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Abstract

Deep learning is a framework for training and modelling neural networks
which recently have surpassed all conventional methods in many learning
tasks, prominently image and voice recognition.

This thesis uses deep learning algorithms to forecast financial data. The
deep learning framework is used to train a neural network. The deep neural
network is a DBN coupled to a MLP. It is used to choose stocks to form
portfolios. The portfolios have better returns than the median of the stocks
forming the list. The stocks forming the S&P 500 are included in the study.
The results obtained from the deep neural network are compared to bench-
marks from a logistic regression network, a multilayer perceptron and a naive
benchmark. The results obtained from the deep neural network are better
and more stable than the benchmarks. The findings support that deep learn-
ing methods will find their way in finance due to their reliability and good
performance.

Keywords: Back-Propagation Algorithm, Neural networks, Deep Belief Net-
works, Multilayer Perceptron, Deep Learning, Contrastive Divergence, Greedy
Layer-wise Pre-training.
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Chapter 1

Introduction

Deep learning is gaining a lot of popularity in the machine learning commu-
nity and especially big technological companies such as Google inc, Microsoft
and Facebook are investing in this area of research. Deep learning is a set of
learning algorithms designed to train so called artificial neural networks an
area of research in machine learning and artificial intelligence (AI). Neural
networks are hard to train if they become too complex, e.g., networks with
many layers, see the Chapter on neural networks. Deep learning is a frame-
work facilitating training of deep neural networks with many hidden layers.
This was not possible before its invention.

The main task of this master thesis is to use methods of deep learning,
to compose portfolios. It is done by picking stocks according to a function
learned by a deep neural network. This function will take values in the
discrete set {0, 1} representing a class label. The prediction task will be per-
formed as a classification task, assigning a class or label to a stock depending
on the past history of the stock, see Chapter 4.

We begin this work by presenting the background in which the formu-
lation of the task to be solved is presented in detail, we then continue by
presenting a short survey of the literature studied in order to understand the
area of deep learning. We have tried to distinguish between the theory of
neural networks’ architecture and the theory on how to train them. Theory
and architecture is given in Chapter 2, and the training of neural networks is
presented in Chapter 3. In Chapter 4 the financial model is presented along
with the assumptions made. In Chapter 5 we describe the experiments done
and show the results from those experiments. The thesis concludes with
Chapter 6 comprising a discussion of results and reflections about model
choice and new paths to be taken in this area of research.
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1.1 Background

Our artificial intelligent system will be constructed around neural networks.
Neural networks, and in particular shallow networks, have been studied over
the years to predict movements in financial markets and there are plenty
of articles on the subject, see for instance (Kuo et al., 2014). In that paper
there is a long reference list on the subject. We will use a type of neural
network, called DBN. It is a type of stochastic learning machine which we
connect to a multilayer perceptron (MLP).

The theory describing these networks is presented in the Chapter on neu-
ral networks. The task of predicting how financial markets evolve with time
is an important subject of research and also a complex task. The reason is
that stock prices move in a random way. Many factors could be attributed to
this stochastic behaviour, most of them are complex and difficult to predict,
but one that is certainly part of the explanation is human behaviour and
psychology.

We rely on past experience and try to model the future empirically
with the help of price history from the financial markets. In particular
the historical returns are considered to be a good representation of future
returns (Hult, Lindskog at al., 2012). Appropriate transformations of histor-
ical samples will produce samples of the random returns that determine the
future portfolio values. If we consider returns to be identically distributed
random variables then we can assume that the mechanisms that produced
the returns in the past is the same mechanism behind returns produced in
the future (Hult, Lindskog at al., 2012). We gather data from the financial
markets and present it to our learning algorithm. The assumptions made are
presented in the Chapter on financial model, Chapter 4. We chose to study
the S&P 500.

1.2 Literature Survey

This work is based, besides computer experiments, on literature studies of
both standard books in machine learning as well as papers on the subject
of deep learning. An introduction to artificial neural networks can be found
in The Elements of Statistical learning of Hastie, Tibshirani and Friedman,
(Hastie and Friedman, 2009). Simon Haykin goes more in depth into the
theory of neural networks in his book Neural Networks and Learning Ma-
chines where he also introduces some theory on deep learning (Haykin, 2009).
Research on deep learning is focused mostly on tasks in artificial intelligence
intending to make machines perform better on tasks such as vision recog-
nition, speech recognition, etc. In many papers e.g. (Hinton et al., 2006),

2



(Larochelle et al., 2009) and (Erhan et al., 2010 ), tests are made on a set
of handwritten digits, called MNIST and is a standard for comparison of re-
sults among researchers to see if their algorithms perform better than other’s.

A classic paper is (Hinton et al., 2006), on training DBN. They show
that their test error is only 1.25%. The second best result in the same ar-
ticle to which they compare their results has a test error of 1.40% achieved
with a support vector machine. The test error measures how well the model
generalises or how good its prediction power is to new unseen data. This
terminology is explained more in depth in later Chapters. For training the
networks used in this thesis the suggestions given in the the technical report
(Hinton, 2010) on how to train RBMs where helpful, because RBMs are the
building blocks of DBNs. The theory of DBN is presented for example in
(Bengio, 2009), (Haykin, 2009) and (Salakhutdinov, 2009).

Relevant work on deep learning applied to finance was found in
(Takeuchi et al., 2013) where they make a similar study as the one pre-
sented here but in that report they used an auto encoder, a different type
of network with training and test data from the S&P 500, the Nasdaq
Composite and the AMEX lists. Their test error was around 46.2%. In
(Zhu and Yin, 2014) deep learning methods were used to construct a stock
decision support system based on DBN with training and test data from
the S&P 500. They draw the conclusion that their system outperforms the
buy and hold strategy. Other approaches to deep learning on tasks such as
regression on chaotic time series are presented in (Kuremoto et al., 2014)
and (Kuremoto et al., 2014), where in the first paper only a DBN is used
and in the second a DBN-MLP is used and both papers show good results.

The next Chapter introduces the theory of artificial neural networks. It
begins with single layer neural networks and continues by presenting the
theory of multilayer neural networks and concludes with the theory of DBN.
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Chapter 2

Neural Networks

This Chapter begins with the theory of artificial neurons, the building blocks
of neural networks. Then we present the theory step by step by introducing
single layer networks and continue with multilayer neural networks. The
Chapter finishes with deep neural networks.

The research on artificial neural networks was inspired by the research
and models of how the brain works in humans and other mammals
(Haykin, 2009). Researchers think of the human brain as a highly complex,
nonlinear and parallel computer or information processing system capable of
performing highly complex tasks. It is a fact that the brain is composed of
cells called neurons. These neurons are responsible for performing complex
computations as pattern recognition, perception or control, to name a few,
faster than the fastest digital computers available today.

For the human brain it can take milliseconds to recognise a familiar face.
The human brain learns new tasks and how to solve problems through experi-
ence and adapts to new circumstances. Because of this adaptation the brain
is considered to be plastic, which means that neurons learn to make new
connections. Plasticity appears to be essential for the functioning of neurons
as information processing units in the human brain. This also appears to be
the case for the neural networks made up of artificial neurons (Haykin, 2009).

A neural network is thought of as a machine designed to model how the
brain performs a particular task. A neural network is built up by a network of
computing units, known as neurons. These computing units are represented
as nodes in the network and they are connected with each other through
weights. For formal definition of neural networks we refer to the appendix.
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2.1 Single Layer Neural Network

We begin this section by introducing the theory of artificial neurons and
activation functions, the building blocks of neural networks.

2.1.1 Artificial Neurons

The computing units that are part of a neural network are called artificial
neurons or for short just neurons. The block diagram of Figure 2.1 shows a
model of an artificial neuron. The neural model is composed of the following
building blocks:

1. A set of synapses or connection links, each characterized by a weight
or strength. A signal xj at the input of synapse j connected to neuron
k is multiplied by the synaptic weigh wk.

2. An adder for summing the input signals, weighted by the respective
synaptic strengths of the neuron. The operations here constitute a
linear combiner.

3. An activation function, ϕ(·), for limiting the amplitude of the output
of a neuron.

'(·)
Xwk2

x1

x2

...
...

wkm

xm

yk

wk1

Bias

Output

bk

Figure 2.1: Nonlinear model of a neuron.

In the neural model presented in Figure 2.1 we can see a bias, b, applied to
the network. The effect of the bias is to decrease or increase the net input
of the activation function depending on whether it is negative or positive.
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More about the activation function is presented in the next section. A math-
ematical representation of the neural network in Figure 2.1 is given by the
equations:

uk =
m∑

j=1

wkjxj ,

yk = ϕ(uk + bk),

(2.1)

where x1, x2, . . . , xm are the input signals and w1, w2, . . . , wm are the respec-
tive synaptic weights of neuron k. The output of the neuron is yk and uk
represents the linear combiner output due to the input signals. The bias
is denoted bk and the activation function by ϕ. The bias bk is an affine
transformation to the output uk of the linear combiner. We now define the
induced local field or activation potential as:

vk = uk + bk. (2.2)

Putting all the components of the neural network into a more compact form
we end up with the following equations:

vk =

m∑

j=0

wkjxj , (2.3)

and
yk = ϕ(vk), (2.4)

where we now have added a new synapse with input x0 = 1 and weight
wk0 = bk accounting for the bias. In Figure 2.2 we have added the bias as
a fixed input signal, x0 = 1, of weight w = b = 1 showing how (2.3) can be
interpreted.

2.1.2 Activation Function

The activation function, ϕ(v), defines the output of a neuron in terms of the
induced local field v. In this section we present some activation functions,
the threshold, the sigmoid function and the linear rectifier.

1. Threshold Function. The threshold function is depicted in Fig-
ure 3.5 and it is defined as:

ϕ(v) =

{
1 if : v ≥ 0
0 if : v < 0

The threshold function is commonly referred to as Heaviside function.
The output of a neuron k using a threshold function as activation
function is

yk =

{
1 if : vk ≥ 0
0 if : vk < 0

7



�wk0 = bk
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Figure 2.2: Neural network with bias as input, x0 = +1, and weight wk0 = bk.
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Figure 2.3: Threshold function.
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where vk is the induced local field of the neuron, that is

vk =
m∑

j=1

wkjxj + bk. (2.5)

This model is called the McCulloch-Pitts model. The output of the
neuron takes the value 1 if the induced local field is non-negative and
0 otherwise.

2. Sigmoid Function. The sigmoid function is by far the most common
form of activation function used in modelling neural networks. Most
of the articles cited in this work make use of the sigmoid function.
It is defined as a strictly increasing function that exhibits a balance
between a linear and nonlinear behaviour. An example of the sigmoid
function is the logistic function whose graph is shown in Figure 2.4 for
different values of a and its mathematical formula is:

ϕ(v) =
1

1 + exp(−av)
. (2.6)

The parameter a is the slope parameter. One of the most interesting
properties of the sigmoid function is that it is differentiable, a property
very useful when training neural networks.

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

a=0.3

a=0.5

a=1

Figure 2.4: Sigmoid function for a = {0.3, 0.5, 1.0}.

3. Rectified Linear Units. A rectified linear unit is a more interesting
model of real neurons, (Nair and Hinton, 2010). It is constructed by
making a large number of copies from the sigmoid. This is done un-
der the assumption that all copies have the same learned weights and
biases.
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The biases have different fixed offsets which are −0.5,−1.5,−2.5, . . . .
Then the sum of the probabilities is given by

N∑

i=1

ϕ(v − i+ 0.5) ≈ log(1 + ev), (2.7)

where v = wTx + b. A drawback of this model is that the sigmoid
function has to be used many times to get the probabilities required
for sampling an integer value correctly. A fast approximation is

ϕ(v) = max

(
0, v +N

(
0, ϕ(v)

))
, (2.8)

where N(0, σ) is a Gaussian noise with zero mean and variance σ.

−5 0 5 10
0

2

4

6

8

10

12

Figure 2.5: Rectified linear units. The figure shows log(1 + ex).

4. Odd Activation Functions. It is worth noting in these examples of
activation functions, that they range from 0 to +1. In some situations
it is preferable to have an activation function whose range is from −1
to +1 in which case the activation function is an odd function of the
local field. The threshold function ranging from −1 to +1 which is
known as the signum function is:

ϕ(v) =





1 if : v ≥ 0
0 if : v = 0
−1 if : v < 0
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and the corresponding form of the sigmoid is the hyperbolic tangent
function defined by

ϕ(v) = tanh(v). (2.9)

So far we have been talking about deterministic neural models, where the
input-output behaviour is accurately defined for all inputs. Sometimes a
stochastic model is needed. For the McCulloch-Pitts model we could for
instance give the activation function a probabilistic interpretation by assign-
ing probabilities for certain states. We can allow this network to attain two
states +1 or −1 with probabilities p(v) and 1 − p(v) respectively, then this
is expressed as

x =

{
+1 with probability : p(v)
−1 with probability : 1− p(v)

where x is the state of the system and p(v) is given as

p(v) =
1

1 + exp(−v/T )
, (2.10)

where T is a parameter used to control the noise level thus controlling the
uncertainty in changing the state. In this model we can think of the network
making a probabilistic decision to react by changing states from off to on.

2.1.3 Single-Layer Feedforward Networks

In the single-layer network there is an input layer of source nodes which direct
data onto an output layer of neurons. This is the definition of a feedforward
network where data goes from the input to the output layer but no the other
way around. Figure 2.6 shows a single-layer feedforward network.

Output layerInput layer

Figure 2.6: Single-Layer Feedforward Network.
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2.1.4 The Perceptron

The Perceptron was the first model of a neural network. Rosenblatt, a psy-
chologist, published his paper (Rosenblatt, 1957) on the perceptron. This
paper was the starting point in the area of supervised learning. Engineers,
physicists and mathematicians got interested in neural networks and be-
gan to use those theories in their respective fields in the 1960s and 1970s,
(Haykin, 2009). McCulloch and Pitts (1943) introduced the idea of neural
networks as computing machines, Hebb (1949) postulated the first rule for
self-organised learning. Rosenblatt’s perceptron is built around a nonlinear
neuron, that of the McCulloch-Pitts model, Figure 2.1.

2.1.5 The Perceptron As a Classifier

The perceptron consists of a linear combiner followed by a hard limiter, ϕ(·),
performing the signum function. The summing node in the neural network
computes a linear combination of the inputs applied to its synapses, and it
incorporates a bias. The resulting sum is applied to the hard limiter. The
neuron then produces an output equal to +1 if the hard limiter input is
positive, and −1 if it is negative.

In the neuron model of Figure 2.1 we havem input signals, x1, x2, . . . , xm,
and m weights, w1, w2, . . . , wm. Calling the externally applied bias b we see
that the hard limiter input or induced local field of the neuron is

v =

m∑

i=1

wixi + b. (2.11)

A perceptron can correctly classify the set of externally applied input signals
x1, x2, . . . , xm into one of two classes C1 or C2. The decision for the classifi-
cation is based on the resulting value of y corresponding the to input signal
x1, x2, . . . , xm where y = 1 belongs to C1 and y = −1 belongs to C2.

To gather insight in the behaviour of a pattern classifier, it is customary
to plot a map of the decision regions in am-dimensional signal space spanned
by the input variables x1, x2, . . . , xm. The simplest case of a perceptron
network consists of two decision regions separated by a hyperplane which is
defined by

m∑

i=1

wixi + b = 0. (2.12)

This is illustrated in Figure 2.7 for the case of two variables x1, x2 for which
the decision line is a straight line. A point (x1, x2) lying in the region above
the boundary line is classified as belonging to class one, C1, and a point
(x1, x2) lying below the boundary to class two, C2. We can see from the
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figure that the effect of the bias is merely to shift the boundary region away
from the origin. The synaptic weights of the perceptron are adapted by

0

x1

x2

Class 1

Class 2

w1x1 + w2x2 + b = 0

Decision boundary

Figure 2.7: Hyperplane as a decision boundary for a 2-dimensional, 2-class pattern-
classification problem.

iteration. This is done by using an error-correction rule, which is called
the perceptron convergence algorithm. Adopting a more general setting, we
could define the bias as a synaptic weight driven by a fixed input equal to
1. This situation is similar to the one depicted in Figure 2.1. We define the
(m+ 1)-by-1 input vector

x(n) = [1, x1(n), x2(n), . . . , xm(n)]T , (2.13)

where n is the time step and T denotes transposition. In the same manner
we define the (m+ 1)-by-1 weight vector as

w(n) = [b, w1(n), w2(n), . . . , wm(n)]T . (2.14)

Then the linear output combiner can be written as

v(n) =

m∑

i=0

wi(n)xi(n)

= wT (n)x(n),

(2.15)

where in the first line w0(n) = b, is the bias. Fixing n and plotting wTx =
0 in a m-dimensional space with coordinates x1, x2, . . . , xm, the boundary
surface is a hyperplane defining a decision surface between two classes.

For the perceptron to function properly, the two classes C1 and C2 must
be linearly separable. This means that the two patterns to be classified must
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be sufficiently separated from each other to ensure that the decision surface
consists of a hyperplane. An example of linearly separable patterns is shown
in Figure 2.8 in the two-dimensional case, while an example of non separable
patterns is shown in Figure 2.9. The perceptron’s computation ability is

Class 1

Class 2

Decision boundary

Figure 2.8: Figure showing separable patterns. Note that the two regions can be
separated by a linear function.

not enough to handle the non separable case. Assume therefore that we
have two linearly separable classes. Define H1 as the subspace of training
vectors x1(1),x1(n), . . . that belong to class C1 and H2 as the subspace of
training vectors x2(1),x2(n), . . . that belong to C2. Then H = H1 ∪H2

is the complete space. With these definitions we can state the classification
problem as

wTx > 0 for every input vector x belonging to class C1,
wTx ≤ 0 for every input vector x belonging to class C2. (2.16)

In the second line we see thatwTx = 0 belongs to class C2. The classification
problem for the perceptron consists of finding a weight vector w satisfying
the relation 2.16. This can be formulated as follows

1. If the nth member of the training set x(n) is correctly classified by the
weight vector w(n) then no correction is made to the weight of the
perceptron according to

w(n+ 1) = w(n) if wTx > 0 belongs to class C1,
w(n+ 1) = w(n) if wTx ≤ 0 belongs to class C2.

2. Otherwise, the weight vector is updated according to the rule

w(n+ 1) = w(n)− η(n)w(n) if wTx > 0 belongs to class C1,
w(n+ 1) = w(n)− η(n)w(n) if wTx ≤ 0 belongs to class C2,

14



where the learning-rate parameter η(n) controls the adjustment applied
to the weight vector at time-step n.

Class 1
Class 2

Figure 2.9: Figure showing non separable patterns. Here it is not longer possible
to separated both regions by a linear function.

2.2 Multilayer Neural Networks

Multilayer networks are different from single-layer feedforward networks in
one respect, (Haykin, 2009). The multilayer network has one or more hidden
layers, whose computation nodes are called hidden neurons or hidden units.
The term hidden is used because those layers are not seen from either the
input or the output layers. The task of these hidden units is to be part in
the analysis of data flowing between the input and output layers. By adding
one or more hidden layers the network can be capable of extracting higher
order statistics from its input.

The input signal is passed through the first hidden layer for computation.
The resulting signal is then an input signal to the next hidden layer. This
procedure continues if there are many hidden layers until the signal reaches
the output layer in which case it is considered to be the total response of
the network. Figure 2.10 shows an example of a multilayer feedforward
network with 3 input units, 3 hidden units and 1 output unit. Because of
this structure the networks is referred to as a 3− 3− 1 network.

2.2.1 The Multilayer Perceptron

The Multilayer Perceptron (MLP) consist of neurons whose activation func-
tions are differentiable (Haykin, 2009). The network consists of one or more
hidden layers and have a high degree of connectivity which is determined by
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�Hidden layer Output layerInput layer

Figure 2.10: Fully connected feedforward network with one hidden layer and one
output layer.

synaptic weights. Much of the difficulty in analysing these networks resides
in the nonlinearity and high connectivity of its neurons. Added to these
difficulties is the problem of learning when the network has hidden units.

When working with multilayer perceptrons we will use the term function
signal to mean input signal. The function signal is the output of a neuron
in a preceding layer in the direction from input to output. These signals are
then passed to other neurons which receive them as input. The error signal
comes at the output units and is propagated backward layer by layer. Each
hidden or output neuron of the multilayer perceptron perform the following
computations

1. Computation of the function signal appearing at the output of each
neuron,

2. Estimation of the gradient vector, which is used in the backward pass
through the network.

The hidden neurons act as feature detectors, as the learning process pro-
gresses the hidden neurons discover silent features in the training data. The
hidden units perform a nonlinear transformation on the input data into a
new space, called the feature space. In the feature space, the classes of inter-
est in a pattern classification problem, may be more easily classified than it
would be in the original input space.

2.2.2 Function Approximation with MLP

The multilayer perceptron can perform nonlinear input-output mapping and
is therefore suitable for the approximation of a function f(x1, . . . , xm0). If
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m0 is the number of input nodes and M = mL the number of neurons in the
output layer then the input-output relationship of the network defines a map-
ping from an m0-dimensional Euclidean input space to an M -dimensional
Euclidean output space. The universal approximation theorem gives us the
minimum number of hidden layers required in the approximation of a func-
tion f(x1, . . . , xm0). The theorem is as follows, (Haykin, 2009):

Theorem 2.1 Let ϕ(·) be a non-constant, bounded and monotone-increasing
continuous function. Let Im0 be the m0-dimensional unit hypercube [0, 1]m0 .
The space of continuous functions on Im0 is denoted by C(Im0). Then, given
any function f ∈ C(Im0) and ε > 0, then there exists an integer m1 and sets
of real constants αi, bi and wij, where i = 1, . . . ,m1 and j = 1, . . . ,m0 such
that we may define

F (x1, . . . , xm0) =

m1∑

i=1

αiϕ

( m0∑

j=1

wijxj + bi

)
, (2.17)

as an approximate realization of the function f(·), that is

|F (x1, . . . , xm0)− f(x1, . . . , xm0)| < ε,

for all x1, x2, . . . , xm0 that lie in the input space.

Any sigmoid function meets the requirements of the theorem and can be
used in the approximation procedure. The output of a multilayer perceptron
such as that given by (2.17) has the following features

1. The network has m0 input nodes and a single hidden layer with m1

neurons. The inputs in this equation are given by x1, . . . , xm0 .

2. Hidden neuron i has weights wi1 , . . . , wm0 and bias bi.

3. The output is a linear combination of outputs of hidden neurons, with
α1, . . . , αm1 as synaptic weights of the output layer.

The universal approximation theorem allows us to use neural networks, under
the assumptions of the theorem, to approximate functions. Therefore neural
networks are suitable for regression tasks as well as classification tasks.

2.2.3 Regression and Classification

Neural networks are often used to solve classification as well as regression
problems. As the universal approximation theorem tells us how to use neural
networks for approximation of functions we see that it is suitable for regres-
sion tasks. We also saw how the perceptron can be used for classification.
On a more general footing we can say that the only difference between those
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tasks is how we represent the output from the network and how the cost
function is defined. For example if the output from the network is fk(X)
then we can formulate the classification or regression solution as

Zm = ϕ(α0m + αTmX), m = 1, 2, . . . ,M

Tk = β0k + βTk Z, Z = (Z1, Z2, . . . , ZM ),

fk(X) = gk(X), k = 1, 2, . . . ,K, T = (T1, T2, . . . , TK),

where Zm are the m hidden units in the network, ϕ(·) is the activation
function, often of sigmoid type, and fk(X) is the response of the network due
to the input X. For the regression problem we have the relation gk(T ) = Tk
and for the classification problem we have the softmax function

gk(T ) =
eTk

∑K
l=1 e

Tl
. (2.18)

In the learning process, there is a parameter estimation step, where one
has to estimate the synaptic weights. The estimation is done by back-
propagation and its objective is to minimize a cost function. The procedure
is presented in the Chapter on training neural networks. For the regression
problem we have a cost function that looks like

E(θ) =
K∑

k=1

N∑

i=1

(
yik − fk(xi; θ)

)2

, (2.19)

where yik is the desired response, θ = {αml, βkm} is the set of parameters of
the model and fk(xi; θ) the actual response of the network. For the classifi-
cation problem the cost function, sometimes called the cross entropy, is

E(θ) = −
K∑

k=1

N∑

i=1

yik log fk(xi; θ). (2.20)

2.2.4 Deep Architectures

Deep neural networks are built around a deep architecture in which there
are more than one layer, often with many hidden layers. Here we present
the theory for deep or multilayer neural networks.

We refer to the depth of a neural network as the number of levels or layers
it comprises. Each layer performs non-linear operations on the input data
in order to learn the function under study. Classical networks are consid-
ered to have shallow architectures often composed of 1, 2 or 3 layers. For a
long time, researchers tried to train neural networks consisting of deep archi-
tectures but often reached a boundary where only networks with a depth at
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most 3 layers (with two hidden layers), were possible to train (Bengio, 2009).
In (Hinton, 2006), it is shown how to train a DBN with the help of a greedy
learning algorithm that trains a layer at a time. The principle used in deep
learning is to train the intermediate levels using unsupervised learning, which
is performed locally at each level. More on the theory on how to train deep
neural networks will be covered in the Chapter on training neural networks.

Deep neural networks are trained in an unsupervised manner but in many
applications they are also used to initialise feedforward neural networks.
Once a good representation has been found at each level, it can be used
to initialise and train a deep neural network by supervised gradient-based
optimization.

In machine learning we speak of labeled and unlabelled data, where the
first refers to the case where we have a target or known result to which
our network output can be compered. In the second case we do not have
such a target. With deep learning algorithms it is possible to train deep
neural networks without labels or target values. Deep learning algorithms
are supposed to handle the following issues, (Bengio, 2009):

• Ability to learn complex, highly varying functions, with a number of
variations much greater than the number of training examples.

• To learn with little human input the low-level, intermediate and high-
level abstractions in the input data.

• Computation time should scale well with the number of examples and
be close to linear.

• To learn from mostly unlabelled data and work in the semi-supervised
setting, where examples may have incorrect labels.

• Strong unsupervised learning which captures most of the statistical
structure in the observed data.

Deep architectures are needed for the representation of complicated func-
tions, a task which can be difficult to handle for shallow architectures. The
expression of a function is considered to be compact if it has few degrees of
freedom that need to be tuned by learning. Functions that can be compactly
represented by an architecture of depth k may require an exponential number
of computational elements to be represented by a depth k − 1 architecture.
The number of computing units consume a lot of resources and is dependent
on the number of training examples available. This dependence leads to
both computational and statistical performance problems resulting in poor
generalization. As we shall see this can be remedied by a deep architecture.
The depth of a network makes is possible to use less computing neurons in
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the network. The depth is defined as the number of layers from the input
node to the output node.

An interesting result is that it is not the absolute number of layers that is
important but instead the number of layers relative to how many are required
to represent efficiently the target function.

The next theorem states how many computing units that are needed for
representing a function when the network has depth k, (Håstad & Goldmann,
1991), (Bengio, 2009).

Theorem 2.2 A monotone weighted threshold network of depth k − 1 com-
puting a function fk ∈ Fk,N has size at least 2cN for some constant c > 0
and N > N0.

Here Fk,N is the class of functions where each function has N2k−2 inputs,
defined by a k depth tree. The interpretation of the theorem is that there is
no right depth for a network but instead the data under study should help
us to decide the depth of the network. The depth of the network is coupled
to what degree a function under study varies. In general, highly varying
functions require deep architectures to represent them in a compact manner.
Shallow architectures would require a big number of computing units if the
network has an inappropriate architecture.

For a deep neural network, we denote the output of a neuron at layer k
by hk, and its input vector by hk−1 coming from the preceding layer, then
we have

hk = ϕ(bk +W khk−1), (2.21)

where bk is a vector of offsets or biases, W k is a matrix of weights and ϕ(·)
is the activation function, which is applied element-wise. At the input layer,
the input vector, x = h0, is the raw data to be analysed by the network.
The output vector h` in the output layer is used to make predictions. For
the classification task we have the output, called the softmax

h`i =
exp(b`i +W `

i h
`−1)∑

j exp(b`j +W `
jh

`−1)
, (2.22)

where W `
i is the ith row of W `, h`i is positive and

∑
i h

`
i = 1. For the

regression task the output is

h`i = α0k + αkϕ(b`i +W `
i h

`−1), (2.23)

a definition we have already seen in past sections with α0k as the bias applied
to the last output layer and αk representing a set of weights between the
last and next to last layers. The outputs are used together with the target
function or labels y into a loss or cost function E(h`, y) which is convex
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in b` + W `h`−1. We are already familiar with the cost function for both
regression and classification tasks

E(h`, y) = − logh`y, Classification,

E(h`, y) = ||y − h`y||2, Regression.
(2.24)

where h`y is the network output and y is the target or desired response. Note
that we change notation for the output of each layer from y to h as this is
the standard notation in the literature.

Next we introduce the theory on deep neural networks, their building
blocks and workings. We will focus on the deep belief network which is the
model to be used to solve our classification task.
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2.3 Deep Belief Networks

Deep Belief Networks (DBN) are constructed by stacking Restricted Boltz-
mann Machines (RBM), (Hinton et al., 2006), (Erhan et al., 2010 ). By suc-
cessively training and adding more layers we can construct a deep neural
network. Once this stack of RBMs is trained, it can be used to initialise
a multilayer neural network for classification, (Erhan et al., 2010 ). To un-
derstand how this learning machine works we need to cover the theory of
Boltzmann machines and in particular that of Restricted Boltzmann Ma-
chines.

2.3.1 Boltzmann Machines

The approach taken in the theory of the Boltzmann machine is that of sta-
tistical physics and for an account of those methods we refer to the appendix.

The Boltzmann machine is a stochastic binary learning machine com-
posed of stochastic neurons and symmetric weights. The stochastic neurons
can take on two states, +1 for the on-state and −1 for the off-state. But +1
for the on-state and 0 for the off-state are also common in the literature and
applications.

The neurons of the Boltzmann machine are divided in two groups or
layers, a visible and a hidden layer respectively. This can be expressed as
v ∈ {0, 1}V and h ∈ {0, 1}H with the indexes V and H representing the
visible and hidden layers respectively. The visible neurons are connected to
each other and are at the interface with the environment. It is into those
visible units that we send our input signal. Under training the visible neu-
rons are clamped onto specific states determined by the environment. The
hidden neurons operate freely and extract features from the input signal by
capturing higher order statistical correlations in the clamping vectors.

In Figure 2.11 we see a Boltzmann machine, where visible neurons are
connected to each other as well as to neurons in the hidden layer. The same
type of connections apply to the hidden layer neurons. Notice that connec-
tions between both layers are represented by double arrows which in this
picture are represented by lines without arrow heads. This means simply
that the connections are symmetrical, which is also the case for connections
between neurons in the same layers.

The network learns the underlying probability distribution of the data by
processing the sent clamped patterns into the visible neurons. The network
can then complete patterns only if parts of the information are available
assuming that the network has been properly trained.
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Figure 2.11: Boltzmann machine, with K visible neurons and L hidden neurons.

The Boltzmann machine assumes the following

1. The input vector persists long enough for the network to reach thermal
equilibrium.

2. There is no structure in the sequential order in which the input vectors
are clamped into the visible neurons.

A certain weight configuration of the Boltzmann machine is said to be a per-
fect model of the input data if it leads to the same probability distribution
of the states of the visible units when they are running freely as when these
units are clamped by the input vectors. To achieve such a perfect model
requires an exponentially large number of hidden units as compared to the
number of visible units. But this machine can achieve good performance
if there is a regular structure in the data, in particular this is true when
the network uses the hidden units to capture these regularities. Under such
circumstances the machine can reconstruct the underlying distribution with
a manageable number of hidden units.

The Boltzmann machine is said to have two phases of operation:

1. Positive Phase. In this phase the machine operates in its clamped
condition, that is to say that it is under the influence of the training
sample T .

2. Negative Phase. In this phase the machine is allowed to run freely,
that means that there is no environmental input.
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2.3.2 Restricted Boltzmann Machines

In the Boltzmann machine there are connections among input neurons and
among hidden neurons besides the connections between input and hidden
layers, see Figure 2.11. In the RBM there are only connections between
input and hidden layers and no connections among units in the same layer,
see figure Figure 2.12. The RBM machine is a generative model and later
we will see that it is used as building blocks in DBN. RBMs have also been
used as building blocks in deep auto-encoders. The RBM consists of a visible
and a hidden layer of binary units connected by symmetrical weights. In the
RBM the hidden units are seen as feature detectors. The network assigns
a probability to each pair of visible and hidden neuron-vectors according to
the distribution

P (v,h; θ) =
1

Z(θ)
e−E(v,h;θ), (2.25)

where the partition function is given by Z(θ) =
∑

v

∑
h exp(−E(v,h; θ)).

The energy of the system is

E(v,h) = −aTh− bTv − vTwh

= −
∑

i

bivi −
∑

j

ajhj −
∑

i,j

wijvihj ,
(2.26)

where ai and bj are the bias of the input variables vi and hidden variables
hj respectively, and wij are the weights of the pairwise interactions between
units i and j, in the visible and hidden layers. The marginal probability
distribution P of data vector v is given by, (Salakhutdinov, 2009),

P (v; θ) =
∑

h

e−E(v,h;θ)

∑
v,h e

−E(v,h;θ)

=
1

Z(θ)

∑

h

e−E(v,h;θ)

=
1

Z(θ)

∑

h

exp

(
vTwh + bTv + aTh

)

=
1

Z(θ)
exp(bTv)

F∏

j=1

∑

hj∈{0,1}

exp

(
ajhj +

D∑

i=1

wijvihj

)

=
1

Z(θ)
exp(bTv)

F∏

j=1

(
1 + exp

(
aj +

D∑

i=1

wijvi

))
,

(2.27)

in this equation, v, is the input vector and h is a vector of hidden units. This
is the marginal distribution function over visible units. A system (v,h) with
low energy is given a high probability and one with high energy is given low
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probability. With the help of the energy function we can define the following
probabilities

P (v|h; θ) =
∏

i

P (vi|h) and P (vi = 1|h) = ϕ

(
bj +

∑

j

hjwij

)
, (2.28)

P (h|v; θ) =
∏

j

P (hj |v) and P (hj = 1|v) = ϕ

(
aj +

∑

i

viwij

)
, (2.29)

where ϕ is the sigmoid function ϕ(x) = 1/(1+exp(−x)). The energy function
is defined over binary vectors and is not suitable for continuous data, but
by modifying the energy function to define the Gaussian - Bernoulli RBM
by including a quadratic term on the visible units we can also use RBM for
continuous data

E(v,h; θ) =
∑

i

(vi − bi)2

2σ2
i

−
∑

j

ajhj −
∑

i,j

wij
vi
σi
hj . (2.30)

The vector θ = {W,a,b, σ2} and σi represents the variance of the input
variable vi. The vector a is the bias of the visible units and b is the bias
of the hidden units. The marginal distribution over the visible vector v is
given by, (Salakhutdinov, 2009),

P (v; θ) =
∑

h

exp(−E(v;h; θ))∫
v′
∑

h exp(−E(v,h; θ))dv′
, (2.31)

P (v|h) becomes a multivariate Gaussian with mean ai + σi
∑

j wijhj and
diagonal covariance matrix. The conditional distributions for the visible and
hidden units become, (Salakhutdinov, 2009),

P (vi = x|h) =
1

σi
√

2π
exp

(
−
(
x− bi − σi

∑
j wijhj

)2

2σ2
i

)
,

P (hj = 1|v) = ϕ

(
bj +

∑

i

vi
σi
wij

)
,

(2.32)

where ϕ(x) = 1/(1 + exp(−x)) is the sigmoid activation function.
(Hinton et al., 2006) and (Salakhutdinov, 2009), mention that the Binomial-
Bernoulli RBM also works for continuous data if the data is normalised to
the interval [0,1]. This has been tested in experiments and seems to work
well.

2.3.3 Deep Belief Networks

In the deep belief network the top two layers are modelled as an undirected
bipartite associative memory, that is, an RBM. The lower layers constitute
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Figure 2.12: Picture of a Restricted Boltzmann machine.
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Figure 2.13: A Deep Belief Network.
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a directed graphical model, a so called sigmoid belief network, see the ap-
pendix. The difference between sigmoid belief networks and DBN is in the
parametrisation of the hidden layers, (Bengio, 2009),

P (v,h1, . . . ,hl) = P (hl−1,hl)

( l−2∏

k=0

P (hk|hk+1)

)
, (2.33)

where v is the vector of visible units, P (hk−1|hk) is the conditional prob-
ability of visible units given the hidden ones in an RBM at level k. The
joint distribution in the top level, P (hl−1,h), is an RBM, see Figure 2.13.
Another way to depict a DBN with a simpler model is shown in Figure 2.14
and it explains why a DBN is a generative model. We can see there are two
kinds of arrows, dotted arrows and solid arrows.

The dotted arrows represent learning features of features while the solid
ones mean that the DBN is a generative model. The dotted arrows repre-
sent the learning process and are not part of the model. The solid arrows
demonstrate how the generation of data flows in the network. The generative
model does not include the upward arrows in the lower layers.

A DBN is made by stacking RBMs on top of each other. The visible
layer of each RBM in the stack is set to the hidden layer of the previous
RBM. When learning a model for a set of data, we want to find a model
Q(hl|hl−1) for the true posterior P (hl|hl−1). The posteriors Q are all ap-
proximations, except for the top level Q(hl|hl−1) posterior which is equal
to the true posterior, P (hl|hl−1), (Bengio, 2009), where the top level RBM
allows us to make exact inference.

In the next Chapter we present the theory for training neural networks.
We introduce the back-propagation algorithm, which is used in training both
shallow as well as deep neural networks. We also present some heuristics
which are useful in training neural networks, then we go trough the theory
for training deep neural networks.

2.3.4 Model for Financial Application

The model chosen to work with in this thesis is a DBN which was coupled
to a MLP, where the later network performed the classification task. In the
initialisation phase of the implementation of the DBN, the RBMs shared
weights and biases with the MLP. This simply means that the RBMs are
initialised with the same set of parameters as those for the MLP.

In the initialisation of the DBN-MLP we use the same weight matrices
and the same bias vectors in both the DBN-module and the MLP-module.
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Figure 2.14: General representation of a DBN, this model extracts multiple levels
of representation of the input. The top two layers h2 and h3 form a RBM. The
lower layers form a directed graphical model, a sigmoid belief network.

When training begins these matrices and vectors will be adjusted according
to the learning rule. As training progresses, the weight matrices and bias
vectors will change in both the DBN and the MLP and they will not be the
same anymore.

When training the whole network, the parameters are adjusted accord-
ing to the theory presented in the Chapter on training neural networks. As
explained later, see Chapter on financial model, we decided to have three
hidden layers in the DBN and a hidden layer in the MLP. A sketch is shown
in the figure below. Later we will see that the input vector consists of 33
features or variables and that the output layer consists of the softmax func-
tion.
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Our neural network will model an unknown function from the input space
x to the output space Y = {0, 1}:

Fθ : x→ Y, (2.34)

where θ is the parameters of the neural network. We will show that our final
model is give by

Yt+1 = Fθ(x), (2.35)

which eventually leads to the estimator

Ŷt+1 = E[Yt+1]. (2.36)

Figure 2.15: Sketch of DBN-MLP consisting of a 3-layered DBN and a MLP with
1 hidden layer. Here hi represents the hidden layers for i = {1, 2, 3} and o is the
output layer consisting of the softmax function. The input vector has 33 features
or variables and Y takes one of the values in the set Y = {0, 1}.
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Chapter 3

Training Neural Networks

This Chapter presents the theory for training both shallow as well as deep
neural networks. The first algorithm to be presented is the so called back
propagation algorithm. This algorithm is used to train multilayer percep-
trons, but it is also used in the training of deep neural networks, where it
is used in the last step of training, for fine-tuning the parameters. Then we
proceed by presenting the theory for training RBM and DBN. Contrastive
Divergence (CD) is the approximating learning rule for training RBMs and
is part of the layer-wise pre-taining for DBNs.

3.1 Back-Propagation Algorithm

The most common method for updating the weights in neural network theory
is the so called steepest descent method, which is introduced next.

3.1.1 Steepest Descent

Steepest descent updates the weights in the direction opposite to the gradient
vector ∇E(w). Here E = 1

2e
2
j (n), whith ej(n) = dj(n) − hj(n) representing

the error between the network output hj(n) and the desired response dj(n).
The steepest descent algorithm takes the form

w(n+ 1) = w(n)− η∇E(w), (3.1)

where η is the stepsize or learning-rate. From time step n to time step n+ 1
the correction becomes

∆w(n) = w(n+ 1)−w(n)

= −η∇E(w).
(3.2)

The above equations can be used to make an approximation of E(w(n+ 1))
using a first order Taylor series expansion:

E(w(n+ 1)) ≈ E(w(n)) +∇ET (n)∆w(n). (3.3)
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In (Haykin, 2009) it is shown that this rule fulfils the condition of iterative-
descent which states the following:

Proposition: Starting with w(0) generate a sequence of weight vectors
w(1),w(2), . . . such that the cost function is reduced at each iteration

E(w(n+ 1)) < E(w(n)), (3.4)

where w(n) is the old value of the weight vector and w(n+ 1) is its updated
value.

Consider neuron j which receives the input signal h1(n), h2(n), . . . , hm(n)
and in response of this input it produces the output vj(n)

vj(n) =
m∑

i=0

wji(n)hi(n). (3.5)

In this model we think of h0 = 1 corresponding to the bias with weight
wj0 = bj . The neuron output is passed through the activation function
yielding the stimulus from that neuron as

hj(n) = ϕj(vj(n)). (3.6)

Taking the gradient and recalling the chain rule for differentiation gives
∂E(n)

∂wji(n)
=
∂E(n)

∂ej(n)

∂ej(n)

∂hj(n)

∂hj(n)

∂vj(n)

∂vj(n)

∂wji(n)

= −ej(n)ϕ′j(vj(n))hi(n),

(3.7)

where we have made used of the derivatives of the error signal ej(n) =
dj(n) − hj(n), the error energy E(n) = 1

2e
2
j (n), the function signal hj(n)

from neuron j and the local field vj(n).

3.1.2 The Delta Rule

The delta rule is a correction ∆wji(n) applied to wji(n) and it is given by

∆wji(n) = −η ∂E(n)

∂wji(n)
, (3.8)

where as usual η is the learning parameter. The minus sign accounts for
gradient descent in weight space. The Delta rule can be expressed with the
help of the error energy as

∆wji(n) = ηδj(n)hi(n), (3.9)

where δj(n) = ej(n)ϕ′j(vj(n)), is the local gradient. One interesting feature
of the delta rule is that it gives the weight adjustment with the help of the
error signal at the output of neuron j. Therefore we have to consider two
different cases depending on if the neuron j producing the output signal is
in the output layer or in a hidden layer.
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Case 1 Output Layer

When neuron j is in the output layer we can compute the local gradient
using (3.9) with the help of the error signal ej(n) = dj(n)− hj(n).

Case 2 Hidden Layer

When neuron j is part of a hidden layer, we can write the local gradient as

δj(n) = − ∂E(n)

∂hj(n)

∂hj(n)

∂vj(n)

= − ∂E(n)

∂hj(n)
ϕ′j(vj(n)).

(3.10)

If neuron k is an output neuron then the cost function is E(n) = 1
2

∑
k∈C ek(n)2,

see (Haykin, 2009) page 162. Putting this in the gradient of the cost function
gives

∂E(n)

∂hj(n)
=
∑

k

ek
∂ek(n)

∂hj(n)
. (3.11)

The error is

ek(n) = dk(n)− hk(n)

= dk(n)− ϕk(vk(n)),
(3.12)

which gives
∂ek(n)

∂vk(n)
= −ϕ′k(vk(n)). (3.13)

Finally the gradient of the cost function becomes

∂E(n)

∂hj(n)
= −

∑

k

ek(n)ϕ′k(vk(n))wkj(n)

= −
∑

k

δk(n)wkj(n),
(3.14)

where vk(n) =
∑

k wkj(n)hj(n) and ∂vk(n)
∂hj(n) = wkj(n). The calculations give

us the local gradient for hidden neuron j as

δj(n) = ϕ′j(vj(n))
∑

k

δk(n)wkj(n). (3.15)

Summary

Here we present a summary of the updating rule for the parameters of the
network
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1. Update the parameters according to the delta rule

∆wji(n) = ηδj(n)hi(n). (3.16)

2. If neuron j is an output node use the result of case 1 above for output
layers.

3. If neuron j is a hidden node use the result of case 2 above for hidden
layers, in which case we need the δs for the neurons from the next
hidden or output layer.

The back propagation algorithm is used to update the weights, and it works
by passing the data in a forward phase and a backward phase. Next we
explain what forward and backward phases mean.

3.1.3 Forward and Backward Phase

Forward Phase

The back-propagation algorithm is applied in two phases. In the first phase
or forward phase, the input data passes through the synaptic weights from
one layer to the next, till the data finally comes out in the output neurons.
The function signal out from the network is expressed as

hj(n) = ϕ

( m∑

i=0

wij(n)hi(n)

)
, (3.17)

where ϕ is the activation function. The total number of inputs is m, exclud-
ing bias, applied to neuron j and wji(n) is the synaptic weight connecting
neuron i to neuron j. The input signal of neuron j is hi(n). Recall that
hi(n) is at the same time the output of neuron i. If neuron j is in the first
hidden layer then

hi(n) = xi(n), (3.18)

where xi(n) is the ith element of the input data to the network. If instead
neuron j is in the output layer then

hj(n) = oj(n), (3.19)

where oj(n) is the jth element of the output vector. The output is compared
to the desired response dj(n) giving us the error ej(n).

Backward Phase

In the backward phase we start at the output nodes and go through all the
layers in the network and recursively compute the gradient, δ, for each neu-
ron in every layer. In this way we update the synaptic weights according
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to the Delta rule. In the output layer, δ is simply the error multiplied by
the first derivative of its activation function. We use (3.9) to compute the
changes of the weights of all the connections leading to the output layer.
When we obtain δ for the output layer we can then continue by computing
the δs for the layer just before the output layer with the help of (3.15). This
recursive computation is continued layer by layer by propagating the changes
to all the synaptic weights in the network.

The presentation of each training example in the input pattern is fixed
or "clamped" through out the round-trip process of the forward phase fol-
lowed by the backward phase. Later we will see that there are two ways to
pass data through the learning algorithm under training. Those methods
are called on-line learning mode and batch learning mode. There is yet a
third method, called mini batch training which is a hybrid of the first two
mentioned methods and it is the method chosen for training in this master
thesis.

3.1.4 Computation of δ for Known Activation Functions

Here we compute δ for the sigmoid or logistic function and for the hyperbolic
tangent function given by a · tanh(b · vj(n)). Their derivatives are

ϕ′j(vj(n)) =
a exp(−avj(n))

(
1 + exp

(
− avj(n)

))2 ,

ϕ′j(vj(n)) = a · b cosh−2(bvj(n)),

(3.20)

respectively. We note that hj(n) = ϕj(vj(n)) which can be used in the
formulas for the derivatives. Now we show two formulas for δ according to
if the neurons reside in the output layer or in a hidden layer.

1. The neurons reside in the output. Using that hj(n) = oj(n) is
the function signal at the output of neuron j and dj(n) is the desired
response

δj(n) =





a

[
dj(n)− oj(n)

]
oj(n)

[
1− oj(n)

]
, sigmoid

(
b/a

)[
dj(n)− oj(n)

][
a− oj(n)

][
a+ oj(n)

]
, h. tangent,

where the abbreviation h. tangent refers to the hyperbolic tangent.

2. The neurons reside in a hidden layer. In the case of a hidden
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layer we have the expressions

δj(n) =





a · hj(n)

[
1− hj(n)

]∑
k δk(n)wkj(n), sigmoid

(
b/a

)[
a− hj(n)

][
a+ hj(n)

]∑
k δk(n)wkj(n), h. tangent,

where the abbreviation h. tangent refers to the hyperbolic tangent.

3.1.5 Choosing Learning Rate

Choosing a small value for the learning rate makes the interactions in weight
space smooth, but at the cost of longer learning rate. Choosing a large learn-
ing rate parameter makes the adjustment too large which makes the network
unstable. To speed up calculations and at the same time not jeopardise the
stability of the network, a momentum term is incorporated and the delta
rule becomes

∆wji(n) = α∆wji(n− 1) + ηδj(n)hj(n), (3.21)

here α is a positive constant called the momentum constant. When written
in this form the delta rule is called the generalised delta rule. It can be cast
to a time series by introducing the index t which goes from 0 to the current
time n. Solving the equation for ∆wji(n) we end up with

∆wji(n) = η

n∑

t=0

αn−tδj(t)hj(t). (3.22)

We can use earlier equations to express this last equation with the help of
the error energy function

∆wji(n) = −η
n∑

t=0

αn−t
∂E(t)

∂wji(t)
. (3.23)

3.1.6 Stopping Criteria

Let the weight vector w∗ be a minimum, local or global. It can be found by
taking the gradient of the error surface with respect to w where it must be
zero for w = w∗. A convergence criterium for the back-propagation algo-
rithm is, (Kramer and Sangiovanni-Vincentelli, 1989):

The back-propagation algorithm is considered to have converged when the
Euclidean norm of the gradient vector reaches a sufficiently small gradient
threshold.
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On the negative side is the fact that we have to compute the gradient,
in addition the learning time may be long. An improvement to the stated
criterium is to use that Eav(w) is stationary at w = w∗ and the following
criterium follows, (Haykin, 2009):

The back-propagation-algorithm is considered to have converged when the
absolute rate of change in the average squared error per epoch is sufficiently
small.

The rate of change is considered small when it lies between 0 and 1
percent per epoch. Better still is to test the generalization performance of the
algorithm. The back-propagation algorithm is summarised in Algorithm 1.

Early-Stopping

We divide the training data in two sets, the estimation data and the vali-
dation data. As usual we train our network with the estimation data and
the validation set is used to test generalisation capacity. Training is stopped
periodically e.g. after every 5 epochs, and the network is tested on the
validation subset after each period of training. We proceed as follows:

1. After a period of training (- every five epochs, for example -) the synap-
tic weights and bias of the MLP are all fixed, and the network is op-
erated in its forward mode. The validation error is measured for each
example in the validation subset.

2. When validation is completed, training is resumed for another period
and the process is repeated.

This method of training will be used in our experiments. In Figure 3.1 we
see an illustration of early stopping based on cross validation.
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Number of epochs
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Error

0

Figure 3.1: Early stopping based on cross-validation.

In Algorithm 1 we show the pseudo code for the back propagation algo-
rithm. Let us define the output for all the neurons at layer i by

hi = ϕ(wihi−1),

where ϕ(·) is the sigmoid function, h(i−1) is the output of all the neurons
from the previous layer i− 1 and wi is the synaptic weight matrix between
the neurons in layer i − 1 and layer i. For the first hidden layer, i = 1 and
we set

h0 = xt.

The output from the network is

h` = o(xt).

The softmax output h` can be used as an estimator of P (Y = i|x) where Y is
the class associated with the input x. When we solve classification problems
we use the conditional log-likelihood given by

E(h`, y) = − logh`y.

Let |hi| be the size of layer i, b the bias vector, K the number of outputs
from the network, nin the number of units in layer (i − 1) and nout the
number of units in layer i. Finally let η > 0 denote the learning parameter,
then we can summarise the algorithm for a network with ` layers as in the
following table.
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Algorithm 1: Back-Propagation Algorithm
Initialisation:
weights wi ∼ U(−4 · √a, 4 · √a), a = 6/(nin + nout)
bias b = 0
while Stopping criterion is not met

pick input example (xt, yt) from training set
Forward propagation:
h(xt)← xt
for i ∈ {1, . . . , `}

ai(xt) = bi + wihi−1(xt)
hi(xt) = ϕ(ai(xt))

end for
a`+1(xt) = b`+1 + w`+1h`(xt)
o(xt) = h`+1(xt) = softmax(a`+1(xt))

Backward gradient propagation and parameter update:
∂ log oyt (xt)

∂a`+1
j (xt)

← I(yt = j)− oj(xt) for j ∈ {1, . . . ,K}

b`+1 ← b`+1 + η
∂ log oyt (xt)

∂a`+1(xt)

w`+1 ← w`+1 + η
∂ log oyt (xt)

∂a`+1(xt)
h`(xt)

T

for i ∈ {1, . . . , `}, in decreasing order
∂ log oyt (xt)

∂hi
j(xt)

← (wi+1)T
∂ log oyt (xt)

∂ai+1(xt)
for j ∈ {1, . . . , |hi|}

∂ log oyt (xt)

∂aij(xt)
← ∂ log oyt (xt)

∂hij(xt)
hij

(
1− hij(xt)

)

bi ← bi + η
∂ log oyt (xt)

∂ai

wi ← wi + η
∂ log oyt (xt)

∂ai hi−1(xt)
T

end for
end while

3.1.7 Heuristics For The Back-Propagation Algorithm

There are some tested design choices which make the back-propagation algo-
rithm improve its performance. Here is a list of proven methods, (Haykin, 2009).

1. Update choice. The stochastic or sequential mode of the algorithm
means that learning is performed by presenting the training set exam-
ple by example. This makes the algorithm run faster than when the
batch mode is used.

2. Maximise information content. Here the choice is to pick examples
of data that make the training error differ, in that way we search in
the whole weight space. One way to achieve this is by presenting the
training data in a random order from one epoch to the next.
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3. Activation function. Using a sigmoid activation function that is odd
ϕ(−v) = −ϕ(v) speeds up the learning process. A good choice is the
hyperbolic tangent function

ϕ(v) = a tanh(bv).

with values (LeCun, 1993) a = 1.7159 and b = 2/3.

4. Target values. The target values should be within the range of the
sigmoid activation function. For example the maximum value of the
target should be offset by some amount ε away from the limiting value
of the activation function depending on if the limiting value is positive
or negative. For example if the target or desired value from neuron j
is dj then for the limiting value +a

dj = a− ε,

and for the limiting value −a

dj = −a+ ε.

Otherwise the back-propagation algorithm tends to drive the free pa-
rameters to infinity making the learning process slow down and drive
the hidden neurons into saturation.

5. Normalizing inputs. Data should be normalized so that its mean
value, averaged over the entire training sample should be close to zero.
The correlation in the data should be taken away and its covariance
should be the same. For a deeper discussion concerning this process
see (Haykin, 2009).

6. Initialisation If the initial values are large then the neurons are driven
to saturation. If this happens the local gradients in the back-propagation
algorithm assume small values which causes the learning process to
slow down. If on the other hand, the weights are assigned small val-
ues, the back-propagation algorithm may operate in a very flat area
around the origin of the error surface. This is true for the sigmoid
functions such as the hyperbolic tangent. The origin is a saddle point,
which means that the curvature across the saddle point is negative
and the curvature along the saddle point is positive. It is in this area
that we have a stationary point. We should therefore avoid both too
high values and too small values as initial values. Haykin shows that
we should initialise the weights according to drawing random values
from a uniform distribution with mean zero and variance equal to the
reciprocal of the number of synaptic connections of a neuron.
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7. Learning from hints. Our objective is to train a model which can
represent a map from the input space to the output space, which is
represented by f(·). If we have previous knowledge of f(·) we should
use this knowledge in the training of the network. This could be e.g.
known symmetries of the mapping f(·) or other invariance properties
which could accelerate the learning process.

8. Learning rates. All neurons should learn at the same rate, but the
last layers in the network have larger local gradients than the layers
in the front end of the network. For this reason the learning rate
should be given a small value at last layers than in the front layers.
It is also experimentally known that neurons with many inputs should
have a smaller learning rate, for example (LeCun 1993) suggests that
the learning rate for a neuron should be inversely proportional to the
square of the number of connections to that neuron.

3.2 Batch and On-Line Learning

The back-propagation algorithm can be used together with on-line learning
or batch-learning. In this thesis we will use a hybrid of those methods using
mini batches of size much smaller than the number of training examples. For
that reason this method is sometimes called mini-batch stochastic gradient
descent. This procedure has the benefit of being enough stochastic to avoid
being trapped in bad local minima in the error space spanned by the weight
vector. For the multilayer perceptron, let T = {x(n),d(n)}Nn=1 be the
training samples used in a supervised manner. Denote by hj(n) the function
signal at the output of neuron j, in the output layer, corresponding to the
stimulus applied to the input layer. Then the error signal is

ej(n) = dj(n)− hj(n), (3.24)

where dj(n) is the jth element of the desired response vector d(n). We define
the instantaneous error energy of neuron j by

Ej(n) =
1

2
e2
j (n). (3.25)

Now summing over all output neurons in the output layer

E(n) =
∑

j∈C
Ej(n)

=
1

2

∑

j∈C
e2
j (n),

(3.26)

where C is the set of all the neurons in the output layer. Taking averages
over all N samples we arrive at the error energy averaged over all training
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samples

Eav(N) =
N∑

n=1

E(n)

=
1

2N

N∑

n=1

∑

j∈C
e2
j (n).

(3.27)

3.2.1 Batch Learning

An implementation of the perceptron algorithm using batching is presented
in the section below. Using batching, means that all the weights of the
multi layer perceptron are adjusted after all the N examples in the training
set T that constitute an epoch have been presented. Here we make use
of the average error function, Eav just presented and adjust the weights in
an epoch-by-epoch basis. The examples in the training set are randomly
shuffled. Using gradient descent with the batch method offers two benefits.

1. Accurate estimation of the gradient vector and convergence to a local
minimum.

2. Parallelisation of the learning process

On the negative side is the requirement of storage. This method suits the
solution of nonlinear regression problems.

3.2.2 The Use of Batches

Here we generalize the perceptron algorithm by presenting a more general
cost function which can be used to formulate a batch version of the algorithm.
In this setting the perceptron cost function is defined as

J(w) =
∑

x∈H

(−wTx), (3.28)

here H stands for the set of misclassified x. Taking the derivatives on the
cost function yields

∇J(w) =
∑

x∈H

(−x), (3.29)

were the gradient operator is given by

∇ =

[
∂

∂w1
,
∂

∂w2
, . . . ,

∂

∂wm

]T
.
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In the method of steepest descent the adjustment to the weight vector w is
applied in a direction opposite to the gradient vector ∇J(w) arriving at

w(n+ 1) = w(n)− η(n)∇J(w)

= w(n) + η(n)
∑

x∈H

x. (3.30)

This formula embodies a general representation for the perceptron algorithm
and has the single-sample version of the convergence algorithm as a special
case.

3.2.3 On-Line Learning

On-line learning means that adjustment to the weights of the multilayer
perceptron is done on an example-by-example basis. The cost function used
in this case is the error energy function E(n). The training is done by
arranging an epoch of N training samples and present those in the or-
der, [x(1),d(1)], [x(2),d(2)], . . . , [x(N),d(N)], adjusting the weights with
the method of gradient descent. We continue until we reach the N -sample
pair. On-line learning behaves in a stochastic manner and for this reason it
avoids to be trapped in local minima. On the positive side of this method
we can mention that it requires less storage resources, it is well suited for
large scale and difficult pattern classification problems and it is simple to
implement. On the negative side we can mention that it does not work well
on parallalization.

3.2.4 Generalization

The concept of generalization refers to the predictive power of a model to
new data. As mentioned before we divide the data in three sets. A training
set for training the network, a test set for testing the predictive power of the
model and a validation set for tuning hyper parameters. After the training
we expose our model to test data and hope to get a good prediction from
the model. If the model has good generalization it should predict in a good
manner if the data comes from the same distribution.

A model generalises well if the input-output mapping computed by the
network is correct for data never used in training or creation of the net-
work. The learning process can be considered as a curve fitting problem
where the network is a nonlinear input-output mapping and the network
model can therefore be considered as an interpolation problem of the input
data. A problem in building network models is that of overfitting or over-
training, where the network memorises the data. In this case the network
might learn features such as noise in the training data that might not exist
in the underlying distribution of the data. When the network is overtrained
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it will not generalize well to similar input-output patterns. Recall Occam’s
razor criterium which says that it is better to choose the simplest model
that describes our data in a smooth manner. Because the number of train-
ing examples has such an impact in the generalization properties of neural
networks, researchers have come up with some criteria on how to choose the
number of examples.

Three key properties have been identified to contribute to the general-
ization, these are:

1. the size of training data

2. the architecture of the neural network

3. the physical complexity of the problem to be studied.

For good generalization it is enough that the number of training examples,
N , satisfies the condition,

N = O

(
W

ε

)
, (3.31)

where W is the number of weights and biases and ε is the fraction of clas-
sification errors or a threshold for the cost in regression problems on test
data. O(·) refers to the ordo notation giving the order of magnitude for the
problem.

3.2.5 Example: Regression with Neural Networks

In this section we perform a regression with the back-propagation algorithm
on a toy example given by the function

y(x) = e−
1
2
·x2 · (4 · sin2 6x+ 3 cos2 x · sin2 4x+ 1). (3.32)

This function will be the target for our network and the cost function is
given by

E(θ) =
1

2

N∑

i=1

(
y(xi)− f(xi; θ)

)2

, (3.33)

where f(xi; θ) is the output of our network. As this example is a toy ex-
ample not so much time will be spent in the analysis but we show some
results and compare results from a MATLAB standard implementation and
one implementation from scratch. Two modes of learning were tested, the
on-line mode and the batch mode of learning. First we show how MATLAB’s
implementation of back-propagation performs in Figure 3.2 where the net-
work has a hidden layer with 8 neurons. In this demonstration we performed
back-propagation by steepest descent and the goal was to see how well the
model fit to data. When learning a model it is always possible for the learn-
ing algorithm to learn well how to fit to the training data. The difficulty in
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Figure 3.2: Figure showing MATLAB implementation for our neural network.
There is a perfect match in the regression. The model is composed of a hidden layer
with 8 neurons and an output layer with one neuron.

learning is how well the model is at generalisation. This was not proven for
this demonstration but we held out some of the data and showed it to the
algorithm. The graphs can be found in the appendix for different situations.
No validation error or test error were measured.

The implementation from scratch is shown in Figure 3.3 and shows a
perfect fit, as did the MATLAB implementation. The first implementation
for the neural network is composed of two layers, one hidden layer and one
output layer. The number of neurons in the hidden layer are chosen such
that the cost function is minimised. For the first example we see that it is
enough with 8 neurons. Both implementations are based on on-line learning.
The batch implementation seems to be not so good because the algorithm
is updated after all training examples have been processed. In the on-line
implementation the training set is presented to the update rule in the back-
propagation in an example by example basis. In this case the approximation
to the gradient is near the real gradient and it seems not to get stuck in
valleys in the error surface.
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Figure 3.3: Neural network with 8 hidden neurons, own implementation. Differ-
ent normalisation than in the MATLAB implementation, but showing perfect fit.
Implementation in on-line mode of learning.
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Figure 3.4: Regression with back-propagation for a network with 170 neurons in
the hidden layer. Implemented in the batch-mode of learning.
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Figure 3.5: Regression with MATLAB’s own function.

In the second example we tested more neurons and we saw that the model
is not so good at generalisation either in MATLAB’s implementation or our
own, see figures in the appendix. More neurons show that the model is
overfitted and probably not so good at generalisation. In both examples 170
weights were used in the network. The network is a 2-layer network with
one hidden layer containing 170 neurons and one output layer with only 1
neuron.

3.3 Training Restricted Boltzmann Machines

The training of RBM is a maximum likelihood learning of Markov random
fields, (Carreira-Perpiñán and Hinton), and as such is an intractable one.
The reason for this, is the exponential number of terms in the estimates of
the averages involved in the learning rule. Monte Carlo methods take very
long time to reach an unbiased estimate, but (Hinton, 2002) has shown that
if the Markov chain runs for a few steps we can still get a good estimate.
This new method of estimation of the gradient is called Contrastive Diver-
gence (CD). Carreira-Perpiñán and Hinton present the theory behind CD in
their paper (Carreira-Perpiñán and Hinton).

Unsupervised learning means that we want to model an unknown distri-
bution Q given some sample data without the need of labels. An RBM is
a Markov Random Field (MRF), (Fischer and Igel, 2014), and unsupervised
learning in this setting is the same as estimating the parameters, θ, of the
model. The model to learn is given by P (x|θ), where x is the data and θ
is the parameter set we want to estimate. Let S = {x1, x2, . . . , xl} be the
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data vector, then we can estimate the parameters by maximum-likelihood.
From elementary statistics we know that maximisation of the likelihood is
equivalent to maximisating the log-likelihood

logL(θ|S) = log

l∏

i=1

P (xi|θ) =

l∑

i=1

logP (xi|θ). (3.34)

Maximisation of the log-likelihood is equivalent to minimisation of the dis-
tance between the unknown distribution Q underlying S and the true dis-
tribution P in terms of the Kullback-Leibler divergence (KL divergence),
(Fischer and Igel, 2014),

KL(Q||P ) =
∑

x∈Ω

Q(x) log

(
Q(x)

P (x)

)

=
∑

x∈Ω

Q(x) logQ(x)−
∑

x∈Ω

Q(x) logP (x).
(3.35)

Learning in the RBM framework is done with gradient descent or ascent, the
difference being only a matter of which sign, plus or minus, is used in the
update rule. Consider the update rule:

θ(t+1) = θ(t) + η
∂

∂θ(t)

(
logL(θ(t)|S)

)
− λθ(t) + µ∆θ(t−1)

= θ(t) + ∆θ(t),

(3.36)

where η is the learning parameter, λ is the parameter corresponding to weight
decay, (a form of regularisation, L2) and µ is the parameter corresponding
to the momentum term. Momentum can be used to stabilise the update rule
against oscillations and speed up the learning process.

For p(v) =
∑

h P (v,h) = 1
Z

∑
h e
−E(v,h) we obtain the gradient of the

log-likelihood for a single training as, (Fischer and Igel, 2014),

∂ logL(θ|v)

∂θ
=

∂

∂θ

(
log
∑

h

e−E(v,h)

)
− ∂

∂θ

(
log
∑

v,h

e−E(v,h)

)

= −
∑

h

P (h|v)
∂E(v,h)

∂θ
+
∑

v,h

P (v,h)
∂E(v,h)

∂θ

= −
〈
∂E(v,h)

∂θ

〉

d

+

〈
∂E(v,h)

∂θ

〉

m

,

(3.37)

where angle brackets stand for expectation and their indexes d and m refers
to whether those are taken with respect to the data distribution or model dis-
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tribution respectively. In our case this can be written as, (Salakhutdinov, 2009),

∂ logP (v; θ)

∂W
= Ed[vhT ]− Em[vhT ] = 〈vhT 〉d − 〈vhT 〉m,

∂ logP (v; θ)

∂a
= Ed[h]− Em[h] = 〈h〉d − 〈h〉m,

∂ logP (v; θ)

∂b
= Ed[v]− Em[v] = 〈v〉d − 〈v〉m,

(3.38)

where Ed[·] is the expectation with respect to the data distribution
Pd(h,v; θ) = P (h|v; θ)Pd(v), Pd(v) = 1

N

∑
n δ(v − vn) being the empiri-

cal distribution and Pm = 1
Z(θ)e

−E(x;θ) is the distribution of the model, in
this case the Gibbs distribution, sometimes also denoted as Pm = P∞(x; θ).
In the literature we sometimes see the index∞ instead of m, but to simplify
matters we adopt to use them index and we point out when we do otherwise.

3.3.1 Contrastive Divergence

The expectation that is difficult to compute is the one under the model dis-
tribution which involves the partition function as a normalisation constant.
This normalisation constant has an exponential number of terms and is there-
fore ineffective to compute exactly. The approximation used is to estimate
the average by a sample from P (x; θ) with a Markov chain that converges to
P (x; θ) and running the chain to equilibrium. But in the end this approach
is very time consuming and to remedy this problem (Hinton, 2002), showed
that Contrastive Divergence (CD) is a better method for computing the log-
likelihood. It is argued that CD follows the gradient of a different function.
If we call our Kullback-Leibler divergence, (Carreira-Perpiñán and Hinton),

KL(Pd||Pm) =
∑

x

Pd(x) log

(
Pd(x)

Pm(x; θ)

)
, (3.39)

CD will approximate

CDn = KL(Pd||Pm)−KL(Pn||Pm), (3.40)

where the learning process of the Markov chain starts at the data distribu-
tion Pd and is run for n full steps of alternating Gibbs sampling. We can
reformulate CD as

CD = η

(
Ed[vhT ]− EKG [vhT ]

)
= η

(
〈vhT 〉d − 〈vhT 〉KG

)
, (3.41)

where η is the learning rate and 〈·〉G is the distribution sampled from a Gibbs
chain initialised at the data, for K full steps. Contrastive Divergence is a
training algorithm used to speed up training of RBMs. This method uses
two tricks to speed up the sampling process:
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• We want P (v) ≈ Pd(v), then we can initialise the Markov chain with
a training example.

• Contrastive divergence does not wait for the chain to converge, and
in practice K = 1 is enough for most common tasks and yields good
results.

Because there are no direct connections between hidden units in an RBM,
it is simple to sample from Ed[vihi]. Given a randomly selected training
example, v, the binary state, hj , of each hidden unit, j, equals 1 with prob-
ability

P (hj = 1|v) = ϕ

(
bj +

∑

i

viwij

)
, (3.42)

where ϕ(·) is the logistic sigmoid, and vihj is an unbiased sample. In the
same manner, because there are no connections among the visible units, we
can get an unbiased sample of the state of a visible unit given a hidden vector

P (vi = 1|h) = ϕ

(
ai +

∑

j

hjwij

)
, (3.43)

and we obtain an unbiased sample of Em[vihj ]. But this time the sampling
is much more difficult to obtain. Sampling can be done by starting at any
random state of the visible units and performing alternating Gibbs sampling
for a very long time. Hinton, (Hinton, 2002), proposes a faster method by
setting the states of the visible units to a training vector, then the states of
the hidden units are all computed in parallel by using (3.42). Once we have
sampled the hidden states we can proceed to construct a "reconstruction"
by setting each vi to 1 with probability given by (3.43). The weights can
then be updated by

∆W = η

(
Ed[vhT ]− Erecon[vhT ]

)
, (3.44)

where η is the learning rate and in the second expectation we have the
index for the reconstructed states. For the biases we can simplify further by
using a version of the same learning rule which uses the states of individual
units instead of pairwise products. The learning rule is much more closely
approximating the CD. It is known that the more steps in the alternating
Gibbs sampling the better models the RBM learns before collecting statistics
for the second term in the learning rule. The following figure depicts the
alternating Gibbs sampling, in which we measure the state of the chain after
the first update and then at the end of the chain. After many steps the visible
and hidden vectors are sampled from the stationary distribution defined by
the current parameters of the model. The weights are then updated by
providing this signal to the learning rule.
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Figure 3.6: Markov chain in which alternating Gibbs sampling is done. In one
step of Gibbs sampling all the hidden units are updated simultaneously by receiving
the inputs from the visible layer, then all the visible units are all updated simul-
taneously given the hidden units. The visible units are started at the data vector,
〈vdi hdj 〉 = 〈v0i h0j 〉. After many steps the visible and hidden vectors are sampled from
the stationary distribution defined by the current parameters of the model.

Next, in Algorithm 2 we present the contrastive divergence update rule
for RBM. The notation a ∼ P (·) will mean that a random sample has been
taken from P (·). We will also use the following conditional distributions
when taking random samples in the algorithm. These are the distributions
for a Gauss-Bernoulli RBM, where the visible units are changed from bino-
mial to normal distributed to compensate for continuous data. The vector
ĥ refers to the posterior with a hat to emphasise that this is a deterministic
representation of x.

We show once again the conditional distributions for the Gauss-Bernoulli
RBM, which is the model we used to build our DBN. This model is suitable
for continuous data, but the regular Binomial-Bernoulli RBM can also be
used if the data is normalised to [0, 1]. As we noticed under training the
cost function evolved better when using the Gauss-Bernoulli RBM as build-
ing blocks. The conditional distributions used in the contrastive divergence
update rule for the RBM are given by

P (vi = x|h) =
1

σi
√

2π
exp

(
−
(
x− ai − σi

∑
j wijhj

)2

2σ2
i

)
, (3.45)

P (hj = 1|v) = ϕ

(
bj +

∑

i

vi
σi
wij

)
. (3.46)
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Next we present the pseudo code for contrastive divergence. The weights are
initialised from a uniform distribution, a is the bias of the visible layer, b is
the bias of the hidden layer.

Algorithm 2: Pseudo code for Restricted Boltzmann Machine Update (Con-
trastive Divergence)
Training input x, learning rate ε.
Initialisation:
weights wi ∼ U(−4 · √c, 4 · √c), c = 6/(nin + nout)
bias bi = 0
w← wi

b← bi

a← bi−1

Positive phase:
v0 ← x
ĥ1 ← ϕ(b + wv0)
Negative phase, conditional distributions according to (eq 3.45 and
eq 3.46):
h0 ∼ P (h|v0)
v1 ∼ P (v|h0)

Update:

wi ← wi + ε

(
ĥ0(v0)T − ĥ1(v1)T

)

bi ← bi + ε

(
ĥ0 − ĥ1

)

bi−1 ← bi + ε(v0 − v1)
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3.4 Training Deep Belief Networks

DBNs are composed of stacked Restricted Boltzmann machines. Training of
a DBN is done by training the first RBM from the input instances and then
the other RBMs in the DBN are trained sequentially. Patterns generated
by the top RBM can be propagated back to the input layer using only the
conditional probabilities as in a belief network. This arrangement is what
defines a DBN.

When bottom-up training is performed, the top level RBM learns from
the hidden layer below. When the top-down generation is performed the
top-level RBM is the initiator of generative modelling. Recalling the picture
of a DBN in Figure 2.14, data is generated as follows

1. An equilibrium sample is taken from the top-level RBM by perform-
ing Gibbs sampling for many time steps as shown in Figure 3.6 until
equilibrium is reached.

2. A single top-down pass starting at the visible units of the top level
RBM is used to stochastically pick the states of all the other hidden
layers of the network, see Figure 3.7.

. . .

. . .

. . .

v

h1

W 1

(W 1)T

h3

...

Figure 3.7: A two-hidden layer Deep Belief Network with tied weights W 2 =

(W 1)T . The joint distribution defined by this DBN is identical to the joint dis-
tribution of an RBM, P (v,h;W 1).

A Greedy learning algorithm was designed to train DBN (Hinton & Osin-
dero). Before its design it was considered rather hard to work with deep
neural networks. To make the analysis simple we consider a DBN with only
two hidden layers {h1,h2} and follow (Salakhutdinov, 2009) closely. We will
let the number of hidden units in the second hidden layer equal the number
of visible layers. The top two layers, going from the visible layer and up in
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the figure, represent an RBM and the lower layer is a directed sigmoid belief
network. The joint distribution over (v,h1,h2) is

P (v,h1,h2; θ) = P (v|h1;W 1)P (h1,h2;W 2), (3.47)

where θ = {W 1,W 2} are the parameters of the model, P (v|h1;W 1) is the
directed sigmoid belief network and P (h1,h2;W 2) is the joint distribution
over the second layer. These distributions have the following form

P (v|h1;W 1) =
∏

i

p(vi|h1;W 1),

P (vi = 1|h1;W 1) = g

(∑

j

W 1
ijh

1
j

)
,

P (h1,h2;W 2) =
1

Z(W 2)
exp

(
(h1)TW 2h2

)
.

(3.48)

The greedy algorithm proceeds as follows. In our two hidden layer
DBN we have so called tied parameters, meaning that the weights are
defined as W 2 = (W 1)T . Then the DBN’s joint distribution is given by
P (v,h1; θ) =

∑
h2 P (v,h1,h2; θ) which is identical to the RBM’s joint dis-

tribution P (v,h1;W 1). Using our previous equations andW 2 = (W 1)T , our
DBN’s joint distribution is given by, (Salakhutdinov, 2009),

P (v,h1; θ) = P (v|h1;W 1) ·
∑

h2

P (h1,h2;W 2)

=
∏

i

p(vi|h1;W 1) · 1

Z(W 2)

∏

i

(
1 + exp

(∑

j

W 2
jih

1
j

))

=
∏

i

exp

(
vi
∑

jW
1
ijh

1
j

)

1 + exp

(∑
jW

1
ijh

1
j

) · 1

Z(W 2)

∏

i

(
1 + exp

(∑

j

W 2
jih

1
j

))

=
1

Z(W 1)

∏

i

(
exp

(
vi
∑

j

W 1
ijh

1
j

))

=
1

Z(W 1)
exp

(∑

ij

W 1
ijvih

1
j

)
,

were in the second to last line we have used that W 2
ji = W 1

ij and Z(W 1) =

Z(W 2). This last joint distribution is identical to the RBM’s distribution.
For that reason the greedy learning algorithm is used with a stack of RBMs.

The steps of the algorithm are as follows. First the bottom RMB with
parameters W 1 is trained. The second layer weights are initialised with
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W 2 = (W 1)T . This is to ensure that the two hidden DBN is at least as
good as our RBM. Then improvement of the DBN is achieved by untying
and redefining W 2. For any approximating distribution Q(h1|v) the log-
likelihood of the two hidden layer DBN model has the following variational
lower bound, where the states h2 are summed out, (Salakhutdinov, 2009),

logP (v; θ) ≥
∑

h1

Q(h1|v) logP (v,h1; θ) +H(Q(h1|v))

=
∑

h1

Q(h1|v) logP (h1;W 2) + logP (h1;W 1) +H(Q(h1|v)),
(3.49)

here H(·) is the entropy functional. We let Q(h1|v) = P (h1|v;W 1), which
is defined by the bottom RBM. The learning algorithm attempts to learn
a better model for P (h1;W 2) by freezing the parameter vector W 1 and
maximising the variational lower bound with respect to W 2. The estimation
procedure with frozen W 1 amounts to maximising

∑

h1

Q(h1|v) logP (h1;W 2), (3.50)

this is maximum likelihood training of the second layer RBM with vectors
h1 drawn from Q(h1|v) as data. If the second layer of the RBM, P (h1;W 2),
is presented with N input vectors, the layer will learn a better model of
the aggregated posterior over h1. This posterior is a mixture of factorial
posteriors 1

N

∑
n P (h1|vn;W 1). We can continue in this manner training

subsequent layers, where now the next hidden layer works as input to the next
hidden layer. For the next level this means that we initialise W 3 = (W 2)T

and we continue in this manner if more layers are added. Initialisation of
the parameters before the greedy layer wise pre-training starts is as follows.

The weights are initialised from a uniform distribution with a range in
the same regime as the range of the activation function, in our case the
sigmoid activation and consequently, (Bengio, 2012),

W ∼ U(−a, a), (3.51)

where a = 4
√

6
nin+nout

, nin is the number of units in layer (i − 1) and nout
is the number of units in layer i. The bias for the visible and hidden layers
are initialised to zero.

55



We conclude this Chapter by summarising the algorithms used for train-
ing DBNs. The algorithms can be found in (Larochelle et al., 2009). We use
the symbol ĥ(x) to represent the posterior of x and to emphasise that it is
deterministic. Let hi be the output of layer i, o the output of the whole
network, K the number of output from the network, ` the total number of
layers and |hi| the size of layer i. As usual we let w denote the weight matrix
between two layers and b the bias of each layer in the network while ϕ(·)
denotes the sigmoid activation function.

Algorithm 3: Pseudo code for greedy layer-wise pre-training
Training set D = {xt}Tt=1, pre-training learning rate εp.Initialisation:
weights wi

jk ∼ U(−4 · √a, 4 · √a), a = 6/(nin + nout)
bias b = 0
Pre-training:
for i ∈ {1, . . . , `}

while Error does not converge:
Pick input example xt from training set
ĥ0(xt)← xt
for j ∈ {1, . . . , i− 1}

aj(xt) = bj + wjĥj−1(xt)
ĥj(xt) = ϕ(aj(xt))

end for
With ĥi−1(xt) as input:
Update wi, bi,bi−1 with contrastive divergence (CD).
end while

end for
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We have divided the training in a set of three algorithms. First we present
the pseudo code for pre-training which is applied to the DBN module. The
second algorithm, back-propagation is applied to the entire network DBN-
MLP. This is step is for fine-tuning the parameters of the network. The last
algorithm is a call to this algorithms.

Algorithm 4: Pseudo code for fine-tuning
D = {xt, yt}Tt=1, fine-tuning learning rate, εf .
while Error does not converge:

Pick input example (xt, yt) from training set
Forward propagation:
ĥ(xt)← xt

for i ∈ {1, . . . , `}
ai(xt) = bi + wiĥi−1(xt)
ĥi(xt) = ϕ(ai(xt))

end for
a`+1(xt) = b`+1 + w`+1ĥ`(xt)
o(xt) = ĥ`+1(xt) = softmax(a`+1(xt))

Backward gradient propagation and parameter update:
∂ log oyt (xt)

∂a`+1
j (xt)

← I(yt = j)− oj(xt) for j ∈ {1, . . . ,K}

b`+1 ← b`+1 + εf
∂ log oyt (xt)

∂a`+1(xt)

w`+1 ← +εf
∂ log oyt (xt)

∂a`+1(xt)
ĥ`(xt)

T

for i ∈ {1, . . . , `}, in decreasing order
∂ log oyt (xt)

∂ĥi
j(xt)

← (wi+1)T
∂ log oyt (xt)

∂ai+1

∂ log oyt (xt)

∂aij(xt)
← ∂ log oyt (xt)

∂hij(xt)
ĥij

(
1− ĥij(xt)

)
for j ∈ {1, . . . , |ĥi|}

bi ← bi + εf
∂ log oyt (xt)

∂ai

wi ← wi + εf
∂ log oyt (xt)

∂ai ĥi−1(xt)
T

end for
end while

The pseudo code for the whole network is a call to the pre-training phase
and then a call to the fine-tuning phase.

Algorithm 5: Pseudo code for training DBN
Pre-training:
Estimate parameters of RBMs:
{w,b} ← pre-train(xt)
Fine-tune the whole network, DBN-MLP:
{w,b} ← fine-tuning(xt,yt)
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3.4.1 Implementation

The implementation is done in Theano, a compiler for mathematical ex-
pressions in Python. This library is optimised to native machine language
and one of its strengths is that it provides symbolic differentiation. Theano
translates expressions to C++ when programming for the CPU or to CUDA
when programming for the GPU and compiles them to dynamically loaded
Python modules. According to (Bergstra at el., 2010), common learning al-
gorithms implemented with Theano are 1.6× to 7.5× faster than competitive
alternatives, e.g. implemented with C/C++, Numpy/Scipy and MATLAB
when tested on the same computer architecture.
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Chapter 4

Financial Model

We suppose that stock prices are samples from the same distribution. In
that way we can use all the stocks’ log-returns indiscriminately. We make
the following assumption:

There are correlations between most stocks in the long term and therefore
most stocks on average move in the same direction.

With this assertion we assume that on average the stock markets move
in the same direction in the long term. In the short term it may happen that
there are not any correlations at all but eventually there will be correlations.
We believe that there are correlations between most stocks pushing them in
the same direction, either up or down.

4.1 The Model

The model chosen in this master thesis is a DBN coupled to a MLP. The
DBN is at the interface with the environment and receives the input signal.
The input signal passes through each layer until it reaches the hidden layer
in the MLP. From the MLP’s hidden layer the signal reaches the output
layer which is a softmax layer with two output neurons for classification to
the two classes 0 or 1, to be explained shortly. The MLP has one hidden
layer containing as many neurons as the last layer of the DBN. The number
of layers and computing units are chosen so as to minimize the validation
error and test errors. Our system’s task is to pick stocks from the S&P 500
and we verify the results by comparing the training error to the validation
and test errors.
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4.1.1 Input Data and Financial Model

Our study is similar to the one presented in (Takeuchi et al., 2013). We
prepared our data according to their assumptions, but we use log-returns
and solve our task with a DBN instead of an auto encoder. We be-
lieve that the DBN should also yield good results as it has been used to
model time series models (Kuremoto et al., 2014) and stock decision sys-
tems (Zhu and Yin, 2014) with reported good results in those papers. The
log-returns for both the monthly returns and the daily returns are defined
as follows

ri(t) = log

(
Sit
Sit−1

)
,

where Sit is the price of stock i at time t.

The input to our model is a matrix with 33 variables or features. These
features are the t − 2 trough t − 13 monthly log-returns and the 20 daily
log-returns for each stock at month t. Stocks with closing prices below $5 at
the last day of trading for each month are discarded from the data, but this
does not mean those stocks will not contribute at all to the data.

It will happen that when preparing our feature vector for each stock per
month it will have returns from the past which might be calculated using
closing prices below $5, this will introduce some noise to the data but our
hope is to diminish the amount of noise through this procedure. An indi-
cator variable I(·) is used to mark in which month the stocks are picked.
It takes the value 1 if the month is January and 0 otherwise to account for
the turn of the year effect, (Jaggedish and Titman, 1993). The stocks are
normalized according to their Z-scores and in doing so we used the mean for
all the stocks in each month in the same list. Similar computations where
made for the standard deviation.

If we let the monthly log-returns at time-step t be rim(t) and rid(t) be the
20-daily returns at time-step t, then our model or hypothesis is given by the
following equations

Y i
t+1 = Fθ

(
rid(t), . . . , r

i
d(t− 19), rim(t− 2), . . . , rim(t− 13), I(t = J)

)
,

Ŷt+1 = E[Y i
t+1].

(4.1)

Here Fθ is the function which our DBN-MLP is modelling and θ is the pa-
rameter set of this model, Yt+1 takes the value 0 or 1 corresponding to two
different classes. Those classes are defined according to if the monthly log-
return of stock i, is below or above the median of the next month’s log-returns
for all the stocks in the list as described below.
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The labels are assigned in the following manner. First we compute the
log-returns for all stocks at month t. Then we compute the median for all
those log-returns by computing

Median
[
r(t)(All stocks)

]
= Median

[
log

(
S

(All stocks)
t

S
(All stocks)
t−1

)]
.

Next we compare the log-return at time t, log(Sit/S
i
t−1), for each stock

i with the median and assign labels according to (Takeuchi et al., 2013) i.e.
we have the following expressions:

log

(
Sit
Sit−1

)
≤ Median

[
r(t)(All stocks)

]
, assign label 0

log

(
Sit
Sit−1

)
> Median

[
r(t)(All stocks)

]
, assign label 1.

To make predictions at time t+1, those labels will not help much as they are.
Those labels, which are computed at time t, are assigned to the individual
stocks’ log-returns at time step t− 1.

By shifting the labels from time step t to time step t − 1 we can make
predictions one time step later. We end up with labels computed at time t
and assign those labels to our log-returns log(Sit−1/S

i
t−2) for each stock Si

at time t− 1. Here comes the most important part. This procedure ensures
that we compare the individual stocks’ log-returns with its log-returns in the
future. The future log-returns are compared to the median of all stocks. So
in a sense we are comparing our log-returns at time t with a future median
at time t+1 that is unknown to us but that we want our DBN-MLP to learn.

This is a regression in the class space where we fit a curve to the boundary
separating the classes {0, 1}. This boundary is represented by all the stocks’
median. Because we do not have any labels with the data gathered we use
this procedure to create those ourselves.

The input vector at time t − 1 is constructed by putting together the
20 daily log-returns for month t − 1, and monthly log-returns for months
t− 2, . . . , t− 13 as well as the indicator function to account for if the month
is January. To this input vector there will be a corresponding label com-
puted at time t but that we shift to time t − 1 as was just described. We
then interpret a 1 as a signal to buy the stock and a 0 as a signal not to buy
or sell if we own the stock.

More formally we can express our model in the following way. Let our
labels be given by y = {0, 1} and our input vector be given by the log-returns

x =

{
rid(t), . . . , r

i
d(t− 19), rim(t− 2), . . . , rim(t− 13), I(t = J)

}
,
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containing 33 elements, that is x ∈ R33. If we have k training points, our
training data can be denoted by (xk, yk), and our neural network will learn
the model Fθ

Fθ : x→ y, (4.2)

mapping the input vector space, x to the output space y = {0, 1}.

Figure 4.1: Sketch of DBN-MLP consisting of a 3-layered DBN and a MLP with 1
hidden layer. hi for i = {1, 2, 3} represents the hidden layers, o is the output layer
consisting of the softmax function. The input vector has 33 features or variables
and Y , takes one of the values in the set Y = {0, 1}.

The mapping of the input space to the output space through the network
is shown in the sketch of Figure 4.1. The two classes or labels used for the
classification task are 0 for stocks with monthly log-returns lying under the
median or being equal to the median and 1 for monthly log-returns above
the median at time t.
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Chapter 5

Experiments and Results

Here we make an account on how the experiments were conducted and
present the results that we obtained. Data from the S&P 500 was gath-
ered for the period 1 January 1985 to 31 December 2006. The training data
is further partitioned in a training set, a validation set and a test set and
consists of 134 350 examples. This gives an input matrix of dimension 134
350 × 33 and a vector of 134 350 labels.

The training data was partitioned as follows:

• 70% of the data for training

• 15% of the data for validation

• 15% of the data for testing

The validation set is used for cross-validating the model to choose hyper
parameters. Those parameters are the learning rate for pre-training and fine-
tuning, the number of hidden layers, the number of neurons, the weight decay
L2 and the L1 regularisation. These last two parameters are useful in training
because they help in the optimisation so that the weights don’t get saturated
during training. We work with the Gauss-Bernoulli RBM as building block
in the DBN as we noticed that the cost function had better convergence
when making this change. We used weight decay and L1 regularisation.

One important thing to have in mind when using Gauss-Bernoulli RBMs
is that learning rates have to be many orders smaller than in the Binomial-
Bernoulli RBMs to prevent the cost function from blowing up, (Hinton, 2010),
which we experienced on tests.

We tested Persistent Contrastive Divergence PCD1 instead of the stan-
dard method of Contrastive Divergence with one step of Gibbs block sam-
pling (CD1). Persistent contrastive divergence PCD1, keeps track of the
states of a number of persistent chains or "fantasy particles" instead of initial-
ising each alternating Gibbs Markov chain at a data vector, see (Hinton, 2010)
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for details. Hinton suggests to use PCD if the aim is to build the best density
model for the data. Our tests did not show any difference in the validation
and test errors when comparing PCD1 to CD1. The pre-training algorithm
performs better with CD1 than with CDk for k > 1 steps in the Gibbs sam-
pling procedure.

In (Larochelle et al., 2009) it is pointed out that in many situations a
DBN with 3 hidden layers can perform better than one with 4 hidden layers.
This might not apply to all circumstances and we have not made an exten-
sive study of this subject. We performed some tests with deeper networks
which yielded the same errors as with a network with 3 hidden layers. We
therefore choose to fix the number of layers in the DBN to three hidden
layers and instead try to optimise with respect to the number of neurons
in each layer. The pre-training learning parameter affects the convergence
of the cost function while the leaning parameter used in fine-tuning affects
learning. How well our model learns is measured by how low validation error
and test error we achieve.

Another observation made by (Larochelle et al., 2009) is that the best
performing network was the one with the same number of neurons in all
hidden layers. They point out that this might be a consequence of using
the same unsupervised learning parameters for each layer, which we also did
in our experiments. We tried different numbers of neurons and achieved as
good results as keeping the same number of neurons.

5.1 Experiments

When conducting the experiments we reasoned in the following way. Be-
cause it was computationally expensive to use search algorithms to perform
parameter optimisation we followed some guidelines and did not automatise
the search for parameters. The guidelines found in (Hinton, 2010) on train-
ing RBMs are helpful, and also those found in (Bengio, 2012). The time
consuming task of searching for the best parameters is due to the following
facts.

We need to optimise with respect to learning parameters for the greedy
layer-wise part and for the fine tuning part of the training algorithms. Other
parameters which need to be found are the number of layers, the number of
neurons, the weight decay parameter L2, the regularisation parameter L1,
the number of epochs in the layer-wise pre-training and in the fine-tuning
part. To this we add the amount of data used in training. Using an algo-
rithm for searching the best parameters is the best way to do training, but
it is computationally expensive. It requires computer clusters or at least
programming in the computer Graphics Processing Unit (GPU).
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To choose parameters we always test against the validation error and
apply early stopping to prevent overfitting. We choose the parameters that
give us the lowest validation error. When it concerns the number of epochs
in the greedy layer-wise part we found that 100 epochs was enough, in some
experiments it seems that even less epochs give better results with respect to
the validation error and test error. To make training manageable we choose
to keep 100 epochs. For the fine-tuning part we began with 3000 epochs and
went down to 1000 epochs. We found that 1000 epochs gave better result
with respect to the validation error and the test error.

We tested if a different number of computing units in the hidden layers
affected the results and found that some configurations gave worse results or
at least as good results as having the same amount of units in all the hidden
layers. We choose to use the same number of units in all the layers in the
DBN, see for example (Larochelle et al., 2009). We decided at the creation of
the network to have only 1 hidden layer in the MLP-module. After all these
decisions were made we had only to keep track of the following parameters:

• Learning parameter for the layer-wise pre-training.

• Learning parameter for fine-tuning with back-propagation.

• Number of computing units in all the hidden layers in the DBN (the
same for all layers).

• The weight decay parameter.

• L1 regularisation parameter.

5.2 Benchmarks

To compare how well our model learns, we make experiments with a logistic
network and a MLP and use the results from those models as benchmark.
The logistic network performs logistic regression. The MLP has one hidden
layer and one softmax output layer with 2 output neurons. We also test our
results to a naive benchmark given by Yt+1 = Yt.

The logistic net has only one learning parameter which we can adjust,
besides the number of epochs. In the MLP we can tune more parameters,
for example the number of hidden units, the number of epochs, the learning
parameter and the L1 and L2 regularisation terms in the the cost function.
These regularisation terms are added to the cost function as penalty con-
straints to help our model to learn better. L2 is also known as weight decay
which is the term we used when training the DBN.
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The network architectures are unchanged under all experiments and are
as follows:

• The DBN-MLP consists of three hidden layers in the DBN module, 1
hidden layer in the MLP-module.

• The Logistic regression consists of one neuron.

• The MLP consists of one hidden layer.

Recall that in the DBN-MLP we use the same number of computing units
in each layer. When the number of neurons is presented in our results, it
should be interpreted as the number of neurons in all layers.
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To simplify the information in the tables we introduce the following no-
tation.

• The pre-training learning rate for DBN-MLP is given by εp.

• The fine-tuning learning parameter for DBN-MLP is given by εf .

• The learning parameter for logistic regression and MLP is given by ε.

• The validation error is given by EV .

• The test error is given by ET .

5.3 Results

In Table 5.1 the results from the naive benchmark are presented. The results
consist of the validation and test error. The test error is a measure of the
predictive power of the model. In Table 5.2 we present the results from the
logistic regression.

EV (%) ET (%)
50.03 50.93

Table 5.1: Naive benchmark. The validation error is EV and the test error is ET .

EV (%) ET (%)
49.96 50.74

Table 5.2: Logistic Regression. The validation error is EV and the test error is
ET .

The results obtained from the multilayer perceptron are shown in Ta-
ble 5.3. Here there are two more parameters, L1 and L2 regularisation. We
found that L1 = L2 = 0.0001 gave the best results with respect to the val-
idation error. We found also that the learning rate with value 0.1 gave the
best results. For that reason we keep those values constant throughout the
experiments. The best result was achieved for a network with 20 neurons.
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Neurons ε EV (%) ET (%)
20 0.1 49.66 50.84

Table 5.3: Multilayer Perceptron. The learning parameter is ε, EV is the validation
error and ET is the test error.

Neurons εp εf EV (%) ET (%)
100 10−10 10−2 47.39 48.67
100 10−10 10−3 47.96 48.64
100 10−11 10−3 47.86 48.29
300 10−11 10−4 48.16 47.17
400 10−11 10−3 46.52 47.11
500 10−11 10−4 47.24 47.56
500 10−11 10−3 46.93 47.50

Table 5.4: Deep Belief Network (DBN-MLP). The pre-training learning rate is εp,
εf is the fine-tuning learning parameter, EV is the validation error and ET is the
test error.

Table 5.4 shows the results from the experiments made with the DBN-
MLP. Recall that the DBN has three hidden layers and that each layer has the
same number of computing units. This restriction imposes the same number
of hidden units to the MLP as those neurons receive its input from the DBN.
Tests showed that 0.001 and 0.01 were good values for L1 regularisation and
weight decay, L2, respectively.

From the results we can see that the DBN-MLP is a robust model. We
can also see the fact that the predictive power of our network is satisfactory
but it can be improved.
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5.3.1 Summary of Results

To make Table 5.5, with the final results, easier to read we introduce some
notation. Let DBN stand for the DBN-MLP model and let LReg stand for
the logistic regression.

The model for DBN-MLP with 400 neurons the lowest validation error.
Our results show that often the validation error is lower than the test error.
From Table 5.5 we see that DBN-MLP performs better than all the bench-

Model Neurons εp εf EV (%) ET (%)
Naive - - - 50.03 50.93
LReg - - - 49.96 50.74
MLP 20 - 0.1 49.66 50.84
DBN 400 10−11 10−3 46.52 47.11

Table 5.5: Result from DBN-MLP and benchmarks.

marks. Although the results are satisfactory, there is room for improvement.
Things in our list which need improvement are:

• Automatically searching for the best parameters.

• The assumptions made in our mathematical model seem to be too
general to capture the true underlying model.

• Alternatively we could use our model to study stocks by sector.

• Try to make predictions in a short term.

Deep learning is a good candidate to solve problems in finance. We can
see that the test error is a good measure of how well the model learns the
underlying distribution.
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Chapter 6

Discussion

The main issue of this thesis has been to implement a DBN coupled to
a MLP. As benchmark we used results obtained from a logistic regression
network and a multilayer perceptron. Similar tests were performed on all
networks. We used the DBN-MLP to pick stocks and predict market move-
ments. The main assumption in solving this problem has been that stocks
are correlated with each other in the long term. In that way we can use
stock prices to compute log-returns and consider them as samples from the
same distribution.

The DBN is built by a stack of RBMs. These RBMs are stochastic
networks whose probabilities were presented in the Chapter on the theory of
DBN. The MLP is a well known neural network and the theory surrounding
it was presented in the Chapter on neural networks. DBN-MLP is a deep
neural network, which is trained with the methods of deep learning. The
name deep neural network refers to networks with more than two hidden
layers. Deep learning is summarised by a set of training algorithms which
is a two step procedure. The first step consists of applying greedy layer-
wise training on the DBN and the second step is to apply back-propagation
training on the whole network to fine-tune the parameters of the DBN-MLP.

We tested different approaches like running our algorithm with many
steps of Gibbs sampling compared to using only one step. The main ap-
proach in deep learning is to use only one step as this yields good results,
which we also experienced. We tested both Contrastive Divergence (CD) and
Persistent Contrastive Divergence (PCD), explained in earlier Chapters. We
chose to use CD as this method was computationally more efficient.
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This work consisted of a large amount of tests to investigate the impact
of all the parameters in the model. We list the parameters involved:

• Pre-training learning rate.

• Fine-tuning learning rate.

• Number of epochs or iterations for Pre-training

• Number of epochs for fine-tuning.

• Number of hidden layers in DBN.

• Number of neurons in each layer.

• Number of steps of CD.

• L1 regularisation.

• Weight decay, also known as L2 regularisation.

We also tested different initialisation values for the weights as there are dif-
ferent guidelines. The visible layer in the RBM was tested with binomially
distributed units as well as with normally distributed. The results presented
in this work are produced with RBMs with normally distributed visible units
(Gauss-Bernoulli RBMs). To choose a certain parameter different configu-
rations were tested to assure that the impact of the parameter was the same
on all configurations used for the results presented in this work.

Data from S&P 500 was gathered for the period 1 January 1985 to 31
December 2006. The data was partitioned as: 70% of the data was used for
training, 15% was used for validation and 15% was used for testing. It is
considered a good training procedure to keep track of both the validation
error and the test error. These quantities are considered to be measures of
the predictive power of DBN-MLP when faced to new unseen data coming
from the same distribution as the training data.
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The results obtained from the S&P 500 were satisfactory. The validation
error was 46.52% and the test error was 47.11%. The test error is considered
as a measure for the predictive power of our model to unseen data.

Our work has given satisfactory results and it has raised more interesting
questions and given some hints on how we can continue the research of deep
learning in finance. Is it possible to get better results if we study stocks
belonging to the same market sectors? We believe that better results can be
obtained if we study markets by sector, as there can be stronger correlations
between stocks in the same sector than in our more general assumption.

There is room for improvement, for instance we could build a model
which uses more recent data and less monthly log-returns. We could also
use intraday data and other variables such as highest price or lowest price
for each trading day. The financial assumptions made in this work can be
changed and the mathematical model can be improved. We could use mar-
ket indicators that correlate better with stock markets, for example we could
use currencies or other asset classes. Even the use of certain qualitative data
could improve the performance e.g. figures from financial statements etc.

The optimisation procedure for finding the best parameters of the model
can be automatised by the use of optimisation algorithms. This path was
not used here due to the computation time needed. Often such tasks need
computer clusters or at least that we program the algorithms in the com-
puter’s Graphics Processing Unit (GPU). The parameters were instead found
by choosing from a certain set of parameters that seem reasonable and that
often appear in deep learning artificial intelligence tasks. We followed rec-
ommendations made in the literature, see for example the guidelines given
by (Hinton, 2010) or (Larochelle et al., 2009).

Another approach would be to test other types of neural networks cou-
pled to our DBN. We could also solve a regression problem instead of a
classification problem. The DBN-MLP seems to be more stable and reli-
able than the simpler networks we used as benchmarks and therefore a good
candidate to continue research of the stock markets.
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Appendix A

Appendix

A.1 Statistical Physics

The distribution of a many-particle system in state i, with probability pi has
the following properties

pi ≥ 0, ∀i
∑

i

pi = 1. (A.1)

If the system is in state i its energy is Ei and if the system is in thermal
equilibrium the probability of being in state i is

pi =
1

Z
exp

(
− Ei
kBT

)
, (A.2)

where T is the absolute temperature, kB = 1.38 × 10−23 joules/kelvin is
Boltzmann’s constant and Z is a constant independent of the states, defined
as

Z =
∑

i

exp

(
− Ei
kBT

)
. (A.3)

pi is known as the canonical distribution, Gibbs distribution or Boltzmann
distribution. From the Boltzmann distribution we can note the following

1. States of low energy have a higher probability of occurrence than states
of high energy.

2. As the temperature T is reduced, the probability is concentrated on a
smaller subset of low-energy.

In machine learning we make use of this distribution in the construction of
the Boltzmann machine but we let kB = 1. The free energy of a physical
system is defined as

F = −T logZ, (A.4)
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and the average energy of the system is

〈E〉 =
∑

i

piEi, (A.5)

where 〈·〉 is the mean taken on the ensemble of particles. It can be shown
that the mean energy can also be expressed as

〈E〉 = F − T
∑

i

pi log pi = F + TH, (A.6)

where the entropy of the system is defined by H = −∑i pi log pi.

A.1.1 Logistic Belief Networks

The logistic belief network is a model with binary stochastic units. The
probability of turning on unit i is given by the logistic function of the states
of its immediate ancestors j and weights wij on the directed connections
from the ancestors

p(si = 1) =
1

1 + exp (−bi −
∑

j sjwij)
. (A.7)

In the above equation bi is the bias of unit i.

A.1.2 Gibbs Sampling

Gibbs sampling of the joint distribution ofN random variables S = (S1, S2, . . . , SN )
is achieved by a sequence of sampling steps of the form

Si ∼ p(Si|S−i), (A.8)

where S−i is the set of random variables excluding Si. In our setting of the
restricted Boltzmann machine our S will contain visible and hidden units.
In the RBM the visible and hidden units are conditional independent and
therefor we can perform block Gibbs sampling and is of the form

h(n+1) ∼ ϕ(W T v(n) + c),

v(n+1) ∼ ϕ(Wh(n+1) + b),
(A.9)

where h(n) is the set of all hidden units at the nth step of the Markov chain.
This sample procedure is very costly and its convergence requires t→∞ to
be certain that (v(t), h(t)) ∼ p(v, h).

Formally Gibbs sampling is a method for simulating stochastic variables
and as mentioned before it is used in the training of the RBM. The Gibbs
sampler generates a Markov chain with the Gibbs distribution as its station-
ary distribution. The transition probabilities are non-stationary. We have
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then a K-dimensional random vector X with components X1, X2, . . . XK .
Suppose that we know the conditional distribution of Xk given values of
all the other components of X for k = 1, 2, . . . ,K. Now we want to ob-
tain a numerical estimate of the marginal density of the random variable
Xk for each k. The Gibbs sampler proceeds by generating a value for the
conditional distribution for each component of the random vector X, given
the values of all the other components of X. Starting from a configura-
tion {x1(0), x2(0), . . . , xK(0)}, we make the following drawing on the first
iteration of Gibbs sampling

draw x1(1) ∼ f1(X1|x2(0), x3(0), . . . , xk(0)),

draw x2(1) ∼ f1(X2|x1(1), x3(0), . . . , xk(0)),

...
draw xk(1) ∼ f1(Xk|x1(1), . . . , xk−1(1), xk+1(0), . . . , xk+1(0), . . . , xK(0)),

...
draw xK(1) ∼ f1(XK |x1(1), x2(1), . . . , xK−1(1)),

where f(Xk|X−k) is the conditional distribution of Xk given the other com-
ponents X−k. This procedure can be repeated a number of iterations in the
sampling scheme. In the sampling we will visit every component in the ran-
dom vector X which will give us a total of K new variates on each iteration.
We notice that a new value for Xk−1 is immediately used when a new value
of Xk is drawn for k = 2, 3, . . . ,K.

After n iterations of the Gibbs sampler we generate K variates

X1(n), X2(n), . . . , XK(n).

The Gibbs sampler has f as its stationary distribution. Under mild condi-
tions the ergodic theorem states that for any function g of random variables
X1, X2, . . . , XK whose expectation exist the following holds

lim
n→∞

1

n

n∑

i=1

g(X1(i), X2(i), . . . , XK(i))→ E[g(X1, X2, . . . , XK)], (A.10)

with probability 1.

A.1.3 Back-Propagation: Regression

In Figure A.1 we can see how well MATLAB’s implementation of the back-
propagation is in generalising when presented to new data. In the next
figure, Figure A.2, we can see that the model gets worse at generalisation
when presented to new data. That is because the model overfits the data
with the number of neurons, in this case 170 neurons in the hidden layer. In
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Figure A.1: MATLAB’s implementation of back-propagation. Network with one
hidden layer containing 8 neurons.
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Figure A.2: MATLAB’s implementation of back-propagation for a network with
170 neurons.
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Figure A.3: Network with 170 neurons in the hidden layer. Implemented in that
batch-mode of learning.

the last figure, Figure A.3, we can see that the generalisation power of the
network has deteriorated and it is not so good at new data. This model is
implemented in the batch-mode of learning.

A.2 Miscellaneous

Definition of Neural network according to, (Haykin, 2009):

Definition A.1 A neural network is a massively parallel distributed pro-
cessor made up of simple processing units that has the attribute of storing
experiential knowledge and making it available for use. It resembles the brain
in two respects:

1. Knowledge is acquired by the network from its environment through a
learning process.

2. Interneuron connection strengths, known as syntactic weights, are used
to store the acquired knowledge.

In the process of learning, a neural network use what is called a learning
algorithm. The purpose of the learning algorithm is to modify the synaptic
weights of the network to attain a desired design objective. Knowledge can
be defined as in the following definition, (Haykin, 2009):

Definition A.2 Knowledge refers to stored information or models used by
a person or a machine to interpret, predict, and appropriately respond to the
outside world.
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The computing power of neural networks derives from its parallel distributed
structure and its ability to learn or generalize. Generalization is defined
as the production of reasonable outputs for inputs not encountered before
during training. These two properties of neural networks makes it possible to
find good approximate solutions to complex or large scale problems. Neural
networks offer the following properties:

1. Nonlinearity. A neural network made up of nonlinear neurons is itself
nonlinear.

2. Input-Output Mapping. As an example we can mention super-
vised learning or learning with a teacher. This refers to the situation
where we modify the synaptic weighs of the network by applying la-
beled training examples or task examples. An example consists of an
input signal which we send through the system and compare it to a
desired response. We proceed to send input signals picked at random
and modify the weights to minimize the difference between the desired
response and the actual response of the network produced by the in-
put signal. The minimization is done in accordance with a statistical
criterion. The training of the network is repeated for many examples
until the network reaches a steady state. If we repeat the training by
applying the input signals in a different order then the network eventu-
ally will learn. For the learning process the neural network constructs
an input-output mapping for the presented problem.

3. Adaptivity. Neural networks have a built-in capability to adapt their
synaptic weights to changes in the surrounding environment. This
adaptability make neural networks capable of performing pattern clas-
sification, signal processing, and control tasks. There is a trade off
where the networks can be made robust by making them more adapt-
able to non stationary data. But making the system too adaptable may
worsen the response if the time constants are too small. In that case
the system responds to spurious disturbances causing a degradation in
the system performance.

4. Evidential Response. In pattern classification, a neural network is
designed to select a particular pattern with a degree of confidence in
the decision made.

5. Contextual Information. Knowledge is represented by the very
structure and activation state of a neural network. Every neuron in
the network is potentially affected by the other neurons in the net-
work. For this reason contextual information is processed effectively
by neural networks.
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6. Fault Tolerance. A neural network is fault tolerant which means
that the network is capable of robust computation even though there
is some damage in the links connecting the neurons in the network.

7. Uniformity of Analysis and Design. In the area of neural networks
we can use theories and algorithms from different technical, scientific
and engineering applications.

One major task of neural networks is to learn a model of the world. Knowl-
edge of the world can be categorised as

1. Prior information, which simply means known facts of the state of the
world.

2. Observation, in this case we gather measurements from the environ-
ment.
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