extensively with
the quantification and modelling of individual risk factors influencing pricing and asset
allocation, less attention has been given to the analysis of dependence of risk across fi-
nancial markets. The acquisition of knowledge of the interplay between disparate sources
of risk, along with development of appropriate modelling tools able to capture this, are
key challenges that lie ahead in order to consolidate the effectiveness of regulations and
counteract the risk of future crises.

Via the construction and simulation from a joint modelling framework, the purpose of
this thesis is to investigate how variations of the dependence structure between separate
types of risk affect risk management calculations for portfolios consisting of several different
asset classes. Specifically, focus is directed toward equity and credit risk and much of the
emphasis is placed on model development. Furthermore, a discussion on what could be
established empirically is undertaken aided by cross-sectional historical financial data.

In Section 1.1, we provide further background setting the scene for the thesis. Then,
a number of broad thesis objectives are listed in Section 1.2 narrowed down to specifics
in Section 1.3. Section 1.4 concludes this chapter by outlining how the remainder of the
content is structured.

1.1 Background

The aim of this section is to further contextualize the thesis. We introduce several types
of financial risk and briefly discuss the importance of modelling these for risk management
and pricing purposes.

1.1.1 Types of Financial Risk

When managing financial risk, among the first questions that arises is, how can risk be
quantified? Incidentally, the answer to this question varies widely depending on the type

1



2 1. INTRODUCTION

of the risk faced. In practice, most financial institutions in need of rigorous systems for risk
management face a situation where a range of different risk categories enter the picture
and need to be properly accounted for.

Often included among types of financial risk are:

• Operational risk - the risk of loss caused by failure of internal processes, people or
unexpected external events

• Systemic risk - the risk of loss caused by breakdown of the full financial system, or
a part of it vital enough to have a severe, negative effect on the full system

• Liquidity risk - risk arising from lack of market liquidity leading to a possible loss
from a trade not being effectuated

Particularly relevant to this thesis are two other types of risk, namely market risk and
credit risk described in subsequent sections.

Market Risk

Market risk concerns the risk of change to values of holdings due to movements of market
prices. The term can be considered an umbrella term spanning several subtypes, notably
including equity, interest rates, currency and commodity risk. As a simple example, con-
sider a long position taken in an in-the-money put option of a stock at time 0. Now,
assume the value of the stock increases significantly so that at time 1, the put option
is out-of-the-money. This stock movement is unfavourable for the put holder, reflecting
equity risk taken and resulting in an unrealised net loss.

Further incorporated under the market risk umbrella is sometimes credit spread risk,
which might appear confusing. What it captures is the risk caused from a change of the
spread between market yields on treasury bonds and those on corporate bonds. The credit
spread on bonds reflects both the underlying credit risk capturing the possibility of default
of the issuer, and the market price of risk capturing investors’ risk aversion (Jorion, 2010,
ch. 11). A grey zone emerges where market and credit risks intersect. However, other
definitions classify the spread risk as part of credit risk (Bielecki and Rutkowski, 2002,
ch. 1), and to keep things clear that route will be followed in this thesis.

Measuring market risk involves the evaluation of the known or unknown probability
distribution for the risk factors determining the value of the holdings. In case the dis-
tribution is unknown, which is usually the case, some estimation procedure has to be
undertaken as well. Commonly, several risk factors are determinants for the value of the
holdings, so that their joint behaviour needs to be taken into account.

Credit Risk

Credit risk is an area of finance that has recently received a large share of attention. The
term describes the loss incurred to a party when a counterparty of a contractual agreement
is unable to fulfil its obligation under the contract1. There are several quantities of interest
when assessing credit risk; probability of default before settlement of the contract reflecting
the credit quality of the counterparty; loss given default specifying the amount lost in case
the counterparty defaults; and exposure at default, denoting the total amount outstanding
to the counterparty at the time of default.

1Bielecki and Rutkowski (2002, ch. 1) distinguish between reference credit risk and counterparty credit
risk, where the former refers to a risk of a reference party priced in a contract, without this party being
involved in the transaction.



1. INTRODUCTION 3

In order to keep track of the credit quality of market participants, formalized credit
rating systems are used. Publicly available credit ratings are issued and published by
credit rating agencies such as Standard & Poor’s and Moody’s, generally provided both
with regard to issuers reflecting their overall creditworthiness, and with respect to specific
financial obligations or classes of such. The latter take specific properties of the obligations,
such as recovery arrangements, into account. Commonly credit ratings are classified into
seven rating categories. From best to worst, these are AAA, AA, A, BBB, BB, B, CCC,
occasionally with the additional inclusion of a default class D. These labels can vary
slightly depending on the rating agency in question, for example Aaa instead of AAA, but
are principally the same. Rating classes are sometimes further refined to include several
notches of some of the aforementioned labels, such as BBB+, BBB and BBB-, reflecting
minor variations in credit quality. With this refinement, 18 categories excluding default
are obtained. Issuers or contracts belonging to rating classes AAA to BBB are often
referred to as investment grade, whereas the corresponding term for the bundle of poorer
rating classes (excluding default) is speculative grade or high yield.

In addition to the rating systems managed by specialized rating agencies, internal
rating systems are also seeing frequent use and may be consulted by for example banks in
the calculation of capital requirements.

The division into rating classes is helpful when managing portfolio risk, in particular
for large portfolios, as it provides a quick overview of the overall riskiness of the portfolio.
Quantities such as probability of default over a given time horizon may be estimated from
the rating class of a specific asset. Therefore, credit risk modelling based on credit ratings
has evolved to cover a substantial part of the literature on financial risk management. For
a comprehensive overview, we refer to the book by Trueck and Rachev (2009).

1.1.2 Financial Risk and Asset Pricing

Whenever a financial asset is made available for trade, its price should be consistent with
market prices. This calls for arbitrage free pricing, where the expectation of the discounted
asset value at a future point in time has to be evaluated under a so-called martingale or
risk-neutral probability measure. In contrast, the evolution of risk factors and asset prices
in actual markets occurs under a probability measure often denoted the physical or real-
world measure. While these measures might coincide, they usually do not. Typically
investors demand compensation for taking larger risks, giving rise to an accentuation of
the risks under the risk-neutral measure and creating what is known as market price of
risk.

The probability distribution from which assets are priced will generally be unknown in
closed form, and depend on one or several underlying risk factors. When there are several
risk factors of relevance, a statistical model of their joint behaviour is necessary in order
to obtain an accurate description of the sought distribution.

As a simple example, consider a European put option on a stock. Its value at a future
point in time will depend on the movement of the stock until that time. This movement
occurs in the real world, reflecting a scenario under the real-world measure. However,
when valuing the option today, the expectation of the future value discounted to a value
today further makes us have to consider all possible movements of interest rates, and all
this under a risk-neutral measure. We thus deal with two separate factors of market risk
in the pricing of the option: equity and interest rate risk.

Now to a more complicated example, we consider a convertible bond that is to be
priced. A convertible bond is a corporate bond which grants the additional option of
being converted into a position in the stock of the issuing company at a future point in
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time. Meanwhile, corporate bonds are examples of financial instruments which are very
directly linked to credit risk. The credit quality of the issuer relates to its propensity
to default, in which case a recovery payment is made, lower than the bond payoff in the
absence of default. A lower credit quality should therefore be directly reflected in the bond
price, such that the yield is higher than that of a better rated bond. When the optionality
of conversion is appended to the bond, elements of market risk separate from credit risk
clearly enter as well. Thus, for correct pricing, the interplay between market and credit
risks needs to be accounted for.

These examples illustrate how dependence between different sources of financial risk
could naturally enter into the pricing of financial instruments and therefore is in need of
modelling.

1.1.3 Regulatory Requirements

Financial institutions are obliged to comply with regulations stipulated by regulatory di-
rectives such as Solvency II, affecting insurance companies, and Basel III, directed towards
banks2. Under Solvency II, insurance companies within the EU are required to hold suf-
ficient buffer capital to ensure that they will be able to meet their financial obligations
over the next 12 months with a probability of at least 99.5%. This directive targets the
full balance sheet of the company, such that a risk analysis must incorporate all of the
insurer’s assets and liabilities.

The calculation of the capital requirement thus demands that all risk factors affecting
the net asset value of the company be accounted for. Again, the dependence structure
connecting several different risk factors becomes an important aspect to consider.

1.2 Objectives
In this section, we broadly define the thesis objectives. These are intentionally specified
in a rather general manner, governing the direction of the thesis. Based on these, a
demarcation detailing project specifics is presented in the next section. Towards the end
of the report, in Section 6.3, each of the objectives will be reviewed and related to the
work and its results.

1. Analyse historical multivariate financial data
Given historical time series data from separate markets, conduct a statistical analysis
raising both the behaviour of the individual series and of their dependence.

2. Review and select relevant mathematical models
Review and evaluate mathematical models, emphasizing their capability to capture
observed market patterns in a way well suited to the intended purpose.

3. Construct a versatile simulation framework
Based on considered mathematical models, develop and construct a simulation frame-
work capable of providing consistent generation of scenarios to be used for risk man-
agement and pricing, as much as possible admitting variation in the model specifi-
cation.

2Basel III came into force in 2014. Solvency II is scheduled to do so in 2016.
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4. Discuss implications on risk management
Given variations to the modelling setup and its parameters, analyse and discuss how
aggregate portfolio risk is affected and relate to reality.

1.3 Scope and Limitations
The sources of risk analysed in the thesis are credit and equity risk. Thus, any data taken
should, as much as possible, reflect the movements of the corresponding risk factors and
any model will be assessed based on its applicability for the setting at hand. A within-
economy perspective is used throughout the thesis. Dependencies across economies are
therefore not considered, rendering concepts like currency risk superfluous.

When modelling, we will consider a stock index as a proxy for the equity risk and a
bond portfolio representing credit risk. As was mentioned in Section 1.1.1, credit spread
movements on bonds are often considered part of market risk. However, for modelling
purposes, we may use bond prices as a tool to convey information about the underlying
credit risk. Further clarification is given in Chapter 3, detailing the specific application.

Interest rates are not explicitly modelled, instead the analysis and modelling is focused
on excess returns of financial assets. Nonetheless, the ambition is to design the simulation
framework in a flexible manner, so as to allow for additions and extensions in line with
bullet 3 of the previously stated objectives. One such extension could be the inclusion of
stochastic interest rates.

For the view on credit risk, we will be concerned with the modelling of probability
of default and not include risk relating to contractual arrangements such as recovery
covenants or associated factors, affecting loss given default.

The modelling of dependence between credit and equity risk, under the limitations
mentioned, is the primary point of interest. Investigations of how dependence between the
risk factors can be modelled, as well as the impact of different specifications for the extent
and structure of dependence on risk management, reside at the forefront of the work.

1.4 Disposition
The remainder of the report is structured as follows. In Chapter 2, we lay out the math-
ematical principles underlying the work. Included here are some of the key findings in
recent literature. Chapter 3 describes how the simulation framework is constructed and
what models in the literature it draws from. This is followed up by details of the imple-
mentation and simulation methodology, all presented in Chapter 4. Results, both from
data analysis and from simulation, are covered in Chapter 5. These are discussed in de-
tail in Chapter 6, which also concludes the thesis by evaluating the modelling framework,
reviewing objectives and providing a few suggestions for the directions future work could
take. Appendices, containing complementary information, are referred to as needed.



Chapter 2

Mathematical Background

In this chapter the mathematical background for the thesis is presented. The literature
underpinning the work is given a brief review, and the mathematics employed is summa-
rized. Further theory on simulation of stochastic processes and associated concepts which
closely relate to the implementation details of the project, is reviewed in Chapter 4.

We assume the reader is acquainted with mathematical concepts of statistics and risk
management such as Value-at-Risk (VaR), empirical distributions and quantiles. Should
that not be the case, recommended reading on the subject includes McNeil et al. (2010),
Jorion (2010) and Hult et al. (2012).

Furthermore, martingale and arbitrage theory is not presented in detail. Nor are the
basics of stochastic processes and stochastic differential equations. These matters are
reviewed in most basic textbooks on quantitative finance, examples include Björk (2009)
or the first few chapters of Brigo and Mercurio (2006).

For asset pricing, we denote the risk-neutral measure Q and consider an asset which
at time T > t has the stochastic value πT . The price at time t is then expressed

πt = EQ
[
exp

(
−
∫ T

t
rsds

)
πT |Ft

]
, (2.1)

with EQ indicating expectation is computed under Q and with the short interest rate
given by rt. {Ft} is a filtration collecting information of the relevant risk factors as time
evolves. Real-world movements are collected under a probability measure P. Throughout
the thesis, unless otherwise stated we operate under P and superscripts indicating measure
are attached to parameters and operators whenever the distinction between measures is
necessary.

We will often deal with the special case where πT = 1 with probability 1. This case
corresponds to an idealized zero-coupon treasury bond, with zero credit risk. Denoting its
value at time t by P (t, T ), we have

P (t, T ) = EQ
[
exp

(
−
∫ T

t
rsds

)
|Ft

]
. (2.2)

2.1 Market Risk Models

The aim of this section is to introduce some of the models that have developed in market
risk management and pricing and that are relevant to this thesis.

6



2. MATHEMATICAL BACKGROUND 7

2.1.1 Interest Rate Models

Although interest rates themselves are not modelled in this thesis, some of the models
occurring in interest rate theory are applicable also for credit modelling. This also goes for
stochastic volatility in equity modelling. Therefore, we address some of the fundamentals
here.

The models we consider are all short rate models, representing the instantaneous return
on what is considered a risk-free investment. That is, if we let Bt denote a security priced
consistently with the market, given by the dynamics

dBt = rtBtdt (2.3)

then we may take rt to represent the short interest rate of the market (Björk, 2009, ch. 7).
We will look into a special class of interest rate models known as affine models, defined

below.

Affine Models

For the definition of affine models1, we first introduce the concept of continuously com-
pounded spot rate. This quantity, denoted R(t, T ), is given by

R(t, T ) = − logP (t, T )
T − t

, (2.4)

and can be interpreted as the constant, continuously compounded interest rate a zero-
coupon treasury bond issued at time t with maturity T would accrue from t to T (Brigo
and Mercurio, 2006, ch. 1).

Affine models are then defined as short rate models by which R(t, T ) can be expressed

R(t, T ) = α(t, T ) + β(t, T )rt. (2.5)

The key feature is now that the affine structure allows bonds to be priced according to an
expression of the form

P (t, T ) = A(t, T )e−B(t,T )r(t). (2.6)

This is verified by insertion of Equation (2.6) into Equation (2.4), resulting in

α(t, T ) = − logA(t, T )
T − t

, β(t, T ) = B(t, T )
T − t

.

The coefficients A(t, T ) and B(t, T ) depend on the model and its parameters. As an
example of an affine model, consider the Vasicek one-factor model where interest rates are
assumed to follow an Ornstein-Uhlenbeck process,

drt = κ(θ − rt)dt+ σdWt. (2.7)

In this model, the distribution of rt conditional on rs, t > s is normal with analytical
expressions for the mean and variance. It can here be shown that Equation (2.6) holds for

A(t, T ) = exp
[(
θ − σ2

2κ2

)
(B(t, T )− T + t)− σ2

4κB(t, T )2
]
,

B(t, T ) = 1
κ

(
1− e−κ(T−t)

)
,

1By affine models, we refer to what Brigo and Mercurio (2006, ch. 3) call affine term-structure models
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see Brigo and Mercurio (2006, ch. 3).
A potential downside of the Vasicek model is that it allows interest rates to be negative.

This becomes particularly concerning when adapting interest rate models to the modelling
of default intensities and volatilities. A model addressing this issue is the Black-Karasinski
model, where the short rate is modelled as the exponential of an Ornstein-Uhlenbeck
process, in general with time dependent coefficients. However, this model does not belong
to the class of affine models and bond prices are not analytically tractable (Brigo and
Mercurio, 2006, ch. 3). Instead, we turn our attention to the Cox-Ingersoll-Ross (CIR)
process described below.

The Cox, Ingersoll, and Ross (1985) Process

The CIR model by Cox et al. (1985) has been a popular choice for modelling interest
rates, stochastic volatility and default intensities. This is explained by its distributional
characteristics, admitting a closed form representation of the future distribution as well as
staying almost surely non-negative given that parameters are positive (Cox et al., 1985).
Furthermore, the model belongs to the class of affine processes. In its basic form, the
model can be expressed by means of the SDE

drt = κ(θ − rt)dt+ σ
√
rtdWt (2.8)

where the condition 2κθ > σ2 implies that rt > 0 with probability 1. If 2κθ ≤ σ2, the
origin is accessible to the process. The parameters θ and κ are often called long term
mean and mean reversion rate respectively, hinting at the mean-reverting mechanism of
the model. The drift term pulls the process back to its long term mean θ, with κ specifying
the pace at which this happens.

The CIR model is analytically tractable and offers a closed form expression for the
distribution of rt|rs for every t > s. Conditionally on rs, rt involves a non-central chi-
squared distribution, see e.g. Andersen (2007) for details.

As shown in Brigo and Mercurio (2006, ch. 3), bond prices under the CIR model can
be explicitly calculated according to the affine pricing formula of Equation (2.6), with
A(t, T ) and B(t, T ) given by

A(t, T ) =
{ 2γ exp[(κ+ γ)(T − t)/2]

2γ + (κ+ γ)(exp[(T − t)γ]− 1)

}2κθ/σ2

B(t, T ) = 2(exp[(T − t)γ]− 1)
2γ + (κ+ γ)(exp[(T − t)γ]− 1) ,

(2.9)

where γ =
√
κ2 + 2σ2.

We will encounter situations where several CIR processes are added. The simplest case
of this is the two-factor CIR model,

rt = xt + yt (2.10)

where {
dxt = ax(θx − xt)dt+ σx

√
xtdW

x
t ,

dyt = ay(θy − yt)dt+ σy
√
ytdW

y
t .

In order to retain analytic tractability one has to enforce that Cor(dW x
t , dW

y
t ) = 0. In

this sense, the CIR process has a limitation which it does not share with the two-factor
version of the Vasicek model, where affinity is conserved under the inclusion of non-zero
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instantaneous correlation between the constituent processes (Brigo and Mercurio, 2006,
ch. 4).

When interest rates are given by m independent CIR processes

rt =
m∑
i=1

xit

dxit = κi(θi − xit)dt+ σi

√
xitdW

i
t , i = 1, . . . , m

Cor(dW i
t , dW

j
t ) = 0, i 6= j

it follows from Equation (2.6) that bond prices may be expressed as

P (t, T ) = EQ
[
exp

(
−
∫ T

t
r(s)ds

)
|Ft

]

= EQ
[
exp

(
−
∫ T

t

m∑
i=1

xi(s)ds
)
|Ft

]

=
m∏
i=1

EQ
[
exp

(
−
∫ T

t
xi(s)ds

)
|Ft

]

=
m∏
i=1

Ai(t, T )eBi(t,T )xi(t) (2.11)

where the Ai(t, T ) andBi(t, T ) are expressed in terms of the corresponding CIR parameters
according to Equation (2.9).

For a change of measure from real-world to risk-neutral dynamics, we can preserve the
CIR structure if we introduce a parameter γ specifying the market price of risk such that

γ = κQ − κP

σ
(2.12)

where we let superscripts P and Q denote parameters under the two measures previously
defined. Following Brigo and Mercurio (2006, ch. 3), the process dynamics under Q then
becomes

drt = [κPθP − (κP + γσ)rt]dt+ σ
√
rtdW

Q
t

= κQ
(
κP

κQ
θP − rt

)
dt+ σ

√
rtdW

Q
t ,

entailing that the long term mean under Q satisfies

θQ = κP

κQ
θP. (2.13)

2.1.2 Equity Models

When modelling the evolution of a stock price, the most basic of models is the geometric
Brownian motion. It began gaining large popularity with the classic paper by Black and
Scholes (1973), yielding explicit pricing formulas for European options and paving the way
for the concept of implied volatility, to this day seeing large-scale use. The stock dynamics
is simply given by

dSt = µStdt+ σStdWt, (2.14)
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with µ and σ being constant, and leads to a log-normal distribution for the stock price.
Many studies have established empirically that the geometric Brownian motion is

flawed when it comes to realistically capturing stock and stock index returns (Cont, 2001;
Wu, 2006). Two major limitations are the constant volatility and the light tails of returns.
Stochastic volatility and jump dynamics address these two issues and are presented below.

Stochastic Volatility

In stochastic volatility models the constant σ in Equation (2.14) is replaced by a stochas-
tically varying diffusion coefficient √vt, where vt denotes the instantaneous variance rate.
The dynamics for vt is normally given by a CIR process following Heston (1993). The
equity model takes the form

dSt = µStdt+√vtStdWS
t

dvt = κ(θ − vt)dt+ σv
√
vtdW

v
t

Cor(dW s
t , dW

v
t ) = ρ

(2.15)

The correlation ρ is usually negative accounting for the tendency for stock returns and
stock volatility to move in opposite directions (Carr and Wu, 2004). Heston (1993) showed
that European options can be priced analytically under this model.

Jump Diffusions

One way of capturing heavier tails in stock returns is via the addition of a discontinuous
jump component to Equation (2.14). Among the first and most famous models doing this
is that by Merton (1976), where jumps are modelled by a compound Poisson process, so
that

dSt
St−

= µdt+ σdWt + dJt (2.16)

where St− denotes the pre-jump value of the stock, St− = lims↑t Ss and

Jt =
Nt∑
j=1

(Yj − 1). (2.17)

Here Nt is a Poisson process and Yj are some random variables reflecting the size of the
jumps (Glasserman, 2004, ch. 3). Letting τj denote jump times, it can be shown that

Sτj = Sτj−Yj (2.18)

so that Yj represent ratios of post- and pre-jump values of the stock (Glasserman, 2004,
ch. 3). This explains the subtraction of 1 in the summed terms of Equation (2.17). If Yj
are strictly positive random variables, the stock value is guaranteed to stay above zero. A
common choice is lognormally distributed jump sizes.

In the vein of Bates (1996), including both stochastic volatility and jumps in the model
has since become popular. This allows for rich stock return dynamics. In spite of this
richness, empirical findings have suggested such a model still struggles to fully capture
observed stock returns. Eraker et al. (2003) explore a further extension, including jumps
in volatility as well.
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The Variance-Gamma Process

The variance-gamma process introduced by Madan et al. (1998) is a Brownian motion
with drift γ and variance rate σ subordinated by a gamma process. Mathematically, this
is captured by

Xt = γGνt + σWGνt
(2.19)

where
Gνt ∼ Γ

(
t

ν
, ν

)
. (2.20)

A natural interpretation of the subordination is that a Brownian motion with drift γ and
volatility σ is evaluated at random times given by Gνt . Note that E[Gνt ] = t. Using the
terminology of Carr and Wu (2004), the variance-gamma process may be considered a
time-changed Lévy process.

The distinguishing feature of this process is its interpretation as an infinite activity
jump model, applicable to stock returns. What this means is that the number of jumps
within any finite time interval is infinite. Despite having infinite activity, its variation
is finite, meaning that the aggregate absolute distance travelled within any finite time
interval is almost surely finite (Yu et al., 2011). The process is one in a parametric
family of similar models involving a time-change known as the Carr, Geman, Madan,
and Yor (2002) (CGMY) processes, also including processes of infinite variation. The
characteristic function of processes within this family is known in closed form, which is
helpful for example in the pricing of options (Carr et al., 2002). For the variance-gamma
process as defined in Equation (2.19), the characteristic function φXt(u) is

φXt(u) = E[exp(iuXt)] =
( 1

1− iγνu+ (σ2ν/2)u2

)t/ν
(2.21)

following Madan et al. (1998).
The case we will consider is that where the logarithm of the stock price includes a

variance-gamma process.
Figure 2.1 shows examples of histograms obtained from simulation of the process with

different specifications of the parameters. All of the simulations are performed over a
horizon 0 ≤ t ≤ T where X0 = 0. Furthermore, a compensator ψt is added to the
process as defined in Equation (2.19), such that E[exp(Xt + ψt)] = 1 for every t. Under
this specification, Xt + ψt can be taken to represent a zero-mean jump component of the
logarithm of the stock. Further details are presented in Section 4.2.2.

In Madan et al. (1998), the first four moments of the distribution of Xt are derived in
closed form as functions of the parameters. As the figure indicates, ν strongly influences
the peakedness of the distribution, where a higher value implies larger probabilities of very
large jumps but fewer medium-sized jumps. The variance grows monotonously with the
size of all three parameters, while γ controls the skewness. The lower its value, the more
left-skewed the distribution. Zero γ is equivalent to zero skewness, while positive values
of γ would revert the shape and lead to positive skews. Empirically, asset returns tend to
be left-skewed.

Yu et al. (2011) incorporated the variance-gamma process into a stock model with
stochastic volatility in a comparative study analysing the ability of four different stochas-
tic volatility stock models to capture observed market behaviours. Of the remaining of
these, two were jump diffusion models in the vein of Bates (1996) and of Eraker et al.
(2003) respectively, whereas the last model was an alternative infinite-activity, infinite-
variation process. Yu et al. (2011) found that the stochastic volatility variance-gamma
model performed better than its competition at capturing stock returns.
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−1 −0.5 0

a. (ν, σ, γ) = (1, 0.1,−0.1)
−4 −3 −2 −1 0

b. (ν, σ, γ) = (1, 0.1,−0.5)

−0.8 −0.6 −0.4 −0.2 0

c. (ν, σ, γ) = (1, 0.02,−0.1)
−2.5 −2 −1.5 −1 −0.5 0

*

d. (ν, σ, γ) = (5, 0.1,−0.1)

Figure 2.1: Histograms of mean-adjusted variance-gamma process simulations at time
T = 1 for different parameter triplets. Each sample consists of 10, 000 sample paths,
starting at t = 0 and discretized with step size ∆t = 1/252. The asterisk in subfigure 2.1d
indicates the left tail is truncated.

2.2 Credit Modelling

Credit risk and the modelling of such has recently undergone a surge of interest in financial
mathematics. The field of credit risk modelling started with so-called structural models
by Merton (1974). Later on, structural models were joined by a different branch of models
called reduced form models. The two approach the modelling of the default event in a
very different way. That said, there are examples of studies where basic ideas of the two
approaches have been combined (Bielecki and Rutkowski, 2002, ch. 8).

In structural models, also called the firm value approach, a firm’s value is modelled
altogether and default is assumed to occur whenever the value falls below a threshold value,
which may be deterministic or stochastic. A difficulty within this modelling framework
is the measurement of the full firm value and the modelling of its evolution (Bielecki
and Rutkowski, 2002, ch. 1). Since the time of default is directly linked to the evolution
of the firm value, the default event is endogenously specified. Also recovery rates are
endogenously determined by the firm value at default.

The models considered in this thesis are all reduced form models. Included here are
also models based on credit rating classes and migrations between such, reflecting changes
in credit quality.
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2.2.1 Reduced Form Models

Reduced form models take very different view compared to structural models. Default
is here modelled as a completely inaccessible stopping time, where the time of default is
determined as the first jump of a Poisson process with intensity λ. In sharp contrast
to structural models, the time of default is here an exogenous quantity independent of
all other market information, and may come by surprise (Bielecki and Rutkowski, 2002,
ch. 8). Recovery payments are also assumed to be exogenously specified.

The Poisson intensity λmay be constant or varying with time, deterministic or stochas-
tic. In the most general case where the intensity both varies with time and is stochastic,
the process is called Cox process and denoted λt. Models of this kind are highly prevalent
in the literature on credit risk, where intensities are often modelled by some interest rate
model. The stochastic default intensity is often named hazard rate.

We let the time of default be denoted by τ . The probability of a firm with hazard rate
λt defaulting in (t, t+ dt) is

P(τ ∈ (t, t+ dt)|Ft) = λtdt (2.22)

assuming no default has occurred by time t. Under this assumption and with T > t, it is
shown in for example Brigo and Mercurio (2006, ch. 21) that

P(τ > T |Ft) = E

[
exp

(
−
∫ T

t
λsds

)
|Ft

]
, (2.23)

a quantity known as the survival probability.
Default intensities for firms are not observable quantities. Given observed bond prices

and a parametric model for the risk factors involved in their pricing, one could theoret-
ically deduce default intensities. However, as pointed out by Zhang et al. (2009), credit
default swap (CDS) spreads tend to be better informants of the default risk, being more
standardized than bonds2. Spreads of the latter are likely to be affected by contractual ar-
rangements such as seniority, coupon payments and liquidity factors (Zhang et al., 2009).
In disentangling credit risk, much of recent literature has therefore taken advantage of
market CDS spreads.

2.2.2 Rating Based Models

To account for transitions between rating classes, Jarrow et al. (1997) pioneered a Markov
chain approach assigning probabilities to credit migration events. Their model, referred
to as the Jarrow-Lando-Turnbull (JLT) model, lent itself to discrete as well as continuous
time settings. Credit classes are denoted by m ∈ {1, ...,M,K}, descending from high to
poor creditworthiness, followed by the last class signifying an absorbing default state.

The standard JLT model was composed of constant, deterministic transition proba-
bilities, thereby representing a homogeneous Markov chain. In order for the model to be
consistent with varying market spreads, time-varying risk premia were considered. How-
ever, both homogeneity and Markov assumptions have later been questioned in a range of
studies (Bangia et al., 2002; Truck, 2008). Various extensions relieving the model of one
or both of these assumptions have been suggested. When doing so, it is at the expense of
keeping the model simple.

2A CDS is a contract in which the seller pays a compensation to the buyer in case of default of a
reference entity. In return, the buyer regularly pays the seller fixed amounts.
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In the model, probabilities of rating changes are represented by means of migration
matrices. These may be written in discrete or continuous form, where the former describes
rating transition probabilities within any finite time interval and the latter contains transi-
tion intensities. Denoting the two by P and Λ, an element pij of P describes the probability
of transition from rating class i to rating class j within a given time interval. Similarly,
an element λij of Λ describes the corresponding transition intensity.

Given a discrete matrix P , an associated intensity matrix Λ can be constructed trough

P = exp(Λ), (2.24)

where it is understood that the right-hand side represents the matrix exponential,

exp(Λ) = I + Λ + Λ2/2! + Λ3/3! + . . . .

The matrix Λ is here called a generator for P . We also look at the more general case
where intensity matrices are allowed to be time dependent, however restricting this time
inhomogeneity to piecewise constant intensities. In this case, if Λs denotes the intensity
matrix at time s ∈ [t, T ], having H piecewise constant segments of length ∆sh, h =
1, . . . ,H between t and T where s1 is a time between t and t + ∆s1, s2 a time between
t + ∆s1 and t + ∆s1 + ∆s2 and so forth, a matching discrete matrix can be constructed
through

P(t,T ) =
H∏
h=1

exp (Λsh∆sh) . (2.25)

For general time dependent intensity matrices, where the length of the largest segment
in the interval tends to zero, a similar definition exists. A review is available in Lebovic
(2011).

Several conditions are imposed on the matrix elements. For every row i = 1, . . . ,K,
the sum of its elements

∑K
j=1 pij = 1 for any discrete time matrix and

∑K
j=1 λij = 0

for the continuous time counterpart. Further, all elements in the discrete time matrix,
as well as all off-diagonal elements in the continuous-time matrix, must be greater than
or equal to zero. This last condition requires some caution, since some specifications of
P do not have a valid generator Λ (Trueck and Rachev, 2009, ch. 5). This situation
might arise when estimating transition probabilities historically, sometimes resulting in
an economically implausible matrix due to scarcity of data calling for some modification
approach, as suggested in Trueck and Rachev (2009, ch. 5). K representing an absorbing
default state translates into pKj = 0, j ≤ K, pKK = 1 as well as λKj = 0 ∀j.

Extensions of the JLT Model

An early means of incorporating time inhomogeneity in the JLT framework was explored
by Lando (1999), who suggested a few different methods of modifying the historical mi-
gration matrix such that the default probabilities implied by market prices match those of
the matrix. These methods essentially create risk-neutral matrices, consistent with bond
prices. Referring to the historical discrete matrix and its generator as baseline matrices,
all of the methods consist of a transformation to the baseline generator followed by appli-
cation of Equation (2.24) to create market-consistent discrete matrices over different time
windows. In one of these, each row i of the baseline generator is scaled by a factor πi(t)
creating a modified generator with constant entries until time t.

Credit migration and default probabilities have been observed to vary with the state
of the economy, see e.g. Bangia et al. (2002), reinforcing the previously mentioned doubts
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concerning time homogeneity of migration matrices. In the literature, there are many
accounts of tuning migration matrices after conditions currently prevailing in the econ-
omy. Wei (2003) implicitly conditioned credit migration matrices on a set of latent vari-
ables representing deviations from the average historical transition matrix. Further, Truck
(2008) explored means of adapting transition probabilities to the business cycle by creat-
ing a model accounting for observable macroeconomic factors. By conditioning transition
probabilities on generic business cycle indices, constructed separately for speculative and
investment grade bonds, clear improvements in model forecasting quality compared to the
previously mentioned market price adjustment methods suggested by Lando (1999) were
recorded.

Letting migration probabilities vary with macroeconomic conditions in this way es-
sentially constitutes a method for adding dependence to the rating migration processes
across firms. The methodology falls under the concept of conditional independence, fur-
ther described in Section 2.3.4 where we review a few common approaches to modelling
dependence in credit risk.

For pricing purposes, risk-neutral matrices should be used. Several methods of trans-
forming real-world matrices into risk-neutral ones are reviewed in Trueck and Rachev
(2009, ch. 8). Among these, adjustment methods by Lando (1999) may be used. Another
one was suggested in the pioneering paper by Jarrow et al. (1997), where every off-diagonal
element of each non-default row of the discrete migration matrix is multiplied by a de-
terministic function πi(s, t). This function can be estimated from market prices. With
this approach, the risk-neutral migration matrix will in general not preserve the Markov
property.

2.2.3 Pricing in Presence of Credit Risk

Starting from Equation (2.1), consider an asset which at time T is worth

πT =
{
π̃T , τ > T
0, τ ≤ T

where τ is the default time. So whenever default occurs, the value is assumed to drop to
zero. Then, at time t,

πt = I(τ > t)EQ
[
exp

(
−
∫ T

t
rsds

)
π̃T I(τ > T )|Ft

]
, (2.26)

where I(·) denotes the indicator function. Under the assumption of a reduced form ap-
proach where τ is the time of the first jump of a Poisson process with intensity λt, the
equation can be written

πt = I(τ > t)EQ
[
exp

(
−
∫ T

t
(rs + λs)ds

)
π̃T |Ft

]
. (2.27)

From this expression, it is clear that default intensities enter the pricing of assets with
credit risk in a way that is completely analogous with how interest rates affect the pricing
of any asset. Therefore, much of interest rate theory is applicable for credit risk modelling
as previously stated.

When a JLT-esque rating based model is applied, it is not sufficient to only consider the
instantaneous default intensity of the class corresponding to the asset issuer. The full risk-
neutral matrix, and its possible future evolution, is relevant for the pricing. Intuitively,



16 2. MATHEMATICAL BACKGROUND

a rating change prior to time T affects the propensity to default during the remainder of
the term, and what ultimately matters is the cumulative default probability prior to time
T .

Bond Pricing

We will now consider the pricing of corporate bonds under a few different assumptions on
the payment of recovery upon default. These different recovery structures are presented
in Duffie and Singleton (1999) and further investigated in Jobst and Zenios (2001). A
reduced form model with hazard rate λt is assumed. In all of the below pricing formulas
we assume default has not occurred by the time at which the bonds are priced.

Recovery of Treasury (RT) Under this recovery structure, the bond is assumed to pay
a fraction δ of the face value at maturity. This is equivalent to immediately upon default
being paid the same fraction of the value of a risk-free bond with the same maturity as
the corporate bond, and reinvesting this amount into the risk-free bond. The bond price
at time t is

P d(t, T ) = EQ
[
δ exp

(
−
∫ T

t
rsds

)
+ (1− δ) exp

(∫ T

t
(rs + λs)ds

)
|Ft

]
. (2.28)

Recovery of Face Value (RFV) Here the bond pays a fraction δ of its face value
immediately upon default. The pricing formula becomes

P d(t, T ) = EQ
[
exp

(
−
∫ T

t
(rs + λs)ds

)
+ δ

∫ T

t
λs exp

(
−
∫ s

t
(ru + λu)du

)
ds|Ft

]
.

(2.29)

Recovery of Market Value (RMV) This model by Duffie and Singleton (1999) as-
sumes that a recovery payment corresponding to a fraction δ of the pre-default market
value of the bond is made immediately upon default. The bond price at time t is then
given by

P d(t, T ) = EQ
[
exp

(
−
∫ T

t
(rs + (1− δ)λs)ds

)
|Ft

]
. (2.30)

In each of the above models recovery rates could be stochastic or deterministic, constant or
varying with time. RT along with an assumption of deterministic of constant recovery rates
is a common choice in the literature owing to its simplicity, though such an assumption
could in principle lead to recoveries higher than the present value of the bond (Chen et al.,
2008). RMV avoids this situation, while being more tractable than RFV. All of the models
simplify a process which in reality is a complex matter and involves substantial negotiation
between parties (Duffie and Singleton, 1999).

2.3 Dependence Modelling

In this section we will introduce some of the concepts dealing with the measurement
and modelling of dependence. We further review some of the techniques that have been
proposed in the literature when modelling dependence in credit risk. Conclusively, a few
notes on the joint modelling of credit and equity risk are presented.
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2.3.1 Linear Correlation and Concordance Measures

The most common tool used to specify and measure dependence is linear correlation. This
parameter can be seen as a normalized version of the covariance describing two variables
with finite variance,

ρX,Y = Cor(X,Y ) = Cov(X,Y )√
Var(X)Var(Y )

. (2.31)

A flaw with linear correlation is that it is not invariant under non-linear increasing trans-
formations of the random variables (Cherubini et al., 2004, ch. 3). That is

ρX,Y 6= ρg(X),h(Y ), (2.32)

where g(·) and h(·) are increasing functions, unless g(·) and h(·) are both linear. As an
example, if X and Y are normal random variables, and V and W are lognormal random
variables such that V = eX and W = eY , then ρX,Y 6= ρV,W in general. Furthermore,
when estimating linear correlation from bivariate data, the sample estimator of ρ will have
large or infinite variance in the case of heavy-tailed data (Hult et al., 2012, ch. 9).

As an alternative to linear correlation, there are concordance measures. These share
many properties with linear correlation, such as belonging to [−1, 1] and being 0 when-
ever two variables are independent (but not necessarily vice versa). However, contrary to
linear correlation concordance measures are invariant under non-linear increasing trans-
formations of the underlying random variables. Therefore, they are capable of isolating
the dependence structure from the marginal distributions in a way linear correlation can
not (Cherubini et al., 2004, ch. 3).

Two common examples of concordance measures are Kendall’s tau and Spearman’s
rho, of which we will further define the former. Given the independent and identically
distributed bivariate random variables (X,Y ) and (X ′, Y ′), Kendall’s τ is defined as

τX,Y = P ((X −X ′)(Y − Y ′) > 0)− P ((X −X ′)(Y − Y ′) < 0) (2.33)

assuming P (X = X ′) = P (Y = Y ′) = 0, and is often called rank correlation (Cherubini
et al., 2004, ch. 3).

For elliptical distributions3, linear correlation and Kendall’s tau are related through
the formula

τ = 2
π

arcsin ρ. (2.34)

When analysing bivariate time series data coming from an elliptical distribution, estimat-
ing τ and then using the above equation to obtain an estimate of ρ is likely to result in
improved accuracy compared to computing the linear correlation sample estimator (Hult
et al., 2012, ch. 9).

2.3.2 Copulas

Consider the bivariate random variable (X,Y ) with distribution function F (x, y) and
continuous marginals FX(x), FY (y). Also, let (U, V ) = (FX(X), FY (Y )), which by the

3Elliptical distributions include multivariate normal and t distributions, for technical details see Lind-
skog et al. (2003)
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probability transform has standard uniformly distributed marginals. Then, it holds that

F (x, y) = P (X ≤ x, Y ≤ y) (2.35)
= P (FX(X) ≤ FX(x), FY (Y ) ≤ FY (y))
= P (U ≤ FX(x), V ≤ FY (y)
= C(FX(x), FY (y))

where C denotes the copula of (X,Y ). Analogously, this result known as Sklar’s theorem
holds for any multivariate random variable having continuous marginals and distribution
function F . In other words, if one has knowledge of both the marginals and of the copula
of a multivariate random variable, its full distribution is known.

We will continue with the bivariate case. The copula function represents a distribution
function for a random variable (U, V ) with standard uniform marginals. With (X,Y ) as
before, its full dependence structure is then captured within the copula. Given (U, V ),
(X,Y ) is obtained by applying the quantile transform

(X,Y ) = (F−1
X (U), F−1

Y (V )),

which also holds for discrete random variables. Within finance, copulas have emerged as
a tool to handle and express dependencies deviating from normality. In fact, normality
corresponds to one specific copula, representing one specific dependence structure among
a broad range of admissible structures.

When considering the previously mentioned concordance measures, it can now be ver-
ified that the requirement of invariance under non-linear increasing transformations leads
to

τX,Y = τU,V ,

for Kendall’s tau. Due to this property, it is natural to utilize concordance measures
when dealing with copulas. Fixing τ , different types of copulas are readily compared. We
will soon review a few standard types, but first define the three important special cases of
independence copula, with independent marginals, maximum copula, with perfect positive
dependence, and minimum copula, with perfect negative dependence:

Independence copula: C(u, v) = uv
Maximum copula: C(u, v) = min(u, v)
Minimum copula: C(u, v) = max(u+ v − 1, 0)

With the introduction of these, the dependence of any two random variables is bounded in
between the minimum and maximum copulas. Depending on the marginal distributions for
some random variable (X,Y ), this also imposes bounds on the linear correlation parameter
which might differ from ±1. As an example, let (X,Y ) = (Z1, e

Z2) where Z1 and Z2 are
standard normally distributed. In case of the maximum copula, Z1 = Z2 and ρX,Y =
(e−1)−1/2 ≈ 0.76. For the minimum copula, Z1 = −Z2 and ρX,Y = −(e−1)−1/2 ≈ −0.76.
In contrast, the value of any concordance measure is ±1 in these cases.

We now introduce three families of copulas, Gaussian, t and Clayton.

Gaussian copula The Gaussian copula is very commonly used in applications, and is
defined by

C(u, v) = Φ2
ρ(Φ−1(u),Φ−1(v)) (2.36)

where Φ2
ρ denotes the bivariate standard normal distribution function with correlation

parameter ρ and Φ−1 is the standard normal quantile function. With this copula, the
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random variable (X,Y ) = (Φ−1(U),Φ−1(V )) is standard normally distributed with linear
correlation ρ. When ρ = ±1, the copula converges to the maximum and minimum copula
respectively. In case ρ = 0, the copula is equal to the independence copula.

Student’s t copula The t copula with ν > 0 degrees of freedom is defined by

C(u, v) = t2ν,ρ(t−1
ν (u), t−1

ν (v)) (2.37)

where t2ν,ρ is the bivariate student’s t distribution function with ν degrees of freedom and
correlation parameter ρ, t−1

ν the t quantile function. Like for the Gaussian copula, ρ = ±1
corresponds to the maximum/minimum copula. However, there is no value of ρ such that
the independence copula is attained for finite values of ν. As ν tends to infinity, the t
copula coincides with the Gaussian one.

Clayton copula The Clayton copula is part of a class of copulas known as Archimedean
copulas. These are associated with a generator φ(t), from which the copula expression
may be constructed. Such a generator must be a positive, continuous, decreasing and
convex mapping on [0, 1] such that φ(1) = 0 and with a pseudo-inverse defined as

φ[−1](v) =
{
φ−1(v), 0 ≤ v ≤ φ(0)
0, φ(0) ≤ v ≤ ∞

The copula is then constructed as

C(u, v) = φ[−1](φ(u) + φ(v)). (2.38)

The Clayton copula with parameter α ∈ [−1, 0) ∪ (0,∞) has generator φα(t) given by

φα(t) = 1
α

(t−α − 1),

resulting in the copula expression

C(u, v) = max
(
(u−α + v−α − 1)−1/α, 0

)
(2.39)

The parameter α is associated with Kendall’s tau through

α = 2τ
1− τ . (2.40)

The Clayton copula coincides with the minimum copula for α = −1 and approaches the
maximum copula as α → ∞. In the limit where α → 0, it tends to the independence
copula (Cherubini et al., 2004, ch. 3).

Other examples of Archimedean copulas include the Gumbel and Frank copula, having
different dependence structures. The Clayton copula is here given attention due to its
dependence properties. This is clarified by a simulation from this copula along with the
Gaussian and t copulas at different degrees of freedom. Figure 2.2 shows the results, in
particular illustrating different behaviours in the tails for the various copulas used. For
the t copula, it is clear that extreme simultaneous outcomes are more prevalent than in
the Gaussian case, and this in either tail including where the outcomes are at the opposite
ends. The tendency appears stronger for lower degree of freedom parameter. The Clayton
copula, on the other hand, behaves differently with dependency clustered in the lower
tail. In the next section the concept of tail dependence is defined, providing a tool for
establishing this observation mathematically. Details on how the simulation is carried out
are presented in Section 4.3.3.
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Figure 2.2: Simulations from four different bivariate copulas using a sample size of N =
5000. Correlation parameter ρ = 0.5 is used for the Gaussian and t copulas, where
corresponding Kendall’s tau may be computed through Equation (2.34). Insertion of this
value into Equation (2.40) gives the value of α used for the Clayton copula.

2.3.3 Tail Dependence

When several stochastic quantities are involved in what is being modelled, it is often of
interest to monitor their interaction in the extreme ends of the distributions. This partic-
ularly applies to finance and financial risk management. It is not uncommon that weakly
correlated assets display simultaneous negative extreme movements. Tail dependence is
a standardized measure capable of capturing this property. Given the bivariate random
variable (X,Y ) with copula C and marginal distributions FX and FY , its lower tail index
or tail dependence coefficient is defined as

λL = lim
u↓0

C(u, u)
u

, (2.41)

or equivalently,

λL = lim
u↓0

P (X < F−1
X (u)|Y < F−1

Y (u)).
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An analogous definition is available for the upper tail index,

λU = lim
u↑1

1− 2u+ C(u, u)
1− u

= lim
u↑1

P (X > F−1
X (u)|Y > F−1

Y (u)).

Tail indices can vary between 0 and 1, 0 signifying absence of tail dependence and 1
indicating perfect tail dependence. For the maximum copula, both upper and lower tail
indices are equal to 1. For the Gaussian copula, it can be shown that both tail indices are
zero for any copula correlation parameter ρ less than 1. The t copula, on the other hand,
exhibits tail dependence in both tails for any value of the correlation parameter except
ρ = −1. Due to symmetry, the coefficients are equal and given by

λL = λU = 2tν+1

(
−
√

(ν + 1)1− ρ
1 + ρ

)
,

tν(·) being the distribution function, as shown in Embrechts et al. (2003). The Clayton
copula has lower tail index λL = 2−1/α as long as α > 0, but lacks upper tail dependence
for finite α. Other Archimedean copulas differ in this respect; as an example the Gumbel
copula has upper but lacks lower tail dependence (Cherubini et al., 2004, ch. 3).

2.3.4 Dependence in Credit Risk

In the literature, various different ways of modelling dependence in credit risk have been
developed. Among approaches commonly seen within reduced form models, a few promi-
nent ones are conditional independence models, contagion models and copula models. The
distinction is not entirely without overlap. Elizalde (2006) gives a review of the three and
their use in the modelling of dependent hazard rates and defaults. We will also direct at-
tention towards models dealing with dependence in credit migrations, here treated under
conditional independence models.

Conditional Independence

Conditional independence models lend themselves both to the simulation of correlated
defaults and to rating-based models. Starting with the latter, Truck (2008) reviews two
different approaches; firstly adjusting the matrix explicitly such that default probabilities
match market spreads, and secondly making use of the constant, historical matrix and
conditioning outcomes of these on a common index. The methods are used and their
accuracy tested in a historical forecasting setting. We will have a closer look at the second
approach, which Truck (2008) found performed better than the former.

Consider a baseline discrete transition matrix P of size K × K, with M = K − 1
non-default rating classes and K representing an absorbing default state. P contains
historical average transition probabilities over a given risk horizon T . Now, for a firm i
belonging to rating class m, its unconditional transition probabilities over the risk horizon
are represented by row m of P . The rating state at the end of the period is now expressed
via a variable Y i

T , which is here assumed to belong to the standard normal distribution.
Then, its outcome can be mapped to a rating class at T by constructing the following
disjoint partition of the real line:

(−∞, Φ−1(pmK)], (Φ−1(pmK), Φ−1(pmK +pmM )], . . . , (Φ−1(pmK +pmM + · · ·+pm2), ∞)
(2.42)
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The probability of Y i
T falling within the first bin is now equal to pmK , which is the uncon-

ditional default probability. Similarly, the probability of falling into bin j ≥ 2 is equal to
pm,M+2−j . Therefore, a simulated value of Y i

T is mapped to the time T rating of a firm
by checking which bin it falls into, bin j mapping to rating class M + 2− j.

The dependence in this enters by correlating the outcomes Y i
T for individual firms with

a common credit cycle index ZT , which is designed such that its distribution is standard
normal. This is typically done so that

Y i
T = wZT +

√
1− w2Xi

T (2.43)

where w is the weight of the index on the transition outcomes and Xi
T are standard nor-

mally distributed idiosyncratic factors, capturing risk which enters independently. Equa-
tion (2.43) is equivalent to the use of a bivariate Gaussian copula with parameter w linking
the common index and firm rating outcomes. Truck (2008) constructs separate indices for
investment and speculative grade bonds, using a regression and forecasting method in-
volving a number of macroeconomic variables. As Equation (2.43) suggests, the variables
{Y i

T |ZT }i are independent, explaining the notion of conditional independence. There are
many variations and extensions to this approach in the literature. A recent example is
Berteloot et al. (2013), who applied a sophisticated regression technique for estimation of
default and migration probabilities based on historical migration data capturing momen-
tum in rating dynamics as well as macroeconomic indicators.

A similar approach can be conducted to simulate correlated defaults, without applying
a rating-based model. The binning would then be reduced to default and non-default only.
Alternatively, default intensities in a continuous time setting can be modelled directly
through conditional independence by letting hazard rates for individual firms be made up
of sums of processes describing common state factors and idiosyncratic factors. Such a
specification may also be used for the simulation of dependent default times. A review is
available in Elizalde (2006).

Contagion

Contagion models make use of a different mechanism to tackle an empirical observation
that conditional independence models as described above are poorly equipped to handle,
namely that of default clustering. It appears the default of one firm in itself can trigger
default of other firms, and that defaults tend to be clustered in time (Elizalde, 2006).

One example of a contagion model is that by Jarrow and Yu (2001), where default
intensities depend on the status of other firms being modelled. To avoid what they call
looping defaults, which might occur when hazard rates across firms are interlinked symmet-
rically, they distinguish between primary and secondary firms so that default dependence
is one-way matter. Primary firm intensities are modelled using a conditional independence
specification, then if one of these defaults a sharp increase for the default intensities of
secondary firms is recorded.

Copula models

Copula models have seen some use in credit modelling. Relying on the limitations of using
only linear correlation to describe dependence, Hamilton et al. (2001) analysed credit risk
with the help of copula methods and also discussed how parametric families of copulas
could be calibrated to observed data. Copulas were used to model simultaneous credit
events, including defaults and rating transitions.
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Meissner et al. (2013) compared different correlation approaches and their effect on
CDS pricing when there is counterparty risk involved. As previously mentioned, a CDS
contract fundamentally depends on the credit risk of a reference party. When there is
also counterparty risk, the dependence between counterparty and reference party is rele-
vant to the pricing. They found that different correlation approaches lead to fairly large
differences in pricing. A naive approach is to just correlate Brownian motions of default
processes, causing far higher CDS spreads due to weak dependence between counterparty
and reference party, compared to more involved approaches such as using a fatter-tailed t
copula connecting the intensities.

Interest Rates and Credit Risk

Many studies also include interest rate risk studied jointly with credit risk. The existence of
dependence between interest rates and credit spreads has been settled empirically. Duffee
(1998) found that short-term treasury yields and investment-grade credit spreads appear
to be inversely correlated, with a more pronounced negative dependence as credit qual-
ity decreases. Duffie and Singleton (1999) described default intensities and interest rates
through the use of multi-factor independent CIR processes, yielding an additive depen-
dence structure between intensities and rates while preserving tractable bond pricing.

In Jobst and Zenios (2001) risky bonds were priced and tracked using a tree implemen-
tation to model the risk-neutral evolution of correlated interest rates and default intensi-
ties. The latter were assumed to be coupled with rating classes, rather than pertaining to
individual firms. For simulation under the real measure, the tree was again used to gen-
erate economic scenarios, then rating transitions were appended using a discrete Markov
chain approach with fixed, historical probabilities. These were treated separately from
the interest rates and credit spread scenarios. Different recovery models, as described in
Section 2.2.3, were applied. Chen et al. (2008) is another example of dependence modelled
between interest rates and hazard rates, using CIR processes and fitting to market CDS
spreads for a range of companies.

2.3.5 Joint Equity-Credit Modelling

Beside dependence between interest rates and credit risk, co-movements have also been
observed across equity and debt markets. Particularly, stock volatility and credit spreads
have been observed to interact significantly, both between individual firms as in Zhang
et al. (2009) and market-wide as in Naifar (2012). Furthermore, breaking movements on
stock markets down into separate volatility and jump components, research also suggests
there is dependence between equity jumps and credit spreads as exemplified in both of the
mentioned studies. Naifar (2012), analyzing movements of CDS index spreads and stock
indices, also found that dependence between the two is asymmetric and amplified in times
of financial turmoil.

Linking stock volatility with hazard rates has been done in several studies. Kovalov
and Linetsky (2008) modelled hazard rates with a three-factor CIR process, with two
of these describing stock stochastic volatility and interest rates while the third one was
an independent addition capturing independent movements of default intensities. Fur-
thermore, the stock process included yet another univariate Brownian motion correlated
with the stochastic volatility, resulting in a four-factor specification. Under this model
specification, the authors priced convertible bonds.

Another example is found in Carr and Wu (2010), modelling stock processes of indi-
vidual firms by means of stochastic volatility and a variance-gamma jump process, then
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linking default intensities with stochastic volatility in a similar fashion as described above.
The model allowed stock options to be priced analytically, and was fit to market CDS
spreads and implied volatilities on stock options simultaneously, where both real-world
and risk-neutral parameters were determined through the use of Kalman filtering on his-
torical time series data. This was done for a range of companies and led to good fits for
both implied volatility surfaces and CDS spreads. The model forms a basis for the thesis,
and is described in more detail in Chapter 3.

In Fontana and Montes (2014), a unified modelling framework for equity, credit and
interest rate risk was devised. Default intensities as well as interest rates were defined
as affine functions of stock process, volatility and underlying factors which may include
macroeconomic or firm-specific variables. The specification ensured positivity of interest
rates and hazard rates, as well as pricing tractability.



Chapter 3

Model

This chapter presents the choice of model and the reasons behind the choice. This is
followed up by a detailed model specification, addressing all of its variations. Assumptions
and simplifications are highlighted. To conclude the chapter, we describe the portfolio
application studied.

3.1 Model Selection and Overview

In the selection of an appropriate model, we seek models capable of capturing rich be-
haviours with respect to the marginal returns of equity and debt instruments, while si-
multaneously allowing for dependence to enter between equity and credit risk factors in
a manageable way. When setting up the framework, it is also desirable that the model is
expressible in continuous time. A motivation for this is the ability to generate scenarios
over arbitrary risk horizons and track the evolution of risk factors as well as asset prices
along sample paths.

Aside from the ability to represent marginal returns richly, the more control we can
exert over the extent and structure of dependence across equity and debt markets, the
higher the model is held. In order to isolate credit and equity risks and restrict the
analysis to these, we prefer models focusing on these factors, not including other risk
sources.

Since we value the ability to flexibly model portfolios of varying compositions, priority
is given to models targeting the behaviour of risk factors relevant to the pricing of a variety
of assets, rather than to models directly focused at the time series dynamics of particular
asset values such as bond spreads1. Discrete time models such as those described in Bangia
et al. (2002) and Truck (2008), suitable to the simulation the overall creditworthiness
of a portfolio but with limited ability to capture short-term market fluctuations and to
generate sample paths, also hold a lower priority when looking for core building blocks. As
we shall see, this type of models does however ultimately come into play in the design of
the framework, owing to their capability to incorporate market-wide dependence between
firms.

The model we choose as forming the basis of the framework is that by Carr and Wu
(2010). This model, introduced in Section 2.3.5 and further described in Section 3.2,

1It should be stressed that a model describing behaviour of risk factors, calibrated after observed market
prices of a certain asset type such as bond spreads, may need to be recalibrated when used with other
asset types. The reason is that the way assets are modelled to depend on risk factors is likely to simplify
reality, such that a particular calibration is suitable for a particular portfolio setting but requires caution
when used outside of that.

25
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lends itself to a continuous time setting featuring equity and credit risk, with substantial
ability to adjust parameters for desirable behaviour of the risk factors. However, its
specification of hazard rates, using CIR processes, reflects fixed long-term expectations
of default probabilities so that changes in credit quality are not well represented. We
therefore investigate the outlook of including rating change dynamics through a Jarrow
et al. (1997) Markov chain approach, presented in Section 3.3.

Further, for multi-name portfolios a mechanism for simulating dependent migrations is
investigated, as a tool to further expand the span of dependence allowed. This is essentially
based on migrations through conditional independence as in Truck (2008), but with the
added possibility to make use of different copula techniques. A summary of the framework,
putting all pieces together, is given in Section 3.4.

3.2 Carr and Wu (2010) Model
The Carr and Wu (2010) model, targeting individual firms, contains a stock process and a
hazard rate process, linked through stochastic volatility of the stock. Aside from stochastic
volatility, the stock process also features a variance-gamma jump process. Whenever
default occurs, the value of the stock is assumed to drop to zero. Letting Yt denote the
logarithm of the pre-default stock price, the model specification is

dYt = µ̃tdt+√vtdWS
t + dJt

dvt = κv(θv − vt)dt+ σv
√
vtdW

v
t

dzt = κz(θz − zt)dt+ σz
√
ztdW

z
t

λt = βvt + zt

(3.1)

where

Cor(dW v
t , dW

S
t ) = ρ,

Cor(dWS
t , dW

z
t ) = Cor(dW v

t , dW
z
t ) = 0.

Jt here denotes the mean-adjusted variance-gamma process, which is independent of the
three Brownian motions. The modified drift process µ̃t here includes an Itō compensator
(−vt/2) for the volatility process and therefore differs from the drift of the stock process
St = exp(Yt). Under the risk-neutral measure, the stock drift is rt − qt + λt with rt
denoting the short interest rate, qt a stock dividend rate and λt the default intensity. The
latter contains an independent component zt, allowing independent hazard rate movements
along with those following the stock volatility process. With this specification, λt follows
a two-factor CIR process.

Dependence between credit risk and equity risk is captured primarily by the parameter
β ≥ 0. Note that for negative ρ and positive β, negative correlation between stock process
and default intensity indirectly spreads via the volatility process. Additional dependence is
imposed through λt entering the stock process, either via the risk-neutral drift component
or by default simulation in a real-world setting.

Different dynamics of vt and zt are allowed under the real-world and risk-neutral mea-
sures, with market price of risk determined consistently with Equation (2.12). That is,
for mean reversion rates defined differently under the two measures, we have the market
prices of risk

γv = κQv − κPv
σv

,

γz = κQz − κPz
σz

.
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Figure 3.1: Component overview of the model described in Section 3.2. Arrows show
directions of dependency between components. Dashed borders indicate the component is
not implemented in the present thesis. Dashed arrows represent possible, but not strict,
dependencies.

In line with Equation (2.13) we also have

θPvκ
P
v = θQv κ

Q
v ,

θPzκ
P
z = θQz κ

Q
z .

Yu et al. (2011) also suggest how a measure change of the variance-gamma jump process
could be implemented, but this is not done in the present thesis since it would only affect
the pricing of assets explicitly depending on the stock process, not considered here.

As opposed to Carr andWu (2010) who fit the model to market prices, we are interested
in simulation under a real-world measure. Furthermore, we will let the equity process
represent a stock index, such that the default intensity does not interact in the same way
with the process. More on this in Section 3.4, describing the full modelling framework.

As illustrated in Figure 3.1, it is possible to divide the model into several different
blocks or components, each represented by a process or quantity of interest. A division of
this kind breaks down the dependencies of the model such that components can be treated
separately and some of them given as input to other blocks. When developing the method
for simulation presented in Chapter 4, this will turn out to be helpful.

Furthermore, this block representation opens for high adaptability to changes and ad-
ditions. An example is the variance-gamma jump process, here treated as an independent
module. Exchanging this for a different jump process, such as compound Poisson, or re-
moving it altogether is here easily done. Another example is how the stock drift enters.
Specifying this as an input factor to the stock process, such that its whole evolution could
be generated independently of the actual stock process, stochastic interest rates could po-
tentially be added without too much difficulty. One way of doing so would be by following
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Kovalov and Linetsky (2008), where default intensities are given by

λt = αrt + βvt + zt,

with rt following an independent CIR process. Under such a specification, the arrow of
dependency highlighted in Figure 3.1 connecting hazard rates with interest rates would
be directed from the latter to the former.

In the figure, the stock volatility process is indicated as an independent component,
which could be input to the stock process. The dynamics of Equation (3.1) suggest the
dependency between the two is mutual rather than unidirectional. The explanation lies
in that the CIR process can in fact be treated separately and have its full evolution input
to the stock process simulation, as will become clear in Section 4.2.3. Expressing the
dependency like this facilitates the implementation while providing for higher efficiency.

3.3 Rating Based Model
To account for varying credit qualities as well as improved applicability to a multi-name
setting, we consider an extension involving several rating classes, each associated with its
own hazard rate process. Let m = 1, . . . ,M denote rating classes ranging from best to
worst not including default. We may then define the independent processes

dzit = κi(θi − zit)dt+ σi

√
zitdW

i
t , i = 1, . . . ,M,

representing excess hazard rates, and let the default intensity for any obligor within class
m be represented by

λmt = βmvt +
m∑
i=1

zit (3.2)

where vt denotes the volatility process of a common stock index on the same form as in
Equation (3.1), assumed to have similar impact on all of the firms considered. With this
specification, dependence between hazard rate movements across different rating classes is
imposed additively, also capturing dependence with the stock index volatility in a similar
way as outlined in the previous section. Moreover, as long as βm ≤ βn for m < n, a worse
rating class is always guaranteed to have greater default probability than one of higher
rating.

Now, in order to enable transitions between rating classes, we consider a continuous
Markov chain approach where the default intensities of Equation (3.2) coincide with the
last column entries of a time-dependent transition matrix. In order to to this, we define
a baseline intensity matrix that is consistent with the long-term means of the default
intensities, affecting the last columns of both the real-world and risk-neutral matrices.
Under either measure, we consider the baseline intensity matrix

Λbase =


λ11 λ12 · · · λ1M λ1K
λ21 λ22 · · · λ2M λ2K
...

...
. . .

...
...

λM1 λM2 · · · λMM λMK

0 0 · · · 0 0

 . (3.3)

For this to be consistent with the hazard rate process specification, the last column entries
for m = 1, . . . ,M must be

λmK = βmθv +
m∑
i=1

θi. (3.4)
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The next step is to construct a time-varying intensity matrix, given this baseline. Inspired
by a matrix numerical adjustment approach in Lando (1999), each row m of the baseline
matrix is scaled by a factor λmt /λmK . This implies that simulated instantaneous default
intensities are always equal to those in the matrix, while simultaneously ensuring that the
time-varying matrix is a proper intensity matrix with each row summing to zero and each
off-diagonal element remaining non-negative.

Given sample paths of default intensities and fully specified baseline matrices, it is
possible to superimpose credit migrations for a firm and track its rating state over a
given risk horizon. This may also be done by converting the time-dependent intensity
matrix to a corresponding discrete time matrix, and simulate rating scenarios from the
latter. For simulation of dependent migrations across several firms, we apply the latter
methodology and assume conditional independence of transitions, where discrete time
matrices are conditioned on a common index. In this respect, the approach differs from
that highlighted in Truck (2008), where the historical matrix is what is being conditioned
on a credit cycle index, while the discrete time matrices we will be working with are those
implied by sample paths of hazard rates.

Further, we let the imposition of dependent migrations be carried out with the possi-
bility of applying different copulas. This serves as a tool to further modify the dependence
structure, without casting aside the conditional independence assumption as such. In the
original assumption of conditionally independent migrations, a bivariate Gaussian copula
is used to create a link between migration dynamics and a common credit index. We
also provide implementation for dependent migrations through student’s t and Clayton
copulas.

3.4 A Joint Framework

We here summarize the full simulation framework, similar to the Carr and Wu (2010)
model but adapted to a market-wide setting, with a stock index and rating-based hazard
rates simulated under a real-world measure, applying an added mechanism for credit rating
migrations. The model bears resemblance to that studied in Jobst and Zenios (2001),
involving two layers of scenario generation; economic scenarios through the evolution of
stochastic processes, with rating scenarios retrospectively attached.

We consider a risk horizon t ∈ (0, T ]. Letting Yt be the logarithm of a stock index, in
an economy where participants either belong to one of M non-default rating classes where
1 is the best and M the worst, or are in a default class K = M + 1, we have


dYt = µ̃tdt+√vtdWS

t + dJt
dvt = κv(θv − vt)dt+ σv

√
vtdW

v
t

dzit = κi(θi − zit)dt+ σi

√
zitdW

i
t , i = 1, . . . ,M

λmt = βmvt +
∑m
i=1 z

i
t, m = 1, . . . ,M

(3.5)

with
Cor(dWS

t , dW
v
t ) = ρ,

all other Brownian motions uncorrelated and Jt an independent variance-gamma jump
process.

Furthermore, processes vt and zit have different dynamics under the real-world and
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risk-neutral measure, so that

γv = κQv − κPv
σv

,

γi = κQi − κPi
σi

, i = 1, . . . ,M

represent constant market prices of risk. In addition to variations of the λmt due to process
movements, credit qualities of individual firms may also change by rating migrations. Such
changes are imposed in a second step, once paths of St, vt and λmt are known. Given a
baseline real-world intensity matrix Λbase with elements λmk, and hazard rate paths λmt ,
a time-varying matrix Λt is constructed by letting its elements be set to

λt,mk = λmk
λmt
λmK

, m = 1, . . . ,M, k = 1, . . . ,K, (3.6)

and λt,Kk = 0 for k = 1, . . . ,K. For migration simulation, we consider the partition of
(0, T ] to

(t0, t1], (t1, t2], . . . , (tJ−1, tJ ]

with t0 = 0 and tJ = T , and where ∆tj := tj − tj−1 = tk − tk−1 for every j, k. At
every tj , j = 1, . . . , J , the rating state of the firms considered is now governed by the
path-dependent discrete time matrix P(tj−1,tj) which may be approximately constructed
from the path of Λt through Equation (2.25). Further, this matrix is conditioned on the
outcome of a common credit cycle index in (tj−1, tj ]. Within our framework, we will
let this index be represented by the stock index process, which adds another layer of
dependence between credit and equity risk within the market considered. In principle, the
index could be exchanged for any macroeconomic variate or combination of such assumed
to have explanatory power on the rating changes of firms involved. Letting the weight of
the index on firm rating transition dynamics be denoted by w, we recall Equations (2.42)
and (2.43) for binning and simulation of the rating state of a firm at tj , initially in state
m at tj−1. This assumes a Gaussian copula and requires mapping of the stock index path
from tj−1 to tj to a standard normal variable. Equivalently, if we represent the stock
outcome by a uniform US(tj−1, tj), a rating outcome is produced by computing

U(tj−1, tj) = Φ
(
wΦ−1(US(tj−1, tj)) +

√
1− w2Φ−1(Ui(tj−1, tj))

)
, (3.7)

mapped to an appropiately binned partition of (0, 1) further detailed in Section 4.3.4. Here,
Ui(tj−1, tj) is an independent standard uniform variable. In addition to the Gaussian
copula, we allow student’s t and Clayton copulas for the rating migration simulation,
explained in Section 4.3.3.

We summarize the main steps included in simulation from the full framework, with
implementation details described in Chapter 4 in the indicated sections:

1. Simulate a set of economic scenarios encompassing stock index, volatility and hazard
rates (Section 4.2)

2. Conditional on hazard rate paths, construct discrete transition matrices (Section
4.3.1)

3. Convert stock index outcomes to uniforms, to be used for conditioning of rating
outcomes (Section 4.3.2)
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4. Simulate rating scenarios, conditional on stock index outcomes (Sections 4.3.3 and
4.3.4)

5. Map generated scenarios to portfolio values (Section 4.4)

3.5 Portfolio Application
The portfolio considered is one consisting of corporate zero-coupon bonds. The rationale
for this choice is that it allows for a rather direct representation of credit risk movements,
in the shape of excess returns above what a risk-free investment would yield. With stock
index returns also represented as excess returns, with deterministic drift, we may study
credit and equity risk isolated from interest rate risk.

Bonds are assumed to belong to one of two broad rating categories, investment grade
or high yield. Upon default, an exogenously specified fraction of the market value of
the bond is paid. This specification is in line with recovery of market value (RMV),
mentioned in Section 2.2.3. The price of each bond is given by applying the corresponding
formula, Equation (2.30), where the default intensity is that of the rating class which the
bond belongs to. Assuming maturity T and constant recovery rate δ, and that the bond
belongs to rating class m at time t, the price is thus

P d(t, T ) = P (t, T )EQ
[
exp

(
−
∫ T
t

(1− δ)λms ds
)
|Ft

]
,

which may be computed analytically under the multi-factor CIR process specification for
λmt . Here P (t, T ) is a discount factor, equal to the price of a zero-coupon treasury bond
with the same maturity. The filtration {Ft} carries information about the stochastic
processes and not of credit migrations or defaults. Beside RMV with constant recovery
rates, the above equation makes use of the following simplifications:

• Interest rates are uncorrelated with default intensities, enabling the discount factor
to be separated from the expectation

• Only the instantaneous default intensity is considered, neglecting transition intensi-
ties

Since we focus attention to excess returns, we will often neglect the involvement of dis-
count factors altogether. The second bullet on the list is likely to create a bias when
pricing, skewing marginal returns. However, we conjecture this bias will influence prices
systematically and predictably and with little effect on the analysis of dependence between
equity and credit risk.

When performing the analysis, we will further investigate bond portfolios that are
continuously rebalanced. What this means is that the composition of a portfolio with
respect to the rating classes and/or the maturities of the participating bonds, is regularly
reset to the original state. In our case, it is natural to do so at the start of every new
migration time window, adjusting for any credit migrations which might have taken place.
This method favours a representation of a bond portfolio as a bond index, reflecting a
certain credit quality. Take for example a portfolio consisting of 50 high yield bonds. If
continuously rebalanced, this may serve as a high yield bond index. In Section 4.5, more
details on the practical implementation of the rebalancing method are given.



Chapter 4

Method

In this chapter, we describe what data analyses that are made and which statistical meth-
ods that are used for this purpose. Then, the implementation of the model is presented,
including all the simulation details. Finally, a note on model calibration and parameter
estimation is given.

4.1 Data Analysis

While focus of this thesis is primarily on the design of the model and investigation of how
risk varies with different parameter specifications, data is collected and analysed as a tool
to crudely calibrate and survey the health of the model.

The analysis of data consists of data collection followed by computation of some in-
teresting quantities relating to the marginal and multivariate distributions assumed to
underlie the data. When analysing individual time series, the first four moments along
with quantiles at a few different levels are empirically estimated. To do so, returns be-
tween adjacent months are considered based on closing values at the end of each month. A
few reasons for picking out monthly rather than daily data, include the discrete approach
to simulating dependent migrations, imposing dependence statically, as well as the rebal-
ancing method further described in Section 4.5. Nonetheless, daily returns for the stock
index will be considered. When simulating from our framework, these are not affected by
bond market movements.

4.1.1 Data Collection

The data comprises time series of daily closing values of the following three bodies:

• Equity data: S&P 500 (03/01/1990 - 05/03/2015)

• Bond data: iShares iBoxx USD Investment Grade ETF (22/07/2002 - 05/03/2015)

• Bond data: iShares iBoxx USD High Yield ETF (04/04/2007 - 05/03/2015)

S&P 500 data is collected from Yahoo Finance, whereas data of the two ETFs is taken
from iShares. The latter two consist of selections of USD bonds of varying maturity
within the relevant rating classes, and are here taken to represent a cross section of the
USD corporate debt market much like bond indices.

32



4. METHOD 33

4.1.2 Moments and Quantiles

In case they exist, the first four moments are informative at describing the distributional
characteristics of a random variable. For a given random variable X, these are specified
accordingly:

Mean: µ = E[X],
Variance: σ2 = E[(X − µ)2],

Skewness: γ = E[(X − µ)3]
σ3 ,

Kurtosis: κ = E[(X − µ)4]
σ4 − 3.

When analysing historical data, such as daily stock index returns, we may estimate these
empirically. For a sample of N observations xi, i = 1, . . . , N , of X, we use the following
estimators:

µ̂ = 1
N

N∑
i=1

xi (4.1)

σ̂2 = 1
N − 1

N∑
i=1

(xi − µ̂)2 (4.2)

γ̂ = N2

N(N − 1)(N − 2)
1
σ̂3

N∑
i=1

(xi − µ̂)3 (4.3)

κ̂ = N(N + 1)
(N − 1)(N − 2)(N − 3)

1
σ̂4

N∑
i=1

(xi − µ̂)4 − 3 (N − 1)2

(N − 2)(N − 3) (4.4)

In addition to estimating moments, also quantiles at certain percentiles are interesting.
For a sample {xi}, we first rearrange the elements to constitute an ordered set {x̃i}, where
x̃1 ≤ x̃2 ≤ · · · ≤ x̃N . The quantile F̂−1

X (p) at p is then computed by

F̂−1
X (p) =



x̃1, p <
1

2N
x̃bNp+1/2c +

(
x̃bNp+1/2c+1 − x̃bNp+1/2c

)
×

(Np+ 1/2− bNp+ 1/2c) ,
1

2N ≤ p <
2N − 1

2N

x̃N , p ≥ 2N − 1
2N

(4.5)

where bxc is the largest integer less than or equal to x. This definition involves a lin-
ear interpolation between ordered statistics1, whereas other alternatives might define the
quantile estimator as a piecewise constant function.

4.1.3 Multivariate Analysis

The multivariate analysis consists of measurements of dependence between data series.
Three quantities are of interest; linear correlation, Kendall’s tau and tail index.

For a sample of observations (xi, yi), i = 1, . . . , N from the random variable (X,Y ),
we compute the linear correlation estimate by

ρ̂ =
∑N
i=1(xi − µ̂x)(yi − µ̂y)√∑N

i=1(xi − µ̂x)2∑N
i=1(yi − µ̂y)2

(4.6)

1Note that the empirical quantile is not the quantile function of the empirical distribution with this
definition.
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and the Kendall’s tau estimate by

τ̂ =
∑N
i=2

∑
j<i {I((xi − xj)(yi − yj) > 0)− I((xi − xj)(yi − yj) < 0)}

n(n− 1)/2 (4.7)

where I(·) is the indicator function. As mentioned in Section 2.3.1, if the bivariate data
comes from an elliptical distribution estimating τ and then transforming to linear corre-
lation through

ρ̂ = sin
(
π

2 τ̂
)

(4.8)

is likely to give improved accuracy.

4.1.4 Tail Index Measurements

In order to estimate tail dependence empirically given bivariate data, a threshold percentile
level p is first defined2. This level is used to determine empirical quantiles for each series.
Assuming we are looking at lower tail dependence, a tail index estimate is then obtained
by counting the number of outcomes simultaneously falling below the respective quantile
values and normalizing. Given N observations (xi, yi) from (X,Y ),

λ̂L,p =
∑N
i=1 I(xi < F̂−1

X (p), yi < F̂−1
Y (p))∑N

i=1 I(yi < F̂−1
Y (p))

, (4.9)

where I(·) is the indicator function. This approach is also highlighted in e.g. Fortin and
Kuzmics (2002) and Cherubini et al. (2004, ch. 1). When analysing upper tail dependence
we would proceed similarly, looking at number of outcomes exceeding a high quantile
value.

In case (X,Y ) has a Gaussian copula with correlation parameter ρ < 1, we stated in
Section 2.3.2 that upper as well as lower tail indices are zero. However, in order to see
this empirically extremely low/high quantile levels are usually required. Unfortunately,
the usefulness of the estimator (4.9) is dubious when p is selected so low that only a few
outcomes of Y fall below the threshold, owing to small effective sample size. Therefore,
tail index calculation through Equation (4.9) is more informative under the choice of a
percentile level not quite so extreme, unless the sample size is enormous. Furthermore, in
a VaR application a percentile level ranging from 0.005 to 0.05 is usually what is relevant,
but under these choices a direct comparison to theoretical tail indices as defined in Section
2.3.3 is flawed.

For an illustration of the above, let (X,Y ) be a bivariate normal variable with ρ < 1.
We recall that both lower and upper tail indices are then equal to zero. The expectation
of Equation (4.9), replacing empirical quantile functions by standard normal quantiles, is
known in closed form. Assuming a low percentile level p, we may compute the quantity

λL,p = P (X < Φ−1(p)|Y < Φ−1(p))

=
CGa
ρ (p, p)
p

=
Φ2
ρ(Φ−1(p),Φ−1(p))

p

2Whenever we talk about percentile levels in this thesis, such are expressed in terms of fractions rather
than percentages unless otherwise stated, so that the 0.05 level refers to the fifth percentile and similarly.
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Figure 4.1: Expected lower tail index estimates from bivariate data coming from a random
variable with a Gaussian copula with parameter ρ against tail index percentile levels, along
with 95% confidence intervals for estimation based on samples of size N . Dotted lines
correspond to confidence bounds for N = 1000 and dashed lines to N = 10, 000. Vertical
lines indicate the 0.005 and 0.05 percentile levels respectively.

for given correlation ρ. Using a few different values of ρ, Figure 4.1 shows how λL,p varies
with p. Further, 95% confidence intervals for estimation of λL,p according to Equation
(4.9) given a sample of size N of data coming from independent copies of (X,Y ) are illus-
trated. These are computed by evaluating 2.5% and 97.5% quantiles of a Bin(Neff , λL,p)
distribution, where Neff is the effective sample size,

Neff =
N∑
i=1

I(yi < F̂−1
Y (p)) = dNp− 1/2e

with dxe denoting the smallest integer larger than or equal to x. Evidently, estimators
have high variance for small effective sample sizes. Also, unless ρ is low the convergence
for λL,p to zero occurs slowly as p ↓ 0.

In order to get an idea of the strength of tail dependence for observed data, it is there-
fore more illuminating to pick a percentile level such that a moderately large amount of
outcomes fall below the corresponding quantile value, calculate the tail index estimate
according to Equation (4.9), and compare its value to what a Gaussian copula with com-
parable ρ would be expected to yield. If the pairs of observations reasonably enough
resemble outcomes of an elliptical distribution, such a ρ is preferably determined from the
Kendall’s tau estimate with Equation (4.8). Fundamentally, the procedure requires fairly
large sample sizes in order to be reliable.
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4.2 Process Simulation Methodology
In this section, we describe the discretization schemes and algorithms used for simulation
of the various stochastic processes involved. This includes the CIR process, appearing at
several places in the model, the variance-gamma process and the stock index process. The
discretization step size ∆t is chosen to be common to all components. One process at a
time is simulated, in a way largely consistent with Figure 3.1 but with the exception that
several excess hazard rate processes are simulated, one for each rating class. Also, hazard
rates do not participate in the stock index drift.

4.2.1 CIR Process Discretization

When sampling outcomes from the CIR process (Cox et al., 1985) at time T > t conditional
on information at time t, one may either sample directly from the conditional probability
distribution, or by means of discretization. For the purpose of this thesis, setting up a
discretization scheme is necessary in order to generate full sample paths which can be fed
back to the stock process as well as the simulation of defaults and credit rating migrations.

It is then integral to discretize the process in a way that non-negativity is maintained.
This becomes particularly important considering that the parameters in applications often
violate the positivity constraint 2κθ > σ2 described in Section 2.1.1. There are various
techniques available in the literature, where Euler and Milstein schemes described in for
example Jäckel (2002) are among the simpler ones. These two, particularly the former,
tend to cause issues when the process parameters are set such that the process might
reach zero. When discretizing, negative values become attainable, rendering the scheme
rather inappropriate. Therefore, we here apply a more sophisticated scheme known as the
quadratic exponential scheme presented in Andersen (2007).

If we denote the CIR process by xt and the discretization time step by ∆t, the scheme
relies on the fact that distribution of xt+∆t conditional on xt can be well approximated by
simpler distributions. For large value of xt, the distribution of

x̂t+∆t = a(b+W )2 (4.10)

where W ∼ N(0, 1) closely approximates the distribution of xt+∆t|xt for appropriately set
constants a and b. Meanwhile, for small values of xt,

x̂t+∆t =
{

0, U ≤ p
1
β log

(
1−p
1−U

)
, U > p

(4.11)

where U is a standard uniformly distributed variable gives a good approximation for xt+∆t
conditional on xt given appropriately set constants p and β.

The conditional mean and variance of xt+∆t|xt are known, and the parameters a and
b or p and β are determined by matching moments. A switching criterion depending on
the value of xt must be established in order to choose which of the two approaches to use.
Denoting the conditional mean by m and the conditional variance by s2, we have

m = θ + (xt − θ) exp(−κ∆t)

s2 = xtσ
2

κ
exp(−κ∆t)(1− exp(−κ∆t)) + θσ2

2κ (1− exp(−κ∆t))2.

Letting ψ = s2/m2, Equation (4.10) is applicable for ψ ≤ 2 while Equation (4.11) works
well for ψ ≥ 1. The constants a, b, p and β are related to m and s through

a = m

1 + b2
, b2 = 2

ψ
− 1 +

√
2
ψ

( 2
ψ
− 1

)
(4.12)
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as well as

p = ψ − 1
ψ + 1 , β = 2

m(ψ + 1) (4.13)

in the two cases.
In Algorithm 1, we summarize the preceding and outline how to simulate a sample

path of the CIR process. This is readily extended to efficiently simulate N sample paths.

input : step size ∆t, risk horizon T , parameters (κ, θ, σ), initial value x0
output: a sample path of the CIR process xt

1 let t = 0, fix ψC ∈ [1, 2]
2 while t < T do
3 compute m = θ + (xt − θ) exp(−κ∆t)
4 compute s2 = xtσ2

κ exp(−κ∆t)(1− exp(−κ∆t)) + θσ2

2κ (1− exp(−κ∆t))2

5 compute ψ = s2/m2

6 if ψ ≤ ψC then

7 compute b2 = 2
ψ − 1 +

√
2
ψ

(
2
ψ − 1

)
8 compute a = m/(1 + b2)
9 simulate W ∼ N(0, 1)

10 let xt+∆t = a(b+W )2

11 else
12 compute p = (ψ − 1)/(ψ + 1)
13 compute β = 2

m(ψ+1)
14 simulate U ∼ U(0, 1)

15 let xt+∆t =
{

0, U ≤ p
1
β log

(
1−p
1−U

)
, U > p

16 end
17 let t = t+ ∆t
18 end

Algorithm 1: CIR Process Discretization and Simulation

4.2.2 Variance-Gamma Process Discretization

In order to discretize the variance-gamma jump process, we follow Yu et al. (2011) and
note that increments are independent and given by

dXt = γGνdt + σ
√
GνdtW

where Gνdt belongs to Γ(dt/ν, ν) andW is an independent N(0, 1) variable. We mentioned
in Section 2.1.2 that a compensating drift term ψt such that E[eXt+ψt] = 1 should be
added. This compensator could also be included as part of the stock drift process, but in
order to treat the jump process independently from other parts of the model in line with
Figure 3.1, we include it in this part of the simulation. Since the characteristic function
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φXt(u) is known in closed form, we have

eψt = 1
E[exp(Xt)]

= 1
φXt(−i)

⇔ ψ = 1
t

log
(
(1− γν − σ2ν/2)t/ν

)
= 1
ν

log(1− γν − σ2ν/2), (4.14)

with φXt(u) given by Equation (2.21). To conclude, simulation of an increment ∆Jt for
the mean-adjusted process from t to t+ ∆t is performed by computing

∆Jt = ψ∆t+ γG+ σ
√
GW (4.15)

with ψ as in Equation (4.14), G simulated from Γ(∆t/ν, ν) andW simulated from N(0, 1).

4.2.3 Stock Process Simulation

Once stochastic volatility and variance-gamma processes are simulated, they may be input
to simulation of the stock process. Like for the CIR process, the scheme for this simulation
is based on Andersen (2007). Since the jump process is uncorrelated with the stock
Brownian motion, its evolution may be appended separately. Ignoring the jump process
and the stock drift, the logarithm of the stock process discretized with step size ∆t may
be written

Yt+∆t = Yt −
1
2

∫ t+∆t

t
vsds+

∫ t+∆t

t

√
vsdW

S
s

= Yt + ρ

σv
(vt+∆t − vt − κvθv∆t) +

(
κvρ

σv
− 1

2

)∫ t+∆t

t
vsds+

√
1− ρ2

∫ t+∆t

t

√
vsdWs,

(4.16)

where we have let (
dWS

t

dW v
t

)
=
(
ρdW v

t +
√

1− ρ2dWt

dW v
t

)
(4.17)

with Wt an independent Brownian motion, and made use of

vt+∆t = vt +
∫ t+∆t

t
κv(θv − vs)ds+ σv

∫ t+∆t

t

√
vsdW

v
s

⇔
∫ t+∆t

t

√
vsdW

v
s = 1

σv

(
vt+∆t − vt − κvθv∆t+ κv

∫ t+∆t

t
vsds

)
.

In Equation (4.16), the two integrals need to be handled. Given vt and vt+∆t, we approx-
imate ∫ t+∆t

t
vsds ≈

∆t
2 (vt + vt+∆t). (4.18)

As for the last integral in Equation (4.16), we first note that dvt is independent of dWt,
as suggested by Equation (4.17). Therefore, the integral is Gaussian with mean zero and
variance ∫ t+∆t

t
vsds

by Itō isometry. Reusing the approximation (4.18) applied to the variance of the Wiener
integral, it is straightforward to simulate Yt+∆t, where jump and drift increments ∆Jt and
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∫ t+∆t
t µsds are added to (4.16). In our case, the drift is input as a constant expected excess
return, but in case a discretized drift process is used, we may use the approximation∫ t+∆t

t
µsds ≈

∆t
2 (µt + µt+∆t).

Algorithm 2 summarizes the above and describes how to simulate paths of the logarithm
of the normalized stock index St/S0.

input : step size ∆t, risk horizon T , volatility parameters (κv, θv, σv), volatility path
vt, correlation ρ, drift µt, jump process increments ∆Jt

output: a sample path of the logarithm Yt of the normalized stock index process
1 define k0 = −ρκvθv∆t/σv
2 define k1 = ∆t

2

(
κvρ
σv
− 1

2

)
− ρ

σv

3 define k2 = ∆t
2

(
κvρ
σv
− 1

2

)
+ ρ

σv

4 define k3 = (1− ρ2)∆t
5 let t = 0, Y0 = 0
6 while t < T do
7 simulate W ∼ N(0, 1)
8 let µ = (µt + µt+∆t)/2
9 let Yt+∆t = Yt + µ∆t+ k0 + k1vt + k2vt+∆t +

√
k3(vt + vt+∆t)W + ∆Jt

10 let t = t+ ∆t
11 end

Algorithm 2: Normalized stock index process simulation

4.3 Credit Migration Simulation Methodology

We describe the main steps to simulate credit migrations in our framework. Economic
scenarios encompassing sample paths of the stock index and of the instantaneous default
intensities must be generated in a previous step. Although the scope within this thesis is
limited to two rating classes, the methodology outlined is general.

4.3.1 Construction of Discrete Path-Dependent Migration Matrices

As previously mentioned, given a baseline intensity matrix Λbase and simulated paths
λmt , time-dependent intensity matrices may be constructed by application of Equation
(3.6). Having λmt sampled at time steps ∆t, we adapt the matrix construction to the
discretized version of hazard rate processes and make use of midpoints between sampled
values, representing approximate averages over (t, t + ∆t). Hence, the scaling factors
corresponding to Equation (3.6) are set to be

(λmt + λmt+∆t)/2
λmK

.

We assume that time windows are specified such that they fit an integral number H of
process discretization steps. This will be the case for example if migration matrices are
constructed on a monthly basis while process discretization is done with ∆t = 1/252, with
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discretization time steps corresponding to business days. Then, letting H∆t = tj − tj−1,
we therefore have

P(tj−1,tj) =
H∏
h=1

exp
(
Λtj−1+(h−1)∆t∆t

)
where Λt represents the intensity matrix between t and t+ ∆t.

4.3.2 Transformation of Stock Index Returns

In order to condition transition outcomes on movements of the stock index, it is neces-
sary to transform the stock index returns to uniforms. Given that we have simulated N
economic scenarios and constructed J discrete time transition matrices for each economic
scenario in the previous step, a total of NJ returns over time windows of the type (tj−1, tj ],
j = 1, . . . , J , are obtained.

Since the stock index follows a geometric process and time windows are constructed to
be of equal length, we may consider all returns jointly despite belonging to different paths
and time windows. Doing so, an empirical distribution function F̂S can be constructed.
By applying the probability transform3, this enables a mapping to uniforms by evaluating

US = F̂S

(
Stj
Stj−1

)
. (4.19)

Due to right continuity of the empirical distribution function, in addition to being piece-
wise constant with equal-sized jumps, the values US could take according to the above
would be 1/(NJ), 2/(NJ), . . . , 1. This is biased and suboptimal since the value 1 is at-
tained. Therefore we subtract a value 1/(2NJ) in the assignment to uniforms, equivalent
to evaluating the empirical distribution at the midpoints in discontinuous parts.

With this approach, extreme outcomes of US are more likely to occur in times of high
volatility. A discussion on the appropriateness of the mapping is found in Appendix C.3,
where we also point out an alternative method.

4.3.3 Copula Simulation Techniques

We let a parameter w represent the weight of the stock index on credit migrations for firms.
This parameter governs the correlation in Gaussian and t copulas. For the latter, the
dependence structure also requires that the number of degrees of freedoms ν be specified.
An equivalent representation of the strength of dependence in these copulas is given by
Kendall’s tau,

τ = 2
π

arcsinw.

From τ , a comparable Clayton copula with parameter α may be specified through appli-
cation of Equation (2.40).

Conditionally on a uniform US associated with the stock index and given a bivariate
copula specification for the relation between the stock index and firm credit migrations,
we describe how to simulate uniforms mappable to firm transition outcomes.

Conditional Gaussian Here, we simulate a uniform Ui and compute

U = Φ
(
wΦ−1(US) +

√
1− w2Φ−1(Ui)

)
(4.20)

3The application of the probability transform is somewhat sloppy here since the empirical distribution
function does not satisfy the necessary condition of being a continuous function. However, as long as the
total number NJ of stock index returns is large, this becomes less of a concern.
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Conditional t A technique for simulating conditionally from the bivariate t copula with
ν degrees of freedom is described in Brechmann et al. (2013). The steps are as follows:

• Let YS = t−1
ν (US)

• Simulate Ỹi from tν+1(0, 1)

• Let Y =
√

ν+Y 2
S

ν+1
√

1− w2Ỹi + wYS

• Let U = tν(Y )

Conditional Clayton For conditional simulation from the Clayton copula we apply a
method presented in Cherubini et al. (2004, ch. 6), described in the following steps:

• Simulate a uniform Ui

• Let V = U−α
S +U−α

i −1
U−α
S

• Let U =
(
U−αS (V − 1) + 1

)−1/α

4.3.4 Mapping Simulated Uniforms to Transition Outcomes

For any sample path and migration time window, there will be a discrete transition matrix
P governing the probabilities of migration for the bonds in the portfolio. Assuming a
transition matrix on the form

P =


p11 p12 · · · p1M p1K
p21 p22 · · · p2M p2K
...

...
. . .

...
...

pM1 pM2 · · · pMM pMK

0 0 · · · 0 1

 , (4.21)

then for a given bond belonging to rating class m the task is now to map simulated
uniforms to an outcome in the Markov chain. Noting that uniforms with lower value should
be mapped to less favourable transition outcomes for consistency with the dependence
specifications, we construct the bins

(0, pmK ], (pmK , pmK + pmM ], . . . , (pmK + pmM + · · ·+ pm2, 1). (4.22)

With this ordering, a simulated uniform whose outcome belongs to bin j maps to a transi-
tion outcome to stateM+2−j. Denoting our uniform by U , a correct transition outcome
may also be immediately obtained by counting the number of bins whose right boundary
is greater than or equal to U .

The upper boundary values of the bins in equation (4.22) may also be calculated
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quickly for all rating classes by carrying out the matrix multiplication

PU = P ·


0 0 · · · 0 1
0 0 · · · 1 1
...

... . .
. ...

...
0 1 · · · 1 1
1 1 · · · 1 1



=


p1K p1K + p1M · · · p1K + p1M + · · ·+ p12 1
p2K p2K + p2M · · · p2K + p2M + · · ·+ p22 1
...

...
. . .

...
...

pMK pMK + pMM · · · pMK + pMM + · · ·+ pM2 1
1 1 · · · 1 1

 (4.23)

with P as in equation (4.21). Row m of PU then contains the upper bin boundaries of
rating class m, and for a bond in class m the new rating class is simply found by counting
the number of values in row m exceeding or equalling the simulated uniform value U .

4.4 Portfolio Evaluation along Sample Paths
For the investigated portfolio, asset pricing relies on the specification of hazard rates and
recoveries. The overall value of the portfolio is evaluated at time 0 as well as at every
tj , j = 1, . . . , J . Under the recovery of market value model as in Equation (2.30), we
further assume that if default for one of the bonds occurs in (tj−1, tj ], its value at time
tj is reduced to the fraction δ of the time tj value the bond would have had in case of
no credit transition. This is equivalent to assuming defaults may only occur at times tj .
We treat all migrations like this, letting rating states change at times tj as governed by
simulation from matrices P(tj−1,tj).

Omitting discount factors and focusing exclusively on excess returns, the time t price
of a bond maturing at T and being in credit class m is given by

P d(t, T ) = EQ
[
exp

(
−
∫ T
t

(1− δ)λms ds
)
|Ft

]

= EQ
[
exp

(
−
∫ T
t

(
(1− δ)βmvs + (1− δ)

m∑
i=1

zis

)
ds

)
|Ft

]
. (4.24)

In other words, the pricing involves the evaluation of intensities given by sums of CIR
processes scaled by constants (1 − δ)βm and (1 − δ) respectively. Letting h ≥ 0 be a
constant and xt a CIR process with parameters (κ, θ, σ), we have

hdxt = hκ(θ − xt)dt+ hσ
√
xtdWt

= κ(hθ − hxt)dt+
√
hσ
√
hxtdWt,

such that hxt is given by a new CIR process, implying affine bond pricing through Equa-
tions (2.9) and (2.11) holds, with parameters changed according to

xt → hxt
κ→ κ
θ → hθ

σ →
√
hσ

(4.25)
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4.5 Parameter Estimation
When estimating model parameters, a trial and error approach is used along with simu-
lating from the model. Given simulated and observed paths, we compute monthly returns
of the three series, from which moments, quantiles and dependence measures may be
estimated as described in Section 4.1.

Regarding construction of bond portfolios, we assume the division into 50 equally
weighted bonds with equal maturity and recovery arrangements connected through the
chosen dependence structure offer reasonable representations of the state of the bond
market. Clearly, this construction is a considerable simplification of the complex composi-
tions associated with the investigated ETFs, containing diverse mixes of maturities, bond
weights, recoveries and credit qualities.

When simulating longer sample paths, we rebalance the portfolios on a monthly basis,
i.e. immediately following the possible occurrence of credit migrations. Credit ratings
and maturities are reset to the original state, and gains and losses are accounted for by
rescaling the positions in the portfolio, such that the portfolio values computed pre- and
post-rebalancing are equal. This procedure does not alter the composition, only the size
of the investment.

In order to get an idea of the uncertainty of sample estimates of statistics, which
will depend on the length of time series, many sample paths are generated for a given
set of parameters and all of the statistics are estimated for each scenario. This enables
construction of approximate confidence intervals for statistics, from which the validity
of the model parameters may be assessed. Confidence bounds at level α are evaluated
empirically by computing (1 − α)/2 and (1 + α)/2 quantiles of the Monte-Carlo based
estimators.

Since interest rates are not implemented and excess returns above investments into
risk-free assets are modelled, while observed data contains information of actual returns,
mean returns are not calibrated. Instead, emphasis is placed on whether the breadth of
marginal distributions as well as dependence across markets can be captured.



Chapter 5

Results

We here present results based on analysis of market data as well as simulation from the
model. First, in Section 5.1 we conduct data analysis of the available time series, from
which we attempt to match parameters and use simulation to fit the model in Section 5.2.

Given fitted parameters, in Section 5.3 we perform simulation from the model in a
one-year risk setting. Further, we make various adjustments to the dependence structure
and investigate the implications on the analysis of risk.

5.1 Data Analysis

We start by plotting the evolutions of the three time series over the time windows at hand.
Computing monthly returns of each series, we may also investigate the joint movements
between stock index and bond ETF series. Figure 5.1 illustrates the evolutions, and also
displays monthly joint movements by means of a scatter plot. The figure hints at the
existence of dependence across the two markets. This is particularly striking when it
comes to the high yield index.

In Table 5.1, we compute moments, quantiles and dependence measures for monthly
returns of the series. The statistics reinforce the observation that dependence appears
higher between high yield index and stock index, as compared to investment grade index
and stock index. However, the figures carry considerable uncertainty due to the relatively
sparsely sized data sets, especially the high yield index. In particular, the reliability of
tail index estimates is questionable. When computing this as well as other measures of
association, the length of the stock index sample is shortened to match the time series
for the bond index with which dependence is analysed. The quantiles presented, however,
make use of the full length.

For the stock index, we also briefly analyse statistics of daily log returns. Dividing the
time series into several distinct time windows of equal (or close to equal) size, estimates
suggest absence of stationarity, with both moments and quantiles varying greatly for
different time windows along the observed path as shown in Table 5.2. Stochastic volatility
appears plausible, and so does jumps given the large differences in higher order moments
at similar standard deviations as is seen when four time windows are used. We however
stress that as the number of business days varies between months, ranging from 15 to 23,
biases are likely being created and complicating the analysis.

44
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S&P 500 iBoxx IG iBoxx HY
Sample size 301 151 94

Mean (×10−3) 7.076 5.489 5.909
Std. (×10−2) 4.204 2.027 3.455
Volatility 0.146 0.070 0.120
Skewness −0.631 0.044 −1.298
Kurtosis 1.289 6.736 7.549

0.02 quantile 0.908 0.954 0.927
0.10 quantile 0.954 0.987 0.969
0.90 quantile 1.057 1.026 1.037
0.98 quantile 1.087 1.040 1.084

Correlation 0.208 0.723
Kendall’s tau 0.079 0.498

0.02 tail 1 (3) 1 (2)
0.10 tail 3 (15) 8 (9)
0.90 tail 1 (15) 4 (9)
0.98 tail 0 (3) 1 (2)

Table 5.1: Estimated statistics for monthly returns of S&P 500, iBoxx IG and iBoxx HY
time series data. Mean values are given as subtracted by one. Volatilities are standard
deviations rescaled to a yearly basis. Dependence measure estimates given describe depen-
dence with stock index movements. Tail values show number of exceedances in the data
set, with effective sample sizes displayed in parantheses. Tail index estimation according
to Equation (4.9) would take the quotient of the two.

one window two windows three windows four windows

W1 W1 W2 W1 W2 W3 W1 W2 W3 W4
Length 6342 3171 3171 2114 2114 2114 1585 1586 1585 1586

Mean (×10−4) 2.79 2.91 2.66 5.37 0.90 2.09 3.59 2.23 −0.36 5.69
Std. (×10−2) 1.14 1.02 1.25 0.79 1.17 1.38 0.73 1.24 1.25 1.26
Volatility 0.18 0.16 0.20 0.13 0.19 0.22 0.12 0.20 0.20 0.20
Skewness −0.24 −0.16 −0.27 −0.35 0.01 −0.33 −0.15 −0.14 −0.17 −0.38
Kurtosis 8.76 4.21 10.05 5.25 2.58 9.74 2.40 2.88 13.34 6.93

0.005 quantile −3.97 −3.12 −4.83 −2.56 −3.50 −5.41 −2.41 −3.82 −5.02 −4.73
0.05 quantile −1.76 −1.67 −1.88 −1.21 −1.87 −2.14 −1.19 −1.95 −1.81 −1.99
0.10 quantile −1.19 −1.12 −1.27 −0.84 −1.41 −1.37 −0.82 −1.51 −1.30 −1.25
0.90 quantile 1.18 1.14 1.24 0.97 1.34 1.30 0.90 1.44 1.19 1.29
0.95 quantile 1.66 1.56 1.73 1.30 1.87 1.89 1.19 1.94 1.68 1.85
0.995 quantile 3.93 3.47 4.24 2.49 3.83 4.62 2.26 3.97 4.09 4.43

Table 5.2: Data analysis of daily log-returns of the S&P 500 data, with division into
different time windows along the paths, where windows are denoted W# and arranged in
chronological order. Volatility is computed as standard deviation times

√
252.
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Figure 5.1: Observed paths of S&P 500 (SPX), the iBoxx USD investment grade ETF
(IG) and the iBoxx USD high yield ETF (HY), normalized by the first observation in each
series in (a). Scatter plots of monthly returns of stock index and bond ETFs whenever
they are jointly observed in (b).

5.2 Model Calibration

The time horizon for simulation of sample paths from the model is set to equal that of the
stock index, being the longest time series of those observed. We apply daily discretization,
such that ∆t = 1/252. For a discussion on this time step and on possible discretization
errors resulting from this, we refer to Appendix B. An equal number of days is assigned
to each month for migration simulation and portfolio rebalancing. This leads to a dif-
ference compared to the observed data sets, where the number of business days differs
from one month to another by a non-negligible margin. Using observed monthly returns
as the benchmark for calibration, said difference presents itself by causing an offset when
comparing statistics of daily returns between observed and simulated paths.

500 paths of the same length as the observed stock index are simulated for the stochastic
processes. Another 300 paths are simulated for the purpose of increasing accuracy in the
conversion from monthly stock index returns to uniforms, used for the migration mapping1.
Accumulating all simulated paths, this leads to a total sample of 241, 600 monthly stock
index returns mapped to uniforms.

IG and HY portfolios are constructed and rebalanced monthly in accordance with the
description in Section 4.5, applying a maturity of 5 years and a recovery rate of 0.4 for
all bonds. Reducing the lengths of paths of portfolio values to match observed data, we
conduct statistical analysis of monthly returns for each scenario generated.

A set of parameters providing a reasonable fit is listed in Table 5.3. Applying these,
the results of the statistical analysis are presented in Table 5.4. Quantities based on
simulated series are presented as average values across all scenarios, with the attachment
of estimated 95% confidence intervals made up by 2.5% and 97.5% quantiles of the 500
estimates for each statistic. Due to significant differences between paths belonging to
different samples, in addition to limited length of each sample path, a high variation in
many of the estimated quantities is observed. Higher moments display large variations
and so do dependence measures.

1The additional 300 stock index paths are used solely to assist in the conversion to uniforms via Equation
(4.19), and are thereby not used for simulation of portfolio scenarios. The total number of monthly stock
index returns utilized for uniform conversion is then close to that used for the risk analysis in Section 5.3.
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Discretization parameters

sample size N 500
time step ∆t 1/252
simulation horizon T 25.17
migration window ∆tj 1/12

Initial values

volatility v0 0.02
IG excess hazard rate z1

0 0.01
HY excess hazard rate z2

0 0.01

Process parameters

volatility process κv 1.4
θv 0.021
σv 0.18
γv −2.22

stock index/volatility correlation ρ −0.8
stock index excess return µe 0.06

variance-gamma process ν 0.2
σ 0.04
γ −0.14

IG stock volatility dependence factor β1 0.12
IG excess hazard rate κ1 1.3

θ1 0.0062
σ1 0.22
γ1 −5.55

HY stock volatility dependence factor β2 2
HY excess hazard rate κ2 1.2

θ2 0.005
σ2 0.2
γ2 −4.5

Migration parameters

real-world baseline intensity matrix Λbase

(
−0.026 0.017 0.0087
0.054 −0.11 0.054

0 0 0

)
IG copula Clayton
stock index/transitions weight w 0.3

HY copula Gaussian
stock index/transitions weight w 0.6

Table 5.3: Parameters for simulation from the model when attempting to fit to market
data. CIR process parameters stated in terms of reversion speed (κ) and long term mean
(θ) under the real-world measure, along with diffusion coefficient (σ) and market price of
risk (γ).
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S&P 500 iBoxx IG iBoxx HY
Obs. Simulated Obs. Simulated Obs. Simulated

Mean (×10−3) 7.08 4.82, [−0.78, 10.11] 5.49 1.25, [−1.20, 2.26] 5.91 3.78, [−2.66, 6.55]
Std. (×10−2) 4.20 4.71, [3.94, 5.52] 2.03 1.93, [0.97, 3.35] 3.45 3.18, [1.94, 5.49]
Vol. (×10−1) 1.46 1.63, [1.37, 1.91] 0.70 0.67, [0.34, 1.16] 1.20 1.10, [0.67, 1.90]
Skewness −0.63 −0.34, [−0.85, 0.10] 0.04 −0.54, [−5.56, 1.20] −1.30 −0.43, [−2.83, 1.03]
Kurtosis 1.29 1.13, [0.11, 3.14] 6.74 9.49, [1.70, 51.82] 7.55 3.70, [0.12, 16.37]

0.02 quantile 0.91 0.90, [0.87, 0.92] 0.95 0.95, [0.92, 0.98] 0.93 0.93, [0.84, 0.96]
0.10 quantile 0.95 0.94, [0.93, 0.96] 0.99 0.98, [0.97, 0.99] 0.97 0.97, [0.95, 0.98]
0.90 quantile 1.06 1.06, [1.05, 1.07] 1.03 1.02, [1.01, 1.04] 1.04 1.04, [1.03, 1.06]
0.98 quantile 1.09 1.10, [1.08, 1.12] 1.04 1.05, [1.02, 1.08] 1.08 1.07, [1.04, 1.12]

Correlation 0.21 0.14, [−0.07, 0.43] 0.72 0.58, [0.27, 0.81]
Kendall’s tau 0.08 0.08, [−0.04, 0.19] 0.50 0.37, [0.16, 0.59]

0.02 tail 1 0.59, [0, 2] 1 0.80, [0, 2]
0.10 tail 3 2.81, [0, 7] 8 4.24, [1, 8]
0.90 tail 1 1.73, [0, 4] 4 3.55, [1, 7]
0.98 tail 0 0.08, [0, 1] 1 0.60, [0, 2]

Table 5.4: Estimates of statistics from observed and simulated data. Estimates from
the latter constructed by taking the average and calculating approximate 95% confidence
intervals based on 500 scenarios. The mean values are subtracted by one. Volatility (vol)
given as standard deviation rescaled to yearly basis. Dependence measures concern the
relationship between stock index and bond portfolios.

The span of admissible values which the parameters can take in order to yield results
which do not provide sufficient evidence that we can reject the hypothesis that the ob-
served data comes from the model with 95% confidence appears fairly large, by trial and
error (ignoring mean values of returns). Without going into depth on all such combina-
tions, being peripheral to the point of interest of this thesis, we note that the dependence
specification can be modified. The analysis of Table 5.4 is based on a Clayton copula
with weight w = 0.3 connecting stock index and migrations dynamics for IG portfolio
bonds, while the corresponding dependence structure for stock index and HY portfolio is
a Gaussian copula with weight w = 0.6. For an example of an alternative structure, we
replace these by a t7 copula with weight w = 0.2, and a Clayton copula with weight 0.3
respectively, obtaining results as in Table 5.5. It appears an acceptable fit is obtained
with this specification as well.

5.3 Portfolio Risk Simulation

Instead of performing the analysis along observed and simulated paths, we here shift the
perspective to focus on the distribution of stock index and bond portfolio returns at the
end of a risk horizon. A one-year horizon is used throughout.

5.3.1 Risk Perspective

We run the simulation framework for a sample of size N = 20, 000. Aside from that and
the simulation horizon T being reduced to one year, parameters are held the same as
those listed in Table 5.3. Like before, we simulate IG and HY portfolios with monthly
rebalancing with respect both to the credit rating distribution of the constituent bonds
and to their maturities. We also perform the simulations for equally constructed portfolios
that are not rebalanced or adjusted during the course of the simulated time period.

Proceeding as above, we arrive at results presented in Table 5.6. For the portfolios
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S&P 500 iBoxx IG iBoxx HY
Obs. Simulated Obs. Simulated Obs. Simulated

Mean (×10−3) 7.08 4.82, [−0.78, 10.11] 5.49 1.37, [−0.08, 2.06] 5.91 3.61, [−5.25, 6.87]
Std. (×10−2) 4.20 4.71, [3.94, 5.52] 2.03 1.81, [0.97, 3.16] 3.45 3.21, [1.86, 6.23]
Skewness −0.63 −0.34, [−0.85, 0.10] 0.04 0.01, [−1.69, 1.24] −1.30 −1.02, [−5.14, 0.67]
Kurtosis 1.29 1.13, [0.11, 3.14] 6.74 5.54, [1.72, 15.66] 7.55 6.46, [−0.03, 38.96]

0.02 quantile 0.91 0.90, [0.87, 0.92] 0.95 0.96, [0.92, 0.98] 0.93 0.92, [0.79, 0.97]
0.10 quantile 0.95 0.94, [0.93, 0.96] 0.99 0.98, [0.97, 0.99] 0.97 0.97, [0.94, 0.99]
0.90 quantile 1.06 1.06, [1.05, 1.07] 1.03 1.02, [1.01, 1.04] 1.04 1.04, [1.03, 1.05]
0.98 quantile 1.09 1.10, [1.08, 1.12] 1.04 1.05, [1.02, 1.08] 1.08 1.07, [1.04, 1.11]

Correlation 0.21 0.08, [−0.09, 0.31] 0.72 0.53, [0.20, 0.74]
Kendall’s tau 0.08 0.06, [−0.05, 0.17] 0.50 0.34, [0.14, 0.53]

0.02 tail 1 0.28, [0, 2] 1 0.89, [0, 2]
0.10 tail 3 2.24, [0, 6] 8 4.02, [1, 8]
0.90 tail 1 1.65, [0, 4] 4 2.82, [0, 6]
0.98 tail 0 0.06, [0, 1] 1 0.29, [0, 2]

Table 5.5: Estimates of statistics from observed and simulated data, with modified depen-
dence structure between stock index and migration dynamics.

which are not rebalanced, rating distributions illustrated in Figure 5.3 are observed at the
end of the horizon. The estimated statistics only show slight variations between portfolios
that are rebalanced compared to those that are not. Slightly higher average returns and
standard deviations (which may here also be interpreted as yearly volatilities) are however
observed for continuously rebalanced portfolios.

Without rebalancing With rebalancing
Stock index IG portfolio HY portfolio IG portfolio HY portfolio

Mean (×10−2) 6.04 2.25 5.56 2.32 6.14
Std. (×10−2) 16.55 5.26 8.77 5.58 9.20
Skewness −0.24 −3.24 −1.57 −3.17 −1.64
Kurtosis 0.02 16.70 3.88 15.90 4.67

0.005 quantile 0.60 0.76 0.70 0.74 0.69
0.05 quantile 0.78 0.92 0.89 0.91 0.89
0.10 quantile 0.84 0.96 0.94 0.96 0.94
0.90 quantile 1.27 1.06 1.14 1.06 1.15
0.95 quantile 1.32 1.06 1.16 1.06 1.16
0.995 quantile 1.45 1.06 1.17 1.07 1.19

Correlation 0.26 0.64 0.25 0.64
Kendall’s tau 0.19 0.44 0.18 0.44

0.005 tail index 0.29 0.50 0.23 0.55
0.05 tail index 0.23 0.52 0.22 0.52
0.95 tail index 0.15 0.23 0.12 0.23
0.995 tail index 0.02 0.09 0.02 0.09

Table 5.6: Results from analysis of N = 20, 000 simulated returns for stock index, IG and
HY portfolios, with as well as without monthly portfolio rebalancing, over a 1-year risk
horizon. Dependence measures are computed with respect to stock index returns. Means
are subtracted by one.

Regarding the IG portfolio, with or without rebalancing, we see that the absolute
values of skewness and kurtosis are considerably higher than for HY portfolios. This is
explained by the absence of upward transition possibilities, also explaining why higher
quantiles only exhibit minor differences, barely visible at two decimal places as in Table
5.6. The returns are capped at the case where no transitions occur for any of the bonds
within the simulated time horizon, while IG hazard rates at the end of the horizon attain
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zero.
Looking at simulated 1-year distributions of hazard rates, depicted in Figure 5.2 (sub-

plot 5.2a) along with the distribution of returns of a bond belonging to one of the two
classes throughout the horizon (subplot 5.2b), the heavily skewed and sharply capped IG
return under the model is highlighted, explaining the upper quantile behaviour for the
corresponding bond portfolio. Meanwhile, a wider distribution is noted for the HY hazard
rate, being a higher factor CIR process. This is reflected for the HY bond. With the added
possibility of both downward and upward transitions, the HY bond portfolio distribution
displays a fairly high degree of variation, moreso than the IG portfolio. Histograms of the
two, without and with rebalancing, are available in Figure 5.2 (subplots 5.2c and 5.2d).

The figure, along with the results in Table 5.6, indicates that the difference in risk
between IG and HY portfolios is not great looking at the left tails of the two, although
the left tail of the HY portfolio is heavier. When looking at the respective volatilities, the
difference in risk shows clearly, with the HY portfolio displaying larger variance. Compar-
ing to statistics of observed monthly returns in Table 5.1, quantiles as well as volatilities
exhibit similar tendencies on a yearly risk horizon across the two credit qualities as those
present in monthly market data. Since interest rates are left out and means are therefore
not calibrated to observed data, a slight shift in levels of returns would likely be required
in order to give a full account of the distributional properties. The neglect of migration
risk when pricing bonds also contributes to an offset, affecting IG bonds more than HY
bonds, further discussed in Section 6.2.1.

Another noteworthy observation is that upper tail dependence appears significantly
weaker than its lower tail counterpart, for either portfolio. While the majority of the
present chapter is devoted to analysis of overall dependence and lower tail dependence,
being of higher relevance from a risk management point of view, in the concluding section
we return to this observation and briefly look into the upper tail in order to further probe
the full extent of model dependence properties.
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Figure 5.2: Upper two subplots show histograms of hazard rates and single bond returns
belonging to either rating class throughout the one-year risk horizon based on simulation of
sample size N = 20, 000, with parameters as in Table 5.3. Lower subplots show histograms
of bond portfolio returns, with as well as without monthly rebalancing. The asterisks at
the tails indicate histograms are truncated.

5.3.2 Dependence Structure Adjustments: Migration Copulas

We now turn to analysis of changes to the dependence structure. There are three primary
tools with which we can control this: the parameter β affecting the relationship between
stock index volatility and hazard rate processes; the weight w of stock index outcomes on
migration dynamics as in Section 4.3.3; and the pairwise copula type describing the latter
mechanism. Among these three, we investigate changes to the last two in this section
and apply a means for systematically adjusting β in the next section. The analysis casts
light on the sensitivity of the model to varying conditions, being interesting on its own,
but further incentives for investigating the effects of such modifications are given by the
analysis in Section 5.2, suggesting that model parameters and dependence specification
can be determined quite widely while giving a reasonable account of reality.

There are also secondary parameters affecting dependence between equity and credit
risk: the correlation parameter ρ between stock index and stock volatility Brownian mo-
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Figure 5.3: Credit rating distributions for simulated samples of size N = 20, 000 for IG
and HY portfolios at the end of the one-year risk horizon.

tions; the amount of variance in stock index movements coming from stochastic volatility
compared to the independent variance-gamma process; the time windows applied for sim-
ulating discrete-time migrations; the quantity pertaining to stock index movements upon
which migration dynamics are conditioned. Of these, the first two are not adjusted since
they fundamentally describe already matched stock index dynamics. We will briefly touch
upon the last two in Appendix C.2 and Appendix C.3 respectively.

In the analysis, economic scenarios are simulated once with a sample size of N =
20, 000. Looping through four different copula types, Gaussian, t3, t10 and Clayton, as
well as stock index migration weights in the range 0, 0.1, 0.2, . . . , 1, we simulate sets of
independent portfolio evolution scenarios conditional on the set of economic scenarios.
For the Clayton copula, weights w are transformed to a comparable Clayton parameter
α as previously described. This is done for the rebalanced HY and IG portfolios, holding
higher interest due to the index interpretation. Other parameters are held the same as
previously.

Quantiles for the bond portfolios are calculated for each dependence specification at
the 0.005 and 0.05 levels. These illustrate how the dependence in migration dynamics
affects the riskiness of diversified bond portfolios. Furthermore, correlation and Kendall’s
tau are computed between stock index and bond portfolio returns, as well as tail index
estimates at the 0.005 and 0.05 levels. Figures 5.4 and 5.5 depict how these measures
vary as functions of copula and stock index transition weight for the IG and HY portfolios
respectively.

Since all of the tested copulas coincide with the maximum copula for w = 1, where
stock index returns perfectly predict the migration behaviour, diversification effects within
bond portfolios are nullified at this extreme with all bonds within a rating class migrating
simultaneously. This particularly affects the portfolio quantiles. At the other end of the
spectrum where w = 0, Gaussian and Clayton copulas translate to independent migra-
tions, whereas this is not the case for t copulas. This shines through in all of the plots,
particularly for the heavier-tailed t3 copula producing results deviating from those of other
copulas at low stock index transition weights.

The significant lower tail dependence associated with a Clayton copula with parameter
α > 0 (equivalent to w > 0) also clearly emerges in the lower quantile plots, surpassing
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Figure 5.4: Quantiles and dependence measures for the IG bond portfolio with monthly
rebalancing, based on simulation of N = 20, 000 economic scenarios with independent
portfolio scenarios generated for each copula and stock index transition weight varying
between 0 and 1 in steps of 0.1.

the t3 copula in risk as w grows. Conversely, a Gaussian copula means a weak dependence
between bonds for fixed w < 1 compared to other copulas, resulting in higher portfolio
quantile values at the low percentages.

Turning to plots of empirical dependence measures between stock index and bond
portfolios, the effect of the choice of copula family and parameter is both less obvious and
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Figure 5.5: Quantiles and dependence measures for the HY bond portfolio with monthly
rebalancing, based on simulation of N = 20, 000 economic scenarios with independent
portfolio scenarios generated for each copula and stock index transition weight varying
between 0 and 1 in steps of 0.1.

less decisive. The figures suggest an increase in the weight is not promptly followed by
amplified dependence in future distributions, at least as indicated by the applied measures.
If anything, the extent of dependence seems to peak midway through as w increases, where
a flattening out or even slight diminution results as migration dependence approaches its
maximum. For low values of w, t copulas induce the strongest dependence. In this regime,
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the dependence induced by a Clayton copula rises sharply with w to overtake that of a t3
copula, attaining its peak at an early stage. Correlation and Kendall’s tau then appear to
decrease, whereas tail index estimates at the investigated levels stabilize.

Applying a Gaussian copula for migrations, the increase in dependence between stock
index and bond portfolios develops more slowly with w than what is the case for the
Clayton copula. At high w, correlation, Kendall’s tau and tail index estimate become on
par with or exceed values observed for the other copula families.

For a more informative illustration of the shape of the dependence between stock
index and bond portfolio distributions resulting from different copula specifications for
the simulation of migrations, scatter plots of stock index/rebalanced HY portfolio return
pairs are shown in Figure 5.6. For brevity, the first 2000 simulated pairs are used for
each copula specification, and t10 values are omitted. The figure sheds light on why an
increase in w is not necessarily equivalent to an increase of one-dimensional correlation or
concordance measures. The strength of dependence that can be produced by application
of migration dynamics alone is capped by the specification for the stochastic processes,
and what happens as copulas for credit migrations approach the maximum copula is that
more bonds in the portfolio share credit migration histories along sample paths. There are
factors fundamentally limiting the dependence across equity and debt markets over the risk
horizon; monthly credit migrations matrices being tuned after movements of hazard rates,
imperfectly related to stock index movements; and stock index returns being sampled on
a monthly basis for the mapping of migrations, whereby movements spanning the full
risk horizon might not be fully reflected in the migration behaviour. Further clarification
on the latter is given in Appendix C.2, where we analyse the behaviour of returns when
migration time windows are set to span the full risk horizon.

For another look at the behaviour in the tails, histograms of HY bond portfolio returns
conditional on stock index returns belonging to the same risk scenario falling below the
estimated 0.05 quantile are found in Figure 5.7, with the same model dependence speci-
fications illustrated as in the aforementioned scatter plots. Although empirical tail index
estimates between stock index returns and bond portfolio returns may only differ slightly
and in ways that are difficult to forecast between different copula choices, the shape of the
conditional marginal bond portfolio distribution when the stock index fares poorly devel-
ops more predictably with the chosen dependence structure, just like the bond portfolio
quantiles. As indicated in both scatter plots and histograms, clustering of defaults occurs
more frequently when a Clayton copula is used compared to other types at matching val-
ues of w, explained, for example, by the higher observed frequencies around the fractional
recovery payment of 0.4 in subfigures 5.7d and 5.7e.

Similar scatter plots and histograms focusing on the IG portfolio do not provide much
additional insight, but are presented in Appendix C.1 for completeness.

Returning to Figures 5.4 and 5.5 for a comparison of IG and HY portfolio plots, the
influence of βm on dependence between stock index returns and bond portfolio returns
becomes evident. Recalling Table 5.3, this parameter is set such that the stock index
volatility process strongly contributes to the HY hazard rate process while its impact is
weaker on the IG default intensity. High values of βm seem to strongly affect the measured
dependence across all investigated copulas, yielding elevated values of estimators. We
elaborate on this in the subsequent section.
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Figure 5.6: Scatter plots for one-year stock index returns and rebalanced HY portfolio
returns, applying different copulas and weights w for the migration simulation. The first
2000 simulated observations of each pair of stock index returns/bond portfolio returns
from the total sample of N = 20, 000 bivariate returns per copula are depicted.
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Figure 5.7: Histograms of simulated rebalanced HY portfolio returns conditional on stock
index returns falling below its estimated 0.05 quantile value, where bond credit migration
dynamics are connected to stock index returns through different copulas with weight w.
For w = 1, the maximum copula is used.
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5.3.3 Dependence Structure Adjustments: Variation of β

In addition to dependence modelled through the weight w of the stock index on transition
dynamics and the choice of copula, we also investigate how variations to the parameter
β = (β1, β2) affect portfolio risk and dependence measures between stock index and bond
portfolio. We here restrict attention to the high yield index, whose return dynamics are
richer and where the pricing error appears smaller than for its investment grade counter-
part.

In order to vary β while retaining both initial values and long term expectations of
hazard rates, we scale the parameters of the excess default intensity processes zit accord-
ingly. We further reduce the degrees of freedom of the system by putting restrictions on
the parameters. The expected bond portfolio returns are governed by market price of risk
of the stock volatility process, so that levels and higher moments of returns are sidelined
in favour of a focused review of the dependence structure. A description of the details of
the method applied for the parameter adjustments is available in Appendix A.

We cycle through n sets of values of β, such that

β(i) = hiβ
max, hi = i− 1

n− 1 , i = 1, . . . , n,

where βmax corresponds to the case

λmt = βmax
m vt.

For each β, we simulate a sample of size N = 20, 000 of economic scenarios. Like previ-
ously, portfolio scenarios are appended to each economic scenario, where we let transition
dynamics be related to monthly stock index returns through the use of different bivariate
copulas with weights varying from 0 to 1 in steps of 0.1. We focus on the bond index
representation of the portfolio, i.e. with rebalancing to the original composition at the
start of each new month.

For the simulation, we use n = 5 different sets of values for β. We further try out three
different copulas, Gaussian, t3 and Clayton for mapping of migrations following Sections
4.3.3 and 4.3.4. Stock and volatility parameters are held the same as previously, along with
discretization parameters and the real-world baseline intensity matrix. Regarding excess
hazard rate parameters, we replace κ1, θ1, κ2 and θ2 in Table 5.3 by κ̄1, θ̄1, κ̄2 and θ̄2
serving as baseline parameters which are rescaled in each β case. Other CIR parameters,
as well as initial values for the excess hazard rate processes, are derived for each case
following Appendix A.

In Figure 5.8, we plot correlation, Kendall’s tau, and tail index estimates at the 0.005
and 0.05 levels between stock index returns and HY portfolio returns as functions of copula
and β setting. As was noted in the previous section, most of the dependence measures
experience a significant upward shift with increased influence of the stock volatility process
on hazard rates, and this effect permeates all copula specifications. The only exception,
providing less conclusive evidence, is the 0.005 tail index. Here, uncertainties arising
from small effective sample size (100 per dependence specification) give rise to somewhat
distorted results. As for the variation of dependence measures with migration weights, we
observe similar effects as in the previous section with a peak occurring somewhere midway
through the spectrum for every copula type, β case and estimated measure, followed by
constancy to a mild decline as migration copula dependence approaches its maximum.

Figure 5.9 shows how bond portfolio quantiles at the 0.005 and 0.05 levels vary with the
choice of β and with the copula. Differences in β result in a spread of quantile estimates,
where higher dependence through β implies lower values. While this spread is tangible,
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Figure 5.8: Empirical estimates of dependence measures between one-year stock index
returns and HY rebalanced bond portfolio returns, against different values of the weight
w of monthly stock index returns on bond rating migrations on horizontal axes, linked
with different copula types. In each subplot, the uppermost, solid lines correspond to the
case β = βmax, whereas the lowermost, solid lines correspond to β = βmin. Dashed lines
represent results from intermediate cases.

reflecting differences in the lower tail behaviour of bond portfolios, the gist of the effect is
still controlled by the choice of copula.

The 0.05 quantile displays a large gap depending on how β is set when the maximum
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copula is applied for migrations. For the minimum β case, the quantile value is not only
significantly larger than for the other cases investigated, but also exceeds estimated values
at the same level of β when weaker copulas are applied. A model peculiarity when the
maximum copula is used is highlighted. The low quantile values observed result from a
simultaneous default of all firms involved in the portfolio in at least one of the migration
time windows, occurring in at least 5% of the simulated scenarios. For the minimum
β case, this happens less than 5% of the time, such that the 0.05 quantile reflects a
scenario where there is not a single default during the risk horizon. An illustration is
given in Figure 5.10, showing the percentage of cases where all bonds in the portfolio
experience simultaneous default during the risk horizon as a function of β case. This is
an increasing function, reflecting how higher β values entail hazard rates and stock index
move in opposite directions more frequently (due to the negative correlation between stock
index and volatility Brownian motions), resulting in transition matrices being more likely
to have large migration probabilities when there are negative stock index movements.

Gaussian t3 Clayton
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Figure 5.9: Estimated quantiles for one-year rebalanced HY portfolio returns against
different values of the weight w of monthly stock index returns on bond rating migrations
on horizontal axes, linked with different copulas. In each subplot, the uppermost, solid
lines correspond to the case β = βmin, whereas the lowermost, solid lines correspond to
β = βmax. Dashed lines represent results from intermediate cases.

It is worth noting that the model, with fixed secondary parameters as mentioned
in the introductory paragraph of Section 5.3.2, can only produce so much dependence
between stock index and bond portfolio returns. Even the maximum β case, where hazard
rate movements are perfectly correlated with the stock volatility process, is incapable of
producing dependence above a certain threshold lying well below the maximum in spite
of the imposition of dependent credit rating migrations.

For another visualization of how different values of β and the copula specification
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Figure 5.10: Fractions of simulated scenarios where all bonds in the rebalanced HY portfo-
lio with migrations related to monthly stock index returns via the maximum copula default
simultaneously at least once during the risk horizon, as a function of h where β = hβmax.
The dashed red line corresponds to a level of 5%.

affect the bivariate distribution of stock index/bond portfolio returns, we develop scatter
plots of the first 2, 000 return pairs in each sample and display the cases of minimum β,
intermediate β and maximum β and similarly for copula weights, displayed in Figure 5.11.
The higher overall dependence with higher β is particularly well captured by the plots,
while the impact of the copula choice for migrations on the shape of the distribution shines
through in similar fashion as discussed in Section 5.3.2.

In Table 5.7, we present empirical correlation and Kendall’s tau estimates between
stock index returns and bond portfolio returns for a few different choices of β and copula.
Table 5.8 further shows tail index estimates at levels 0.005 and 0.05 for the corresponding
dependence specifications. The latter table also makes use of the estimates in the first
one and constructs 95% confidence intervals for tail index estimates under the hypothesis
that the return pairs have tails on par with a bivariate random variable with a Gaussian
copula. That is, for given parameter specification and simulated sample of size N of
stock index/bond portfolio return pairs, the correlation estimate ρ̂ is used to construct
confidence intervals for tail index estimators based on N draws from a bivariate standard
normal random variable with correlation ρ̂, proceeding as in Section 4.1.4. Also, using
the Kendall’s tau estimate τ̂ , similar confidence intervals are constructed replacing ρ̂ by
sin(τ̂ /2), being a valid and preferred approach when bivariate data represents independent
outcomes of a bivariate random variable with elliptical distribution as mentioned in Section
2.3.1.

The purpose of Table 5.8 is to get an idea of how strong the model implied lower tail
dependence is, given model implied correlation or Kendall’s tau, for different parameter
specifications. A comparison to standard normal tail dependence can provide clues as
to whether return pairs have lower tail dependence or not, and also give an idea of the
strength of lower tail dependence in case it exists. The table indicates the model tends to
produce return pairs having lower tail dependence for a wide variety of different dependence
specifications. A number of observations:

• Applying the independence copula (Gaussian or Clayton at w = 0) for migrations,
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Figure 5.11: Scatter plots of 2000 simulated stock returns and corresponding simulated
rebalanced HY portfolio returns where transition dynamics are given by different copulas.
Different sets of values of β are used, where βmid = βmax/2.

there is possible lower tail dependence produced as β increases. The tendency is
weak, though, and in particular for the case β = βmax we see that tail index estimates
at the 0.005 level are not significantly different from bivariate normal. However, since
they are at the 0.05 level, a likely reason for this is that sample sizes are simply too
small, resulting in wide confidence intervals at low percentiles. When β = βmin and
the independence copula is applied, stock index returns and bond portfolio returns
appear independent, which is reasonable given the construction of the model.

• Applying a Gaussian copula for the simulation of migrations, the increase in correla-
tion parameter w results in overall stronger dependence in return pairs for the cases
listed in the table. Tail index estimates also increase at a similar rate as correlation
and Kendall’s tau do. For w = 0.3 and w = 0.6 lower tail dependence seems to
prevail for all β cases, with the possible exception of β = βmin and w = 0.3.

• For the t3 copula, with w = 0 dependence is present across all β specifications.
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This also includes lower tail dependence, with the only question mark appearing at
β = βmax as indicated in the 0.005 level entry, brushing the upper confidence bound
for what the tail index estimator on matching bivariate normal data would yield.
Again, since the 0.05 value is placed significantly outside the confidence interval, this
is likely an effect of the sample size.

• When a t3 copula with correlation parameter w = 0.3 is used, the overall tendency
is that tail index estimates of return pairs are far stronger than for the Gaussian
copula at β = βmin, and roughly equal for the other β cases. The latter cases also
display weaker correlation and Kendall’s tau estimates, such that the strength of tail
dependence is arguably higher. Applying w = 0.6 instead of 0.3 for the simulation
of migrations seems to have a minor effect on dependence in return pairs as given
by these measures.

• The dependence exhibited in return pairs, as conveyed by the listed measures, is
stronger at w = 0.3 compared to at w = 0.6 with the use of a Clayton copula; a
finding that holds in all β cases investigated. A disparity between ρ̂ and linear corre-
lation estimation through transformation of τ̂ arises with increasing β and w, where
the latter technique gives higher values, as is seen by comparing levels of confidence
intervals for the two methods. Using the latter becomes increasingly questionable
due to the shape of the distribution of bivariate returns. Looking only at confidence
intervals associated with tail index estimation for bivariate normals of correlation
ρ̂, lower tail dependence in return pairs resulting from migration modelling via a
Clayton copula (assuming w > 0) does not differ greatly from that observed when a
t3 copula is applied.

• The effect of an increase of β from βmid to βmax on tail indices is small for all copulas
except those having w = 0 (looking at the 0.05 level). Meanwhile, this change in
β leads to higher correlation and concordance across all copula specifications. It
appears stronger tail dependence is therefore attained when β is not at its maximum.

Gaussian t3 Clayton
ρ̂ τ̂ ρ̂ τ̂ ρ̂ τ̂

β = βmin w = 0 0.00 0.00 0.15 0.07 −0.00 −0.00
w = 0.3 0.25 0.16 0.33 0.16 0.42 0.23
w = 0.6 0.45 0.27 0.39 0.19 0.40 0.20

β = βmid w = 0 0.41 0.26 0.48 0.31 0.40 0.26
w = 0.3 0.64 0.42 0.60 0.40 0.63 0.45
w = 0.6 0.71 0.51 0.58 0.41 0.54 0.42

β = βmax w = 0 0.61 0.41 0.61 0.42 0.62 0.41
w = 0.3 0.73 0.52 0.69 0.50 0.70 0.53
w = 0.6 0.76 0.58 0.66 0.51 0.60 0.51

Table 5.7: Empirically estimated linear correlations ρ̂ and Kendall’s tau τ̂ between simu-
lated stock index and rebalanced HY bond portfolio one-year returns. Three different sets
of values for β used, where βmin = 0 and βmid = βmax/2, as well as three different copulas
with weight w between stock index outcomes and rating migration dynamics.
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Tail index estimates at p = 0.005

Gaussian t3 Clayton
λ̂L,p Normal λ̂L,p Normal λ̂L,p Normal

β = βmin w = 0 0.01 [0.00, 0.02] 0.14 [0.00, 0.04] 0.01 [0.00, 0.02]
[0.00, 0.02] [0.00, 0.04] [0.00, 0.02]

w = 0.3 0.06 [0.00, 0.06] 0.27 [0.01, 0.09] 0.28 [0.02, 0.12]
[0.00, 0.06] [0.00, 0.06] [0.01, 0.10]

w = 0.6 0.25 [0.03, 0.13] 0.27 [0.02, 0.11] 0.28 [0.02, 0.11]
[0.02, 0.12] [0.01, 0.08] [0.01, 0.08]

β = βmid w = 0 0.14 [0.02, 0.12] 0.26 [0.04, 0.15] 0.19 [0.02, 0.12]
[0.02, 0.11] [0.03, 0.14] [0.02, 0.11]

w = 0.3 0.44 [0.10, 0.25] 0.50 [0.09, 0.23] 0.45 [0.10, 0.25]
[0.09, 0.24] [0.08, 0.21] [0.12, 0.27]

w = 0.6 0.55 [0.16, 0.33] 0.48 [0.08, 0.21] 0.49 [0.06, 0.18]
[0.16, 0.33] [0.09, 0.23] [0.10, 0.24]

β = βmax w = 0 0.20 [0.09, 0.24] 0.23 [0.09, 0.23] 0.22 [0.09, 0.24]
[0.09, 0.23] [0.09, 0.24] [0.09, 0.23]

w = 0.3 0.43 [0.18, 0.35] 0.43 [0.14, 0.30] 0.44 [0.15, 0.31]
[0.17, 0.34] [0.15, 0.32] [0.19, 0.36]

w = 0.6 0.54 [0.20, 0.38] 0.50 [0.12, 0.27] 0.43 [0.09, 0.23]
[0.23, 0.42] [0.16, 0.33] [0.16, 0.33]

Tail index estimates at p = 0.05

Gaussian t3 Clayton
λ̂L,p Normal λ̂L,p Normal λ̂L,p Normal

β = βmin w = 0 0.06 [0.04, 0.07] 0.16 [0.07, 0.11] 0.05 [0.04, 0.06]
[0.04, 0.07] [0.06, 0.10] [0.04, 0.06]

w = 0.3 0.15 [0.10, 0.14] 0.29 [0.13, 0.18] 0.35 [0.17, 0.22]
[0.10, 0.14] [0.10, 0.14] [0.14, 0.19]

w = 0.6 0.32 [0.19, 0.24] 0.34 [0.16, 0.21] 0.34 [0.16, 0.21]
[0.17, 0.22] [0.12, 0.16] [0.13, 0.17]

β = βmid w = 0 0.27 [0.17, 0.22] 0.36 [0.21, 0.26] 0.27 [0.17, 0.22]
[0.16, 0.21] [0.20, 0.25] [0.16, 0.21]

w = 0.3 0.49 [0.31, 0.37] 0.50 [0.28, 0.34] 0.53 [0.30, 0.36]
[0.29, 0.35] [0.27, 0.33] [0.32, 0.38]

w = 0.6 0.57 [0.37, 0.44] 0.49 [0.27, 0.33] 0.46 [0.24, 0.30]
[0.37, 0.44] [0.28, 0.34] [0.30, 0.35]

β = βmax w = 0 0.44 [0.29, 0.35] 0.46 [0.29, 0.35] 0.41 [0.29, 0.35]
[0.28, 0.34] [0.29, 0.35] [0.28, 0.34]

w = 0.3 0.56 [0.39, 0.45] 0.55 [0.35, 0.41] 0.56 [0.36, 0.42]
[0.38, 0.45] [0.37, 0.43] [0.40, 0.47]

w = 0.6 0.63 [0.42, 0.48] 0.52 [0.32, 0.38] 0.49 [0.28, 0.34]
[0.45, 0.51] [0.38, 0.44] [0.37, 0.44]

Table 5.8: Tail index estimates between stock index returns and high yield bond index
returns at p = 0.005 and p = 0.05 for simulated samples of size N = 20, 000. Three
different sets of values for β used as well as three different copulas with weight w between
stock index outcomes and monthly rating migration dynamics. 95% confidence intervals
for tail index estimators based on N independent outcomes a standard normal bivariate
random variable, with correlation given by ρ̂ (upper) and by sin((π/2)τ̂) (lower), are
calculated and presented alongside the tail index estimates.
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5.3.4 Upper Tail Properties

As was noted in the final paragraph of Section 5.3.1, upper tail dependence in stock in-
dex/bond portfolio return pairs when simulation is carried out over a risk horizon with
parameters as in Table 5.3 appears far weaker than the corresponding lower tail depen-
dence. In this section, we investigate whether this observation remains under modifications
to the dependence structure. We use the previously generated samples for different mi-
gration copulas and values of β, and focus on tail index estimates at the 0.95 and 0.995
levels, where effective sample sizes are 1000 and 100 respectively.

In Figure 5.12, upper tail index estimates are plotted as functions of dependence set-
ting. Clearly, the previous observation is reinforced, with upper tail indices being re-
markably low across all dependence settings, especially at the 0.995 level, which suggests
absence of tail dependence in the theoretical sense of Section 2.3.3. At the 0.95 level, the
choice of β in particular affects index estimates with values increasing with β. However,
as correlation and concordance in return pairs also appears to grow monotonously with β,
it is not fully clear how β affects the tail dependence when seen in conjunction with the
return correlation.

Another clue to the tendency of weak upper tail dependence is provided from a glance
back at Figure 5.11, in particular looking at the maximum copula scatter plots. The most
extreme yearly positive stock index outcomes, more often than not, are accompanied with
HY bond portfolio returns that do not stand out in any noticeable way.

Further establishing the above, Table 5.9 presents upper tail index estimates for var-
ious cases and compares to the values a bivariate normal variable with matching correla-
tion/Kendall’s tau would be expected to give. Here, the absence of upper tail dependence
is indisputable, where the convergence of the tail index λU,p to zero as p ↑ 1 appears to
occur significantly faster than that which is the case for the bivariate normal variable. We
also note that, if anything, the gap between upper tail index estimates and corresponding
bivariate normal confidence intervals at matching correlation/concordance seems to widen
slightly with increasing β.

Part of the explanation for this consistently recurring asymmetry between lower and
upper bivariate tails, as it seems regardless of choice of copula for mapping of migrations,
lies in the numerical adjustment method used for constructing path-dependent migration
matrices. In times of low hazard rates, all transition intensities are scaled down, tun-
ing down the probability of positive credit rating change. Unless β is at its minimum
case, positive stock movements are more likely to accompany low hazard rates, leading
to overall lower rating migration probabilities and vice versa. However, since upper tail
dependence is consistently low even for β = βmin, often falling short of what is expected
from a bivariate normal random variable, the adjustment method alone can not explain
the tendency. Another reason likely originates in how tail index estimates are calculated
and how migrations affect the return distribution. For a HY bond, an upward migration
has a much smaller effect on the portfolio value than what does a default event. When
extreme stock index returns spread to the bond portfolio in the form of multiple migra-
tions, a much stronger impact is exerted on empirical dependence measures when defaults
occur than when rating upgrades do.

The question is then whether the effect persists as strongly for the IG portfolio. For
an IG bond, a simultaneous downscale of all migration probabilities means that the bond
is more likely to preserve its high credit quality. The results of this analysis are left out
of this section and instead presented in Appendix C.1.2, but the conclusion is that upper
tail dependence is absent across all dependence specifications here as well, also appearing
weaker than a bivariate variable with Gaussian copula, but less convincingly so than for
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the HY portfolio.
To conclude this section, we note that at the process level, dependence between hazard

rates and stock index is fundamentally limited to a Gaussian structure, the way stock
index is linked to its volatility. With the addition of jumps, the dependence is diluted,
and particularly so in the tails with large stock index movements coming from jumps
having no effect on hazard rates. When migration dynamics are imposed, the dependence
is strengthened between stock index and bond movements, but the effect mostly shows in
the lower tail since downward migrations have stronger impact on returns than upward
migrations for the HY portfolio, whereas for the IG portfolio only downward migrations
are possible. This explains why both portfolios display lack of upper tail dependence with
the stock index, converging to zero seemingly faster than a bivariate normal variable of
matching correlation.

Gaussian t3 Clayton
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Figure 5.12: Estimated upper tail indices at the 0.95 and 0.995 levels between stock index
returns and rebalanced HY bond portfolio returns over an investigated one-year horizon,
as functions of β case and copula with weight w on the horizontal axis. Different lines
correspond to different β cases, solid lines representing the minimum and maximum case
respectively, while dashed lines map to intermediate cases. At the 0.95 level, the lowermost
lines illustrate the case β = βmin, moving upward for increasing β.
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Tail index estimates at p = 0.95

Gaussian t3 Clayton
λ̂U ,p Normal λ̂U ,p Normal λ̂U ,p Normal

β = βmin w = 0 0.05 [0.04, 0.07] 0.04 [0.07, 0.11] 0.05 [0.04, 0.06]
[0.04, 0.07] [0.06, 0.10] [0.04, 0.06]

w = 0.3 0.10 [0.10, 0.14] 0.07 [0.13, 0.18] 0.10 [0.17, 0.22]
[0.10, 0.14] [0.10, 0.14] [0.14, 0.19]

w = 0.6 0.14 [0.19, 0.24] 0.10 [0.16, 0.21] 0.08 [0.16, 0.21]
[0.17, 0.22] [0.12, 0.16] [0.13, 0.17]

β = βmid w = 0 0.13 [0.17, 0.22] 0.12 [0.21, 0.26] 0.12 [0.17, 0.22]
[0.16, 0.21] [0.20, 0.25] [0.16, 0.21]

w = 0.3 0.20 [0.31, 0.37] 0.16 [0.28, 0.34] 0.17 [0.30, 0.36]
[0.29, 0.35] [0.27, 0.33] [0.32, 0.38]

w = 0.6 0.25 [0.37, 0.44] 0.15 [0.27, 0.33] 0.17 [0.24, 0.30]
[0.37, 0.44] [0.28, 0.34] [0.30, 0.35]

β = βmax w = 0 0.18 [0.29, 0.35] 0.18 [0.29, 0.35] 0.17 [0.29, 0.35]
[0.28, 0.34] [0.29, 0.35] [0.28, 0.34]

w = 0.3 0.26 [0.39, 0.45] 0.22 [0.35, 0.41] 0.23 [0.36, 0.42]
[0.38, 0.45] [0.37, 0.43] [0.40, 0.47]

w = 0.6 0.31 [0.42, 0.48] 0.20 [0.32, 0.38] 0.21 [0.28, 0.34]
[0.45, 0.51] [0.38, 0.44] [0.37, 0.44]

Tail index estimates at p = 0.995

Gaussian t3 Clayton
λ̂U ,p Normal λ̂U ,p Normal λ̂U ,p Normal

β = βmin w = 0 0.00 [0.00, 0.02] 0.01 [0.00, 0.04] 0.00 [0.00, 0.02]
[0.00, 0.02] [0.00, 0.04] [0.00, 0.02]

w = 0.3 0.01 [0.00, 0.06] 0.02 [0.01, 0.09] 0.01 [0.02, 0.12]
[0.00, 0.06] [0.00, 0.06] [0.01, 0.10]

w = 0.6 0.09 [0.03, 0.13] 0.04 [0.02, 0.11] 0.00 [0.02, 0.11]
[0.02, 0.12] [0.01, 0.08] [0.01, 0.08]

β = βmid w = 0 0.01 [0.02, 0.12] 0.00 [0.04, 0.15] 0.00 [0.02, 0.12]
[0.02, 0.11] [0.03, 0.14] [0.02, 0.11]

w = 0.3 0.03 [0.10, 0.25] 0.02 [0.09, 0.23] 0.00 [0.10, 0.25]
[0.09, 0.24] [0.08, 0.21] [0.12, 0.27]

w = 0.6 0.06 [0.16, 0.33] 0.00 [0.08, 0.21] 0.03 [0.06, 0.18]
[0.16, 0.33] [0.09, 0.23] [0.10, 0.24]

β = βmax w = 0 0.00 [0.09, 0.24] 0.04 [0.09, 0.23] 0.04 [0.09, 0.24]
[0.09, 0.23] [0.09, 0.24] [0.09, 0.23]

w = 0.3 0.04 [0.18, 0.35] 0.03 [0.14, 0.30] 0.05 [0.15, 0.31]
[0.17, 0.34] [0.15, 0.32] [0.19, 0.36]

w = 0.6 0.08 [0.20, 0.38] 0.03 [0.12, 0.27] 0.06 [0.09, 0.23]
[0.23, 0.42] [0.16, 0.33] [0.16, 0.33]

Table 5.9: Tail index estimates between stock index returns and high yield bond index
returns at p = 0.95 and p = 0.995 for simulated samples of size N = 20, 000. Three
different sets of values for β used as well as three different copulas with weight w between
stock index outcomes and monthly rating migration dynamics. 95% confidence intervals
for tail index estimators based on N independent outcomes a standard normal bivariate
random variable, with correlation given by ρ̂ (upper) and by sin((π/2)τ̂) (lower) taken
from Table 5.7, are calculated and presented alongside the tail index estimates.



Chapter 6

Discussion and Conclusions

In this final chapter, we evaluate the model and further discuss the most important findings
of Chapter 5. Section 6.1 summarizes the findings while Section 6.2 highlights strengths
and shortcomings of the model as well as reviewing and discussing the simplifications used
in the work. In Section 6.3, objectives stated in Section 1.2 are followed up, leading up to
a number of suggestions for future work listed in Section 6.4. Section 6.5 concludes the
thesis.

6.1 Summary of Findings

We here briefly review the most important findings of the previous chapter.
Based on the analysis of observed market data, it is reasonable to assume there exist

positive co-movements between equity and debt markets just like previous studies on the
subject have deduced. Looking at the evolutions of stock index as well as investment grade
and high yield bond ETFs, the tendency is particularly striking as concerns dependence
between stock index and high yield ETF, highlighted in Table 5.1. Due to scarcity of data,
it is difficult to draw profound conclusions on tail dependence between monthly movements
of stock index and bond ETFs.

As for the model, it appears to be able to provide a reasonable fit to observed data.
The high number of model parameters can be specified rather widely while admitting sim-
ulated monthly returns to exhibit similar distributional characteristics as those observed
in markets. One aspect that by trial and error proved rather difficult to capture with
consistency was the high dependence between stock index and high yield index, while
simultaneously maintaining the rather low observed dependence between stock index and
investment grade index. It should be stressed the trial and error method applied here
serves as a means to render a coarse fit to reality, whereas a more involved calibration and
model validation method could likely be useful to more accurately evaluate the adequacy
of the model. This would also require that interest rates be modelled, which they are not
in the present thesis.

Retaining model parameters but shifting the perspective to a one-year risk analysis,
forming the main point of interest of the thesis and being the topic of Section 5.3, it was
found that the HY portfolio distribution under the model is wider than the IG counterpart
due to both having more factors in the underlying CIR process, as well as offering upward
transition possibilities. The IG portfolio return distribution is sharply capped and heavily
skewed, owing to the nature of the process specification while downward migrations add
weight to the left tail of the distribution. Looking at lower bond portfolio quantiles, the
HY portfolio indeed turned out to be riskier than the IG portfolio, albeit not by a huge
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margin, indicated in Table 5.6. Looking at volatilities, the difference is however significant.
The pricing error resulting from neglect of credit migration risk is likely to cause a bias
in returns, especially for the IG portfolio where the cumulative default probability under
the risk-neutral measure is undervalued when pricing according to Equation (4.24).

Dependence structure adjustments

When modifying the dependence structure connecting stock index and bond portfolio, first
with respect to the pairwise copula describing migration dynamics as in Section 5.3.2, and
secondly with respect to the parameter β linking stock index volatility with hazard rates
as in Section 5.3.3, it was found that variations of the copula seem to greatly affect the one
year distributions of marginal bond portfolio returns. Lower quantiles, presented in Figures
5.4 and 5.5 for IG and HY portfolios respectively, clearly illustrate this. Higher copula
dependence generally implies more extreme lower quantile values. Likewise, the type of
copula also greatly influences these values. Heavier-tailed copula types such as Clayton
and t3 result in significantly heavier left tails of bond portfolio return distributions.

As for the dependence between stock index and bond portfolios, measured by correla-
tion, Kendall’s tau and tail index estimates presented in Figures 5.4 and 5.5 as functions
of the migration copula, the effect of changing the latter comes out as less predictable.
Heavier-tailed copula types seem to yield greater cross-sectional dependence for lower cop-
ula parameters (i.e. the weight w), whereas lighter-tailed analogues are more influential on
dependence measures at higher w, eventually even surpassing heavier-tailed types for com-
parable w. We made a point the measures themselves are perhaps not fully informative,
being one-dimensional, while scatter plots and conditional histograms available in Figures
5.6 and 5.7 respectively shed more light on the overall shape of return distributions. From
these, the impact of applying different copulas for migrations emerges more clearly.

When varying β along with the migration copula specification, results illustrate higher
values of β scale up cross-sectional dependence across all copula settings, visualized in
Figure 5.8. A similar result holds for lower bond portfolio quantiles, with higher depen-
dence through β generally giving rise to more extreme quantile values as seen in Figure
5.9. Here, however, the choice of migration copula appears to carry more weight than does
the way β is set.

Looking at how lower tail dependence in stock index/bond portfolio return pairs varies
as function of dependence setting, Table 5.8 indicates there likely is lower tail dependence
for virtually any dependence setting barring an independence specification. Values ob-
tained generally exceed those expected for outcomes of a bivariate standard normal ran-
dom variable with comparable correlation or concordance. While the choice of copula
here might have small impact on the level of significance with which this occurs, with
heavier-tailed copulas showing slightly more convincing tendencies of yielding lower tail
dependence in return pairs, applying anything other than the independence copula is likely
to result in similar conclusions.

Conclusively, the choice of migration copula appears to have high importance on the
shape of marginal bond portfolio distributions, but is less influential on the cross-sectional
dependence on a 1-year risk horizon. Lower tail dependence exceeding the standard normal
case prevails for a multitude of dependence settings, whereas the dependence in upper
tails just as consistently is on the opposite end of the spectrum, converging to zero as
the percentile level approaches 1 faster than a bivariate random variable with Gaussian
copula. This asymmetry between the tails, clearly highlighted in Tables 5.8 and 5.9 for
stock index/HY bond portfolio return pairs and in Appendix C.1.2 for stock index/IG
bond portfolio return pairs, most importantly stems from the fact transitions to defaults
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have a far more decisive impact on bond portfolio returns than do migrations between
non-default rating classes. Thereby, any dependence added when migration dynamics are
present mostly shows in the lower tail.

6.2 Model Evaluation

Backed by Chapter 5, we here attempt to qualitatively discuss the performance of the
model, highlighting its strengths and weaknesses. The simplifications used are reviewed,
with the intent of addressing their impact on the results as well as lifting possible relax-
ations and modifications of these.

6.2.1 Strengths and Shortcomings

First off, we note that the model is capable of richly producing various types of bivariate
distributions, both as concerns the dependence across equity and debt markets, and with
respect to marginal distributions. The moderately high number of parameters, summa-
rized in Table 5.3, contributes to this flexibility. The original model by Carr and Wu
(2010), as described in Section 3.2, also featured a large number of parameters without
accommodating a rating migration mechanism. In their paper, the model appeared to
provide a good fit to observed firm-specific cross-sectional market prices (of stock options
and CDS spreads) as well as their time series behaviour for a range of firms. The addition
of migrations, with simulation under a real-world measure for risk analysis explored in
this work, makes for an adaptation more suitable to the purpose of this thesis.

One desirable property that follows from the rating-based hazard rate specification,
where hazard rates belonging to poorer rating classes feature a larger number of underlying
CIR processes, is that marginal bond return distributions showcase larger variability for
poorly rated bonds. Figure 5.2 illustrates this. While an already highly rated bond can
only grow so much in value over any given time horizon, reflected in the capped and left-
skewed return distribution, a positive credit change for a poorly rated bond fundamentally
changes long-term expectations of default risk, leading to larger positive returns over the
risk horizon.

Furthermore, applying rating-based hazard rates rather than firm-specific rates pro-
vides for a market-wide modelling setup. A large number of firms may be jointly modelled
with this setup, while the dependence between them is also accounted for via dependent
migrations. Even though the size of the model is fairly large, streamlining the behaviour
of individual firms in this way equals a large reduction in number of parameters to keep
track of in comparison to what would be the case with each firm having its own set of
parameters.

Another benefit relates to the implementation, where any portfolio composed of assets
depending on the risk factors studied could in principle be evaluated and tracked along
any arbitrary risk horizon. While we have focused on simple assets, facilitating the study
of dependence of risk factors, the framework developed contains all pieces necessary to
perform pricing and risk management of more complex assets and portfolios.

Concerning model weaknesses, as previously pointed out the interest rates should ide-
ally be included. For proper calibration and validation, this would be a near mandatory
addition. With that said, it is promising that marginal distributions of both stock index
returns and bond portfolios as well as their dependence are replicable to such a high de-
gree even in the absence of interest rates being modelled, in the sense that the breadth of
distributions appear capturable. Inclusion of interest rates is unlikely to compromise that
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property; if anything it would enhance the richness of the model.
The complexity of the model makes fitting to market data a tricky matter. The trial

and error approach applied here does not converge to an optimal solution, nor does it
readily allow for model validation by any other means than qualitative discussion. An
automated model calibration and validation technique would be advantageous, preferably
preceded by the inclusion of interest rates in the model.

Other drawbacks lie in the model specification itself. We have noted dependence is
capped from the behaviour of stochastic processes. The involvement of the variance-
gamma process makes for richer stock index movements, and the presence of jumps in
the equity market is empirically established. Treating the process as an independent
component, however, is somewhat of a limitation impeding the attainable cross-sectional
dependence. When attempting to fit the model to market data, this especially manifested
itself in the difficulties of consistently generating high correlations between monthly stock
index and HY bond index movements, while keeping the diversity of the stock index
marginal distribution. While the migration conditioning partly resolves this, assigning
importance to stock index jumps on the credit rating state of bonds, the analysis has
highlighted that a substantial fraction of the dependence across markets comes from the
process specification regardless of how strongly one links bond migrations to the equity
market via the choice of copula.

The matrix adjustment method, shaping migration probabilities after process paths,
comes with both benefits and drawbacks. While other studies, such as Jobst and Zenios
(2001), held migration matrices constant over a simulation horizon where stochastic pro-
cesses were allowed to vary, the present thesis attempts to enforce alignment between
simulated process paths and the migration behaviour of firms. The cost of this is the
neglect of credit migrations when pricing, where ideally bond pricing should take the full
risk-neutral migration matrix into consideration. The pricing mismatch is likely to cause
a shift in level of returns, while having little effect on other distributional characteris-
tics. Either way, inconsistencies between process movements and migration probabilities
or in way of pricing offsets are inclined to follow when one attempts to combine stochastic
processes for hazard rates with the use of migration matrices.

The technique applied here also deviates slightly from those reviewed in Truck (2008),
by combining adjustment of matrix entries with conditioning outcomes on a common
index. In Truck (2008), these are considered to be separate methods. The conditioning
is equivalent to shifting the actual transition probabilities bonds are exposed to, possibly
offsetting the process alignment with migration matrices. However, the method contributes
to the primary purpose of the model, in that it creates a tool for further dependence
adjustments.

6.2.2 Review of Simplifications

In previous section, we already named a few of the simplifications, most importantly
leaving out interest rates and the disregard of migration dynamics when pricing bonds.
While the two of these are significant, they do not undermine the conclusions of the work
to any considerable degree. We here summarize and discuss other simplifications and
assumptions.

Rating-based modelling The application of a rating-based model for modelling of
default and credit migration probabilities significantly reduces the degrees of freedom
when it comes to the behaviour of individual firms. In this thesis, we have considered
two rating classes - investment grade and high yield - such that all risky bonds within
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the economy have their migration probabilities described by one of two possible groups of
parameters, consisting of the rating-specific hazard rates and the connection of migration
behaviour to the stock index via a bivariate copula. However, as described in Section 4.3,
the methodology applied caters to a division into an arbitrary number of rating classes.
A refinement of this number would increase the level of idiosyncrasy for bonds, as well as
leading to richer migration behaviours.

To exemplify, if a finer division of rating classes were to be implemented, the sharply
capped return distribution of the investment grade bond index illustrated in Figure 5.2
would likely take a slightly different look, admitting more variation in the upper tail in
particular. The reason is that such a portfolio could then feature a mix of rating classes,
where upward migrations are possible for at least some of the constituent bonds. At least
when looking at monthly returns of the IG ETF as presented in Table 5.1 and further
depicted in Figure 5.1, there are positive outliers present in the data. The model would
likely be better equipped to tackle this observation with a refined rating division.

Also, the dependence specification for migrations would possibly come through dif-
ferently when analysing yearly bivariate returns assuming a higher number of rating
classes. In particular, it is reasonable to expect higher cross-sectional correlations could be
achieved, increasing the significance of migration dynamics as compared to the process-
level dependence. For an illustration, consider the scatter plots corresponding to the
maximum copula case in Figures 5.6, 5.11 or C.6. The grouping of bivariate outcomes
into island-looking shapes, resulting from all bonds migrating simultaneously, would be
diluted as the number of rating classes grows, with the probable result of observing higher
cross-sectional correlation and concordance. Still the main conclusions are unlikely to be
significantly affected by such a modification, with the asymmetry in tails still being present
due to the heavy impact of default events on portfolio returns.

Rating-based models similar to the one used here commonly encompass seven rating
classes, reflecting the structure of rating systems such as Standard & Poor’s or Moody’s
(Trueck and Rachev, 2009, ch. 1). From historical data on rating migrations, baseline
migration matrices can then be readily adapted. A natural alternative to the dual rating
class implementation studied here would therefore be one featuring seven rating classes.
The drawback that comes with this is the increased complexity, greatly turning up the
number of parameters to be set.

Bond standardization As mentioned in Section 4.5, the construction of bond portfo-
lios in this thesis has consistently been highly standardized with respect to rating classes,
maturities and recovery arrangements of bonds, in addition to the already discussed di-
vision into two rating classes. Furthermore, we have looked at zero-coupon bonds only.
Comparing to real bond indices or the ETFs upon which data analysis was carried out,
this standardization constitutes a significant simplification, also neglecting the effect of
liquidity factors or contractual arrangements on bond prices, mentioned in Section 2.2.1.
In spite of this, marginal monthly return distributions as well as co-movements across
markets appear to be captured quite well by this simplified model. While a different spec-
ification of maturities or recovery arrangements might lead to a shift or slightly altered
shape of the return distributions, there is little reason to assume any of the main findings
would deviate following such a change.

Market price of risk assumptions As for the assumptions of market price of risk,
we have directly adapted the method in Carr and Wu (2010) to our model. Each CIR
process involved has its own associated market price of risk parameter, held constant and



6. DISCUSSION AND CONCLUSIONS 73

affecting the drift term as described in Section 3.4. There are a couple of simplifications
associated with this method. First, we have the fact only CIR processes are affected by
a change of measure, while jump dynamics remain the same. Since we do not price any
assets explicitly depending on the stock index process, this carries little significance. More
importantly, the constancy of market prices of risk has a real effect. The term credit
spread risk commonly involves changes of investors’ risk aversion, giving rise to variations
in market price of risk. By keeping these constant, we have effectively removed that degree
of freedom, assuming changes in credit spreads come from hazard rate movements alone.

Within the devised modelling framework, relaxing this assumption would pose a chal-
lenge on the verge of being infeasible. This both from considerably complicating the
parametric setup, and due to further jeopardizing bond pricing tractability.

An alternative approach, accommodating market price of risk movements, is to adopt
a constant real-world migration matrix, scaled by a stochastically varying market price
of risk process in order to construct risk-neutral matrices. With an appropriate choice of
such a process, the CIR process being one example, one may price bonds analytically and
consistently with the credit migration risk involved, see e.g. Lando (2004, ch. 6) for details.
While letting real-world migrations be governed by a constant transition matrix may be a
limitation, this is partly remedied if one conditions migration dynamics on a common index
in similar fashion as proposed in the thesis. With an increase of number of rating classes,
such an approach might be preferable preventing the number of parameters from spiralling
out of control. However, the Carr and Wu (2010) foundation of the model would also be
affected, where one would likely have to let go of the process-level dependence between
stock index and hazard rates.

Discretization and time step assumptions When discretizing processes and linking
migration dynamics to stock index movements, we have made use of several assumptions.
Looking at the CIR process, the discretization scheme suggested in Section 4.2.1 is inex-
act and sensitive to the choice of step size. This also affects path-dependent quantities
appearing in the construction of migration matrices according to Section 4.3.1, as well as
on the form ∫ t+∆t

t
vsds,

appearing in the discretization scheme for the stock index process described in Section
4.2.3. Inevitably, a discretization error will be present. In Appendix B, we briefly examine
how the error varies with the choice of step size as well as of the sample size. The main
finding is that the numerical error appears small for the step size chosen, and that a longer
time step would probably have been fine. It should also be noted the discretization scheme
itself provides good accuracy over competitors such as Euler and Milstein, which for some
parameter specifications are infeasible.

Also related to this is the choice of applying monthly time windows for migrations and
portfolio rebalancing, as well as in the data analysis. In reality, the number of trading
days varies from one month to another, making a case against calibrating after monthly
data. However, in the analysis of cross-sectional market data as well as from a modelling
standpoint the use of monthly data offers convenience. Reasons include that any daily
lag effects that might be present in the data are largely mitigated and that missing obser-
vations are effectively dealt with. Regarding modelling, longer time windows applied for
migration conditioning and mapping facilitates actual dependence to be imposed through
a copula mechanism, due to copulas being static and thereby providing no way for de-
pendence to enter serially. A reference is provided to Appendix C.2, where we investigate
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the effects of letting migration windows be a year, spanning the full risk horizon. There
is also a significant computational gain to be had from applying longer time windows for
migration matrix construction and portfolio evaluation and rebalancing.

For a view on how picking out monthly data is likely to affect results, an obvious
drawback is the thinning of data, ignoring intra-month movements. However, the primary
negative consequence that could follow from this is that parameters are not optimally set,
which is not a great concern due to the purpose of the thesis. It has little effect on the
analysis of how risk varies as a function of the parameter specification.

If one would stick to the monthly analysis applied here, accounting for the variations in
number of trading days between months might be advisable. Such an approach would rely
on the assumption that dynamics of market prices reflect actual trading time, but might
present other difficulties in the form of time series across markets not matching perfectly
with respect to when they are observed. Regarding the main findings of the work, they
are unlikely to be affected to any great extent from making this change.

6.3 Follow-up of Objectives
We here look back at the objectives stated in Section 1.2, and relate the work to these in
an attempt to put the work into perspective.

1. Analyse historical multivariate financial data
We have performed analysis on equity and debt market data, presented in Section
5.1. We have primarily focused on monthly returns in the data analysis, finding
evidence indicating there is alignment in the cross-market movements, in particular
coming into play for the high yield ETF studied, assumed to constitute a cross-
section of the riskier side of the debt market. Bond market time series were fairly
short, and in order for uncertainty in the analysis to be kept low more data should
ideally be used, especially as concerns the analysis of tail dependence.

2. Review and select relevant mathematical models
Since the intended purpose was to find means to analyse and model both marginal
distributional characteristics and dependence across equity and debt markets, equity
and credit models were studied with focus on models targeting joint dynamics. We
thus landed in a variation of the model by Carr and Wu (2010) described in Section
3.2, being proven for pricing purposes as well as admitting flexibility in the sense it
can be tailored to different portfolio applications. Due to the need for an adaptation
to an economy-wide setting, we also considered rating-based credit models capable
of producing dependent credit migrations.

3. Construct a versatile simulation framework
We have constructed a framework drawing from different kinds of models, imple-
mented in an open-ended way so as to allow for further advancements, including
modifications to interest rates and stock index jumps. Other features, such as mi-
gration matrix adjustment and conditioning methods could also be readily adjusted
or changed. The framework is versatile from a risk management point of view,
where the parametric specification can be altered to portray a wide range of mar-
ket behaviours and where any portfolio whose value revolves around the modelled
risk factors could theoretically be tracked over arbitrary risk horizons. Furthermore,
the framework is capable of scenario generation under a risk-neutral measure and
could therefore be used for asset pricing. In the rendition developed in this thesis, a
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number of limitations have been imposed, of which some could likely be successfully
relaxed whereas others serve well as is, discussed in Section 6.2.2. While rigorous
model validation is yet to be addressed, comparison between simulated and market
observed data has shown promise.

4. Discuss implications on risk management
When it comes to bond portfolio returns, we have seen that the model tends to create
left-skewed distributions. Dependence between equity and credit is capped from
the process specification, having stock index jumps not affecting hazard rates, and
from the correlation between Brownian motions of the stock index and its volatility.
Variations to the dependence at process level has only been done with respect to
the parameter β, linking stock index volatility and firm hazard rates, showing that
an increase of this parameter leads to increased cross-sectional dependence. The
impact of other factors likely influencing the dependence at process level has not
been further elaborated on.
By linking bond rating migration dynamics to the stock index through various copula
specifications, the shape of the bond portfolio return distribution is affected. Heavier-
tailed copulas, in particular, result in increased bond portfolio risk looking at lower
quantile values. However, the cross-sectional dependence as measured by correlation,
concordance and tail index estimates is only somewhat affected by the choice of
copula, and the effect only shows with consistency up to a certain level of the copula
dependence parameter. The process-level dependence here appears to have more of
a significant effect.

6.4 Future Work
Based on the discussion of preceding sections, we here list a few suggestions for future
work.

Implement interest rates A natural extension of the model would be one encompass-
ing stochastic interest rates. Excess returns could then be replaced by a study of actual
returns and all of the distributional characteristics of returns would then be of interest to
analyse, including mean levels. The primary challenge that comes with this is to specify
the dependence structure of the model in a manageable way, linking the three separate
risk factors of interest rate risk, equity risk and credit risk. Bypassing one of the three
links might be a viable first step. As an example, the multi-factor CIR specification in
Kovalov and Linetsky (2008) recited at the end of Section 3.2 may be attempted in order
to provide a link between interest rates and hazard rates while largely preserving the con-
nection between stock index and hazard rate movements. However, this would likely not
fully account for the joint behaviour of equity and interest rates.

Refine model calibration and validation Assuming interest rates are specified,
whether deterministically or stochastically, means of calibrating the model to market data
in a refined manner could be explored. In the paper by Carr and Wu (2010), Kalman
filtering was applied to time series of stock option prices and CDS spreads in order to
fit parameters of stochastic processes, and a similar technique could be trialled here.
The goodness of fit of the model, using a certain calibration method, should ideally be
quantified looking at the out-of-sample performance. One way of doing so would be by
backtesting model implied risk measures against data, as described in (McNeil et al., 2010,
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ch. 2). With sophisticated validation methods in place, different model specifications as
well as calibration techniques could readily be compared to one another.

Fine-tune rating based model Instead of applying two rating classes as in this thesis,
extending to a more refined rating-based model with a finer credit rating division is a
natural development, enhancing the richness of portfolio return behaviours. Accompanied
with this, the pricing issue we have previously highlighted should be addressed. The main
difficulty with an extension of number of rating classes is the increased model complexity,
and in order to maintain feasibility an overhaul of the matrix adjustment method might
come in handy. The latter could also provide the tool necessary in order to rectify the
pricing issue, as discussed in Section 6.2.2.

Investigate effects of simplifications In order to gain an improved understanding
of how the various simplifications used affect the analysis, a more thorough study would
be useful, alternating the shape and form of simplifications and comparing the results.
This includes the migration matrix adjustment method previously mentioned, as lining
this up with other methods as in Truck (2008) and surveying their performance would be
illuminating. Another example is the stock index jump dynamics, which in the current
model specification is detached from the behaviour of hazard rates. We have discussed
how this is likely to be a limiting factor when imposing dependence between stock index
and bond portfolios, while sometimes contributing to odd distributional characteristics
such as when a copula with strong dependence is used for the simulation of migrations.
If one were to connect stock index jumps with hazard rates, a more informed view on the
limitations of the current specification could be taken.

6.5 Concluding Remarks
The present thesis has detailed the development of a simulation framework intended for the
joint modelling of disparate types of financial risk, with focus directed towards equity and
credit risk. The existence of dependence across these types of markets has been established
in previous studies and further reinforced here. The model implementation is flexible and
appears largely capable of capturing observed market patterns, although further validation
remains. Taking a one-year risk perspective and varying the model-specified dependence
structure, we have seen that simulated one-year distributions of stock index returns and
bond portfolio returns can take a variety of shapes, but where bivariate tails display
similar properties for a wide range of dependence specifications. With the dependent
credit migration dynamics modelled firms are exposed to, defaults have a large impact
on bond portfolio returns, such that any additional cross-sectional dependence imposed
mostly shows in the lower tail. As a result, there is considerable harmonisation in the
movements of studied equity and debt instruments in the lower tail, suggesting lower tail
dependence, whereas a more discordant behaviour is observed in the upper tail.
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Appendix A

Method for Adjusting β

As was mentioned in Section 5.3.3, when investigating the effect of β the degrees of freedom
of the system are reduced in order to bring forth comparable cases for the parameter
specification, altering the dependence structure while avoiding causing large side effects
on the marginal behaviours of hazard rate processes. To this end, all parameters relating
to the stock index process can be held the same for any specification of β, while the
parameters of excess hazard rates are modified. This is done with respect to the diffusion
coefficients σi of the zit processes, to their initial values and to their market prices of risk.
As a starting point, we consider the case of maximum β, i.e. the maximum possible allowed
dependence between the stock index volatility process and hazard rate processes:

λmt = βmax
m vt

Initial values are then
λm0 = βmax

m v0 (A.1)

while long term means obey
λmK = βmax

m θv

under either measure. Thus, maximum β values may be deduced from baseline intensity
matrices. In principle, this leads to different maxima depending on which measure that is
considered. Permitting only one such value per process and starting from the real-world
process, we thus enforce

λQmK = βmax
m θQv (A.2)

which fully determines market prices of risk on excess hazard rates, as we shall soon see.
Excess hazard rate process parameters are specified in terms of baseline values (θ̄i, κ̄i, σ̄i).

The latter of these is determined by letting

σ̄2
i

2θ̄iκ̄i
= σ2

v

2θvκv

while the two former may be set freely. This restriction leads to comparable (albeit not
perfectly matching) process characteristics. Then, a scaling by constants hi is carried
out, such that both long term means and relationships between the drift and diffusion
components are held the same. This leads to the equation system

λmK = βmθv +
m∑
i=1

hiθ̄i, m = 1, . . . ,M,
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which is easily solved for hi, i = 1, . . . ,M . Initial values for the processes are changed
accordingly,

λm0 = βmv0 +
m∑
i=1

zi0

which may be solved by taking advantage of Equation (A.1). By Equation (4.25), when
processes are scaled with this method mean reversion rates satisfy κi = κ̄i regardless of
scaling constant as long as βi < βmax

i for every i. With λQmK determined from Equation
(A.2), it is then possible to compute θQm and κQm, m = 1, . . . ,M for any β. This is done
by writing

λQmK = βmθ
Q
v +

m∑
i=1

θQi

which may be solved for each θQi , and then taking advantage of the relationship between
parameters under the two measures as in Equation (2.13), to obtain

κQm = θPm

θQm
κPm.

While this method results in readily comparable cases, it is not fully ideal causing minor
discrepancies in bond prices depending on which set of parameters that is being used.
Setting parameters such that conditional means and variances of the multi-factor CIR
processes are the same independently of which case for β that is studied would likely be
an improved approach. Nonetheless, the outlined method suffices for the sake of this study.



Appendix B

Discretization Accuracy

We here briefly analyse and discuss the error caused from discretization of processes. We
use a somewhat heuristic procedure based on ideas of Glasserman (2004, ch. 6). A more
exhaustive treatment is available in said book and chapter.

The process discretization methodology outlined in Section 4.2 involves several in-
stances of approximation of integrals of the type∫ t+∆t

t
xsds

where xt is a CIR process discretized with step size ∆t. In these cases, we replace the
integral with the approximation∫ t+∆t

t
xsds ≈

xt + xt+∆t
2 .

A similar situation arises when constructing time-dependent rating transition matrices,
where piecewise constant intensity matrices are constructed over intervals of length ∆t,
taking the average of simulated hazard rate process values at the beginning and end of these
intervals to constitute default column entries. Furthermore, the process discretization
scheme itself makes use of approximations when generating outcomes of xt+∆t conditional
on xt. Therefore, in order not to create large numerical errors, the discretization step size
should be chosen with care.

In the thesis, we have consistently applied a step size of ∆t = 1/252, such that each
time step corresponds to one business day. It is common practice in financial modelling
to use this step size. Nonetheless, we will have a look at the severity of the resulting error
one can expect. In order to do so, we apply a one-month simulation horizon, and loop
through step sizes starting at a monthly discretization, then being successively halved
until reaching ∆t = 1/768, corresponding to 64 steps per month. For each step size,
we generate economic scenarios encompassing paths of the stock index, its volatility and
hazard rate processes for investment grade (IG) and high yield (HY) rating classes in
accordance with Section 4.2. We let samples range from 2500 to 40, 000 in size, in steps
successively doubling the size. The reason for altering the sample size like this, is the fact
there are two error sources involved; one coming from the discretization time step, and
one from the sample size. Based on scenarios, we also construct path-dependent discrete
migration matrices as described in Section 4.3.1, spanning the monthly horizon. Other
parameters are as in Table 5.3.

For each discretization step size and sample size, we thus arrive at a set of economic
scenarios, from which we may estimate desired distributional characteristics. Hence we
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obtain a grid of samples, with one dimension specifying different discretization time steps
and one specifying sample sizes. For each sample, we calculate estimates of means and
standard deviations of the following quantities at the end of the horizon:

• The volatility process

• The stock index process

• IG and HY probabilities of default over the horizon, given by last-column entries of
discrete migration matrices

When it comes to the volatility process, we may compare obtained values to analytically
known CIR process means and standard deviations,

E[vT ] = θ + (v0 − θ) exp(−κT )√
Var[vT ] =

(
v0σ

2

κ
exp(−κT )(1− exp(−κT )) + θσ2

2κ (1− exp(−κT ))2
)1/2

as stated in Section 4.2.1. In this case, we calculate errors as absolute difference between
obtained and analytical values, normalized by the analytical values.

For the stock index process and the default probabilities, we need to proceed slightly
differently as the moments are not analytically known. For each sample size, we compute
absolute differences in the estimates corresponding to adjacent step sizes. These are then
normalized by the estimate corresponding to the finest discretization for each sample size.
The normalization is applied with the intent of getting an idea of the relative fluctua-
tions of estimates between samples. Under the assumption that estimators are unbiased
and consistent, one may expect these to approach zero as step size and sample size are
increased.

Figure B.1 shows how the relative error, calculated according to the above, of means
and standard deviations varies as function of step size and sample size. The figure shows
that the error, both in mean and standard deviation, is for the most part below 1% for
any step size and sample size trialled. Interestingly, the size of the error as obtained
according to this procedure does not appear to diminish at a high rate as one increases
the granularity. On the contrary, it is difficult to tell whether there is any dependence
at all of the error with the step and sample size, judging by the figure. Since the errors
are generally small, one could argue any discretization step size and sample size in the
range examined may be used. The signs of the errors, not presented in the figure, appear
randomly scattered and therefore give no hint of systematic biases in these estimates.

Turning to the stock index, Figure B.2 shows how the absolute difference in mean
and standard deviation estimates of adjacent return distributions varies as the step size
is reduced for different sample sizes. As in the previous figure, there is no evidence of the
error being eliminated as the step size is decreased, although the sample size appears to
play a bigger role here. The differences in estimates between samples are small, indicating
we can not expect greatly increased accuracy with smaller step size within the examined
range.

As for monthly default probabilities, where normalized differences in means and stan-
dard deviations between samples corresponding to different time steps are illustrated in
Figure B.3 for different sample sizes, differences in mean values are small while standard
deviations show larger discrepancies. While the observations in this figure are much the
same as previously, the step size does appear to have an effect on estimates, which is
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particularly seen in the subplots depicting differences in standard deviation. A step size
chosen too large is likely to result in accuracy issues.

The main conclusion from these plots is that we could probably have got away with
both a smaller sample size and coarser discretization as compared to what is used in the
thesis. However, for the purpose of tail index estimation, the sample size should be held
as large as possible.
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Figure B.1: Sizes of relative errors in means and standard deviations of the one-month
values of the stock index volatility process, as functions of the the number of discretization
time steps in a month and of the sample size. Vertical dashed lines indicate 21 monthly
steps, the value used in the thesis.
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Figure B.2: Sizes of differences between adjacent samples (with respect to discretization
step size) in means and standard deviations of the simulated one-month stock index re-
turns, as functions of the the number of discretization time steps in a month and of the
sample size. The markers are placed at time steps corresponding to differences between
estimates at that step size and immediately preceding, coarser, discretization. Vertical
dashed lines indicate 21 steps, the value used in the thesis.
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Figure B.3: Sizes of normalized differences between adjacent samples (with respect to
discretization step size) in means and standard deviations of the path-dependent one-
month default probabilities associated with IG and HY rating classes respectively, as
functions of the the number of discretization time steps in a month and of the sample
size. The markers are placed at time steps corresponding to differences between estimates
at that step size and immediately preceding, coarser, discretization. Vertical dashed lines
indicate 21 monthly steps, the value used in the thesis.



Appendix C

Complementary Results

This section contains additional results and plots left aside in the main presentation.
The reason is that they do not convey much additional information contributing to the
conclusions of the work, but they are included here for completeness.

C.1 Dependence Adjustments: IG Portfolio Results
Here, we include complementary results from the portfolio risk simulations under various
dependence structures connecting stock index returns and IG portfolio returns, left out in
Section 5.3.

C.1.1 Complementary Plots, Migration Copula Adjustments

Figure C.1 shows scatter plots of stock index/rebalanced IG portfolio one-year returns from
the simulations in Section 5.3.2, as functions of different migration copulas. In Figure C.2,
histograms of IG portfolio returns conditional on stock index returns falling below the
estimated 0.05 quantile are illustrated.
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Figure C.1: Scatter plots for one-year stock index returns and rebalanced IG portfolio
returns, applying different copulas and weights w for the migration simulation. The first
2000 simulated observations of each pair of stock index returns/bond portfolio returns
from the total sample of N = 20, 000 bivariate returns per copula are depicted.
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Figure C.2: Histograms of simulated one-year rebalanced IG portfolio returns conditional
on stock index returns falling below its estimated 0.05 quantile value, where bond credit
migration dynamics are connected to stock index returns through different copulas with
weight w. For w = 1, the maximum copula is used.
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C.1.2 Variation of β

In Section 5.3.3, we analysed how variations to the parameter β along with changes in
copula governing migrations affected dependence between one-year stock index returns
and corresponding returns for a monthly rebanced high yield bond portfolio, as well as
dependence within the portfolio. We here present similar results for the bivariate returns
of the stock index and an investment grade bond portfolio with rebalancing.

Figure C.3 shows estimates of dependence measures in stock index/IG bond portfolio
return pairs. Figure C.4 shows quantile estimates at levels 0.05 and 0.005 for yearly IG
portfolio returns. These plots exhibit similar features as those observed for the HY port-
folio. Scatter plots showing return pairs resulting from a few different selected dependence
specifications are given in Figure C.5.

Table C.1 lists return pair correlation and Kendall’s tau estimates for a few different
sets of values for β and the copula, with tail indices at levels 0.005 and 0.05 for corre-
sponding dependence specifications presented in Table C.2, comparing to bivariate normal
confidence intervals at matching correlation and concordance levels. Similar conclusions
as those in Section 5.3.3 are drawn, with the choice of β and copula affecting stock in-
dex/bond portfolio dependence similarly for the IG portfolio as for the HY portfolio.

We also look at the upper tail index estimates, again comparing to bivariate normal
with matching correlation. These results are presented in Table C.3 and support the
analysis in Section 5.3.4.

Gaussian t3 Clayton
ρ̂ τ̂ ρ̂ τ̂ ρ̂ τ̂

β = βmin w = 0 −0.01 −0.00 0.20 0.09 −0.00 0.00
w = 0.3 0.22 0.13 0.27 0.12 0.33 0.18
w = 0.6 0.39 0.22 0.28 0.14 0.26 0.11

β = βmid w = 0 0.30 0.20 0.37 0.28 0.31 0.21
w = 0.3 0.53 0.34 0.43 0.33 0.47 0.40
w = 0.6 0.59 0.42 0.41 0.36 0.36 0.36

β = βmax w = 0 0.52 0.35 0.46 0.40 0.52 0.35
w = 0.3 0.64 0.45 0.50 0.44 0.54 0.50
w = 0.6 0.63 0.51 0.47 0.47 0.42 0.49

Table C.1: Empirically estimated linear correlations ρ̂ and Kendall’s tau τ̂ between simu-
lated stock index and rebalanced IG bond portfolio one-year returns. Three different sets
of values for β used, where βmin = 0 and βmid = βmax/2, as well as three different copulas
with weight w between stock index outcomes and rating migration dynamics.



90 C. COMPLEMENTARY RESULTS

Gaussian t3 Clayton

C
or
re
la
ti
on

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

K
en

da
ll’
s
ta
u

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.
05

ta
il
in
de

x

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.
00

5
ta
il
in
de

x

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure C.3: Empirical estimates of dependence measures between one-year stock index
returns and HY rebalanced bond portfolio returns, against different values of the weight
w of monthly stock index returns on bond rating migrations on horizontal axes, linked
with different copulas. In each subplot, the uppermost, solid lines correspond to the case
β = βmax, whereas the lowermost, solid lines correspond to β = βmin. Dashed lines
represent results from intermediate cases.
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Figure C.4: Estimated quantiles for one-year rebalanced HY portfolio returns against
different values of the weight w of monthly stock index returns on bond rating migrations
on horizontal axes, linked with different copulas. In each subplot, the uppermost, solid
lines correspond to the case β = βmin, whereas the lowermost, solid lines correspond to
β = βmax. Dashed lines represent results from intermediate cases.
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Figure C.5: Scatter plots of 2000 simulated stock returns and corresponding simulated
rebalanced IG portfolio returns where transition dynamics are given by different copulas.
Different sets of values of β are used, where βmid = βmax/2.
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Tail index estimates at p = 0.005

Gaussian t3 Clayton
λ̂L,p Normal λ̂L,p Normal λ̂L,p Normal

β = βmin w = 0 0.00 [0.00, 0.02] 0.14 [0.00, 0.05] 0.02 [0.00, 0.02]
[0.00, 0.02] [0.00, 0.04] [0.00, 0.02]

w = 0.3 0.05 [0.00, 0.06] 0.22 [0.00, 0.07] 0.22 [0.01, 0.09]
[0.00, 0.05] [0.00, 0.05] [0.00, 0.07]

w = 0.6 0.25 [0.02, 0.11] 0.21 [0.00, 0.07] 0.16 [0.00, 0.07]
[0.01, 0.09] [0.00, 0.06] [0.00, 0.05]

β = βmid w = 0 0.05 [0.01, 0.08] 0.22 [0.01, 0.10] 0.08 [0.01, 0.08]
[0.01, 0.08] [0.03, 0.13] [0.01, 0.08]

w = 0.3 0.34 [0.05, 0.18] 0.34 [0.03, 0.13] 0.37 [0.04, 0.15]
[0.05, 0.16] [0.04, 0.16] [0.08, 0.21]

w = 0.6 0.45 [0.08, 0.21] 0.35 [0.02, 0.12] 0.33 [0.01, 0.10]
[0.09, 0.24] [0.06, 0.18] [0.06, 0.18]

β = βmax w = 0 0.17 [0.05, 0.17] 0.22 [0.03, 0.14] 0.13 [0.05, 0.17]
[0.05, 0.18] [0.08, 0.21] [0.05, 0.18]

w = 0.3 0.38 [0.11, 0.26] 0.28 [0.05, 0.16] 0.35 [0.06, 0.18]
[0.11, 0.26] [0.10, 0.25] [0.16, 0.32]

w = 0.6 0.46 [0.10, 0.25] 0.33 [0.04, 0.14] 0.31 [0.02, 0.12]
[0.17, 0.33] [0.13, 0.29] [0.14, 0.30]

Tail index estimates at p = 0.05

Gaussian t3 Clayton
λ̂L,p Normal λ̂L,p Normal λ̂L,p Normal

β = βmin w = 0 0.04 [0.04, 0.06] 0.21 [0.09, 0.12] 0.04 [0.04, 0.06]
[0.04, 0.06] [0.07, 0.10] [0.04, 0.06]

w = 0.3 0.15 [0.09, 0.13] 0.27 [0.11, 0.15] 0.32 [0.13, 0.18]
[0.09, 0.13] [0.08, 0.12] [0.11, 0.15]

w = 0.6 0.30 [0.16, 0.21] 0.31 [0.12, 0.16] 0.31 [0.11, 0.15]
[0.14, 0.19] [0.09, 0.13] [0.08, 0.11]

β = βmid w = 0 0.20 [0.12, 0.17] 0.34 [0.15, 0.20] 0.17 [0.13, 0.17]
[0.13, 0.17] [0.18, 0.23] [0.13, 0.17]

w = 0.3 0.40 [0.23, 0.29] 0.41 [0.18, 0.23] 0.46 [0.20, 0.25]
[0.22, 0.27] [0.21, 0.26] [0.27, 0.33]

w = 0.6 0.50 [0.27, 0.33] 0.44 [0.17, 0.22] 0.43 [0.15, 0.19]
[0.29, 0.35] [0.24, 0.29] [0.24, 0.29]

β = βmax w = 0 0.35 [0.23, 0.28] 0.40 [0.20, 0.25] 0.32 [0.23, 0.28]
[0.23, 0.29] [0.27, 0.33] [0.23, 0.29]

w = 0.3 0.48 [0.31, 0.37] 0.46 [0.22, 0.27] 0.51 [0.24, 0.29]
[0.32, 0.38] [0.31, 0.36] [0.37, 0.43]

w = 0.6 0.54 [0.31, 0.36] 0.47 [0.20, 0.25] 0.46 [0.17, 0.22]
[0.38, 0.44] [0.34, 0.40] [0.35, 0.41]

Table C.2: Tail index estimates between stock index returns and IG bond index returns
at p = 0.005 and p = 0.05 for simulated samples of size N = 20, 000. Three different
sets of values for β used as well as three different copulas with weight w between stock
index outcomes and monthly rating migration dynamics. 95% confidence intervals for tail
index estimators based on N independent outcomes a standard normal bivariate random
variable, with correlation given by ρ̂ (upper) and by sin((π/2)τ̂) (lower), are calculated
and presented alongside the tail index estimates.
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Tail index estimates at p = 0.95

Gaussian t3 Clayton
λ̂L,p Normal λ̂L,p Normal λ̂L,p Normal

β = βmin w = 0 0.04 [0.04, 0.06] 0.05 [0.09, 0.12] 0.05 [0.04, 0.06]
[0.04, 0.06] [0.07, 0.10] [0.04, 0.06]

w = 0.3 0.07 [0.09, 0.13] 0.05 [0.11, 0.15] 0.07 [0.13, 0.18]
[0.09, 0.13] [0.08, 0.12] [0.11, 0.15]

w = 0.6 0.07 [0.16, 0.21] 0.06 [0.12, 0.16] 0.06 [0.11, 0.15]
[0.14, 0.19] [0.09, 0.13] [0.08, 0.11]

β = βmid w = 0 0.12 [0.12, 0.17] 0.13 [0.15, 0.20] 0.12 [0.13, 0.17]
[0.13, 0.17] [0.18, 0.23] [0.13, 0.17]

w = 0.3 0.16 [0.23, 0.29] 0.13 [0.18, 0.23] 0.15 [0.20, 0.25]
[0.22, 0.27] [0.21, 0.26] [0.27, 0.33]

w = 0.6 0.17 [0.27, 0.33] 0.14 [0.17, 0.22] 0.13 [0.15, 0.19]
[0.29, 0.35] [0.24, 0.29] [0.24, 0.29]

β = βmax w = 0 0.21 [0.23, 0.28] 0.21 [0.20, 0.25] 0.20 [0.23, 0.28]
[0.23, 0.29] [0.27, 0.33] [0.23, 0.29]

w = 0.3 0.25 [0.31, 0.37] 0.21 [0.22, 0.27] 0.24 [0.24, 0.29]
[0.32, 0.38] [0.31, 0.36] [0.37, 0.43]

w = 0.6 0.24 [0.31, 0.36] 0.22 [0.20, 0.25] 0.22 [0.17, 0.22]
[0.38, 0.44] [0.34, 0.40] [0.35, 0.41]

Tail index estimates at p = 0.995

Gaussian t3 Clayton
λ̂L,p Normal λ̂L,p Normal λ̂L,p Normal

β = βmin w = 0 0.01 [0.00, 0.02] 0.01 [0.00, 0.05] 0.00 [0.00, 0.02]
[0.00, 0.02] [0.00, 0.04] [0.00, 0.02]

w = 0.3 0.01 [0.00, 0.06] 0.01 [0.00, 0.07] 0.01 [0.01, 0.09]
[0.00, 0.05] [0.00, 0.05] [0.00, 0.07]

w = 0.6 0.01 [0.02, 0.11] 0.01 [0.00, 0.07] 0.01 [0.00, 0.07]
[0.01, 0.09] [0.00, 0.06] [0.00, 0.05]

β = βmid w = 0 0.00 [0.01, 0.08] 0.00 [0.01, 0.10] 0.00 [0.01, 0.08]
[0.01, 0.08] [0.03, 0.13] [0.01, 0.08]

w = 0.3 0.01 [0.05, 0.18] 0.01 [0.03, 0.13] 0.01 [0.04, 0.15]
[0.05, 0.16] [0.04, 0.16] [0.08, 0.21]

w = 0.6 0.01 [0.08, 0.21] 0.01 [0.02, 0.12] 0.00 [0.01, 0.10]
[0.09, 0.24] [0.06, 0.18] [0.06, 0.18]

β = βmax w = 0 0.03 [0.05, 0.17] 0.00 [0.03, 0.14] 0.03 [0.05, 0.17]
[0.05, 0.18] [0.08, 0.21] [0.05, 0.18]

w = 0.3 0.04 [0.11, 0.26] 0.02 [0.05, 0.16] 0.01 [0.06, 0.18]
[0.11, 0.26] [0.10, 0.25] [0.16, 0.32]

w = 0.6 0.02 [0.10, 0.25] 0.02 [0.04, 0.14] 0.02 [0.02, 0.12]
[0.17, 0.33] [0.13, 0.29] [0.14, 0.30]

Table C.3: Tail index estimates between stock index returns and IG bond index returns
at p = 0.95 and p = 0.995 for simulated samples of size N = 20, 000. Three different
sets of values for β used as well as three different copulas with weight w between stock
index outcomes and monthly rating migration dynamics. 95% confidence intervals for tail
index estimators based on N independent outcomes a standard normal bivariate random
variable, with correlation given by ρ̂ (upper) and by sin((π/2)τ̂) (lower), are calculated
and presented alongside the tail index estimates.
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C.2 On Migration Time Windows
In the second paragraph of Section 5.3.2, we listed a number of parameters affecting de-
pendence in the model, not directly associated with the dependence structure specification
through migration copula and β. One of these is the length of time windows applied for
conditioning migration dynamics on stock index outcomes. In the same section, we also
mentioned that dependence is likely reduced from migration windows being constructed
so as to not span the full risk horizon, which in itself limits the dependence attainable in
stock index/bond portfolio return pairs.

In the present section, we have a brief look at what happens to distributions of yearly
returns under modifications to the dependence structure as in Section 5.3.3, but with the
difference that migration time windows are also set to one year, spanning the full risk
horizon. In the maximum copula case, one may then expect stock index movements to be
perfectly reflected in migration dynamics.

Looping through β values and copula specifications as before, Figure C.6 shows scatter
plots of the first 2000 stock index/HY portfolio return pairs from samples of N = 20, 000
simulated scenarios per dependence setting. Comparing the figure to Figure 5.11 is now
informative, particularly looking at the maximum copula case. Clearly, the separation into
clusters of outcomes depending on the portfolio migration outcome (which in the maximum
copula case is shared for all bonds within the portfolio), is now very strongly correlated
with the stock index outcome. However, the tendency is still imperfect in the sense that a
higher stock index outcome is not always accompanied with a more favourable migration
outcome, as seen in the "overlap" between clusters of outcomes along the horizontal axis.
The reason is that different scenarios have different transition matrices, governed by hazard
rate paths, and these are imperfectly related to stock index paths even in the maximum
β case.

Remaining with the maximum copula case, it is also of interest to look at the depen-
dence between stock index and portfolio outcomes within clusters. Here, all that matters
is the process-level dependence as all outcomes within clusters have equal credit migration
histories. The effect of β shows in the plots, being positively connected to the amount
of dependence observed. However, bivariate outcomes are still far from perfectly aligned
even when parameters are set to maximize dependence. The process-level parameters of
correlation between stock index and volatility Brownian motions as well as the presence
of the jump process here set the cap for attainable dependence.
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Figure C.6: Scatter plots of 2000 simulated one-year stock index returns and corresponding
simulated rebalanced HY portfolio returns where transition dynamics are given by different
copulas, applying discrete one-year transition matrices for migrations. Different sets of
values of β are used, where βmid = βmax/2.
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C.3 Alternative Migration Conditioning
The mapping of stock returns to uniforms by grouping together all sample paths and
considering the empirical distribution for returns over a specified time window, has the
benefit of assigning high importance to jump risk as well as increasing the credit migration
frequency in periods of high stock volatility. However, due to the nature of stochastic
volatility the actual distribution of stock returns over the migration time windows will
vary depending on the level of volatility. That is, if we denote our migration times tj ,
j = 1, . . . , jT , where tjT is the last migration time within the risk horizon, we fix j and
consider the stock return Stj/Stj−1 . The actual distribution of this quantity will vary
depending on the value of the volatility process at tj−1.

Therefore, one might argue the notion of empirical distribution is flawed in this case
and that values of the uniforms will be biased toward more extreme outcomes in periods
of higher volatility. An alternate route is to consider only the Brownian motion of the
stock movement, where the distribution is fully known within any migration time window.
This allows for construction of uniforms unaffected by stochastic volatility and analytically
given from sampled stock process outcomes, but also has the disadvantage of ignoring the
jump component altogether. Following this approach, we consider the quantities

Z =
∫ tj

tj−1
dWS

s ∼ N(0, tj − tj−1), (C.1)

whereby uniforms relating to stock index movements are easily constructed according to

U = Φ
(

Z
√
tj − tj−1

)
(C.2)

where Φ(·) is the standard normal distribution function.
With uniforms constructed according to the above, credit migrations may be simulated

by following the steps of Section 4.3.2.

C.3.1 Portfolio Simulation

We follow this alternate route to perform simulation from the framework, setting pa-
rameters according to Table 5.3, but modifying the copula for migrations much like in
Section 5.3.2. Focusing on IG and HY portfolios with monthly rebalancing, we simulate
N = 20, 000 economic scenarios, attaching portfolio evolution scenarios for each copula.
Applying the method described here for transforming stock index returns to uniforms,
we compute lower quantiles and dependence measures and present results in Figures C.7
and C.8 for IG and HY portfolios respectively, comparing to results obtained when the
standard method of Section 4.3.2 is used.

Unsurprisingly, this method leads to a weaker form of dependence within the portfolios
as well as across markets, as indicated in all of the plots. The stock index jump component
is here fully disconnected from any credit-side movements, contributing to more variance
in stock index movements while having zero influence on bond portfolios. While the
transformation of monthly stock index returns to uniforms is more analytically sound
with this method, the disregard of stock index jumps is likely a drawback impeding the
outlook of adapting the model to reality. However, if the model were revamped to plant
dependence between equity jump component and credit risk elsewhere, such as in the
behaviour of hazard rates, the approach may be assessed in a different light.

Even though the overall dependence is weaker than previously for most migration
copula specifications, it is interesting to note how the conditioning method affects measures
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for upper tail dependence. In Figure C.9, 0.95 and 0.995 level estimates are presented.
The figure suggests that slightly higher values of upper tail dependence are obtained with
this conditioning method, at least as indicated by 0.95 level plots and when a copula with
higher dependence is applied for migrations, and for the HY portfolio moreso than for the
IG portfolio. We recall that the influence of stock index volatility is much larger on the
HY hazard rate than it is on the IG hazard rate. With this conditioning method, the
level of volatility is irrelevant for the transition modelling. While a low volatility level still
often comes with high stock Brownian motion movements and, in the case of high β, with
low migration probabilities, a uniform constructed through Equation (C.2) is in this case
more often closer to 1 than one constructed through Equation (4.19). It seems upward
transitions are therefore more likely to occur jointly with large positive stock movements
with this conditioning method than with the original one. Still, dependence in the upper
tail appears far weaker than in the lower tail.
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Figure C.7: Quantiles and dependence measures for the IG bond portfolio with monthly
rebalancing, based on simulation of N = 20, 000 economic scenarios with independent
portfolio scenarios generated for each copula and stock index transition weight varying
between 0 and 1 in steps of 0.1. Solid lines show results when monthly stock index returns
are transformed to uniforms by applying the probability transform on the empirical distri-
bution, whereas dashed lines result from application of the alternative method described
in Appendix C.3
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Figure C.8: Quantiles and dependence measures for the HY bond portfolio with monthly
rebalancing, based on simulation of N = 20, 000 economic scenarios with independent
portfolio scenarios generated for each copula and stock index transition weight varying
between 0 and 1 in steps of 0.1. Solid lines show results when monthly stock index returns
are transformed to uniforms by applying the probability transform on the empirical distri-
bution, whereas dashed lines result from application of the alternative method described
in Appendix C.3
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Figure C.9: Upper tail index estimates between stock index and bond potrfolio returns,
based on simulation of N = 20, 000 economic scenarios with independent portfolio scenar-
ios generated for each copula and stock index transition weight varying between 0 and 1
in steps of 0.1. Solid lines show results when monthly stock index returns are transformed
to uniforms by applying the probability transform on the empirical distribution, whereas
dashed lines result from application of the alternative method described in Appendix C.3
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