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Abstract 

External loss data are typically left truncated at a reporting threshold. Ignoring this 

truncation level leads to biased capital charge estimations. This thesis addresses 

the challenges of recreating the truncated part of the distribution. By predicting 

the continuation of a probability density function, the unobserved body of an 

external operational risk loss distribution is estimated. The prediction is based on 

internally collected losses and the tail of the external loss distribution. Using a 

semiparametric approach to generate sets of internal losses and applying the Best 

Linear Unbiased Predictor, results in an enriched external dataset that shares 

resemblance with the internal dataset. By avoiding any parametrical assumptions, 

this study proposes a new and unique way to address the reporting threshold 

problem. Financial institutions will benefit from these findings as it permits the 

use of the semiparametric approach developed by Bolancé et al. (2012) and 

thereby eliminates the well known difficulty with determining the breaking point 

beyond which the tail domain is defined when using the Loss Distribution 

Approach. The main conclusion from this thesis is that predicting the 

continuation of a function using the Best Linear Unbiased Predictor can be 

successfully applied in an operational risk setting. This thesis has predicted the 

continuation of a probability density function, resulting in a full external loss 

distribution. 
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1.Chapter 1 

Introduction   

Under the current regulatory framework for the financial industry, referred to as 

Basel II (Basel Committee on Banking Supervision, 2006), banks are required to 

hold sufficient capital for their operational risks. The framework stipulates three 

different approaches for quantification of the capital charge. Out of the three is 

the Advanced Measurement Approach the most sophisticated and is expected to 

be closely related to the actual risk profile of the bank. Financial institutions 

intending to use the Advanced Measurement Approach will need to demonstrate 

the accuracy of their internal model where the use of historical losses is one of the 

factors. Historical losses must be collected internally and supplemented by 

external loss data for a more comprehensive view of the risk profile, since severe 

losses are rare or absent in the internal dataset. Modeling operational risk losses 

has traditionally been implemented using the Loss Distribution Approach, where 

practitioners model the frequency and severity distribution separately using 

parametric distributions (Aue & Kalkbrener, 2006). Furthermore, it is suitable to 

use one distribution for the body and another distribution for the tail when 

modeling the severity given the particular characteristics of operational risk losses. 

The Loss Distribution Approach leads to difficulties in defining the breaking point 

between the body and the tail domain, which is addressed by Bolancé et al. (2012) 

who develop a semiparametric approach, enabling the use of a single distribution 

over the entire loss dataset. However, fitting the semiparametric model to external 

losses is troublesome as external losses typically are reported above a threshold 

where it is only possible to observe the tail of the distribution, rendering it 

impossible to employ the method proposed by Bolancé et al (2012). 

Recreating a left truncated dataset has not previously been addressed without 

dividing the distribution into a body and a tail domain with separate parametrical 

assumptions. By applying a procedure for predicting the continuation of a 

function on a truncated probability density function this thesis will recreate the 

unobserved body of an external loss distribution. Basing the prediction on the 

observed part of the density function and internally collected losses, makes this 

study unique by taking the characteristics of internal losses into account when 

recreating a truncated external loss distribution. Introducing a new approach for 

addressing the reporting threshold problem makes this research progressive.    
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This area within operational risk management is central since a truncated external 

loss distribution results in biased capital charge estimations. The result of this 

thesis is beneficial for financial organizations as it enriches the external database 

and simultaneously permits the use of the semiparametric approach developed by 

Bolancé et al. (2012) and thereby eliminates the well known difficulty with 

determining the breaking point beyond which the tail domain is defined. 

Moreover, this thesis generates an external dataset with desirable characteristics, 

without parametrical speculations. The purpose of this thesis is to recreate the 

unobserved body of an external loss distribution based on information from its 

tail and an internal database, by implementing a method for predicting the 

continuation of a function developed by Goldberg et al. (2014). The method will 

be applied on an external database of operational risk losses with a known 

reporting threshold. 

Although operational risk is far from a new concept, it has been given more 

attention in recent years following the occurrence of large losses as the bankruptcy 

of Baring Bank due to internal fraud (Stevenson, 1995) and rouge trading at 

Société Générale in 2008 (Bittermann, 2008). Contrary to credit and market risks, 

which can be exploited to generate profit, operational risk is merely subject to risk 

minimization. Operational risks include every aspect of the business that can go 

wrong with both internal and external causes and as the drivers of operational 

risks are undefined, the risk modeling is cumbersome. The internal risks include 

everything from employees committing crimes to IT-system failures, while 

external risks ranges from bank robberies to earthquakes, which makes operational 

risk a widespread phenomenon. Events similar to the one in Baring Bank have 

resulted in an increase in effort to identify and measure operational risks.  

Operational risk losses can generally be categorized into two groups: (1) events 

with high frequency and low severity, and (2) events with low frequency and high 

severity. Due to the reporting threshold in external databases, the low severity 

events are not present in the external datasets while the high severity events are 

rare in the internal loss data. The main reasons for a reporting threshold are cost 

reduction, the ability to hide insignificantly small losses, and incomplete ways for 

recording losses (Pirouz & Salahi, 2013). There are two categories of external 

databases: consortium data and public data. Consortium data are based on 

collaboration among financial institutions which commit to share their operational 

risk losses with each other under confidentiality. Public data record publicly 

released losses consisting of events too large or important to be concealed away 

from public eyes (Baud, et al., 2002a). In consortium databases, a reporting 

threshold is enforced and participants need to demonstrate their ability to report 

every loss above this level, while public databases do not specify a threshold but 

for natural reasons do not include small losses. In both of these cases, the external 

database will be left truncated.  
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2.Chapter 2 

Regulations 
2.1 International Convergence of Capital 

Measurement and Capital Standards 
In 2006 the Basel Commission of Banking Supervision (BCBS) published 

guidelines for capital requirements, the Basel II Capital Accord (Basel Committee 

on Banking Supervision, 2006). The guidelines have since then been implemented 

in all member nations and in financial institutions operating on an international 

level. BCBS states in the first pillar of the accord that financial institutions should 

hold adequate capital for all different risk types. Operational risk is defined by 

BCBS as:  

The risk of direct or indirect loss resulting from inadequate or failed 

internal processes, people and systems or from external events. 

This definition includes a broad spectrum of events ranging from earthquakes to 

internal fraud and is therefore a hard subject to quantify and model. 

2.2 Methods for Quantifying Operational Risk 
The Basel II accord provides financial institutions with three different options to 

quantify their operational risks: the Basic Indicator Approach, the Standardized 

Approach, and the Advanced Measurement Approach (Basel Committee on 

Banking Supervision, 2006). The Basic Indicator Approach and the Standardized 

Approach are based on the use of gross income as a proxy for the financial 

institutions’ operational risk exposure while the Advanced Measurement 

Approach allows financial institutions to construct their own model regulated by 

the national financial supervisory authority.  

2.2.1 Basic Indicator Approach 
The Basic Indicator Approach allows financial institutions to hold capital equal to 

a fixed percentage of the average non-negative gross income over the last three 

years. The required capital according to the Basic Indicator Approach is calculated 

as:                                                   
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  (2.1) 

 

where     is the gross income for year  ,   is the fixed percentage which is set by 

BCBS to 15% , and   is the number of years during the past three year period 

where the gross income is positive. Any years for which gross income is negative 

or zero should be excluded from both the numerator and denominator. 

2.2.2 Standardized Approach 
The Standardized Approach is closely related to the Basic Indicator Approach. 

Financial institutions following this approach are allowed to divide their gross 

income into eight business lines defined by BCBS. Within each business line the 

gross income is multiplied by a fixed percentage multiplier set by the committee to 

reflect the risk exposure corresponding to the business area. The required capital 

is calculated as:  

 

                       

 

   

 

 

   

     (2.2) 

 

where       is the yearly gross income in business line j during year   and    is the 

corresponding fixed percentage multiplier for business line j, which are shown in 

Table 2.1 below. 

Business Lines Beta Factors 

Corporate Finance (  ) 18% 

Trading and Sales (  ) 18% 

Retail Banking (  ) 12% 

Commercial Banking (  ) 15% 

Payment and Settlement (  ) 18% 

Agency Services (  ) 15% 

Asset Management (  ) 12% 

Retail Brokerage (  ) 12% 
Table 2.1 The eight different business lines defined by BCBS and corresponding fixed 
percentage multipliers used in the Standardized Approach for quantification of Operational 
Risk. 

2.2.3 Advanced Measurement Approach 
The Advanced Measurement Approach is the most sophisticated method for 

calculating the operational risk capital requirements for a financial institution. 

Under the Advanced Measurement Approach the required capital is quantified 

using a risk measure generated by the bank itself complying with the quantitative 

and qualitative criteria set by the BCBS.  
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A financial institution may apply to its financial supervisory authority to use an 

Advanced Measurement Approach given that they fulfill the requirements of the 

accord. The model specified by the financial institution must include credible, 

systematic, transparent, and verifiable approaches for weighting internal 

operational risk loss data, external risk loss data, scenario analysis, and factors 

reflecting the business environment and internal control systems. 

Internal risk loss data are operational risk losses that the financial institution has 

recorded internally. External operational risk loss data are losses that other banks 

have encountered. These external losses are available either through public 

databases or through consortium data. Operational risk losses obtained through 

consortium databases are often considered more complete and inclusive. Due to 

the scarcity of internal risk loss data, the committee requires financial institutions 

to supplement their own internally collected data with external sources. 

The quantitative requirements of the Advanced Measurement Approach are that 

method must ensure a capital allocation that holds for the Value-at-Risk at level 

0.01 over a one year period. In addition to the business lines used in the 

aforementioned Standardized Approach, the Advanced Measurement Approach 

requires financial institutions to divide their operational risks into seven different 

event types, listed in table 2.2 below.  

Event Type 

Internal Fraud 
Employment Practices and Workplace Safety 
Execution. Delivery, and Process Management 
Damage to Physical Assets 
External Fraud 
Clients, Products, and Business Practices 
Business Disruption and System Failure 
Table 2.2 The seven event type categories defined by BCBS used in the Advanced 
Measurement Approach for quantification of Operational Risk. 

A correlation matrix is formed following the categorization of business line and 

event type and financial institutions employing the Advanced Measurement 

Approach are allowed to model correlation between the different intersections 

where all correlations assumptions must be described in detail and approved by 

the financial supervisory authority. The reason behind this categorization is that 

the loss distributions tend to differ substantially between different intersections, 

referred to as risk cells, of business line and event type. It is therefore not viable to 

analyze the aggregated loss distribution stemming from all cells. A detailed 

description of the categorization can be found in Basel II Capital Accord (Basel 

Committee on Banking Supervision, 2006).  
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3.Chapter 3 

Literature Review  
One common method for quantifying operational risk capital is using the actuarial 

approach called the Loss Distribution Approach where the financial institution 

estimates the distribution of the loss events for the next year for each intersection 

of business line and event type. The computation is usually performed by 

simulating the loss frequency and the loss severity separately before finding the 

compound distribution using Monte Carlo simulation (Aue & Kalkbrener, 2006). 

The frequency distribution is commonly found using a Poisson process, while the 

severity distribution is estimated using a parametric distribution such as Log-

Normal or Weibull for the body, while Extreme Value Theory is used to capture 

tail events. The capital requirements are calculated as the 99.9th quantile of the 

compound distribution. However, separating the severity distribution at the 

breaking point between the body and the tail may result in flawed estimations due 

to the uncertainty in determining where the two domains are defined. Other 

practical issues regarding this method were highlighted in an early stadium by 

Frachot et al. (2001) who state that common difficulties are: missing data for some 

combinations of business line and event type, internal data being biased towards 

low-severity losses, and external losses being biased towards high-severity losses 

following recording thresholds. These issues are however not addressed in their 

paper.  

Bolancé, Guillén, Gustafsson, and Nielsen (2012) propose a new approach for 

modeling the severity distribution when introducing a semiparametric approach, 

enabling the use of a single distribution over the entire loss domain. The 

semiparametric approach uses the Generalized Champernowne distribution to 

transform the loss data to the       interval, followed by kernel density estimation 

and back transformation to obtain the severity distribution. Bolancé et al. (2012) 

eliminate the problems associated with choosing the breaking point between the 

body and the tail domain under the loss distribution approach, and the method 

has proven to estimate operational loss distribution data well. Furthermore, the 

semiparametric approach results in a probability density that is able to produce 

estimates of tail probabilities beyond the range of the sample data. However, the 

proposed method requires a full loss distribution which is not available when 
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modeling external loss data, which typically is left truncated at a reporting 

threshold.  

A method for addressing the data truncation problem was developed by Baud et al. 

(2002a) who attempt to pool internal and external loss data after considering the 

threshold level. Discussing different assumptions regarding the threshold, the 

authors conclude that the reporting threshold is known or unknown, as well as 

constant or stochastic. Under the unknown threshold assumption, the authors 

discard the naïve approximation of the threshold level as the smallest recorded 

loss as external data may contain badly recorded losses and therefore 

underestimate the true threshold. Instead the authors propose to determine the 

threshold level H by estimating the set of parameters   for a fitted truncated Log-

Normal distribution over different H         using Maximum Likelihood. The 

authors plot H as a function of   and choose the threshold level where the 

parameter set   stabilizes. Furthermore, the article presents an alternative 

approach by including the threshold level H as a parameter in the Log-Likelihood 

function that is to be maximized when fitting the parametric distribution to loss 

data.  

In addition, the authors comment that the method proposed is based on the 

assumption that external data follow the same distribution as internal data except 

that the external data are left truncated at a threshold H. Furthermore, they state 

that, even though not investigated in this paper, their methodology is able to 

provide a statistical test of the equality of the two distributions. According to the 

authors, it can serve as a reliable indicator of whether internal losses of a specific 

bank are comparable with losses from other banks. 

Building on these principles Baud et al. (2002b) discuss different methods for 

incorporating external loss data to the internal dataset by addressing the fact that 

the external data have gone through a truncation process. The authors use three 

simulated datasets, truncated at different threshold levels to develop an approach 

and assess the accuracy of their principles. The simulated datasets are supposed to 

resemble data encountered in real life, where two of the datasets have a single 

threshold level, representing internal and consortium loss data, and the third 

dataset is drawn from distributions truncated at three different levels, representing 

a public loss database. The authors merge the three datasets and use three 

different Maximum Likelihood approaches to fit a truncated Log-Normal 

distribution to the resulting dataset. The results indicate that ignoring any 

truncation level or assuming a common level for all datasets overestimate the 

capital requirement. Merging the loss data, and fitting a truncated Log-Normal 

distribution under the assumption that the number of thresholds is unknown, 

yields consistent results. The most accurate result is obtained when the threshold 

levels are known in two of the datasets, and is only estimated in the third, but this 

method is demanding in terms of prior information.   
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As an alternative to the fitting of a truncated distribution many authors, including 

Dutta & Perry (2007), use a simplified approach referred to as the Shifted 

Approach. In this model the dataset is shifted to the left by subtracting the 

threshold level to each data point before fitting a parametric distribution and 

estimating its parameters. The resulting fitted distribution is then shifted back 

before calculation of the capital charge is performed. This approach has been 

shown by Lou et al. (2007) to provide flawed estimations when examining the 

results from different threshold levels. The Shifted Approach results in both 

underestimations as well as overestimations depending on the proportion of data 

being truncated. These results agree with the critique presented by Chernobai et al. 

(2004) on ignoring data truncated below the threshold level when quantifying 

operational risks and spurred a debate among US regulators on the validity of the 

Shifted Approach. The debate resulted in a recommendation in 2009 to the 

financial institutes in the United States to employ a truncated distribution instead 

of the Shifted Approach (Davis, 2011).  

Estimating parameters for a truncated distribution is much more complicated than 

for a complete distribution and while the Maximum Likelihood approach gained 

popularity among researchers and practitioners, some authors claim that certain 

drawbacks with the method exist as the likelihood surface often is flat and the 

global maximum may be impossible to find. Zhou et al. (2013) explain two 

approaches to circumnavigate the problem, the Expectation-Maximization 

algorithm and Penalized Likelihood estimate but advocates for a third approach: 

the Bayesian Method. In the Bayesian Method, both data and parameters are 

considered stochastic (Shevchenko & Temnov, 2009). A parameter can be 

considered a random variable and the true value of the parameter is a realization 

of this random variable. The density of the parameter is called a prior density and 

the selection of a proper prior distribution is an important aspect when employing 

the Bayesian Method. Zhou et al. (2013) assess the accuracy of the Bayesian 

Method by simulating a sample of size 100 from a Log-Normal distribution 

truncated at 20 000 and estimate the parameters of the truncated distribution for 

each sample size from 2 to 100, drawn as a subsample from the original sample. 

The authors conclude that the Bayesian Method is less sensitive to sample size 

than Maximum Likelihood estimation, and produces more stable estimates, 

although the Bayesian estimates converges to the ML-estimates as sample size 

increases. The authors apply the different methods on empirical risk loss data and 

find that the Maximum Likelihood estimates are inconsistent for small sample 

sizes as they sometimes yield negative location parameters.  

In recent research authors have tried to address the issues of Maximum 

Likelihood estimates. Ergashev et al. (2014) acknowledge the problems with a flat 

likelihood surface and the difficulties in finding a global maximum. The authors 

present the regularity condition which is a specific, necessary, and sufficient 

condition for the existence of a global solution to the severity parameter 
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estimation problem. They show that a violation of the regularity condition is the 

main reason behind unstable parameter estimates under the Maximum Likelihood 

approach.  In their article the authors use the Method of Moments estimation 

technique to derive their parameter estimates and show analytically that the 

method yields the same results as Maximum Likelihood estimation given the 

existence of a global solution. They compare the capital bias of the truncated 

approach under the regularity condition with the shifting approach and conclude 

that the truncated approach induces a capital bias that converges to zero as sample 

size increases. 

The data truncation problem has primarily been addressed with the use of 

parametric distributions, involving assumptions that may not be valid or desirable, 

yet research on non-parametric approaches is limited. Goldberg et al. (2014) 

develop a model to forecast the continuation of a function using functional data 

techniques. The authors construct the Best Linear Unbiased Predictor and apply 

their method on data from a call center at a bank, and forecast the arrival and 

workload process. The prediction model builds on the fact that the curves are 

governed by a small number of factors, which are found through Principal 

Component Analysis. The curves are represented using B-spline basis functions 

and the procedure involves computation of the mean function on the observed 

segment and the segment the authors wish to predict. Calculation of the 

covariance operators between the mean functions is then performed. These 

functions are expressed in terms of a B-spline basis and the corresponding 

coefficients. Prediction is obtained through computing the representation of the 

coefficients on the second part of the curve. The authors yield satisfactory result 

and claim that forecasting the continuation of a function can be achieved 

successfully by the proposed Best Linear Unbiased Predictor.  
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4.Chapter 4 

Theory  
4.1 Penalized B-splines 
Many datasets consist of a number of multidimensional observations that reflect 

the underlying smooth curve that we assume generates them. In such cases it may 

be preferable to treat the data as functional rather than as multiple series of data 

points. With functional data it is possible to analyze smooth curves or surfaces 

that vary over a continuum. The use of functional data analysis is proven useful in 

noise reduction, producing robust estimates, and dealing with missing values 

(Ramsay & Silverman, 2005). In order to reconstruct the smooth characteristics of 

the data that may have been lost in the observation phase, a powerful tool is 

penalized B-splines. Spline curves were initially used as a drafting tool for aircrafts 

and shipbuilding industries, where a flexible strip of material was clamped or 

weighted to pass through a number of points with smooth deformation. Penalized 

B-splines are used to convert discrete measurements to a function with values 

computable for any desired argument.  

When using B-splines, one represents a smooth function as a linear combination 

of basis functions defined on subsets of the whole domain. A basis function 

system is a set of known functions represented via a recursive formula derived by 

De Boor (1978). The formula for B-spline basis functions is: 

 
  

     
    

         
  

       
      

         
    

        (4.1) 

where  

  
      

              

           
 ,   

  is the   th B-spline basis function of order  , 

   is a non-decreasing set of real numbers, also called the knot sequence, and   is 

the  parameter variable. 
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Figure 4.1 Thirteen basis functions defining an order four spline with nine interior knots, 
shown as vertical dashed lines (Ramsay & Silverman, 2005, p. 50)  

Equation 4.1 shows that the B-spline basis function can be expressed by a linear 

combination of basis functions of a lower degree. One apparent defining feature 

of the basis functions is the knot sequence   . Over each interval where a basis 

function is defined, the basis function is a polynomial of order  . The different 

polynomials join smoothly at the breakpoints that separate them, so the function 

values are constrained to be equal at the breakpoints. Furthermore, the derivatives 

of order     are also constrained to match. In addition to the breakpoints, the 

knot sequence affects the characteristics of the basis functions. The knot sequence 

is a series of non-decreasing real numbers defined on the domain of the basis 

functions, and the knots will be located at the breaking points. It is possible to 

define a knot sequence with multiple knots at some break point. In this scenario 

one loses some continuity restrictions and it is possible to engineer abrupt changes 

in the derivative or function value of the spline. A basis function of degree   is 

defined over     knots, or   knot intervals, and since the basis functions are 

based on the knot difference, the functions are dependent on the knot spacing and 

not the knot values. A basis function of degree   will consist of a polynomial 

segment of order     (Ramsay & Silverman, 2005). The sum of the B-spline 

basis function values at any point is equal to 1. There may also be knots 

positioned outside the domain of the spline function. These knots are irrelevant 

for the definition of the spline; however they affect the basis functions (Höllig & 

Hörner, 2013). The spline curve      is represented as a linear expansion of the 

basis functions:  

            
                  

 

   
 (4.2) 

where      are points along the curve as a function of the parameter u,    is the 

point coefficient, and   
  is the  th B-spline basis function of order  . 
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The coefficients are determined by partly by the data to be fitted and partly by an 

added penalty function aiming to impose smoothness and avoid over fitting.  

4.2 Principal Component Analysis 
Principal Component Analysis (PCA) is a statistical method that employs 

orthogonal transformation in order to translate a set of possibly correlated 

variables to a set of linearly uncorrelated variables called principal components. 

The aim of PCA is to be able to explain the variation in an observed dataset by the 

principal components, which are considerably fewer than the number of original 

variables. The principal components are orthogonal since they are the eigenvectors 

of the covariance matrix, which is symmetric (Ramsay & Silverman, 2005).  

The procedure is built on the central concept of expressing functions as linear 

combinations of variable values, 

 
                 

 

   
 (4.3) 

 

where    is a weighting coefficient applied to the observed values     of the  th 

variable. Principal component analysis is performed by finding the set of 

normalized weights that maximizes the variation in the   ’s. The procedure can be 

explained through the following steps (Ramsay & Silverman, 2005): 

1. Find the weight vector                  for which the linear combination 

values  

 
           

 
 (4.4) 

have the largest possible mean square        
 

  under the constraint  

 
    

      
   

 
  (4.5) 

 

2. Carry out second and subsequent steps, possibly up to a limit of the number of 

variables   . On the  th step, compute a new weight vector    and new 

values           . The values     will have maximum mean square, under the 

constraint        , and the     additional constraint(s) 

 

              (4.6) 
 

The unit constraint on the weights is essential to the procedure. Without this 

constraint, the problem is ill defined since the mean squares could take arbitrarily 

large values. The motivation behind the first step is to find the strongest and most 

important mode of variation in the variables. In the second and following steps, 
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one again seeks the most important mode of variation but require the weights to 

be orthogonal to the ones previously found, so they are indicating something new. 

The amount of variation in terms of mean square will decrease for each step, and 

one can expect to be able to explain the major part of the variance between 

variables well before the maximum step  . The vectors    are called the loading 

vectors and the   ’s contain the principal component scores.  

 

4.3 The Generalized Champernowne 

Distribution 
The original Champernowne distribution was first proposed by D. G. 

Champernowne in 1937 to describe a family of curves for the graduation of pre-

tax income distributions. It was further developed and discussed by the author in 

1952, where methods are described for fitting the distribution parameters 

(Champernowne, 1952). The probability density function for the original 

Champernowne distribution is: 

 
     

  

  
 
  

 
  

  
   

 
  

 
  

 
 
               

(4.7) 

 

where    is a normalizing constant, and     and   are nonnegative parameters.  

 

The characteristic features of the Champernowne distribution is the convergence 

to a Pareto distribution in the tail, while looking like a Log-Normal distribution 

near 0 when    . In the case when    , the density is either 0 or infinity at 0. 

One of the benefits of using the Champernowne distribution instead of Extreme 

Value Theory is that one does not have to choose the starting point from where 

the tail domain is defined. In order to avoid the inflexibility of the distribution at 0, 

Bolancé et al. (2012) present the Generalized Champernowne distribution, which 

includes an additional parameter   ensuring the possibility of a positive finite value 

at 0 for all   . The cumulative distribution function of the Generalized 

Champernowne distribution is: 

 
          

         

                 
                (4.8) 

 

where         and    . The probability density function of the 

Generalized Champernowne distributions is: 

 
          

                    

                    
                   (4.9) 
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The Generalized Champernowne distribution does equivalently to the 

Champernowne distribution, converge to a Pareto distribution in the tail. Let us 

define 

 

          
             

 
  

 

    
  

(4.10) 

 

which is the density function of the Pareto distribution with the mode of the 

Generalized Champernowne distribution inserted as   . Then the convergence 

imply that  

 
   
   

         

         
    (4.11) 

 

The effect of the additional parameter   introduced in the generalized version of 

the distribution is different for different values of  . The parameter   experiences 

some scale parameter properties, materializing as the derivative of the cumulative 

distribution function becoming larger with an increasing   when   

   Conversely, the derivative of the cumulative distribution function decreases 

with increasing   when    . When    , the parameter   affects the density in 

different ways. When    , a positive   leads to lighter tails and the opposite 

when    . Furthermore, a positive   ensures a finite density at 0. The 

parameter also has a shifting effect as a positive   shifts the mode to the left when 

   . In the scenario where    , the parameter   has no effect on the density. 

The influence of the parameter   is visualized in Figure 4.2.  
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Figure 4.2 Illustrative examples of the effect of parameter c. The cumulative distribution 
function and the probability density function of the Generalized Champernowne 
Distribution are plotted for different values of α and c, while M = 5 in all plots. c = 0 in the 
solid line and c = 2 in the dotted line. 
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4.4 Kernel Density Estimation 
Kernel density estimation is a nonparametric method for approximation of the 

probability density function of a random variable (Bolancé, et al., 2012). The 

method will provide an estimation of the density function at every point in the 

domain by using sample information in the neighborhood of the point where the 

density function is estimated. The influence of empirical data will be large from 

nearby points and small from points far away. How the sample information is 

combined and weighed is a function of both the kernel function as well as the 

bandwidth parameter.  

For a sample of   independent identically distributed observations             , 

the kernel density estimator of the density function   is defined as: 

 
      

 

  
   

    

 
  

 

   
 (4.12) 

 

where      is the kernel function and   is the bandwidth parameter. Both      

and   have to be chosen. The kernel function determines the shape of the 

weighting, while the bandwidth parameter determines the width and thereby the 

smoothing factor. The shape of the kernel function does not influence the shape 

of the estimated density. Kernel density estimation can also be implemented if one 

is interested in estimating a multivariate density.  

 

The kernel function is a function of a single variable and must integrate to 1. The 

functions is usually symmetric with zero mean and commonly used kernel 

functions are Gaussian, Epanechnikov, and Uniform although the choice of 

kernel functions is not limited to density functions. The kernel functions 

determine the way in which empirical data is handled in the estimation function, 

where for instance a Gaussian kernel weights data according to a normal 

probability distribution and the density estimation will therefore be influenced by 

data points far from the point of estimation, while an Epanechnikov kernel will 

not use information from data points outside its domain. Table 4.1 displays some 

of most commonly used kernel functions. The bandwidth parameter   controls 

the width of the kernel and determines thereby the amount of smoothing. For a 

smaller choice of  , the density estimation will experience larger fluctuations while 

a larger   results in a smoother density estimation, but details from the data points 

may be lost.  

 

One potential drawback of using kernel density estimation when using heavy tailed 

data is that the density will be biased in the mode, implying that the density will be 

underestimated in this area (Bolancé, et al., 2012). The smoothing parameter will 

also tend to be large. When using a smaller bandwidth, the density may result in a 

bumpy shape due to the presence of scarce large observations. 
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Kernel               Plot 

Gaussian 
 

   
   

 
 
  

              

 

Epanechnikov                         
                  

  

 

Uniform  
              

           
  

 
Table 4.1 Three commonly used kernel functions. 
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4.4.1 Boundary Correction  
The estimation of a density function introduces restrictions as the resulting 

estimate must integrate to one. The classical kernel density estimation is developed 

with unbounded support with no knowledge of boundaries, resulting in a density 

with probability mass outside the support and an estimate without unit integration. 

Figure 4.3 illustrates one scenario where boundary correction is needed. This 

would result in a considerable bias of the estimator, and simply truncating the 

distribution would be inappropriate and insufficient (Jones, 1993). In this thesis 

boundary correction is needed as data are transformed into the       interval. 

Many approaches to boundary correction are available and this thesis will use the 

one presented by Bolancé et al.  (2012). The method forces the integration of each 

kernel overspilling the boundaries to unity by renormalizing. The following 

function gives the asymptotic properties of the kernel density estimator around 

boundaries. 

 

                    

      
 
 
 

       
   
 

 

 (4.13) 

 

for        , where      is the kernel function.  

 

Figure 4.3 Illustrative example of kernel density estimation with boundary correction. The 
solid line is raw kernel density estimate and the dotted line is with boundary correction. 
(Jones, 1993, p. 136) 

Note that            and            for the interior points of  , that is on 

the interval        . The integral only takes nontrivial values within one 

bandwidth away from the boundary points.  
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Using equation 4.13, the kernel density estimator with boundary correction will 

then be defined as: 

 
      

 

          
   

    

 
 

 

   
  (4.14) 

 

Equation 4.14 is simply equation 4.12 with the introduced correction term.  
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5.Chapter 5 

Methodology  
5.1 Time Variant Factor Scaling 
In order to analyze the internal dataset from the bank together with external data 

from an operational risk data consortium, the internal operational risk losses have 

been converted to Euro. The conversion has been done according to historical 

exchange rates provided by European Central Bank (European Central Bank, 

2015). As stated by Schevchenko & Temnov (2009), in practice, losses are often 

scaled using time variant factors before used in modeling. One such factor is 

inflation which in this thesis has been adjusted for using the historical euro 

inflation reported by the European Central Bank (European Central Bank, 2015). 

Each loss has been adjusted as if it occurred in January 2015. Furthermore, the 

reporting threshold is scaled correspondingly, resulting in a known threshold 

varying in time as suggested by Schevchenko & Temnov.  

5.2 Semiparametric Density Estimation 
This thesis will operate under the assumption that internal losses follow the same 

distribution as external losses conditioned on external losses being truncated 

below a threshold value. This assumption results in the approach to predict the 

continuation of the probability density function of the external loss data based on 

information from both its tail as well as information from the internal loss dataset. 

Therefore the prediction will be based on previously observed probability density 

functions of the internal loss dataset, but given that only one observation is 

available we will estimate the distribution of the internal losses to generate more 

observations. The estimation of the distribution will be performed using a 

semiparametric model presented by Bolancé (2012).  

The method will find parameters of the Generalized Champernowne distribution, 

presented in chapter 4.3, that fit the dataset and will then continue with kernel 

density estimation. The first step in finding the estimated distribution is to 

estimate the parameters       of the cumulative distribution function. For the 

Generalized Champernowne distribution it holds that              , 

suggesting the parameter   should be estimated as the empirical median of the 
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dataset. The parameters   and   are then estimated using Maximum Likelihood 

estimation with the Log-Likelihood function following equation 4.9: 

                              

                
 

   
 

                           
 

   
 

.  

(5.1) 

For a fixed  , the Maximum Likelihood function is concave and has a maximum. 

The maximization is performed numerically using the Newton-Rhapson method. 

Figure 5.1 below shows the probability density function for a Generalized 

Champernowne distribution evaluated with the parameters found via Maximum 

Likelihood.  

 

Figure 5.1 A probability density function of the Generalized Champernowne distribution, 
with the parameter found via Maximum Likelihood. 

The next step in the process is to transform the dataset into the       interval. 

Using the estimated parameters        and    previously found, the data are 

transformed using the cumulative distribution function of the Generalized 

Champernowne distribution. Transformation of the data is based on the 

probability transform that says that if   is a random variable with a continuous 

distribution function  , then      is uniformly distributed on the interval       

(Hult, et al., 2012). In this case   will be the Generalized Champernowne 

distribution, and we will receive the transformed variable  

                     (5.2) 

where          

The transformation is designed to make the transformed data as close to a 

uniform distribution as possible. However, even if the transformed dataset does 
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not appear to be uniformly distributed, it still contains the correct characteristics. 

Figure 5.2 below shows a transformed dataset.   

 

Figure 5.2 Histogram over a loss distribution, transformed using the cumulative distribution 
function of the Generalized Champernowne distribution with parameters estimated from 
Maximum Likelihood. 

Following the transformation, the next step is to implement kernel density 

estimation, where boundary correction is added. The kernel density estimation is 

calculated using equation 4.14, with the transformed variables and the accurate 

boundary correction limits. We now receive the following density estimation: 

 
                 

 

          
   

    

 
  

 

   

 (5.3) 

 

where           is the boundary correction term from equation 4.13. The 

boundary correction term allows the kernel density estimation to reach unit 

integration, which is a central aspect in transforming operational losses. By 

transforming the original dataset to a Uniform distribution, and require the density 

to integrate to one, one is able to estimate beyond the data and extrapolate past 

the maximum observed value in the original dataset (Bolancé, et al., 2012). Even if 

one does not have full information on the tail, one can use the integration 

restriction to extract valuable information from the density estimation.  

The kernel function used is the Epanechnikov since it is bounded and the most 

efficient. Silverman’s rule of thumb is used to calculate the bandwidth (Silverman, 

1986). Silverman’s rule of thumb calculates a bandwidth aiming to minimize the 

Mean Integrated Square Error. The Bandwidth is calculated as follows: 

 

     
    

 
 

 
 

  (5.4) 
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where    is the standard deviation estimated from the sample. Given that the 

bandwidth is proportional to      , an increase in sample size will decrease the 

bandwidth and thereby reduce the smoothing effect. Figure 5.3 below shows the 

kernel density estimation of a transformed dataset.  

 

Figure 5.3 Kernel density estimation of a transformed dataset. 

The final step of the semiparametric approach is to convert the probability density 

function from the kernel estimation, by a back-transformation to its original scale. 

Following this transformation, we will have a smoothed probability density 

function that we can interpret and use properly. The transformed data is 

converted using          
     . We find the expression for the back-transformation as: 

 
                                  

             

  
  

                          
      

(5.5) 

 

Exchanging the expression for                  with equation 5.3 yields the final 

expression for the semiparametric process as: 

 
      

         
    

                     
   

                           

 
 

 

   

  (5.6) 

 

where       is the derivative of     .  

The result from all the proceeding steps is presented in Figure 5.4 below. 



       

25 
 

 

Figure 5.4 Resulting distribution from the semiparametric estimation of a dataset 

Following this semiparametric process, a probability density function explaining 

the behavior of the internal loss process is obtained. The procedure is termed 

semiparametric as it provides a link between parametric and nonparametric 

methodologies, posing certain advantages. When data are sparse, one does not 

want to rely solely on nonparametric estimation, and the estimation will therefore 

be close to the parametric model. When available data increases, the model will 

converge to its nonparametric counterpart. Additionally, this model will solve the 

problems associated with kernel density estimation in the tail, which often results 

in a density estimation with a bumpy shape. The proposed model also provides 

advantages over extreme value theory, as it enables the fitting of a Pareto-like tail 

without the need to identify the domain in which the tail distribution is defined 

(Bolancé, et al., 2012).  

The probability density function obtained from this approach will be used in the 

subsequent step to generate observations of the internal loss dataset. The next 

step is to generate datasets with a ranging amount of observations, as described in 

section 6.2, which will be used to forecast the continuation of the probability 

density function of the external dataset. The approach will be applied to three risk 

cells, following the categorization described in chapter 2.2.3. Risk cells have been 

chosen as cells with a large sample size in both the internal and external dataset, 

since the semiparametric approach to fit a Generalized Champernowne 

distribution will yield more accurate results when using more observations. For 

confidentiality reasons, this thesis will not disclose which intersections the risk 

cells represent. The choice of risk cells will in no way affect the results of this 

research, as the approach is applicable to every cell with sufficient data. Since the 

external dataset is more extensive than the internal counterpart, we must be able 

to generate observations containing larger losses than the ones encountered in the 

internal dataset. Using the proposed semiparametric approach, this is achieved, 

while still using information from internal losses to predict external losses 

according to the assumption of common distribution 
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5.3 Best Linear Unbiased Predictor 
Predicting the probability density function of the external operational risk loss 

data will be performed using the Best Linear Unbiased Predictor (BLUP), 

presented by Goldberg et al. (2014). The approach uses information from 

previously collected functions, obtained from the semiparametric approach. The 

initial step of the prediction is to represent the curves generated from the internal 

dataset with a basis expansion with respect to a B-spline basis             , 

defined on a fixed knot sequence  . The previously collected curves can now be 

represented through coefficients of the B-spline basis. The next step is to express 

the B-spline curves with a small number of variance factors, found via Principal 

Component Analysis. From this analysis eigenvectors, eigenvalues, and mean 

function are extracted, all expressed in the basis  .  

Once extracted, the eigenvectors and mean function are restricted to the two 

intervals defined by the part observed in the external dataset, part 1, and the part 

to predict, part 2. The eigenvectors and mean functions are expressed in terms of 

two new B-spline bases defined on the two subintervals. If we define the function 

to predict as  , one can divide it into two parts    and   .    is the beginning 

part, which have already been observed and is therefore not stochastic and hence 

defined as   . The mean functions of part 1 and 2, defined as    and   , are based 

on the previously observed curves. The prediction of    is then performed by 

adjusting    by the deviation of    from   , scaled with the observed variance. 

The formula for the prediction is as follows: 

                       
              

          (5.7) 

Where   is a diagonal matrix with the eigenvalues from the principal component 

analysis on the diagonal,    is the scaled sum of the eigenvalues, the   ’s are the 

coefficients of the restricted eigenvectors, and    is the B-spline basis restricted to 

part 2. For a more extensive explanation of the prediction, please see the article by 

Goldberg et al (2014).  

The proposed method will enable the recreation of the truncated body of a loss 

distribution, by using information from its tail and previously collected losses. The 

method will not be inferring a parametric distribution on the operational risk 

losses, which is a desirable feature as previous research has failed to reach 

consensus regarding which parametric distribution that best fit operational risk 

losses. The proposed method of linear prediction has been developed and 

validated by Goldberg et al. (2014) and verified to work on call center data. The 

same dataset has been tested by this thesis with good results. By employing the 

same procedure as Goldberg et al (2014), this thesis will also compute confidence 

bands for the prediction.  
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6.Chapter 6 

Data  
6.1 Internal Data 
An internal dataset on operational risk losses is used in this thesis and contains 

fewer observations than the external dataset. Internal losses are reported above a 

threshold too low to influence the data characteristics or total loss amount. For 

confidentiality reasons, this thesis will display two scale parameters   and   for the 

axes. The parameters are constant through the entire thesis. 

Losses have been converted to Euro and adjusted for inflation, to be comparable 

with the external loss data. The distribution is positively skewed, indicating that 

the mass of the distribution is concentrated on the left of the distribution and that 

the right tail is heavier than the left tail. A stochastic variable that is symmetric will 

have skewness of zero. The kurtosis of the distribution is positive, which is 

indicative of a distribution with heavier tail and more peakedness than a normal 

distribution. The measure of kurtosis is centered on the normal distribution which 

has adjusted kurtosis of 0. Figure 6.1 below displays a histogram over the internal 

loss dataset, where the last bar is includes all losses above   , as the tail is long.  

 

 

 

 

 

 

 

 

 

Figure 6.1 Histogram over the internal dataset of operational risk losses used in this thesis. 
The last bar includes losses above 2µ 
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6.1.1 Risk Cell 1 
Three risk cells have been chosen for analysis in this thesis, and are therefore 

presented. A histogram over the losses within risk cell 1 is displayed below.  
 

 

 

 

 

 

 

 

 

 

Figure 6.2 Histogram over the internal dataset of operational risk losses for risk cell 1. The 
last bar includes losses above 2µ 

6.1.2 Risk Cell 2 
A histogram over the losses in risk cell 2 displayed below. The distribution of this 

risk cell is the least skewed and has lowest kurtosis, indicating a lighter tail than the 

other two datasets.  
 

 

 

 

 

 

 

 

 

 

Figure 6.3 Histogram over the internal dataset of operational risk losses for risk cell 2. The 
last bar includes losses above 2µ 
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6.1.3 Risk Cell 3 
A histogram over the losses in risk cell 3 displayed below. The distribution of this 

risk cell is the least skewed and has lowest kurtosis, indicating a lighter tail than the 

other two datasets. The distribution of this risk cell is more skewed and has higher 

kurtosis than the other two risk cells, indicating a heavier tail. This is the risk cell 

with the largest observation.  

 
 

 

 

 

 

 

 

 

 

Figure 6.4 Histogram over the internal dataset of operational risk losses for risk cell 3. The 
last bar includes losses above 2µ 

 

6.2 Simulated Data 
In order to apply the prediction method proposed by Goldberg et al. (2014) a 

number of observed complete datasets are required. The internal dataset only 

consists of a single observation and datasets are therefore simulated to be used in 

this thesis. 

Building on the semiparametric approach presented by Bolancé et al. (2012), 

datasets are simulated by drawing from the density distribution resulting from the 

semiparametric approach based on the internal data. For chosen risk cells in the 

correlation matrix between business line and event type, datasets are drawn with a 

ranging number of losses up to twice the amount of expected losses in the 

external data, thereby placing the mean of the historical number of losses close to 

the amount in the external dataset, which is to be predicted.  
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6.3 External Data 
External operational risk loss data can be classified into two main categories: 

public data and consortium data, where consortium data are reported above a 

stated threshold. A threshold is introduced as a mean to ensure the financial 

institutions’ ability to report every operational risk loss as well as to reduce costs 

associated with collecting and reporting. This thesis will use consortium data 

where the threshold is known. 

The distribution of the dataset used in this thesis is positively skewed, indicating 

that the mass of the distribution is concentrated on the left of the distribution and 

that the right tail is heavier than the left tail. The kurtosis of the distribution is 

positive, which is indicative of a distribution with heavier tail and more 

peakedness than a normal distribution. Figure 6.5 below shows a histogram over 

the losses where the last bar is cumulative for presentational purposes. All losses 

above    are shown in the rightmost bar of the chart. Noteworthy is the reporting 

threshold and the very large last bar in Figure 6.5, indicating a heavy tail. 

Furthermore, the external dataset is larger than the internal counterpart and the 

largest observation is much bigger in the external data.  

 

Figure 6.5 Histogram over the external dataset of operational risk losses. The last bar 
includes losses above 2µ 
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6.3.1 Risk Cell 1  
A histogram over the external losses in risk cell 1 is presented below. 

 

 

Figure 6.6 Histogram over the external dataset of operational risk losses risk cell 1. The last 
bar includes losses above 2µ 

6.3.2 Risk Cell 2  
A histogram over the external losses in risk cell 2 is presented below. This risk cell 

contains relatively few small observations, and many large losses. This is 

confirmed by the high skewness and kurtosis.  

 

 

Figure 6.7 Histogram over the external dataset of operational risk losses for risk cell 2. The 
last bar includes losses above 2µ 
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6.3.3 Risk Cell 3  
A histogram over the external losses in risk cell 3 is presented below. This risk cell 

contains many small observations, and relatively few large losses.  

 

Figure 6.8 Histogram over the external dataset of operational risk losses for risk cell 3. The 
last bar includes losses above 2µ 
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7.Chapter 7 

Results  
7.1 Results from the Best Linear Unbiased 

Prediction 
The prediction approach presented in the methodology chapter is performed on 

three risk cells in the correlation matrix between business line and event type. The 

following three figures demonstrate the results from the prediction in the different 

risk cells where the solid blue line is the observed part of the external dataset and 

the dashed red line is the forecasted continuation of the density function. In order 

to give the best examination of the prediction part the entire loss domain is not 

shown in the figures. Evident is the discreteness in the observed part, as is the 

smooth nature of the prediction part, following the use of penalized B-splines.  

The figures indicate the validity of the prediction method, where the curve 

representing the observed part smoothly transition to the curve representing the 

forecasted continuation, demonstrating that the mean function of the previously 

observed curves have been properly adjusted to fit the external dataset, according 

to equation 5.7. The study results in prediction of an external dataset on 

operational risk losses, resembling the internal loss dataset.  
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Figure 7.1 The result from the prediction of the continuation of the loss distribution in risk 
cell 1. The solid blue line is the observed part of the external dataset and the dashed red line 
is the forecasted continuation of the density function. 

 

Figure 7.2 The result from the prediction of the continuation of the loss distribution in risk 
cell 2. The solid blue line is the observed part of the external dataset and the dashed red line 
is the forecasted continuation of the density function. 
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Figure 7.3 The result from the prediction of the continuation of the loss distribution in risk 
cell 3. The solid blue line is the observed part of the external dataset and the dashed red line 
is the forecasted continuation of the density function. 

 

7.2 Accuracy of the Prediction 
One important consideration is that the predicted continuation part of the 

function involves uncertainty, and therefore requires confidence bands to assess 

the accuracy. The following figures will display the same figures as in chapter 7.1 

but with confidence bands included. The interested reader is referred to the 

appendix for more detailed pictures. The solid blue line is the observed part of the 

external dataset, the dashed red line is the forecasted continuation of the density 

function, and the solid green lines are the confidence bands at a 95% level. In 

order to give the best examination of the prediction part the entire loss domain is 

not shown in the figures. 

The figures illustrate the precision of the prediction, and notable is high precision, 

visualized as narrow confidence bands, in the prediction part close to the 

threshold value as well as the leftmost part. The confidence bands are wider at the 

mode of the density, illustrating a less precise prediction. Wider confidence bands 

in this region are to be expected given that this area experiences more variations 

following the peakedness of the distribution. Furthermore, the accuracy of the 

prediction does not vary significantly between the different risk cells, indicating a 

robustness of the prediction method.  
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Figure 7.4 The result from the prediction of the continuation of the loss distribution in risk 
cell 1 including confidence bands. The solid blue line is the observed part of the external 
dataset, the dashed red line is the forecasted continuation of the density function, and the 
solid green lines are the confidence bands at a 95% level.  

 

Figure 7.5 The result from the prediction of the continuation of the loss distribution in risk 
cell 2. The solid blue line is the observed part of the external dataset, the dashed red line is 
the forecasted continuation of the density function, and the solid green lines are the 
confidence bands at a 95% level. 
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Figure 7.6 The result from the prediction of the continuation of the loss distribution in risk 
cell 3 including confidence bands. The solid blue line is the observed part of the external 
dataset, the dashed red line is the forecasted continuation of the density function, and the 
solid green lines are the confidence bands at a 95% level. 

 

7.3 Comparing Risk Cells 
To illustrate the difference between risk cells, the same figures are displayed with 

equal axes. The following three figures display the result from the prediction on 

the different risk cells, all in the same scale. The solid blue line is the observed part 

of the external dataset and the dashed red line is the forecasted continuation of the 

density function.  

The figures indicate that the number of losses differs significantly between the 

cells, as well as the shapes of the resulting distributions, suggesting that different 

factors influence both loss severity as well as loss frequency in different business 

lines and event types. The result confirms the need to categorize the losses. 
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Figure 7.7 The result from the prediction of the continuation of the loss distribution in risk 
cell 1. The solid blue line is the observed part of the external dataset and the dashed red line 
is the forecasted continuation of the density function.  

 

Figure 7.8 The result from the prediction of the continuation of the loss distribution in risk 
cell 2. The solid blue line is the observed part of the external dataset and the dashed red line 
is the forecasted continuation of the density function.  
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Figure 7.9 The result from the prediction of the continuation of the loss distribution in risk 
cell 3. The solid blue line is the observed part of the external dataset and the dashed red line 
is the forecasted continuation of the density function.  
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8.Chapter 8 

Conclusions & Further Research 
Internal data on operational risk losses are limited, and financial institutions are 

required by Basel Committee on Banking Supervision to use external data when 

using an Advanced Measurement Approach for operational risk quantification. 

The Loss Distribution Approach usually models the loss severity using one 

distribution for the body and another distribution for the tail, introducing 

problems in determining the breaking point beyond which the tail domain is 

defined. Bolancé et al. (2012) address this issue when presenting the 

semiparametric approach, enabling the use of a single distribution over the entire 

loss domain. However, this methodology requires a full loss distribution and 

external data are typically left truncated where only large losses are visible. To 

address the problem with truncated external datasets, this thesis has predicted the 

continuation of a probability density function, in order to recreate the unobserved 

body of a loss distribution.  

Using Best Linear Unbiased Prediction, the truncated body of an external loss 

distribution is recreated, based on information from its tail and probability density 

functions from a set of internally collected losses, and the purpose of the thesis is 

reached. By demonstrating the results from implementing the Best Linear 

Unbiased Predictor on operational risk loss data, this thesis illustrates the viability 

and utility of the proposed method, and provides risk managers with a 

methodology to address one of the many challenges with operational risk 

modeling. Predicting the continuation of a function, using the methodology 

developed by Goldberg et al. (2014), can be successfully achieved on a probability 

density function of external losses, which our study shows. Furthermore, the 

distribution is recreated based on an internal dataset and without introducing 

parametrical assumptions, making this research unique and pioneering. The 

findings of this thesis will be beneficial for financial institutions as it enables risk 

managers to employ the semiparametric approach introduced by Bolancé et al. 

(2012) and thereby eliminates the problem in defining the breaking point between 

the tail and the body when employing the loss distribution approach. The study 

generates an enriched external dataset and in addition, confirms the need to 

categorize operational risk losses into intersections between business line and 

event type when recreating truncated data, as the loss distribution differs 
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significantly between risk cells. Additionally, the confidence bands for the 

prediction indicate a precise prediction in almost the entire loss domain. The 

confidence bands are wider near the mode of the distribution as a result of the 

characteristics of the distribution, which experiences a large peak in this area. 

Following this study, practitioners within risk management are able to incorporate 

both internal and external operational risk loss data when employing the approach 

proposed by Bolancé et al. (2012) and furthermore avoid the difficulties associated 

with the loss distribution approach.  

Worth mentioning is that the approach proposed by this thesis is viable under the 

assumption that the external loss distribution experiences a similar shape as the 

internal distribution, and that the reporting threshold of the external loss data is 

known. The shape of the internal loss dataset illustrates the bank’s historical losses 

and since the objective when using external loss data is to complement the 

oftentimes limited internal loss dataset, is it desirable that the two datasets 

experience similar characteristics. When using this methodology, the external loss 

dataset is recreated without any parametrical assumptions using the information 

from its own tail and the internally collected losses. This is a unique approach 

where all available data is being used without the need to divide the external loss 

distribution into a body and a tail domain, avoiding the uncertainty in determining 

the breaking point between the two. As a final point, the use of the internally 

collected losses when recreating the truncated part of the external database tailors 

the result to the financial institution making the approach more suitable to use in 

the modeling of operational risk.  

8.1 Further Research 
The prediction model proposed in this thesis is based on the assumption that 

internal losses follow the same distribution as external losses under the condition 

that external losses are truncated below a threshold value. An assessment of this 

assumption is a recommended following step, along with an evaluation of the 

possible errors this assumption would induce if not valid.  

As this thesis generates a full dataset of external operational risk losses, the natural 

subsequent step is to assess how to merge the dataset with the internally collected 

losses without introducing any bias caused by the difference in sample size.  

A final suggestion for further research in the field of operational risk is to develop 

a method to fill the empty cells in the correlation matrix between business line and 

event type. There exists dependency between the risk cells, and as our research 

shows, the loss distribution varies significantly in the different cells confirming the 

necessity to categorize the losses. This thesis has employed prediction in the cells 

with many observations as the semiparametric approach may yield flawed results 

when the data are scarce. By exploring and modeling the dependency, it may be 

possible to enrich the datasets in the cells with fewer observations.  
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10.Chapter 10 

Appendix  
10.1 Detailed Figures  
Here are enlarged and more detailed figures presented from section 7.2. 

 

Figure 10.1 A more detailed version of figure 7.4 
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Figure 10.2 A more detailed version of figure 7.5 

 

Figure 10.3 A more detailed version of figure 7.6 



      

 
 

 


