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Abstract

The aim of this thesis is to estimate the term structure of default probabilities for heterogeneous

credit portfolios. The term structure is de�ned as the cumulative distribution function (CDF) of

the time until default. Since the CDF is the complement of the survival function, survival anal-

ysis is applied to estimate the term structures. To manage long-term survivors and plateaued

survival functions, the data is assumed to follow a parametric as well as a semi-parametric mix-

ture cure model. Due to the general intractability of the maximum likelihood of mixture models,

the parameters are estimated by the EM algorithm. A simulation study is conducted to assess

the accuracy of the EM algorithm applied to the parametric mixture cure model with data char-

acterized by a low default incidence. The simulation study recognizes di�culties in estimating

the parameters when the data is not gathered over a su�ciently long observational window.

The estimated term structures are compared to empirical term structures, determined by the

Kaplan-Meier estimator. The results indicated a good �t of the model for longer horizons when

applied to each credit type separately, despite di�culties capturing the dynamics of the term

structure for the �rst one to two years. Both models performed poorly with few defaults. The

parametric model did however not seem sensitive to low default rates. In conclusion, the class of

mixture cure models are indeed viable for estimating the term structure of default probabilities

for heterogeneous credit portfolios.

Keywords: mixture cure model, term structure, default probabilities, heterogeneity, credit port-

folios, EM algorithm
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Sammanfattning

Syftet med den här uppsatsen är att estimera terminstrukturen för konkurssannolikheter i hete-

rogena kreditportföljer. Terminstrukturen de�nieras som den kumulativa fördelningsfunktionen

för tiden till konkurs. Eftersom den kumulativa fördelningsfunktionen är komplementet till över-

levnadsfunktionen kan överlevnadsanalys appliceras för att estimera terminstrukturen. För att

hantera långtidsöverlevare samt överlevnadsfunktioner som planar ut vid nivåer över noll, an-

tar vi att observationerna kommer från en parametrisk såväl som en semiparametrisk mixture

cure model. På grund av numeriska svårigheter att hantera maximum likelihood-funktionen för

mixture modeller, så skattas parametrarna med hjälp av EM algoritmen. En simulationsstudie

genomfördes för att undersöka precisionen av EM algoritmen applicerad på parametriska speci-

�kationen av modellen, med data bestående av få antal konkurser. Simulationsstudien påvisade

svårigheter att estimera parametrarna när urvalet inte tagits från en tillräckligt lång tidsperiod.

En jämförelse görs med de empiriska terminstrukturerna, framtagna med Kaplan-Meier's skatt-

ning av överlevnadsfunktioner. Resultaten påvisar en bra anpassning när modellen appliceras

på varje kredittyp separat, trots svårigheter att fånga dynamiken de av terminstrukturen under

de första ett till två åren. Båda modellerna var otillförlitliga med få antal konkurser. Däremot

var den parametriska modellen inte märkbart känslig för låga konkursfrekvenser. Sammanfatt-

ningsvis så kan klassen mixture cure modeller anses lämplig för att estimera terminstrukturen

för konkurssannolikheter i heterogena kreditportföljer.
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Chapter 1

Introduction

1 Background

The increased regulatory pressure in the aftermath of recent �nancial crises has signi�cantly

impacted the development of credit risk models within the industry. Rather than increasing

sophistication and expansion of scope, the development has primarily pursued ful�llment of reg-

ulatory standards. It has simultaneously deemed necessary for regulatory measures to recognize

expected credit losses in a more timely manner (IASB, 2014). This has precipitated the works

on the forthcoming reporting standards IFRS9, e�ective in January 2018. The new regulation

is replacing its predecessor IAS39. The forward-looking impairment model of IFRS9 introduces

an expected loss model for the accounting of impaired contracts, contrary to the incurred loss

models of IAS39. The implication is that expected loss models for �nancial instruments are

required to account for the entire lifespan of each instrument. This is a signi�cant discrepancy

to the IAS39 framework in which the aspect of time is limited to a one year horizon. To model

expected losses for the entire lifespan of a �nancial instrument, a model for the term structure of

the default probability is required. The term structure can either be de�ned as the instantaneous

or the cumulative probability of default at each time t. In this thesis, the latter de�nition is

used.

The probability of default (PD) is for many applications a level associated with a credit score.

In pursuance of adequate conformity with existing regulatory framework, current industry stan-

dards of credit scoring have focused on logistic regression models (Mues, Thomas, & Tong, 2012).

This facilitates a natural representation of homogeneous sub-populations of the portfolio, which

is essential for any type of credit scoring. The di�erent types of data commonly encountered

in credit portfolios are however not naturally dealt with in the logistic regression. By consider-

ing the data as partial observations of the longevity of each contract, rather than defaulters or

non-defaulters, the dimension of time is introduced to the model. This is necessary to e�ciently

estimate the term structure. In fact, for the logistic model there is no obvious representation

of the term structure of default probabilities. It merely produces the cumulative default prob-

ability over a speci�c time horizon. A term structure can naively be obtained by extending a

constant PD over the entire horizon, e.g. the one year PD. This is proved inadequate by �gure

1.1, in which the cumulative default probability is determined by extending the one year PD. It

is apparent that the probability of default is indeed not constant over time. As a consequence,

pending the introduction of IFRS9, the need for more exhaustive models is inevitable.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of the empirical term structure of default probabilities in comparison to
extending the 1 year probability of default over the entire horizon. The term structures in the
left and right �gures are estimated from corporate loans with credit rating 5 and 10, respectively.

A majority of the literature on PD term structures is focused on estimating the term structure

from market data. Frequently the default probabilities are implied from credit default swap or

bond data. Since most credit portfolios consist of non-marketable instruments, there is no mar-

ket data available for inference of the investors' subjective probability of default. Nonetheless,

default probabilities implied from market data would be considered risk-neutral. Here the ob-

jective is to �nd the physical default probabilities. A pertinent approach is to construct credit

migration matrices by utilizing the theory of Markov processes. The migration matrices are

subsequently used to obtain the term structures of default probabilities. Here we will instead

only consider default events. Then the data typically consist of historical default incidences in

addition to characteristics of each credit. A default incidence is de�ned by the dichotomy of

observing a default or not observing a default throughout its lifespan. Since the default inci-

dence is observed in time, both the longevity of the loan as well as the timing of the contingent

default are e�ectively measured, given the date the contract is established. The longevity, to-

gether with the variable indicating whether the event has occurred, constitutes the natural form

of survival data. Therefore it is convenient to use survival analysis. The primary objective of

survival analysis, which is an important branch within the �eld of biostatistics, is to model the

survival function. The survival function, generally denoted S(t), is a measure of the probabil-

ity of surviving beyond time t. The term structure of the default probability as de�ned here

is directly inferred from the survival function by its complement, the cumulative distribution

function.

The framework of survival analysis is further justi�ed by the fact that it has been successfully

applied to credit scoring (Basanik, Crook, & Thomas, 1999; Bellotti & Crook, 2009; Malik &

Thomas, 2009). Similarly as for the logistic regression, survival analysis allows each credit to

be scored with respect to some characteristics deemed relevant for di�erentiating between the

sub-populations within the portfolio. Survival analysis in its elementary form may however

encounter some problems. Data with high censor rate typically result in survival functions that

quickly plateaus at levels larger than zero. This occurs naturally in sub-portfolios of higher credit

worthiness, with lower levels of default incidence. Farewell (1982) coined this term long-term

2



CHAPTER 1. INTRODUCTION

survivorship. This may be considered a contradiction of one of the fundamental assumptions of

survival analysis, inevitable mortality, and is likely to result in biased estimates (Segovia, 2014).

For data where the survival function plateaus at levels larger than zero, it is appropriate to use

mixture cure models (MCM) (Sy & Taylor, 2000). Long-term survivors have been observed in

credit risk modeling as well (Thomas, Tong, & Mues, 2012). The MCM postulates the existence

of two types of populations, one that is susceptible to the event under study and one that is non-

susceptible. As depicted by �gure 1.2, the survival function of the MCM converges to the level

of non-susceptible individuals. It is on the other hand unrealistic to consider some proportion

of the loans to be non-susceptible to default throughout in�nity. Instead, we may think of them

as being at-risk or not at-risk over a su�ciently long time horizon.

(a) Empirical survival function of a MCM (b) Survival function of a MCM

Figure 1.2: The �gures display the empirical (non-parametric) as well as the true survival func-
tion of a population with long-term survivors, i.e. a mixture cure model. As illustrated in (b),
when time increases the susceptible proportion will succumb, leaving the non-susceptible indi-
viduals una�ected. For su�ciently large t, the probability of surviving is solely determined by
the probability of being non-susceptible. In this example the non-susceptible proportion is 0.2,
displayed by the dotted line.

The model originates from biostatistics where it was initially used to model the time until re-

lapse of a disease, where one portion of the population was considered cured (non-susceptible

to relapse) (Boag, 1949). The probability of being susceptible to default (incidence) is gen-

erally modeled by a logistic regression model, similar to current industry standards of credit

scoring. The timing of the default (latency) of the susceptible sub-populations is modeled by

means of ordinary survival analysis. Consequently, the MCM may be considered an integration

of the logistic regression and standard survival analysis. Instead of modeling the default prob-

ability over a speci�c horizon as in ordinary credit scoring, the MCM models the incidence of

defaults without considering the aspect of time. The timing of the default is determined by the

latency.

3



CHAPTER 1. INTRODUCTION

2 Purpose

The purpose of this thesis is to investigate the suitability of the mixture cure model for de-

termining the term structure of default probabilities for heterogeneous credit portfolios. Given

the available data of observed lifetimes, we wish to model the term structure of the default

probability of each member of the portfolio as well as future applicants. Interestingly, studies on

survival analysis applied to credit scoring are almost exclusively focused on the retail segment of

credit portfolios, and particularly retail loans. This study will instead target corporate credit,

including loans as well as other forms of debt. This will shed light on whether survival analysis

is an appropriate theoretical framework for other types of credit than loans.

Since the type of credit and the rating will be considered the sole determinants for the overall

risk classi�cation, these will also be the only covariates considered through out the thesis. Thus,

in contrast to credit scoring, the prerequisites of the proposed model is that each credit is already

scored.

3 Delimitations

Naturally, the study is limited to the observational window over which the lifetimes are recorded.

The time period over which the data is recorded will in�uence the shape as well as the overall

level of the term structure. Also, the longest conceivable observed lifetime is limited by the

length of the observational window. The data used for this study consist of observed lifetimes

of corporate credit over the time period June 2007 to March 2015, covering a time interval of

close to eight years. Therefore, the term structure can at most be e�ectively estimated over an

eight year horizon.

Moreover, generally the characteristics of a loan will change over time. Here, the credit rating

and the product type are considered the sole determinants of the shape of the term structure. In

practice, the credit rating is likely to change as the worthiness deteriorates or is strengthened.

Since the model do not utilize time-dependent variables, rating migrations are not be considered

directly. Instead the rating is only measured at inception of each contract. Nonetheless, there

is still an underlying migration process that in�uence the default probability of the credit,

although unobservable in this model. Consequently, for a given term structure of some credit

rating and product type, potential rating migrations will only be accounted for indirectly. Since

covariates are assume �xed, the impact of the macroeconomic climate on default events are not

considered.

Moreover, some counterparties have multiple contracts that will potentially default closely in

time. This type of dependence has not been considered. Since many of the contracts will be

of di�erent credit type, the dependence will primarily impact the inference of the models where

all data is considered simultaneously. Whereas if the data of each credit type is considered

separately, the potential e�ects are negated.

4



Chapter 2

Theoretical Framework

1 Survival analysis

Survival analysis is a statistical branch within biology. The �eld is analogous with reliability

analysis in engineering and event history analysis in sociology, although there are some discrep-

ancies in the terminology. All these �elds are primarily focused on modeling the time until a

speci�c events. In survival analysis, the event is often death or infection of a disease, whereas

in reliability analysis the event is commonly the failure of a machine. The most central concept

within survival theory is the survival function.

De�nition 1.1. Let T be a non-negative continuous random variable associated with the cumu-

lative density function F (t) on [0,∞), then the survival function is determined by

S(t) = P (T > t) = 1− F (t) (2.1)

Remark 1. Although the survival function is generally denoted S(t), we will in subsequent sec-

tions sometimes denote the survival function with a bar on top of the corresponding distribution

function, e.g. F̄ (t) is the survival function together with the distribution function F (t) and the

probability density function f(t).

By the de�nition of the survival function, it is clear that S(t) represents the probability of

surviving beyond t. Alternatively, it is the probability of experiencing an event subsequent

to time t. Moreover, due to the nature of how events occur the survival function is generally

assumed to be restricted in the following manner

i) S(0) = 1

ii) S(t)→ 0 as t→∞.

The �rst restriction rejects the possibility of immediate death, whereas the second restriction

postulates the idea of inevitable mortality. Although this may seem reasonable when the survival

function actually represents the lifetime of an organism, for other event time models it is not

necessarily so. As will be seen in subsequent sections, deviating from these conditions will prove

useful. In fact, imposing these restrictions may in some circumstances result in a model which

directly contradicts reality.

5



CHAPTER 2. THEORETICAL FRAMEWORK

Another important concept in survival analysis is the hazard rate. It is de�ned as the instanta-

neous probability of experiencing an event at time t.

De�nition 1.2. The hazard function λ(t) of the continuous random variable T is de�ned by

λ(t) = lim
h→0

P (t ≤ T < t+ h | T ≥ t)
h

(2.2)

The shape of the hazard function is useful for determining an appropriate failure. The di�erent

general traits of the hazard function includes constant, increase, decreasing, bathtub shaped

or hump shaped distribution of T (Klein & Moeschberger, 1997). The shapes are commonly

associated with di�erent types of distributions. Further let f(t) and S(t) be the density and

survival functions of T , respectively. By Bayes' rule it follows that the hazard function in (2.2)

can be written as

λ(t) =
f(t)

S(t)
= −dS(t)

dt

1

S(t)
(2.3)

where the last step follows directly from di�erentiation of the survival function. Integrating both

sides in (2.3) yields

S(t) = e−
∫ t
0 λ(s)ds = e−H(t). (2.4)

HereH(t) is used to denote the cumulative hazard function. which is simply found by integrating

the hazard function λ(t).

1.1 Survival distributions

In survival analysis we are not necessarily limited to any parametric families of distributions.

It is on the other hand convenient to use distributions with sole support on R+. The most

frequently encountered distributions; the Exponential, Weibull, Log-normal, Log-logistic and

the Gamma distribution, satisfy the assumption of non-negativity.

The probability distribution function of an exponentially distributed random variable X is given

by

F (x) =

{
1− e−x/θ if x ≥ 0

0 if x < 0.
(2.5)

The variable θ is referred to as the scale parameter. Occasionally the distribution is instead

de�ned in terms of the rate parameter, given by the inverse of the scale parameter, λ = 1/θ.

The exponential distribution has the convenient property of being memory-less. This implies

that, for any non-negative numbers t and s, the following property is ful�lled

P (X > t+ s|X > t) = P (X > s). (2.6)

This is also characterized by a constant hazard rate, i.e. the probability of experiencing an event

at time t conditional on surviving until then is independent of t. This is not by any means a valid

assumption in all situations. Sometimes it may prove necessary to use any of the generalizations

6



CHAPTER 2. THEORETICAL FRAMEWORK

of the Exponential distribution; the Weibull distribution or the Gamma distribution.

Contrary to the exponential distribution, the Weibull distribution is a two-parameter family of

distributions. In addition to the scale parameter, the Weibull distribution also includes a shape

parameter k. The distribution function is de�ned as follows

F (x) =

{
1− e−(x/θ)k if x ≥ 0

0 if x < 0.
(2.7)

It is easily seen that for k = 1, the distribution function equals that of the Exponential distri-

bution.

The log-logistic function, also de�ned in terms of the scale and shape parameter, has the following

distribution function

F (x) =

 1
1+(x/α)−β

if x ≥ 0

0 if x < 0,
(2.8)

where α and β are the scale and shape parameters, respectively.

Finally, the log-normal distribution is de�ned in terms of the exponential of a normally dis-

tributed r.v. with mean µ and standard deviation σ. The distribution function of the log-normal

distribution is given by

F (x) =

Φ
(
ln(x)−µ

σ

)
if x > 0

0 if x ≤ 0,
(2.9)

where Φ is the CDF of the normal distribution.

1.2 Censored and truncated data

Time to event data naturally includes censored and truncated observations, as a result from the

method of which data is generally gathered. Censoring occurs when the timing of the event

of interest is only partially observed, contrary to uncensored observations for which the exact

timing of an event is recorded. The most general type of censoring is interval censoring. As

the name suggests, interval censoring occurs when the timing of an event is known to lie within

a speci�c time span. This typically occurs in medical follow-up studies where the state of the

subject only can be recorded at a �nite number of points in time. If the left or right end points of

the censoring interval are in�nite, the observation is instead assumed to be right or left censored,

respectively. The terms left and right refers to the timing of an event relative to the censoring

time, for instance a right censored observations is only known to occur after (to the right on a

horizontal time scale) the censoring time.

Example 1.1. Consider a study in which one wish to model the time until an event. The study

involves consecutive screenings of each subject at di�erent points in times. Assuming continuity,

the event can only occur in between two screenings. Let the event of a subject occur between two

screenings at time ti and ti+1, then the exact timing of the event is only known to lie within the

interval (ti, ti+1). This is referred to as interval censoring. If instead there has been no event

7
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recorded at the �nal screening tn. Then the event is only known to occur after tn, i.e. in the

interval (tn,∞). This is referred to as right censoring. Finally, if the event has occurred prior

to the �rst screening t1, then the observation is regarded as left censored.

Because of how survival studies are often constructed, right censoring is the most frequently

encountered type of censoring. Therefore, one further distinguishes between di�erent types of

right censoring schemes. Random (Independent) censoring occurs if the censoring time follows

a continuous random variable, independent of the time the to event. Let T and C denote the

random life time and censoring time, respectively. Denote the survival functions of T and C by

F̄ (t) and H̄(t), and the corresponding density functions f(t) and h(t). Further let time t be the

observed life time and δ be the indicator if an event is observed or if the observation is right

censored. The probability of observation (t, δ) is now determined by

P (t, δ) = (f(t)H̄(t))δ(h(t)F̄ (t))1−δ. (2.10)

Type I censoring arises if the censoring mechanism is �xed in time, i.e. only events that occurs

before this point in time are recorded. This is typically encountered in studies conducted over a

speci�ed period of time, where the end date of the study period acts as the censoring mechanism.

If the subjects enter at di�erent times throughout the study, each observation will e�ectively

be associated with an individual censoring time. This is instead labeled generalized Type I

censoring (Klein & Moeschberger, 1997). Finally, Type II censoring occurs when only the �rst

r events are observed, i.e. the r smallest event times.

Truncation is somewhat similar and sometimes confused with censoring. A truncated sample is

limited to an observational window over which observations can be recorded. From a statistical

perspective, the probability of the observed outcome t of the random time T is conditional on

T lying within the interval [l, r], where l and r are the left and right truncation thresholds,

respectively. Similarly as for interval censoring, either bound being in�nite will result in left or

right truncation. Again, left truncation implies that all observations below (to the left) of the

threshold are unobservable or truncated. Contrary to censored data, truncated data results in

biased samples. Nonetheless, both types data must be dealt with appropriately in order to avoid

biased estimations of distribution parameters in statistical inference.

Example 1.2. Consider now that the study of the previous examples wants to model the longevity

of the subjects. Assume that for practical reasons the subjects are only included in the study after

a certain age l. Then, all deaths prior to l are systematically excluded from the data set. This

is regarded as a left truncated sample. In statistical terms, the probability of observing a lifetime

t of the random variable T of the longevity for any subject of the study is conditional on having

survived for l years

P (T = t | T ≥ l). (2.11)

Although right truncation is not naturally encountered in survival analysis, it does appear

in other settings. When a sample is both left and right truncated with thresholds l and r,

respectively, then the likelihood of the observation is given by

P (T = t | l ≤ T ≤ r). (2.12)
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1.3 Proportional hazards

The (Cox) proportional hazards model is a class of survival models proposed by Cox (1972).

The model postulates a simpli�ed association between the hazard function and some vector of

covariates z = (z1, . . . , zk)
T . More speci�cally, the model assumes the following representation

of the hazard function

λ(t) = λ0(t) exp(βT z) (2.13)

for some non-negative joint baseline hazard function λ0(t) and a vector of coe�cients β. The

covariates z are important as they allow for the representation of heterogeneity within the pop-

ulation. The term proportional refers to the proportionality of the hazard rate between two

subjects. Since the baseline hazard is equal for both subjects, the hazard ratio between the

subjects will only depend on their respective covariates. This is further illustrated in example

1.3.

Example 1.3. Assuming the hazard function follows the proportional hazards assumption, with

the baseline hazard function λ0(t) and the single �xed covariate z with corresponding coe�cient

β, then the hazard ratio between two subjects characterized by covariates z1 and z2 is given by

λ1(t)

λ2(t)
=
λ0(t) exp(z1β)

λ0(t) exp(z2β)
= exp((z1 − z2)β) (2.14)

After inserting the hazard function into (2.4), we �nd that the survival function of the propor-

tional hazards model is represented by

S(t | z) = S0(t)
exp(βT z) (2.15)

where S0(t) is the baseline survival function. The baseline survival function is the survival

function associated with the baseline hazard function, e.g. if λ0(t) is the Weibull hazard function

then S0(t) is the Weibull survival function. For a non-parametric baseline survival function, the

model is generally referred to as semi-parametric.

2 Maximum-likelihood estimation

Maximum-likelihood estimation (MLE) is a method for estimating the parameters of a statistical

model given a set of data. The general idea of the MLE is to �nd the set of model parameters

that maximizes the likelihood of the observed data. Typically the data is assumed to be realized

from a parametric distribution. In reality, the parametric family is of course never observed,

but is chosen as see �t. Sometimes it is convenient to utilize non-parametric ML estimators, as

they do no require any assumptions of the underlying distribution.

De�nition 2.1. Assuming a statistical model parametrized by a �xed and unknown parameter

vector θ, then the likelihood function L(θ; y) is the probability of the observed data y as a function

of the parameters θ.

For continuous random variables, the probability of the observed data y is given by the probabil-

9
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ity density function. Generally, this is the multivariate probability density function of y,

L(θ; y) = fY1,...,Yn(y1, . . . , yn; θ). (2.16)

In most applications, the observed data is assumed to be a realization of i.i.d. random variables,

for which the likelihood function is determined by the product of the likelihood of each observa-

tion. For discrete random variables, the likelihood function is instead given by the probability

function of the observed data. Once again, if the observations are assumed independent, the

likelihood is simply given by the product of the probability of each observation.

Example 2.1. Let the data y = y1, . . . , yn be the observed random sample of n independent

and identically distributed continuous random variables associated with the probability density

function f0(·|θ0). It is hypothesized that f0 belongs to a family of distributions {fθ | θ ∈ Θ}, for
some vector of parameters θ. Due to independence, the likelihood function of θ may be written

as the product of the likelihood of each observation

L(θ; y) =

n∏
i=1

f(yi; θ). (2.17)

Further let the log-likelihood function be the logarithm of L. Then the log-likelihood to (2.17)

is given by.

l(θ; y) =
n∑
i=1

log f(yi; θ) (2.18)

De�nition 2.2. Given the likelihood function L(θ) of the parameter vector θ, and the corre-

sponding log-likelihood l(θ) = logL(θ), the score function is the gradient of l(θ) with respect to

the parameter vector θ.

S(θ) =
∂l(θ; y)

∂θ
. (2.19)

Considering the logarithm is a strictly monotonically increasing function, the results of the ML

is indi�erent to whether we maximize the likelihood function or the log-likelihood function. The

latter is however practically easier to deal with. Consequently, the MLE θ̂ is the point estimate

of the parameters that maximizes the log-likelihood, i.e.

θ̂ = argmax
θ∈Θ

l(θ; y) (2.20)

The estimate is generally obtained by �nding the point at which the score function is 0. For

some analytically tedious likelihoods, the estimate may be found numerically by any type of

optimization algorithm.

If the data is right censored and left truncated, the likelihood (2.17) must be altered accordingly.

Let the data consist of the sets C and U , corresponding to the censored and uncensored observa-

tions, respectively. Further let the censored set C be associated with the left and right censoring

times yli and y
r
i and the uncensored set U with the observed outcomes yi. Additionally, let all

observations have the left and right truncation points li and ui. In this setting, the likelihood is

10
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given by

L(θ; y) =
∏
i∈U

f(yi; θ)

F (ui)− F (li)

∏
i∈C

F (yli)− F (yri )

F (ui)− F (li)
. (2.21)

Extensions of the maximum-likelihood

Occasionally, it is possible to divide the likelihood into several factors each isolating a di�erent

subset of the parameters. This is particularly useful in the presence of nuisance parameters, i.e.

parameters insigni�cant for the analysis that are only included as part of the speci�cation of the

model.

De�nition 2.3 (Orthogonal parameters). If the likelihood function L(θ, η; y) could be factorized

according to

L(θ, η; y) = L1(θ; y)L2(η; y). (2.22)

then the parameters θ and η are said to be orthogonal.

Remark 2. The likelihoods L1(θ; y) and L2(η; y) will be referred to as the partial likelihoods of

θ and η given y.

Assuming θ is the set of parameters of interest and η is the set of nuisance parameters, then

only the partial likelihood L1 needs to be maximized to �nd the MLE of θ. Factorization into

partial likelihoods is also advantageous if maximization of the full likelihood is computationally

expensive.

Example 2.2. Suppose we would like to �nd the parameters θf of the density function f(y; θf )

associated with the life times t1, . . . , tn. Due to independent random right censoring ci, the

observable life time is given by yi = min(ti, ci). Let the variable δi indicate right censoring if

δi = 0. Further let h(y; θh) be the density function of the censoring time. Denote the survival

functions by capital letters with a bar, i.e. F̄ (y; θf ) and H̄(y; θh). Then the likelihood of θf and

θh given data y and δ may be written as follows

L(θf , θh; y, δ) =

n∏
i=1

(f(yi; θf )H̄(yi; θh))δi(h(yi; θh)F̄ (yi; θf ))1−δi

=

n∏
i=1

f(yi; θf )1−δiF̄ (yi; θf ))δi
n∏
i=1

h(yi; θh)δiH̄(yi; θh))1−δi

= L(θf ; y, δ)L(θh; y, δ). (2.23)

Since θh is generally considered a nuisance parameter, it is straight forward to maximize L(θf ; y, δ)

rather than the full likelihood.

2.1 Observed information

The observed information matrix is an important concept in maximum likelihood theory. It is

used as an approximation of the inverted asymptotic covariance matrix of the maximum likeli-

hood estimate, from which the standard errors of the MLE can be obtained. Thus, the observed

11
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information matrix I(θ̂,y) for data y, yields an estimate of the reliability of the estimated pa-

rameters. The standard error of the r:th parameter θr is given by the square root of the r:th

diagonal element of the inverted information matrix (McLachlan & Peel, 2000)

SE(θr) ≈ (I−1(θ̂, y))1/2rr . (2.24)

The observed information is the Hessian matrix of the negative log-likelihood. Therefore, a nu-

merical estimation of the observed information matrix is obtained by approximating the Hessian

of the negative log-likelihood function at the MLE.

2.2 Kaplan-Meier

The non-parametric maximum likelihood estimator of the survival function S(t) is given by

the product-limit estimator, proposed by Kaplan and Meier (1958) (therefore also labeled the

Kaplan-Meier estimator). By introducing the ordered set of survival times, t1 ≤ t2 ≤ · · · ≤ tn,

the product limit estimator is de�ned as the right-continuous step function

Ŝ(t) =

{
1 if t < t1

Πti≤t(1− di
Yi

) if t1 ≤ t
(2.25)

where di is the number of defaults at time ti and Yi is the number of subjects at risk over time

period [ti−1, ti). The advantage of the Kaplan-Meier estimator in comparison to other estima-

tors of the empirical distribution function is that censoring is rigorously dealt with. Without

censoring, the estimator is equivalent to the empirical survival function Ŝ(t) = 1
n

∑n
i=1 I[ti > t].

Moreover, although defaults can in theory never occur simultaneously following from the con-

tinuity of the random survival times Ti, this is not true in practice due to the discretization

of time t. Thus di may be larger than 1. For survival times greater than tn the function is ill

de�ned.

2.3 Nelson-Aalen

The Nelson-Aalen estimator is a non-parametric estimator of the cumulative hazard function

H(t). Although Ĥ(t) = −ln(Ŝ(t)) serves as reasonable estimate of H(t), evident by (2.4), it is

conventional to use the Nelson-Aalen estimator as it has better performance on smaller sample

sizes (Klein & Moeschberger, 1997, p. 107). The estimator is de�ned as follows

Ĥ(t) =

{
1 if t < t1∑

ti≤t
di
Yi

if t1 ≤ t
(2.26)

where, as previously, di is the number of defaults at time ti and Yi is the number of subjects at

risk. Censoring is dealt with similarly as in the Kaplan-Meier estimator.

2.4 Proportional hazards

An important contributing factor to the widespread use of the proportional hazards model is

that the e�ect of covariates can be estimated without having to specify any baseline hazard rate.

12
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Also, a non-parametric survival function is easily incorporated. Consequently, the model is not

necessarily restricted to a parametric family of distributions. As discussed previously, it does

on the other hand impose the restriction of a proportional e�ect of the covariates on the hazard

rate.

To estimate the parameters β of the covariates z, �rst assume there are no ties amongst the

event times, t1 ≤ · · · ≤ tm. Further let Ri denote the risk set just prior to time ti, de�ned by the
set individuals still under study at the event time ti. Now the likelihood, as proposed by (Cox,

1975), constitute the probabilities of the events at times ti, conditional on observing exactly one

event at each time. More speci�cally, the contribution to the likelihood of each event is given

by

λ0(ti) exp(βT zi)∑
j∈Ri λ0(ti) exp(βT zj)

=
exp(βT zi)∑
j∈Ri exp(βT zj)

(2.27)

The full likelihood is determined by multiplication of the contributing likelihoods of each obser-

vations

L(β) =

m∏
i=1

exp(βT zi)∑
j∈Ri exp(βT zj)

. (2.28)

Taking the logarithm of the likelihood yields

l(β) =

m∑
i=1

k∑
l=1

βlzi,l −
m∑
i=1

ln

[ ∑
j∈Rj

exp
( k∑
l=1

βkzj,k

)]
, (2.29)

where zi,l is the l:th covariate of the i:th observation. The likelihood is treated in usual manner,

thus the score function is obtained by di�erentiating the logarithm of likelihood w.r.t. the

parameters βl. Let Ul(β) denote the derivative of l(β) w.r.t. the l:th coe�cient βl,

Ul(β) =

m∑
i=1

zi,l −
m∑
i=1

∑
j∈Ri zj,l exp

(∑k
l=1 βkzj,k

)∑
j∈Ri exp

(∑k
l=1 βkzj,k

) . (2.30)

The non-linear set of equations Ul(β) = 0, l = 1, . . . , k can be solved numerically by some

iterative optimization method (Klein & Moeschberger, 1997).

In practice tied events are commonly encountered. Particularly since the measurement of time

is often limited to a discrete time scale. Assuming di events at time ti, the exact probability

is cumbersome to compute. Although the numerator is easily managed, the denominator is

more tedious considering one has to account for di permutations of Ri, which grows quickly as

di increases. Instead, several approximations has been proposed. The Berslow approximation

is given by raising the denominator to di, which is reasonably good when di is small relative

to the size of the risk set Ri (Grambsch & Therneau, 2000). A more accurate approximation

was proposed by Efron (1977). He assumed the events to have occurred consecutively, the

denominator is then approximated by multiplying the average risk sets at each default.
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Example 2.3. Let di = 2 be the number of tied events at time ti and let Ri be the risk set at time

ti. Further let rj = exp(βT zj), where j = 1, 2, 3, 4 correspond to the subjects at risk. Assume

subjects j = 1, 2 have experienced the event. The approximative contribution to the likelihood is

given as follows

• Berslow approximation

r1r2
(r1 + r2 + r3 + r4)2

(2.31)

• Efron approximation

r1r2
(r1 + r2 + r3 + r4)(0.5r1 + 0.5r2 + r3 + r4)

. (2.32)

3 Quantile-quantile plots with censored data

Quantile-quantile plots are used to graphically assess the goodness-of-�t of data against a hypoth-

esized parametric distribution, with corresponding distribution function F (t; θ) for some values

of the parameters θ. Let F̂ (t) be the empirical distribution associated with the data t1, . . . , tn. In

the case of censored data, Turnbull and Waller (1992) proposes that the Nelson-Aalen estimator

or the Kaplan-Meier estimator is used to estimate the empirical distribution function. In the case

where the distribution function is strictly increasing, the inverse F−10 (t; θ) is uniquely de�ned

on the image of F . Otherwise, the inverse may be de�ned as F−1(t) = inf{y ∈ R : F (y) ≥ t}.
Thus, plotting the data ti against F

−1(F̂ (ti); θ̂), for some optimized parameters θ̂, will approx-

imate a straight line with intercept 0 and slope 1 (Turnbull & Waller, 1992). Alternatively, one

may transform the distribution function such that the plot approximates a straight line with

intercept and slope corresponding to functions of θ. Thereby the goodness of �t can be assessed

without specifying the parameters of the distribution.

The cumulative distribution function F (t) of the Weibull distribution is given by (2.7). After

rearranging F (t),

− log(− log(1− F (t))) = k log t− k log θ, (2.33)

it can be noted that plotting ln(− ln(1−F̂ (t))) against ln(t) yields a straight line with slope k and

intercept −k ln(λ) (assuming a good �t of the distribution). Here k and θ are the corresponding

parameter values of the Weibull distribution. Similarly, by transformation of the log-logistic

distribution function (2.8) we obtain

log

(
1− F (t)

F (t)

)
= −β(log t− logα). (2.34)

Once again, plotting log(t) against the left-hand side should approximate a straight line with

intercept β log(α) and slope −β, assuming a good �t. Although these are not truly Q-Q plots,

the idea is still the same and the plots are just as illustrative in order to assess the goodness-of-

�t.

Finally, for the log-normal distribution we may plot log(t) against Φ−1(F̂ (t)), where Φ is the
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CDF of the normal distribution. This is justi�ed by the following rearrangement of the quantile

function function

Φ−1(F (t)) = σ log t+ µ. (2.35)

4 Finite mixture models

Finite mixture models are generally used as a relatively simple tool to model complex probabilis-

tic distributions. It is represented by the convex combination of a �nite number of probability

density functions. Therefore, �nite mixtures provide a natural representation of heterogeneity in

cluster or latent class analysis. It has been successfully applied in a wide range of �elds, including

astronomy, psychiatry, medicine, engineering and economics (McLachlan & Peel, 2000).

In accordance with (McLachlan & Peel, 2000), let Y1, . . . ,Yn denote a random sample of size

n, where each Yi is a multivariate random variable of dimension p. Let f(·) be the distribution
function and yi the realized value associated with Yi. Further let Y = (YT

1 , . . .Y
T
n ). A random

sample of Y is denoted by its corresponding lower case letter, y = (yT1 , . . .y
T
n ). Note that y is

an n-tuple of p-dimensional vectors.

Now, for some mixing proportions πk and corresponding component densities fk(yi), we suppose

the density of Yi can be written as

f(yi) =

m∑
k=1

πkfk(yi) (2.36)

where the mixing proportions satisfy

m∑
k=1

πk = 1, πk ≥ 0, k = 1, . . . ,m. (2.37)

Since fk(yi) are probability density functions, it can easily been shown that f(yi) de�nes a den-

sity. The representation of f(yi) in (2.36) is the m-component �nite mixture distribution.

The realization of Yi may be interpreted as a realization of the pseudo-variable Yk
i with the

corresponding density function fk from (2.36). Here k is determined by the realization of the

random variable Zi = (Zi1, . . . , Zik), which follows a multinomial distribution with exactly one

draw fromm categories with probabilities π = (π1, . . . , πm). A sampling procedure for Yi follows

intuitively from this interpretation:

(1) Simulate Z = (Z1, . . . ,Zn), where Zi ∼ Multinomialm(1, π).

(2) For each i, draw the random variable Yk
i associated with density function

{fk | zik = 1}.

This interpretation also forms the foundation of the rationale of the Expectation-Maximization

algorithm applied to �nite mixture models, explained further in section 5.1. The likelihood of y
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for the parameters θ = (θ1, . . . , θk, π1, . . . , πk) is given by

L(θ; y) =
n∏
i=1

f(yi) =
n∏
i=1

m∑
k=1

πkfk(yi). (2.38)

where θk is the vector of parameters of the density fk. It will later prove convenient to con-

struct the complete (pseudo) likelihood, i.e. the likelihood of both the observed data y and the

unobserved latent variables z, which may be de�ned as follows

L(θ; y, z) =
n∏
i=1

m∏
k=1

fk(yi)
zik . (2.39)

5 Expectation-Maximization algorithm

The Expectation-Maximization (EM) algorithm is an iterative procedure to compute the maximum-

likelihood estimates of statistical models in the presence of incomplete data. It was formally

introduced and generalized in the seminal paper by Dempster, Laird, and Rubin (1977), after

having appeared in various setting in several preceding papers. The algorithm is particularly use-

ful when the maximum-likelihood of the incomplete data is numerically di�cult to compute. The

algorithm alternates between two steps; the Expectation-step (E-step) and the Maximization-

step (M-step). In the E-step, a computationally more tractable pseudo-likelihood is produced

by taking the expectation of the complete likelihood data given the observed data and the model

parameters. This likelihood is then maximized in the M-step.

In accordance with Dempster et al. (1977) let Y and X de�ne two sample spaces with corre-

sponding realizations y and x. Further assume the existence of a many-to-one mapping from

X to Y. The sample y is directly observed, whereas x is only observed indirectly through y.

Consequently, the complete data is only known to lie within the subset X (y). The observed data

y is now associated with the marginalized density function of x over the subset X (y).

g(y; θ) =

∫
X (y)

f(x; θ)dx. (2.40)

for some set of parameters θ. The log likelihood of the observed data takes the form

logL(θ) = log g(y; θ) (2.41)

which in practice often appears as an intractable sum that is both analytically and numeri-

cally di�cult to compute. Instead, we introduce the conditional density of x given y and the

parameters θ

k(x|y; θ) =
f(x; θ)

g(y; θ)
. (2.42)

The alternate representation of the likelihood (2.41) can now be written as

logL(θ) = log f(x; θ)− log k(x|y; θ). (2.43)

Since f(x; θ) is the likelihood for parameter θ and the complete data x, commonly referred to as
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the complete likelihood, this is replaced by L(x; θ). Now, regarding x as unobserved (random)

and taking the conditional expectation of (2.43) given Y = y and evaluated at the parameters

of the current iteration of the algorithm, θ(p), yields

logL(θ) = E
[

logL(θ; X) | y; θ(p)
]
− E

[
log k(X|y; θ) | y; θ(p)

]
. (2.44)

The �rst and second term of the right-hand side of (2.44) are fundamental for the theory of the

EM algorithm, and will be denoted

Q(θ; θ(p)) = E
[

logL(θ; X) | y; θ(p)
]

(2.45)

H(θ; θ(p)) = E
[

log k(X|y; θ) | y; θ(p)
]
. (2.46)

The iteration of the EM algorithm to �nd the next parameter value θ(p+1) is now given as

follows

• E-step. Compute Q(θ; θ(p)).

• M-step. Find the value θ(p+1) ∈ Θ which maximizes Q(θ; θ(p)).

Then we have that the di�erence of the log-likelihood between two iterations

logL(θ(p+1))− logL(θ(p)) =
[
Q(θ(p+1); θ(p))−Q(θ(p); θ(p))

]
−
[
H(θ(p+1); θ(p))−H(θ(p); θ(p))

]
. (2.47)

The �rst di�erence on the right-hand side of (2.47) is non-negative, which follows immediately

from the M-step, i.e.

Q(θ(p+1); θ(p))−Q(θ(p); θ(p)) ≥ 0. (2.48)

Also, for any choice of θ we have

H(θ; θ(p))−H(θ(p); θ(p)) = E
[

log
k(X|y; θ)

k(X|y; θ(p))
| y; θ(p)

]
≤ logE

[ k(X|y; θ)

k(X|y; θ(p))
| y; θ(p)

]
= log

∫
X (y)

k(x|y; θ)dx

= 0 (2.49)

where the second step follows from Jensen's inequality. Consequently, by (2.48) and (2.49) we

have established that the sequence of likelihoods L(θ(p)) of the incomplete data is monotonically

increasing

L(θ(p+1)) ≥ L(θ(p)). (2.50)

5.1 Applied to �nite mixture models

For the EM algorithm applied to mixture models, slightly modi�ed but more intuitive notations

will be used instead. First, let L(y, z; θ) = p(y, z; θ) be the complete likelihood for the parameter
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vector θ and the full data set x = {y, z}, where y and z are the observed and unobserved subsets

of x, respectively. In the �nite mixture model, z correspond to the latent variable in (2.39). The

marginal likelihood is given by

L(y; θ) =
∑

z

p(y, z; θ) (2.51)

with the corresponding log-likelihood

l(y; θ) = log
[∑

z

p(y, z; θ)
]
. (2.52)

Again, this requires maximization of the logarithm of a sum of probabilities which is computa-

tionally di�cult (Verbelen, Gong, Antonio, Badescu, & Lin, 2014). Instead, in accordance with

(2.45) let

Q(θ; θ(p)) = E
[

logL(θ; y,Z) | y; θ(p)
]
. (2.53)

Inserting the expression of the complete likelihood (2.39) of the �nite mixture model, assuming

no truncation or censoring, yields

Q(θ; θ(p)) = E
[ n∑
i=1

m∑
k=1

Zik log fk(yi) | y; θ(p)
]

=

n∑
i=1

m∑
k=1

E
[
Zik | y; θ(p)

]
log fk(yi). (2.54)

Let ẑik be the expected value of Zik conditional on y. Note here that only ẑik's corresponding

observation yi will be relevant for the estimation. Also, since Zik is an indicator, the conditional

expectation is reduced to the conditional probability of Zik = 1. This may be rewritten and

computed by the use of Bayes' rule

ẑik = P (Zik = 1 | yi; θ(p)) =
P (yi | Zik; θ(p))P (Zik; θ

(p))

P (yi; θ(p))

=
π
(p)
k fk(yi)∑m

k=1 π
(p)
k fk(yi)

. (2.55)

The functions fk are evaluated at current parameter estimates θ(p).

5.2 Applied to censored and truncated �nite mixtures

As mentioned previously, life time data is rarely uncensored. Therefore we will assume the

presence of random right censoring times ci of each observation i, as this is the most frequently

encountered type of censoring in event time studies. This can however be generalized to interval

censoring (e.g. Verbelen et al., 2014; Lee & Scott, 2010). Further assume the data is a realization

of the truncated sample space YT ⊆ Y. The truncated sample space is de�ned by the p-orthotope
con�ned by the lower and upper vectors of truncation points l = (l1, . . . , lp) and u = (u1, . . . , up),

where p is the dimension of each observation. The observation yi is no longer an observation of
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the the �nite mixture model in (2.36), but instead of its truncated counter-party

g(y) =
f(y)∫ u

l f(y′)dy′
. (2.56)

This is of course a generalization of the special case of no truncation. Since if all points in l and

u were −∞ and ∞, respectively, the denominator would be the density function integrated over

Rp, which is 1 by de�nition.

The truncated distribution g(y) is in fact a mixture distribution with re-weighted mixing pro-

portions, which is evident after minor manipulations of the right-hand side

g(y) =

m∑
k=1

πk
F̄k(u)− F̄k(l)
F̄ (u)− F̄ (l)

fk(y)

F̄k(u)− F̄k(l)

=

m∑
k=1

βk
fk(y)

F̄k(u)− F̄k(l)

=

m∑
k=1

βkgk(y; l, u) (2.57)

where F̄ (u) − F̄ (l) =
∫ u
l f(y′)dy′ and gk(y; l, u) is the truncated distribution of component k.

To deal with censoring, let δi be the indicator of an event for observation i, where δi = 0 implies

right censoring. Assume the censoring times is a random sample of n i.i.d. random variables

with density function h and survival function H̄. Then, in accordance with (2.10), the likelihood

of the now truncated sample y in addition to the data δ and z is given by

L(θ; y, δ, z) =
n∏
i=1

(g(yi)H̄(yi))
δi(Ḡ(yi)h(yi))

1−δi

=
n∏
i=1

g(yi)
δiḠ(yi)

1−δiH̄(yi)
δih(yi)

1−δi

=
n∏
i=1

m∏
k=1

(
βkgk(yi)

δiḠk(yi)
1−δi

)zik
H̄(yi)

δih(yi)
1−δi (2.58)

The truncation thresholds l and u are suppressed in gk for ease of notation. Thereafter, taking

the logarithm yields,

logL(θ; y, δ, z) =
n∑
i=1

m∑
k=1

zik

(
log βk + δi log gk(yi) + (1− δi) log Ḡk(yi)

)
+ δi log H̄(yi) + (1− δi) log h(yi). (2.59)

Similarly as in (2.54), the conditional expectation in Q(θ; θ(p)) only needs to be evaluated over
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the Zik's.

ẑik = P (Zik | yi, δi; θ(p)) =
P (yi, δi | Zik; θ(p))P (Zik; θ

(p))

P (yi, δi; θ(p))

=

(
β
(p)
k gk(yi)H̄(yi)∑m

k=1 β
(p)
k gk(yi)H̄(yi)

)δi(
β
(p)
k Ḡk(yi)h(yi)∑m

k=1 β
(p)
k Ḡk(yi)h(yi)

)1−δi

=

(
β
(p)
k gk(yi)∑m

k=1 β
(p)
k gk(yi)

)δi(
β
(p)
k Ḡk(yi)∑m

k=1 β
(p)
k Ḡk(yi)

)1−δi

(2.60)

The log-likelihood in (2.59) can be divided into three partial log-likelihoods,

logL(θ; y, δ, z) = logL(β; y, δ, z) + logL(θg; y, δ, z) + logL(θh; y, δ, z) (2.61)

where θg and θh correspond to the parameters of the density functions gk, k = 1, . . . ,m and h,

respectively.

5.3 Observed information

A clear disadvantage of the EM algorithm is that the standard errors are not as easily obtained

as when the likelihood function is maximized directly. Generally, a numerical approximation of

the Hessian matrix can be requested at the optimal solution for most statistical software. How-

ever, since the algorithm optimizes the complete, augmented data, the Hessian of the complete

log-likelihood is not truly the observed information. Instead, the literature suggests several ways

to account for the missing data (Louis, 1982; Meng & Rubin, 1991; Oakes, 1999). Nonetheless,

these methods can be both numerically and analytically tedious. In addition, Basford, Green-

way, McLachlan, and Peel (1997) found that the standard errors produced from the observed

information were unstable when applied to Gaussian mixtures, unless the sample size was large.

Instead they advocated the use of bootstrapping methods.

Another alternative is to approximate the Hessian matrix at the MLE of the logarithm of the

original likelihood function (2.38). Thereafter, the standard errors are produced in accordance

with (2.24).

6 Mixture cure model

The mixture cure model is a bivariate mixture model. The model postulates the existence of

two types of sub-populations, corresponding to subjects being susceptible or non-susceptible to

the event under study. For the application to credit data, they may also referred to as being

either at-risk or not at-risk over a foreseeable future. In accordance with the �nite mixture

model as given by (2.36), let πk be the mixing proportions and the functions fk and Sk be the

corresponding probability density functions and survival functions, respectively. Contrary to the

general framework of the �nite mixture models as described previously, the probability of being

at risk is assumed dependent on some some vector of covariates x. Let the indicator variable z

denote if the subject is at-risk, with corresponding probability P (z = 1 | x) = π(x). Then π(x)

is referred to as the link function. The probability of not being at-risk is simply given by the

complement P (z = 0 | x) = 1− π(x).
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For z = 0, the credit are not at-risk of defaulting and are therefore associated with an in�nite

lifetime. The conditional survival function of this sub-population is given by

S(t | z = 0, x) = P (T > t | z = 0, x) = 1. (2.62)

Once again x is the vector of covariates. Although not necessary, we have here assumed that

the covariates x determining the latency is identical to those determining the incidence. The

probability density function will e�ectively be 0 at all �nite times t since there is no risk of de-

faulting. Practically, an in�nite lifetime can never be observed for obvious reasons. Analogously

let the survival function of the loans at-risk be determined by

S(t | z = 1, x) = P (T > t | z = 1, x) = S1(t | x). (2.63)

It is straightforward to show that the survival function of the population in its entirety is given

by

Sp(t | x) = 1− π(x) + π(x)Su(t|x). (2.64)

The subscript u is generally used to denote the the conditional survival function of the uncured

(at-risk) subjects. Since the density of the non-susceptible sub-population is zero, the probability

density function of the whole population is given by

fp(t | x) = π(x)f(t | z = 1, x) = π(x)fu(t |x). (2.65)

For ease of notation, we will henceforth drop the indexing of the density and survival functions

for the sub-population at-risk. Now, the complete likelihood is constructed as

L(Θ; y, z,x, δ) =
n∏
i=1

((
π(xi)f(yi|xi)

)zi)δi((1− π(xi)
)1−zi(π(xi)S(yi|xi)

)zi)1−δi (2.66)

where Θ is the set of parameters of the link and distribution functions. All right censoring is

assumed to be random, therefore the censoring distribution may be omitted for the MLE as

shown in example 2.2. Contrary to mixture models in general, the latent variables zi is here

partially observable. In the event of a default, that particular loan must belong to the susceptible

sub-population. More speci�cally, if δi = 1 then zi = 1. The log-likelihood is given by

l(Θ; y, z,x, δ) =
n∑
i=1

δizi

(
lnπ(xi) + ln f(yi|xi)

)
+ (1− δi)

(
(1− zi) ln(1− π(xi)) + zi

(
lnπ(xi) + lnS(yi|xi)

))
. (2.67)

Since the two di�erent sets of parameters of the link function and the distribution function

are orthogonal, the log-likelihood can be factorized into partial log-likelihoods. After some

simpli�cations of the expressions we obtain the two partial likelihoods

l1(α; z,x) =

n∑
i=1

zi lnπ(xi) + (1− zi) ln(1− π(xi)) (2.68)

l2(θ; y, z,x, δ) =

n∑
i=1

zi

(
δi lnλ(yi|xi) + lnS(yi|xi)

)
. (2.69)
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Here the identity in (2.3) is used to rewrite l2 in terms of the hazard function rather than the

density function. The expected value of the mixing proportions is obtained from (2.60) together

with the relationship between z and δ.

ẑi = P (Zi = 1 | yi, δi, xi; Θ)

= δi + (1− δi)
π(xi)S(yi|xi)

1− π(xi) + π(xi)S(yi|xi)
, (2.70)

where π(xi) and S(yi|xi) are evaluated at Θ.
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Methodology

1 Data

The data consists of 314 067 contract lifetimes, extracted from the corporate loans portfolio of a

large Swedish bank. This particular subset of the credit portfolio is geographically concentrated

on Sweden, with close to 99 % Swedish counterparties, and comprises small- and medium sized

enterprises. The contract lifetime is considered to be the time from when the contract is issued

until default. In accordance with the regulatory framework of Basel, there exist multiple events

after which the contract is marked by a default �ag in the internal database. The default �ag

is consistent with the Basel de�nition, i.e. 90 days past due. Since a default is in many cases

an elongated process, a defaulted contract will often have several di�erent consecutive default

�ags. Therefore the actual time of default is generally ambiguous. For the purposes of this

study, the �rst default event of a contract will be considered the time of default. Although some

clients hold several contract that could potentially default closely in time in case of such an

event, these will be treated as independent. Also, consecutive renewals of the contract will be

merged into one observation, for instance assuming a 5-year loan is extended by an additional

5 years at maturity, this will be treated as one contract with an observed lifetime of 10 years.

This may of course induce potential biases in the data. Assume that loans for which the credit

quality deteriorates over the holding period are less likely to be renewed at maturity, relative to

loans for which the credit quality remains at the same level or is strengthened. Then the loans

are presumably not as likely to default subsequent to the renewal considering the qualitative

assessment of the loan prior to its extension. The hazard rate at longer lifetimes is in this

case likely to be underestimated. On the contrary, one could argue that loans for which the

credit quality deteriorates may be renegotiated and extended in an attempt to avoid potential

losses.
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The data is a sample of all healthy clients as of June 2007 and all loans issued subsequently,

until the end of March 2015. As a result, some contracts are started prior to the initial date

of the sampling period. Since these observations are conditional on not experiencing a default

event until June 2007, they are regarded as left truncated. Moreover, since only a small portion

of the credit will experience default, the lifetime is merely a partial observation of the true

lifetime. Hence, each observation is supplemented by the indicator variable denoting if the loan

has defaulted or not. The loan will not experience a default if the contract has matured or if is

still active at the end of the sampling window. These observations will be treated as random right

censoring and generalized Type I censoring, respectively. Although all lifetimes are originally

measured in terms of a start and end date in calendar time, the appropriate time scale for the

analysis is the age of the contract. This transformation of time is illustrated in �gure 3.1.

(a) Calendar date as time scale (b) Age as time scale

Figure 3.1: The �gure displays the observed lifetime for each loan as continuous lines. The star
indicates that the loan has defaulted, whereas the dashed line indicates the uncertainty of the
true, unobserved lifetime. Hence the dashed line also indicates right censoring. As seen in �gure
(a), only loan 3,5 and 6 has been terminated, whereof loan 3 and 6 have defaulted and loan 5 is
right censored after being paid back in 2010. Figure (b) displays the same observations with age
as time scale.

Although the transformation is important to rigorously analyze the time until default, it is

also to some extent problematic. The primary disadvantage is that the impact of events, e.g.

the �nancial crisis of 2008, is diluted over the new time scale (age). Therefore events that

could potentially cause default events to surge is not identi�able in the new time scale. This

could be mitigated by introducing multiple time scales, whereof one represents calendar time.

Subsequently macroeconomic variables can be used as a representation of the �nancial climate

at the time. For the purposes of this study, neither multiple time scales nor macroeconomic

variables are included into the model.
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Figure 3.2: The �gure displays the observed lifetimes of six loans measured with age as the time scale.
Contrary to �gure 3.1, here loan 1 through 4 are left truncated, indicated by the dotted lines. Thus, loan
1-4 were issued 2, 2, 3 and 4 years prior to the beginning of the sampling period, June 2007.

The credit of each counter-party is rated according to the internal classi�cation scheme, i.e.

on a 21 point scale where a higher credit rating (by number) is equivalent with higher credit

worthiness. Moreover, each credit is classi�ed according to four product classes, where each

product class represent some types of credit:

• Corporate lending. Any loans issued to corporate entities, with the purpose of �nancing

businesses and their investments. The principal amount varies greatly within the product

class and includes minor investments as well as considerable real estate purchases.

• Credit guarantees. It is the commitment to reimburse another creditor if the debtor fails

to repay his loan, in exchange for a fee.

• Credit facilities. Includes company line of credits. The obligor can at their own discretion

utilize their credit. Debt is created when there is an overdraft of the current account.

• Other. This product class is a pooling of types of credit to which few observations are

classi�ed.

The distribution of product types within each credit class is depicted in table 3.1. Since the

statistical inference is likely to be sensitive to the number of defaults, the corresponding distri-

bution of default within each group is included in the table. Due to di�culties of specifying the

EM algorithm with randomly truncated data, the subset of truncated observations have been

excluded from the data set. Also, some loans with negligible exposure are considered insubstan-

tial and may default per agreement between the bank and the counterparty. For this reason, all

loans with exposure less than SEK 1000 at default will be excluded from the data set. After the

reduction of the full data set, 178 811 observations remain.
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With the exception of the exposure at default, all other covariates are measured at inception

of its respective loan. Although most covariates are expected to vary over time, this is not

taken into consideration. Instead, the term structure of default probabilities are calibrated with

respect to the characteristics of each credit at initial recognition.

Number of Observations / Defaults

Credit
Rating

Corporate
Lending

Credit
Guarantees

Credit
Facilities

Other Total

1 707 / 159 167 / 29 167 / 21 109 / 3 1 150 / 212
2 468 / 77 83 / 5 240 / 24 78 / 4 869 / 110
3 802 /91 152 / 15 623 / 122 98 / 5 1 675 / 233
4 1 519 / 132 262 / 26 469 / 44 222 / 7 2 427 / 209
5 2 274 / 174 340 / 27 1 698 / 191 318 / 5 4 630 / 397
6 8 941 / 404 878 / 55 3 038 / 241 589 / 8 13 446 / 708
7 8 966 / 329 1 229 / 50 3 128 / 218 638 / 9 13 961 / 606
8 11 792 / 361 1 333 / 63 6 251 / 261 853 / 3 20 229 / 688
9 15 732 / 359 1 520 / 43 1 998 / 80 1130 / 2 20 380 / 484
10 15 184 / 226 1 726 / 33 2 439 / 96 905 / 3 20 254 / 358
11 19 080 / 255 1 806 / 37 2 994 / 152 1 331 / 43 25 211 / 487
12 15 299 / 118 2 093 / 25 1 727 / 37 875 / 2 19 994 / 182
13 9 796 / 53 1 136 / 13 1 014 / 20 491 / 1 12 437 / 87
14 13 235 / 39 666 / 4 710 / 4 298 / 1 14 909 / 48
15 2 108 / 10 576 / 3 333 / 2 85 / 0 3 102 / 15
16 721 / 1 69 / 1 91 / 3 30 / 0 911 / 5
17 971 / 1 40 / 1 45 / 0 51 / 0 1 107 / 2
18 811 / 1 6 / 0 26 / 0 17 / 0 860 / 1
19 470 / 2 2 / 0 8 / 0 10 / 0 490 / 2
20 264 / 0 2 / 0 8 / 0 6 / 0 280 / 0
21 431 / 0 0 / 0 8 / 0 5 / 0 444 / 0

Total 129 571 / 2 792 14 086 / 430 27 015 / 1506 8 139 / 96 178 811 / 4 834

Table 3.1: The distribution of observations and defaults within each credit rating and product
class, excluding the left-truncated data. The default is de�ned in accordance with the regulatory
framework of Basel, thus this can be considered a conservative measure of the true number of
defaults.

2 Estimation of the mixture cure model

Due to the general intractability of the log-likelihood for mixture models, the EM algorithm is

used to estimate the parameters of the mixture cure model. In this study, both a parametric as

well as a semi-parametric model will be used to �t the data. If the data set was large and included

an abundant number of defaults within each cohort, one could consider calculating the empirical

survival curves with the Kaplan-Meier estimator for each credit rating and product type. Most

often this is not possible. Instead, for the semi-parametric model one has to impose some

assumption on the characteristics of the hazard rate in relations to the covariates. Many studies

on credit scoring assume the proportional hazard model (e.g. Basanik et al., 1999; Bellotti

& Crook, 2009; Carling, Jacobson, Linde, & Roszbach, 2007). Alternatively one can apply

accelerated time to failure models, although they do not seem to be encountered in literature as

often. Nonetheless, these are both strong assumptions and may not necessarily be appropriate

representations of reality, and should therefore be used with caution.

26



CHAPTER 3. METHODOLOGY

Example 2.1. To illustrate the di�culties of estimating the parametric mixture cure model

by the EM algorithm, 50 sets of mixture cure data is simulated. Each data set consist of 100

observations for each of the arti�cially constructed subsets, i.e. a full sample size of 500. The

parameters are estimated by the EM algorithm and by numerical minimization of the true negative

log-likelihood.

EM algorithm Direct minim.
Avg. Bias S.E Avg. Bias S.E

Incidence
α1 = −1.5 -1.380 0.120 0.769 -1.532 -0.032 0.879
α2 = −1.0 -0.914 0.086 0.634 -0.839 0.161 1.098
α3 = 0.0 0.276 0.276 1.257 0.688 0.688 2.572
α4 = 0.5 0.603 0.103 0.798 1.338 0.838 2.728
α5 = 1.0 1.381 0.381 1.681 1.944 0.944 2.773

Latency
β1 = 4.5 4.434 -0.066 0.551 4.315 -0.185 0.388
β2 = 5.0 5.078 0.078 0.448 5.052 0.052 0.447
β3 = 5.5 5.511 0.011 0.269 5.519 0.019 0.289
β4 = 6.0 5.992 -0.008 0.246 6.006 0.006 0.271
β5 = 6.6 6.447 -0.053 0.204 6.455 -0.045 0.215

Shape
γ = 0.5 0.542 0.042 0.095 0.544 0.044 0.094

Table 3.2: The table displays the results of estimating the parameters of a mixture model by
either the EM algorithm or by minimizing the true negative log-likelihood directly.

Although the model here is quite simple, table 3.2 shows that with only �ve variables for the

incidence as well as for the latency, minimization of the proper negative log-likelihood yields

much larger standard errors for the incidence level. The other estimates seem to have quite

similar behavior. As the problem increases in size, the EM algorithm is expected to be successively

favorable.

In the parametric model, the distribution of the latency for the loans at-risk will be assumed

to belong to any of the parametric families mentioned in section 1.1. The appropriateness of

each distribution will be assessed graphically, and the model will be determined accordingly. To

allow for a set of covariates to alter the shape of the survival function, the model parameters

are de�ned by some regression model.

The link function π(z), which determines the proportion of susceptible and non-susceptible loans,

will be important for the risk assessment of each loan. The identity link π(z) = αT z facilitates

the interpretation of the covariates' e�ect on the probability of being susceptible. It may however

induce problems for small or large levels of incidence (Lambert, Thompson, Weston, & Dickman,

2007). For the log-log link log(− log(1 − π(z))) = αT z, the covariate e�ects are interpreted as

log excess hazard ratios, under the assumption of proportional hazards. Nonetheless, the logistic

link function log(π(z)/(1 − π(z))) = αT z is used for both the parametric as well as the semi-

parametric model to keep the connection with existing credit scoring models. In the logistic link

function, the covariates' e�ect is proportional to the logarithm of the odds-ratio (Lambert et al.,

2007).
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2.1 Semi-parametric

The semi-parametric mixture cure model is the most frequently encountered speci�cation of the

model within the literature. The model is obtained when the susceptible sub-population con-

form to the proportional hazards assumption, with a non-parametric baseline survival function.

Consequently, S(yi|xi) in (2.69) is assumed to have the representation Su0(t)
exp(βT xi), where

Su0(t) is the baseline survival function of the susceptible population. In accordance with (Peng

& Dear, 2000; Sy & Taylor, 2000), the coe�cients β can in each iteration of the EM algorithm

be estimated by the means of ordinary cox regression with the minor modi�cation of including

ẑj as a scaling factor in the denominator

L(β) =
m∏
i=1

exp(βTxi){∑
j∈Ri ẑj exp(βTxj)

}di . (3.1)

Here the Berslow approximation is used to handle tied events. Since the number of defaults

at each event time ti must be very small, considering the low default rate in the portfolio, the

Berslow approximation is assumed to be of su�cient accuracy. Although the Efron approxi-

mation has greater precision, the Berslow approximation is favorable due to its computational

advantage. Especially considering the EM algorithm itself is computationally expensive. The

log-likelihood is maximized numerically by solving the set of equations in (2.30). Furthermore,

the partial likelihood l1 is also maximized numerically by any type of iterative optimization

algorithm.

Although the parameters β are estimated without having to specify the baseline hazard, it

is necessary to estimate the survival function in each iteration to calculate the ẑi's (2.70) in

the E-step. The survival function is estimated by a Nelson-Aalen type estimator (2.26) with

minor modi�cations (Peng & Dear, 2000; Sy & Taylor, 2000), the estimator takes the following

form

Ŝu0(t) = exp

(
−
∑
i:ti≤t

di∑
j∈Ri ẑj exp(βTxj)

)
(3.2)

where t1, . . . , tm are the ordered default times and di is the number of defaults at time ti.

The Expectation and Maximization steps of the EM algorithm now involves estimating the

conditional expectations ẑi w.r.t. the parameters and the baseline survival function Ŝu0(t)

estimated in the M-step of the preceding iteration. A more detailed pseudo-code is presented in

algorithm 1. We choose the absolute error tolerance ε = 10−7. The algorithm is implemented

using the R-package smcure (Cai, Zou, Peng, & Zhang, 2012).

The primary model of the covariates that is investigated includes the credit rating and the

product class. Each level of the two categories is coded by a dummy variable. The corresponding

dummy variables for the credit ratings are denoted Ci for each level i = 1, . . . , 21. For the product

classes, the dummy variables are denoted PCL, PCG, PCF and PO for Corporate Lending, Credit

Guarantees, Credit Facilities and Other, respectively. To avoid multicolinearity, C1 and PCL are

removed from the regression in favor of an intercept. The credit with rating 1 and product type

Corporate Lending is considered the base case to which all other cohorts are compared, e.g. for

credit rating 10 and product type Credit Guarantees the estimate is given by β0 + β10 + βCG.

The model will be applied for the Cox regression as well as the logistic regression. It is noticeable
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Algorithm 1: EM Algorithm: Semi-Parametric Mixture Cure Model

Data: x is a set of covariates, y is the observed lifetimes and δ the censoring indicators and z
the latent variables.

Result: ML estimate of θ = (α, β).
p← 0;

θ(p) ← initialize(θ) ∈ Θ;

while ||β(p) − β(p−1)|| > ε do
/* E-step: */

for i = 1 to n do

S(yi|xi)← Su0(yi|xi)exp(β
T x)

zi ← δi + (1− δi)π(xi)S(yi|xi)/
(
1− π(xi) + π(xi)S(yi|xi)

)
|β(p) ;

end

/* M-step: */

p← p+ 1;

α(p) ← argmaxα l1(α; z,x); /* l1 as (2.68) */

β(p) ← argmaxβ l2(β; y, z,x, δ); /* l2 as (3.1) */

Update Ŝu0(t); /* by (3.2) */

θ(p) ← (αp, βp);

end

from the score function (2.30) that if there exist no defaults for any of the coviarates, then the

corresponding coe�cient cannot be estimated. Since Credit rating 20 and 21 are not associated

with any defaults, they are excluded from the analysis. The regression takes the form

β0 + C2β2 + · · ·+ C19β19 + PCGβCG + PCFβCF + POβO (3.3)

In Cox's model, the intercept is indirectly included in the baseline survival function (the baseline

hazard), and for that reason the estimate of β0 is not directly available. Instead, only coe�cients

β2 through β19 together with βCG, βCF and βO are presented.

The observed information matrix for the parameters α can be estimated by the methods of

Louis (1982). The standard errors of β are on the contrary not as easily accessible (Peng &

Dear, 2000). This is partly a consequence of the non-parametric form of the baseline survival

function. It is further complicated when the partial likelihood (3.1) is maximized instead of

the true likelihood (2.69). A few methods have been suggested to �nd the standard errors of

the semi-parametric cure model, e.g. Sy and Taylor (2000) de�nes the full, semi-parametric

log-likelihood and derives the second derivatives w.r.t. to each covariate analytically to compute

the Hessian matrix. Chen and Kuk (1992) uses a Monte-Carlo approach. Since the proposed

methods are analytically and computationally tedious, we will instead use a bootstrap method

as suggested in (Cai et al., 2012). The bootstrap procedure is de�ned as follows:

(1) Let yc and yu be the censored and uncensored subsets of the data y, with corresponding

sizes nc and nu.

(2) Draw nc and nu random samples with replacement from yc and yu, respectively. Merge the

two samples and denote this yj .

(3) For sample yj , estimate the parameter vectors αj and βj by algorithm 1.
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(4) Repeat step (2)-(3) for j = 1, . . . , N . Then estimate the sample standard deviation of each

parameter αk and βk.

Since the EM algorithm is computationally expensive and converge slowly, we settle for a mod-

erately high absolute error tolerance ε = 10−4. Yet, it is chosen su�ciently small such that the

standard deviation is still reliable.

2.2 Parametric

In the parametric speci�cation of the mixture cure model, the probability density function of

the lifetime of each individual of the susceptible sub-population is assumed to belong to some

parametric family of distributions. The appropriateness of each distribution is assessed graph-

ically. The distributions de�ned in section 1.1, Weibull (including Exponential) distribution,

Log-logistic distribution or Log-normal distribution, are considered as potential candidate dis-

tributions. We assume that the form of the survival curve is primarily explained in terms of

the credit rating and the product type. Therefore, F̂ (t) is estimated for each cohort by the

Kaplan-Meier estimator in (2.25). Thereafter, log(t) is plotted against log(− log(1 − F̂ (t))),

log((1− F̂ (t))/F̂ (t)) and Φ−1(F̂ (t)) to assess the goodness of �t with the Weibull, Log-Logistic

and Log-normal distributions, respectively. Since the estimator only jumps at defaults it is only

necessary to plot the actual default times.

To reduce the amount of �gures produced, the plots are aggregated by product type. Each

�gure consists of the plots for every credit rating within that particular product type. Since

the scale parameter (or mean for the log-normal distribution) is expected to be increasing with

lower credit rating, the produced QQ-plot of each credit rating is separated vertically from

the other. To keep each cohort further distinguishable in the plot, an increasing sequence of

constants for each credit rating j is added to the corresponding y-values yj . Also, the set of

points corresponding to the QQ-plot of each credit rating is transformed such that the slope

relative to the other cohorts can more easily be assessed. More speci�cally, for the �rst credit

rating within a product type, the slope and intercept is found by the least-squares estimated of

the model y1 = kx1 + m. Thereafter, k̂xj is subtracted from yj for each j = 1, . . . , 21. Recall

here that the slope of each QQ-plot is given by either the shape or the standard deviation,

depending on the distribution. If all plots are approximately horizontal, then it is reasonable to

assume a common shape parameter or standard deviation with the product type.

One should keep in mind that the full model is indeed not represented solely by the Weibull,

Log-logistic or the log-normal distributions, but instead by a mixture cure model of the afore-

mentioned distributions as the candidate component distributions. Thus, substituting F̂ (t) by

F̂ (t)/p, where p is the probability of being susceptible, would be more appropriate1. It does

however not exist any transformation of this model for which the result approximates a straight

line, without having to specify the parameter p. Nonetheless, for lower credit rating the suscep-

tible proportion is expected to be high, possibly close to one. If the plots indicate a reasonable

�t, the model is expected to be well approximated by the Weibull distribution, i.e. with the level

of susceptible individuals p = 1. The QQ-plots do not necessarily need to indicate a close �t for

every credit rating, since minor deviations are presumed dealt with by the additional �exibility

of the mixture cure model.

1The full CDF of the MCM is given by F (t) = pFp(t). It is assumed that F̂ (t) is an empirical estimation of

pFp(t).
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(a) Log-Logistic: Corporate Lending (b) Log-Logistic: Credit Facilities

(c) Weibull: Corporate Lending (d) Weibull: Credit Facilities

(e) Log-Normal: Corporate Lending (f) Log-Normal: Credit Facilities

Figure 3.3: Each sub�gure shows transformed QQ-plots according to (2.33)-(2.35) for all credit
ratings 1 (bottom) through 21 (top) within each product type. The slopes are transformed as
discussed in section 2.2 to yield approximately vertical lines if the shape (or standard deviation)
is close to equal across all ratings.
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The QQ-plots for Corporate Lending and Credit Facilities for all distributions are shown in

�gure 3.3. The remaining QQ-plots, for Credit Guarantees and Other, are displayed in �gure

(ref �gure) in the Appendix. For the Log-normal distribution, the lines tend to be more curved

than for the Log-logistic or the Weibull distributions, indicating an inferior �t. Also, the plots

for the Log-logistic and the Weibull distributions are close to identical. Since the Weibull

distribution is more frequently encountered in literature as well as in practice, it will be chosen

for the parametric speci�cation of the mixture cure model.

The parameters of the Weibull distribution are speci�ed in terms of some set of covariates. The

choice of covariates for each parameter is generally deduced from some preconceived idea on

how di�erent variables will alter the form of the survival curve. One may also try di�erent

models and assess the appropriateness in retrospect. In the parametric MCM we will refrain

from averaging the e�ect of the credit rating across all product types. Instead, we have one

model for each product type. By �gure 3.3c and 3.3d it seems reasonable to assume that the

shape of the Weibull distribution is determined solely by the product. Since the shape must

be strictly positive, we use the following parametrization k = exp(γ). For the same reason, the

scale is parametrized according to θ = exp(βTx), where x is the covariate vector. The covariate

vector consist of the dummy variables for each credit rating, i.e.

θ = exp(β0 + β2C2 + · · ·+ β21C21). (3.4)

Thereafter, it is straightforward to apply the EM algorithm for statistical inference of the model.

Since the algorithm does not ensure the convergence to the global minimum, di�erent initializing

procedures has been suggested as improvements. Commonly, it is suggested to use random

starts to initialize the algorithm (McLachlan & Peel, 2000). Similarly to Gormley, O'Hagan,

and Murphy (2012), a burn-in scheme will be used for �nding a suitable vector of parameters to

initialize the algorithm:

(1) Generate the set of 2j candidate parameter vectors θi ∈ Θ, i = 1, . . . , 2j .

(2) For each parameter vector θi in the set, conduct 2 iterations of EM algorithm. Concurrently

update the parameters θi and associate it with the observed log-likelihood li evaluated at

θi.

(3) Rank the parameter vectors θi by their corresponding log-likelihood li in descending order.

(4) Reduce the set of candidates to the upper-half of the ranked parameter vectors.

(5) Continue with steps (2)-(4) until only one candidate remains.

Ideally one would like to proceed until convergence for each candidate parameter vector. This

is however impracticable for larger data sets when the running time of each instance of the

algorithm increases. The burn-in scheme serves as a good alternative nonetheless.

Once the initial parameters are found, we proceed to compute the expected value of the latent

variables conditional on the data evaluated at current parameter values, in accordance with

(2.70). They are subsequently used in the minimization of the partial negative log-likelihoods

in (2.68)-(2.69). This procedure is iterated until convergence. Convergence is generally de�ned

in terms of relative changes in the parameters values or the log-likelihood. A more detailed

pseudo-code for the EM algorithm applied to the parametric mixture cure model is presented in

algorithm 2.
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Algorithm 2: EM Algorithm: Parametric Mixture Cure Model

Data: x is a set of covariates, S is the survival function of the susceptible population, y is the

vector of observed lifetimes and δ the vector of censoring indicators.
Result: ML estimate of θ = (α, β, γ).
p← 0;

θ(p) ← initialize(θ) ∈ Θ;

while ||θ(p) − θ(p−1)|| > ε do
/* E-step: */

for i = 1 to n do

zi ← δi + (1− δi)π(xi)S(yi|xi)/
(
1− π(xi) + π(xi)S(yi|xi)

)
|θ(p) ;

end

/* M-step: */

p← p+ 1;

α(p) ← argmaxα l1(α; z,x); /* l1 as (2.68) */

(β(p), γ(p))← argmaxβ,γ l2(β, γ; y, z,x, δ); /* l2 as (2.69) */

θ(p) ← (αp, βp, γp);

end

2.3 Assesing the goodness-of-�t

The literature provides several ways of assessing the appropriateness of a proportional hazards

model. Amongst others, the Schoenfeld residuals is one of the methods used to graphically

assess the appropriateness of the proportional hazards assumption for each covariate of the

model (Grambsch & Therneau, 2000). Although the method has subsequently been altered

and accommodated to mixture cure models (Heitjan, Li, & Wileyto, 2012), it is not applicable

to data with tied failures. Instead, QQ-plots can potentially be used to graphically assess the

goodness-of-�t for both the parametric and semi-parametric models. The appropriate form of

the QQ-plots is derived from the identity pFp(t) = F̂ (t), which yields the QQ-plot F−1p (F̂ (t)/p)

against t. This will induce problems as the argument F̂ (t)/p will occasionally surpass one, where

the inverse is not de�ned. Therefore, the di�erence between the estimated survival function and

the empirical survival function S(t; θ̂)− Ŝ(t) is adopted, similarly to (Chen, Tsay, Wu, & Horng,

2013). Contrary to the Schoenfeld residuals, other graphical methods including QQ-plots and

residual plots, are only appropriate for categorical variables. Then the data can be classi�ed

according to a set of homogeneous sub-populations, for which the empirical survival function

can be estimated by the Kaplan-Meier estimator. The estimator is only reliable when there

are a su�cient number of defaults recorded within the sub-population. Here, the goodness-

of-�t is only assessed for cohorts with more than 10 defaults. The residual are determined as

follows:

(1) Retrieve the subset of observations yij that has credit rating i and is of product type j. If

the number of defaults within yij does not exceed 10, we do not continue with the remaining

steps.

(2) Compute the empirical survival function Ŝij(t) of yij .

(3) Let the Sij(t; θ̂) be the survival function of some credit of product type j and credit rating

i, for the MLE θ̂.
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(4) Let the residual be the vector of di�erences Rij(t) = Sij(t; θ̂) − Ŝij(t). Since the empirical
survival function Ŝij(t) only jumps at the defaults, the residual is only plotted for times t

where a default has occurred.

It may be noted here that an alternative representation of the residual is given by

Rij(t) = Sij(t; θ̂)− Ŝij(t)

= (1− Fij(t; θ̂))− (1− F̂ij(t))

= F̂ij(t)− Fij(t; θ̂) (3.5)

which is the di�erence between the empirical and the estimated distribution functions. Then

the residual at time t is interpreted as the di�erence between the predicted and the empirical

cumulative default probability. Since the distribution function F is referred to as the (cumula-

tive) term structure of default probabilities, the accuracy of the term structure can be assessed

directly.

In addition to the absolute di�erence between the empirical and the estimated term structures,

we also present the relative di�erences de�ned by(
F̂ij(t)− Fij(t; θ̂)

)
/Fij(t; θ̂). (3.6)

3 Simulation study

A simulation study is conducted to assess the accuracy of the EM algorithm for the parametric

model. The purpose of the simulation study is to reveal potential biases of the algorithm in

terms of the estimated parameters and what type of settings or circumstances may in�uence the

bias. Ideally the attributes of the simulated data should be in close analogy with that of the

actual data. The circumstances targeted for primary investigation are

• High censoring rate. Since the actual data is heavily right censored, it is necessary to

investigate if the censoring rate cause biased parameter estimates. The censoring rate is

a�ected by both the mean of the true lifetime in relation to the length of the observational

window, as well as the distribution of the censoring mechanism.

• Lack of default events. Closely related to the censoring rate is the number of defaults

available for the estimation of each parameter. It is not necessarily the censoring rate

that induces biases in the parameter estimations, but the number of defaults. Here we

wish to establish a minimum number of defaults necessary for a reliable estimate of the

parameters.

Data is simulated from the underlying cure model by the inverse probability integral transform.

Knowing the distribution function FY of the random variable Y of the mixture cure model, Y

can be simulated through the inverse of its distribution function, F−1Y , evaluated at a uniformly

distribution r.v. U . The distribution function is given by FY (y|x) = π(x)F1(y|x), where F1 is the

distribution function of the sub-population at-risk, assumed to follow the Weibull distribution
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(2.7). Then the data is simulated from the following identity

Y = F−11

( U

π(x)

∣∣∣x). (3.7)

Since the argument takes values greater than one for π(x) < 1, where the inverse is not de�ned,

the argument is forced to take value one if the fraction is indeed larger. These will represent the

credit not at-risk. A random right censoring scheme is introduced to represents the reimburse-

ment of the credit. The random censoring times Ci are assumed independent and identically

distributed. To facilitate the interpretation and understanding of the censoring scheme in rela-

tions to the true lifetimes, the random censoring times are assumed to be Weibull-distributed.

Additionally, generalized Type I censoring as a result of the limited observational window is

introduced by assigning each observation a random start date, assumed to be uniformly dis-

tributed over the sampling period [Ts, Te]. If the length of the observed lifetime yi = min(Ti, Ci)

reaches beyond the end of the horizontal window, the observation is censored. The simulation

scheme is found in detail in algorithm 3.

The outline of the simulation study begins with de�ning three arti�cial homogeneous sub-

populations. The sample size of the simulated data is given by 3n, where n is the number

of observations within each sub-population. The groups are assumed to share the common

shape parameter γ, but have di�erent scale parameters. The scale of each group is determined

by the exponentiated linear regression exp(βTx), for the covariate vector x of dummy variables.

More speci�cally, the scale parameter is given by

θi = exp(βTxi) = exp(β0 + β2x2 + β3x3). (3.8)

The coe�cients are chosen such that there are di�erent levels of censored observations within the

sub-populations. Each group will represent a credit rating, whereof the third group will be the

credit rating extraordinary low default rate. Also, by altering the size n, the expected number

of defaults can be manipulated. This allows us to di�erentiate between the e�ect of low default

rate and the lack of default events. Finally, the EM algorithm is applied to the simulated data

in accordance with algorithm 2.

Algorithm 3: Simulating censored random variables of the Weibull cure model

Data: n is the sample size, x is the vectors of covariates, α, β, γ are parameter vectors of the

cure model, Ts and Te are the start and end date of the sampling window and c1 and c2
are scaling constants.

Result: Vector y = (y1, . . . , yn) of observed lifetimes.

for i = 1 to n do

T is ← Uniform(Ts, Te); /* Start date of observation i */

c←Weibull(c1β, c2γ;xi); /* Censoring time */

U ← Uniform(0, 1);
p← π(xi;α);

Ũ ← min(U/p, 1);

t← F−11

(
Ũ
∣∣xi;β, γ); /* Actual lifetime */

yi ← min(t, c, Te − T is); /* Observed lifetime */

end
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Results

1 Semi-Parametric: proportional hazards

Table 4.1 presents the estimated parameters of the semi-parametric mixture cure model. It

is reasonable to expect the proportion of susceptible credit (incidence) to be decreasing with

higher credit worthiness (higher credit rating by number). Analogously, the latency is likely to

be increasing with higher credit worthiness. This is represented by decreasing coe�cients αj or βj
for higher credit rating j. In accordance with the expectation, there is a clear tendency for both

the incidence and the latency to be decreasing with higher credit rating, with some deviancy.

The coe�cient corresponding to the latency of credit rating 19 (β19) is the only estimate that

clearly diverge from the overall trend. It is in fact positive when all other coe�cients, except

β2, are negative. The lower latency is on the other hand compensated by a signi�cantly larger

proportion of non-susceptible credit. Nonetheless, the possibility of the abnormal estimates

being a result of the lack of default events should not be rejected. The estimated coe�cients of

the latency seem to be particularly sensitive to the number of default events. For credit rating

16 through 19, where there are only a few default events the standard errors are much larger

than for the other estimates. The corresponding estimates for the incidence level does not vary

as much. Instead, the standard error tends to be increasing with the frequency at which default

events occur (although not explicitly presented, the default frequency can be inferred from table

3.1, and have as expected a decreasing tendency with higher credit rating).

A few examples of the estimated term structure is presented in �gure 4.1. Evident by both the

term structures as well as the estimated parameters, all credit ratings for all product types have

a proportion of non-susceptible that is larger than zero. Thus strengthening the validity of the

mixture cure model. Yet the most conspicuous element of �gure 4.1 is the poor �t of credit

rating 1 for both Corporate Lending as well as Credit Facilities. This is further illustrated by

the residuals presented in �gure 4.3 as well as in �gure A.1 and A.2 in appendix A. Figure 4.3

shows that for Corporate Lending, except for credit rating 1, 2 and 15, the residuals indicate a

relatively good �t over the �rst couple of years at the least. Whereas towards the end of the time

period, the empirical and the estimated term structures seem to diverge for most credit ratings.

The Kaplan-Meier estimate of the survival function tend to be unstable in the tails with high

censoring rate (Klein & Moeschberger, 1997), thus potentially augmenting the magnitude of the

residual. Therefore the estimated residual is not as reliable for large times t. The estimate is

likely to be unreliable for lower credit ratings as well, since the risk set Yi of the Kaplan-Meier

36



CHAPTER 4. RESULTS

Incidence (α) Latency (β)

α̂j SE(α̂j) β̂j SE(β̂j)

Intercept -0.018 0.354

Credit Rating

1
2 -0.562 0.507 0.034 0.357
3 -0.056 0.458 -0.396 0.312
4 -0.861 0.709 -0.112 0.497
5 -0.752 0.585 -0.435 0.389
6 -1.198 0.640 -0.796 0.495
7 -0.982 0.642 -1.074 0.415
8 -1.638 0.789 -0.694 0.585
9 -0.900 0.851 -1.743 0.583
10 -0.817 1.012 -2.204 0.744
11 -0.945 1.110 -2.046 0.763
12 -1.647 1.050 -2.217 0.833
13 -2.907 1.109 -1.151 0.871
14 -3.541 1.174 -1.628 0.976
15 -1.195 1.180 -3.046 0.889
16 -2.027 1.033 -2.089 1.734
17 -2.913 1.112 -2.382 3.681
18 -1.697 1.239 -3.426 5.831
19 -4.407 1.207 1.017 4.140

Product Class

Corporate Lending
Credit Guarantees -0.058 0.633 0.578 0.340

Credit Facilities -0.581 0.504 0.500 0.345
Other -0.998 0.878 0.572 0.628

Table 4.1: The table presents the estimated parameters of the semi-parametric mixture cure
model. The parameters are estimated by algorithm 1. The standard errors are computed by the
bootstrap procedure. In accordance with the linear model in (3.3), the coe�cients of Corporate
Lending and Credit Rating 1 are not estimated. Also, since the intercept of the latency is included
as a scaling factor of the baseline survival function, the estimate is not directly available and is
therefore omitted. Credit rating 20 and 21 are omitted since they have no defaults.

estimator (2.25) is exhausted at large t when the censoring rate is low, resulting in larger jumps

when a default event occurs. This can be see in �gure 4.3a where the residual has a lot of

variation between time points towards the end of the time horizon.

Furthermore, the overall �t for the Corporate Lending data tend to be superior than for Credit

Facilities, as well as for Credit Guarantees and Other. This is illustrated in �gure A.1 and A.2 in

appendix A, in which the residuals for most credit ratings within the other product types tend

to diverge from 0. The poor �t is either the result of a violation of the proportional hazards

assumption or that the e�ect of the credit rating on either the incidence or the latency is not

homogeneous across product types. The latter is e�ectively mitigated by extending the model

and introducing dummy variables for the interaction between credit rating and product type.

The model could also be estimated for the data of each product type separately. Nonetheless, the

�t for the Corporate Lending data is superior to the other product types because it constitutes a

larger proportion of the complete data, as depicted in table 3.1. Since the e�ect of credit rating

is averaged across product types, the observations of type Corporate Lending will collectively
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have greater in�uence on the maximum likelihood than the other products.

(a) Corporate Lending (b) Credit Facilities

Figure 4.1: The �gure displays examples of the estimated term structures (in black) as well as
the corresponding empirical term structures (in dim gray), for the semi-parametric mixture cure
model applied to the full data set.

(a) Corporate Lending (b) Credit Facilities

Figure 4.2: The �gure displays examples of the estimated term structures (in black) as well
as the corresponding empirical term structures (in dim gray), for the semi-parametric mixture
cure model applied to the Corporate Lending data (left) and the Credit Facilities data (right)
separately.
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(a) Rating 1 (bottom) and 2 (top). (b) Rating 3 (bottom), 4, 5, 6 (top).

(c) Rating 7 (bottom), 8, 9, 10, 11 (top). (d) Rating 12 (bottom), 13, 14, 15 (top).

Figure 4.3: The �gures displays the di�erence between the estimated and the empirical survival
functions for di�erent credit ratings of the Corporate Lending data for the semi-parametric model.
The residual may also be interpreted as the di�erence between the empirical and estimated dis-
tribution functions. The residual is only plotted at times t (days, vertical axis) where a default
has occurred. The dashed line represents the shifted mean of the residuals of each rating.
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(a) Rating 3 (b) Rating 4 (c) Rating 5

(d) Rating 6 (e) Rating 7 (f) Rating 8

(g) Rating 9 (h) Rating 10 (i) Rating 11

(j) Rating 12 (k) Rating 13 (l) Rating 14

Figure 4.4: Relative di�erence between estimated and empirical term structure for the semi-
parametric model applied to the Corporate Lending data.
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Applying the model to the data of each product type separately (excluding the dummy variable

for product type), similar to the parametric model, yields the estimated term structures in

�gure 4.2. Contrary to term structures in �gure 4.1, the �t of the �rst credit rating within

both product types is remarkably improved. By the residual plots for all product types, found

in �gure A.3 together with �gure A.4 and A.5 in appendix A, one can see that the residual

�uctuates near zero for most cohorts. As anticipated, the results indicate a superior �t. Figure

4.4 displays the relative di�erence between the estimated and the empirical term structure for

the Corporate Lending data. Although there is a considerable relative di�erence between the

estimated and the empirical term structure for the �rst one or two year for all credit ratings,

the residual plots indicate that the absolute di�erence for most credit ratings is negligible. On

the contrary, residual plot A.3a illustrate a signi�cant absolute di�erence for credit rating 1, 2

and 4. For these credit ratings, the term structure seem to be underestimated for small t. This

is especially problematic when one wants to estimate the default probability of new applicants,

e.g. the default probability over the �rst year. Nevertheless, subsequent to the �rst one or two

years, the relative di�erence is for most credit ratings stable and varies with only a few percent.

For a few credit ratings there exist spikes in the relative di�erence at some point in time, e.g.

for credit rating 11, 12 and 14 the di�erences peak at approximately 20 percent.

2 Simulation study

In the simulation study, we simulated 400 independent data sets of observations from a Weibull

mixture cure model in accordance with algorithm 3. First we let each data set be of size 600

(200 observations per arti�cial group). Then we doubled the size to 1200 (400 observations

per arti�cial group), with the same parameter values. Table 4.2 presents the average, bias and

standard error of the estimated parameters for the two sample sizes. The scale parameter was

modeled by the exponentiated linear regression, analogous to (3.4), and the shape parameter

was assumed constant for all groups. The proportion of susceptible individuals (incidence) was

modeled by a logistic regression. The parameter values was chosen such that the default rate

was decreasing, with the �rst group having the highest default rate and the third group having

the lowest default rate. The third group represented the credit rating with extremely low default

incidence. For size 600, the third group had no defaults in 35 of the 400 simulated data sets,

whereas for size 1200 the corresponding �gure was 1 out of 400. The lack of default events

seemed to have great a�ect on the bias of the corresponding scale parameter, β3. This is evident

by the average and bias of the estimates when the number of defaults within group 3, d3, is equal

to 0, less than or equal to 3 or larger than 3. For the 35 simulated data sets without defaults

in group 3, the bias of β3 was 7.443. There was no clear additional bias for the estimates of the

other parameters, except for the shape parameter which seemed to be slightly biased. For more

than 3 defaults in the low default rate group, the bias of the shape parameter had basically

reduced to zero.

Presumably the most important reason for the signi�cant biases of α and β is that the incidence

and the latency counteracts each other to some extent. The incidence determines the level

of the plateau, by scaling the term structure. This means that if the observational window

is not long enough to reach the point where the term structure plateaus, a higher incidence

level may be compensated by a longer latency. Here, the latency is in �rst hand determined

by the scale parameter. For the �rst group with scale parameter θ = exp(7), the conditional
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(on being susceptible) mean time until default is approximately 1000 days. This is relatively

small in comparison to the observational window which is close to 3000 days. The bias of all

parameters for the �rst group is also small, particularly for the scale parameter. For the second

and third group, the corresponding means are approximately 3000 and 5000, respectively. For

these groups, we record large biases in both the incidence as well as the scale parameters.

Despite signi�cant biases, we do not reject that the estimated term structure �ts closely with the

theoretical over the time horizon for which we have observed the times until default. However,

beyond the horizon of the observational window the �t of the estimated term structure (or

the survival function) will be poor since it plateaus at an erroneous level of non-susceptible

individuals. Consequently, the length of the term structure can only be e�ectively measured for

a time horizon as long as the observational window.

Incidence (α) Scale (β) Shape (γ)

α0 = 0 α2 = −1 α3 = −2 β0 = 7 β2 = 1 β3 = 1.5 γ = 0.5

n = 200

Avg. 0.099 0.084 -0.147 7.004 1.328 3.008 0.522
Bias 0.099 1.084 1.853 0.004 0.328 1.508 0.022
S.E. 0.635 1.503 1.741 0.261 0.599 5.160 0.143

dj3 = 0

Avg. 0.138 -0.135 -0.234 6.986 1.307 8.943 0.561
Bias 0.138 0.865 1.766 -0.014 0.307 7.443 0.061

dj3 ≤ 3

Avg. 0.088 0.062 -0.147 6.992 1.326 3.338 0.529
Bias 0.088 1.062 1.853 -0.008 0.326 1.838 0.029

dj3 > 3

Avg. 0.176 -0.062 -0.188 7.067 1.190 1.985 0.504
Bias 0.176 0.938 1.812 0.067 0.190 0.485 0.004

n = 400

Avg. 0.066 0.152 -0.039 7.015 1.355 2.310 0.500
Bias 0.066 1.152 1.961 0.015 0.355 0.810 0.000
S.E. 0.483 1.442 1.669 0.201 0.523 0.813 0.091

Table 4.2: The table presents the results of the simulation study for di�erent sample sizes. The
average, bias and standard error of the estimated parameters is computed from 400 simulated
data sets, each of size 3n, where n is the number of observations within each of the three subpop-
ulations. The table also shows the average and bias of all estimates where the number of failures
dj3 within group 3 of the jth simulated data set is equal to 0, less than or equal to 3 or more then
3 (for n = 200). The ratio of simulated data sets in which there are no failures in group 3 is
35/400 for n = 200 and 1/400 for n = 400.
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3 Parametric: Weibull

The parametric speci�cation of the model is applied on each product type separately. In this

section, we will primarily focus on the Corporate Lending data since it constitutes the largest

proportion of the data. The parameter estimates as well the residual for Corporate Lending are

presented in table 4.3 and �gure 4.6. The corresponding tables and �gures for Credit Guarantees,

Credit Facilities and Other are presented in appendix A. Additionally, an illustration of the

estimated term structures for Corporate Lending and Credit Facilities is found in �gure 4.5.

By comparing them to the estimated term structure of the semi-parametric model applied to

Corporate Lending and Credit Facilities separately, displayed in �gure 4.2, it is noticeable that

the term structures are similar in shape.

Incidence (α) Scale (β)

α̂j SE(α̂j) β̂j SE(β̂j)

Intercept 0.019 0.190 7.033 0.100

Credit Rating

1
2 -0.283 0.312 -0,069 0.172
3 -0.628 0.305 0.182 0.179
4 -0.908 0.278 0.233 0.169
5 -1.078 0.260 0.259 0.159
6 -1.860 0.214 0.375 0.129
7 -1.771 0.245 0.481 0.154
8 -1.909 0.245 0.487 0.155
9 -2.044 0.264 0.653 0.172
10 -2.011 0.483 1.057 0.319
11 -2.903 0.244 0.487 0.163
12 -3.134 0.405 0.803 0.300
13 -3.519 0.527 0.744 0.407
14 -4.850 0.350 0.344 0.290
15 -4.652 0.423 -0.497 0.344
16 1.436 - 3.650 -
17 -0.041 - 3.669 -
18 -0.292 - 3.094 -
19 -4.385 1.088 -0.332 0.878

Shape (γ) γ̂ SE(γ̂)

0.427 0.019

Table 4.3: The table presents the results of the parametric model applied to the Corporate Lending
data. The parameters are estimated by algorithm 2. The standard errors are computed from
the observed information matrix. Some diagonal elements of the inverted observation matrix are
negative, yielding complex values standard errors. These values have been omitted. In accordance
with the speci�cation of the model, the coe�cient for Credit Rating 1 is not estimated. Credit
rating 20 and 21 are omitted since they have no defaults.

Similarly as for the semi-parametric model, the estimated parameters in table 4.3 indicates a

clear tendency for the incidence to be decreasing with higher credit rating for product type

Corporate Lending. Unexpectedly, the scale parameter tends to increase until it peaks at credit

rating 10, from where it declines. Due to the relatively high standard error, this is likely to be

a spurious deviancy.
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The standard errors are estimated by the observed information matrix. For some estimates of

the parameters of a credit rating with few defaults, the corresponding diagonal element of the

inverted observation information matrix was negative. Since the variance cannot be negative,

this result must be erroneous. Instead, we believe the result to be a consequence of the high

unreliability of the estimate. Furthermore, �gure A.1 and A.3 reveals that the standard errors of

the incidence parameter tend to soar when the estimate is large. This result is on the other hand

comprehensible. The explanation is that for large α, the derivative of the incidence (determined

by the derivative of the logistic function) is small, i.e. for a sizable increase in α the increased

probability of being susceptible is negligible. In fact, the standard deviation of the parameters

of the incidence level is relatively high. In addition to the results of the simulation study, the

�nding is that the incidence is much more di�cult to estimate than the latency. Table 4.3, and

table A.2, A.1 and A.3 in appendix A, reveals no clear tendency for the standard error to be

increasing with the default rate. The increase in the standard error for the incidence parameters

of higher credit rating is likely to partially be the result of the decreasing derivative of the

logistic function as the argument increases, as discussed previously. The considerable increase

of the standard errors for credit ratings where the number of defaults is low indicates that the

reliability of the estimates is sensitive to the number of defaults rather than the default rate.

This result is important, since it allows one to e�ectively estimate the term structure of default

probabilities for portfolios with low default rate as long as there are su�ciently many default

events (or equivalently, if the size of the portfolio is su�ciently large).

(a) Corporate Lending (b) Credit Facilities

Figure 4.5: The �gure displays examples of the estimated term structures (in black) as well as
the corresponding empirical term structures (in dim gray), for the parametric mixture cure model
applied to the Corporate Lending data (left) and the Credit Facilities data (right) separately.
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The similar shape of the estimated parametric and semi-parametric (when applied to each prod-

uct type separately) term structure for the Corporate Lending data is further illustrated by the

residuals in �gure 4.6 together with the relative di�erences in �gure 4.7. Similarly as for the

semi-parametric model, the parametric model tend to underestimate the probabilities at the

early stages for low credit ratings, and overestimate the probabilities for higher credit ratings.

We do however emphasize that, once again with the exception of credit rating 1, 2 and 4, the

di�erence in absolute terms is in most cases negligible. In accordance with the residuals in �gure

4.6, the term structure of credit rating 1 and 2 is underestimated by approximately 2 percentage

units at the most over the �rst two years. The corresponding number for credit rating 4 is close

to 1 percentage unit. Despite the signi�cant underestimation of term structure relative to the

empirical term structure over the �rst two years, this could potentially be a result of a surge

in default events during the �nancial crisis in 2008. Considering the observational window over

which the data is sampled begins in 2007, the abundance of defaults can only appear in ap-

proximately the �rst two years. Although the events will in�uence the empirical term structure

beyond the two year horizon as well, the parametric model is not as �exible for small t, resulting

in a poor �t.
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(a) Rating 1 (bottom), 2, 3, 4, 5 (top). (b) Rating 6 (bottom), 7, 8, 9, 10 (top).

(c) Rating 11 (bottom), 12, 13, 14 (top).

Figure 4.6: The �gures displays the di�erence between the estimated and the empirical survival
functions for di�erent credit ratings for the Corporate Lending data. Equivalently, it may be
interpreted as the di�erence between the empirical and estimated distribution functions. The
residual is only plotted at times t (days, vertical axis) where a default has occurred. Residuals
for credit ratings with less than 10 defaults are omitted. The dashed line represents the shifted
mean of the residuals of each rating.
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(a) Rating 3 (b) Rating 4 (c) Rating 5

(d) Rating 6 (e) Rating 7 (f) Rating 8

(g) Rating 9 (h) Rating 10 (i) Rating 11

(j) Rating 12 (k) Rating 13 (l) Rating 14

Figure 4.7: Relative di�erence between estimated and empirical term structure for the parametric
model applied to the Corporate Lending data.
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Conclusions

In accordance with the forthcoming regulatory changes with the introduction of IFRS 9, �nancial

institutions will be required to estimate expected credit losses of �nancial contracts over their

entire lifetime. Thus necessitating a term structure of default probabilities. In this thesis we

estimated the term structure for heterogeneous credit portfolios. The heterogeneity was assumed

to be fully captured by the credit rating and the credit type. We applied a mixture cure model

to manage long-term survivors and plateaued survival functions of low default portfolios. Both

a parametric as well as semi-parametric mixture cure model was investigated. In the parametric

speci�cation of the model, the latency was modeled by a Weibull distribution, whereas in the

semi-parametric mixture cure model we utilized the proportional hazards model with a non-

parametric baseline survival function. For both models, the incidence was modeled by a logistic

link function. Due to the general intractability of the maximum likelihood of mixture models,

the parameters were estimated by the EM algorithm. Additionally, a simulation study was

conducted to asses the accuracy of the EM algorithm applied to the parametric mixture model

with data characterized by a low default incidence.

The semi-parametric mixture cure model was initially applied to the full data set, with dummy

variables for both the credit rating and the product type as covariates. The residual plots

in �gure 4.3, A.1 and A.2 indicated that the e�ect of the credit was not homogeneous across

product types, resulting in a poor �t with the empirical term structures. Instead the model

was applied separately to each data subset constituting entirely of Corporate Lending, Credit

Facilities or Credit Guarantees. The updated residuals in A.3, A.4 and A.5 as well as the plot of

relative di�erences in �gure 4.4 demonstrated a remarkable improvement of the overall �t. The

similarities of the estimated residuals as well as the relative di�erences for the parametric and

semi-parametric mixture cure models indicated a strong resemblance between the shape of the

estimated term structures.

Although the simulation study revealed that the estimated parameters of the parametric model

experienced heavy bias for few default events (particularly for no defaults), it did not seem

particularly sensitive to the censoring rate. This result is important, since it justi�es the appli-

cation of the model on credit data with low default rates as long as the sample is su�ciently

large, i.e. containing su�ciently many defaults. The simulation study did also �nd di�culties in

correctly estimating the incidence as well as the latency when the observational window was not

su�ciently long relative to the conditional (on being susceptible) mean longevity. This was pre-

sumed not to a�ect the �t of term structure over the observational window. Therefore, the term
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structure can only be e�ectively measured over a horizon with the length of the observational

window at the most.

Irregardless of what model we applied, we found di�culties in capturing the dynamics of the

default probability over the �rst one to two years. By the residual plots of the parametric

and semi-parametric model applied on the Corporate Lending data, in �gure 4.6 and A.3, the

absolute di�erence between the estimated and empirical term structure surpasses 2 percentage

units within a one year horizon for some credit ratings. This is of course problematic, especially

considering that the one year probability of default is commonly used within the context of

risk analysis. In accordance with the plots of the relative di�erences for both models, displayed

in �gure 4.7 and 4.4, the estimated term structures di�ers for most credit ratings by only a

few percent to the empirical term structures at longer horizons. This indicate a more reliable

estimate at longer horizons.

In conclusion, since the e�ect of the credit rating is not homogeneous across product types, the

mixture cure model is favorably applied to each product type separately. Then the estimated

term structures of the parametric and the semi-parametric models had strong resemblance. The

model had di�culties capturing the dynamics of the term structure over the �rst one to two

years. Beyond that the model �t well to the empirical term structures. Moreover, without

being able to rigorously include truncated data, the term structure can at best be e�ectively

estimated over a time horizon with the length of the observational window. Thus requiring data

to be gathered over a su�ciently long time period. Additionally, neither model produce unbiased

estimates of the term structure for credit ratings without default events. The parametric model

was however not sensitive to the censor rate, therefore the term structure can be estimated as

long as the data include su�ciently many default events. Moreover, the model seem particularly

applicable to corporate loan data, although it had decent performance on other credit types as

well.

The lack of default events can be mitigated if one does not consider prede�ned credit ratings,

and instead use characteristics of each credit as the explanatory variables. If some covariate

is not associated with a default, it can be regarded as if it a�ects neither the latency nor the

incidence. This would result in an individual term structure of each credit. It would on the

other hand be problematic to validate the model. Generally, the �t of the mixture cure model

is assessed graphically by comparison of the empirical estimates of the survival function. For

continuous variables or cohorts of few defaults this is rendered impossible. Therefore, methods to

e�ciently validate the model is needed. This could potentially form the basis of future research.

Furthermore, this study has not considered events in calendar time. It is reasonable to assume

that credit events surge during �nancial crises, e.g. the �nancial crisis in 2008. Events in calendar

time are diluted over the de�nition of time in our model. Instead it would be relevant for future

research to consider multiple time scales, whereof one represents calendar time. Subsequently

the macroeconomic climate can be represented by either frailty variables or time dependent

covariates. Frailty variables can also be used to introduce a dependence structure for the timing

of default between credits. Investigating other types of dependence structures would also serve

as a valid topic for future research.
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Appendix A

Figures and tables

1 Semi-parametric

(a) Rating 1 (bottom), 3, 4, 5, 6, 7 (top). (b) Rating 8 (bottom), 9, 10, 11, 12, 13 (top).

Figure A.1: The �gures displays the di�erence between the estimated and the empirical survival
functions for di�erent credit ratings of the Credit Guarantees data. The residual may also be
interpreted as the di�erence between the empirical and estimated distribution functions. The
residual is only plotted at times t (days, vertical axis) where a default has occurred. The dashed
line represents the shifted mean of the residuals of each rating.
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(a) Rating 3 (bottom), 4, 5, 6, 7 (top).

(b) Rating 3 (bottom), 4, 5, 6, 7 (top). (c) Rating 8 (bottom), 9, 10, 11, 12, 13 (top).

Figure A.2: The �gures displays the di�erence between the estimated and the empirical survival
functions for di�erent credit ratings of the Credit Facilities data. The residual may also be
interpreted as the di�erence between the empirical and estimated distribution functions. The
residual is only plotted at times t (days, vertical axis) where a default has occurred. The dashed
line represents the shifted mean of the residuals of each rating.
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Corporate Lending

(a) Rating 1 (bottom), 2, 3, 4 (top).

(b) Rating 5 (bottom), 6, 7, 8, 9 (top). (c) Rating 10 (bottom), 11, 12, 13, 14 (top).

Figure A.3: The �gures displays the di�erence between the estimated and the empirical survival
functions for di�erent credit ratings of the semi-parametric model applied exclusively on the
Corporate Lending data. The residual may also be interpreted as the di�erence between the
empirical and estimated distribution functions. The residual is only plotted at times t (days,
vertical axis) where a default has occurred. The dashed line represents the shifted mean of the
residuals of each rating.
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Credit Guarantees

(a) Rating 1 (bottom) and 3 (top).

(b) Rating 4 (bottom), 5, 6, 7, 8 (top). (c) Rating 9 (bottom), 10, 11, 12, 13 (top).

Figure A.4: The �gures displays the di�erence between the estimated and the empirical survival
functions for di�erent credit ratings of the semi-parametric model applied exclusively on the
Credit Guarantees data. The residual may also be interpreted as the di�erence between the
empirical and estimated distribution functions. The residual is only plotted at times t (days,
vertical axis) where a default has occurred. The dashed line represents the shifted mean of the
residuals of each rating.
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Credit Facilities

(a) Rating 1 (bottom) and 2 (top).

(b) Rating 3 (bottom), 4, 5, 6, 7 (top). (c) Rating 8 (bottom), 9, 10, 11, 12, 13 (top).

Figure A.5: The �gures displays the di�erence between the estimated and the empirical survival
functions for di�erent credit ratings of the semi-parametric model applied exclusively on the
Credit Facilities data. The residual may also be interpreted as the di�erence between the empirical
and estimated distribution functions. The residual is only plotted at times t (days, vertical axis)
where a default has occurred. The dashed line represents the shifted mean of the residuals of each
rating.
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2 Parametric

(a) Rating 1 (bottom), 3, 4, 5, 6, 7, 8 (top). (b) Rating 9 (bottom), 10, 11, 12, 13 (top).

Figure A.6: The �gures displays the di�erence between the estimated and the empirical survival
functions for di�erent credit ratings for the Credit Guarantees data. Equivalently, it may be
interpreted as the di�erence between the empirical and estimated distribution functions. The
residual is only plotted at times t (days, vertical axis) where a default has occurred. Residuals
for credit ratings with less than 10 defaults are omitted. The dashed line represents the shifted
mean of the residuals of each rating.

(a) Rating 1 (bottom), 2, 3, 4, 5, 6, 7 (top). (b) Rating 8 (bottom), 9, 10, 11, 12, 13 (top).

Figure A.7: The �gures displays the di�erence between the estimated and the empirical survival
functions for di�erent credit ratings for the Credit Facilities data. Equivalently, it may be inter-
preted as the di�erence between the empirical and estimated distribution functions. The residual
is only plotted at times t (days, vertical axis) where a default has occurred. Residuals for credit
ratings with less than 10 defaults are omitted. The dashed line represents the shifted mean of the
residuals of each rating.
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Incidence (α) Scale (β)

α̂j SE(α̂j) β̂j SE(β̂j)

Intercept 0.346 0.942 7.348 0.359

Credit Rating

1 - - - -
2 -2.195 1.101 -0.620 0.554
3 -1.850 0.993 -1.041 0.419
4 -1.674 0.976 -0.843 0.399
5 -0.500 1.469 0.304 0.612
6 -1.674 0.975 -0.136 0.401
7 -1.817 1.025 0.113 0.455
8 -2.365 0.958 -0.452 0.383
9 -1.908 1.153 0.398 0.571
10 -3.454 0.966 -0.688 0.400
11 -2.323 1.151 0.323 0.587
12 -3.429 1.028 -0.070 0.497
13 -3.622 1.059 -0.323 0.536
14 1.591 68.097 2.572 5.516
15 -4.385 1.387 -0.184 0.955
16 5.586 101.683 2.107 0.746
17 5.255 74.346 1.411 0.747

Shape (γ) γ̂ SE(γ̂)

0.454 0.044

Table A.1: The table presents the results of the parametric model applied to the Credit Guarantees
data. The parameters are estimated by algorithm 2. The standard errors are computed from the
observed information matrix. In accordance with the speci�cation of the model, the coe�cient
for Credit Rating 1 is not estimated. Credit rating 18, 19, 20 and 21 are omitted since they have
no defaults.
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Incidence (α) Scale (β)

α̂j SE(α̂j) β̂j SE(β̂j)

Intercept -1.724 0.319 7.281 0.241

Credit Rating

1 - - - -
2 0.743 0.985 0.558 0.584
3 0.122 0.353 -0.162 0.258
4 0.018 0.383 -0.097 0.288
5 0.272 0.336 -0.133 0.252
6 -0.145 0.332 -0.013 0.251
7 -0.151 0.338 0.058 0.255
8 -0.710 0.333 0.046 0.252
9 0.244 0.839 0.878 0.508
10 -0.614 0.384 0.305 0.293
11 -0.500 0.346 0.122 0.263
12 -1.220 0.474 0.326 0.370
13 -1.801 0.404 -0.225 0.307
14 7.017 - 3.204 -
15 -3.008 0.844 -0.237 0.659
16 3.246 - 1.930 -

Shape (γ) γ̂ SE(γ̂)

0.540 0.026

Table A.2: The table presents the results of the parametric model applied to the Credit Facilities
data. The parameters are estimated by algorithm 2. The standard errors are computed from
the observed information matrix. Some diagonal elements of the inverted observation matrix are
negative, yielding complex values standard errors. These values have been omitted. In accordance
with the speci�cation of the model, the coe�cient for Credit Rating 1 is not estimated. Credit
rating 17, 18, 19, 20 and 21 are omitted since they have no defaults.
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Incidence (α) Scale (β)

α̂j SE(α̂j) β̂j SE(β̂j)

Intercept -4.346 0.597 5.190 0.397

Credit Rating

1 - - - -
2 3.161 0.916 1.522 0.549
3 4.591 3.166 2.586 1.115
4 2.432 0.801 1.230 0.510
5 1.750 0.824 1.613 0.549
6 1.278 0.721 1.546 0.480
7 2.160 0.834 2.069 0.564
8 0.278 1.003 1.832 0.717
9 -0.880 0.989 1.547 0.689
10 7.801 58.353 4.700 1.171
11 12.393 71.317 3.680 0.418
12 1.564 10.172 3.371 5.945
13 6.984 38.503 5.247 1.652
14 8.406 106.534 5.039 1.269

Shape (γ) γ̂ SE(γ̂)

0.554 0.075

Table A.3: The table presents the results of the parametric model applied to the data of product
class Other. The parameters are estimated by algorithm 2. The standard errors are computed
from the observed information matrix. In accordance with the speci�cation of the model, the
coe�cient for Credit Rating 1 is not estimated. Credit rating 15 through 21 are omitted since
they have no defaults.
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