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Abstract

Since the �nancial crisis which started in 2007, the risk awareness in the �-
nancial sector is greater than ever. Financial institutions such as banks and
insurance companies are heavily regulated in order to create a harmonic and
resilient global economic environment. Su�ciently large capital bu�ers may
protect institutions from bankruptcy due to some adverse �nancial events
leading to an undesirable outcome for the company. In many regulatory
frameworks, the institutions are obliged to estimate high quantiles of their
loss distributions. This is relatively unproblematic when large samples of
relevant historical data are available. Serious statistical problems appear
when only small samples of relevant data are available. One possible solu-
tion would be to pool two or more samples that appear to have the same
distribution, in order to create a larger sample.

This thesis identi�es the advantages and risks of pooling of small samples.
For some mixtures of normally distributed samples, with what is considered
to be the same variances, the pooled data may indicate heavy tails. Since
a �nite mixture of normally distributed samples has light tails, this is an
example of spurious heavy tails.

Even though two samples may appear to have the same distribution function
it is not necessarily better to pool the samples in order to obtain a larger
sample size with the aim of more accurate quantile estimation. For two
normally distributed samples of sizes m and n and standard deviations s
and v, we �nd that when v/s is approximately 2, n+m is less than 100 and
m/(m+n) is approximately 0.75, then there is a considerable risk of believing
that the two samples have equal variance and that the pooled sample has
heavy tails.

Keywords: Small samples, Tail index estimation, Normal mixture models,
Heavy tails



Sammanfattning

Efter den �nansiella krisen som hade sin start 2007 har riskmedvetenheten
inom den �nansiella sektorn ökat. Finansiella institutioner så som banker
och försäkringsbolag är noga reglerade och kontrollerade för att skapa en
stark och stabil världsekonomi. Genom att banker och försäkringsbolag en-
ligt regelverken måste ha kapitalbu�ertar som ska skydda mot konkurser vid
oväntade och oönskade händelser skapas en mer harmonisk �nansiell mark-
nad. Dessa regelverk som institutionerna måste följa innebär ofta att de
ansvariga måste skatta höga kvantiler av institutionens förväntade förlust-
funktion. Att skapa en pålitligt modell och sedan skatta höga kvantiler är
lätt när det �nns mycket relevant data tillgänglig. När det inte �nns till-
räckligt med historisk data uppkommer statistiska problem. En lösning på
problemet är att poola två eller �era grupper av data som ser ut att komma
från samma fördelningsfunktion för att på så sätt skapa en större grupp med
historisk data tillgänglig.

Detta arbetet går igenom fördelar och risker med att poola data när det inte
�nns tillräckligt med relevant historisk data för att skapa en pålitlig mo-
dell. En viss mix av normalfördelade datagrupper som ser ut att ha samma
varians kan uppfattas att komma från tungsvansade fördelningar. Eftersom
normalfördelningen inte är en tungsvansad fördelning kan denna missupp-
fattning skapa problem, detta är ett exempel på falska tunga svansar.

Även fast två datagrupper ser ut att komma från samma fördelningsfunktion
så är det inte nödvändigtvis bättre att poola dessa grupper för att skapa ett
större urval. För två normalfördelade datagrupper med storlekarna m och
n och standardavvikelserna s och v, är det farligaste scenariot när v/s är
ungefär 2, n+m är mindre än 100 och m/(m+n) är ungefär 0.75. När detta
inträ�ar �nns det en signi�kant risk att de två datagrupperna ser ut att
komma från samma fördelningsfunktion och att den poolade datan innehar
tungsvansade egenskaper.
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Chapter 1

Introduction

One of the main factors of the �nancial crisis that started in 2007 was the
fact that banks engaged in too much risk compared to their capital stock.
When a bank became insolvent it resulted in either bankruptcy or a bailout
by the government. The problem with the bailouts was that it was such
large banks that needed the bailouts which put the governments under a
great amount of stress. Ever since the crisis the attitude towards �nancial
risk has completely changed. Today the �nancial institutions such as banks
and insurance companies are heavy regulated by �nancial authorities, as
well as investigated by clients and potential investors. Two of the regulatory
frameworks that are widely used today are the Basel III and the Solvency
II frameworks. One of the common factors with these frameworks is that
the institutions are supposed to estimate high quantiles of their loss distri-
butions. This is easily done with common risk measures such as value at
risk (VaR) and expected shortfall (ES) when there is a lot of data present.
The problem that occurs is when the risk managers do not have su�cient
historic data at hand in order to construct accurate models. One important
part is to understand if the underlying distribution of the data set is reg-
ularly varying or not, i.e. if it is heavy-tailed. If the data set comes from
a heavy-tailed distribution the estimated high quantile is much larger than
the same quantile of a light-tailed distribution.

When dealing with small samples the accuracy of an estimated high quan-
tile may be questioned. A solution to the lack of data could be to pool a
data set with another that looks like it come from the same distribution. By
pooling two or more data sets the sample size increases and a more accurate
model can be built. But in order to pool data sets there has to be a good
understanding of the sets, if this is done wrong there could be devastating
consequences. Some examples of when the risk managers have insu�cient
data sets and pooling of data could be an option in order to estimate high
quantiles could be when dealing with operational risk or �re insurance for
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1. Introduction

industries.

The purpose with this thesis is to understand what can happen when pooling
two or more data sets and what can be misinterpreted. What combinations
of samples are easy to misinterpret and how should a data pool be composed
in order to get an accurate model. It also aims at presenting necessary and
helpful tools in order to perform extreme value analysis of pooled data. The
importance with this report is to truly understand the underlying distribu-
tions and what the result will be when pooling the data. Hopefully this
degree project helps banks and insurance companies to get a more accurate
estimation of the high quantiles of their loss distributions.

In chapter 2 the theoretical background will be described. It will help the
reader to get a deeper understanding of the underlying problem and how the
analysis is composed. It contains standard topics used in risk management
in the �nancial industry. In chapter 3 the tail index estimators are presented
and analysed. These estimators have di�erent properties and it is important
to get a good understanding of these estimators in order to make accurate
estimations of the underlying model. In chapter 4 the composition of the
normal mixture model is presented. How can a mixture be constructed and
what can be di�cult when dealing with mixtures of such kinds? In chapter
5 the results of the simulations and analysis is presented. What kind of
mixtures of pooled data are easy to misinterpret and how should we pool
data in order to make good models? In chapter 6 the conclusion of the thesis
is presented.
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Chapter 2

Theoretical Background

2.1 Extreme Value Theory

The problem with extreme value theory is that the events that are studied
are not the usual events that occur, it is rather the unusual events. However
this is not a problem if there are a lot of data available, then the extreme
events could be found within the data. The bigger problem with the ex-
tremal events modelling is when there is a lack of data, when the data set
is small. According to Coles (2000) extreme values are scarce by de�nition,
which means that the levels of the estimates are much greater than those
who have already been observed, then one have to extrapolate from observed
data to unobserved data.

The work by de Haan and Ferreira (2006) describes the asymptotic theory
of sample extremes as a parallel theory to the central limit theory, where
they both do have similarities. The central limit theorem describes what
happens with the sum X1 + X2 + · · · + Xn as n → ∞ contrary to the
asymptotic theory of sample extremes which describes the asymptotic be-
haviour of max(X1, X2, . . . , Xn) or min(X1, X2, . . . , Xn) as n → ∞, where
X1, X2, . . . , Xn are independent and identically distributed variables. If you
compare two di�erent insurance companies where one of the companies are
strictly insuring personal vehicles such as cars, and the other company in-
sures large industries from �res. For the insurance company that insures
cars, the sum of all expected future paid out claims is the interesting part
since all payments they make are more or less alike in size. For the other
company that work with �re insurances for industries, one large �re could
mean an insurance claim of a massive amount of money contrary to the
�normal� claim sizes.

3



2. Theoretical Background

2.2 Heavy Tails

Heavy tails are present in all sorts of �elds, it is known that by 2016 the
top 1% of the richest people in the world will own more than the rest of
the population. Another example is where people decides to live on the
planet. There are great amounts of land which is not populated and there
are some relatively small locations with great amounts of people. Within
�nance and risk management the heavy tails may be represented by volatile
log-returns and large insurance claims. According to Hult et al. (2012) there
is no de�nition of �heavy tail�, but it is common to consider the right tail of
a distribution as heavy if

lim
x→∞

F̄ (x)

e−λx
=∞ for every λ > 0,

where F̄ (x) = 1− F (x), and F (x) is the underlying distribution function.
This means that a distribution with a heavier right tail than any exponential
distribution is considered as a distribution with a heavy tail. Examples of
heavy-tailed distributions would be the Pareto distribution as well as the
Student's t distribution. An example of a non heavy-tailed distribution is
the Normal distribution. One problem with misinterpreting the data as com-
ing from a heavy-tailed distribution would be that you expect an extremal
value as a worst case scenario when in fact there will most likely not occur
such a case. Especially when estimating large quantiles of an underlying
distribution, it is of great importance that you have an accurate estimation
when it comes to if the distribution is heavy-tailed or not.

2.3 Peaks over Threshold Method

Since from a risk managers point of view it is of great importance to under-
stand if the data comes from a heavy-tailed distribution, a suitable model
for �tting the data is the peaks over threshold model (POT). This model is a
generalized model that analyses the data over a speci�c high threshold which
is of interest when gaining an understanding of the tail of the distribution.
Since the focus is on the distribution of the tail it is not logical to include
the whole data set, that is why the speci�c high threshold is set.
Suppose that we have i.i.d. random variables X1, . . . , Xn with common un-
known distribution function F . Say that we are interested in the excesses
over a speci�c high threshold u, we de�ne the distribution function for the
excesses over threshold as

Fu(x) = P{X − u ≤ x|X > u} =
F (x+ u)− F (u)

1− F (u)
,

for 0 ≤ x < x0−u where x0 is the �nite or in�nite endpoint of the distribution
F . From Hult et al. (2012) we know that the distribution of appropriately
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2. Theoretical Background

scaled excesses Xk−u over a high threshold u is typically well approximated
by the Generalized Pareto Distribution (GPD). The two parameter GPD has
the distribution function

Gξ,σ(x) =

{
1− (1 + ξx

σ )−1/ξ if ξ 6= 0
1− exp(−x/σ) if ξ = 0

(2.1)

where σ ≥ 0 and x ≥ 0. This GPD can be grouped in to three classes. When
ξ > 0 the distribution is a reparametrized regular Pareto distribution. When
ξ < 0 the distribution is the type II Pareto and when ξ = 0 it is called the
Gumbel distribution. Take ξ > 0 and σ > 0 then from (2.1) we get

Gξ,σ(x) = 1− (1 + ξx/σ)−1/ξ.

We now consider X as a random variable with distribution function F that
has a regularly varying right tail

lim
u→∞

F̄ (λu)

F̄ (u)
= λ−α, (2.2)

for all λ > 0 and some α > 0. Where F̄ = 1− F . Then we get

lim
u→∞

P

(
X − u
u/α

> x | X > u

)
= lim

u→∞

P (X > u(1 + x/α))

P (X > u)

= (1 + x/α)−α = Ḡ1/α,1(x).

2.4 Inference Theory

One of the most essential parts within inference theory is the development
of e�cient estimators of model parameters. Boos and Stefanski (2013) men-
tions that the likelihood of the model along with the maximum likelihood
estimation of the parameters of that same model is an approach to statistical
inference that applies to a wide variety of problems. One simple example they
describe in their work is the maximum likelihood parameter estimation of an
independent and identically normally distributed sample X1, . . . , Xn. The
sample comes from the N(µ, σ2) family with the density function f(x;µ, σ).
Then the likelihood of the i.i.d. sample X = (X1, . . . , Xn)T is

L(µ, σ| X) =
n∏
i=1

f(Xi;µ, σ),

which gives the maximum likelihood estimation of the parameters µ and σ
as

µ̂ =
1

n

n∑
i=1

Xi and σ̂2 =
1

n

n∑
i=1

(
Xi −

1

n

n∑
j=1

Xj

)2
.
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2. Theoretical Background

When your model is complete and fully speci�ed the maximum likelihood
estimations are e�cient and an easy tool to use. One crucial part of the
likelihood approach is that the model is accurate. In order to make good
inferences from the statistical model one has to fully understand the di�erent
parts of the model as well as how these parts handles the analysed data.

2.5 Univariate Normal Distribution

In this degree project mixtures of univariate normal distributions are com-
posed. In order to understand the behaviour of the mixture it is important
to know the theory behind the underlying distributions. What normally
de�nes a normally distributed random variable X is its density f(x). The
density of the standard normal distribution is

f(x) =
1√
2π

e−
x2

2 ,

and the density function of N(µ, σ), where µ is the mean and σ is the stan-
dard deviation is

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

The univariate normal distribution is not considered as a heavy-tailed dis-
tribution since it is of exponential order.

2.6 Univariate Student's t Distribution

The student's t distribution is a heavy-tailed distribution which is used in this
thesis. We do want to construct a mixture of normally distributed variables
that behaves as a heavy-tailed distribution and in this case the student's t
distribution. In order to do so we need a theoretical understanding of the
distribution. A student's t distributed random variable X has the density
function

f(x) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)(1 +
x2

ν

)− ν+1
2

,

where ν is the degrees of freedom and Γ(·) is the gamma function. A stu-
dent's t distributed random variable X with ν degrees of freedom can also
be expressed as

X = Z

√
ν

V
,

where Z is a standard normal distributed random variable and V has a
chi-squared distribution with ν degrees of freedom and is independent of Z.

6



2. Theoretical Background

2.7 Risk Measures

A risk measure is a measure of the riskiness of a position quanti�ed in mon-
etary units. It can be viewed as a bu�er of capital that should be kept in
reserve in order to act as protection if the investment gives an undesirable
return. The �nancial authorities wants to regulate the risk taken by �nancial
institutions such as banks and insurance companies. By using common risk
measures the risk taken by the institutions can be regulated by the authori-
ties. The risk measure do often imply high quantiles of the loss distribution.
This is a problem when dealing with small samples which will be dealt with
later on. There are two common risk measures that are widely used, value
at risk (VaR) and expected shortfall (ES).

2.7.1 Value at Risk

VaR indicates in its most common form, the monetary amount at risk of an
investment with a given probability over a certain time period. This is a
quanti�ed measure used by investors and risk controllers to measure the risk
of a speci�c asset or a portfolio of assets. According to Hult et al. (2012) the
value at risk at level p ∈ (0, 1) of a portfolio with value X at time 1 is

VaRp(X) = min{m : P(mR0 +X < 0) ≤ p},

where R0 is the percentage return of a risk-free asset. This means that the
value at risk of the portfolio value X at time 1 is the least amount of money
that should be invested in a risk-free asset at time 0, in order to get a negative
return at time 1 with probability less than or equal to p. Value at risk is
often criticized because it doesn't take into consideration what happens in
the tail beyond the selected con�dence level. Ignoring the shape of the tail
could be costly because of the fact that huge losses can be hidden in the tail.
When using VaR in practice the underlying distribution is not necessarily
known, then one uses the empirical VaR which is de�ned as

V̂aRp(X) = L[np]+1,n,

where L1,n ≥ · · · ≥ Ln,n are the ordered historical losses.

2.7.2 Expected Shortfall

As an alternative to the VaR measure there is expected shortfall (ES). ES
do take the tail beyond the level p into account when calculating the risk. It
is de�ned as follows

ESp(X) =
1

p

∫ p

0
VaRu(X)du.

7



2. Theoretical Background

This risk measure is often considered as a superior alternative to VaR be-
cause it takes the whole tail of the distribution into account. The empirical
expected shortfall is de�ned as

ÊSp(X) =
1

p

∫ p

0
L[nu]+1,ndu =

1

p

(
[np]∑
k=1

Lk,n
n

+

(
p− [np]

n

)
L[np]+1,n

)
.

2.8 Risk Regulations

Within the �nancial industry, institutions manages other institutions' and
private persons' money. Banks have been criticized when they have been
making to risky investments with other people's money in order to make a
huge pro�t for themselves. To prevent banks and other institutions to risk
others money, some regulatory framework has to exist. Standardized guide-
lines on what capital bu�er �nancial institutions have to set a side when
taking risks is not totally new. Already in the 80's the Basel Committee on
Banking Supervision (BCBS) published the Basel I framework, which was
a set of minimum requirements on capital for banks. These sets of require-
ments sooner developed in to the Basel II framework. Within the �nancial
industry there are mostly two regulatory frameworks that are in use, Basel
III for the banking industry and Solvency II for the insurance industry.

BCBS (2010) states that Basel III's reforms are developed in order to strengthen
the global capital market. With stronger capital and liquidity rules the bank-
ing sector will more likely absorb �nancial stress and shocks. Basel III is
mostly composed by the issues that was raised after the most recent �nan-
cial crisis, where the committee believes that a strong and resilient banking
sector is the foundation of a global sustainable economic growth. With the
Basel III framework banks are free to choose between many di�erent risk
measures when quantifying their risks in monetary terms. The most com-
mon measure is value at risk since it is easy to use. When calculating risk
with the VaR measure with high con�dence, a high quantile of the loss dis-
tribution has to be estimated.

Solvency II is a framework for the insurance and reinsurance industry in the
European Union. It serves as a tool to harmonize the industry. European
Commission (2014) states that Solvency II is based on three pillars:

Pillar 1: Harmonised valuation and capital requirements

Pillar 2: Harmonised governance, internal control and risk management
requirements

8



2. Theoretical Background

Pillar 3: Harmonised supervisory reporting and public disclosure

Contrary to the Solvency I framework the new solvency requirements are
more sophisticated and risk-sensitive. This will contribute to a better cov-
erage of the risk taking, since the model is not a �one-model-�ts-all� way of
estimating the size of capital bu�ers. As for the Basel III framework and
other di�erent regulation requirements, the standard risk measure used in
Solvency II is VaR.

9



Chapter 3

Tail Index Estimators

There is a di�erence when dealing with extremal events contrary to �usual�
events. As described in the previous chapter the extremal events are con-
sidered unusual or scarce. One important part when dealing with extremal
events are the understanding of the data. Embrechts et al. (2001) stresses
the importance of looking at graphs and plots of the data and your estima-
tions in order to get a greater understanding of the underlying problem. In
this chapter the methods that are used later on in this thesis are described.
In extreme value theory there are many di�erent methods that can be used
in many di�erent ways, here we have narrowed it down to the most relevant
for our case.

In this section the di�erent methods used in this paper when �tting a GPD
to simulated data are described.

3.1 Maximum Likelihood Estimation

Consider the excesses over threshold (u), X1, . . . , Xn, as independent vari-
ables having the Generalized Pareto Distribution with ξ 6= 0. Then the
log-likelihood for the GPD parameters is

l(ξ, σ) = −n log σ − (1 + 1/ξ)

n∑
i=1

log
[
1 + ξ

xi
σ

]
,

provided that

1 + ξ
xi
σ
> 0 for i = 1, . . . , n.

With ξ = 0 the log-likelihood equation is

l(σ) = −n log σ −
n∑
i=1

xi
σ
.

10



3. Tail Index Estimators

Maximization of the log-likelihood function leads to the maximum likelihood
estimation of the parameters for the GPD function. This is not done analyt-
ically, but for a given data set {x1, . . . , xn} this is easily done numerically.

3.1.1 Large Sample Asymptotics

One of the bene�ts with the Maximum Likelihood parameter estimation is
the wide applicability for many di�erent sampling distributions. For the
Maximum Likelihood method approximations of standard errors and con�-
dence intervals can be calculated. As the sample size n increases to in�nity
these results can be strictly determined. From Coles (2000) we get the fol-
lowing Theorem.

Theorem 3.1 Let x1, . . . , xn be independent realizations from a distribu-

tion with a parametric family F , and let l(·) and θ̃0 denote respectively

the log-likelihood function and the maximum likelihood estimator of the d-

dimensional model parameter θ0. Then, under suitable regulatory conditions,
for large n

θ̃0 ∼ MVNd(θ0, IE(θ0)
−1),

where

IE(θ) =


e1,1(θ) · · · e1,d(θ)

...
. . . ei,j(θ)

...

ej,i(θ)
. . .

ed,1(θ) . . . ed,d(θ)

 ,
with

ei,j(θ) = E

{
− ∂2

∂θi∂θj
l(θ)

}
.

�

The matrix IE is called the expected information matrix. Now the approx-
imated con�dence intervals for θ0 = (θ1, . . . , θd) when n is large follows a
normal distribution

θi ∼ N(θi, ψi,i),

where ψi,i is the i:th component in the diagonal of the inverted expected
information matrix. By the known behaviour of the normal distribution we
know that the approximated (1− α) con�dence interval of θi is

θ̂i ± zα
2

√
ψi,i,

11



3. Tail Index Estimators

where zα
2
is the (1 − α/2) quantile of the standard normal distribution.

Since the values of θ0 often are unknown Coles (2000) presents the observed
information matrix IO as a complement to the expected information matrix.
This observation matrix is formed as

IO(θ) =


− ∂2

∂θ21
l(θ) · · · − ∂2

∂θ1∂θd
l(θ)

...
. . . − ∂2

∂θi∂θj
l(θ)

...

− ∂2

∂θj∂θi
l(θ)

. . .

− ∂2

∂θd∂θ1
l(θ) · · · − ∂2

∂θ2d
l(θ)

 .

With the observed information matrix evaluated at θ = θ̂ the elements of
the inverted information matrix is denoted by ψ̄i,j . Then the approximated
(1− α) con�dence interval for θi is

θ̂i ± zα
2

√
ψ̄i,i.

By using this for the two parameter generalized pareto distribution Hosking
and Wallis (1987) shows that

var

[
σ̂

ξ̂

]
∼ 1

n

[
2σ2(1 + ξ) σ(1 + ξ)
σ(1 + ξ) (1 + ξ)2

]
, ξ > −1/2.

3.1.2 Threshold Selection

When performing extreme value analysis through the peaks over threshold
method, the threshold selection is important in order to achieve reliable
results. In the previous section it was shown that the maximum likelihood
estimator converges at the rate n−1, but this is only true for a suitable choice
of the threshold u. Here we study how the maximum likelihood estimator
behaves for di�erent choices of thresholds. The �rst approach is to pick the
number of exceedances k as k(n) = nα, where α ∈ (0, 1). To the left in
Figure 3.1 the mean of the estimated tail index of 1,000 samples where the
sample size n increases from 40 to 1,000 is shown. The data comes from
Student's t distributed samples with ν = 3, which corresponds to a true tail
index of ξ = 1/3. To the right in Figure 3.1 the the tail index is estimated
through the same method but here k(n) = βn.
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Figure 3.1: Mean of 1,000 estimations of the tail index with the maximum

likelihood estimator for Student's t distributed samples with threshold selec-

tion as Left: k(n) = nα and Right: k(n) = βn.

As we can see in Figure 3.1 the di�erent threshold selections do not di�er
much except for the selection where α = 0.85.

3.1.3 Small Sample Behaviour

In order to understand the estimators better when small sample sizes are
considered we simulate samples from a heavy-tailed distribution and increase
the sample size and investigate how the bias (E[ξ̂− ξ]) behaves and how the
mean squared error (E[(ξ̂ − ξ)2]) behaves. As the heavy-tailed distribution
we choose the Student's t-distribution where we vary the degrees of freedom
as well as the sample size. In order to determine the bias and MSE of the
MLE we �rst have to choose the optimal threshold u. From previous section
we know that the estimated tail index is not sensitive to the threshold se-
lection for a small sample. We choose the threshold u as the top 20% of the
data, which corresponds to k(n) = 0.2n. Then we use maximum likelihood
estimation in order to estimate ξ from the excesses over the speci�c threshold
u. Here we use MATLAB's built in function gp�t which is a maximum like-
lihood estimator. The bias and MSE of the maximum likelihood estimation
is shown in Figure 3.2. Here the Bias is considered as

Bias =
1

n

n∑
i=1

(ξ̂ − ξ),

and the MSE

MSE =
1

n

n∑
i=1

(ξ̂ − ξ)2.

13
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Figure 3.2: Plots showing the bias and MSE of the estimated ξ's by the Max-

imum Likelihood. Data comes from Student's t-distribution with ν degrees of

freedom. Threshold set as 20%. Left: Bias of MLE. Right: MSE of MLE.

From the plots we can tell that the estimated bias of the maximum likelihood
estimation is large for small samples of the Student's t distribution. To
further investigate the bias of the estimator the density plots of ξ̂ for the
Student t distribution with ν = 3 degrees of freedom are shown in Figure
3.3. We can tell that for small n < 90 there actually is a large estimated bias
(the small bump at around −1.2 do contribute much). As n increases ξ̂ moves
towards a more stable value but still centred left of the true value (ξ = 1/3).
As presented earlier one of the criteria of the maximum likelihood estimator
is that ξ > −0.5. This must be taken into consideration when dealing with
small samples and small tail indices as we can see from Figure 3.3.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Density of estimated ξ for Student t distributed samples with ν = 3

Estimated ξ

Figure 3.3: Density plots of ξ̂ estimated by the ML-method for 50 ≤ n ≤ 200
from 1000 samples of Student's t distribution with ν = 3 degrees of freedom,

where the dashed line represent the true ξ = 1/3.
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3. Tail Index Estimators

3.2 Method of Moments

Suppose we have a sample from the two-parameter GPD

Gξ,σ(x) = 1− (1 + ξ
x

σ
)−1/ξ.

From Migdalas et al. (2013) we get that the moments of the random variable
X is

E

[(
1 + ξ

X

σ

)r]
=

1

1− rξ
, 1− rξ > 0,

which leads to

E(Xr) = r!
σr

ξr+1

Γ
(
1
ξ − r

)
Γ
(
1 + 1

ξ

) , ξ <
1

r
,

where Γ(.) is the Gamma function. Then the mean and variance are

E(X) =
σ

1− ξ
, ξ < 1,

and

Var(X) =
σ2

(1− ξ)2(1− 2ξ)
, ξ <

1

2
.

If we simulate a sample from the two-parameter GPD with parameters (ξ, σ)
and let x̄ be the sample mean and s2 be the sample variance. Then by
replacing the mean and variance by x̄ and s2 the Method of Moments (MOM)
estimators are

ξ̂MOM = −1

2

(
x̄2

s2
− 1

)
and σ̂MOM =

1

2
x̄

(
x̄2

s2
+ 1

)
.

With the sample mean and the sample variance explicitly expressed for the
estimators we get

ξ̂MOM = −1

2

( (
1
n

∑n
i=1 xi

)2
1
n

∑n
i=1

(
xi − 1

n

∑n
j=1 xi

)2 − 1

)
,

and

σ̂MOM =
1

2n

n∑
i=1

xi ×
( (

1
n

∑n
i=1 xi

)2
1
n

∑n
i=1

(
xi − 1

n

∑n
j=1 xi

)2 + 1

)
.
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3. Tail Index Estimators

3.2.1 Large Sample Asymptotics

Hosking and Wallis (1987) shows that the MOM estimators are asymptoti-
cally stable for ξ < 1/4 (when there exists a fourth moment) and normally
distributed with variances

var

[
σ̂

ξ̂

]
∼ 1

n

(1− ξ)2

(1− 2ξ)(1− 3ξ)(1− 4ξ)

×
[

2σ2(1− 6ξ − 12ξ2) σ(1− 2ξ)(1− 4ξ − 12ξ2)
σ(1− 2ξ)(1− 4ξ − 12ξ2) (1− 2ξ)2(1− ξ − 6ξ2)

]
.

3.2.2 Threshold Selection

As for the maximum likelihood estimator the threshold selection is a part
of the extreme value analysis for the method of moments estimator. The
same analysis is performed for this estimator as for the MLE. The results
are shown in Figure 3.4.
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Figure 3.4: Mean of 1,000 estimations of the tail index with the method of

moments estimator for Student's t distributed samples with threshold selec-

tion as Left: k(n) = nα and Right: k(n) = βn.

From Figure 3.4 we can see that the threshold selections that perform best
is when α = 0.65, α = 0.75, β = 0.15, β = 0.2, β = 0.25.

3.2.3 Small Sample Behaviour

We do the same analysis as for the MLE. We choose the same threshold as
before and look at the bias and MSE of the MOM-estimator when the sample
size n is increased. We use the same data as for the maximum likelihood
estimation and only the excesses are considered. The result is shown in
Figure 3.5.
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Figure 3.5: Plots showing the bias and MSE of the estimated ξ's by the

Method of Moments method. Data comes from Student's t-distribution with

ν degrees of freedom. Threshold set as 20%. Left: Bias of MOME. Right:

MSE of MOME.

As we did for the MLE we plot the densities of ξ̂ for 1000 samples of the
Student's t distribution as the sample size n increases from 50 to 200. The
results are plotted in Figure 3.6. By the density plots we can see that the
estimated bias is negative as the previous plots show. As the sample size
increases the mean of the density moves towards a certain value, but for
n = 200 it is still not around the true value (ξ = 1/3).
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Figure 3.6: Density plots of ξ̂ estimated by the MOM-method for 50 ≤ n ≤
200 from 1000 samples of Student's t distribution with ν = 3 degrees of

freedom, where the dashed line represent the true ξ = 1/3.

17



3. Tail Index Estimators

3.3 Hill's Estimator

Suppose we haveX1, . . . , Xn iid with distribution function FX(x), x ≥ u > 0.
We sort our simulated sample x1,n ≥ · · · ≥ xn,n. Then the Hill estimator is

α̂(H) = α̂
(H)
k,n =

(
1

k

k∑
j=1

lnxj,n − lnxk,n

)−1
,

where ξ̂ = (α̂(H))−1. The di�culty with Hill's estimator is the choice of k
(number of exceedances of the threshold). Dacorogna et al. (1995) shows
that the asymptotic properties of the Hill estimator can be developed for the
following class of distributions

F (x) = 1− ax−α(1 + bx−β), (3.1)

where α, β > 0 and a, b ∈ R. Note that this class of distributions satis�es
condition (2.2). According to Dacorogna et al. (1995) the asymptotic ex-
pected value of the Hill estimator for this class of distributions for a given
number of exceedances, k, can be approximated by

E(ξ̂(k)) ≈ 1

α
− bβ

α(α+ β)
a−

β
α
(k
n

) β
α , (3.2)

and the variance

Var(ξ̂(k)) ≈ 1

kα2
. (3.3)

Lets say that we have a sample {x1, . . . , x100} from the class of distributions

in (3.1), where α = β = 4 and a = b = 1. We calculate E[ξ̂(k)]α̂
(H)
k and plot

if for k = 1, . . . , 20. This is shown in Figure 3.7.
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Figure 3.7: The quotient E[ξ̂(k)]α̂
(H)
k for a sample of size 100 as a function

of number of exceedances for the distribution F (x) = 1− x−4(1 + x−4).
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3. Tail Index Estimators

From (3.2) and (3.3) we can tell that a small k is preferable in an unbiasedness
perspective, and a large k is preferable in a minimize variance perspective.
There has to be a trade-o� between these two perspectives. As Huisman
et al. (2012) we impose the restriction α = β, which implicitly makes the
bias linear in k. This restriction is only true for the limiting Extreme Value
Distribution and not for small samples. According to Dacorogna et al. (1995)
for the Student's t distribution α equals the number of degrees of freedom
and β = 2. But after experimental simulations Dacorogna et al. (1995) shows
that the tail-index estimations are not very sensitive for di�erent choices of
β. This makes the assumption α = β valid. By

ξ̂(k) = E[ξ̂(k)]−
√
Var
(
ξ̂(k)

) ξ̂(k)− E[ξ̂(k)]√
Var
(
ξ̂(k)

) , (3.4)

equations (3.2)-(3.4) gives

ξ̂(k) = c0 + c1k +
c2√
k
ε(k), (3.5)

where k = 1, . . . ,K. Equation (3.5) can be composed on matrix form as

ξ̂ = ZC + V ε, (3.6)

Where Z is a (K × 2) matrix with ones in the �rst column and the k-values

in the second. V is a (K × 1) vector with
√
Var
(
ξ̂(k)

)
as its elements. This

equation can be solved by the least squares method. But since the variance

in equation (3.3) is inversely related to k the error term
√
Var
(
ξ̂(k)

)
ε(k) is

heteroscedastic. By multiplying with a (K × K) weighting matrixW , which
has
√

1, . . . ,
√
K in the diagonal and zeros elsewhere, equation (3.6) can be

written as

ξ̂m = (Z ′W ′WZ)−1Z ′W ′Wξ̂,

where the �rst element in ξ̂m is the estimated tail-index. This modi�ed Hill
estimator can also be viewed as the weighted average of the traditional Hill
estimators for k = 1, . . . ,K

ξ̂m1,1(K) =

K∑
k=1

w(k)ξ̂(k).

After some matrix algebra the weights w(k) can be determined as

w(k) =
k
∑K

j=1 j
3 − k2

∑K
j=1 j

2

∑K
j=1 j

∑K
j=1 j

3 −
(∑K

j=1 j
2

)2 .
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3. Tail Index Estimators

3.3.1 Large Sample Asymptotics

According to Deheuvels et al. (1988) one reason for choosing the Hill estima-
tor is that the estimate ξ̂ is close to optimal when it comes to minimizing the
asymptotic mean squared error. They also tells us that for any 0 < ξ < ∞
the following statements are equivalent:

(i) The distribution function F has an upper tail of form

1− F (x) = P (X1 > x) = x−1/ξl(x) for x > 0,

where l(x) is a slowly varying function at in�nity and {X1, . . . , Xn} is a
sequence of i.i.d. with distribution function F.

(ii) For all sequences satisfying

1 ≤ kn ≤ n− 1, kn →∞ and n−1kn → 0 as n→∞,

ξ̂n
p→ ξ as n→∞.

(iii) For any sequence of the form kn = [na], (with 0 < a < 1, and where
[x] denotes the integer part of x)
ξ̂n

a.s.→ ξ as n→∞.

After further investigations it can be shown, under certain regulatory condi-
tions on F and kn that

k1/2n ξ̂
d→ N(ξ, ξ2) as n→∞.

3.3.2 Threshold Selection

In this section we investigate for which threshold u the Hill estimator and
the modi�ed Hill estimator gives the best results. We conduct the same
simulations as for the previous estimators and the results are shown in Figure
3.8 and Figure 3.9.
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Figure 3.8: Mean of 1,000 estimations of the tail index with the Hill estimator

for Student's t distributed samples with threshold selection as Left: k(n) = nα

and Right: k(n) = βn.
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Figure 3.9: Mean of 1,000 estimations of the tail index with the modi�ed Hill

estimator for Student's t distributed samples with threshold selection as Left:
k(n) = nα and Right: k(n) = βn.

As the graphs shows the Hill estimator do behave better for a higher thresh-
old which is the same as a lower amount of exceedances. The modi�ed Hill
estimator do perform well for small samples for all the di�erent threshold
selections except for k(n) = n0.85.

3.3.3 Small Sample Behaviour

The same analysis for the small samples is done for the Hill estimator. In
order to compare Hill's estimator with the modi�ed Hill's estimator which
has a weighted average of the number of exceedances we set the threshold
for the standard Hill's estimator as the top 10% of the ordered data, which
we could see in the previous section is the best choice. The bias and MSE
of the standard Hill estimator is shown in Figure 3.10 and for the modi�ed
Hill estimator in Figure 3.11.
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Figure 3.10: Plots showing the bias and MSE of the estimated ξ's by the

Hill estimator. Data comes from Student's t-distribution with ν degrees of

freedom. Threshold set as 10%. Left: Bias of Hill estimator. Right: MSE of

Hill estimator.
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Figure 3.11: Plots showing the bias and MSE of the estimated ξ's by the mod-
i�ed Hill estimator. Data comes from Student's t-distribution with ν degrees

of freedom. Threshold set as 20%. Left: Bias of modi�ed Hill estimator.

Right: MSE of modi�ed Hill estimator.

The densities of the estimators are shown in Figure 3.12.
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Figure 3.12: Density plots of ξ̂ estimated by the Hill estimator (left) and

the modi�ed Hill estimator (right), for 50 ≤ n ≤ 200 from 1000 samples of

Student's t distribution with ν = 3 degrees of freedom, where the dashed line

represent the true ξ = 1/3.

As we can see from the results the modi�ed Hill estimator do perform better
for the samples. The density of the modi�ed Hill estimator is centred around
the true value while the regular Hill estimator is right skewed and centred
slightly to the right of the true value, although it performs well for larger
samples.

3.4 The QQ-Estimator

Suppose we have X1,n ≤ · · · ≤ Xn,n iid with distribution function G from
the Pareto family with shape index α > 0, and location parameter µ. We
know that the pareto distribution function is

Fα(x) = 1− x−α, x ≥ 1.

From Kratz and Resnick (1996) we know that since we have data from a
location-scale family

Gµ,σ(x) = G0,1

(x− µ
σ

)
where µ and σ are unknown. Then for y > 0

G0,α(y) := P
(
logX1 > y

)
= e−αy.

We have that G←0,1
(

i
n+1

)
is the theoretical quantile and that Xi,n is the

empirical quantile. Then the plot

{(G←0,1
( i

n+ 1

)
, logXi,n), 1 ≤ i ≤ n} = {(−log

(
1− i

n+ 1

)
, logXi,n), 1 ≤ i ≤ n}
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3. Tail Index Estimators

should approximately be linear with the slope α−1. If we set

yi = −log
(
1− i

n+ 1

)
,

and

zi = logXi,n,

then the slope of the least squares line is

SL({(yi, zi), 1 ≤ i ≤ n}) =
S̄yz − ȳz̄
S̄yy − ȳ2

,

where

S̄yz =
1

n

n∑
i=1

yizi, S̄yy =
1

n

n∑
i=1

y2i ,

and

ȳ =
1

n

n∑
i=1

yi, z̄ =
1

n

n∑
i=1

zi.

This leads to the estimated slope of

α̂−1 =

∑n
i=1−log

(
i

n+1

)
{nlogXn−i+1,n −

∑n
j=1 logXn−j+1,n}

n
∑n

i=1

(
− log

(
i

n+1

))2 − (∑n
i=1−log

(
i

n+1

))2 . (3.7)

But since we are interested in the right tail and not the center of the dis-
tribution this is not necessarily very accurate. If we instead suppose that
we have a sample Z1, . . . , Zn from a distribution function F with a regularly
varying right tail i.e. for large t

1− F (tx)

1− F (x)
≈ x−α.

We want to look at the k largest Z's which are excesses over a threshold, u,
this gives the qq-plot as(

− log(1− i

k + 1
), log(

Zn−k+i
Zn−k

)

)
for i = 1, . . . , k.

Then the new estimated tail index is

α̂−1 = SL({(− log(1− i

k + 1
), log(

Zn−k+i
Zn−k

)), 1 ≤ i ≤ k}).
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3. Tail Index Estimators

Since Zn−k is constant we can write

α̂−1 = SL({(− log(1− i

k + 1
), logZn−k+i), 1 ≤ i ≤ k}).

We can now rewrite equation (3.7) as the dynamic qq-estimator described
by Kratz and Resnick (1996)

α̂−1 =

1
k

∑k
i=1

(
− log

(
1− i

k+1

))
log
(Zn−k+i
Zn−k

)
− 1

k

∑k
i=1

(
− log

(
1− i

k+1

))
Hk

1
k

∑k
i=1

(
− log

(
1− i

k+1

))2 − ( 1k∑k
i=1− log

(
1− i

k+1

))2 ,

where Hk is the Hill estimator

Hk =
1

k

k∑
i=1

log
(Zn−k+i
Zn−k

)
.

3.4.1 Large Sample Asymptotics

From Kratz and Resnick (1996) we get that the dynamic qq-estimator can
be expressed as

α̂−1 =

∑k
i=1− log

(
i

k+1

){
k log(Zn−i+1,n)−

∑k
j=1 log(Zn−j+1,n)

}
k
∑k

i=1

(
− log( i

k+1)
)2 − (∑k

i=1− log( i
k+1)

)2 .

We use the non-decreasing function

U(t) =

(
1

1− F

)←
(t), t > 0,

which we suppose that the second order regular variation condition holds
for. We set γ = α−1, and suppose that there is a ρ ≤ 0 and a function
0 < A(t)→ 0 s.t. for all x > 1

U(tx)
U(t) − x

γ

A(t)
→ cxγ

(
xρ − 1

ρ

)
(t→∞), (3.8)

for some real number c. The function A(·) is regularly varying of index ρ,
and U(·) is regularly varying of index γ. We need a restriction on the growth
of the number of exceedances as n increases. This restriction is

k →∞, k/n→ 0,
√
kA(n/k)→ 0 as n→∞. (3.9)

Kratz and Resnick (1996) proofs that if 3.8 and 3.9 holds, then

√
kα̂−1

d→ N(α−1, 2α−2) as n→∞.
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3. Tail Index Estimators

3.4.2 Threshold Selection

As for the previous estimators we have to choose a threshold for the ordered
data in order for the qq-estimator to estimate the tail index of the data. We
conduct the same simulations and analysis as before, the results are shown
in Figure 3.13.
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Figure 3.13: Mean of 1,000 estimations of the tail index with the qq estimator

for Student's t distributed samples with threshold selection as Left: k(n) = nα

and Right: k(n) = βn.

From Figure 3.13 it looks like the best performing threshold selection corre-
sponds to k(n) = n0.55 and k(n) = 0.1n.

3.4.3 Small Sample Behaviour

The same analysis as for the previous estimators is done, with the threshold
set as 10% and the sample size, n, is increased from 40 to 200. The result is
shown in Figure 3.14.
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3. Tail Index Estimators
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Figure 3.14: Plots showing the bias and MSE of the estimated ξ's by the

dynamic qq-estimator. Data comes from Student's t-distribution. Threshold

set as 20%. Left: Bias of dynamic qq-estimator. Right: MSE of dynamic

qq-estimator.

The density of the qq-estimated ξ̂ is shown in Figure 3.15. As we can tell the
qq-estimator performs poor for the small samples as it has a large estimated
bias.
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Figure 3.15: Density plots of ξ̂ estimated by the qq-method for 50 ≤ n ≤ 200
from 1000 samples of Student's t distribution with ν = 3 degrees of freedom,

where the dashed line represent the true ξ = 1/3.

3.5 Comparison of Estimators Asymptotics

During this chapter the di�erent estimators used in this thesis have been
presented. Some are more alike than others and some are constructed in
a di�erent way. The similarity of the estimators is that the variance of the
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3. Tail Index Estimators

tail-index estimates are all converging at the same rate (n−1). By converging
at the same rate one might think that they all behave similarly for a large
sample, but this is not the truth. The importance for a large sample is
the selection of the threshold u, the optimal selection might be di�erent
for di�erent estimators. By simulating 1,000 samples of size 50,000 from a
Student's t distribution with ν = 5 degrees of freedom, we can see how the
estimators behave for a large sample size. The results are shown in Figure
3.16.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30
Large sample behaviour of estimators

 

 
MOM
ML
HILL
MHILL
QQ

Figure 3.16: Plot showing the densities of the di�erent estimators for 1,000

samples of size 50,000 of a Student's t distribution with ν = 5 degrees of

freedom.

It looks like the Hill estimator, the modi�ed Hill estimator and the dynamic
qq-estimator has a smaller variance than the MOM-estimator and the MLE.
The most accurate estimator of the �ve under study is the modi�ed Hill
estimator, which do not deviate much from the true value. These estima-
tors might react di�erently for di�erent threshold selections, in this case the
threshold is set as the top 1% of the sample.
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Chapter 4

Normal Mixture Model

We want to understand how to construct a mixture of two normally dis-
tributed samples, with variances that are considered equal, so that the mix-
ture can be interpreted as a heavy-tailed distribution. One commonly used
heavy-tailed distribution that is constructed by normally distributed values
is the Student's t distribution. In this chapter we investigate how to compose
a mixture such that it behaves as a Student's t distribution.

4.1 Levene's Test

By Levene's test one can test if two or more di�erent samples have a common
variance. It tests the null hypothesis that the samples under study have equal
variances. Suppose you have k random samples, xi1, ..., xini each of sizes ni,
where i = 1, . . . , k, and that you want to test if these samples have equal
variances. By Levene's test, the test statistic F according to Gastwirth et al.
(2009), is de�ned as

F =
N − k
k − 1

∑k
i=1 ni(d̄i· − d̄··)2∑k

i=1

∑ni
j=1 (dij − d̄i·)2

,

where,

N is the total size of the pooled sample, N =
∑k

i=1 ni.

dij is the absolute value of the deviation between each data point and the
sample mean of the belonging group, dij = |xij − x̄i|, with x̄i as the sample
mean of the i:th sample.

d̄i· is the mean of the absolute value of the deviations dij in each group,
d̄i· =

1
ni

∑ni
j=1 dij .
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4. Normal Mixture Model

d̄·· is the mean of all the absolute values of the deviations d̄·· = 1
N

∑k
i=1

∑ni
j=1 dij .

The test statistic, F , is tested against the α-quantile of the F-distribution
with k−1 and N −k degrees of freedom. If F is smaller than the α-quantile
of the F-distribution the null hypothesis can be rejected at a 1 − α signi�-
cance level.

One interesting aspect of the test is whether the F-statistics depends on just
the quotient σ2/σ1 or the independent σ-values. Say if we have two samples
of normally distributed variables with di�erent standard deviations and both
with mean zero {σ1Z11, . . . , σ1Z1n1} and {σ1 σ2σ1Z21, . . . , σ1

σ2
σ1
Z2n2}. Then

d̄1j = σ1
∣∣Z1j −

1

n1

n1∑
i=1

Z1i

∣∣ and d̄2j = σ1
σ2
σ1

∣∣Z2j −
1

n2

n2∑
i=1

Z2i

∣∣.
We also get that

d̄1· =
σ1
n1

n1∑
j=1

∣∣Z1j −
1

n1

n1∑
i=1

Z1i

∣∣ and d̄2· =
σ1
n2

σ2
σ1

n2∑
j=1

∣∣Z2j −
1

n2

n2∑
i=1

Z2i

∣∣,
while

d̄·· =
σ1

n1 + n2

( n1∑
j=1

∣∣Z1j −
1

n1

n1∑
i=1

Z1i

∣∣+
σ2
σ1

n2∑
j=1

∣∣Z2j −
1

n2

n2∑
i=1

Z2i

∣∣).
As we can see σ21 will appear both in the nominator and the denominator
for the F-statistics. This will result in that the F-statistics will only be
dependent of the quotient σ2/σ1 as well as of the sample sizes n1 and n2.

4.1.1 Example

Consider two samples, X ∼ N(0, 1), Y ∼ N(0, σ22). Let's look at what hap-
pens if we change the sample sizes n1 and n2 and if we vary σ2.

The simulation is set up as follows,

- Simulate 1000 samples of {x1, . . . , x40} from N(0, 1) and 1000 samples of
{y1, . . . , yj} from N(0, σ22) for j = 10 and σ2 = 1.

- Use the samples and perform Levene's test. Look at the ratio of the sam-
ples that passes the test.

- Vary σ2 up to 2, with a step size of 0.01.
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4. Normal Mixture Model

- Repeat the steps above for j = 11, . . . , 20.

In Figure 4.1 the results from the simulation is shown.
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Figure 4.1: Left: Levene's test for two samples of random normally dis-

tributed variables, where one of the sample sizes is 40 and the other increases

from 10 to 20. The line at the top corresponds to the sample size of 10 whilst

the line on the bottom corresponds to the sample size of 20. The y-axis shows

the ratio of the 1000 samples where the null hypothesis couldn't be rejected at

a signi�cance level of 5%. Right: Levene's test for two samples of random

normally distributed variables, where n1 = 40 and n2 = 10. Each line corre-

sponds to a value of σ1 = 1, 10, 20, . . . , 100. The y-axis shows the ratio of the

1000 samples where the null hypothesis couldn't be rejected at a signi�cance

level of 5%, and the x-axis corresponds to the quotient σ2/σ1.

As we can see from the example the sample sizes and the ratio σ2/σ1 do
matter in Levene's test as could be expected. What happens if we vary σ1
and σ2 but keep σ2/σ1 constant. To the right in Figure 4.1 the result of
Levene's test for σ1 varying from 1 to 100 is shown. This result con�rms the
study we did previously in this section where we showed that the F-statistics
is only dependent of the quotient σ2/σ1 and the sample sizes, and not by the
individual values of σ1 and σ2.
Since we compare the value of F to the (1−α) quantile of the F-distribution
it could be useful to understand the empirical density of the F -value for
some certain cases. As explained before the F -value should follow the F-
distribution when σ1 = σ2. If we let σ1 = σ2, n1 = 40, n2 = 10 and
simulate 1000 samples of {X1,1, . . . , X1,n1 , X2,1, . . . , X2,n2} and calculate the
corresponding F -value we get the empirical density shown in Figure 4.2. The
dashed vertical lines corresponds to the 90, 95 and 99 percent quantiles for
the F-distribution and the solid vertical lines is the corresponding quantiles
of the empirical F -value. As we can see from the �gure these quantiles are
very close to each other which tells us that it is a good �t.
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Figure 4.2: Empirical density of the F-value for σ1 = σ2, n1 = 40, n2 = 10.
The dotted lines corresponds to the (1−α) quantile of the F-distribution with 1

and n1+n2−1 degrees of freedom, where from left to right α = 0.1, 0.05, 0.01.
The solid lines shows the corresponding empirical quantiles.

Now we let σ2 = 2σ1 and perform the same analysis. This result is shown in
Figure 4.3. Here we can see that the empirical quantiles from the F -value
is far from the corresponding quantiles from the F-distribution. But since
we only reject or not reject the null hypothesis this deviation can be hidden
in the analysis. From the simulation we get that the probability that the
null hypothesis couldn't be rejected at a signi�cance level of 1%, 5%, 10%
is 0.39, 0.22, 0.14. The same simulations are done for di�erent sample sizes
and the results are shown in Table 4.1.
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Figure 4.3: Empirical density of the F-value for σ2 = 2σ1, n1 = 40, n2 = 10.
The dotted lines corresponds to the (1−α) quantile of the F-distribution with 1

and n1+n2−1 degrees of freedom, where from left to right α = 0.1, 0.05, 0.01.
The solid lines shows the corresponding empirical quantiles.

α = 0.1 α = 0.05 α = 0.01

n1 = 30
n2 = 10 0.16 0.25 0.47
n2 = 15 0.12 0.19 0.40
n2 = 20 0.09 0.15 0.35

n1 = 40
n2 = 10 0.14 0.22 0.39
n2 = 15 0.09 0.14 0.31
n2 = 20 0.06 0.10 0.25

n1 = 50
n2 = 10 0.14 0.20 0.37
n2 = 15 0.08 0.13 0.27
n2 = 20 0.05 0.08 0.18

n1 = 60
n2 = 10 0.13 0.20 0.35
n2 = 15 0.07 0.11 0.24
n2 = 20 0.05 0.08 0.18

Table 4.1: Table showing the probabilities that the null hypothesis couldn't be
rejected for di�erent sample sizes where σ2 = 2σ1.

By Levene's test we get an understanding of what type of normal mixtures
that can be composed while not being viewed as a mixture. We can tell
from our simulations that for some certain sample sizes, a combination of
two normally distributed samples with σ2 = 2σ1 the chance to interpret the
samples as having equal variances is as high as 50%.
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4. Normal Mixture Model

4.2 Maximum Likelihood Parameter Estimation

A mixture of two normal distributions, N(0, σ21) and N(0, σ22) has the dis-
tribution function

F (x) = pΦ(
x

σ1
) + (1− p)Φ(

x

σ2
),

where p corresponds to the probability to draw a value from the N(0, σ21)
distribution, and the probability 1 − p from the N(0, σ22) distribution. The
maximum likelihood estimates of p, σ1, σ2 are the values that maximize the
log-likelihood function

l(x|p, σ1, σ2) =
n∑
i=1

log f(xi|p, σ1, σ2),

where {x1, . . . , xn} is an i.i.d. sample that comes from a distribution with
unknown distribution function. From

f(x|p, σ1, σ2) =
d

dx
F (x) =

p

σ1
φ(

x

σ1
) +

1− p
σ2

φ(
x

σ2
),

where φ(x) is the probability density function of the standard normal distri-
bution, we get that

l(x|p, σ1, σ2) =
n∑
i=1

log

(
p

σ1
φ(

x

σ1
) +

1− p
σ2

φ(
x

σ2
)

)
.

Since the Maximum Likelihood estimation wants to �t the estimation to the
entire data there might be a worse �t in the tail than for the center of the
data. Since our interest is in the tail we can perform the ML-method on the
conditional density for a suiting threshold. Then we have the distribution
conditional that x > y as

F (x|x > y) =
F (x)− F (y)

1− F (y)
=

pΦ( xσ1 ) + (1− p)Φ( xσ2 )−
(
pΦ( y

σ1
) + (1− p)Φ( y

σ2
)

)
1−

(
pΦ( y

σ1
) + (1− p)Φ( y

σ2
)

) ,

this gives that the conditional density is

f(x|x > y) =
dF (x|x > y)

dx
=

p
σ1
φ( xσ1 ) + 1−p

σ2
φ( xσ2 )

1−
(
pΦ( y

σ1
) + (1− p)Φ( y

σ2
)

) .
Thus the log-likelihood function that is to be minimized is

l(x|x > y|p, σ1, σ2) =

n∑
i=1

log

( p
σ1
φ( xσ1 ) + 1−p

σ2
φ( xσ2 )

1−
(
pΦ( y

σ1
) + (1− p)Φ( y

σ2
)
)).
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4. Normal Mixture Model

We can investigate the behaviour of the maximum likelihood estimates of the
parameters σ1, σ2 and p by simulating 1,000 samples of sizes n = 50, 100, 150, 200
and perform the algorithm. The densities of the estimates are shown in Fig-
ure 4.4.
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Figure 4.4: Densities of σ̂1, σ̂2 (left) and p̂ (right) of 1000 samples with

n = 50, 100, 150, 200 by using maximum likelihood, where the vertical lines

corresponds to the true values.

4.3 EM-Algorithm

We have a two component mixture model constructed in the following way

X1 ∼ N(µ1, σ
2
1)

X2 ∼ N(µ2, σ
2
2)

X = IX1 + (1− I)X2,

where I ∈ {0, 1} and P (I = 1) = p. The density of the mixture model is

fX(x) = pφθ1(x) + (1− p)φθ2(x),

where φθi(x) is the pdf of the normal distribution with mean µi and standard
deviation σi. With a sample size of N the log-likelihood function is

l(θ;x) =

N∑
i=1

log
(
pφθ1(xi) + (1− p)φθ2(xi)

)
This log-likelihood is though to maximize numerically, but according to Ka-
maruzzaman et al. (2012) we instead use the latent variables Ii, with Ii = 1
we say that Xi comes from X1, and with Ii = 0 it comes from X2. Then we
can construct the log-likelihood equation as

l(θ;x,I) =

N∑
i=1

[Ii log φθ1(xi) + (1− Ii) log φθ2(xi)] +

N∑
i=1

[Ii log p+ (1− Ii) log(1− p)].

35



4. Normal Mixture Model

The Ii's are unknown, so we replace them with the expected value, also
called the responsibility of model 1

γi(θ) = E[Ii|θ,x].

The EM algorithm then takes the responsibility as a weight and by iterations
the maximum likelihood estimates can be found.

- First take starting guesses of µ̂1, µ̂2, σ̂1, σ̂2, p̂.

- The expectation step (E-step): Calculate the responsibilities

γ̂i =
p̂φθ̂1(xi)

p̂φθ̂1(xi) + (1− p̂)φθ̂2(xi)
, i = 1, . . . , N.

- The maximization step (M-step): Calculate the weighted means and vari-
ances using the responsibilities γ̂i's.

µ̂1 =

∑N
i=1 γ̂ixi∑N
i=1 γ̂i

, µ̂2 =

∑N
i=1 (1− γ̂i)xi∑N
i=1 (1− γ̂i)

,

σ̂21 =

∑N
i=1 γ̂i(xi − µ̂1)2∑N

i=1 γ̂i
, σ̂22 =

∑N
i=1 (1− γ̂i)(xi − µ̂2)2∑N

i=1 (1− γ̂i)
,

and

p̂ =
N∑
i=1

γ̂i
N
.

By iteration over the E-step and the M-step until convergence of the param-
eters, the maximum likelihood estimated values are obtained.

As an illustration of the performance of the EM-algorithm for small samples,
the densities of the estimated σ1, σ2 and p is shown in Figure 4.5. In this
simulation the parameter values are σ1 = 1, σ2 = 2.5 and p = 0.7, which are
also shown in the �gure.
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Figure 4.5: Densities of σ̂1, σ̂2 (left) and p̂ (right) of 1000 samples with

n = 50, 100, 150, 200 by using the EM algorithm, where the vertical lines

corresponds to the true values.

As we can see from the density curves the algorithm performs well even for
small sample sizes, and the peaks of the densities move towards the true
values.
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Chapter 5

Results

In this chapter we use the methods described earlier in order to obtain our
results from simulations and analysis. We investigate some interesting cases
that could occur and present how these cases should be taken care of.

5.1 Normal Mixture Model

We want to construct a mixture of two normal distribution both with mean
0. The two distributions should be considered to have equal variances and
behave like a Student's t distribution. From Section 4.1 we can see that a
mixture of two normally distributed samples with σ2/σ1 = 2 have a 30%
chance to pass the Levene's test with sample sizes n1 = 40 and n2 = 10.
We conduct a Maximum Likelihood estimation of σ1, σ2 and p. From equa-
tion 2.1 we determine the best �t through numerical methods. Our sample
{x1, . . . , xn} are constructed as t−1ν ( 1:n

n+1). The result are shown in Figure
5.1.
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Figure 5.1: Left: Maximum Likelihood estimation of σ1 and σ2 with a sample
from Student's t distribution. The solid lines represents σ1 and the dashed

lines represent σ2. Right: Maximum Likelihood estimation of p with a sample
from the Student's t distribution.
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5. Results

We can see that if we choose a sample of Student's t distributed variables with
degrees of freedom ν = 4, the maximum likelihood estimated parameters of
the normal mixture is (σ1, σ2, p) ≈ (0.9, 1.8, 0.65). Now we take a look at
the ML-estimation of the parameters of the largest 30% of the data. This
time our sample {x0.7n, . . . , xn} are constructed as t−1ν

(
0.7n:n
n+1

)
and we use

the conditional log-likelihood function in order to estimate the parameters.
The results are shown in Figure 5.2.
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Figure 5.2: Left: Maximum Likelihood estimation of σ1 and σ2 with the

largest 30% of the data from Student's t distribution with ν degrees of free-

dom. The solid lines represents σ1 and the dashed lines represent σ2. Right:
Maximum Likelihood estimation of p with the largest 30% of the data from

Student's t distribution with ν degrees of freedom.

There is only a small di�erence in the results for the larger samples as we
can see. The problem is for the smaller samples where n < 120. Since
we only choose the top 30% of the sample the actual sample that is used
is rather small which makes it di�cult for the maximum likelihood algorithm.

If we instead use the EM-Algorithm to estimate the parameters of the mix-
ture model the result is di�erent. We simulate 1000 samples of {x1, . . . , xn}
from Student's t distribution with ν degrees of freedom. We then use the
EM-Algorithm in order to estimate the parameters. The results shown in
Figure 5.3 are the mean of the 1000 simulations for each sample size.
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Figure 5.3: Left: Estimation of σ1 and σ2 with a sample from Student's

t distribution by the EM-Algorithm. The solid lines represents σ1 and the

dashed lines represent σ2. Right: Estimation of p with a sample from the

Student's t distribution by the EM-Algorithm.

As we can see the EM-algorithm gives larger values on σ2 than the maximum
likelihood estimation. It also looks like the EM-algorithm behaves better for
smaller sample sizes, where the estimates are more consistent contrary to
the ML method. We can compare the two di�erent methods by testing both
models against the same samples. We simulate 500 samples of size 100 from
a Student's t distribution with 4 degrees of freedom. Then we estimate
the parameters σ2/σ1 and p for the normal mixture model by the maximum
likelihood estimation and the EM-algorithm. The results are shown in Figure
5.4.
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Figure 5.4: Estimation of σ2/σ1 and p with 1000 samples of size 100 from

Student's t distribution with ν = 4 degrees of freedom. Left: Estimated

parameters from the ML method. Right: Estimated parameters from the

EM-Algorithm.

As we can see from the results both look similar in their results with a mass
around σ2/σ1 ≈ 2.5 and p ≈ 0.75. Neither of the methods give any stable
estimates of the parameters, which could be due to the randomness of the
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small samples.

5.2 Tail Index Estimation of Normal Mixture Model

Now we conduct the same tests as we did in section 3.1.3, but here we
use the normal mixture model as the data. We use the parameters from the
maximum likelihood method for the mixture model. Since p = n1

n1+n2
= 0.65,

the threshold cannot be at 10% since the excesses will most likely exclusively
come from N(0, σ22) which will result in a light-tailed behaviour of the data.
We set the threshold at 20% and plot the densities of the estimated ξ values
for the 1000 samples. The results are shown in Figure 5.5.
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Figure 5.5: Densities of the estimated ξ's for the normal mixture model with
σ1 = 0.9, σ2 = 1.8 and p = 0.65, where n = 50, 100, 150, 200. Top left: Max-

imum Likelihood estimator. Top right: Modi�ed Hill estimator. Bottom left:
Quantile-Quantile estimator. Bottom right: Method of Moments estimator.

As we can see from the results all the di�erent estimators are stabilizing
around a certain value for larger n. The MLE behave a lot di�erent for
smaller n than for larger, while the other estimators more or less behaves
the same but are more concentrated around a certain value as the sample size
increases. We can compare these results with the densities of the estimators
for the corresponding Student's t distribution with ν = 4 degrees of freedoms.
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The results are presented in Figure 5.6. As we can see the results do not
di�er much from the normal mixture case. This indicates that the mixture of
two normally distributed samples can behave as the Student's t distribution.
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Figure 5.6: Densities of the estimated ξ's for the Student's t distributed sam-

ples with ν = 4 degrees of freedoms, and n = 50, 100, 150, 200. Top left:
Maximum Likelihood estimator. Top right: Modi�ed Hill estimator. Bot-
tom left: Quantile-Quantile estimator. Bottom right: Method of Moments

estimator.

In this speci�c case and throughout the report it looks like the modi�ed
Hill estimator is the best performing estimator. It is the estimator with
the smallest bias and the smallest mean squared error. From now on we
use this estimator for further more general investigations of the normal mix-
ture model. We know that the mixture model can appear to behave as a
heavy-tailed distribution from the previous case. Now we look at all possible
combinations of di�erent sample sizes. In order to limit the simulations two
boundaries are set.

· p = n1
n1+n2

≥ 0.6

· 40 ≤ n1 + n2 ≤ 200
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From earlier studies we know that Levene's test as well as the tail index
estimation is not dependent on the individual standard deviations of the
mixture model, it is dependent on the quotient σ2/σ1. First we look at the
case when σ2/σ1 = 1.5. The simulation is constructed as

· Simulate 1,000 samples of size 190 from the standard normal distribu-
tion and 1,000 samples of size 80 from the normal distribution with standard
deviation 1.5.

· Let 30 ≤ n1 ≤ 190 and 5 ≤ n2 ≤ 80 and check that the sample sizes
ful�ls the boundaries set earlier.

· Calculate the mean tail index by the modi�ed Hill's estimator and the
length of the interval which contains 90% of the data.

In Figure 5.7 the tail index estimates are shown for di�erent combinations
of sample sizes.
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Figure 5.7: Left: Tail index estimation for a mixture of normally distributed

samples where σ2/σ1 = 1.5 for di�erent combinations of sample sizes. Right:
Tail index estimation for standard normally distributed samples.

As we can see in Figure 5.7, there is not much di�erence for the estimated tail
indices of the mixture model as for the standard normal model. This is due
to the fact that the modi�ed Hill estimator is biased for small tail indices. We
can compare the two index estimations by subtracting the estimated index
from the standard normally distributed samples from the mixture samples.
By doing this we can evaluate if the mixture is considered to have a heavier
tail than the standard normal model. This is shown in Figure 5.8.
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Figure 5.8: Top: Mean di�erence of the estimated tail index for a mixture

of normally distributed samples where σ2/σ1 = 1.5 and standard normally

distributed samples. Bottom: The length of the interval that contains 90%
of the data.

As we can see on the top of Figure 5.8 there is not much di�erence between
the estimated tail indices for the mixture model and the standard normal
model. Thus the data from the mixture model cannot be interpreted as
heavy-tailed data. Since this plot only shows the mean of the estimated tail
indices this does not re�ect 100% of the outcomes. In the bottom of Figure
5.8 the length of the interval that contains 90% of the data is shown. As we
can see there is a wider interval for smaller sample sizes since the variance
and the mean squared error is larger in those cases. In Figure 5.9 the ratio
that passes Levene's test for 1,000 samples is shown. In this context there is
no idea to investigate tail behaviour of a mixture model where the variances
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5. Results

of the two components are considered unequal. The plot suggests that for
n2 > 30 in most cases the chance that the two samples that construct the
mixture has equal variances is below 30%. Lets conduct the same analysis
with σ2/σ1 = 1.75, 2, 2.25.
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Figure 5.9: Ratio that passes Levene's test for σ2/σ1 = 1.5.
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Figure 5.10: Left: Tail index estimation for a mixture of normally dis-

tributed samples where σ2/σ1 = 1.75 for di�erent combinations of sample

sizes. Right: The length of the interval that contains 90% of the data of the

estimated tail indices for a mixture of normally distributed samples where

σ2/σ1 = 1.75 and standard normally distributed samples.

As expected Figure 5.10 tells us that the mean of the estimated tail indices
is around 0.2, which tells us that the mixture is interpreted as coming from a
heavy-tailed distribution function. To the right in the �gure the 90% interval
lengths are shown. From Figure 5.11 we can tell that there is a small di�er-
ence between the mean of the estimated tail indices for the mixture model
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and the standard normal model. The area where the di�erence is greatest
is when both n1 and n2 is small. But is the mixture model constructed so
that the two components variances are considered equal in this area? In the
bottom of Figure 5.11 the ratio that passes Levene's test is shown.
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Figure 5.11: Top: Mean di�erence of the estimated tail index for a mixture

of normally distributed samples where σ2/σ1 = 1.75 and standard normally

distributed samples. Bottom: Ratio that passes Levene's test for σ2/σ1 =
1.75.

As the �gure shows, it looks like for a mixture with n1 < 50 and n2 < 20
there is about 30% chance that the mixture passes the Levene's test as a
non-mixture. This combinations of sample sizes are also the ones that gives
the largest tail-index estimations.
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Now we take a look at the case when σ2/σ1 = 2. The mean of the tail index
estimations are shown in Figure 5.12 along with the 90% interval.
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Figure 5.12: Left: Tail index estimation for a mixture of normally distributed

samples where σ2/σ1 = 2 for di�erent combinations of sample sizes. Right:
The length of the interval that contains 90% of the data of the estimated tail

indices for a mixture of normally distributed samples where σ2/σ1 = 2 and

standard normally distributed samples.

As we can see from Figure 5.13, the worst case scenario is along a straight line
where n1/(n1 + n2) ≈ 0.75. These results indicates that a normal mixture
with σ2/σ1 = 2 and p = 0.75 could be interpreted as a heavy-tailed model.
Can we compose such a mixture without knowing it? We take a look at
the Levene's test for a normal mixture with σ2/σ1 = 2, this is shown in the
bottom of Figure 5.13.
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Figure 5.13: Top: Mean di�erence of the estimated tail index for a mixture

of normally distributed samples where σ2/σ1 = 2 and standard normally

distributed samples. Bottom: Ratio that passes Levene's test for σ2/σ1 = 2.

As expected the ratio that passes Levene's test is smaller than for σ2/σ1 =
1.75. There is still a 20% chance that the components of the normal mixture
is considered having the same variances for n2 < 15.

Finally we will take a look at the case when σ2/σ1 = 2.25. The mean of the
estimated tail indices and the 90% interval is shown in Figure 5.14.
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Figure 5.14: Left: Tail index estimation for a mixture of normally dis-

tributed samples where σ2/σ1 = 2.25 for di�erent combinations of sample

sizes. Right: The length of the interval that contains 90% of the data of the

estimated tail indices for a mixture of normally distributed samples where

σ2/σ1 = 2.25 and standard normally distributed samples.

In Figure 5.15 we can see that this type of mixture behaves the same as
the previous cases, but with a maximum mean deviation from the standard
normal model by 0.12. It looks like the worst mean deviation occurs for
the same p ≈ 0.75. In the bottom of the same �gure the ratio that passes
Levene's test for σ2/σ1 = 2.25 is shown.
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Figure 5.15: Top: Mean di�erence of the estimated tail index for a mixture

of normally distributed samples where σ2/σ1 = 2.25 and standard normally

distributed samples. Bottom: Ratio that passes Levene's test for σ2/σ1 =
2.25.

Here, even fewer samples passes Levene's test. This time it is a 20% that
the mixture passes the test when n2 ≤ 10.
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Chapter 6

Summary and Conclusion

When there is a lot of data available it is much easier to perform tail index
analysis. Since the estimators in this thesis all converges, and do it at the
same rate, there is no di�erence on which approach to use when investigat-
ing the tail indices of large samples. The problem is when there are small
samples under investigation. If everything is smooth and neat when there
are large samples, it is the opposite when dealing with small samples. The
di�erent estimators behave di�erently for small samples, all with di�erent
bias and di�erent mean squared error. Another problem on top of the small
sample problem is the bias for small tail indices. Even though you think you
have a good understanding of the sample, there exists a bias for small tail
indices for all the estimators. One way to understand if the sample under
investigation comes from a heavy-tailed distribution is to compare it with
the standard normal distribution. Since the standard normal distribution
has a tail index of 0, this is a good model to use as a benchmark.

The most dangerous construction of a normal mixture is when the quotient
σ2/σ1 ≥ 2. For certain combinations of sample sizes n1 and n2 such that
n1 + n2 < 100 and n1/(n1 + n2) ≈ 0.75 there is a signi�cant chance that
the components of the mixture is considered to have equal variances. When
believing that the two samples that composes the mixture have the same vari-
ance in combination with a positive estimated tail index one can be misled
by the result. By believing that the underlying distribution is heavy-tailed
an estimation of a large quantile can be far from the true quantile which
can be devastating for the �rm or risk controller. Thus when dealing with
this combination of data samples one has to be cautious. It is important
to use plots in order to understand the empirical distribution of the data.
A good way of understanding the data set is to plot the empirical prob-
ability density function along with the theoretical density function of the
estimated mixture model. By comparing the two density curves one can get
a good understanding of how good of a �t the model is. Since the estima-
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6. Summary and Conclusion

tors are sensitive to a change in the threshold it is a good idea to change
the threshold as well, and see what happens with the estimated tail index.
By using di�erent estimators one can get a second opinion on the estimation.
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Appendix A

Coloured 3D Graphs of

Estimated Tail Indices

In this appendix the 3D plots from chapter 5 is presented in colour.
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Figure A.1: Tail index estimation for a mixture of normally distributed sam-

ples where σ2/σ1 = 1.5 for di�erent combinations of sample sizes.
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A. Coloured 3D Graphs of Estimated Tail Indices
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Figure A.2: Tail index estimation for a mixture of normally distributed sam-

ples where σ2/σ1 = 1 for di�erent combinations of sample sizes.
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A. Coloured 3D Graphs of Estimated Tail Indices
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Figure A.3: Top: Mean di�erence of the estimated tail index for a mixture

of normally distributed samples where σ2/σ1 = 1.5 and standard normally

distributed samples. Bottom: The length of the interval that contains 90%
of the data.
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A. Coloured 3D Graphs of Estimated Tail Indices

n
2

n 1

Ratio that passes Levenes test for σ
2
/σ

1
 = 1.5

 

 

10 20 30 40 50 60 70

40

60

80

100

120

140

160

180

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure A.4: Ratio that passes Levene's test for σ2/σ1 = 1.5.
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Figure A.5: Top: Tail index estimation for a mixture of normally distributed

samples where σ2/σ1 = 1.75 for di�erent combinations of sample sizes. Bot-
tom: The length of the interval that contains 90% of the data of the estimated

tail indices for a mixture of normally distributed samples where σ2/σ1 = 1.75
and standard normally distributed samples.
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Figure A.6: Top: Mean di�erence of the estimated tail index for a mixture

of normally distributed samples where σ2/σ1 = 1.75 and standard normally

distributed samples. Bottom: Ratio that passes Levene's test for σ2/σ1 =
1.75.
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A. Coloured 3D Graphs of Estimated Tail Indices
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Figure A.7: Top: Tail index estimation for a mixture of normally distributed

samples where σ2/σ1 = 2 for di�erent combinations of sample sizes. Bottom:
The length of the interval that contains 90% of the data of the estimated tail

indices for a mixture of normally distributed samples where σ2/σ1 = 2 and

standard normally distributed samples.
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Figure A.8: Top: Mean di�erence of the estimated tail index for a mixture

of normally distributed samples where σ2/σ1 = 2 and standard normally

distributed samples. Bottom: Ratio that passes Levene's test for σ2/σ1 = 2.
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Figure A.9: Top: Tail index estimation for a mixture of normally distributed

samples where σ2/σ1 = 2.25 for di�erent combinations of sample sizes. Bot-
tom: The length of the interval that contains 90% of the data of the estimated

tail indices for a mixture of normally distributed samples where σ2/σ1 = 2.25
and standard normally distributed samples.
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A. Coloured 3D Graphs of Estimated Tail Indices

n
2

n 1

Mean deviation of tail index from standard normal distribution

 

 

10 20 30 40 50 60 70

40

60

80

100

120

140

160

180

0

0.02

0.04

0.06

0.08

0.1

0.12

n
2

n 1

Ratio that passes Levenes test for σ
2
/σ

1
 = 2.25

 

 

10 20 30 40 50 60 70

40

60

80

100

120

140

160

180

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure A.10: Top: Mean di�erence of the estimated tail index for a mixture

of normally distributed samples where σ2/σ1 = 2.25 and standard normally

distributed samples. Bottom: Ratio that passes Levene's test for σ2/σ1 =
2.25.
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