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Abstract

Since the deregulation of the Nordic electricity market in 1996, electricity has become one
of the most traded commodities in the Nordic region. The electricity price is characterized
by large �uctuations as the supply and demand of electricity are seasonally dependent. The
main interest of the hydro power producers is to assure that they can sell their hydro power
at an attractive rate over time. This means that there is a demand for hedging against
these �uctuations which in turn creates trading opportunities for third party actors that
o�er solutions between consumers and producers. Telge Krafthandel is one of these actors
interested in predicting the future supply of hydro power, and consequently the resulting price
of electricity. Several existing models employ the assumption of perfect foresight regarding
the weather in the future. In this thesis, the authors develop new models for hydro power
optimization that take hydrological uncertainty into account by implementing a variation of
multi-stage optimization in order to maximize the income of the hydro power producers. The
optimization is performed with respect to prices of �nancial derivatives on electricity. This
gives insights into the expected supply of hydro power in the future which in turn can be
used as an indicator of the price of electricity. The thesis also discusses, among other things,
di�erent methods for modeling stochastic in�ow to the reservoirs and scenario construction.
This practice will result in di�erent methods that are suitable for various key players in the
industry.

Keywords: Optimization, hydro power, linear programming, stochastic programming, scenario
construction, stochastic in�ow modeling, �nancial derivatives on electricity.
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Nomenclature

Input variables
ci Discounted price of forward contract on electricity in time step i (EUR/GWh).
In�owi Scenario forecast of future in�ow to the reservoirs during

time step i (GWh).
n Number of time steps in the optimization problem (the time period

under study).
Reservoirs0 Water level in the reservoirs before the optimization problem

begins (GWh).
ReservoirsTarget Future target water level in the reservoirs after the optimization

problem ends (GWh).
x0 Observed hydro power production during the time step before the

optimization problem begins (GWh).

Output variables
xi Hydro power production in time step i (GWh).

Constraints
HPi Hydro power production in time step i (GWh).
Reservoirsi Water level in the reservoirs in time step i (GWh).
xTotal Maximum available hydro power production during time step 1 to

time step n (GWh).

Symbols
Θi Stochastic in�ow to the reservoirs during time step i (GWh).

Table 1: A selection of variables used in the report.
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1 Introduction

A general introduction to the electricity market and the broad characteristics surrounding
this thesis is provided in Section 1.1. Section 1.2 presents the objective of this thesis. In
Section 1.3, the limitations are introduced. The structure of the report is outlined in Section
1.4.

1.1 The electricity market

The Swedish electricity market was deregulated in 1996 which opened up for competition
between producers and the introduction of an electricity exchange. The demand for electricity
is seasonally dependent both on a daily, weekly and yearly basis (see Figure 1 for weekly
forward prices), resulting in large �uctuations in electricity prices. The main interest of
a hydro power producers is therefore to assure that they can sell their hydro power at an
attractive rate over time.

Figure 1: Prices of forward contracts each week (EUR).

Analysts argue that before the deregulation, the focus of the hydro power producers was
more oriented towards public welfare than corporate interests. In present time, hydro power
producers have shifted towards becoming revenue maximizing utilities. Currently, hydro
power production covers more than 50% of the total electricity consumption in the Nordic
countries. Due to the large volume in combination with the high �exibility in production and
low production costs, hydro power is an important factor impacting the price of electricity.
This relatively large share of the total electricity consumption originating from hydro power
is unique compared to the rest of the world, and this can partially be explained by the
di�erent geographical characteristics.

The Nordic region has a common electricity market called Nord Pool Spot. This market
enables the buying and selling of power for physical delivery during all hours under the
following day. Using bids from the buyers and sellers, the price for each hour during the
following day is calculated. The spot price for each hour is set where the demand curves
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intersect with the supply curves.

Furthermore, there is a �nancial market for electricity on the exchange Nasdaq OMX. This
market enables buying and selling of forwards and futures contracts on electricity. These
contracts are �nancially settled, which means that the price di�erence between the decided
price and the spot price will be settled between the buyer and the seller of the contract.

Large electricity consumers, such as industries and real estate companies, usually want
their expenses to be foreseeable. This means that there is a demand for hedging against
price �uctuations which in turn creates trading opportunities for third party actors that
o�er solutions between consumers and producers. Telge Krafthandel is one of these actors
interested in predicting the future supply of hydro power, and consequently the resulting
price of electricity.

Electricity can be regarded as a perishable commodity since it needs to be consumed instantly,
without the possibility to stockpile for later use. The utilization factor of the storing
capabilities for electricity are so small in modern times that it is generally considered as
a non-storable asset on a large scale.

A common dynamic in the market can be observed when there are large volumes of hydro
power being produced combined with a large amount of water in the reservoirs as a result
of favorable in�ow to the reservoirs. In these circumstances, the price of electricity tends to
decrease due to an increased supply but relatively stable demand.

Several existing optimization models employ the assumption of perfect foresight regarding
the weather in the future. These models do not explicitly take advantage of new information
that continuously becomes available over time. In reality, perfect foresight when it comes to
weather in the future is an unrealistic assumption. Changes in weather forecasts regarding
future in�ow to the reservoirs is an example of new information that typically could impact
the strategy decisions of hydro power producers.

1.2 Thesis objectives

The main objective of this thesis is to develop an optimization model for the purposes of Telge
Krafthandel. The model should take hydrological uncertainty into account by implementing
a variation of multi-stage optimization in order to maximize the income of the hydro power
producers. This will give insights into the expected supply of hydro power in the future
which in turn can be used as an indicator of future electricity prices.

Furthermore, this thesis will consider di�erent methods to model stochastic in�ow and
scenario construction. This practice will result in di�erent methods that are suitable for

2



various key players in the industry.

Speci�cally, the objective is to �nd a model that in a realistic manner captures the uncertainty
a hydro scheduler is faced with when planning the production. Moreover, the model should
capture how the decision-maker would use new information as it occurs. Hence, the following
research question will be answered:

RQ:How should a model be developed for di�erent actors in the area of hydro power optimization
to take advantage of new information regarding uncertain in�ow to the reservoirs?

1.3 Limitations

This thesis does not deal with models that capture the details of short-term planning. This is
mainly because of the nature of the thesis-speci�c problem and limitations in data. A more
sophisticated type of optimization model requires detailed data that is not easily accessible,
such as details for each individual hydro power plant, water reservoirs, etc. The objective
of this thesis is to develop an optimization model that uses public data that are directly
observable from the market. Furthermore, the objective is to perform optimization on a
large system (the Nordic region), as opposed to optimizing individual hydro power plants.

1.4 Structure of the thesis

In Section 2, the nature of the problem is explained and the optimization problem is
mathematically formulated. Section 3 presents relevant theory on the most frequently used
optimization models for solving long-term hydro scheduling problems. Section 4 covers the
methods used to model the distribution of in�ow, construct scenarios, solve the optimization
problem using both linear and stochastic programming, and �nally how to measure the
performance of the di�erent models under study. In Section 5, the results are presented for
all optimization models (di�erent combinations of modeling in�ow, constructing scenarios
and modeling time steps) considered in this thesis. The results are discussed in Section 6
and the conclusions are presented in Section 7. Finally, some suggestions for further research
are given in Section 8.

2 Problem formulation

In order to answer the research question, the desired optimization problem needs to be
de�ned. The optimal solution will be de�ned as the production that generates the greatest
income for the hydro power producer. Understandably, there is a trade-o� between producing
in the short-term perspective, when the prices are more predictable, versus saving water
resources for production in the long-term perspective, when the prices are uncertain. The
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electricity prices in the future are represented by the prices of forward contracts traded on
the electricity exchange. Moreover, a number of constraints regarding the production and
the management of the reservoirs further complicates the problem. The objective function
of this problem is de�ned in Section 2.1 and the constraints are formulated in Section 2.3.
Additionally, Section 2.2 describes the input parameters to the problem and how the optimal
solution will look like.

2.1 Objective function

To model the optimal supply of hydro power, the objective function this problem seeks to
maximize is the income of the producers over time. The income of the producers is modeled as
the discounted price of forward contracts on electricity multiplied by the planned production
during the corresponding time periods:

Income = c1x1 + . . .+ cnxn = cTx

where

c =

c1
...
cn

 , x =

x1
...
xn


and

ci = Discounted price of forward contract on electricity (EUR/GWh) in time step i, i = 1, . . . , n.

xi = Hydro power production (GWh) in time step i, i = 1, . . . , n.

Hence, the optimization problem can be formulated as:

[
maximize

x

cTx

subject to Ax ≤ b

]

where the matrix A and the vector b, which are corresponding to the constraints of the
problem, are derived in Section 4.2 Constraints.
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2.2 Input/output

The data input to the model is the number of time steps for the optimization problem (n,
the time period under study), the current water level in the reservoirs (Reservoirs0, the
starting position), the production during the previous time step (x0), the best guess forecast
of future in�ow to the reservoirs (In�ow), the future target water level in the reservoirs
after the optimization problem ends (ReservoirsTarget), and the prices of forward contracts
on electricity (c). Furthermore, the model needs input data for the di�erent constraints (see
Section 2.3 Constraints).

In�ow =

In�ow1
...

In�own

 , c =

c1
...
cn


where

In�owi = Scenario forecast of future in�ow to the reservoirs (GWh) in time step i,

i = 1, . . . , n.

ci = Discounted price of forward contract on electricity (EUR/GWh) in time step i, i = 1, . . . , n.

In the case when the in�ow of water to the reservoirs is modeled as stochastic, the in�ow
is represented by a stochastic process Xt. The stochastic in�ow during a speci�c time step
is denoted by the random variable Θ. A stochastic process can be represented as a sum of
random variables:

Xt =
t∑
i=1

Θi, t = 1, . . . , n.

where

t ∈ {1, . . . , n} is the set of discrete time steps.

Θi = Stochastic in�ow of water (GWh) during time step i, i = 1, . . . , n.

The purpose of the future target water level in the reservoirs is to make the solution
compatible in the long-term perspective. Without the inclusion of a future target level,
the optimal solution would always end up at the minimum allowed reservoirs level. Thus,
it would be considered optimal to consume all the permitted water resources. However, a
reasonable assumption is that hydro power production in the future will continue in a similar
fashion as in modern times. In an ideal world, the optimization problem would be solved
for n → ∞, but practical reasons combined with an increased uncertainty of the far future
render this approach unfeasible.
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The optimization will be modeled for the Nordic region. The output of the model is a vector
of production volumes (x) for each time step that is optimal for the time period under study:

x =

x1
...
xn


where

xi = Hydro power production (GWh) in time step i, i = 1, . . . , n.

Moreover, the water level in the reservoirs (GWh) for a speci�c time step is determined by
the ingoing reservoir level, the hydro power production and the new in�ow of water. The
best guess meteorological forecast of in�ow for the upcoming 120 weeks can be seen in Figure
2. The water level in the reservoirs can be formulated as:

Reservoirs1 = Reservoirs0 + In�ow1 − x1

...

Reservoirsn = Reservoirsn−1 + In�own − xn

Thus, a generalized expression for time step i can be formulated as:

Reservoirsi = Reservoirsi−1 + In�owi − xi, i = 1, . . . , n. (1)

where

Reservoirsi = Water level in the reservoirs (GWh) in time step i, i = 1, . . . , n.

In�owi = In�ow of water to the reservoirs (GWh) in time step i, i = 1, . . . , n.

xi = Hydro power production (GWh) in time step i, i = 1, . . . , n.

Figure 2: Best guess meteorological forecast of the weekly in�ow to the reservoirs.
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2.3 Constraints

The constraints consist of di�erent parts which captures di�erent characteristics of the hydro
power plants. These characteristics are total production, production for each time step
(minimum and maximum level of production and a minimum and maximum di�erence in
production between two consecutive time steps) and the water level in the reservoirs each time
step. For convenience, these constraints are called (in order of appearance) total production,
min/max production, min/max ∆ production and min/max reservoirs.

These constraints re�ect historical extreme observations (all time high/low for the respective
time steps of the year), representing an upper and a lower bound. Thus, the purpose of the
constraints is to generate a solution that is realistically feasible given the previous practices
in the hydro power production industry.

It may be theoretically possible to breach these limits in practice, but in that case the
solution is in the context of unknown territory since similar conditions have not been observed
before. This means that, if the historical constraints are not satis�ed, the solution might be
unrealistic since it's not in harmony with historical experiences.

If the model were to use technical constraints instead of historical constraints, a situation of
potential power outage could occur when the solution approaches the theoretical minimum
and the in�ow is low. This is a scenario that the producers seek to avoid since they are
typically unwilling to risk to expose themselves to such an extreme situation. Therefore, the
historical extreme values are chosen as the constraints in this thesis.

For example, when minimizing or maximizing over the set Reservoirs1, the members of the
set are the recorded water levels in the reservoirs during time step 1 for all the previous years
in the data set (year 1996 to 2014). The reason why these years are selected is because o�
the deregulation in 1996, which increased the availability of public data. Furthermore, the
data prior to 1996 is not relevant in this thesis since it does not represent current market
dynamics. A general observation from the energy industry is that larger volumes of hydro
power have been produced after the deregulation, presumably due to the increased economic
incentives.

2.3.1 Total production

The constraint on the total production is re�ecting the total available hydro power production
for the whole time period under study, according to the scenario in�ow to the reservoirs.

Total hydro power production (total production):
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n∑
i=1

xi = x1 + . . .+ xn ≤ xTotal

where
xTotal = Maximum available hydro power production (GWh) during time step 1 to week n.

xTotal ≥ 0.

xi = Hydro power production (GWh) in time step i, i = 1, . . . , n.

xi ≥ 0, i = 1, . . . , n.

2.3.2 Min/max production

The minimum and maximum production for each time step (min/max production, see Figure
3):

Figure 3: Constraints for the minimum and maximum production.

Hydro power production each time step (min/max production):

min(HP1) ≤ x1 ≤ max(HP1)

...

min(HPn) ≤ xn ≤ max(HPn)

Thus, a generalized expression for time step i can be formulated as:

min(HPi) ≤ xi ≤ max(HPi), i = 1, . . . , n.

where
min(HPi) = Minimum hydro power production (GWh) during time step i, i = 1, . . . , n.

max(HPi) = Maximum hydro power production (GWh) during time step i, i = 1, . . . , n.

HPi ≥ 0, i = 1, . . . , n.
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2.3.3 Min/max ∆ production

The di�erence in hydro power production between two consecutive time steps (min/max ∆
production, see Figure 4):

Figure 4: Constraints for the minimum and maximum change in production between two
consecutive time steps. The change in production must be located within these boundaries.

x0 − x1 ≤ max(|HP↓1|)
x1 − x0 ≤ max(HP↑1)

...

xn−1 − xn ≤ max(|HP↓n|)
xn − xn−1 ≤ max(HP↑n)

The constraint for the di�erence in hydro power production between time step i and i − 1
can be expressed as the following closed interval:

min(HP↓i ) ≤ xi − xi−1 ≤ max(HP↑i ), i = 1, . . . , n.

xi−1 − xi ≤ max(|HP↓i |), i = 1, . . . , n.

xi − xi−1 ≤ max(HP↑i ), i = 1, . . . , n.

where
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min(HP↓i ) = Maximum downward change in hydro power production (GWh) between

time step i− 1 and i, i = 1, . . . , n.

HP↓i ≤ 0, i = 1, . . . , n.

max(HP↑i ) = Maximum upward change in hydro power production (GWh) between

time step i− 1 and i, i = 1, . . . , n.

HP↑i ≥ 0, i = 1, . . . , n.

x0 = Observed hydro power production (GWh) during the time step before the optimization

problem begins.

x0 ≥ 0.

2.3.4 Min/max reservoirs

Furthermore, the system has constraints on the water level in the reservoirs for each time
step (min/max reservoirs, see Figure 5).

Figure 5: Constraints for the minimum and maximum water level in the reservoirs.

min(Reservoirs1) ≤ y1 − x1 ≤ max(Reservoirs1)

min(Reservoirs2) ≤ y2 − x1 − x2 ≤ max(Reservoirs2)

...

min(Reservoirsn−1) ≤ yn−1 −
n−1∑
i=1

xi ≤ max(Reservoirsn−1)

yn −
n∑
i=1

xi ≥ ReservoirsTarget

Thus, a generalized expression for time step i (1 ≤ i ≤ n−1, there is a special case for i = n
due to the future target level as can be seen above) can be formulated as:

10



min(Reservoirsi) ≤ yi −
i∑

j=1

xj ≤ max(Reservoirsi), i = 1, . . . , n− 1.

where

yi = Reservoirs0 +
i∑

j=1

In�owj, i = 1, . . . , n.

Reservoirs0 = Observed water level in the reservoirs (GWh) in the time step before the

optimization problem begins.

ReservoirsTarget = Future target water level in the reservoirs (GWh) in the time step the

optimization problem ends (week n).

min(Reservoirsi) = Minimum water level in the reservoirs (GWh) in time step i, i = 1, . . . , n.

max(Reservoirsi) = Maximum water level in the reservoirs (GWh) in time step i, i = 1, . . . , n.

Reservoirsi ≥ 0, i = 0, . . . , n.

In�owi ≥ 0, i = 1, . . . , n.
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3 Literature review

This section presents relevant theory on some of the most frequently used optimization
models that are considered as candidates for models in this thesis. The arguments that
support the selection of certain models from this section are communicated in Section 4.

There are commonly two types of scheduling problems considered for hydro power production
in larger systems (optimization for singular plants will not be considered due to the magnitude
of the problem in this thesis). These can be categorized into short-term and long-term
planning. The overall goal for a hydro power producer is to gain as much income as possible
from the current water in the reservoirs and the expected in�ow in the future. To achieve
this, it is important to combine the two types of optimization problems in order to take
advantage of the daily �uctuations in prices for the short-term production at the same time
as water should be saved for later periods with potentially higher prices.

For the short-term planning, key conditions that must be considered are start-up costs for
opening or closing speci�c water gates, how the production of an upstream plant a�ects
downstream plants and the amount of water that can be used during the speci�c period
(Yildiran et al, 2015). In the literature, there exists di�erent types of solution methods for
these problems with speci�c advantages and disadvantages.

Often times, the objective of the optimization problem is to either maximize the pro�t (by
producing when prices are expected to be high) or to maximize the amount of produced
electricity (by minimizing the spillage in the system). In the Nordic region, where spillage
is rare, pro�t maximization is more common. In this setting, the aim is to try to save
the optimal amount of water for periods of higher expected prices. Spillage minimization
objective functions are common in for instance Brazil, when considering cascades of hydro
power plants. In this situation, there is a larger amount of water in circulation and downstream
plants are a�ected by upstream plants. Thus, the downstream plants might not be able to
use all the available water if the upstream plant is running maximum production during an
extended period of time (Yildiran et al, 2015).

In order to optimize the total income from the production, a proxy of the future electricity
prices are needed. As these are unknown in advance, Fleten & Wallace (1998) suggest
that the prices of �nancial forward prices traded on the electricity exchange can be used
as an approximation. Fleten et al (2009) also state that 9 of the 14 largest hydro power
producers in Norway use forward prices in order to plan their own production. This thesis
will only focus on long-term scheduling with the objective to optimize the production on a
weekly, or monthly basis. As long-term scheduling usually uses time steps of one week or
longer, a common simpli�cation of the problem is to ignore the short-term �uctuations in
the spot price and production, and instead optimize subject to the weekly forward prices
and constraints rescaled to weekly values.
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Solving the long-term hydro optimization problem can be done in several ways. Linear
programming (LP) is the most basic form of optimization and requires that both the objective
function and the constraints are linear functions. As can be expected, the simplicity is
associated with certain limitations. This makes LP unable to capture all the constraints
needed for short-term optimization. For long-term planning, key constraints are the long-term
water level in the reservoirs and constraints on the minimum and maximum production in
the system. Since these constraints can be formulated as linear functions, LP is useful in the
long-term perspective.

In several systems, depending on the design of the reservoirs, the amount of production is
not only dependent on the discharge of water, but also on the di�erence in height between
the upstream reservoir and the downstream water level (called the head e�ect). Explained
by the laws of physics, the transformation from potential energy to kinetic energy creates a
nonlinear objective function. To solve these types of problems, non-linear-programing (NLP)
is needed (Feltmark & Lindberg, 1997; Catalao et al, 2011).

In reality, it is not possible to solve hydro scheduling problems by optimizing deterministic
objective functions. Hydro scheduling is associated with uncertainty both when it comes to
available water volumes, as the in�ow is unknown, and when it comes to prices, as we do not
know future prices. Modelling uncertainty is a challenging task, and stochastic optimization
problems can not be solved by only solving one deterministic LP or NLP.

Most practitioners use stochastic programming (SP) where the objective function is expressed
as an expectation rather than a deterministic function. To solve these types of problems,
some information regarding the distribution of the stochastic variable is needed. The general
idea of SP is to create a large amount of scenarios from the estimated distribution and use
LP or NLP to �nd an optimal solution for each of the scenarios.

The construction of a comprehensive and representative scenario set for the involved stochastic
quantities is a challenging task. Depending on the underlying stochastic variable, there are
several di�erent approaches that can be used to generate a meaningful set of scenarios. For
example, the in�ow scenarios can be based on a combination of the current meteorological
forecasts and historical in�ows, assuming that the in�ow obeys a seasonal pattern (Albers,
2011).

The weighted average solution is referred to as the deterministic equivalent and is the
most basic form of solving a SP. Note however that the deterministic equivalent solution
is usually not the same as the optimal solution for the expected value of the scenarios (Birge
& Louveaux, 1997) .

A drawback of solving the deterministic equivalent is that it scenarios are regarded as if
they were known with perfect information. This means that the outcomes of the random
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variables (the scenarios) for the examined periods are known in advance, which is never
the case in reality. Therefore, a common practice is to solve the problem using a recourse
decision and solving the recourse problem, usually called multi-stage optimization (Birge &
Louveaux, 1997). A multi-period setting requires several decisions to be made throughout
a series of uncertain occurrences. Since the outcomes are unknown to the decision maker,
they can be described with the help of stochastic quantities. At each time step, the optimal
decision is sought with respect to observed past outcomes and in anticipation of unknown
future realizations. The expectations for the future are captured by a �nite set of possible
future scenarios S ∈ {S1, . . . , SnS} (Albers, 2011). These scenarios correspond to di�erent
realizations of the underlying probability distribution for the stochastic in�ow Θ.
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4 Method

As previously stated, there exists several optimization methods, each with di�erent ways of
dealing with uncertainty and scenario creation. As the objective of this thesis is to �nd the
most suitable optimization model that captures uncertainty and realistic decision making
based on available information, di�erent models need to be considered. In this section, the
optimization models included in this thesis are described as well as how their performance
will be measured. Speci�cally, Section 4.1 starts by describing how the problem can be solved
using linear programming and stochastic programming. Section 4.2 describes the constraints
in detail and how they are formed.

The majority of this thesis is focusing on stochastic programming. Hence, the upcoming
sections are only relevant for SP. Section 4.3 describes the two time step models multi-stage
(MS) and deterministic equivalent (DE). Section 4.4 describes three di�erent methods of
modelling the distribution of in�ow: Normalization, Time Series and Bootstrap. Section
4.5 describes three methods of constructing scenarios: independent stochastic sampling
(IS), trinomial deterministic tree (TD) and trinomial stochastic tree (TS). Combining these
methods in all possible ways result in a total of 18 optimization models. Finally, Section 4.6
describes the parameters that are evaluated when measuring the performance of the di�erent
models.

4.1 Optimization model

Stochastic programs have the reputation of being computationally di�cult to solve. This can
lead to practitioners faced with real-world problems being naturally inclined to solve simpler
versions of the problems. Frequently used simpler versions are, for example, to solve the
deterministic program obtained by replacing all random variables by their expected values
(the mean value problem) or to solve several deterministic problems, each corresponding to
one particular scenario, and then to combine these di�erent solutions by some heuristic rule
(Birge & Louveaux, 1997).

Hence, from a mathematical standpoint, the stochastic optimization problem (SP) can
be formulated and solved as a deterministic linear program (LP). In order to incorporate
uncertainties, probabilities can be assigned to di�erent scenarios to create the corresponding
deterministic equivalent problem (Albers, 2011).

4.1.1 Linear programming

Since the optimization problem can be expressed as a linear objective function subject to
linear inequality constraints, the problem can be solved using linear programming (LP).
Within the framework of linear programming, there exists several well-known methods such
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as the simplex algorithm and the interior-point method.

The LP problem can be formulated as (Sasane & Svanberg, 2010):

(LP)

[
maximize

x

cTx

subject to Ax ≤ b

]

c =

c1
...
cn

 , x =

x1
...
xn


where

ci = Discounted price of forward contract on electricity (EUR/GWh) in time step i, i = 1, . . . , n.

xi = Hydro power production (GWh) in time step i, i = 1, . . . , n.

The optimization problem is solved using Matlab's built-in function linprog, available via
Optimization Toolbox (MathWorks, 2015). Using this implementation, the problem is solved
as a minimization problem. To transform a maximization problem into a minimization
problem, the objective function is multiplied by the factor (−1). Hence, the following
optimization problem is solved:

(LP)

[
minimize

x

−cTx
subject to Ax ≤ b

]

4.1.2 Stochastic programming

Production planning, energy planning and water resource modeling are areas that have been
the subject of stochastic programming (SP) models for many years. Stochastic programming
can model uncertain future situations so that informed policy decisions may be made (Birge
& Louveaux, 1997).

A key component when modeling long-term water optimization is the future in�ow of water
to the reservoirs. Especially when applying a future target level of the reservoirs, the future
in�ow represent the total available production volume over the examined time period. The
in�ow can be forecasted for short time periods, however the accuracy of the forecast decrease
rapidly for large time horizons. A common approach to capture this uncertainty is to express
the in�ow to the reservoirs as a stochastic variable and solve the optimization problem using
stochastic programming.

In this thesis, the stochastic feature is the in�ow of water to the reservoirs. The production
of hydro power is a function of, among other things, in�ow of water to the reservoirs. This
means that the optimization problem needs to be reformulated to suit the requirements of
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the problem setting in this thesis.

Hence, the SP problem can be formulated as:

(SP)

[
maximize

x(Θ)
E[cTx(Θ)]

subject to Ax(Θ) ≤ b

]

4.2 Constraints

The inequality constraints, represented by the matrixA and the vector b, consists of di�erent
parts which captures di�erent characteristics of the hydro power plants, explained in Section
2.3. In order to solve the problem, all inequality constraints need to be formulated on
matrix form as �less than or equal� (≤) constraints. This section presents the derivations of
the constraint matrices:

A =



Atotal production

Amin production

Amax production

Amin/max ∆ production

Amin/max ∆ production x0

Amin reservoirs

Amax reservoirs


︸ ︷︷ ︸

(6n× n)

}
(1× n)}
(n× n)}
(n× n)}(
2(n− 1)× n

)}
(2× n)}
(n× n)}(
(n− 1)× n

)
, b =



btotal production
bmin production

bmax production

bmin/max ∆ production

bmin/max ∆ production x0

bmin reservoirs

bmax reservoirs


︸ ︷︷ ︸

(6n× 1)

}
(1× 1)}
(n× 1)}
(n× 1)}(
2(n− 1)× 1

)}
(2× 1)}
(n× 1)}(
(n− 1)× 1

)

4.2.1 Total production

On matrix form, the constraint on the total hydro power production (total production) can
be expressed as:

(
1 · · · 1

)︸ ︷︷ ︸
(1× n)

x1
...
xn


︸ ︷︷ ︸
(n× 1)

≤ xTotal

Thus, we get that:
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Atotal production =
(
1 · · · 1

)︸ ︷︷ ︸
(1× n)

, btotal production = xTotal

4.2.2 Min/max production

On matrix form, the constraints on the minimum and maximum production each time step
(min/max production) can be expressed as:

min(HP1)
...

min(HPn)


︸ ︷︷ ︸

(n× 1)

≤


1 0 · · · · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . . 0

0 · · · · · · 0 1


︸ ︷︷ ︸

(n× n)

x1
...
xn


︸ ︷︷ ︸
(n× 1)

≤

max(HP1)
...

max(HPn)


︸ ︷︷ ︸

(n× 1)

Thus, we obtain:

Amin production =


−1 0 · · · · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . . 0

0 · · · · · · 0 −1


︸ ︷︷ ︸

(n× n)

, bmin production =

−min(HP1)
...

−min(HPn)


︸ ︷︷ ︸

(n× 1)

Amax production =


1 0 · · · · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . . 0

0 · · · · · · 0 1


︸ ︷︷ ︸

(n× n)

, bmax production =

max(HP1)
...

max(HPn)


︸ ︷︷ ︸

(n× 1)

where

Amax production = The identity matrix of size n (I n).

Amin production = −I n
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4.2.3 Min/max ∆ production

On matrix form, the constraints on the di�erence in hydro power production between two
consecutive time steps (min/max ∆ production) can be expressed as:



1 −1 0 · · · · · · 0
−1 1 0 · · · · · · 0

0 1 −1 0 · · · 0
0 −1 1 0 · · · 0
...
0 · · · 0 1 −1 0
0 · · · 0 −1 1 0
0 · · · · · · 0 1 −1
0 · · · · · · 0 −1 1


︸ ︷︷ ︸(

2(n− 1)× n
)

x1
...
xn


︸ ︷︷ ︸
(n× 1)

≤


max(|HP↓2|)
max(HP↑2)
...
max(|HP↓n|)
max(HP↑n)


︸ ︷︷ ︸(

2(n− 1)× 1
)

The special case for the constraint on x1, compared to x0, can be expressed as:

(
1 0 · · · 0
−1 0 · · · 0

)
︸ ︷︷ ︸

(2× n)

x1
...
xn


︸ ︷︷ ︸
(n× 1)

≤
(
max(HP↑1) + x0

max(|HP↓1|)− x0

)
︸ ︷︷ ︸

(2× 1)

Hence, the following constraint matrices are acquired:

Amin/max ∆ production =



1 −1 0 · · · · · · 0
−1 1 0 · · · · · · 0

0 1 −1 0 · · · 0
0 −1 1 0 · · · 0
...
0 · · · 0 1 −1 0
0 · · · 0 −1 1 0
0 · · · · · · 0 1 −1
0 · · · · · · 0 −1 1


︸ ︷︷ ︸(

2(n− 1)× n
)

, bmin/max ∆ production =


max(|HP↓2|)
max(HP↑2)
...
max(|HP↓n|)
max(HP↑n)


︸ ︷︷ ︸(

2(n− 1)× 1
)
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Amin/max ∆ production x0 =

(
1 0 · · · 0
−1 0 · · · 0

)
︸ ︷︷ ︸

(2× n)

, bmin/max ∆ production x0 =

(
max(HP↑1) + x0

max(|HP↓1|)− x0

)
︸ ︷︷ ︸

(2× 1)

4.2.4 Min/max reservoirs

In order to express the constraints on the water level in the reservoirs (min/max reservoirs)
on matrix form, �rst note that:

min(Reservoirs1)− y1 ≤ −x1 ≤ max(Reservoirs1)− y1

min(Reservoirs2)− y2 ≤ −x1 − x2 ≤ max(Reservoirs2)− y2

...

min(Reservoirsn−1)− yn−1 ≤ −
n−1∑
i=1

xi ≤ max(Reservoirsn)− yn−1

−
n∑
i=1

xi ≥ ReservoirsTarget − yn

On matrix form, the �rst part of the inequalities (1 ≤ i ≤ n− 1) can be expressed as:

min(Reservoirs1)− y1
...
min(Reservoirsn−1)− yn−1


︸ ︷︷ ︸(

(n− 1)× 1
)

≤

−1 0 · · ·
...

. . . . . .

−1 · · · −1


︸ ︷︷ ︸(

(n− 1)× (n− 1)
)

 x1
...

xn−1


︸ ︷︷ ︸(
(n− 1)× 1

)
≤

max(Reservoirs1)− y1
...
max(Reservoirsn−1)− yn−1


︸ ︷︷ ︸(

(n− 1)× 1
)

Furthermore, the last part of the inequalities (i = n) can be expressed as:

(
−1 · · · −1

)︸ ︷︷ ︸
(1× n)

x1
...
xn


︸ ︷︷ ︸
(n× 1)

≥ ReservoirsTarget − yn

Thus, the set of inequalities can be expressed as:
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
−1 0 · · · · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . . 0
−1 · · · · · · · · · −1


︸ ︷︷ ︸

(n× n)

x1
...
xn


︸ ︷︷ ︸
(n× 1)

≥


min(Reservoirs1)− y1
...
min(Reservoirsn−1)− yn−1

ReservoirsTarget − yn


︸ ︷︷ ︸

(n× 1)

−1 0 · · ·
...

. . . . . .

−1 · · · −1


︸ ︷︷ ︸(

(n− 1)× (n− 1)
)

 x1
...

xn−1


︸ ︷︷ ︸(
(n− 1)× 1

)
≤

max(Reservoirs1)− y1
...
max(Reservoirsn−1)− yn−1


︸ ︷︷ ︸(

(n− 1)× 1
)

Multiplied by the factor (−1) to transform the �greater than or equal� inequality into a �less
than or equal� constraint:


1 0 · · · · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . . 0
1 · · · · · · · · · 1


︸ ︷︷ ︸

(n× n)

x1
...
xn


︸ ︷︷ ︸
(n× 1)

≤


y1 −min(Reservoirs1)
...
yn−1 −min(Reservoirsn−1)
yn − ReservoirsTarget


︸ ︷︷ ︸

(n× 1)

Hence, the following matrices are obtained:

Amin reservoirs =


1 0 · · · · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . . 0
1 · · · · · · · · · 1


︸ ︷︷ ︸

(n× n)

, bmin reservoirs =


y1 −min(Reservoirs1)
...
yn−1 −min(Reservoirsn−1)
yn − ReservoirsTarget


︸ ︷︷ ︸

(n× 1)
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Amax reservoirs =

−1 0 · · · 0
...

. . . . . .
...

−1 · · · −1 0


︸ ︷︷ ︸(

(n− 1)× n
)

, bmax reservoirs =

max(Reservoirs1)− y1
...
max(Reservoirsn−1)− yn−1


︸ ︷︷ ︸(

(n− 1)× 1
)

where

Amin reservoirs = The lower triangular matrix of size n, where all the elements are 1.

Amax reservoirs = The lower triangular matrix of size n− 1, where all the elements are − 1,

with a column of zeros concatenated from the right.

22



4.3 Model time steps

The optimization model will use di�erent settings for the time steps depending on di�erent
objectives.

4.3.1 Multi-stage

The starting position is known, which enables a prediction of the available water resources
in the reservoirs using a meteorological forecast of in�ow in the future (known as the �best
guess� forecast). The prices of forward contracts on electricity are also known, which means
that the production can be scheduled for time periods when the price is supposed to be high,
thereby maximizing the pro�t for the producers.

In reality, the in�ow after time step 1 will most likely be di�erent than what was anticipated
according to the best guess forecast. In that case, the realized water level in the reservoirs
after time step 1 is di�erent than what was previously accounted for. In the next time step,
the model shall perform a new optimization from that point in the future (time step 1), with
the new starting level in combination with the same forecast of the remaining time period
that was used from the beginning. This will yield a new result for the production in time
step 2, compared to the earlier result obtained when the optimization �rst started (iteration
1). This series of occurrences is illustrated in Figure 6.

The model constantly takes one additional time step into the future and perform the optimization
from a new starting location, and thus acquires a new optimal production curve of hydro
power in the future. In each time step, the deterministic equivalent problem is solved. This
process is repeated until the model reaches time n (the total number of time steps under
study), resulting in a number of optimizations along the way. The model will use a number
of di�erent scenarios for the in�ow to the reservoirs, each scenario representing a possible
outcome of real weather. The �nal result from the optimization consists of a vector of the
optimal production of hydro power each time step, taking into account a speci�c hydrological
scenario.

4.3.2 Deterministic equivalent

In the case of solving the deterministic equivalent, the model performs the optimization as
if perfect foresight of the future was given. Hence, the optimization problem is solved only
once at time t = 0 for the complete time period under study.

However, the method of considering the deterministic equivalent does not necessarily mean
that the practitioner has to employ the assumption of perfect foresight. The method can be
used by considering a number of di�erent scenarios of the future, and solving them one at a
time with �perfect foresight�. The �nal solution can then be represented by a weighting of
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Figure 6: The water level in the reservoirs for the optimal solution of one scenario. The
multi-stage solution is constructed from the �rst element of the deterministic equivalent
solutions (black, blue and green). The red lines are corresponding to the constraints.

these di�erent scenarios.
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4.4 In�ow distribution

The creation of stochastic scenarios requires information of the underlying stochastic variable,
in this case the in�ow to the reservoirs. This information is obtained from historical
observations. To capture the di�erent ways of creating stochastic in�ows, this thesis will
examine three di�erent stochastic representations of in�ow. The aim is not to �nd the
best way to model the distribution of in�ow, but rather to test di�erent methods that are
deemed plausible. Section 4.4.1 describes a Normalization approach, where the intention is
to �t a parametric Normal distribution for each time step. Section 4.4.2 describes time series
techniques to estimate a trend, a seasonal component and a noise variable to describe the
data. Finally, Section 4.4.3 describes a Bootstrap approach, where scenarios are created by
randomly sampling in�ows from the historical observations.

4.4.1 Normalization

The Normalization (N) approach relies on the assumption that in�ow to the reservoirs are
outcomes from a Normal distribution. This assumption will be discussed more in Section 6.

By nature, weather is not constant over time, but rather seasonally dependent. This implies
that it is unreasonable to assume that the in�ows over time are outcomes of the same Normal
distribution. A more reasonable assumption is that historical outcomes from di�erent times
of the year (same calendar week or four week periods will be used) have the same distribution.
Hence, we assume that the in�ow at time step i (Xi):

Xi ∼ N(µi, σi)

From this assumption, normalizing the data by the time period speci�c mean and standard
deviation, it follows that:

Zi = Xi−µi
σi
∼ N(0, 1)

If µi and σi are estimated by the empirical mean and standard deviation (µ̂i and σ̂i) for the
corresponding time periods, the �t of the Normal distribution can be tested by analyzing
the empirical residual Ẑt. A histogram of normalized data Ẑt, with time step four weeks and
a total of 247 data points, is shown in Figure 7.

To create scenarios in this method, a sample from the standard Normal distribution is
simulated, and then scaled by the speci�c mean and standard deviation for the corresponding
time period.
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Figure 7: Histogram of normalized historical in�ow for the time step of 4 weeks (247 data
points). The black line is the probability density function for the N(0, 1) distribution.

4.4.2 Time series analysis

In this method, techniques from time series (TS) analysis are used in order to model in�ow.
Data for weekly in�ows to the reservoirs for the Nordic hydro system is publicly available for
the time period after the deregulation in 1996. For simplicity, all calendar years are assumed
to have 52 weeks, and the data points for the occasional 53rd calendar week are removed
from the sample. This gives a historical sample of 988 observed weeks (19 years).

Figure 8: Realization of weekly in�ow to the Nordic reservoirs for the years 2011− 2014.

A realization of the last 4 years of in�ow is shown in Figure 8. As can be observed, the weekly
in�ows are seasonally dependent. Hence, the stochastic model needs to capture this property.

In time series analysis, a stochastic process can be expressed as:

Xt = mt + st + Yt

In this expression, Xt is the realization of a stochastic process, mt is the trend component, st
is the seasonal component and Yt is the stationary random noise component. The objective
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is to estimate and extract the deterministic trend and seasonal components from the data so
that the residual, Yt = Xt −mt − st, becomes a stationary time series. If this is carried out
successfully, the �tted model can be used to simulate an arbitrary number of independent
sequences of weekly in�ows (Brookwell & Davis, 2001).

Estimating the trend and seasonal components

There are di�erent methods to estimate both the trend and seasonal components, e.g. moving
average �lter, polynomial �tting, exponential smoothing, etc. In this thesis, Brookwell &
Davis (2001) so called S1 method for estimation of trend and seasonal component is used.

The method is performed in three steps:

i) The trend is estimated by �tting a moving average �lter with lag d, where d is the period of
the seasonal variation, in order to eliminate the seasonal component and dampen the noise.
If d is odd, d = 2q + 1 (q ∈ R):

m̂t = d−1

q∑
j=−q

Xt−j

If n is the number of observations and d is even (d = 2q):

m̂t =
0.5xt−q + xt−q+1 + · · ·+ xt+q−1 + 0.5xt+q

d
, q < t ≤ n− q.

It is critical to �nd a value of d that represents the period over the entire time series. To model
the weekly in�ow, a reasonable choice of d is 52 weeks, i.e. the number of calendar weeks
in an ordinary year (some years have 53 weeks). However, to check this, the autocorrelation
function (ACF) of Xt can be analyzed. For observations x1, . . . , xn of a time series, the
sample autocorrelation function of lag h is:

ρ̂(h) =
γ̂(h)

γ̂(0)
, −n < h < n

where γ̂(h) is the sample autocovariance function of lag h, de�ned as:

γ̂(h) = n−1

n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄), −n < h < n

where x̄ is the sample mean. The sample ACF of Xt is shown in Figure 9. As can be
observed, the ACF has a period of 52 which supports the choice of d = 52. The upper left
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Figure 9: Autocorrelation function of the weekly in�ows for the period 2011-2014.
Y-axis: Correlation. X-axis: Lag.

plot in Figure 10 shows the estimation of mt using d = 52.

ii) Estimate the seasonal component by taking the period wise average of the deviations
from m̂t.

wk = the average of the deviations {(xk+jd − m̂k+jd), q < k + jd ≤ n− q}.

ŝk = wk − d−1

d∑
i=1

wi, k = 1, . . . , d.

ŝk = ŝk−d, k > d.

The deseasonalized data is then represented by dt = xt − ŝt, t = 1, . . . , n.

The estimated seasonal component sk can be observed in the upper right plot in Figure 10.

iii) Re-estimate the trend from the deseasonalized data by �tting a polynomial. In this
case, a linear trend is estimated by �tting a �rst degree polynomial. The re-estimation of
m̂t can be observed in the lower left plot of Figure 10.

Finally, the noise sequence, which can be observed in the lower right plot of Figure 10, is
given by:
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Figure 10: Upper left: Empirical estimation of the trend component (mt).
Upper right: Empirical estimation of the seasonal component (st).
Lower left: Re-estimation of the trend component (mt).
Lower right: Remaining noise component (Yt).

Ŷt = Xt − m̂t − ŝt

Testing and �nding the distribution of the noise sequence

In order to use the �tted model for prediction or sampling, mt and st need to be deterministic
functions of t. I.e., st = st+d, ∀t. Additionally, the remaining noise term Yt needs to be
stationary.

By estimating the distribution of the noise term, di�erent scenarios of the stochastic process
can be simulated. As the simplest form of a stationary process is a sequence of i.i.d. random
variables, the �rst hypothesis to test is if Ŷt can represent observed values from such a
sequence. If not, Ŷt is probably described by some more advanced stationary process.

IID test

In this thesis, three di�erent tests for i.i.d. are used (Brockwell & Davis, 2010).

i) Analyzing the sample autocorrelation function
For large n, the sample autocorrelation for a sequence of i.i.d. random variables Y1, . . . , Yn
with �nite variance is approximately distributed as N(0, 1/n). This means that 95% of the
sample autocorrelations should lie within the con�dence bounds ±1.96 1√

n
.

If more than 5% of the sample correlations are outside this con�dence interval, then the
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hypothesis that Yt is i.i.d. can be rejected at the con�dence level 95%.

ii) The rank test
The rank test is e�ective to test if there is a remaining trend in the data. De�ne P as
the number of pairs (i, j) such that yj > yi, ∀j > i, i = 1, . . . , n − 1. There is a total

of

(
n
2

)
= 1

2
(n − 1) pairs. If Y1, . . . , Yn are observations of i.i.d. noise, the probability

that yj > yi = 0.5. This means that µP = E[P ] = 1
4
(n − 1). A large positive value of

P − µp indicates an increasing trend in the data, and a large negative value indicates a

decreasing trend in the data. The variance of P can be expressed as σ2
P = n(n−1)(2n+5)

72
.

Hence, P ∼ N(µP , σ
2
P ) (Brookwell Davis, 2001).

The hypothesis that Yt is i.i.d. can be rejected if |P−µP |
σP

> Φ1−α
2
, where α is the signi�cance

level and Φ is the standard Normal cumulative distribution function.

iii) The di�erent sign test
In this test, the number S of times that Yi > Yi−1, i = 1, . . . , n, is counted. If Yt is i.i.d.,
then P (Yi > Yi−1) = 0.5, E[S] = µS = 0.5 · (n− 1) and the variance σ2

S = (n+1)
12

.

The hypothesis that Yt is i.i.d. can be rejected if |S−µS |
σS

> Φ1−α
2
, where α is the signi�cance

level.

If the residual does not pass the tests, it means that there is dependence among the residuals
and that Yt probably is described by a more complex stationary time series. However, noise
dependence can be an advantage for prediction as past observations of the noise variable can
be used to predict future values.

If the residual Yt pass all the tests, the hypothesis that Yt consists of observations from i.i.d.
random variables can not be rejected. For the data set used in this thesis, Yt pass all of the
three tests and thus the hypothesis that Yt is i.i.d. noise can not be rejected. This result is
convenient for sampling purposes as the next step is to �t a parametric distribution to Yt.

Di�erent parametric distributions were considered in order to model the noise component Yt.
After consideration of di�erent alternatives, the Normal distribution was deemed the most
suitable choice. The parametric Normal distribution is found by using Matlab's built-in
function norm�t.

4.4.3 Bootstrap

The Bootstrap (B) method draws random samples with replacement from the empirical
distribution. The empirical distribution is considered separately for each time step under
study. This means that the data set used in this thesis, including 19 years of historical in�ows,
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yields 19 di�erent possible outcomes for each time step. The basic idea of the Bootstrap
method is to gain more information about an unknown phenomenon by resampling from the
limited data that is available.

Let θi be the outcome of Θi, where Θi is the stochastic in�ow to the reservoirs during time
step i. Then, the di�erent outcomes in the bootstrap sample for time step i is:

{θi,1, . . . , θi,19}.

where
θi,1 is the observation for time step i from 1996.

...

θi,19 is the observation for time step i from 2014.

How the bootstrap approach is used for the di�erent scenario construction methods is
explained in more detail within their corresponding sections within Section 4.5. However,
the general idea is to create scenarios by drawing with replacement from the historical
observations in order to create a larger amount of scenarios than the history originally can
provide.
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4.5 Scenario construction

This section presents the scenario construction methods considered in this thesis. Section
4.5.1 explains the independent stochastic method. In Section 4.5.2, the trinomial tree model
is described, including the two di�erent implementations called trinomial deterministic and
trinomial stochastic.

4.5.1 Independent stochastic

The independent stochastic (IS) method creates a �xed amount nS of scenarios by independently
sample n in�ows from one of the three distribution models (see Section 4.4) for each time
step under study. The sampled in�ows are then merged to create nS scenarios.

In the Normalization model, in�ows for time step i are simulated by �rst sample from the
N(0, 1) distribution, and then the outcomes are scaled with the time speci�c mean and
standard deviation:

Θi(N,IS) = Zi · σi + µi, Zi ∼ N(0, 1).

In the Time Series method, in�ows for time step i are simulated by �rst sampling from the
noise component Yt, and then the trend (mt) and seasonal components (st) are added:

Θi(TS,IS) = Yi +mi + si, Yi ∼ Yt.

In the Bootstrap approach, historical observations are drawn with replacement by using the
uniform distribution so that the outcomes are selected with equal probability:

Θi(B,IS) = θi,j, j ∼ U(1, 19).

where
U(a, b) denotes the discrete Uniform distribution on the closed interval [a, b].

4.5.2 Scenario tree model

The stochastic feature can be modeled by scenario trees. Scenario trees are used to illustrate
the evolution of di�erent realizations of a stochastic process. Common practices are to use
binomial or trinomial trees. In the binomial tree model, the in�ow to the reservoirs can be
modeled as higher (upwards in the tree) and lower (downwards in the tree) for each time
step. In comparison, the trinomial tree is a more detailed model than the binomial tree since
it enables a larger variety of outcomes, namely three instead of two in each time step. A
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subsequent drawback of this feature is that the scenario tree grows larger in a faster manner,
which increases the computation time. This thesis focuses on the trinomial tree model since
it is more detailedl.

In the trinomial tree model, there are three possible in�ow realizations for each time step,
corresponding to low, medium and high. Each realization has its own particular probability
distribution, representing di�erent in�ow expectations for each time step. In this model,
the total number of scenarios is nS = 3n, where n is the number of time steps. Figure 11
illustrates an example of a trinomial tree with deterministic steps, where the di�erent steps
are equal for all time steps.

Figure 11: An illustrative example of a trinomial tree with deterministic steps. In this
example, the number of time steps is n = 5, the number of scenarios is nS = 3n = 243 and
the steps (low,medium, high) = (1, 2, 3).

In this model, a critical issue is to determine the size of the di�erent steps (low, medium and
high) for moving in the tree. Two di�erent implementations of the trinomial tree model are
used. In the �rst implementation (trinomial deterministic), the steps for moving in the tree
are de�ned as di�erent quantiles of the period's distribution. In the second implementation
(trinomial stochastic), the steps for moving in the tree are simulated samples from di�erent
probability distributions which are constructed from the corresponding period's distribution.

4.5.2.1 Trinomial deterministic The trinomial deterministic (TD) method is reminiscent
of a deterministic model, where the di�erent steps are prede�ned. The steps corresponding
to an upwards respectively a downwards move in the tree are de�ned as a quantile of the
period's in�ow distribution, namely the 1−α and the α quantile (the medium step is de�ned
as the 50% quantile). Figure 12 illustrates the situation for one time step, where the di�erent
steps are marked by the dashed lines.

In the Normalization model, the following steps in the deterministic tree are used:
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Figure 12: The di�erent steps in the deterministic trinomial tree model. In this example,
α = 10%.

Lowi(N,TD) = Φ−1
α · σi + µi

Mediumi(N,TD) = Φ−1
0.5 · σi + µi

Highi(N,TD) = Φ−1
1−α · σi + µi

where
Φ−1
α = The quantile function of the N(0, 1) distribution evaluated at α.

In the Time Series method, the following steps in the deterministic tree are used:

Lowi(TS,TD) = Q(α) +mi + si

Mediumi(TS,TD) = Q(0.5) +mi + si

Highi(TS,TD) = Q(1− α) +mi + si

where
Q(α) = The quantile function of the noise distribution Yt evaluated at α.

In the Bootstrap model, the samples are drawn by selecting quantiles from the empirical
distribution. In practice, this is simply a speci�c ordered element in the sorted sample
(in ascending order) of historical observations. E.g., if considering the 10% quantile, the
empirical 10% quantile is the 2nd element in the sorted sample of 19 observations. Hence,
the following steps are obtained for time step i (for α = 10%):

Lowi(B,TD) = θi,2

Mediumi(B,TD) = θi,10

Highi(B,TD) = θi,18

where {θi,1, . . . , θi,19} is the ordered sample of historical observations, in ascending order,
corresponding to time step i.
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4.5.2.2 Trinomial stochastic The trinomial stochastic (TS) method divides the probability
distribution for each time step into three di�erent probability distributions which correspond
to low, medium and high. The distribution's mean values µ are de�ned as the quantile values
used in the trinomial deterministic method and the standard deviations σ are scaled in order
for the distributions collective spread of possible in�ow to approximately represent the same
in�ow spread as the period's distribution. Figure 13 provides an illustration of this method.
The result from this method is a scenario tree constructed by sampled values from these
distributions.

Figure 13: The distributions for the di�erent steps in the stochastic trinomial tree model.

In the Normalization method, the following steps in the stochastic tree are used:

Lowi(N,TS) = Zi · σLow,i + µLow,i

Mediumi(N,TS) = Zi · σMedium,i + µMedium,i

Highi(N,TS) = Zi · σHigh,i + µHigh,i

where

µLow,i = Φ−1
α

µMedium,i = Φ−1
0.5

µHigh,i = Φ−1
1−α

σLow,i, σMedium,i and σHigh,i are scaled as in Figure 13.

In the Time Series method, the following steps in the stochastic tree are used:

Lowi(TS,TS) = Zi · σLow,i + µLow,i +mi + si

Mediumi(TS,TS) = Zi · σMedium,i + µMedium,i +mi + si

Highi(TS,TS) = Zi · σHigh,i + µHigh,i +mi + si

where
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µLow,i = Q(α)

µMedium,i = Q(0.5)

µHigh,i = Q(1− α)

σLow,i, σMedium,i and σHigh,i are scaled as in Figure 13.

In the Bootstrap model, the sorted sample of historical observations is divided into three
subsets (corresponding to low, medium and high). These intervals are overlapping to maintain
the feature from the overlapping Normal distributions of the other methods. E.g., this means
that there is a small probability to take a smaller step in the tree for high compared to
medium. A similar argument can be made for the other adjacent steps.

The setting for time step i can be illustrated as:

{
θi,1, . . . , θi,7

}︸ ︷︷ ︸
Low

,
{
θi,7, . . . , θi,13

}︸ ︷︷ ︸
Medium

,
{
θi,13, . . . , θi,19

}︸ ︷︷ ︸
High

where {θi,1, . . . , θi,19} is the ordered historical observations corresponding to time step i, in
ascending order. Thus, the following steps are used:

Lowi(B,TS) = θi,j(Low)

Mediumi(B,TS) = θi,j(Medium)

Highi(B,TS) = θi,j(High)

where

j(Low) ∼ U(1, 7)

j(Medium) ∼ U(7, 13)

j(High) ∼ U(13, 19)
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4.6 Measuring performance

In stochastic programming, uncertainty always has a negative impact on the predetermined
optimal solution. This creates a challenge to compare di�erent SP models as the captured
level of uncertainty may di�er. Factors that will a�ect the uncertainty is whether scenarios
are viewed as deterministic or unknown, as well as the di�erence in possible in�ow realizations
between the scenarios. In order to capture these factors, the following parameters will be used
to evaluate the performance: optimal stochastic solution (OSS), expected value of perfect
information (EVPI), value of stochastic solution (VSS), standard deviation of scenario in�ows
(σ(S)), number of scenarios (nS) and runtime.

Optimal stochastic solution (OSS)
The optimal stochastic solution is the average optimal solution for the di�erent scenarios
under study. Hence, it is the optimal solution in the long run when a speci�c set of scenarios
is taken into account (Birge & Louveaux).

Expected value of perfect information (EVPI)
The expected value of perfect information is a measure of the cost associated with uncertainty
in a system. The value represents the theoretical amount a decision maker would be willing
to pay in return for complete information of the future (Birge & Louveaux, 1997, p.137).

For stochastic programming, this value is calculated as the di�erence between the optimal
solution given perfect information and the weighted average value for the di�erent scenarios
under study. I.e., the di�erence between the deterministic equivalent solution and the
multi-stage solution. This can be written as:

EVPIMS = OSSDE −OSSMS

EVPIDE = 0

An easy example (Hubbard, 2007) to understand the concept of EVPI is to consider an
investment decision, where an investor can choose to invest into one out of three assets (A1,
A2, A3). It is known in advance that the market will go up 50% of the times, stay even 30%
of the times and go down 20% of the times. Furthermore, the payouts of the assets in the
di�erent market outcomes are known:

A1 =


$1500, market up,
$300, market even,
−$800, market down,

A2 =


$900, market up,
$600, market even,
$200, market down,

A3 = $500, always.
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The optimal investment with uncertain future is the investment with highest expected value,
also called the expected monetary value (EMV).

E[A1] = 0.5 · $1500 + 0.3 · $300 + 0.2 · (−$800) = $680

E[A2] = 0.5 · $900 + 0.3 · $600 + 0.2 · $200 = $590

E[A3] = $500

Hence, the optimal investment is to invest in asset A1, with EMV = $680.

However, if an investor would know the market direction in advance, it is possible to always
choose the best asset to invest in. Therefore, the expected value given perfect information is:

EV|PI = 0.5 · $1500 + 0.3 · $600 + 0.2 · $500 = $1030

The expected value of perfect information is then the di�erence between EV|PI and the
optimal solution with uncertainty:

EVPI = $1030− $680 = $350

This means that an investor would be willing to pay a maximum of $350 in return for perfect
information.

Value of the stochastic solution (VSS)
The value of the stochastic solution (VSS) is, similarly to EVPI, a measure of the cost
of uncertainty in a system. Instead of comparing the optimal stochastic solution with the
optimal deterministic solution as for EVPI, VSS is de�ned as the di�erence between the
optimal stochastic solution and the mean value solution. The mean value solution (MVS)
is the optimal deterministic solution for the mean of all stochastic scenarios. Thus, in the
mean value problem, the outcome of the stochastic in�ow is equal to the expected value of all
scenarios for each time step. Hence, MVS is the optimal solution when ignoring uncertainty
in the system and VSS measures the cost of ignorance. EVPI measures the value of knowing
the future with certainty while VSS assesses the value of knowing and using distributions of
future outcomes (Birge & Louveaux, 1997). Mathematically, this can be formulated as:

VSSMS = OSSMS −MVS

VSSDE = OSSDE −MVS

Standard deviation of scenario in�ows, σ(S)
σ(S) measures the standard deviation of the total amount of in�ow for the scenarios.
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Runtime
Runtime measures the time for the optimization to �nish.

The results will be presented in a table for the di�erent optimization methods according
to the layout in Table 2. One table of results will be presented for each of the di�erent
distribution methods.

OSS EVPI VSS σ(S) nS Runtime
ISMS

ISDE
TDMS

TDDE

TSMS

TSDE

Table 2: Layout for the table of results.

ISMS: Independent stochastic, multi-stage.
ISDE: Independent stochastic, deterministic equivalent.
TDMS: Trinomial deterministic, multi-stage.
TDDE: Trinomial deterministic, deterministic equivalent.
TSMS: Trinomial stochastic, multi-stage.
TSDE: Trinomial stochastic, deterministic equivalent.

These methods are corresponding to di�erent combinations of the alternatives for the model
time step, scenario construction and methods for creating the in�ow distribution.

Time step methods

• Multi-stage (MS): Future outcomes of scenarios are unknown to the decision maker.
A new optimization is performed in each time step after new information is known, in
anticipation of unknown future in�ow. The total number of optimizations performed
in this method is equal to the number of time steps under study.

• Deterministic equivalent (DE): Scenarios are regarded as certain and known outcomes
of future in�ow. Only one optimization is performed at t = 0 for the whole time period.

Scenario methods

• Independent stochastic (IS): The outcome in each time step is sampled independently.

• Trinomial deterministic (TD): The steps for moving in the tree are de�ned as di�erent
quantiles of the period's in�ow distribution.
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• Trinomial stochastic (TS): The steps for moving in the tree are simulated samples
from di�erent probability distributions which are constructed from the corresponding
period's in�ow distribution.

Distribution methods

• Parametric sampling:

� Normalization: Assuming the historical in�ow for each time step is following a
Normal distribution, a sample can be generated by sampling from the N(0, 1)
distribution and then scale the outcomes by the corresponding Normalization
parameters µ̂i and σ̂i.

� Time series analysis: A distribution is derived using methods from time series
analysis by identifying the trend component, the seasonal component and the
random noise component.

• Non-parametric sampling:

� Bootstrap: A �xed number of scenarios are sampled from the historical observations
for each time step. To create n scenarios, a total of n historical in�ows are drawn
with replacement from the empirical distribution for each time step.
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5 Results

This section presents the results for the optimization models considered in this thesis. Section
5.1 showcases the results for linear programming, including the two di�erent model time
steps: deterministic equivalent and multi-stage. Section 5.2 presents the results for stochastic
programming.

5.1 Linear programming

Two di�erent types of problems are solved by using linear programming. The �rst type,
the deterministic equivalent problem, is presented in Section 5.1.1. The second type, the
multi-stage problem, is presented in Section 5.1.2.

5.1.1 Deterministic equivalent

The model will result in a vector of optimal hydro power production for each time step. The
upper left plot in Figure 14 shows the optimal production for a scenario with perfect foresight,
i.e. with the assumption that the in�ow to the reservoirs will be exactly as expected.

As expected, the optimal production is highly correlated with the prices of forward contracts
(seen in the lower left plot in Figure 14). Since the objective function is to maximize the
revenue, the model wants to produce as much as possible when prices of forward contracts
are high and produce as little as possible when prices are low. Perfect foresight makes it
possible to schedule the production and the reservoirs so that neither the delta production
constraint (see the upper right plot in Figure 14) nor the reservoir constraint (see the lower
right plot in Figure 14) are violated.

41



Figure 14: Optimal solution and feasibility check. The black lines correspond to the solution
with perfect foresight, and the red lines show the constraints.

5.1.2 Multi-stage

The upper left plot in Figure 15 shows the optimal production in each time step. The lower
left plot in Figure 15 shows the in�ow of the scenario as well as the best guess forecast. As
can be observed, the scenario is initially drier than the best guess forecast. As a consequence
of this, the reservoir level for the scenario approaches the lower bound (see the lower right
plot in Figure 15). This forces the model to run minimum production even when the forward
prices are high (the same forward prices are used as in the lower left plot in Figure 14).

The upper right plot in Figure 15 shows the constraint for the change in production. The
reason why this constraint can be violated is because the model is set to automatically
generate maximum/minimum production if the constraint for the water level in the reservoirs
is violated from above/below. This is a feature that ensures that the constraint for the
reservoirs is satis�ed to the extent possible.

In extreme scenarios it is impossible to respect the constraint for the water level in the
reservoirs even if employing maximum or minimum production to o�set for these circumstances.
E.g., if the water level in the reservoirs is close to the lower bound and the scenario in�ow is
less than the best guess forecast, then the constraint will be violated even if the model runs
minimum production. A similar argument can be made in the case when the upper bound
is violated.
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Figure 15: Weekly production and feasibility check for a scenario. The black lines are
corresponding to the solution with perfect foresight, the blue lines correspond to the scenario
solution and the red lines show the constraints.

5.2 Stochastic programming

In this section, the �ndings are presented in three tables, one for each of the in�ow distribution
methods Normalization, Time Series and Bootstrap. Some of the key �ndings and interesting
observations are then presented to support the discussion in Section 6.

Normalization

OSS (EUR) EVPI (EUR) VSS (EUR) σ(S) (GWh) nS (#) Runtime (min)
ISMS 4.24 · 109 6.35 · 107 −8.99 · 107 1.03 · 104 10 000 138.18
ISDE 4.31 · 109 0 −2.65 · 107 1.03 · 104 10 000 7.15
TDMS 4.14 · 109 8.7 · 107 −6.16 · 107 1.59 · 104 59 049 67.99
TDDE 4.23 · 109 0 2.54 · 107 1.59 · 104 59 049 10.89
TSMS 4.14 · 109 8.88 · 107 −6.39 · 107 1.67 · 104 59 049 64.38
TSDE 4.22 · 109 0 2.49 · 107 1.67 · 104 59 049 11.07

Table 3: Table of results for the Normalization in�ow distribution.

For the optimal stochastic solution (OSS), the deterministic equivalent solution with independent
stochastic scenarios (ISDE) for the Bootstrap distribution generated the highest value (4.31 ·
109 EUR). The multi-stage solution with trinomial stochastic scenarios (TSMS) for the Time
Series distribution generated the lowest OSS (4.12 · 109 EUR). For all optimization models,
the deterministic equivalent outperforms the corresponding multi-stage solution. For all
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Time Series

OSS (EUR) EVPI (EUR) VSS (EUR) σ(S) (GWh) nS (#) Runtime (min)
ISMS 4.19 · 109 3.88 · 107 −5.11 · 107 8.44 · 103 10 000 131.48
ISDE 4.24 · 109 0 −1.23 · 107 8.44 · 103 10 000 6.54
TDMS 4.12 · 109 7.33 · 107 2.07 · 107 1.38 · 104 59 049 70.34
TDDE 4.19 · 109 0 9.39 · 107 1.38 · 104 59 049 12.09
TSMS 4.12 · 109 8.16 · 107 1.24 · 107 1.44 · 104 59 049 71.65
TSDE 4.20 · 109 0 9.39 · 107 1.44 · 104 59 049 12.26

Table 4: Table of results for the Time Series in�ow distribution.

Bootstrap

OSS (EUR) EVPI (EUR) VSS (EUR) σ(S) (GWh) nS (#) Runtime (min)
ISMS 4.24 · 109 6.63 · 107 −9.36 · 107 1.01 · 104 10 000 135.14
ISDE 4.31 · 109 0 −2.72 · 107 1.01 · 104 10 000 6.9
TDMS 4.16 · 109 8.35 · 107 −6.46 · 107 1.61 · 104 59 049 80.51
TDDE 4.24 · 109 0 1.89 · 107 1.61 · 104 59 049 13.68
TSMS 4.14 · 109 8.26 · 107 −5.62 · 107 1.43 · 104 59 049 77.23
TSDE 4.22 · 109 0 2.64 · 107 1.43 · 104 59 049 13.33

Table 5: Table of results for the Bootstrap in�ow distribution.

distributions, the ISDE has the highest OSS.

The expected value of perfect information (EVPI) is calculated as the di�erence between
the OSS for the deterministic equivalent and the OSS for the scenario type under study. As
a consequence of this, EVPI = 0 for all the deterministic equivalents. The highest EVPI
(8.88·107 EUR) was generated by the multi-stage solution with trinomial stochastic scenarios
(TSMS) for the Normalization distribution. The lowest EVPI (3.88 · 107 EUR), excluding
the deterministic equivalents, was generated by the multi-stage solution with independent
stochastic scenarios (ISMS) for the Time Series distribution.

For the value of the stochastic solution (VSS), the multi-stage solution with independent
stochastic scenarios (ISMS) for the Normalization distribution generated the highest value
(8.99·107 EUR). The deterministic equivalent solution with trinomial deterministic scenarios
(TDDE) for the Time Series distribution generated the lowest VSS (−9.39 ·107 EUR). For the
Normalization and the Bootsrap distributions, the DE solutions have negative VSS and the
MS solutions have positive VSS. For the Time Series distribution, all trinomial tree scenarios
generate negative VSS. The interpretation of negative VSS will be discussed thoroughly in
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Section 6.

For all in�ow distributions, the standard deviation of the total amount of in�ow is lowest
for the independent stochastic scenarios, with the Time Series model having the smallest
standard deviation of 8.44 · 103 GWh. The highest standard deviation of total in�ow is
generated by the trinomial stochastic scenarios for the Normalization distribution.

The number of scenarios for the trinomial tree is determined by the number of time steps
and increases with a factor 3 for every added time step. Ten time steps leads to 310 =
59 049 scenarios. For the independent stochastic scenarios, 10 000 scenarios for each in�ow
distribution are examined.

As expected, the runtimes are signi�cantly higher for the multi-stage optimizations in comparison
with the deterministic equivalent optimizations. The DE runtimes are ranging from 6.5−13.5
minutes and the MS runtimes are ranging from 64.4− 138 minutes. Note that the runtimes
between IS and the trinomial tree models are not directly comparable as the number of
scenarios and the length of the time steps are di�erent.
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6 Discussion

This section begins with a discussion about the three di�erent methods to model the in�ow
distribution used in this thesis. The assumptions these models rely on are also discussed.
Section 6.2 includes discussions about the three di�erent scenario construction methods used.
In Section 6.3, some of the key �ndings and interesting observations from the result section
are discussed. Finally, possible implications of using di�erent models are discussed with
regards to di�erent actors in Section 6.4.

6.1 In�ow distribution

6.1.1 Normalization

The Normalization method, as de�ned in this thesis, relies on the assumption that historical
observations corresponding to the same time period can be described as outcomes from a
Normal distribution. However, as our data set includes only 19 observations for each time
step, it is rather hard to draw any conclusions by looking at individual time steps. A nice
feature of the Normalization method, as de�ned in this thesis, is that the normalized data
is expected to be outcomes of N(0, 1) variables for all time steps. To examine whether
the assumption of normality is reasonable, the distribution of the normalized data can be
compared to the standard Normal distribution. As can be seen in Figure 7, the histogram
of the aggregated empirical residual Ŷt for the examined time period indicates that this
quantity is similar to the N(0, 1) distribution. This result indicates that Normalization is a
reasonable method for this data set.

An advantage of this in�ow distribution model in comparison to the Time Series method, is
that the Normalization method allows for di�erent standard deviations in every time step,
whereas the Time Series model requires the standard deviation to be constant. Observance
of historical data indicates that di�erent time periods have di�erent expected in�ow and
di�erent variability in in�ow. For example, the time of year that coincides with the annual
snow melting typically has the highest volatility regarding the in�ow of water to the reservoirs.

6.1.2 Time Series

A feature of the Time Series method is that the same noise component is estimated for the
entire time period. A drawback of this estimation is that the standard deviation is constant
over time, and hence uncorrelated with the amount of expected in�ow. This characteristic
is captured in the Normalization model, and might thus be more realistic as the historical
variation of in�ow has been much larger for the wet time periods during snow melting in
comparison with the dry summer months.
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However, i.i.d. tests of the residual Yt cannot reject the hypothesis that Yt is i.i.d. noise
which indicates a good �t of the Time Series model as it has successfully removed the trend
and the seasonal components.

6.1.3 Bootstrap

An advantage of the Bootstrap method is that it is non-parametric. Thus, it does not rely
on any assumptions of the underlying distribution. It also solely uses historically observed
values which ensures the absence of unrealistic values. This is in contrast to the other in�ow
distribution methods, Normalization and Time Series, which use a parametric distribution
that has a small probability of extreme outcomes.

The Bootstrap model relies on the assumption that the outcomes of each time step are i.i.d.,
which might not always be the case for real weather. In reality, it is probable that there is
some correlation between adjacent time periods. Thus, it is the independence part of the
i.i.d. abbreviation that can arguably be problematic. The identically distributed postulation
for each time step is considered a more reasonable assumption.

A risk with using the Bootstrap method for a small historical sample, as in this setting
of only 19 observations per time step, is that the empirical distribution is not always a
good representation of the true underlying distribution. Especially, when all observations
are viewed as equally likely, extreme values among the historical observations will receive
unrealistically high probabilities.

6.1.4 Comparison between the models

As has been mentioned above, the biggest di�erences between the models are that the
Normalization and the Time Series models rely on parametric distributions and that the
Time Series model has constant volatility for all time steps.

Figure 16 illustrates 10 000 sampled scenarios using the three in�ow distribution methods,
compared with the historical sample of 19 years of in�ow. As can be observed, the Normalization
scenarios (upper left plot) have their lowest variance during the �rst weeks of the year and
the highest variance during the in�ow peak when the snow is melting. It can also be seen
that the e�ect of the constant volatility of the Time Series model results in a high probability
of unrealistically high in�ow during the drier periods and close to zero probability for larger
in�ows than 15 000 GWh (as none occurs in 10000 simulations), even though the historical
observations (lower right) contains several values above that level. The Bootstrap scenarios
can be observed in the lower left plot.
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Figure 16: 10 000 simulated scenarios from the independent stochastic method compared to
historical in�ow. Upper left: Normalization distribution method.
Upper right: Time Series distribution method.
Lower left: Bootstrap distribution method.
Lower right: Empirical in�ow from the past 19 years.

6.2 Scenario construction

In this section, the di�erent methods of constructing scenarios are discussed. The underlying
assumptions of these models are also discussed.

6.2.1 Independent stochastic

In the independent stochastic model, the number of scenarios is chosen by the modeller and
is not related to the number of time steps as in the trinomial tree model. Furthermore,
this scenario construction technique does not force the scenarios to very extreme outcomes
(compared to frequently moving down or up in a scenario tree).

An assumption this method relies on is that there is no correlation between adjacent time
periods, since subsequent samples are simulated independently. In reality, there is presumably
some amount of correlation regarding the weather in the short-term. For example, changes
in weather may often times shift gradually in a slow process. This behaviour is not captured
by independent sampling methods, which means that some simulated scenarios may include
sudden changes between time steps.
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6.2.2 Trinomial tree

In the implementation of a tree model, a critical issue is to determine the size of the di�erent
steps (low, medium and high) for moving in the possible directions in the scenario tree.
In order to mitigate negative e�ects resulting from choosing these steps in an undesirable
way, two di�erent implementations (trinomial deterministic and trinomial stochastic) of the
trinomial tree model were used. This approach further increases the potential for comparison
between di�erent methods.

Furthermore, another critical issue of this model is the exponential growth of the scenario
tree for each additional time step that is added to the time horizon. This feature results in an
exponential growth of the computational time that it takes to solve the resulting optimization
problem. In this implementation of the trinomial tree model, Matlab runs out of memory if
the number of time steps is larger than 14, which sets the upper limit for the total number of
scenarios to nS ≈ 4.8 · 106 scenarios. Thus, in order to be useful in practice, this method is
applied with a relatively long time step to enable the modeling of a reasonable time horizon.
In this implementation, the optimizations are performed with 10 time steps, where one time
step corresponds to four weeks.

In practice, this method can be useful in the areas of stress testing, when the practitioner
is interested in investigating a small amount of di�erent outcomes in each time step, and
when the time horizon is fairly short. Speci�cally, when the number of di�erent outcomes
in each step can be reduced to 2 (binomial tree) or 3 (trinomial tree). The reason why this
approach is suitable for stress testing is that the vast majority of the scenarios will deviate
a lot from the medium scenario that is located in the middle of the tree. Speci�cally, many
realizations in the scenario tree will move upwards or downwards far away from the medium
path. This enables insights to be drawn from the result of extraordinary scenarios.

With high probability, the trinomial deterministic tree has a larger spread of in�ow compared
to the trinomial stochastic tree, since the di�erent steps in the model correspond to a quantile
that is located rather far out in the tail of the in�ow distribution. Thus, the di�erence in the
total amount of in�ow for the scenarios is presumably largest in the trinomial deterministic
model. However, this might not be captured by the measure σ(S) since a large amount of
the scenarios are located near the medium path due to the medium step always being the
50% quantile. E.g., in the case of using the Bootstrap distribution, the deterministic tree
will be constructed by using the second most extreme historical observation for moving up
and down in the tree. At the same time, the stochastic tree will draw a random outcome
from the seven most extreme historical observations.
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6.3 Results

Comparisons between DE and MS are not very interesting as the OSSDE will always be
higher than OSSMS. This means that it will always be more favourable to optimize with
perfect foresight compared to multi-stage optimization. Thus, when comparing the di�erent
methods, it makes more sense from a scienti�c perspective to compare the multi-stage
methods separately from the deterministic equivalent solutions.

The common assumption would be that VSS should always be positive, as more information
generally should lead to better decisions. In practice, the model will be unable to capture
the full advantage/disadvantage of extreme scenarios due to the constraints. Thus, due to
the rather tight boundary values regarding the constraints, the added bene�t of knowing the
in�ow distribution is reduced. This means that the extreme scenarios will a�ect the MVS
more compared with their individual contribution to the OSS. This has to do with the mean
in�ow being calculated as if the wet scenarios are able to use all of the in�ow for production.
Thus, in some cases, this results in the relationship MVS > OSS.

E.g, for favourable scenarios with extremely high in�ow, the model will still not be able to
produce more than the maximum allowed production in all time steps. This will be the case
for many scenarios, which will yield the same solution, and hence will be unable to fully
capture all the bene�ts. This can be observed by comparing the average total production
for the scenarios and the total production for the mean value solution. For these types of
circumstances, xTotal(MVS) is expected to be larger than the mean of xTotal(scenarios).

When the value of the measure VSS is negative, it means that the producer would have
earned a higher income if the production planning would be in accordance with the expected
in�ow instead of taking all the scenarios into account. In this case, some production will
be scheduled for time periods when the expected in�ow is larger than the actual in�ow for
the scenario. This means that resources are used, which in fact are not available in order to
satisfy all constraints. Hence, a drawback of these methods is that they generate a substantial
amount of solutions that violate the constraints for the water level in the reservoirs.

This is in contrast to the deterministic equivalent problem where all solutions satisfy the
constraints for min/max production and delta production. The constraint for the water
level in the reservoirs will be violated only for scenarios with extreme in�ow, even though
the solution employ max/min production to o�set for these unlikely circumstances in order
to satisfy the constraints to the extent possible.

EVPI seems to be positively correlated with the standard deviation of the total amount of
in�ow. This is reasonable since the standard deviation is a measure of uncertainty in the
model. The higher the uncertainty, the more a producer would be willing to pay for perfect
information.
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High in�ows during the spring will allow producers to �ll their reservoirs close to maximum
in order to save as much water as possible for the more expensive periods. Therefore, more
evenly distributed in�ow, as in the Time Series model, might result in worse income since
the producer is unable to save water resources for the future.

Since EVPI is correlated with the standard deviation of total in�ow, the goal for a producer
is to model the in�ow as well as possible, and at the same time minimize the standard
deviation of in�ow.

6.4 Di�erent actors

Di�erent actors have di�erent goals, and may thus approach the �eld of hydro power optimization
from di�erent perspectives. The di�erent players surrounding the industry, that we deemed
relevant for the discussion, are hydro power producers, regulators, speculators, competitors
and academia. This section includes a discussion about which goals that may be of interest
for di�erent actors.

A long term hydro power producer is arguably interested in the whole sample space of all
possible scenarios of in�ow in the future, due to their goal of optimizing the income with
regards to the total uncertainty. Regulators and functions responsible for the future supply
and balance of electricity may be interested in stress testing of extreme scenarios to ensure a
satisfactory power supply in rare circumstances. Since electricity is a perishable commodity,
it is important that there is a balance in supply and demand at all times. If this is not the
case, power outage or waste of electricity may occur, which can have hazardous consequences
for a society.

An electricity trader speculating in the electricity market would supposedly be more interested
in testing di�erent subjective scenarios to model the available amount of supply in these
scenarios. The trader may typically not be as interested in the underlying distribution of
in�ow, but rather in the meteorological forecast in comparison to the normal level and the
general consensus on the market.

Competitors to hydro power are other main power sources, for example nuclear power and
coal power. These actors may bene�t from obtaining an expected view of the future supply
of hydro power in order to schedule their own production in an optimal manner. However,
these actors are not as �exible in their production planning as hydro power producers. This
fact may lead these actors to focus on long-term planning since they have limited control
over sudden changes in the short-term.

The academic sphere may be interested in future research in the �eld of hydro power
optimization. Furthermore, academia can also be interested in possible generalisations to
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other �elds of study that can bene�t from similar types of optimization.
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7 Conclusion

In this section, the conclusions are presented. This can be regarded as a summary of the key
points from Section 6.

As stated earlier, the Time Series model is unable to capture the nature of real weather due
to the constant variation of the noise component. Hence, the resulting recommendation is
to use one of the other in�ow distribution methods, namely Normalization or Bootstrap.

The aim when constructing scenarios is to cover all possible outcomes of in�ow a hydro power
producer could be faced with. A drawback of the tree models is that the number of scenarios
increase exponentially and becomes impossible for Matlab to handle for the implementation
of our model as soon as after 14 time steps. This is a problem when optimizing long-term
hydro power. Our conclusion is therefore that the construction of scenarios according to the
independent stochastic technique is more suitable for long-term hydro optimization.

Di�erent actors may have di�erent overall goals, and may thus approach the �eld of hydro
power optimization from di�erent perspectives. However, some of the players may have fairly
mutual interests which can lead to similar recommendations regarding a suitable model.
For the purpose of stress testing extreme scenarios, this can be done using both LP and
SP depending on the speci�c goal. If the goal is to test a small amount of subjective
scenarios, then LP would be least time consuming and thus most suitable. In the case of
trying to simulate an extreme scenario in a population of many scenarios, then SP can be
recommended.

Recall the research question of this thesis:

RQ:How should a model be developed for di�erent actors in the area of hydro power optimization
to take advantage of new information regarding uncertain in�ow to the reservoirs?

Finally, the answer to the research question is that the Normalization and Bootstrap methods
describe the nature of real weather in a satisfying manner. An implementation of multi-stage
optimization can be used to incorporate the ability to take advantage of new information
regarding uncertain in�ow to the reservoirs. The independent sampling technique can be
recommended for scenario creation due to increased �exibility over scenario trees.
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8 Suggestions for future research

The working procedure with this thesis has led to various suggestions for future research
that may be of interest for further elaboration.

One area that has potential for continued analysis is to model the stochastic in�ow. This
process can be carried through in several ways. This thesis has focused on a limited set
of methods which were deemed the most suitable. Other practitioners may �nd potential
for improvement regarding these methods. One alternative is to model di�erent kinds of
parametric distributions, which for instance could possess certain kinds of characteristics in
the tails. The student t-distribution is a candidate for further examination if the practitioners
can tolerate heavy-tail behaviour in their �eld of application. An example of a suitable
research question can be to seek the optimal way of describing future in�ow to the reservoirs.

In order to model the in�ow in a more sophisticated manner, an idea is to include the amount
of unmelted snow as an input variable to model future in�ow. The yearly in�ow typically
follows a rather �xed pattern where the largest amount of in�ow occurs at the time of the
annual snow melting. Thus, there is room for improvement in the area of modeling in�ow
that explicitly takes into account the amount of snow that has melted until the optimization
problem starts.

Another suggestion for further research is the construction of scenarios. Within the �eld of
stochastic programming, a crucial issue is to �nd an appropriate way of creating a set of
scenarios that captures the main point of the practitioner's investigation. This thesis has
focused on an implementation of independent sampling and two variations of the trinomial
tree model. An example of a potential research question could be to study what kind of
information that is gained, or lost, when using di�erent methods for creating scenarios. E.g.,
one test can be to analyze the impact on the quality of the solution when employing the
trinomial tree model compared to the binomial tree model.

Regarding the subject of a scenario tree model, a proposal is to investigate the implications
of using recombining trees compared to non-recombining trees. Since the computational
workload is rather heavy due to the exponential growth of the tree, there are potential
improvements to be made in the area of constructing the scenario tree in a more e�cient
manner. Furthermore, since many of the constructed scenarios in the tree share mutual
characteristics, a more e�cient optimization method that is able to bene�t from the solution
of a similar scenario is presumably favorable.

Moreover, a proposal for future research is the development of other methods to perform
hydro power optimization with regards to uncertainty. A contribution of this thesis is an
implementation of multi-stage optimization which solves several deterministic equivalent
problems and then aggregates the solutions corresponding to the �rst time step.
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Finally, one could also generalize the methods outlined in this thesis in order to apply similar
concepts to other �elds of application, which can bene�t from this kind of optimization. The
problem formulation of this thesis is located within the family of optimization problems
called scheduling problems, which are applied in a variety of industries.
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