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Abstract
Under the Advanced Measurement Approach (AMA), banks
must use four different sources of information to assess their
operational risk capital requirement. The three main quan-
titative sources available to build the future loss distribu-
tion are internal loss data, external loss data and scenario
analysis. The fourth source, business environment and in-
ternal control factors, is treated as an ex-post update to
capital calculations and is not a subject of this thesis. Ap-
proaches from Extreme Value Theory (EVT) have gained
popularity in the area of operational risk in recent years,
with its focus on the behaviour of processes at extreme
levels making it a natural candidate for operational risk
modelling. However, the adoption of EVT in operational
risk modelling has encountered several obstacles with the
main one being the scarcity of data leading to substantial
statistical uncertainty for both parameter and capital es-
timates. This Master thesis evaluates Bayesian Inference
approaches to extreme value estimation and implements a
method to reduce these uncertainties. The results indicate
that the Bayesian Inference approaches gives a significant
reduction of the statistical uncertainties compared to more
traditional estimators and also performs well when applied
on real-world data sets.



Sammanfattning

När Advanced Measurement Approach skall implementeras
krävs det att banker använder fyra olika informationskäl-
lor för att bedöma sitt kapitalkrav för operationell risk. De
tre kvantitativa källorna som används för att bygga den
framtida förlustdistributionen är intern förlustdata, extern
förlustdata och scenarioanalys. Den fjärde källan, affärsmil-
jö och interna kontrollfaktorer, behandlas som en ex-post-
uppdatering till kapitalberäkningen och är inte ett föremål
för denna uppsats. Extremvärdesmetoder har ökat i popula-
ritet inom operationell risk de senaste åren där deras fokus
på processers beteende på extremnivåer är väl lämpat för
operationell riskmodellering. Likväl har införandet av ex-
tremvärdesmetoder i operationell riskmodellering stött på
flera hinder varav bristen på lämplig data är den störs-
ta. Denna brist leder till väsentlig statistisk osäkerhet för
både parameter- och kapitalestimat. Detta examensarbete
utvärderar Bayesianska Inferensmetoder för extremvärde-
sestimering och implementerar en metod för att reducera
nämnda osäkerheter. Resultaten indikerar at de Bayesians-
ka metoderna ger en signifikant reduktion av de statistiska
osäkerheterna jämfört med mer traditionella metoder. Ock-
så när metoden används på verklig förlustdata uppnås låg
osäkerhet.
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Chapter 1

Introduction

Under Basel II banks can choose between three methods to calculate their opera-
tional risk capital requirement. The three methods are

• The Basic Indicator Approach

• The Standardized Approach

• The Advanced Measurement Approach (AMA)

of which the Advanced Measurement Approach is the most sophisticated method
which allows the bank to develop an internal model to calculate their capital re-
quirement subject to approval by the regulatory authority.

Under the AMA the modeller tries to build the future loss distribution using three
main quantitative sources, namely internal loss data, external loss data and scenario
analysis. Incorporation of these elements plays a crucial role for the capital require-
ment estimation in operational risk. The fourth data element, business environment
and internal control factors, is treated as an ex-post update to capital calculations
and is out-of-scope for this thesis.

Extreme value approaches have gained popularity in the area of operational risk in
recent years, with its focus on the behaviour of processes at extreme levels making
it a natural candidate for operational risk modelling. According to extreme value
theory (EVT) a generalized Pareto distribution (GPD) is well suited for modelling
extreme losses because it under assumptions represents the domain of attraction
of independendent losses beyond a high-level treshold, called GPD-threshold. The
adoption of EVT in operational risk modelling has encountered several obstacles
with the main one being the scarcity of data and another being the identification
of an appropriate GPD threshold. The combination of these two issues leads to
substantial statistical uncertainty for both parameter and capital estimates. In
order to combat the aforementioned data scarcity institutions use external data
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and scenario analysis as complements to their internal loss data, with these two
data sources leading to their own challenges.

In the last couple of years Bayesian Inference methods has gained interest in the
field of operational risk modelling. Especially when calibrating the parameters of
the loss distribution models used for calculating the capital requirement they seem
to have some desirable properties. One publication aiming to be a reference in this
subject is by Shevchenko [16], he describes the Loss Distribution Approach as well
as some Bayesian Inference methods that could be applicable for operational risk.
A paper by Ergashev et al. [7] more closely examines the use of Bayesian Inference
methods and the challenges involved.

The aim of this thesis will be to investigate if the Bayesian Inference (BI) methods
indeed outperforms the more traditional Maximum Likelihood estimator (MLE)
when estimating the parameters of a GPD in small data sets. Also a study of a full
loss distribution with a Lognormal body and GPD tail will be presented. In the
end this model will be tested in a real world environment using actual loss data.

The analysis of this work shows that the BI method significantly outperforms MLE
already when the data set is of the size 200 data points. It gives good results for
the full loss distribution as well as reasonable results in the real world setting.

The background for the thesis, including it’s real world context, is presented in
Chapter 2. Chapter 3 describes some mathematical concepts used in the thesis.
Chapter 4 presents the parameter estimation method using Bayesian Inference.
Chapter 5 presents the obtained results and finally Chapter 6 concludes and provides
a forward look.
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Chapter 2

Background

2.1 Operational Risk
When banks allocate capital against capital losses it can be viewed as self-insurance.
The three main categories that attract a capital charge in financial institutions are
credit risk, market risk and operational risk. Of these, operational risk can be
viewed as the newest one since it did not require any explicit capital allocation until
recently. In the past operational risk was assumed to be implicitly covered by the
capital allocation made for credit risk. The concept of operational risk is in general
related to the way a firm (not just financial firms) operates rather than changes in
the market or credit ratings.

According to Shevchenko [16], operational risk accounts for approximately 15-25
% of the total capital allocated in many banks and is the second largest risk after
credit risk. Even though explicit capital allocation to operational risk is a relatively
new matter for most banks the management of operational risk is not. It has always
been important for the financial industry to prevent external fraud, internal fraud
and processing errors, all of which are typical operational risk events. To give an
illustration of operational risk processes the following example is presented:

Example 1: Consider a foreign exchange deal where the trader makes use of market
inaccuracy by:

• buying USD 100 million for SEK 862 million (exchange rate: USD 1 = SEK
8.62)

• selling USD 100 million for SEK 862,087,221 (exchange rate: USD 1 = SEK
8.62087221)

hence making a profit of SEK 87,221. However, the banks back office makes a
mistake and the settlement is delayed a few days which leads to penalties of SEK
100,000 to be paid by bank. In total, because of the operational error made, the
bank records a loss on the deal of SEK 12,779.
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This fictional example illustrates just one operational risk event that could lead to
a small loss for the bank. However, the consequences of operational errors could be
much more severe, as shown by the following real-world examples:

Example 2: The Barings Bank downfall From 1992 to 1994 trader Nick Lee-
son made unauthorized speculative trades in futures and options from the Barings
Bank’s Singapore office leading to losses that in the end of 1994 had reached £208
million. He was able to do so because he was in charge of both the trading and
the back office settling in the office, roles usually divided between different people,
enabling him to hide his losses in an error account. When he, in early 1995, tried to
recuperate his losses by betting that the Japanese stock market would not change
overnight disaster struck as the Kobe earthquake sent Asian markets plummeting.
In the end losses approached an amount that was twice the Barings Bank’s available
trading capital and the bank was declared insolvent in February 1995. The inade-
quate separation of front and back office responsibilities that led to the downfall is
an example of an operational error.

Example 3: Société Générale and Jérôme Kerviel Until early 2008 trader
Jérôme Kerviel took unauthorized trading positions that eventually lost his em-
ployer, french bank Société Générale, e4.9 billion. Mr. Kerviel claims that high-
ranking officers knew of his trades but ignored them as long as he was making money
for the bank and Société Générale claims that he was acting entirely on his own
and was able to do so because of his knowledge of the banks back-office systems.
Whichever is right it must be seen as an operational risk error when the banks
internal systems fails to detect trades larger than the bank’s entire market capital-
ization. The banking supervising authority in France fined SocGen e4 million in
2008 for their laxity. [17]

Since the financial crisis, regulators in many countries have been coming down hard
on banks that fail to control risks like these properly. Other examples are the fine
of £30 million paid by Swiss bank UBS for their inadequate controls when Kweku
Adoboli, a trader in their London office, lost them $2.3 billion as well as JPMorgan
Chase being fined around $1 billion for failures related to losses of $6 billion made
by trader Bruno Iksil.[17]

2.2 The Definition of Operational Risk

Before the Basel Committee on Banking Supervision (BCBS) in 2001 issued the
proposal for what we today refer to as Basel II there was no widely accepted def-
inition of operational risk. It was mostly seen as anything that was not credit or
market risk. Now, in the Basel II framework [1, p. 144], the following explanation
is used:
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Definition: Operational risk is defined as the risk of loss resulting from inade-
quate or failed internal processes, people and systems or from external events. This
definition includes legal risk, but excludes strategic and reputational risk.

2.3 Quantifying Operational Risk under Basel II
As mentioned in the introduction Basel II allows for three different approaches to
quantify the operational risk capital requirement:

• The Basic Indicator Approach

• The Standardized Approach

• The Advanced Measurement Approach (AMA)

Of which the AMA is the approach that allows the bank to develop an internal
model for calculating the capital charge and hence is the sole approach considered
in this thesis. Under AMA the bank need to satisfy several criteria before being
granted approval by the authority, including:

• The model should include internal and external data as well as scenario analy-
sis and factors reflecting the business environment and internal control systems

• The capital requirement should be calculated as the 99.9 % confidence level
for a holding period of one year.

• Diversification benefits will be accepted if the dependence modelling is ap-
proved

To get approval the bank should demonstrate that the model accurately describes
its operational risk exposure in all cells of the Basel II matrix, presented in tables
tables 2.1, 2.2 & 2.3, where losses are divided into eight business lines and seven
event types.

The requirements under Basel II for the AMA leads to several challenges when
modelling operational risk. The use of three different quantitative data sources are
meant to give the modeller as much data as possible to work with, however the
data sources come with different characteristics and the implementation of all three
into the same model can be challenging. Internal data describes the bank’s own
risk profile while the external data represents the risk profile of the industry as a
whole. While the bank operates within this industry it is not given that it follows
the industry risk profile, more often it will not. Scenario data on the other hand
represents a forward view on possible extreme losses and as such must be treated
with care. The fourth factor of business environment and internal control systems
is treated as en ex-post update to the internal risk model and will not be considered
in this thesis.
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i Business Line, BL(i)
1 Corporate finance
2 Trading and sales
3 Retail banking
4 Commercial banking
5 Payment and settlement
6 Agency services
7 Asset management
8 Retail brokerage

Table 2.1: Basel II business lines (BL) [1, p. 147]

j Event Type, ET(j)
1 Internal fraud
2 External fraud
3 Employment Practices and Workplace Safety
4 Client, Products & Business Practices
5 Damage to Physical Assets
6 Business disruption and system failures
7 Execution, Delivery & Process Management

Table 2.2: Basel II Event types (ET) [1, p. 305]

ET(1) ET(2) · · · ET(j) · · · ET(7)

BL(1)

BL(2)
...

BL(i)
...

BL(8)

Table 2.3: Basel II matrix.

2.4 Extreme Value Theory in Operational Risk

A few operational risk events are rare but have a major impact on the bank, so called
low-frequency/high-severity risks. It is recognized that these operational risks have
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heavy tailed distributions and, due to its simple fitting procedure, the lognormal
distribution is a popular choice for modeling the severity distribution. However, due
to the high quantile level requirement for operational risk capital charge, accurate
modelling of extremely high losses (the tail of the severity distribution) is critical
and it is often useful to use other heavy tailed distributions for the tail of the
severity distribution. This is where Extreme Value Theory (EVT) comes into the
picture. The tail of the severity distribution is often modelled using a Generalized
Pareto Distribution (GPD) with the tail limited from below by a so called GPD-
treshold. This gives a body of the severity distribution limited from above by the
same treshold.

In other words, using this approach the body of the distribution consists of small
losses that occur frequently and the tail of the distribution consists of large losses
that occur infrequently.

2.5 Current situation
The limited amount of data available to operational risk modellers has lead them
into challenges when using EVT because of its need for large tail-event samples
[7]. However, while data sufficiency is a major obstacle faced when trying to fit a
GPD to data, it is not the only one. Fitting a GPD requires the identification of
an appropriate GPD-treshold, a task that is crucial as a misidentified treshold can
greatly impact the parameter estimates. Some of the most used methods for treshold
estimation, such as the Hill estimator or fixing a percentage for tail data, does not
always give clear indications that the treshold has been selected appropriately. Many
times they cause the tail sample to be "polluted" with non-tail data points.

These issues in combination leads to large uncertainty when estimating both the
parameters and the capital requirement. Especially uncertainty in the shape param-
eter of the GPD, crucial for shaping the tail of the distribution, leads to substantial
uncertainty in the capital estimates as illustrated by the example on the next page:

7



Example 4: The following picture illustrates how uncertainty in the shape param-
eter estimate of a GPD leads to uncertainty in capital estimates. All numbers are
estimated on simulated data sets of a GPD with true shape parameter equal to 0.9
and true capital equal to 86 MSEK.

Figure 2.1: Illustration of the parameter uncertainty’s effect on capital estimation.

As can be seen the estimated parameter interval leads to an interval for possible
capital estimates of ∼ 100 MSEK, i.e. larger than the true value of the capital.
This uncertainty is something the business wants to reduce to ensure that it properly
insures itself against operational risks. Hence, reducing the uncertainty of parameter
estimates will be the main focus of the thesis.
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Chapter 3

Mathematical background

3.1 Loss Distribution Approach (LDA)
One of the most common ways to create a model that fulfills the requirements of
the Advanced Measruement Approach (AMA) is the Loss Distribution Approach.
With this modeling technique the modeler splits all operational losses into homoge-
neous segments, e.g. the Basel Matrix (see table 2.3), and for each segment a loss
distribution is created. This distribution should represent the expectation of total
losses that can occur with a one-year time horizon. Using the notation presented
in [16] the LDA model can be written as:

Zt =
J∑
j=1

Z
(j)
t ; Z

(j)
t =

N
(j)
t∑
i=1

X
(j)
i (t) (3.1)

The following notations are present in the above equations:

• Zt is the annual loss

• t = 1,2,... represents discrete time counted in annual units

• Z
(j)
t is the annual loss in risk cell j which is modelled as a compound loss over

one year with frequency, N (j)
t , which is given by a e.g. Poisson process, and

severities, X(j)
i (t), i = 1, ..., N (j)

t

• the most usual approach is to model the frequencies and severities by inde-
pendent random variables

Under this model the capital the bank should hold is defined as the 0.999 Value at
Risk (VaR) which is the quantile of the distribution for the next year annual loss
ZT+1:

VaRq[ZT+1] = inf{z ∈ R : Pr[ZT+1 > z] ≤ 1− q} (3.2)
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at the level q = 0.999.

The focus of this thesis is using the Bayesian Inference Method, described next, to
estimate the probability distribution in one cell of the Basel Matrix. I.e. the focus
of the thesis is not to create the full loss distribution of the bank, Zt, but rather to
determine if the BI Method gives a good estimation of the distribution in one cell,
Z

(j)
t . If the method works well it could be applied to all cells and then the full loss

distribution could be estimated from these cells.

3.2 Bayesian Inference Method
Bayesian inference is a statistical method of inference in which Bayes’ theorem
(first presented in An Essay towards solving a Problem in the Doctrine of Chances
(1763) [2]) is used to update the probability estimate of a proposition as additional
information becomes available. The initial degree of confidence is called the prior
and the updated degree of confidence is called the posterior.

Let us consider a random vector of loss data X = (X1, ..., Xn) who has a joint
density for a given vector of parameters φ = (φ1, ..., φK), which we denote h(x|φ).
In the Bayesian approach, both parameters and observations are considered random.
Then their joint density is

h(x, φ) = h(x|φ)π(φ) = π(φ|x)h(x) (3.3)

where π(φ) is the probability density of the parameters, known as the prior density
function. π(φ) will typically depend on a set of further parameters, known as hyper-
parameters, which is omitted for simplicity of notation. These hyper-parameters are
used in the densities used as prior distributions. π(φ|x) is the density of parameters
given data X, known as the posterior density, h(x, φ) is the joint density of observed
data and parameters and h(x|φ) is the density of observations for given parameters.
This is the same as a likelihood function if you consider it a function of φ, i.e.
lX(φ) = h(x|φ). h(x) is the marginal density of X. If π(φ) is continuous then it can
be written as

h(x) =
∫
h(x|φ)π(φ)dφ (3.4)

if π(φ) is discrete then the integration should be replaced by a corresponding sum-
mation.

Using equation (3.3), the Bayes’ theorem, says that: The posterior density can be
calculated as:

π(φ|x) = 1
h(x)h(x|φ)π(φ) (3.5)
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Here, h(x) plays the role of normalisation constant and hence the posterior distri-
bution can be viewed as a combination of prior knowledge (contained in π(φ)) with
information from the data (contained in h(x|φ)).
Given that h(x) is a normalisation constant, we often write the posterior as

π(φ|x) ∝ h(x|φ)π(φ) (3.6)

The Bayesian inference approach permits a reliable estimation of distributions’ pa-
rameters even if the quantity of data, denoted n, is limited. When n becomes larger,
the weight of the likelihood component increases such that the posterior distribution
tends to the likelihood function if n→∞, as a consequence the parameters obtained
from both approaches converge. A useful result of this is that the data selected to
inform the likelihood component may lead the model and, as a consequence, the
capital charge.

One of the papers considered for this master thesis [11] proposes a two step Bayesian
Inference approach in order to obtain the parameters of the statistical distribution
used to characterize the severity. Scenarios are used to build the prior distributions
of the parameters (π(φ)), which is refined using the external data as informant of the
likelihood component. This results in an initial posterior function (π(φ|Y )) which is
then used as a prior distribution in the next step where the likelihood component is
informed by internal data. This leads to a second posterior distribution which will
allow for estimation of the parameters of the severity distribution used in building
the loss distribution function in the LDA model.

3.3 Markov Chain Monte Carlo (MCMC)

When modeling the Loss Distribution the target densities will usually not be stan-
dard densities and hence Markov Chain Monte Carlo methods are useful for sam-
pling the parameters of the severity distribution. Another paper considered for this
project [7] suggests that Metropolis-Hastings (MH) algorithm is well suited for pro-
ducing samples from a given target density. The target density of a parameter (or
set of parameters) is the full conditional density of that parameter (set) conditioned
on the rest of the parameters of the model. Bayes’ theorem implies that this full
conditional density is equivalent to the posterior density. By construction, each
sample from the MH algorithm 1 constitutes a Markov chain of dependent draws.
The algorithm is based on a proposal density that generates a proposal value and a
probability of move used to determine whether the proposal value should be taken
as the next draw from the target density. If the proposal value is rejected, the last
draw of the chain is retained as the next draw. Here we present a short introduction
to the two constituent parts of MCMC methods, namely Monte Carlo integration

1The MH algorithm used for this thesis as well as its implementation will be further explained
in chapter 4.
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and Markov Chains. For further information about MCMC methods the reader is
referred to Gilks et al. Markov Chain Monte Carlo in practice [10].

3.3.1 Monte Carlo integration
LetX be a vector of k random variables, with distribution π(.). The task of Bayesian
Inference is to evaluate the expectation

E[f(X))] =
∫
f(x)π(x)dx (3.7)

for some function, f .

Monte Carlo integration evaluates E[f(X))] by drawing samples, {Xt, t = 1, ..., n},
from the distribution π(.) and the using these samples to approximate

E[f(X))] ≈ 1
n

n∑
t=1

f(Xt) (3.8)

which means that the population mean of the function, f(X), is estimated by a
sample mean. If the samples are independent, the law of large numbers will ensure
that the approximation is accurate by increasing the sample size, n, sufficiently.

Drawing samples independently from π(.) is usually not an easy task as this density
seldom is a standard density. The independence is, however, not necessary. The
Xt’s can be generated by any process that samples throughout the support of π
in correct proportions. A Markov chain having π as its stationary distribution is
one possibility for doing this. This is what is called Markov Chain Monte Carlo,
MCMC.

3.3.2 Markov chains
A Markov chain is a discrete time stochastic process {X0, X1, ..., Xt+1, ...} where at
each time, t ≥ 0, the next state Xt+1 only depends on the current state, Xt. I.e.,
given Xt, the next state Xt+1 does not depend further on the history of the chain.
Mathematically this property can be written as

P (Xt+1 ∈ A|X0, X1, ..., Xt) = P (Xt+1 ∈ A|Xt) (3.9)

for any set A. This distribution, P (.|.), is called the transition kernel of the chain.
Under certain regularity conditions the Markov chain will gradually ’forget’ its
initial state and eventually converge to a unique stationary distribution, which does
not depend on either time t or the starting point X0.

In the notation of the Monte Carlo integration section we have that after a suffi-
ciently long burn-in period of say m iterations, the points {Xt, t = m+ 1, ..., n} will
be dependent samples approximately coming from the wanted distribution π. Then
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the output of the Markov chain can be used to estimate the expectation E[f(X))],
with X having π as its distribution. After discarding the burn-in samples we get
the following estimator:

E[f(X)] ≈ 1
n−m

n∑
t=m+1

f(Xt) (3.10)
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Chapter 4

Methodology

This chapter starts with section 4.1 presenting two common examples of methods
to achieve Markov Chain Monte Carlo sampling as well as motivating the choice
of method for this thesis work. Section 4.2 describes in detail the implementation
of this method and section 4.3 describes a two-step procedure used to incorporate
both external and internal data in the model. Section 4.4 shortly explains peaks
over treshold and specifies the full loss distribution evaluated in the thesis.

4.1 Examples of Markov Chain Monte Carlo methods

There exists a large amount of methods for achieving Markov Chain Monte Carlo
(MCMC) sampling when trying to estimate parameters of a model, however the
two most commonly used seems to be the Metropolis-Hastings algorithm and the
Gibbs sampler. Both W.R. Gilks [10] and D. Gamerman [8], two books on the
subject of MCMC simulation, mainly describes these two algorithms in their work.
An introduction to both methods as well as arguments for and against them are
presented below.

4.1.1 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is an (almost) universal algorithm that
creates a Markov chain with a stationary distribution for the parameters given the
data set, i.e. π(θ|x) (see equation (3.5) ), when direct sampling is difficult. It
was developed by Metropolis et al. [15], for use in mechanical physics, and then
generalized by Hastings [12] for a more statistical setting.

Before introducing the MH algorithm in full let us look at the closely related
Acceptance-Rejection Sampling (AR), a classical simulation technique that gen-
erates non-Markovian and (usually) independent samples.

Say that there exists an absolutely continuous target density, π(x) = f(x)/K, where
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f(x) is the unnormalized density and K is the (possibly unknown) normalizing
constant. Now, samples should be generated from this density π(x).

Let q(x) be a density that can be simulated by some known method, and suppose
there exits a constant c for which f(x) ≤ cq(x) for all x. Then, to obtain a random
variate from π(x):

Algorithm: A-R Sampling
1. Generate a candidate X from q(·) and a value u from the
uniform distribution, U(0, 1), on the interval (0, 1).
2. If u ≤ f(X)/cq(X):
- return X = y.
Else:
- go to 1.

Now let us turn our focus towards the MH algorithm. As in the A-R method,
suppose there exists a density that can generate candidates. Since the MH algorithm
wants to create a Markov chain, the density is allowed to depend upon the current
state of the process. The candidate-generating density or proposal density is denoted
q(Y |Xt). This density can be interpreted as saying that when the process is at a
state Xt, the density generates a value Y from q(Y |Xt). In order for the chain to
be reversible, it can be shown (see e.g. [4, p. 329]) that the probability of move
must be set to

α(Xt, Y ) = min
(

1, π(Y |x)q(Xt|Y )
π(Xt|x)q(Y |Xt)

)
. (4.1)

If the candidate is accepted, the next state is Xt+1 = Y . Otherwise, the next state
is Xt+1 = Xt. Schematically, the MH algorithm looks like:

Algorithm: MH Algorithm
1. Initialize algorithm with arbitrary value X0

2. For i = 1, · · · , N do:
- Generate Y from q(·|Xi) and u from U(0, 1).
If u ≤ α(Xi, Y ):
- set Xi+1 = Y

Else:
- set Xi+1 = Xi

3. Return the obtained values: {X1, X2, · · · , XN}
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Some remarks need to be made about the MH algorithm:

• The MH algorithm is specified by the candidate-generating proposal density,
however this can have any form and the stationary distribution of the Markov
chain will still be π(θ|x). For a justification of this please refer to [10, p. 7].

• As the calculation of the acceptance probability α(Xt, Y ) is a fraction of two
posterior densities, the normalizing constant h(x) of eq. (3.5) is not needed
as it will cancel.

• If the candidate generating density is symmetric the probability of acceptance
reduces to π(Y |x)/π(X|x). Hence if π(Y |x) ≥ π(X|x) the chain moves to
Y ; otherwise, it will move with probability π(Y |x)/π(X|x). I.e., if the jump
is "uphill", it is always accepted, if "downhill" it is accepted with a non-zero
probability.

The selection of the proposal density is crucial for the success of the method. On
one hand one needs a not-so-low acceptance rate and on the other hand one needs
a good mixing of samples. This leads to a trade-off between selecting a proposal
density that allows for small steps and high acceptance rates against a density that
gives large steps and good mixing of samples but a lower acceptance rate.

It is also crucial that the proposal density is easy to sample from as the whole point
of the algorithm is to switch from sampling from the difficult density π(θ|x) to many
generations from q(Y |Xt).

All in all the MH algorithm is by far the most general way of generating a Markov
Chain that samples from a known distribution and is applicable to a wide range
of problems. It was also found to be the algorithm of choice for this thesis and its
implementation will be presented in section 4.2.

4.1.2 Gibbs sampling
Gibbs sampling is a Markov Chain Monte Carlo algorithm for generating random
variables for a distribution indirectly, without having to calculate the density. The
name originates from Gibbs random fields in image-processing starting with Geman
and Geman [9] in 1984.

The Gibbs sampler requires the knowledge of the full conditional distributions of
the parameters and can be thought of as a practical implementation of the fact that
the knowledge of these distributions is sufficient to determine a joint distribution.
Let us consider a random vector X that has a joint density f(x) and denote the full
conditional distributions by fi(xi|x−i). The sampler then does the following steps:

1. Initialize xl=0
2 , · · · , xl=0

N with some arbitrary values
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2. For l = 1, · · · , L:
1) simulate xl1 from f1(x1|xl−1

2 , · · · , xl−1
N )

2) simulate xl2 from f2(x2|xl1, xl−1
3 · · · , xl−1

N )
...
N) simulate xlN from fN (xN |xl1, · · · , xlN−1)

3. Do an increment, l = l + 1, and return to step 2

Under some quite general conditions f(x) is a stationary distribution of the chain
generated by this algorithm; and the chain being ergodic with a limiting distribution
f(x), i.e. the distribution of xl converges to f(x) for large l.

One concern with the Gibbs sampler is that it may have slow convergence and
limited possibilities to control the convergence rate. This may lead to unnecessary
long computation time required to reach convergence, i.e. an inefficient algorithm.
Also Gibbs sampling does not take into account the previous value of the component
being updated and is therefore seen as somewhat restrictive. The requirement of
knowledge of the full conditional distributions may also cause some problems as
they are not always easily obtained.

In general, choosing between Metropolis-Hastings or Gibbs is not a question of
which is better, instead it is more a question of which one is more to your liking. In
fact, MH and Gibbs are often used in combination with each other. In this thesis
MH was chosen as it seemed easier to implement and that the ability to control
convergence was seen as important.

4.2 Implementation of Metropolis-Hastings algorithm

When describing the MH algorithm used for this thesis it is important to keep in
mind the equation that expresses the posterior distribution (i.e. the target distri-
bution of the sampling) as proportional to the prior distribution multiplied by a
likelihood component:

π(θ|x) ∝ h(x|θ)π(θ) (4.2)

where x corresponds to the data sample evaluated. This equation is included rather
than the one with the normalization constant (eq. (3.5)) as the normalization
constant cancels in the calculation of probability of move in the MH algorithm (see
eq. (4.1)).

To explain the implementation of MH algorithm a model that was analysed in the
thesis work is used as a base. In this model the random variables X follows a
Generalized Pareto distribution with treshold parameter equal to zero, i.e. X ∼
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GPD(ξ, β, τ = 0), hence the parameters that will be estimated are the scale, ξ, and
shape, β, parameters. The algorithm looks as follows:

Algorithm: MH for GP distributed data
1. Initialize β(i=0) and ξi=0 within the support of π(β|x)
and π(ξ|x)
2. For i = 1, ..., N do:
- Set β(i) = β(i−1)

- Generate proposal β∗ from q(β∗|β(i))
- Accept proposal with probability

α(β(i), β∗) = min
{

1,
π(β∗|x, ξ(i−1))q(β(i)|β∗)
π(β(i)|x, ξ(i−1))q(β∗|β(i))

}
(4.3)

- i.e. generate Z from uniform dist. U(0, 1) and set β(i) = β∗
if α(β(i), β∗) > Z

- Set ξ(i) = ξ(i−1)

- Generate proposal ξ∗ from q(ξ∗|ξ(i))
- Accept proposal with probability

α(ξ(i), ξ∗) = min
{

1,
π(ξ∗|x, βi)q(ξ(i)|ξ∗)
π(ξ(i)|x, βi)q(ξ∗|ξ(i))

}
(4.4)

- i.e. generate Z from uniform dist. U(0, 1) and set ξ(i) = ξ∗
if α(ξ(i), ξ∗) > Z

3. Do an increment, i = i+ 1, return to step 2

The crucial part of this algorithm is the choice of the proposal density, i.e. the
density denoted by q(·|·) in the algorithm. The density used in this work is usually
referred to as a tailored proposal density, and is specific for each block of variables
simulated. The next section explains it thoroughly:

4.2.1 Tailoring the proposal density

The idea of the tailored proposal density can be described like this: if you need to
have a good acceptance rate as well as a good mixing of parameters in your sample
(within the support of the distribution) your proposal density should be similar in
shape and location to your target distribution. Chib and Greenberg [4] suggests
this approach as one possibility for choosing a proposal generating density and
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also states that this leads to an independence chain as the proposals are generated
independently of the current location of the chain.

The most typical choice of a proposal density is a density that creates a so called
random walk chain. In this case the candidate Y is drawn according to the process
Y = X + Z where Z is called the increment random variable and follows a distri-
bution q1. The name random walk chain comes from the fact that the candidate
is equal to the current value plus some noise introduced by Z. To show how the
tailored proposal density improves upon this consider figure 4.1:
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Figure 4.1: Autocorrelation functions of (left) a MH algorithm run with a random
walk chain proposal density, (right) a MH algorithm run with a tailored proposal
density. The acceptance rates of the random walk chain was 0.909 and of the tailored
proposal density it was 0.7157.

Slowly decaying autocorrelation function indicates that the algorithm has a low
mixing of parameters, as is evident in figure 4.1 the autocorrelation function of the
tailored proposal density decays much faster than the autocorrelation function of
the random walk chain. The acceptance rate of the tailored proposal density is still
quite high, so the tailored proposal density gives a good mixing of parameters while
at the same time maintaining a high acceptance rate making it more effective when
trying to generate the true probability distribution of the parameters.

Consider the picture in figure 4.2. It shows the plotted likelihood function of the
shape parameter, ξ, from a generated data set with true parameter value ξ = 0.7.
The tailored proposal density wants to approximate this shape in order to be able
to generate a good sample of possible parameters. There are numerous ways of
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Figure 4.2: Likelihood plot of the shape parameter, ξ, of the GPD for a simulated
data set with true value ξ = 0.7.

achieving this but to keep the sample generation as simple as possible a normal
density is chosen as the proposal density.

The next issue is how to specify the parameters of the normal density. Since we
want it to have the same mode as the target density the mode of the likelihood
function is a natural candidate. This value is found by using a search heuristic called
simulated annealing. The next parameter we should specify is the standard deviation
of our proposal normal density, this is done by approximating the curvature of the
likelihood function at the mode and then calculating the standard deviation from
this. The next part explains both procedures in more detail.

Searching for the mode, simulated annealing

As previously mentioned, one challenge of this approach is the search for the mode.
Although the target density of figure 4.2 only has one mode the possibility exists
that, with complex target densities, we can have several local modes in the den-
sity function (see figure 4.3). Then many standard optimization strategies may
get "caught" in these local modes which are not necessarily the global mode. To
overcome this challenge we use an optimization strategy called simulated annealing.

Simulated annealing (SA) is an optimization heuristic with a probabilistic accep-
tance criteria that allows for moves towards both worse and better positions (com-
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Figure 4.3: Log-Likelihood plot of the treshold parameter, τ , of the GPD for a
simulated data set with true value τ = 105. Note the many local optima of the
function.

pared to what is the optimal position), which was first described for optimization
problems by Kirkpatrick in 1983 [14]. The method iteratively suggests new, slight
and random modifications to a current solution and hence moves gradually through
the search space. In order to escape local optima, which is the crucial part of SA,
the algorithm will accept modifications not only for the better, but also for the
worse. The probabilistic acceptance criterion is used to decide whether or not to
accept a worse move, but the probability of doing so declines over time according
to a so-called cooling schedule, hence the method will eventually converge.

The simulated annealing algorithm used is inspired by [6] and described as follows:
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Algorithm: Simulated annealing
1. Initialize parameters:
- Θold = Θ0, initial point
- t = t0 > 0, initial temperature
- gold = g(Θold), initial value of objective function
2. Main loop
- Propose new move as: Θnew = Θold + c× e× z
- Compute new value of objective function: gnew = g(Θnew)
If gold − gnew > 0, accept new value
else accept move with probability p = e(gold−gnew)/t

- Reduce the temperature according to t = νt

- Return to first point of main loop
3. When temperature reaches predetermined "floor", stop
and return Θ and gold
Note: In the proposal of the new move c is a proportionality
constant, e is a unit vector with a one in the position of the
parameter for which the mode is being calculated and z is a
N (0, 1)-distributed r.v.

Calculation of curvature and standard deviation

When the mode is found the standard deviation of the proposal normal density is
estimated at the mode using the likelihood function. This is done by first calculating
the approximative curvature of the likelihood function at the mode. This curvature
is approximated by the negative Hessian at the mode, i.e.

κ = − ∂2L(x,θ)
∂θ2

1

∣∣∣∣∣
θ1=θ∗

1

(4.5)

where x is the vector of data points, θ is the vector of parameters and θ∗1 is the
calculated mode of parameter θ1.

When the curvature is found it is subsequently used to calculate the standard de-
viation of the normal density. For a plane curve given the curvature is given by

κ(x) = |f ′′(x)|
[1 + (f ′(x))2]3/2 (4.6)

For the normal density with probability distribution function given by
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f(x) = 1
σ
√

2π
e

−(x−µ)2

2σ2 (4.7)

we have the relevant derivatives as

f ′(x) = −(x− µ)e
(x−µ)2

2σ2

σ3
√

2π
(4.8)

f ′′(x) =
(x−µ)2e

−(x−µ)2

2σ2

σ4 − e
−(x−µ)2

2σ2

σ2

σ
√

2π
(4.9)

However, evaluating these at the mode, i.e. setting x = µ, we get

f ′(x) = 0 (4.10)

f ′′(x) =
−1
σ2

σ
√

2π
= −1
σ3
√

2π
(4.11)

Using these results, eq. (4.6) becomes

κ(µ) = 1
σ3
√

2π
(4.12)

and solving for σ, we get the standard deviation used in the tailored proposal
density:

σ =
( 1
κ
√

2π

) 1
3

(4.13)

Role in sampling

The two steps described above are performed at each step of the algorithm, hence
the proposal density moves through the search space together with the parameter
sample. When convergence is reached, i.e. when the optimal mode is found, the
proposal density will more or less fix to the same value, with only small changes
from step to step. Then it will start sampling parameter values around this optimal
mode and the algorithm will decide which ones to accept or not.

This means that the normal density calculated as above serves as both proposal
density and as a search function in the algorithm, "helping" the algorithm find the
best values together with the posterior target density, π(θ|x). Together with this
the shape of the proposal density ensures that a good mixing of possible parameter
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values are obtained. Figure 4.4 illustrates how the proposal density approximates
the target density and it is clear that after convergence is reached the proposal
density will investigate a large part of the support of the target density, which is a
desired property of the proposals.
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Figure 4.4: Left graph shows the plotted likelihoodfunction, right graph shows the
normal proposal density used to sample values in Metropolis-Hastings algorithm.
Note the similarity in shape and location of the two plots.

4.2.2 Analysing the output

When the algorithm is executed it will produce samples of the parameters we want
to analyse. Before this analysis can start the part of the sample that has been
produced before convergence was reached needs to be discarded. This part of the
sample is usually referred to as the burn-in period and is illustrated in figure 4.5.

After the burn-in period is cut, several statistical measures is used to analyse the
parameter sample. Mean, mode, standard deviation and other statistical measures
such as upper and lower quantiles are calculated. These will then be compared
to the performance of other parameter estimators, mainly against the Maximum
Likelihood Estimator.

The upper and lower quantiles of the BI method are calculated empirically from
the produced parameter sample in each case so that 95 % of the obtained values in
the sample lies within these two quantiles.

The corresponding MLE values are obtained by first calculating the asymptotic
variances of the maximum likelihood estimates, then taking the square root of these
as standard deviations in a normal distribution and finding the lower and upper
quantiles of this distribution corresponding to 95 % of the values being within these
two quantiles. Hence, the two confidence intervals should be comparable.
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Figure 4.5: Example of burn-in period in Metropolis-Hastings sampling of parameter
values. In this case the burn-in period would be set somewhere between 600 and
700 simulations and all values before this would be discarded.

The standard deviation of the MLE is calculated using the "68-95-99.7-rule", i.e.
that the 95 % confidence interval roughly corresponds to two standard deviations
on each side of the mean. Hence, the standard deviation of the MLE is calculated
by solving for σ in equation (4.14).

P (µ− 2σ ≤ x ≤ µ+ 2σ) ≈ 0.95 (4.14)

It could also be desirable to obtain an approximative distribution of the parameters.
This is especially interesting when the sample is to be used as a prior distribution
for another run of the MCMC algorithm and will be explained further in section
4.3.

Calculating the capital

In the end the number of true interest for the bank is the capital that needs to be
allocated. Going back to section 2.3, it is stated that it should be calculated as the
99.9 % confidence level for a holding period of one year which translates to the one
in a thousand year loss. The 99.9 % confidence level is calculated as the VaR0.999,
and to obtain the one year holding period an article by Böcker et al. [3] suggests
the following analytical approximation
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VaRα(t) = F−1
(

1− 1− α
E[N(t)]

)
, α→ 1 (4.15)

where the expectation in the denominator of the fraction is the expected number of
losses in time period t.

4.3 Two-step Bayesian Approach

The requirement to have both external and internal data in the model leads to chal-
lenges originating in the data sets’ different characteristics. An approach designed
to make the combination of these data more reliable is suggested by Hassani et
al. [11] and is based on the construction of two successive posterior distribution
functions. Using the Metropolis-Hastings algorithm described above the first pos-
terior is obtained, which is then used as prior distribution in the second run of the
algorithm to obtain the second posterior distribution.

Using the notation of section 3.2, with additions y as external data and x as internal
data, the method uses two steps to produce the final distribution of parameters:

1. Take prior π0 and let the likelihood component be informed by external data:

π1(φ|y) ∝ h(y|φ)π0(φ) (4.16)

2. The posterior π1 is then used as prior and the likelihood component is now
informed by internal data:

π2(φ|x) ∝ h(x|φ)π1(φ) (4.17)

The justification of this approach lies in the property that the Bayesian posterior
distribution implies that the larger the quantity of data used, the larger the weight
of the likelihood component. The consequence is, with N representing the number
of data points in vector x,

π(φ|x) ∝ π(φ)h(x|φ) N→∞→ h(x|φ), (4.18)

As a result the order of the Bayesian integration of the components (data) is sig-
nificant. Due to this property, in the worst case, the second posterior distribution
will be entirely driven by the internal data set. However, as the internal data sets
usually are very small compared to the external data sets, a model that is some-
what driven by internal data will be obtained, but the external data will still have
a significant impact in the results.

27



4.3.1 Identification of prior distributions

One of the crucial steps of the two-step Bayesian approach is the identification of
prior distributions to use in the second step. Once the first step algorithm is run and
the burn-in period is discarded what is left is the simulated parameter sample of the
external data set, or the posterior distributions of the parameters. In the two-step
approach they are used as prior distributions for a new run of the MH algorithm
and hence we need to specify the distributions in terms of probability distribution
functions to be able to quantify their impact on the probability of acceptance of
new parameters in the second run.

Here an example of the analysis conducted when determining the prior distribution
of a parameter for the second step of the approach is presented. Figure 4.6 presents
a simulated parameter sample from the first run of the MH algorithm to which a
probability distribution should be fitted.
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Figure 4.6: Example of parameter sample from one run of Metropolis-Hastings
algorithm.

When trying to fit a distribution to a parameter sample some standard methods
are used. Figure 4.7 shows the same parameter sample with the graph of a fitted
normal density added, together with a QQ-plot of the same fitted density. The QQ
plot indicates that the normal distribution slightly misses some of the tails of the
sample, whereas this is not a bad fit it could be made better. One way of making
the fit better is by using a kernel density estimation. Hassani et al. [11] suggests
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using an Epanechnikov kernel for this purpose.

An Epanechnikov kernel is a kernel density estimator introduced by Epanechnikov
[5] and is defined as

K(u) = 3
4(1− u2)1|u|≤1 (4.19)

The fitted Epanechnikov kernel together with the corresponding QQ plot is pre-
sented in figure 4.8.
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Figure 4.7: Left picture shows the example parameter sample with a fitted normal
distribution, right picture shows a QQ plot of the fitted normal distribution versus
the parameter sample.
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Figure 4.8: Left picture shows the example parameter sample with a fitted kernel
density estimation, right picture shows a QQ plot of the fitted kernel density versus
the parameter sample.

Hassani et al. [11] argues that the parametric solution may bias the construction of
the densities as it requires fitting statistical to empirical distributions. They argue
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that to stay as close as possible to the empirical distributions, and to the data, a
non-parametric Kernel approach should be chosen. In addition, this study found
that using the Kernel density estimation gives a more realistic parameter sample in
the second run of the MH algorithm as illustrated by figure 4.9. The left sample
in the first row is generated with a fitted normal distribution as prior, whereas
the right sample in the first row was generated with an Epanechnikov kernel as
prior. The sample on the second row is generated without any prior distribution for
comparison. As can be seen the normal prior gives a second peak in the histogram
concentrated around the mean of the fitted normal distribution. The Kernel prior
instead gives a fatter tail on the side of the mean of the prior but a much smoother
sample. This agrees with the intent to make the final distribution internal data
driven, i.e. driven by the data added in the second step, but informed by the
external data added in the first step.
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Figure 4.9: Comparison of resulting sample from second step of the two-step ap-
proach with different priors. Top left has a normal prior specified from the first step
results, top right has a kernel density estimated and bottom has no prior distribu-
tion.

Hence, following this argumentation, the choice of prior for the second step of the
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two-step approach is a Kernel density estimation with an Epanechnikov kernel.

4.4 Peaks over treshold
As mentioned in section 2.4, a few operational risk events are so called low-frequency/
high-severity risk. When modelling these the peaks over treshold method comes in
useful. The method is a part of extreme value theory and lets the modeller extrap-
olate the tail of the distribution outside the range of the data sample, usually by
appending another probability distribution above some high treshold, τ . A previ-
ous master thesis on the subject of operational risk [13] finds that the Generalized
Pareto distribution gives the best fit of the data sample above a treshold. Hassani
et al. [11] mentions that losses falling below the GPD treshold are commonly not
modelled, but the inclusion of these losses in operational risk adds a positive value
to the operational risk capital and therefore rigorous modelling should include these
as well. They also argue that the choice of body distribution does not play a major
role in the capital as long as the GPD treshold is accurate, hence, for its simplicity
the Log-normal distribution is chosen as the body. The model will then be:

X ∼
{
LN (µ, σ) if X ≤ τ
GPD(τ, β, ξ) if X > τ

(4.20)

and model like this will be estimated using the Bayesian Inference approach in this
report.
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Chapter 5

Results

5.1 Simulated data sets

The models evaluated in this part of the study were all tested on simulated data
sets, i.e. the parameters of the model are fixed, simulate data samples from these
models and try to recreate the parameter values using the methodology described
in chapter 4.

5.1.1 GPD model

The first model to be evaluated was a Generalized Pareto Distribution with the
following specifications:

X ∼ GPD(ξ = 0.7, β = 1× 106, τ = 0) (5.1)

I.e. the shape parameter, ξ = 0.7, the scale parameter, β = 1×106 and the treshold
parameter, τ , is zero and will not be estimated. Three data sets differing in size
will be simulated to investigate the performance of the Bayesian Inference method
relative to the Maximum Likelihood Estimator and try to determine when, in terms
of number of data points, the BI method starts outperforming the MLE significantly.

The probability distribution function of the GPD, given parameters ξ, β and τ = 0
is

f(x|ξ, β, τ = 0) = 1
β

(
1 + ξ

x

β

)−(1/ξ+1)
(5.2)

hence, referring to eq. (4.2), the likelihood component for this setting is

h(x|ξ, β) =
N∏
i=1

1
β

(
1 + ξ

x

β

)−(1/ξ+1)
(5.3)
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where N is the number of simulated data points. The prior component of eq. (4.2)
was set as wide uniform priors as the purpose of this part of the study is to compare
BI with MLE. The effect of priors will be presented later.

The results will be presented with a table showing statistical measures of both MLE
and BI and histograms of realized parameter samples to illustrate their distribution.
In the end box plots for graphical comparison of all three data sets is shown.

Data set 1 - 1000 data points

Bayesian Inference
Parameter True Value Mean St.Dev. Lower Upper
ξ 0.7 0.712 0.0513 0.608 0.817
β 1× 106 1.01× 106 3.41× 104 9.49× 105 1.08× 106

Maximum Likelihood Estimation
True Value MLE St.Dev Lower Upper

ξ 0.7 0.713 0.0530 0.607 0.819
β 1× 106 1.01× 106 5.30× 104 9.04× 105 1.14× 106
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Figure 5.1: Histograms of realized parameter values for ξ and β from the BI ap-
proach. Data set 1, 1000 data points
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Data set 2 - 200 data points

Bayesian Inference
Parameter True Value Mean St.Dev. Lower Upper
ξ 0.7 0.749 0.0639 0.621 0.871
β 1× 106 1.04× 106 4.29× 104 9.68× 105 1.14× 106

Maximum Likelihood Estimation
True Value MLE St.Dev Lower Upper

ξ 0.7 0.75 0.122 0.506 0.994
β 1× 106 1.04× 106 1.20× 105 8.01× 105 1.35× 106
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Figure 5.2: Histograms of realized parameter values for ξ and β from the BI ap-
proach. Data set 2, 200 data points

Data set 3 - 50 data points

Bayesian Inference
Parameter True Value Mean St.Dev. Lower Upper
ξ 0.7 0.76 0.072 0.612 0.897
β 1× 106 1.06× 106 4.99× 104 9.66× 105 1.16× 106§

Maximum Likelihood Estimation
True Value MLE St.Dev Lower Upper

ξ 0.7 0.761 0.2595 0.244 1.28
β 1× 106 1.05× 106 2.21× 105 6.09× 105 1.82× 106
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Figure 5.3: Histograms of realized parameter values for ξ and β from the BI ap-
proach. Data set 3, 50 data points

Box plots of parameter quantiles
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Figure 5.4: Box plot of ξ-quantiles from BI and MLE methods, grouped after size
of data set.
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Figure 5.5: Box plot of β-quantiles from BI and MLE methods, grouped after size
of data set.

As can be seen from both the tables of the statistical measures as well as from
the box plots the BI method starts outperforming the MLE already at 200 data
points. At 50 data points the BI method reduces the confidence interval by 72
% and 84 % for ξ and β respectively. It is also worth noting that the confidence
intervals from the BI method stays slim as the data set size decreases, compared to
those of the MLE which almost doubles from data set to data set. The parameter
sample histograms indicate nice distributions, with especially the histograms of ξ
indicating similarity to a normal distribution. This is as expected given the selection
of a tailored normal distribution as the proposal density.

5.1.2 GPD with Informative Priors

The Advanced Measurement Approach requires the inclusion of scenario analysis in
the Loss Distribution Approach and the most used method of incorporating this is
to use it for specifying priors. The model is the same as in the previous two studies,
i.e. a GPD with parameters ξ = 0.7, β = 10000 and τ = 0.
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This study will just assume that the scenario analysis has been performed and that
the resulting priors are known and focus on their impact on the parameter estimates.

The first prior to be imposed is a situation where the scenario analysis has given
two lognormal distributions as priors for the two parameters with the following
specifications:

π(β) ∼ LN (13, 1), π(ξ) ∼ LN (0, 0.5) (5.4)

With these priors the mean and mode for each parameter are:

Variable Mean Mode
β 7.2942×105 1.6275×105

ξ 1.284 0.6065

That these values does not match the true parameter values are intentional so any
effect from the priors will be possible to study.

The second prior to be studied is a beta distribution for the scale and a gamma
distribution for the shape, with the following specifications:

π(β) ∼ Γ(3, 2×105), π(ξ) ∼ Beta(5, 2) (5.5)

With these priors the mean and mode for each parameter are:

Variable Mean Mode
β 6×105 4×105

ξ 0.714 0.8

The final prior to be tested is one with a serious misspecification, with the purpose
to study if the dataset will be able to correct for this or not. This time the prior for
the shape is a beta distribution and the prior for scale is a log-normal distribution
with the following specifications:

π(β) ∼ LN (12, 2), π(ξ) ∼ Beta(3, 4) (5.6)

With these priors the mean and mode for each parameter are:

Variable Mean Mode
β 4.4241×105 2.2026×104

ξ 0.4286 0.4

The histograms and parameter statistics of three runs for each prior specification
are presented.
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Sample size Variable Mean St.Dev. Lower Upper

1000
β 1.01×106 3.56×104 9.52×105 1.08×106

ξ 0.714 0.0564 0.6 0.826

200
β 1.04×106 4×104 9.68×105 1.12×106

ξ 0.752 0.0612 0.631 0.873

50
β 1.05×106 4.23×104 9.72×105 1.13×106

ξ 0.671 0.0751 0.519 0.817

Table 5.1: Statistics for simulation with both priors lognormal.

Sample size Variable Mean St.Dev. Lower Upper

1000
β 106 3.99×104 9.24×105 1.09×106

ξ 0.723 0.0533 0.621 0.826

200
β 1.04×106 3.79×104 9.71×105 1.11×106

ξ 0.751 0.0599 0.629 0.865

50
β 1.04×106 4.46×104 9.6×105 1.13×106

ξ 0.681 0.0757 0.532 0.835

Table 5.2: Statistics for simulation with one gamma and one sigma prior.

Sample size Variable Mean St.Dev. Lower Upper

1000
β 1.02×106 3.99×104 9.52×105 1.11×106

ξ 0.7 0.056 0.584 0.802

200
β 1.06×106 4.87×104 9.64×105 1.16×106

ξ 0.728 0.0602 0.6 0.845

50
β 1.05×106 4.57×104 9.52×105 1.14×106

ξ 0.66 0.0702 0.516 0.795

Table 5.3: Statistics for simulation with misspecified priors.
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Figure 5.6: Results from simulation with both priors lognormal.The top row shows
histograms of realized parameter values from simulation with sample size 1000. The
middle row shows plotted histograms of realized parameter values from simulation
with sample size 200. The bottom row shows plotted histograms of realized param-
eter values from simulation with sample size 50.
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Figure 5.7: Results from simulation with one gamma and one beta prior. The top
row shows histograms of realized parameter values from simulation with sample
size 1000. The middle row shows plotted histograms of realized parameter values
from simulation with sample size 200. The bottom row shows plotted histograms
of realized parameter values from simulation with sample size 50.
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Figure 5.8: Results from simulation with misspecified priors. The top row shows
histograms of realized parameter values from simulation with sample size 1000. The
middle row shows plotted histograms of realized parameter values from simulation
with sample size 200. The bottom row shows plotted histograms of realized param-
eter values from simulation with sample size 50.

42



The first remark to be made is about increased acceptance rates, which was evident
during the run of this part of the study. It seems that with these prior distribu-
tions the algorithm will accept more generated values which was to be expected as
it assigns greater probability to some different parts of the support of the target
distribution.

Furthermore, the only really visible effect of the specification of the priors seems to
be some slightly wider confidence intervals most clearly seen in the smaller sample
size. If a specific comment should be made it would be that the misspecified priors
seem to move the sample a little bit to the left in the histograms. Also, the his-
tograms seems to have some skewness, but nothing of great significance.

What these results seem to indicate is that it is the data sample that will drive
the parameter estimates when doing Bayesian Inference, even with a misspecified
prior the data sample and the MCMC-iteration seem to be able to compensate and
sample around the correct values. This is an effect that is desirable as scenario anal-
ysis still have some faults in the way it is collected (an issue that is not adressed
by this thesis). Hence, these results are satisfactory when moving forward with the
thesis work.

5.1.3 Two-step GPD model
This part of the thesis will investigate the "Two-step Bayesian Approach" suggested
by [11] (and explained in section 4.3) by creating two separate distributions, one
will represent external data and the other will represent internal data. The models
are specified as:

Xexternal ∼ GPD(τ = 0, β = 1× 106, ξ = 0.6)
Xinternal ∼ GPD(τ = 0, β = 1× 105, ξ = 0.8)

(5.7)

To put some context to the matter we look at the 99,9 % VaR for these loss dis-
tributions, which is the base for the capital estimates. Table 5.4 shows the true
and simulated capital estimate for the two models of (5.7) and in the last row the
estimated capital for a situation where you pool the data from both models in the
same sample and run the Bayesian Inference framework to estimate the parameters.

Model True VaR0.999 Estimated VaR0.999

External 1.0349×108 0.84955×108

Internal 3.1274×107 3.6477×107

Combined 1.1362×108

Table 5.4: True and estimated VaR0.999 for different models.
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As can be seen the estimated capital for the combined data model is above both
the external and internal data models capital estimates which seems unlikely.

To make this study as close to the real world situation as possible several data sets
will be generated, all from the distributions of eq. (5.7), with number of data points
indicated in table 5.5.

Data sets
# external data points # internal data points
10000 200
8000 100
6000 50

Table 5.5: Data sets for testing the Two-step Bayesian approach. Please note that
all numbers have been chosen to represent real world data amount in the different
Basel risk cells.

After the first run with the external data model the priors were specified according
to the procedure described in section 4.3 using kernels and the second run was
performed using data generated by the internal data model. Histograms of resulting
parameter samples as well as parameter statistics and the final estimated VaR0.999’s
are presented.

Data set size

(external,internal)
Parameter Mean Std Lower Upper

(10000,200)
β 8.76×105 7×103 8.67×105 8.94×105

ξ 0.492 0.0495 0.411 0.593

(8000,100)
β 8.6×105 7.7×103 8.49×105 8.77×105

ξ 0.472 0.0646 0.344 0.589

(6000,50)
β 9.02×105 8.19×103 8.91×105 9.21×105

ξ 0.494 0.0535 0.39 0.601

Table 5.6: Parameter statistics from three different sizes of data sets for the second
step of the Bayesian Inference approach.

44



×105
8.4 8.5 8.6 8.7 8.8 8.9 9 9.1 9.2 9.3
0

200

400

600

800

1000

1200

(a) β, Largest data set, (10000,200)

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

100

200

300

400

500

600

(b) ξ, Largest data set, (10000,200)

×105
8.4 8.5 8.6 8.7 8.8 8.9 9 9.1 9.2 9.3
0

100

200

300

400

500

600

700

800

900

(c) β, Middle data set, (8000,100)
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(d) ξ, Middle data set, (8000,100)
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(e) β, Smallest data set, (6000,50)
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Figure 5.9: Histograms of parameter samples from the 2nd run of the Bayesian
Approach with posteriors from 1st run as priors.
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Data set size

(external,internal)
Estimated VaR0.999

(10000,200) 5.1496×107

(8000,100) 4.6535×107

(6000,50) 5.3570×107

Table 5.7: Capital estimates based on parameter values from second run of Bayesian
Inference approach.

As can be seen from table 5.7 the final capital estimates, or VaR0.999 all lies in
between the capital estimates of internal data only and external data only from
table 5.4. This is in line with how the models were specified in eq. (5.7) and with the
real world expectations. The parameter samples show that the scale parameter, β,
shifts a little bit from data set to set but not very significant with the statistics table
indicating very similar estimates. For the crucial shape parameter, ξ, however, all
estimates stays very close to each other from sample to sample. Also, the standard
deviations and upper and lower quantiles seems stable as the data sets get smaller.

Another interesting feature of the results is that the shape parameter distributions
indicate that the two-step model lowers this parameter significantly compared to
the specified parameter of both the external and internal model. Instead the scale
parameter lies in between but closer to the external value. As the final capital
estimates lies in between both models’ true capital values, and knowing that the
shape parameter is crucial for the extreme value behaviour of the distribution, it
seems that since the method finds a quite high scale parameter value it lowers the
shape parameter to give a sensible final capital estimate.

All in all, the two-step method gives reasonable results with the capital estimates
within the expected range as well as stable parameter estimates.
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5.1.4 Log-normal body with GPD tail
One approach to create a full distribution for one cell of the Basel matrix, table 2.3,
is to use a log-normal distribution for the body and then attach a GPD tail. The
Bayesian Inference Approach to determining the parameters of this approach will
be investigated here. The model is specified as follows:

X ∼
{
LN (µ = 9, σ = 2) if 0 < X ≤ 1× 105

GPD(τ = 1× 105, β = 1× 106, ξ = 0.9) if X > 1× 105 (5.8)

This time, all parameters will be estimated and comparison will be made to the
MLE. The probability distribution function of this model is:

f(x|µ, σ, τ, β, ξ) = 1√
2πσx

exp
(
−(logx− µ)2

2σ2

)
I{0<x≤τ}

+1− FLN (τ |µ, σ)
β

(
1 + ξ

x− τ
β

)−(1/ξ+1)
I{x>τ}

(5.9)

where FLN (τ |µ, σ) is the cumulative distribution function of the Log-normal dis-
tribution evaluated at the treshold, τ . Therefore, referring to equation (4.2), the
likelihood component for this setting is:

h(x|µ, σ, τ, β, ξ) =
N∏
i=1

1√
2πσXi

exp
(
−(logXi − µ)2

2σ2

)
I{0<Xi≤τ}

+1− FLN (τ |µ, σ)
β

(
1 + ξ

Xi − τ
β

)−(1/ξ+1)
I{Xi>τ}

(5.10)

with N being the number of data points. The prior component was again set as wide
uniform priors. The results are presented with graphs illustrating the sample paths,
statistics of parameter values with comparison to MLE as well as the histograms
to illustrate the distributions of parameters. 1800 data points were generated from
the body of the distribution and 200 data points from the GPD tail.

It should be noted that the treshold parameter is not possible to estimate using
Maximum Likelihood Estimation, instead modellers use other methods such as the
Hill estimator or some rule of thumb like taking 10 % of losses as the tail. Hence, the
table reporting the results only have NA’s in the row of treshold in the Maximum
Likelihood part.
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Figure 5.10: Sample paths for all five estimated parameters of Log-normal-GPD
model.

From figure 5.10 the sample paths indicate nice parameter generations around the
value the method finds to be the most probable, an observation that is confirmed
by the histograms in figure 5.11. All histograms show near normal behaviour, as
expected when not imposing any priors. The statistics of table 5.8 indicate that the
BI approach performs significantly better than MLE when regarding the standard
deviations and confidence intervals, for all parameters except the mean, µ, of the
Log-normal body. However, the difference is very small and the BI approach can
be said to be performing well also for this parameter.
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Parameter statistics

Bayesian Inference

Parameter Mean Std Lower Upper

µ 8.9573 0.0807 8.7923 9.1223

σ 1.9473 0.0109 1.9261 1.9683

τ 9.8396× 104 0.0055× 104 9.8286× 104 9.8596× 104

β 1.1355× 106 0.0028× 106 1.1311× 106 1.14× 106

ξ 0.8339 0.0156 0.8032 0.8644

Maximum Likelihood

Parameter MLE Std Lower Upper

µ 9.1222 0.0506 9.0210 9.2234

σ 2.3076 0.0369 2.2382 2.3814

τ NA NA NA NA

β 1.3813× 106 0.1869× 106 1.0871× 106 1.7550× 106

ξ 0.7161 0.1095 0.4971 0.9351

Table 5.8: Table of parameter statistics of the Log-normal GPD model from
Bayesian Inference and Maximum Likelihood Estimation.
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Figure 5.11: Histograms of parameter samples from the Log-normal-GPD model
produced using the BI approach.
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5.2 Real world data set

Disclaimer: none of the presented parameter estimates, capital estimates or loss
distributions represents the true risk profile or capital allocation of Swedbank AB
(publ). The loss data of the bank has been transformed before use, as cleared by
Swedbank, and the results should therefore be viewed as illustrative only.

Following the satisfactory results of the BI method when tested on the model in
section 5.1.4 this model will now be tested on a data set from the real world.
The previous master thesis on the subject of operational risk [13] performs some
exploratory data analysis concluding that operational risk loss data includes both
high-frequency/low-severity data as well as the aforementioned low-frequency/high
severity data. It also raises the possibility that the tail and body data does not
originate from the same distribution, hence the Log-normal-GPD model will be
tested here.

In line with purpose of this thesis the model will be tested on one cell of the Basel
Matrix and the two-step approach described in section 4.3 will be used. This means
that firstly, the external data points of the cell will be informing the likelihood
component and the posterior from this run will then be used to inform the prior
component in the next step when the internal data is introduced into the model.
The selected cell of the Basel matrix contained 5252 external and 81 internal data
points. The results presented will be the parameter statistics after the second run,
as well as the histograms indicating the parameter distributions. To see if the model
gives reasonable results the one in a thousand years loss will be presented as well,
together with its interval based on setting the shape parameter, ξ, to its upper and
lower limit values.

Parameter statistics

Bayesian Inference

Parameter Mean Std Lower Upper

µ 11.9195 0.1858 11.5405 12.2865

σ 1.0141 0.0090 0.9951 1.0331

τ 4.7886× 105 0.1860× 105 4.4023× 105 5.1691× 105

β 8.1566× 105 0.6523× 105 7.0378× 105 9.5964× 105

ξ 0.5379 0.0608 0.4136 0.6506

Table 5.9: Parameter statistics from the two-step BI approach on real data sets.
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Figure 5.12: Histograms of parameter samples from the Log-normal-GPD model
produced using the two-step BI approach informed by real data sets.

To start with the standard deviations and confidence intervals in table 5.9 should
be noted. For the tail parameters, and especially for ξ, both st.dev. and confidence
intervals are very small, particularly compared to the Maximum Likelihood estima-
tor that did not even converge in this data set. Compared to the previous two-step
study of simulated data sets the interval and standard deviation for β increases quite
a bit and also compared to the simulated study of the Log-normal-GPD which did
not include the two-step approach. This is mainly due to that the internal data
set is very small compared to that of the previous Log-normal-GPD study which
contained 200 tail data points and the data set of the previous two-step analysis
which contained 50 data points of which all were tail points. In this real-world
setting the method found an optimal treshold giving ten internal data points in the
tail. With this in mind the method performs reasonably well.

It is also interesting to see the actual capital number for this cell. Using eq. (4.15)
the capital number was calculated to be ≈ 116 million SEK. Assessing the validity
of this number becomes more of a guessing game but given the largest loss in this
Basel cell in the last five years was ≈ 4.5 million SEK it does not seem entirely
unreasonable.

A table giving the different parameters impact on the capital number is also pre-
sented. The table is created by letting all parameters assume their mean value from
the resulting sample of the two-step method and then setting one parameter at a
time to their confidence intervals’ upper and lower points.
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Capital estimate intervals
Capital number with all parameters at mean value:

≈ 116 mSEK
Parameter Lower Upper
µ 81.82 157.88
σ 114.79 118.67
τ 124.21 109.48
β 106.49 129.85
ξ 65.97 210.78

Table 5.10: Table showing the effect of changing each parameter to their upper and
lower confidence interval values while keeping all other parameters at mean. The
parameter that is changed is in the leftmost column. All numbers are million SEK.

Not surprisingly it is the shape parameter, ξ, of the GPD-tail that gives the largest
interval in capital estimate. More surprisingly perhaps, is the fact that the second
largest interval comes from the location parameter, µ, in the Log-normal body. To
explain this we look at the explicit version of eq. (4.15) used here:

VaR0.999(1y) = β

ξ

[( 1− κ
1− FLN (τ |µ, σ)

)−ξ
− 1

]
+ τ (5.11)

where

κ = 1− 1− 0.999
E[N(1y)] (5.12)

Figure 5.13 shows that as the location parameter increases the CDF-value at the
estimated treshold goes down. This leads to a decrease in the value of the fraction
inside the brackets of equation (5.11), and since it is taken to a negative power
it means that the value inside the brackets will increase. Hence the estimated
V aR0.999(1y) will increase. The quite significant increase can be attributed to the
rapid decrease of the CDF-value between the lower and upper confidence interval
limits for the location parameter. Intuitively this can be understood as the point
where the GPD-tail is attached getting a higher probability when the location of
the Log-normal distribution increases. Hence, the tail gets a bigger impact on the
capital numbers as µ increases, everything else equal.

One should also observe that as the treshold increases the estimated capital de-
creases, as evident from table 5.10. This can be explained by roughly the same
mechanism, as the treshold goes up the survival function value at the treshold de-
creases and the tail will get lower impact on the capital estimate, everything else
equal.
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Figure 5.13: Plotted cumulative distribution function of a log-normal distribution
at the estimated treshold for different values of the location µ. The confidence
interval for the estimated location parameter is marked by red dots.

Finally, to demonstrate the performance of the algorithm in the real-world environ-
ment, a comparison to the parameter interval presented in figure 2.1 is made. In
that example the shape parameter interval was ≈ 0.5, using the estimated mean
of the shape parameter in this real-world study and taking the same interval as
upper and lower confidence limits the following interval for the capital estimate was
obtained:

Capital estimate interval
Lower Upper
49.10 mSEK 1031.90 mSEK

Hence, comparing this interval with the interval for ξ in table 5.10 we see a 72 %
reduction in confidence interval for the capital estimate. So, even though the interval
from the Bayesian Approach is still quite large it is a significant improvement from
the current situation.
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Chapter 6

Conclusion

In terms of the objective of this Master thesis, to reduce the statistical uncertainty
about parameter and capital estimate, the results indicate good performance of
the implemented method. When evaluating the first model, a simulated GPD-
model, the BI approach showed significant decrease in parameter uncertainty when
compared to MLE. This was evident in data sets as a large 200 data points, and
even more visible as the data set size was decreased. The results indicated that
BI managed to maintain slim confidence interval much longer than MLE when the
data set size was decreased.

Real-world scenario analysis was not incorporated into the model, instead the simu-
lated GPD-model was tested when imposing so called informative priors to give an
idea of what impact the scenario analysis could have on the results. The outcome
indicated some increased acceptance rate for the parameter samples but otherwise
the only visible effect of the priors, even when intentionally misspecified, were some
slightly wider confidence intervals. This indicates that it is the data sample that
will drive the results of the BI approach and that the scenario analysis will be of
informative nature only.

To simplify the inclusion of both external and internal data points in the results
a so called "Two-step Bayesian Approach" was tested, using two models, one for
external data and another for internal data. Also in this approach the outcome was
slim confidence intervals for the parameters as well as reasonable capital estimates
that was found to be between the capital estimates calculated separately for the
external and internal data. One point of concern was that the final estimate for the
shape parameter was found to be below that of both the external and internal data
models, a suggestion for further work on this subject would be to investigate why
this occurs and if it is an indication that the method is performing badly. This thesis
relied on the credibility of the final capital estimates when assessing the reliability
of the results, but further studies into this issue could be performed.
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To create a full loss distribution for the whole loss space, a model using the Log-
normal distribution as body and the GPD as tail was simulated and the BI approach
implemented. Again, the outcome indicated a significant reduction of uncertainty
compared to MLE except for the location parameter of the Log-normal distribution.

Finally, the BI approach was tested on a real-world data set using the Log-normal-
GPD model and the "Two-step Bayesian approach". The outcome was that com-
pared to the simulated data sets the method performed similarly, with some in-
creases in confidence intervals for especially the treshold and scale parameters of
the GPD-tail. However, when studying the impact of these confidence intervals on
the capital estimate the thesis found that these parameters does not have a signifi-
cant impact compared to e.g. the shape parameter and the results must be viewed
as satisfactory. For the shape parameter the impact of the confidence interval on
the final capital estimate was reduced by 72% compared to the interval presented
in an initial example of the thesis.

The performance of the Bayesian Inference approach can be attributed to a couple
of things. Firstly, the Bayesian Approach does not get stuck in flat density regions,
instead it continues to move through the parameter space eventually converging
when it finds the optimal value. The simulated annealing part of the tailoring of
the proposal density is crucial in this task as it allows the Bayesian Approach to
escape any local optima that may be found on its way to the global optimum point.
Secondly, the tailored proposal density itself is very important for the performance
of the approach as it allows for both a more efficient search for the optimal point as
well as good sampling of parameters. When correctly specified, the tailored proposal
density will firstly allow for quick convergence towards the optimum, and secondly
give an accurate sampling around the optimum enabling the identification of the
distribution of the parameters. The fact that Bayesian Inference should produce
the probability distribution of each parameter, rather than their most likely point
estimate, makes the ability to efficiently sample from a large part of the support
of these distributions very important. Therefore, the tailored proposal density is
helpful as it in itself is an approximation of the underlying parameter distribution
and allows for this efficient sampling.

When it comes to the problem of using both external and internal data into the
future loss distribution, Bayesian Inference has the advantage of allowing for incor-
poration of prior information about the parameters. This is utilized by the two-step
approach, letting external data go first and then updating this result by internal
data. This leads to the step of obtaining the correct distributions from the first step
with external data very crucial for the results of the second step. The use of a kernel
density estimator in this step allows the method to stay as close to the empirical
distributions generated as possible, avoiding possible biases from fitting statistical
to empirical distributions. Hence, the method ensures that the prior distributions
then updated by internal data are correct and the final results could be considered
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reliable.

To summarize, the Bayesian Inference approach shows significant improvements
when trying to estimate the parameters of a loss distribution model in operational
risk compared to more traditional estimators. The method implemented gives sig-
nificant reductions of uncertainty for both parameter and capital estimates in all
tests performed. The Master thesis hence shows that it is possible to achieve higher
levels of certainty when trying to calculate the capital requirement of a financial
institution by using the Bayesian Inference Approach.

Looking forward, apart from the already mentioned issue of the two-step approach,
an area of further interest is when the loss distribution of each cell of the Basel
Matrix is aggregated to build the total loss distribution. When doing this, benefits
from diversification are allowed if the dependence modelling is done in a correct
way. Hence, looking at the dependence modelling of the different Basel cells would
be an interesting topic for further studies.
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