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Sammanfattning

I detta examensarbete var målet att föreslå en metod för att validera
marknadskurvan för råvaruterminer och utvärdera den föreslagna me-
toden. Examensarbetet är begränsat till marknadskurvor för råvaru-
terminer med säsongsberoende och likafördelade förfallodagar upp till
ett år. Valideringsmetoden som föreslås är att med en teoretisk modell
skapa en referenskurva som kan jämföras med marknadskurvan. Me-
toden för att skapa referenskurvan är att simulera terminspriser med
seasonal cost-of-carry model och sedan interpolera linjärt mellan de
simulerade punkterna.

Valideringsmetoden appliceras på råvaruterminer med UK naturgas
som underliggande tillgång och handlas på Intercontinental Exchange.
Det historiska dataset som användes utgörs av observationsperioden
2011-01-01 till 2013-11-30. Referenskurvor skapades för varje handels-
dag i december 2013 och verkade uppfylla det förväntade säsongsbe-
roendet hos naturgas. Analyser visade dock att modellantagandena
inte alltid var uppfyllda av de genererade processerna från historiskt
data. Observationsperioden kortades ned men resultatet blev endast
något bättre, dock uppfyllde fortfarande inte några av processerna de
uppställda antagandena. Resultat visade också att vissa av processerna
för båda observationsperioderna kunde reduceras till slumpvandringar.

Slutsatsen av arbetet är att den föreslagna metoden inte är lämplig
för validering av marknadskurvan för den analyserade tidsperioden.
Orsaken till detta var att modellantaganden inte var uppfyllda för al-
la tillståndsvariabler samt att några av processerna kunde reduceras
till slumpvandringar. Dock är det möjligt att modellantaganden skul-
le kunna uppfyllas för en annan tidsperiod. Eftersom det är svårt att
använda en metod för validering om historisk data inte alltid uppfyller
modellantaganden och om processerna inte är stationära drogs slut-
satsen att den föreslagna metoden inte är lämplig för den analyserade
råvaran.
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Abstract

In this thesis the aim was to propose a method that could be used
to validate the market commodity forward curve and analyse if the
method is possible to apply. The thesis is limited to forward curves
with equally spaced maturities up to one year and seasonal price pat-
terns. The method suggested is to construct a reference curve by simu-
lating futures prices with the seasonal cost-of-carry model and perform
linear interpolation between these simulated values.

The validation method was applied to UK natural gas futures traded on
the Intercontinental Exchange for every trading day in December 2013.
Estimates were based on settlement prices for the period 2011-01-01
to 2013-11-30. Resulting reference curves appeared to capture the sea-
sonal behaviour of UK natural gas in a correct way and the shape of
the curve seemed to follow the market curve. However the majority
of observed time series representing the state variables did not fulfil
model assumptions. Therefore the observation period was shortened
to 2012-07-01-2013-11-30 but the result was only slightly improved.
It was still the case that some of the state variable processes did not
follow model assumptions. By performing likelihood ratio test it was
found that for some state variables the speed of mean reversion could
be set to zero.

The conclusion was that the proposed method is not appropriate to
use for validating the market curve for the considered contracts. This
is because model assumptions for state variables were not always ful-
filled and some of the state variable process could be reduced to random
walks. Perhaps model assumptions are fulfilled if the method is ap-
plied to another time period. However it is difficult to use a method
for validation if historical data sometimes suggests that times series
are not stationary and do not fulfil model assumptions. Finally the
conclusion was drawn that for the chosen commodity the validation
method is not applicable.
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1 Introduction

In the past, trading with commodities was mainly executed by exchanging
the physical commodity for cash at different trading sites. Today commod-
ity trading includes futures, forwards and many other instruments attracting
investors wanting exposure to commodity price risk [11]. The investors in-
vesting in the commodity market often want to prognosticate trends of future
spot prices analyse future demand and supply and compute calculations of
different risk measures such as VaR (Value-at-Risk) and P&L (Profit and
Loss). These analysis are often performed using a market forward curve [9].
Therefore it is of great importance that the forward curve reflects market
prices in a correct way. In some cases market prices constructing the forward
curve are erroneous due to technical errors. This affects the forward curve
resulting in errors when calculating for example P&L. A method that could
validate the market curve could contribute to find these erroneous prices
making it possible to correct risk measurement calculations.

The objective of this project is to propose a method that could be used to
validate the market commodity forward curve so that price errors due to
technical errors are found more easily. In this thesis the validation method
suggested is to create a reference curve using theoretical models and com-
pare this curve to the market curve, in order to identify parts that deviate
significantly indicating erroneous prices. The thesis will be limited to valida-
tion of forward curves with seasonal price patterns and with equally spaced
maturities up to one year.

The report will be outlined as follows; starting with a section including
relevant background information, then a more detailed description of the
project objectives, following with a presentation of different theoretical mod-
els including a presentation of the chosen model. The suggested validation
method is applied on a chosen commodity which is presented in the result
section. After that the results are evaluated together with model assump-
tions and parameter estimations, followed by a summery and conclusion
section.
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2 Background

All commodities are traded on the spot market, where the exchange of com-
modity and cash take place with immediate exchange or with some small
delay due to technical reasons. In the past, trading with commodities was
only made at the spot market where buyer and seller met at certain trading
sites to exchange cash for the physical commodity. During the 18th century
farmers began to sell the crop long before harvest. This is known today
as forward transactions and was the beginning for forward contracts. In
the middle of the 19th century a demand grew for contracts with a pre-
determined commodity quality, size and delivery location. This led to the
opening of commodity exchanges such as Chicago Board Of Trade (CBOT)
and New York Cotton Exchange (NYCE). Contracts trade on these com-
modity exchanges were so called futures contract. Today commodity trading
is a big part of the world’s economy exposing manufacturers, sellers, banks
and other financial institutions to commodity price risks. Trading with com-
modities today still involve trading on the spot market but also in futures,
forwards and options, making it possible to optimally hedge future demand
and supply [11].

Forward curves are of great importance for commodity trading and strategic
decisions about production and storage. The curves are also used to prog-
nosticate trends for future spot price and in risk management for calculation
of different risk measures such as VaR and P&L. In this report the market
commodity forward curve is constructed by linear interpolation between a
set of benchmark points. These benchmark points consist of a collection of
futures prices with increasing time to maturity. The left end of the curve
consists of the first-to-expire future and the right end of the contract with
the most distant maturity. When the first-to-expire future matures, the
entire curve is switched to the left and the next-to-expire future will then
construct the left end of the curve [9].

In the following section the definition of forward and futures contract will
be presented including differences among these two contracts, followed by a
presentation about commodity classification. Finally the relation between
spot and futures prices will be presented together with relevant facts about
the forward curve.

2.1 Futures and forward contracts

Forward and futures contracts can be used to hedge future demand and
supply of certain assets. Both these contracts are agreements between two
parties to exchange cash for a certain asset at a future time point.

8 August 16, 2015
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The underlying asset could be an investment asset or a consumption asset.
Examples of consumption assets are aluminium, copper, crude oil which is
purchased mainly for consumption. Assets that are categorized as invest-
ment are purchased for investment reasons giving an income from holding
the asset. Examples of investment assets are gold, silver, stock and bonds.
There are also assets that are categorized both as consumption asset and
investment assets.

In this report futures contracts written on commodities are considered.
Commodities are in most cases consumption assets with a few exceptions
such as silver and gold. Forward and futures have the same purpose they
both hedge for future delivery of a certain asset. However there are some
differences between these two contracts. Below different properties among
these contracts are going to be described.

Forward contracts

Forward contracts are traded over-the-counter (OTC) exposing buyer and
seller for the risk that one part may not fulfil its contractual obligation.
This risk is known as credit risk. Forward contracts are settled at maturity
exposing the buyer and seller for loss or gain only at maturity [1].

Futures contracts

Futures contract written on commodities are traded on specialized exchange
where each contract is standardized, meaning that every contract written
on the same commodity at a certain exchange has the same size, quality of
underlying commodity and delivery location. Since futures are traded on or-
ganized exchange the clearing house acts as counterpart for seller and buyer
respectively, eliminating the credit risk. Futures contracts are on contrary
to forward contracts settled every day exposing both seller and buyer to
profit or loss every trading day [1]. The settlement procedure can be shown
by considering a futures contract that has decreased in value between two
trading days. Then the buyer of the contract must add cash to the position
equal to the loss in order to adjust the position. This cash deposit is paid to
the clearing house and is calledmargin call. On the other hand if the value of
the contract increases the buyer of the contract will make an instantaneous
gain. In order to trade on these specialized commodity exchanges there is
also a fee that has to be paid in order to place an order. This fee is called
margin deposit. Both the margin call and the margin deposit contributes to
decreasing the credit risk to approximately zero [11].

In this report only futures contracts are going to be considered. However
under some assumptions the same modelling approaches can be used for both
futures and forwards contracts. When interest rates are constant the futures
price and forward price are equal. For commodities there are other risk

August 16, 2015 9



Master’s Thesis Applied Mathematics

factors affecting the price more than interest rate. Hence it will be assumed
throughout the report that the interest rate is constant and therefore the
term forward and futures price will be used conversely [9].

2.2 Classification of commodities

There are many differences among commodities when it comes to modelling
framework. In this section classification groups for commodities are going
to be presented and discussed.

There exists two major classification groups for commodities this is the di-
vision between storable commodities and not storable commodities. Most
commodities belong to the group of storable commodities. Example of such
is copper, natural gas and crude oil. These are all possible to store often
for some cost. Examples of commodities that are not possible to store are
weather, electricity and emission claims. However among commodities in
these two groups there are significant differences.

The storable commodities can be divided into three smaller groups these
are commodities that are produced and consumed continuously, produced
continuously but consumed seasonally and lastly produced seasonally but
consumed continuously. Examples of commodities that do not experience
seasonality are industrial metals for example aluminium and copper. Com-
modities such as heating oil and natural are examples of commodities that
are produced continuously however the demand heavily depends on season.
Hence these commodities have a seasonal price dependence. For agricultural
commodities such as grains, coffee and soya beans the production is seasonal
but demand is continuous over the year. Therefore it is often the case that
agricultural commodities also have a seasonal price dependence [9].

2.3 Relation between forward and spot price

In this section relation between spot and futures price for investment and
consumption assets will be presented and discussed.

2.3.1 Investment assets

The relation between forward and spot price when storage costs are zero is
given by the following relation

F (t, T ) = Ste
r(T−t), (1)

where St is the current spot price, r is the risk free interest rate, t is the
current time and T is the maturity date.
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In order to investigate arbitrage arguments it can be assumed that t = 0
and that F (0, T ) > S0e

rT . If this is the case an investor could borrow the
amount S0 at t = 0 for a time period T . Buy the underlying asset for the
price S0. At the same time the investor can sell a forward contract with
delivery date T . The profit would then be

Profit1 = F (0, T )− S0e
rT .

If the opposite case would occur an investor holding the asset could apply
the same strategy but in opposite direction. For that case the investor could
sell the asset at t = 0 for S0 and place the money in a risk free bank account
with interest rate r. At the same time the investor should buy a forward
contract maturing at date T . The profit using this strategy would be

Profit2 = S0e
rT − F (0, T ).

For both these cases the forward price will adjust to the spot price making
Profit1 and Profit2 equal to zero. Hence relation (1) will hold and no ar-
bitrage opportunities exists. This argument will hold only for investment
assets when the cost of storage is zero. This is because the forward price
will adjust to the spot price. For investment assets that are storable for a
certain cost denoted c, relation (1) must be modified to

F (t, T ) = Ste
(r+c)(T−t) (2)

[1].

2.3.2 Consumption assets

For commodities such as gold and silver relation (2) will hold since these are
also investment assets and the futures price will adjust to the spot price if
the forward price is greater than the discounted spot price or if the oppo-
site case arise. However most commodities are consumption assets having
a consumption value meaning that they are held mainly for consumption
now or in the future. Hence if the futures price is greater or less then the
discounted spot price the forward price would probably not adjust to the
spot price. The reason for this is because industries and companies holding
the physical commodity are unwilling to sell it on the spot market and buy
futures or forward contracts since these cannot be manufactured [1].

For commodities that are consumption assets the advantage of holding the
physical commodity versus futures or forwards is called convenience yield
and will be denoted δ′. For consumption assets the relation between spot
and futures price can be modified to the following relation known as the
classical cost-of-carry relation
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F (t, T ) = Ste
(r+c−δ′)(T−t) (3)

[12].

Letting δ = c − δ′ denote the convenience yield the above relation can be
can be written as

F (t, T ) = Ste
(r+δ)(T−t) (4)

[9].

2.4 Forward curve

The forward curve can show many different shapes depending on the price
properties for the considered commodity. In this section the dynamics of the
forward curve is going to be presented starting with the concepts contango
and backwardation.

2.4.1 Different shapes of forward curves

When prices of futures with shorter time to maturity are greater than prices
for more distant the forward curve will have a downward slope. This is
called that the forward curve is in backwardation. By observing the classical
cost-of-carry relation given by (3) one can conclude that if the convenience
yield is greater than the cost of storing and the risk free rate the market will
be in backwardation. An example of a market in backwardation is shown
in Figure 1 which illustrates the market curve for futures written on Brent
Crude traded on the Intercontinental Exchange (ICE).

Figure 1: The market forward curve for ICE Brent Crude futures, where
settlement prices are in cents per tonne. In the figure the contract maturing
next month is January 2013 contract [8].
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On the other hand if prices for futures with shorter maturities are less than
prices for more distant the curve will be upward sloping, this is called that
the curve is in contango. In order for the market to be in contango the
convenience yield must be less than the cost of storage and the risk free
interest rate, see equation (3).

For commodities where the demand or supply depends heavily on season,
the forward curve will show a seasonal pattern. The seasonal pattern can
be explained by limited storing and transportation possibilities that do not
meet seasonal demands [9]. An example of a forward curve with seasonal
behaviour is shown in Figure 2, where the price peaks for contracts maturing
in the winter months and drops significantly for contracts maturing in the
summer.

Figure 2: The market forward curve for UK natural gas traded on ICE
where settlement prices are per therms in sterling and pence. In the figure
the contract maturing next month is the January 2014 contract [5].

There are several reasons for why a market is in backwardation, some of
these are low storage levels, strongly rising prices, dramatic price changes,
and lack of the commodity. A market could be in contago due to high
storage levels, small price changes and abundance of the commodity [3].

Forward contracts that mature in a near future are often more volatile than
more distant maturities. Since the left end of the forward curve consist of
futures with shorter maturities this end of the curve will be more volatile.
This effect is known as Samuelson effect. Empirical observations also suggest
that futures contract with different maturities are not perfectly correlated.
In most cases the entire forward curve moves up and down together but can
also change form in many other complex ways [12].

August 16, 2015 13
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3 Objectives

The aim of this project is to find, a method that could be used to validate
the market forward curve for commodities and investigate if the method is
possible to apply. Validation of the market forward curve will here be re-
ferred to as a method for controlling if the curve correctly reflects market
prices for a certain day. The curve is constructed by linear interpolation be-
tween benchmark points given by market futures prices. In some cases these
prices are wrong due to different technical errors. Since the forward curve is
often used for risk management purpose. These erroneous market prices can
lead to incorrect calculation of different risk measures. Therefore validation
of the market curve is of great importance because it can contribute to find
erroneous prices more easily.

In this thesis a market curve is validated with the use of a reference curve.
This method could control if one or several benchmark points in the market
curve deviate significantly from the reference curve. The deviations could
be indications that some of the market values might be incorrect. The scope
of this thesis is limited to an analysis of futures experiencing seasonal price
patterns and with equally spaced maturities up to one year.

In order to use the proposed method for validation the simulated reference
curve must in a proper way reflect market observed prices. The method
chosen to create the reference curve should also incorporate different price
properties among different commodities such as seasonality and preferably
be possible to apply to a range of different commodities. Hence in order to
accomplish the project goal one can formulate the following objectives:

• Choose a theoretical model that could be used to create the reference
curve.

• Choose commodity futures that have equally spaced maturities up to
one year and seasonal price pattern and apply the validation method
on an arbitrary time period.

• Analyse the result and check if model assumptions are fulfilled.

• Conclude if the suggested method is possible to apply for validation
of the market curve for the considered commodity.

14 August 16, 2015
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4 Different models

Examples of modelling approaches for commodity forward curves are; the
martingale based approach and the static arbitrage based approach [10].

Futures price models using the martingale approach are based on the fact
that forward prices are martingales under the risk neutral measure Q. Ex-
amples of models using the martingale approach are the one factor and
multi factor model proposed by [12]. These models can be compared to
Heath-Jarrow-Morton (HJM) models for yield curve modelling [9].

The methodology for the static arbitrage based approach is based on first
determine a number of stochastic processes that drive the evolution of fu-
tures prices. The next step is to use the dynamics of the chosen factors
together with no arbitrage arguments to derive relations for futures prices.
An example of a model using static arbitrage based approach is the seasonal
cost-of-carry model presented by [10], where dynamics that drive the forward
price are given by two stochastic process and a deterministic term. Other
examples are the one factor model that models the spot price as a mean
reverting process, the two factor model presented by [18] that model the
spot price and convenience yield as stochastic processes and the three factor
model see [15] that also models the interest rate as a stochastic process [10].

In the following sections some methods using the martingale based approach
are going to be presented and later some methods using the static no ar-
bitrage approach. Lastly properties of the presented models are going to
be discussed followed by a presentation of the model chosen to create the
reference curve.

4.1 Martingale based approach

In this section example of models using the martingale based approach will
be presented, starting with the one factor model and then the multi factor
model.

One uncertainty factor

In the one factor model the dynamics that drive the evolution of the forward
price is given by the following SDE

dF (t, T ) = F (t, T )σ(t, T )dBt, (5)

where dBt is a differential of a Brownian motion and σ(t, T ) = σe−α(T−t) is
the volatility at time t for a contract maturing at date T . The parameter σ
reflects the entire forward curve volatility and the constant α gives the speed
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of how fast the volatility decrease with time to maturity. In this model it
is the Brownian motion that accounts for the uncertainty. One can notice
that the SDE describing the dynamics has the solution of a GBM with no
drift term. Since the dynamics do not include a drift term futures prices
derived using this model are martingales.

From equation (5) it can be noticed that the volatility is exponentially de-
creasing with time to maturity. Hence the one factor model models short
maturity contract as more volatile than more distant. This coincides with
Samuelson Hypothesis. However empirical observation suggests that it is not
really the case that contracts with far away maturities have volatilities ap-
proaching zero. Empirical observations also suggest that the forward curve
seem to changes shape in more complex ways than one factor of uncertainty
can capture. These lead us to the multi factor model that will be discussed
in the following section where several uncertainty factors drive the evolution
of the forward curve [12].

Multi factor model

The behaviour of the forward curve is more complicated than the one factor
model can capture. If several uncertainty factors are taken into considera-
tion one arrives with a more general model called a multi factor model. In
this model the dynamics are given by the following SDE

dF (t, T ) = F (t, T )
n∑
i=1

σi(t, T )dBi
t, (6)

where dBi
t are differentials of Brownian motions and σi(t, T ) are volatilities.

The n independent Brownian motions multiplied with the corresponding
volatility function reflect how the curve in each point is affected by each
uncertainty factor. In most cases three factors are enough to reflect the
evolution of the curve. These factors symbolise "shift", "tilt" and "bending"
the forward curve. The volatility functions and the number of uncertainty
factors can be obtained by performing PCA (Principal Component Analysis)
on historical price data.

For futures written on commodities experiencing seasonal price patterns the
general multi factor model is not directly applicable but must firstly be
modified, see [12].

4.2 The static arbitrage based approach

The static arbitrage based approach is based on finding dynamics that drive
the evolution of the futures prices and then using this factor to derive rela-
tions for futures price while not introducing arbitrage opportunities. This
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means that the futures price should be equal to the current price of the
physical commodity and the price of storing it until maturity.

There exist several modelling methods under this approach. In this section
two of them will be presented. The first model that is presented uses the spot
price and convenience yield as stochastic factors that drive the evolution of
futures prices. The second model modifies the classical of the cost-of-carry
relation by substituting the spot price with the average futures price and
introducing a constant representing seasonality [9].

Gibson and Schwartz two factor model

This model is an extension of the one factor models that only models the spot
prices as a mean reverting process. In the two factor model the convenience
yield is also assumed to be stochastic and represented by a mean reverting
process. The stochastic factors in the two factor model have dynamics given
by the following equations

dSt = (µ− γt)Stdt+ σ1StdB
′
t

dγt = α′(α− γt)dt+ σ2γtdB
′′
t .

In the above set of equations γt represents the convenience yield, St is the
spot price, α′ is the speed of mean reversion for the convenience yield, µ and
α are constant mean, dB′t and dB′′t are differentials of Brownian motion and
σ1 and σ2 represent the volatility. In this model the Brownian motions B′t
and B′′t are positively correlated according to the following relation

dB′′t dB
′
t = cdt,

where c is the correlation constant. The reason for choosing correlated Brow-
nian motions is because when the spot price increases, commodity inventory
levels drop. The increase in spot price and drop in inventory leads to an
increasing convenience yield which result in limited amounts of commodity
available. The limited availability will reflect in an increase of futures and
spot prices. However the increase of futures price should be less than for
the spot price. If the other case occurs, that is to say if inventories levels
increase, then it should be the other way around. In this model the interest
rate is assumed to be constant, however there exists an extension of the two
factor model called the three factor model that also models the interest rate
as a stochastic process [15].

These chosen stochastic factors can then be used to derive relation for futures
prices while still preserving no-arbitrage arguments by using the cost-of-
carry relation [10].
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The seasonal cost-of-carry model

The model presented by [10] is based on the static arbitrage approach and
includes a modification of the classical cost-of-carry relation, by replacing
the spot price with the average futures price and introducing a new pa-
rameter that reflects seasonal features. According to the model the state
variables that drive the evolution of futures prices are given by the stochas-
tic convenience yield and the average futures price. The model is called
seasonal cost-of-carry model and the forward price at time t for a contract
with maturity date T is given by

F (t, T ) = F̄ (t)es(T )−δ(t,T−t)(T−t), (7)

where F̄ (t) is the average futures price for day t defined by

F̄ (t) =
(

n∏
T=1

F (t, T )
) 1
n

, (8)

where n is the most faraway maturity. Taking the logarithm of the above
relation gives the logarithm of the average futures price

ln(F̄ (t)) = 1
n

(
n∑

T=1
ln(F (t, T ))

)
. (9)

For commodities experiencing seasonality the number of contracts used to
construct ln(F̄ (t)) must be multiples of twelve. Because the average forward
price is required not have any seasonal properties according to the model.

There are several reason for why [10] argue to use the average forward price
as the first state variable instead of the spot price. The first reason is
because the spot price often includes unobservable properties such as for
example seasonality. The other reason is because the spot price in some
commodity markets is not available. For those markets the futures price
for the nearest maturity contract is used instead. However this approxima-
tion is questionable since often futures and spot market differ significantly
from each other. Another positive aspect by using the average futures price
instead of the spot price is because it is a more solid quantity.

Since the average futures price is constructed so that it does not include
any seasonal properties this will also hold for the logarithm of the average
futures price. Therefore ln F̄ (t) will behave like a process that oscillates
around a constant mean and can be represented by an Ornstein-Uhlenbeck
process. The SDE under the real world probability measure representing
the dynamics of ln(F̄ (t)) is given by

18 August 16, 2015



Master’s Thesis Applied Mathematics

{
ln(F̄ (t)) = αµdt− α ln(F̄ (t))dt+ σdB1

t

ln(F̄ (s)) = constant.
(10)

If one for simplicity set Xt = ln(F̄ (t)) the following equivalent SDE is ob-
tained

{
dXt = αµdt− αXtdt+ σdB1

t

Xs = constant,
(11)

where α is the speed of mean reversion, µ is the long term mean, σ is the
volatility, dB1

t is the differential of a Brownian motion and Xs is the initial
condition [10]. In the rest of the report the term state variable will be
used interchangeably for the logarithm of average futures price and average
futures price.

The analytical solution to (11) is determined see Appendix B for computa-
tions and is given by

Xt = Xse
−α(t−s) + µ(1− e−α(t−s)) +

∫ t

s
e−α(t−u)σdB1

u. (12)

The third term in (12) is a stochastic integral with a deterministic in-
tegrand and is thereby normally distributed with mean 0 and variance∫ t
s e
−2α(t−u)σ2du. Therefore the distribution for Xt is given by

Xt ∼ N
(
Xse

−α(t−s) + µ(1− e−α(t−s)), σ
2

2α(1− e−2α(t−s)
)
. (13)

[4].

The next parameter in equation (7) is called the seasonal premia and is de-
noted s(T ). This parameter depends on delivery date T = 1, · · · , 12 where
1 represents the month January and 12 represents December. The seasonal
premia is defined as the average deviation from the price of a contract ma-
turing in a certain calendar month from the average futures price. The
parameter is deterministic given in percent and is estimated from historical
price data. According to [10] it seems reasonable to demand that the sum
of seasonal premia for all calendar months to be zero. This is because the
parameter is an average deviation from the average futures price.

The role of the seasonal premia can be shown with the following example;
the seasonal premia for a contract maturing the first February 2010, denoted
s(2) will be the same as for a contract maturing the first February 2011
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with the same underlying commodity. Hence the effect of the parameter
on the futures price is independent of current time. The seasonal premia
can be positive, negative or zero. According to equation (7) the futures
price should be either at premium or discount with respect to F̄ (t). How
much the futures price deviates from the average futures price is mainly
determined by the seasonal premia. But not all deviation of F (t, T ) from
the average futures price are due to the delivery month. That is why the
stochastic parameter δ(t, T−t) is introduced in the model. The parameter is
called stochastic convenience yield and can be compared to the convenience
yield in the classical cost-of-carry relation. The stochastic convenience yield
depends on both the maturity date T and the time to maturity T − t. For
every maturity date T the stochastic convenience yield gives how the shape
of the forward curve differ from seasonal patterns.

In order for relation (9) to hold the sum of the aggregated convenience yield
denoted (T − t)δ(t, T − t) for T = 1, · · · , 12 must be equal to zero see
Appendix C for derivation. According to the model all systematic deviations
of the futures price from the average futures price are because of seasonal
effects. Hence the stochastic convenience yield must fluctuate around zero
and can therefore be modelled as an Ornstein-Uhlenbeck process with zero
mean. If one for simplicity set that δ(t, T − t) = δκt where κ = T − t the SDE
under the real world measure representing the dynamics for the stochastic
convenience yield is given by

{
dδκt = −aκδκt dt+ bκdB2

t

δκs = constant,
(14)

where bκ represents the volatility, aκ is the speed of mean reversion, dB2
t is

the differential of a Brownian motion and δκs is the initial value. In order
for relation (9) to hold the same Brownian motion must be the uncertainty
factor for the whole term structure of the stochastic convenience yield. It
is also important to notice that the Brownian motion that drives the evo-
lution of ln(F̄ (t)) is independent of the Brownian motion representing the
uncertainty in the process for δκt [10].

An analytic solution to equation (14) can be determined, see Appendix B
and is given by

δkt = δκs e
−aκ(t−s) +

∫ t

s
e−a

κ(t−u)bκdB2
u. (15)

The second term in the above expression is a stochastic integral with a
deterministic integrand and is therefore normally distributed with zero mean
and variance

∫ t
s e
−2aκ(t−u)(bκ)2du. Hence distribution for δκt is given by
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δκt ∼ N
(
δκs e
−aκ(t−s),

(bκ)2

2aκ (1− e−2aκ(t−s)
)
. (16)

[4].

According to [10] the model works for seasonal, non seasonal commodities
and is possible to apply for futures with not equally spaced maturities. Due
to that the model does not include the spot price it is possible to apply to
commodities that are not storable such as electricity.

The dynamics that drive the evolution of futures prices for the seasonal cost-
of-carry model can now be analysed. Starting by computing the logarithm
of equation (7) which gives

ln(F (t, T )) = ln(F̄ (t)) + s(T )− (T − t)δ(t, T − t).

Then let κ = T − t and apply Ito’s formula to the above equation and the
following equation is obtained

d ln(F (t, T )) = d ln(F̄ (t))− κdδ(t, κ)− δ(t, κ)dt. (17)

The solution to the above equation can be found see Appendix D. By
properties of the stochastic integral the variance of futures prices according
to the model is

σ2
futures(t, κ) = bκ2κ2 + σ2. (18)

From the above relation it can be noticed that the futures price according
to (7) will have a variance that depends on only κ [10].

4.3 Properties of different models

Models presented in the previous section have different properties that make
them applicable for different purposes. In this section positive and negative
aspects of these models will be discussed. Lastly the method chosen to
create the reference curve will be presented.

First models under the martingale based approach are presented. These
models are appropriate to use for derivative pricing. However they are not
applicable for risk measurement calculation since they model futures prices
in the risk neutral world. Methods that are based on modelling under the
risk neutral measure cannot be compared to market data. In this thesis it
is proposed to validate the market forward curve by simulating a reference
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curve. Therefore modelling approaches under the risk neutral measures are
not applicable.

For models under the static arbitrage based approach futures prices can be
modelled under both the risk neutral measure and the real world measure
by changing measures for the state variable processes. This makes futures
prices modelled under this approach possible to compare to market data [9].

The first model presented under the static arbitrage based approach was the
two factors Gibson and Schwartz model. This model chooses to model the
evolution of futures prices by using stochastic processes for the convenience
yield and spot price. The main negative aspect of this model is that it is
not applicable to seasonal commodities [10]. Another negative aspect of the
model is that it includes state variables that are not directly observable [18].

Lastly the seasonal cost-of-carry model was presented. Positive aspects of
this model are that it is applicable for seasonal commodities and that the
spot price has been replaced by a more stable quantity represented by the
average futures price. The seasonal cost-of-carry model is also possible to
apply to a wider range of commodities than models using the classical cost-
of-carry relation [10].

The method chosen to create the reference curve is to simulate futures prices
using the seasonal cost-of-carry model and perform linear interpolation be-
tween the simulated values. The seasonal cost-of-carry model was chosen
because

• The model can be used to simulate futures prices for futures with
seasonal price patterns.

• Simulated values can be compared to market data.

• The first fundamental factor is the average futures price which is a
more stable parameter than the spot price.
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5 Application of seasonal cost of carry model

In this section it will be described how to apply the seasonal cost-of-carry
model to historical price data. First parameter estimation from histori-
cal data is going to be described. After that methods for simulating new
samples of the state variables together with maximum-likelihood estimation
procedure will be presented. Lastly everything is put together to simulate
futures prices and building the reference curve.

5.1 Estimation of parameters

Firstly a data set of historical forward prices is needed. The set of historical
data is given by the following matrix

D =


F (m, 1) F (m, 2) · · · F (m, 12)

F (m− 1, 1) F (m− 1, 2) · · · F (m− 1, 12)
...

... · · ·
...

F (0, 1) F (0, 2) · · · F (0, 12)

 , (19)

where the first column represent futures prices for a contract with delivery
in January for m + 1 trading days and the last column represent futures
prices for m+ 1 trading days for a contract with delivery in December.

By using data in matrixD and applying equation (9) a time series {ln(F̄ (t)}mt=0
is constructed for the logarithm of average futures price.

In order to estimate the seasonal premia s(T ) one can start by computing
the logarithm of equation (7) which gives

ln(F (t, T )) = ln(F̄ (t)) + s(T )− (T − t)δ(t, T − t). (20)

The seasonal premia is estimated as the mean value of the difference between
the logarithm of the futures price at day t for a contract with maturity date
T and the logarithm of the average futures for the same day. The formula
for estimating the seasonal premia is given by

ŝ(T ) = 1
m+ 1

m∑
t=0

(lnF (t, T )− ln(F̄ (t))). (21)

The aggregated convenience yield κδ(t, κ) where κ = T−t can be determined
from equation (20) and is given by

κδ(t, κ) = ln(F (t, T ))− ln(F̄ (t))− s(T ). (22)

August 16, 2015 23



Master’s Thesis Applied Mathematics

Notice that the aggregated convenience gives the model residuals. Inserting
ŝ(T ) gives the estimation equation for the aggregated convenience yield

κδ̂(t, κ) = ln(F̄ (t))− ln(F (t, T )) + ŝ(T ). (23)

From the above equation it follows that the stochastic convenience yield can
be estimated by

δ̂(t, T − t) = 1
T − t

(ln(F̄ (t))− ln(F (t, T )) + ŝ(T )). (24)

From equation (24) the time series {δ(t, T − t)}mt=0 is obtained. In the
following calculations {δ(t, T − t)}mt=0 will be denoted {δκt }mt=0 where κ =
T − t.

The observed time series given by {ln(F̄ (t)}mt=0 and {δκt }mt=0 can be used
estimate parameters in the state variable dynamics. The sample points con-
structing the observed time series have equally spaced observation where the
time between two observations is denoted ∆t. The procedure for estimat-
ing parameters in state variable process will be presented in the following
section together with a description of how new samples can be simulated.
Lastly everything will be put together to simulate samples of futures prices
using the seasonal cost-of-carry relation [10].

5.2 Simulating new samples

5.2.1 Simulation equations

Because the distribution of the logarithm of the average futures price is
given by (13). The exact updating formula for simulating trajectories of the
process is given by

Xt = Xt−1e
−α∆t + µ(1− e−α∆t) +

√
σ2(1− e−2α∆t)

2α Z. (25)

where µ, α, σ are constants, Xt−1 is the starting guess, ∆t is the time step
and Z is a standard normal variable. The formula is iterative and simulates
exact trajectories regardless of the size of the time step.

Since the distribution of the process representing the stochastic convenience
yield is given by (16) new samples can be simulated by

δκt = δκt−1e
−aκ(∆t) +

√
(bκ)2

2aκ (1− e−2aκ∆t)W, (26)
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where ακ, bκ are constants, δκt−1 is the start guess, ∆t is the time step
and W is a standard normal variable. This formula is also iterative and
will simulate exact trajectories regardless of the time step. Notice that the
simulation equations are autoregressive process of order one [14].

5.2.2 Interference for diffusion processes

In this sections the method for estimating parameters in equation (25) and
(26) will be presented. In the article by [10] it is proposed to estimate
parameters by exact maximum-likelihood method. This is a suitable method
to use for these processes since the distribution can be found analytically
[10].

From equation (26) it follows that the transitional density is given by

δκt |δκt−1 ∼ N

δκt−1e
−aκ∆t,

√
(bκ)2

2aκ (1− e−2aκ∆t)

 .
For the discrete sample δκ0 , · · · , δm the transitional density gives the following
likelihood function

L(bκ, aκ) =
m∏
t=1

1√
2π( (bκ)2

2aκ (1− e−2aκ∆t))
exp

− (δκt − δκt−1e
−aκ∆t)2

2( (bκ)2

2aκ (1− e−2aκ∆t))

 .

Setting (σ′)2 = (bκ)2

2aκ (1 − e−2aκ∆t) and taking the logarithm of the above
equations gives the log-likelihood function

ln(L(bκ, aκ) = −m2 ln(2π)−m ln(σ′)− 1
2(σ′)2

m∑
t=1

(δκt − δκt−1e
−aκ∆t)2 (27)

[22].

Estimators for aκ and bκ are determined so that the log-likelihood func-
tion is maximized. This is done by finding for which aκ and σ′ the partial
derivatives are zero. Hence the following set of equation need to be solved

∂ ln(L(bκ, aκ)
∂aκ

= 0

∂ ln(L(bκ, aκ)
∂σ′

= 0

August 16, 2015 25



Master’s Thesis Applied Mathematics

The above set of equation can be solved analytically and estimators for aκ
and σ′ can be found. Due to the relation between bκ and σ′ the estimator
of bκ is also determined. Hence the maximum-likelihood estimators of the
parameters are given by

aκ = − 1
∆t ln

(∑m
t=1 δ

κ
t δ
κ
t−1∑m

t=1(δκt−1)2

)
(28)

and

bκ =

√
2aκ
m

∑m
t=1(δκt − δκt−1e

−aκ∆t)2

1− e2aκ∆t . (29)

[2].

Next, the steps for estimating parameters in equation (25) will be presented.
From (25) it follows that the transitional density is given by

Xt|Xt−1 ∼ N

Xt−1e
−α∆t + µ(1− e−α∆t),

√
σ2

2α(1− e−2α∆t)

 .
The transitional density gives the following likelihood function for observa-
tions X0, · · · , Xm

L(α, µ, σ) =
m∏
t=1

1√
2π(σ2

2α(1− e−2α∆t))
exp

{
−(Xt −Xt−1e

−α∆t + µ(1− e−α∆t))2

2(σ2

2α(1− e−2α∆t))

}
.

Setting (σ′′)2 = σ2

2α(1− e−2α∆t) and taking the logarithm of the above equa-
tion gives the corresponding likelihood function

ln(L(α, µ, σ)) = −m ln(
√

2π)−m ln(σ′′)−
1

2(σ′′)2

m∑
t=1

(Xt −Xt−1e
−α∆t − µ(1− e−α∆t))2.

(30)

[22].

Now the aim is to determine estimators for parameters α, µ and σ so that the
log-likelihood function maximized. The log-likelihood function is maximized
if the following conditions are fulfilled

∂ ln(L(α, µ, σ′′)
∂α

= 0 (31)

∂ ln(L(α, µ, σ′′)
∂µ

= 0 (32)

26 August 16, 2015



Master’s Thesis Applied Mathematics

∂ ln(L(µ, α, σ′′))
∂σ′′

= 0 (33)

From condition (32) to (33) estimators for α, µ and σ′′ can be determined
analytically. Due to the relation between σ′′ and σ the estimator for σ can
also be found. The maximum-likelihood estimators are given by

α = − 1
∆t ln

(
m
∑m
t=1Xt−1Xt −

∑m
t=1Xt

∑m
t=1Xt−1

m
∑m
t=1X

2
t−1 − (∑m

t=1Xt−1)2

)
(34)

µ =
∑m
t=1Xt − e−α∆t∑m

t=1Xt−1
n(1− e−α∆t) (35)

σ =
√

2α(σ′′)2

1− e−2α∆t , (36)

where

(σ′′)2 = 1
m

m∑
t=1

(
Xt − e−α∆tXt−1 − µ(1− e−α∆t)

)2

[2].

When parameters in (11) and (14) have been estimated new samples can be
generated by using simulation equations (25) and (26).

5.2.3 Building references curves

The next step is to simulate futures prices. This is done by applying the
seasonal cost-of-carry relation given by equation (7) together with simulated
samples for the state variables and the estimated seasonal premia [10]. By
performing linear interpolation between the simulated futures prices the ref-
erence curve is built. Since the seasonal cost-of-carry model models futures
prices under the real world probability measures these curves can now be
compared to corresponding market curves.
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6 Results

In this section the seasonal cost-of-carry model is applied to commodity
futures with seasonal price dependence. UK natural gas futures are chosen
since they have a seasonal price pattern and equally spaced maturities up
to one year. The result is presented in the following section.

6.1 UK natural gas futures

The historical data that will be used for estimations are prices for UK natural
gas futures traded on ICE. The contract information is presented in Table
1.

Name UK Natural Gas Futures
Maturities Jan,Feb,Mar,Apr,May,Jun,Jul,Aug, Sep,Oct,Nov,Dec
Contract Size 1000 therms per day per delivery period
Price quotation Price of contract per therm in sterling and pence
Smallest trading size 5000 therms per day

Table 1: Table shows contract information for UK natural gas futures traded
on ICE [5].

From Table 1 it can be seen that UK natural gas futures have equally spaced
maturities with contracts that mature every calendar month. It can also be
seen that the contract size depend on delivery month. The different contract
sizes are shown in Table 2.

Jan, Mar, May, Jul, Aug, Oct, Dec 31000 therms
Apr, Jun, Sep, Nov 30000 therms
Feb (365 days per year) 28000 therms
Feb (366 days per year) 29000 therms

Table 2: Table shows contract sizes for different maturity months for UK
natural gas futures traded on ICE [5].
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The seasonal cost-of-carry model will be used to generate reference curves for
every trading day in December 2013. These curves will then be compared
to the corresponding market curve. In order to simulate the model the
following assumptions are made

• Every year is assumed to have 250 trading days.

• Every month is assumed to have 21 trading days.

• Natural gas futures have a delivery period during the month of matu-
rity. Hence it will be assumed that every contract matures on the first
every calendar month [19].

• The time to maturity is assumed to be constant for every available
time to maturity in the data set. That is to say the contract with the
closest maturity has κ = 1

12 and the contract maturing in 11 months
from the contract with the closest maturity has κ = 12

12 [10].

The set of historical price data that is going to be used for parameter esti-
mation are settlement prices for the time period 2011-01-01 to 2013-11-30
for futures that mature every calendar month during 2014. That is to say
the historical data set used for parameter estimation is given by

F (t, T ) t ∈ {0, · · · , 752} for T ∈ {1, · · · , 12},

where T = 1 symbolises the calendar month January and T = 12 symbolises
the month December. The total number of observation constructing the
data set is 753.

Estimates based on the above described data are going to be used to simulate
forward prices given by the following set

F (t, T ) t ∈ {753, · · · , 774} for T ∈ {1, · · · , 12}.

The reason for choosing contracts with maturities up to one year is because
the state variable F̄ (t) will then not have any seasonal properties which is
a requirement for the chosen model.

To analyse the seasonal price pattern for UK natural gas futures the for-
ward curve for a specific day is constructed. This is done by performing
linear interpolation between market prices for contracts with maturities up
to twelve months. The forward curve for 2013-01-01 is shown in Figure 3
where left end of the curve consist of the contract maturing the next month
and the right end of the contract with the most distant maturity.
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Figure 3: Forward curve for 2013-01-01 where the next contract to mature
is February 2013.

From Figure 3 it can be seen that the price peaks for contracts maturing in
the winter season. It can also be seen that futures prices drops for contracts
with delivery in the summer months. The behaviour illustrated in Figure
3 is as expected since the demand for gas is higher in the winter because
natural gas is mainly used for heating facilities. The aim is to generate
reference curves by simulating futures prices with the seasonal cost-of-carry
model. Hopefully the generated curves will reflect the seasonal behaviour
shown in Figure 3 and not deviate significantly from the market curve.

First the modelling procedure for the average futures price is presented, and
then the seasonal parameter followed by the stochastic convenience yield.
Finally everything is put together by using the seasonal cost-of-carry relation
generating reference curves.

6.1.1 The average futures price

Now the modelling procedure for F̄ (t) is going to be presented. Starting by
analysing the evolution of futures price for every T = 1, · · · , 12 that con-
struct the historical data set. The time series of futures prices for maturity
dates T = 1, · · · , 12 for the period 2011-01-01 to 2013-11-20 is shown in
Figure 4.
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Figure 4: Time series for UK natural gas futures for every T = 1, · · · , 12
constructing the historical data set.

From Figure 4 it can be seen the futures prices seem to be more volatile in
the beginning of the observation period and stabilising during the last 400
trading days.

Next, the logarithm of average futures price is calculated using the historical
price data shown in Figure 4 and equation (9). The resulting time series
together with the spectral density is shown in Figure 5.
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Figure 5: Left: Time series for logarithm of average futures price ln(F̄ (t))
for the time period 2011-01-01 to 2013-11-30. Right: Spectral density for
logarithm of average futures price.

From the left plot in Figure 5 it can be observed that time series seem to
strive back to a long term mean. Hence the process appears to be mean
reverting. However the speed of mean reversion seems to be quite slow in
the beginning of the observation period. It can also be seen that the process
seem to be more volatile in the beginning. From the right plot in Figure 5
it is verified that the seasonality has successfully been removed, since the
spectral density peaks for frequencies close to zero [20]. This is as expected
since the number of contracts used to calculate the logarithm of average

August 16, 2015 31



Master’s Thesis Applied Mathematics

future price is 12.

In Figure 6 observed time series for ln(F̄ (t)) is plotted together with ln(F (t, T ))
for T = 1, · · · , 12 for 2011-01-01 to 2013-11-30.
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Figure 6: Upper: Time series for ln(F̄ (t)) together with time series for log-
arithm of futures prices for maturity dates T = 1, · · · , 6 for n=752. Lower:
Time series for ln(F̄ (t)) together with time series for logarithm of futures
prices for maturity dates T = 6, · · · , 12 for n=752.

In order to simulate forward price data, new trajectories for the process
generating the logarithm of average futures price must be simulated. How-
ever first parameters in equation (11) must be estimated. This was done by
performing maximum-likelihood estimation using observations shown in the
left plot Figure 5. The estimated parameters are shown in Table 3.

µ α σ

4.2166 3.6722 0.1153

Table 3: Table shows estimates for µ, α and σ.
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Estimates shown in Table 3 seem reasonable when comparing to the observed
time series in Figure 5. Since it appears that the time series has a long term
mean around 4.2, which is near the value obtained from the estimation. The
time series also show that the speed of mean reversion seem to be quite slow
which coincide with the estimated parameter. In the section Evaluation of
results more detailed analysis of the estimation procedure will be presented.

The next step is to simulate 21 sample paths of ln(F̄ (t)) for every trading
day in December 2013. This was done by applying equation (25) together
with estimates show in Table 3. The time step used was ∆t = 1

250 with the
starting value given by the last observed value in the time series for ln(F̄ (t)).
Figure 7 shows the result when simulating one hundred trajectories for every
trading day.
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One hundred simulated trajectories of F̄ (t)
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Figure 7: Left: One hundred simulated trajectories for ln(F̄ (t)) for 21 days.
Right: One hundred simulated trajectories for F̄ (t) for 21 days.
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6.1.2 Seasonal premia

The next parameter to estimate is the seasonal premia. This is done by
using equation (21). The result for every calendar month is shown in Table
4.

Month Seasonal premia in per cent
Jan 9.1601
Feb 8.7650
Mar 6.5831
Apr -4.0886
May -5.6631
Jun -6.2542
Jul -6.0660
Aug -5.6815
Sep -5.6362
Oct -1.2644
Nov 3.8653
Dec 6.2807

Table 4: Table shows the estimated seasonal premia for UK natural gas
futures traded on ICE.

The increase in futures prices for contracts with maturities in the winter
months is verified by the result shown in Table 4. Since the seasonal premia
is much larger for contracts with delivery in the winter in comparison to
contracts with maturities in the spring, summer and early in the autumn.
According to [10] the sum of the seasonal premia for all calendar months is
zero. This is verified for the result presented in Table 4.

6.1.3 Convenience yield

After that the aggregated convenience yield is estimated. This is done by
applying equation

κδ̂(t, κ) = ln(F̄ (t))− ln(F (t, T )) + ŝ(T ),

where T = 1, · · · , 12. The resulting time series are shown in Figure 8 to
Figure 13 for every T = 1, · · · , 12.
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Figure 8: Left: Estimated time series for aggregated convenience yield for
T = 1 for all trading days in the historical data set. Right: Estimated time
series for aggregated convenience yield for T = 2 for all trading days in the
historical data set.
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Figure 9: Left: Estimated time series for aggregated convenience yield for
T = 3 for all trading days in the historical data set. Right: Estimated time
series for aggregated convenience yield for T = 4 for all trading days in the
historical data set.
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Figure 10: Left: Estimated time series for aggregated convenience yield for
T = 5 for all trading days in the historical data set. Right: Estimated time
series for aggregated convenience yield for T = 6 for all trading days in the
historical data set.

August 16, 2015 35



Master’s Thesis Applied Mathematics

t in days

0 100 200 300 400 500 600 700 800

E
s
ti
m

a
te

d
 a

g
g

re
g

a
te

d
 c

o
n

v
e

n
in

a
c
e

 y
ile

d

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025
Estimated aggregated conveninace yiled T=7

t in days

0 100 200 300 400 500 600 700 800

E
s
ti
m

a
te

d
 a

g
g

re
g

a
te

d
 c

o
n

v
e

n
in

a
c
e

 y
ile

d

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025
Estimated aggregated conveninace yiled T=8

Figure 11: Left: Estimated time series for aggregated convenience yield for
T = 7 for all trading days in the historical data set. Right: Estimated time
series for aggregated convenience yield for T = 8 for all trading days in the
historical data set.
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Figure 12: Left: Estimated time series for aggregated convenience yield for
T = 9 for all trading days in the historical data set. Right: Estimated time
series for aggregated convenience yield for T = 10 for all trading days in the
historical data set.
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Figure 13: Left: Estimated time series for aggregated convenience yield for
T = 11 for all trading days in the historical data set. Right: Estimated time
series for aggregated convenience yield for T = 12 for all trading days in the
historical data set.
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According to [10] the estimated aggregated convenience is normally dis-
tributed for every T . This claim can be analysed graphically by investi-
gating quantile quantile plots (qq-plots). Therefore qq-plots of standard
normal quantiles against empirical quantiles of the aggregated convenience
yield were computed. The result for T = 1, · · · , 12 is shown in Figure 14 to
Figure 19.
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Figure 14: Left: QQ-plot for the model residuals for the contract with
maturity date T = 1. Right: QQ-plot for the model residuals for the contract
with maturity date T = 2.
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Figure 15: Left: QQ-plot for the model residuals for the contract with
maturity date T = 3. Right: QQ-plot for the model residuals for the contract
with maturity date T = 4.
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Figure 16: Left: QQ-plot for the model residuals for the contract with
maturity date T = 5. Right: QQ-plot for the model residuals for the contract
with maturity date T = 6.
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Figure 17: Left: QQ-plot for the model residuals for the contract with
maturity date T = 7. Right: QQ-plot for the model residuals for the contract
with maturity date T = 8.
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Figure 18: Left: QQ-plot for the model residuals for the contract with
maturity date T = 9. Right: QQ-plot for the model residuals for the contract
with maturity date T = 10.
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Figure 19: Left: QQ-plot for the model residuals for the contract with
maturity date T = 11. Right: QQ-plot for the model residuals for the
contract with maturity date T = 12.

Figure 14, 17, left plot in Figure 15, right plot in Figure 16 and left plot in
Figure 18 shows S shaped qq-plots. This indicates that the left and right tail
of the empirical distribution seem to be lighter than the tails of standard
normal distribution.

The left plot in Figure 16 and Figure 19 seem linear. This indicates that the
empirical distribution appear to be normally distributed. From the plots one
can see that intersect is zero which corresponds to that the mean value is
zero. However the slopes seem to be different from one, hence the empirical
distribution has a standard deviation different from one. The slopes where
calculated to be 0.0072 and 0.0059 respectively.

In the right plot in Figure 19 the left end of the qq-plot seems linear. Hence it
appears that the left tail of the empirical distribution is normally distributed.
However the right end of the plot curves down. This indicates that the right
tail of the empirical distribution seem lighter than the normal distribution.

The right plots in Figure 15 and 18 are very different from linear. From
Figure 6 it can be noticed that F (t, 4) and F (t, 10) go from deviating signif-
icantly from ln(F̄ (t)) to not deviate much at all. Since equation (23) is used
to estimate the time series for the aggregated convenience yield, these jumps
of periods with little deviation from ln(F̄ (t)) to periods with significant de-
viation probably explain the behaviour of the time series shown in the right
plots in Figure 9 and 12. This is probably the reason for why the empirical
distribution deviate significantly from the normal distribution shown in the
right plots in Figure 15 and 18 respectively [7].

Summarising, the conclusion is dawn due to the result presented in Fig-
ure 14-19 that model residuals only for κ = 5

12 ,
11
12 seem to be normally

distributed.

After that the stochastic convenience yield is estimated. This is done by
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applying the following equation

δ̂(t, κ) = 1
κ

(ln(F̄ (t))− ln(F (t, T )) + ŝ(T )).

It is chosen to normalize the time series for the aggregated convenience yield
by dividing by months to maturity as an annualized quantity, that is to say
κ = 1

12 , · · · ,
12
12 [10]. The resulting time series for the estimated stochastic

convenience yield for every maturity date T = 1, · · · , 12 is shown Figure
20-25.

t in days

0 100 200 300 400 500 600 700 800

S
to

c
h

a
s
ti
c
 c

o
n

v
e

n
in

a
c
e

 y
ile

d

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Estimated stochastic conveninace yiled T=1

t in days

0 100 200 300 400 500 600 700 800

S
to

c
h

a
s
ti
c
 c

o
n

v
e

n
in

a
c
e

 y
ile

d

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Estimated stochastic conveninace yiled T=2

Figure 20: Left: Estimated stochastic convenience yield for contract with
maturity date T = 1. Right: Estimated stochastic convenience yield for
contract with maturity date T = 2.

t in days

0 100 200 300 400 500 600 700 800

S
to

c
h

a
s
ti
c
 c

o
n

v
e
n
in

a
c
e

 y
ile

d

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Estimated stochastic conveninace yiled T=3

t in days

0 100 200 300 400 500 600 700 800

S
to

c
h

a
s
ti
c
 c

o
n

v
e
n
in

a
c
e

 y
ile

d

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Estimated stochastic conveninace yiled T=4

Figure 21: Left: Estimated stochastic convenience yield for contract with
maturity date T = 3. Right: Estimated stochastic convenience yield for
contract with maturity date T = 4.
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Figure 22: Left: Estimated stochastic convenience yield for contract with
maturity date T = 5. Right: Estimated stochastic convenience yield for
contract with maturity date T = 6.
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Figure 23: Left: Estimated stochastic convenience yield for contract with
maturity date T = 7. Right: Estimated stochastic convenience yield for
contract with maturity date T = 8.

t in days

0 100 200 300 400 500 600 700 800

S
to

c
h
a
s
ti
c
 c

o
n
v
e

n
in

a
c
e

 y
ile

d

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
Estimated stochastic conveninace yiled T=9

t in days

0 100 200 300 400 500 600 700 800

S
to

c
h
a
s
ti
c
 c

o
n
v
e

n
in

a
c
e

 y
ile

d

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04
Estimated stochastic conveninace yiled T=10

Figure 24: Left: Estimated stochastic convenience yield for contract with
maturity date T = 9. Right: Estimated stochastic convenience yield for
contract with maturity date T = 10.
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Figure 25: Left: Estimated stochastic convenience yield for contract with
maturity date T = 11. Right: Estimated stochastic convenience yield for
contract with maturity date T = 12.

In the section Evaluation of results the time series shown in Figure 20-25
are further analysed.

The next step is to estimate parameters in (14). This is done by using the
time series {δκt }752

t=0 and maximum likelihood estimation. The result is shown
in Table 5 as annual quantities.

κ bκ aκ
1
12 0.3355 1.8598
2
12 0.1627 2.3704
3
12 0.1147 1.7557
4
12 0.0776 0.2001
5
12 0.0523 2.7687
6
12 0.0441 2.5373
7
12 0.0354 3.0549
8
12 0.0304 2.9296
9
12 0.0274 2.7117
10
12 0.0532 3.8577
11
12 0.0289 10.0405
1 0.0263 2.7785

Table 5: Table shows estimates for bκ and aκ representing the volatility and
speed of mean reversion for κ = 1

12 , · · · , 1.

The second column in Table 5 shows the estimated volatility for the con-
venience yield. It can be observed that the volatility goes to zero when κ
goes to 1. Thus the modelling procedure seems to preserve Samuelssons
Effect which says that contracts with nearer maturities are more volatile
in comparison to more distant. This is because the futures price volatil-
ity according to the model is mainly determined by the convenience yield
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volatility, see equation (18).

Parameters in Table 5 will now be compared to corresponding time series
in Figure 20-25 since they were used as input in the maximum likelihood
estimation.

Table 5 shows that for κ = 1
12 ,

2
12 ,

3
12 the estimated volatilities are largest.

This result seem reasonable when comparing to Figure 20-25. Because time
series shown in Figure 20 and in the left plot in Figure 21 seem to have
the largest spread of values in comparison to the rest of the plots. The
estimated volatilities in Table 5 for κ = 4

12 , · · · ,
12
12 also seem reasonable

since the spread of values shown in the right plot in Figure 21 to Figure
25 are quite small which corresponds to low estimates for the volatility.
However it can be noticed that the volatility for κ = 10

12 is larger than for
κ = 9

12 . The reason for this is probably the jump the first one hundred
trading days shown in the right plot in Figure 24.

Now the parameters for the speed of mean reversion shown in Table 5 are
analysed. One can see that values in the third column in Table 5 do not
deviate significantly from each other except for rows 4 and 11. The speed of
mean reversion shown in Figure 20 to 25 except for the right plot in Figure
21 and the left plot in Figure 25 seem to be quite slow and near the same
values. This corresponds to the result shown in Table 5. For row 4 in Table
5 it can be noticed that the speed of mean reversion is significantly lower
than the other values shown in Table 5. However this coincide with the
behaviour of the time series shown in the right plot in Figure 21 which seem
to return to zero slowest among the time series shown in Figure 20-25. The
speed of mean reversion for the left plot in Figure 25 is much larger than for
the other time series shown in Figure 20-25 which coincide with the result
in Table 5.

Now the values in Table 5 can be used to simulated new trajectories for the
stochastic convenience yield. In order to simulated new samples equation
(26) is used together with estimates given in Table 5, the time step ∆t = 1

250
and the starting value given by the last observed value in the time series
shown in Figure 20-25.

6.1.4 Constructing the forward curve

Simulated sample paths for F̄ (t) and δ(t, κ) can be used together with the
estimated seasonal premia and (7) to simulate futures prices. By performing
linear interpolation between the simulated futures prices reference curves
are constructed. Since the simulation equations used to simulate samples
for F̄ (t) and δ(t, κ) involves a stochastic term the result from one simulation
to another can deviate. Therefore it was chosen to simulate one hundred
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trajectories for F̄ (t) and δ(t, κ) for every day. These simulated values were
then used together with estimated seasonal premia and equation (7) to create
one 100 forward curves for every trading day in December 2013. The result
is presented in the following section.
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7 Evaluation of results

In the next section the created reference curves together with corresponding
market curves are going to be presented and discussed. After that it will
be analysed if historical data fulfil model assumptions and if state variable
process could be reduced to random walks. Lastly the maximum likelihood
estimation procedure will be investigated.

7.1 Evaluation of created reference curve

In order to investigate how close the created reference curve is to the market
curve, one hundred reference curves were constructed for every trading day
in December 2013. The result for the first, 11th and last trading day in
December 2013 is shown in Figure 26 and Figure 27.

Figure 26: Upper: One hundred reference curves together with the corre-
sponding market curve represented by the black line with stars. Lower: The
figure shows one hundred reference curves together with the corresponding
market curve represented by the black line with stars.
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Figure 27: The figure shows one hundred reference curves together with the
market forward curve represented by the black line with stars.

From Figure 26 and Figure 27 one can see that create reference curves
captures the seasonal behaviour for UK natural gas futures in a correct way.
Since futures prices for delivery in the winter are larger than for contract
with delivery in the summer. It can also be seen that the spread among the
reference curves increase when moving towards the end of the time period.
For the presented results the market curve is captured in the spread among
all possible reference curves, see Figure 26 and 27.

7.2 Does the model fit historical data?

In this part of the report it is analysed if historical data creates time se-
ries for the state variables that meet model assumptions. First the data
set consisting of observations 2011-01-11 to 2013-11-30 is analysed. Then
the observation period is shortened to 2012-07-01-2013-11-30 and the same
analysis is repeated.

7.2.1 Original historical data set

According to the seasonal cost-of-carry model the logarithm of average future
price and stochastic convenience yield for every κ follow stochastic process
with dynamics given by (11) and (14) respectively. Therefore it will be
analysed if time series generated from historical data fit model assumptions
given in equation (26) and (25). The analysis will be performed by first
evaluating if observed time series for state variables gives model residuals
that are realisations of IID noise. If this is the case the assumption that
the processes are autoregressive of order one with parameters specified in
equation (25) and (26) seems to be satisfied. After that it is analysed if the
residuals have the distribution according to equation (25) and (26). If these
two criteria seem to be fulfilled, it reasonable to conclude that observed
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time series for state variables satisfies the assumption about being discrete
observations of Ornstein-Uhlenbeck process specified by (25) and (26) [20].

First the observed time series for ln(F̄ (t)) is analysed. Model residuals are
given by the following relation

R = Xt −Xt−1e
−α∆t + µ(1− e−α∆t). (37)

The residuals are calculated using the observed time series, parameters µ,
α and σ determined from maximum likelihood estimation (see Table 3)
together with equation (37). Realisation of model residuals together with
the sample autocorrelation function (ACF) are shown in Figure 28.
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Figure 28: Left: ACF for model residuals for logarithm of average futures
price, where the IID thresholds are given by the blue horizontal lines. Right:
Time series representing model residuals for the logarithm of average futures
price.

In the left plot in Figure 28 the total number of lags excluding lag zero are
20. Because the number of lags is 20 at most one lag is allowed to exceed
the IID thresholds, for the sample to be considered as IID noise. Here the
sample ACF exceeds the thresholds only at lag 6. Hence there is no reason
for rejecting the hypothesis at level 0.05 that residuals are IID noise.

In order to control the graphical result a Ljung-Box Q-Test is computed
in MATLAB by using the function lbqtest(). The test generated the p-
value 0.0533. Hence the null hypothesis that sample ACF are not correlated
was accepted at level 0.05. Therefore the conclusion is that there is not
significant correlation between the residuals at level 0.05. Hence graphical
result from analysing the sample ACF and the Ljung-Box Q-Test appear to
agree. Because of the presented results the conclusion is that there is no
reason for rejecting the null hypothesis that residuals are IID noise [20].

The next step was to analyse if model residuals seem to have the distribu-
tion according to equation (25). The analysis was performed by graphically
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investigating qq-plots. First the residuals where normalized with the stan-
dard deviation

√
σ2

2α
(
1− e−2α∆t). After that a qq-plot was computed of

normalised model residuals against standard normal quantiles [21]. The
result is shown in Figure 29 together with the corresponding histogram.
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Figure 29: Left: QQ-plot for empirical quantiles given by model residuals
normalised by standard deviation against quantiles of standard normal dis-
tribution. Right: Histogram for normalised model residuals together with
standard normal density.

When the empirical distribution comes from the reference distribution the
qq-plot is approximately linear with slope 1 and intercept 0 [7]. From Figure
29 one can see that the qq-plot does not seem linear. It appears instead
that the tails of the empirical distribution are heavier than for the standard
normal. This conclusion coincide with the histogram which shows that the
density seem to deviate from the standard normal both in tails and center.
Therefore the conclusion can be drawn that model residuals does not seem
to have the distribution assumed by equation (25).

To verify the graphical analysis one sample Kolmogorov-Smirnov test was
performed in MATLAB using the function kstest(). The test was per-
formed at level 0.05 and the p-value generated was 1.1583 · 10−4. Therefore
the null hypothesis that data comes from a standard normal distribution
was rejected. This result is consistent with the graphical analysis.

Finally the conclusion is drawn that historical data used to generate the
observed time series for ln(F̄ (t)) during 2011-01-01 to 2013-11-30 does not
seem to meet assumption in equation (25).

The next step is to analyse if observed time series for the stochastic conve-
nience yield meet the assumption given in equation (26). This is done the
same way as for the logarithm of average futures price. For this case the
model residuals can be represented by the following equation

Rκ = δκt − δκt−1e
−aκ(∆t). (38)
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For every κ the model residuals are calculated by using the estimated time
series from historical data by using equation (24), estimates for aκ and bκ
given in Table 5 together with equation (38).

First it is analysed if model residuals seem to be realisations of IID noise.
This analysis is performed by graphically investigating sample ACF. Results
are presented together with corresponding realisations in Figure 30-31 and
Figure 47-56, see Appendix E.
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Figure 30: Left: ACF for model residuals for convenience yield time series
for κ = 1

12 , where the IID thresholds are given by the blue horizontal lines.
Right: Time series of model residuals for stochastic convenience yield.
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Figure 31: Left: ACF for model residuals for convenience yield time series
for κ = 2

12 , where the IID thresholds are given by the blue horizontal lines.
Right: Time series of model residuals for stochastic convenience yield.
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In Figure 30-31 and Figure 47-56 except for Figure 48 at most one lag
except lag zero exceeds the IID thresholds. Hence for every κ except κ =
4
12 there is no reason for rejecting the null hypothesis that residuals are
realisations of IID noise. Figure 48 shows that more than one lag except lag
zero exceeds the IID thresholds. Therefore the null hypothesis is rejected
and the residuals for κ = 4

12 do not seem to be IID noise.

The graphical analysis is compared to results from Ljung-Box Q-Test. The
test was computed in MATLAB using the function lbqtest(). Resulting
p-values are presented in Table 6.

κ p-value
κ = 1

12 0.0939
κ = 2

12 0.1576
κ = 3

12 0.1167
κ = 4

12 0.0283
κ = 5

12 0.2996
κ = 6

12 0.4706
κ = 7

12 0.1978
κ = 8

12 0.2454
κ = 9

12 0.1715
κ = 10

12 0.1731
κ = 11

12 0.0839
κ = 12

12 0.3215

Table 6: The table shows p-values for residuals for stochastic convenience
yield when performing Ljung-Box Q-Test.

The result presented in Table 6 agrees with the graphical analysis of the
sample ACF [20]. Therefore the conclusion is drawn that residuals for κ =
1
12 ,

2
12 ,

3
12 ,

5
12 ,

6
12 ,

7
12 ,

8
12 ,

9
12 ,

10
12 ,

11
12 ,

12
12 seem to be realisations of IID noise.

Next, it was analysed if the residuals have the distribution according to
equation (26). This was done with the same method as for the logarithm
of average futures price. First the sample giving the model residuals was
normalised by the standard deviation

√
(bκ)2

2aκ
(
1− e−2aκ∆t). After that qq-

plots were computed where the empirical quantiles of the normalised resid-
uals were potted against standard normal quantiles [21]. Results are shown
in Figure 32 and 33 and Figure 57-65, see Appendix E together with his-
tograms. Since residuals for κ = 4

12 did not seem to be realisations of IID
noise, the time series was excluded from further analysis.

50 August 16, 2015



Master’s Thesis Applied Mathematics

Standard Normal Quantiles
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Figure 32: Left: QQ-plot for normalised model residuals against quantiles of
standard normal distribution for κ = 1

12 . Right: Histogram for normalised
model residuals together with density for standard normal distribution.
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Figure 33: Left: QQ-plot for normalised model residuals against quantiles of
standard normal distribution for κ = 2

12 . Right: Histogram for normalised
model residuals together with density for standard normal distribution.

From Figure 32-33 and Figure 57-65 one can see that all qq-plots except for
κ = 5

12 ,
8
12 does not seem to have slops that are approximately equal to one.

However in Figure 58 and 61 the plots seem to have a slope that is close
to 1 except for some outliers. This result is confirmed by the histograms
where it seems that the tails and center do not deviate significantly from
the standard normal distribution for κ = 5

12 ,
8
12 .

Because of the graphical analysis the conclusion is drawn that model resid-
uals for κ = 5

12 ,
8
12 seem to agree with the specified distribution of the

noise term in equation (26). To verify this result a one sample Kolmogorov-
Smirnov test was performed in MATLAB. This was done by using the func-
tion kstest(). The result is presented in Table 7.
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κ p-value
κ = 1

12 0.0083
κ = 2

12 0.0049
κ = 3

12 9.7934 · 10−4

κ = 5
12 0.0861

κ = 6
12 0.0239

κ = 7
12 0.0137

κ = 8
12 0.0527

κ = 9
12 0.0346

κ = 10
12 1.7171 · 10−18

κ = 11
12 5.1231 · 10−4

κ = 12
12 0.0021

Table 7: The table shows p-values for residuals for stochastic convenience
yield when performing a one sample Kolmogorov-Smirnov test.

The result in Table 7 suggest that the hypothesis that the normalised resid-
uals comes from a standard normal distribution at level 0.05 can be rejected
for all κ except for κ = 5

12 ,
8
12 . Hence results from the graphical analysis and

the one sample Kolmogorov-Smirnov test are consistent. Therefore it seems
plausible to conclude that observed model residuals for κ = 5

12 ,
8
12 seem to

have the distribution assumed by the noise term in (26).

Finally the conclusion is drawn that historical data for the time period
2011-01-01 to 2013-11-30 appear to generate observed time series for the
stochastic convenience yield that agrees with the assumption in (26) only
for κ = 5

12 ,
8
12 .

7.2.2 Different set of historical observations

Figure 4 shows that prices seem to be more volatile in the beginning of
the observation period. According to [10] data used for estimation should
be data for liquid contracts. Perhaps the volatility in the beginning of the
observation period could be because contracts were not liquid. This could
possibly be the reason for why model assumptions were not fulfilled by
the majority of observed time series. Therefore the observation period was
shorted to 2012-07-01-2013-11-30, see Figure 34. This observation period
was chosen since prices seem to stabilise around the last 400 trading days
in the original data set.
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Figure 34: Time series for settlement prices for every T = 1, · · · , 12 for UK
natural gas futures for the time period 2012-07-01 to 2013-11-30.

For data shown in Figure 34 the same procedure outlined in Result section
was repeated. After that model residuals for the state variables where anal-
ysed using the same method as in the section Original historical data set.
First the analysis is presented for the logarithm of average futures price and
then for the stochastic convenience yield.

For the logarithm of average futures price, model residuals where calculated
with equation (37) for observation period 2012-07-01 to 2013-11-30. The
resulting time series together with the sample ACF is shown in Figure 35.
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Figure 35: Left: ACF for model residuals for logarithm of average futures
price, where the blue horizontal lines show the IID thresholds. Right: Time
series of model residuals.
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Figure 35 suggest that sample ACF does not exceed IID thresholds for any
lag larger than zero. Hence it seems plausible to accept the null hypothesis
that residuals are IID noise. This result was consistent with result from
Ljung-Box Q-Test, since the p-value generated was 0.3574 [20].

After that it was analysed if the assumption about the distribution of the
noise term in (25) seem to be fulfilled. This was done the same way as in
section Original historical data set. The resulting qq-plot is shown in Figure
36 together with corresponding histogram.
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Figure 36: Left: QQ-plot for normalised residuals for logarithm of average
futures price for observation period 2012-07-01 to 2013-11-30 against stan-
dard normal quantiles. Right: Histogram of normalised residuals together
with standard normal density.

Figure 36 does not show a qq-plot that is approximately linear with slope
one. It seems instead that the right and left tail are heavier than the stan-
dard normal distribution. This is confirmed by the histogram showing that
the center and tails seem to deviate from the standard normal density [7].
The graphical analysis suggests that residuals do not meet the assumptions
about the distribution of the noise term in equation (25). After that one
sample Kolmogorov-Smirnov test was preformed to see if the result agrees
with the conclusion drawn from the qq-plot and histogram. The test gen-
erated the p-value 0.041. Therefore the null hypothesis that the normalised
residuals have standard normal distribution was rejected. Thus results from
graphical analysis and one sample Kolmogorov-Smirnov appear to coincide.

Due to the presented results it seems reasonable to conclude that decreasing
the observation period does not seem to improve the result. It still seems
to be the case that the observed time series for logarithm of average futures
does not meet assumptions in (25).

The same steps were repeated to analyse the observed time series for the
stochastic convenience yield for the time period 2012-07-01 to 2013-11-30.
Residuals were calculated from equation (38). Realisations together with
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corresponding sample ACF is shown in Figure 37 and 38 and Figure 66-75,
see Appendix F.
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Figure 37: Left: ACF for model residuals for convenience yield time series
for κ = 1

12 , where the horizontal blue lines represents the IID thresholds.
Right: Time series of model residuals for convenience yield.
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Figure 38: Left: ACF for model residuals for convenience yield time series
for κ = 2

12 , where the horizontal blue lines represents the IID thresholds.
Right: Time series of model residuals for convenience yield.

Figures 37, 38, 68 and Figure 73 suggest that more than one lag except lag
zero exceeds the IID thresholds. Therefore the null hypothesis that residuals
are IID noise is rejected for κ = 1

12 ,
2
12 ,

5
12 ,

10
12 . In Figure 66-67, Figure 69-72

and Figure 74-75 approximately at most one lag except lag zero exceed the
IID thresholds. Therefore the null hypothesis that residuals are IID noise is
accepted for κ = 3

12 ,
4
12 ,

6
12 ,

7
12 ,

8
12 ,

9
12 ,

11
12 ,

12
12 .

Results from analysing the sample ACF was compared to results from com-
puting the Ljung-Box Q-Test [20]. Table 8 shows resulting p-values when
computing Ljung-Box Q-Test.
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κ p-value
κ = 1

12 0.0039
κ = 2

12 0.0236
κ = 3

12 0.1011
κ = 4

12 0.2286
κ = 5

12 0.0108
κ = 6

12 0.3756
κ = 7

12 0.2846
κ = 8

12 0.4638
κ = 9

12 0.4800
κ = 10

12 0.2698
κ = 11

12 0.3458
κ = 12

12 0.4837

Table 8: The table shows p-values for residuals for stochastic convenience
yield for the time period 2012-07-01 to 2013-11-30 when performing Ljung-
Box Q-Test.

From Table 8 one can see that the result agrees with the conclusions drawn
from analysing the sample ACF for all κ except for κ = 10

12 . When observing
the ACF for residuals of κ = 10

12 , it can be seen that the majority of sample
ACF are quite small. However two lags exceed the IID thresholds signif-
icantly. This could be the reason for why Ljung-Box Q-Test generated a
large p-value. Since the sample ACF for two lags falls far outside the bonds
it seems reasonable to reject the null hypothesis that residuals are IID noise
for κ = 10

12 and disregard the result from Ljung-Box Q-Test.

Next, the step was to analyse if the residuals fulfil the assumptions of the
distribution of the noise term in equation (26). Because residuals for κ =
1
12 ,

2
12 ,

5
12 ,

10
12 did not seem to be realisation of white noise they were excluded

from further analysis. The analysis was performed the same way as for the
logarithm of average futures price. The result is presented in Figure 76-83
together with corresponding histograms, see Appendix F.

From Figure 76-83 it can be seen that for κ = 6
12 ,

7
12 ,

8
12 ,

9
12 ,

11
12 ,

12
12 the qq-

plots seem to have a slope close to 1 if the outliers are disregarded. The
corresponding histograms do not seem to deviate significantly from the stan-
dard normal density. However for κ = 3

12 ,
4
12 qq-plots seem to suggest that

the empirical distribution has heavier tails than the standard normal dis-
tribution. This can also be seen from the corresponding histograms where
the density deviates from the standard normal both in the tails and in the
center. To confirm the graphical analysis one sample Kolmogorov-Smirnov
test was preformed. The result is presented in Table 9.
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κ p-value
κ = 3

12 0.0060
κ = 4

12 0.2148
κ = 6

12 0.0625
κ = 7

12 0.0975
κ = 8

12 0.1534
κ = 9

12 0.1693
κ = 11

12 0.2886
κ = 12

12 0.1598

Table 9: The table shows p-values for normalised residuals for stochastic
convenience yield when performing a one sample Kolmogorov-Smirnov test
for observations in the time period 2012-07-01 to 2013-11-30.

The result in Table 9 agrees with results from the graphical analysis for all κ
except for κ = 4

12 . For κ = 4
12 the qq-plot and histogram shows that the em-

pirical distribution seem to deviates significantly from the standard normal.
Hence the result from the one sample Kolmogorov-Smirnov is disregarded
for this case.

Statistical test and graphical analysis suggest that for κ = 6
12 ,

7
12 ,

8
12 ,

9
12 ,

11
12 ,

12
12

the distribution of residuals seem to agree with the distribution of the noise
given in (26). On the other hand for κ = 3

12 ,
4
12 the distribution of the noise

does not appear to agree with the assumption in (26).

Lastly the conclusion is drawn due to the presented results that observed
time series for stochastic convenience yield for κ = 1

12 ,
2
12 ,

3
12 ,

4
12 ,

5
12 ,

10
12 does

not appear to meet assumptions in (26). However for κ = 6
12 ,

7
12 ,

8
12 ,

9
12 ,

11
12 ,

12
12

the assumptions in equation (26) seem to agree with historical data.

Summarising, shorting the observation period to 2012-07-01-2013-11-30
improved results slightly. For the observed time series for the logarithm of
average futures the model assumptions were still not fulfilled. However for
the stochastic convenience yield the result was somewhat improved, since
for κ = 6

12 ,
7
12 ,

8
12 ,

9
12 ,

11
12 ,

12
12 assumptions specified in (26) seem to be met.

Finally the set of observations was decreased to one year that is to say 2012-
11-30 to 2013-11-30. However the result was similar to the result found for
the observation period 2012-07-01 to 2013-11-30.

7.3 Reduce processes to random walks?

In this section it is analysed if the stochastic process representing the av-
erage futures price and the stochastic convenience yield for κ = 1

12 , · · · ,
12
12
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could be reduced to random walks. This was done by applying likelihood
ratio test and analysing if the coefficient representing the speed of mean re-
version could be set to zero. First the result for the process representing the
logarithm of average futures price is presented and then for the stochastic
convenience yield for every κ = 1

12 , · · · ,
12
12 .

For the process representing ln(F̄ (t)) the aim is to analyse if the observed
time series {Xt}752

t=0 for 2011-01-01 to 2013-11-30 could be represented by a
random walk. Therefore the distribution for Xt under the null hypothesis is
given by

Xt ∼
(
Xt−1, σ̃

2∆t
)
.

Hence the restricted model is

Xt = Xt−1 +
√
σ̃2∆tZ,

where Z is a standard normal random variable.

The likelihood function for the restricted model is

L(σ̃) =
m∏
t=0

1√
2πσ̃2∆t

exp {−(Xt −Xt−1)2

2σ̃2∆t }, (39)

and corresponding log-likelihood function is given by

ln(L(σ̃)) = −m ln(2π)
2 − m

2 (ln(σ̃2∆t))− 1
2σ̃2∆t

m∑
t=0

(Xt−1 −Xt)2 . (40)

In order to find the parameter σ̃ that maximizes the log-likelihood function
the following equation must be solved

∂ ln(L(σ̃))
∂ σ̃

= 0.

The solution is given by

σ̃2 = 1
m∆t

(
m∑
t=1

Xt −
m∑
t=1

XtXt−1 +
m∑
t=1

Xt−1

)
. (41)

Inserting σ̃ calculated with (41) into the equation (40) gives the value of the
log-likelihood function under the restricted model.

The model under the alternative hypothesis is given by equation (25). The
log-likelihood function for the non-restricted model was calculated by in-
serting estimates for parameters µ, α and σ see Table 3 into equation (30).
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Lastly two times log-likelihood ratio denoted 2 ln(LR) was computed from
the following relation

2 ln(LR) = −2 ln(L(σ̃)) + 2 ln(L(α, µ, σ))

The result when the historical data set is given by the observation period
2011-01-01 to 2013-11-30 together with the corresponding p-values is pre-
sented in Table 10.

2 ln(LR) p-value
6.3963 0.0408

Table 10: The table shows 2 ln(LR) and p-value for the logarithm of average
future price. The p-value was calculated as the probability P (Y ≥ 2 ln(LR))
where Y ∼ χ2

2, since the model under the null hypothesis has one parameter
and the model under the alternative hypothesis has three.

From Table 10 it can be seen that the p-value is 0.0408. Hence at level
0.05 the null hypothesis can be rejected. Therefore the conclusion can be
drawn that the observed time series for ln(F̄ (t)) is not possible to reduce to
a random walk.

Next, likelihood ratio test was applied for the observed time series estimating
the stochastic convenience yield. The goal was to analyse if data generating
the observed time series, for the observation period 2011-01-01 to 2013-11-30
could be represented by random walks. Hence the distribution under the
null hypothesis is

δκt ∼ N(δκt−1, (b̃κ)2∆t).

Consequently the restricted model is given by

δκt = δκt−1 +
√
b̃2∆tW,

where W is a standard normal random variable. The likelihood function for
the restricted model is given by

L(b̃κ) =
m∏
t=0

1√
2π(b̃κ)2∆t

exp−
(
δκt − δκt−1

)2
2(b̃κ)2∆t

.

Taking the logarithm of the above relation gives the log-likelihood function

ln(L(b̃κ)) = −m ln(2π)
2 − m

2 (ln((b̃κ)2∆t))− 1
2(b̃κ)2∆t

m∑
t=0

(
δκt−1 − δκt

)2
.
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In order to find the value of b̃κ that maximizes the log-likelihood function
the following equation must be solved

∂ ln(L(b̃κ))
∂ b̃κ

= 0.

The solution is given by

(b̃κ)2 = 1
m∆t

(
m∑
t=1

δκt −
m∑
t=1

δκt δ
κ
t−1 +

m∑
t=1

δκt−1

)
. (42)

The next step is to calculate the log-likelihood function for the restricted
model by using the maximum likelihood estimate calculated with equation
(42) for every κ = 1

12 , · · · ,
12
12 .

For this case the non-restricted model is given by equation (26). The cor-
responding log-likelihood function was calculated by using equation (27)
and maximum likelihood estimates given in Table 5. Lastly two times log-
likelihood ratio was calculated for every κ = 1

12 , · · · ,
12
12 , with the following

relation

2 ln(LR) = −2 ln(b̃κ) + 2 ln(L(bκ, aκ)).

The result is presented in Table 11.

κ 2 ln(LR) p-value
κ = 1

12 5.1427 0.0233
κ = 2

12 6.9004 0.00862
κ = 3

12 2.7007 0.1003
κ = 4

12 0.1091 0.7411
κ = 5

12 3.6102 0.0572
κ = 6

12 4.4821 0.0342
κ = 7

12 5.1577 0.0231
κ = 8

12 4.2585 0.0391
κ = 9

12 3.7580 0.0526
κ = 10

12 10.1266 0.001461
κ = 11

12 16.6682 0.000044
κ = 12

12 3.6188 0.0571

Table 11: Table shows 2 ln(LR) and p-values for observed time series for the
stochastic convenience yield. The p-values were calculated as the probability
P (Y ≥ 2 ln(LR)) where Y ∼ χ2

1. Since the modeles under the null hypoth-
esis have one parameter and the model under the alternativ hypothesis has
two.
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Table 11 shows that the p-value is less than 0.05 for κ = 1
12 ,

2
12 ,

6
12 ,

7
12

8
12 ,

10
12 ,

11
12 .

Therefore the null hypothesis is rejected at level 0.05. However for κ =
3
12 ,

4
12 ,

5
12 ,

9
12 ,

12
12 the p-value is greater than 0.05 and the null hypothesis is

accepted. Thus it appears possible to reduce the observed time series for
κ = 3

12 ,
4
12 ,

5
12 ,

9
12 ,

12
12 for the observation period 2011-01-01 to 2013-11-30 to

random walk process.

The same procedure as described above was repeated for the observation
period 2012-07-01 to 2013-11-30. It was found that the null hypothesis was
only rejected for κ = 11

12 and for the logarithm of average futures price. For
the other processes the null hypothesis was accepted [23].

7.4 Analysis of maximum-likelihood estimation

In this part of the report the maximum-likelihood estimation (MLE) for esti-
mating parameters in (11) and (14) will be analysed. First it is investigated
if the estimation works by applying another estimation method. After that
it is analysed how the estimates capture the behaviour in historical data.
Lastly the accuracy is analysed.

7.4.1 OLS-estimation of parameters

In order to control that the estimation procedure works, parameters in equa-
tions (11) and (14) are estimated by applying another method. It was chosen
to estimate parameters by Ordinary Least Squares (OLS) and compare the
result to the maximum-likelihood estimation.

First equation (25) is rewritten by setting β0 = µ(1 − e−α∆t), β1 = e−α∆t

and σ′′ =
√

σ2

2α(1− e−2α∆t). This gives

Xt = β0 +Xt−1β1 + σ′′Z, (43)

where Z is a standard normal random variable. Recall that the observed
time series for ln(F̄ (t)) is calculated with equation (9). Parameters in (43)
can be estimated by applying OLS together with the set of observations
X0, · · · , Xn. Estimates of β0 and β1 are denoted β̂0 and β̂1 and calculated
by solving the following equation

β̂ = (XTX)−1XTY,
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where

β̂ =
[
β̂0
β̂1

]
, X =


X0 1
X1 1
X2 1
...

...
Xn−1 1

 and Y =


Y1
Y2
Y3
...
Yn

 .

The model residuals can then be determined from the following relation

ê = Y−Xβ̂.

By calculating the sample standard deviation from of the vector of residuals
an estimate for σ′′ is determined. After that the corresponding estimates
for β0 and β1 where calculated using maximum-likelihood estimates given
in Table 3. The result is presented in Table 12.

β0 β1 σ′′

MLE 0.0615 0.9854 0.0072
OLS 0.0615 0.9854 0.0072

Table 12: The table shows estimates for β0 and β1 when applying MLE and
OLS.

Table 12 shows that the maximum-likelihood estimates and OLS-estimates
do not deviate from each other. Hence the same parameters are obtained
when applying two different estimation techniques. Therefore the conclusion
is that the estimation procedure works since two estimation methods give
consistent results.

After that the estimation procedure was analysed for parameters in the
process representing the stochastic convenience yield. First equation (26) is
rewritten by setting β′1 = e−a

κ∆t and σ′ =
√

(bκ)2

2aκ
(
1− e−2aκ∆t). This gives

δκt = β′1δ
κ
t−1 + σ′W, (44)

where W is a standard normal random variable. The observed time series
are calculated using equation (24), which gives observations δκ0 , δκ1 , · · · , δκn
where n = 752. The estimate of β′1 is denoted β̂′1 and the OLS-estimate is
calculated from the following relation

β̂′1 = (ATA)−1ATB,

where
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A =


δκ0
δκ1
δκ2
...

δκn−1

 and B =


δκ1
δκ2
δκ3
...
δκn

 .

Corresponding model residuals were determined from the following relation

ê′ = B−Aβ̂′1.

The parameter σ′ is estimated from the sample standard deviation of the
vector ê′. Lastly the corresponding estimates for β′1 and σ′ where calculated
with the maximum-likelihood estimates given in Table 5. The result is shown
in Table 13.

β′1 σ′

MLE κ = 1
12 0.9926 0.0211

OLS κ = 1
12 0.9926 0.0211

MLE κ = 2
12 0.9906 0.0102

OLS κ = 2
12 0.9906 0.0102

MLE κ = 3
12 0.9930 0.0072

OLS κ = 3
12 0.9930 0.0072

MLE κ = 4
12 0.9992 0.0049

OLS κ = 4
12 0.9992 0.0049

MLE κ = 5
12 0.9890 0.0033

OLS κ = 5
12 0.9890 0.0033

MLEκ = 6
12 0.9899 0.0028

OLS κ = 6
12 0.9899 0.0028

MLE κ = 7
12 0.9879 0.0022

OLS κ = 7
12 0.9879 0.0022

MLE κ = 8
12 0.9883 0.0019

OLS κ = 8
12 0.9883 0.0019

MLE κ = 9
12 0.9892 0.0017

OLS κ = 9
12 0.9892 0.0017

MLE κ = 10
12 0.9847 0.0033

OLS κ = 10
12 0.9847 0.0033

MLE κ = 11
12 0.9606 0.0018

OLS κ = 11
12 0.9606 0.0018

MLE κ = 12
12 0.9889 0.0017

OLS κ = 12
12 0.9889 0.0017

Table 13: The table shows estimates of β′1 and σ′ with MLE and OLS.

From Table 13 it can be seen that MLE and OLS give consistent estimates.
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Hence both estimation methods give the same result. Therefore the conclu-
sion can be drawn that maximum likelihood estimation works for estimating
parameters equation (26) for every κ [23].

7.4.2 MLE using rolling window of 200 days

In this section it is analysed how the maximum likelihood estimates capture
the behaviour in historical data. Since the same method is used for param-
eter estimation for both state variable process it is choose to only analyse
the logarithm of average futures price. The analysis was performed by com-
puting maximum likelihood estimation of the parameters µ, σ and α with a
rolling window of 200 trading days. Results are presented in Figure 39 and
40.
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Figure 39: Left: Estimates of µ for a rolling window of 200 trading days.
Right: Estimates of α for a rolling window of 200 trading days.
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Figure 40: Estimates of σ for a rolling window of 200 trading days.

Estimates shown in left plot in Figure 39 seem to capture the behaviour
in historical data. This is because the estimated parameters shown in the
left plot in Figure 39 seem more volatile in the beginning of the observation
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period which coincides with the behaviour shown in the left plot in Figure 5.
The right plot in Figure 39 also seem to capture the behaviour in historical
data since the speed of mean reversion is larger in the beginning of the
observation period, which is confirmed by the left plot in Figure 5. The left
plot in Figure 5 shows that the volatility seem to be larger in the beginning of
the observation. This agrees with estimates for σ shown in Figure 40. From
the results presented in Figure 39-40 it seems reasonable to conclude that
maximum likelihood estimates seem to capture the behaviour in historical
data in a correct way.

7.4.3 Accuracy for ML-estimators

In the next section the accuracy for maximum likelihood estimators for
parameters in (11) and (14) will be analysed. Observed data is used as input
when estimating parameters with methods such as maximum likelihood.
Since historical data is assumed to be outcomes from stochastic processes,
there is randomness in the sample. Due to the randomness, repeating an
experiment to generate data gives different samples. This results in different
estimates for the same parameter which leads to a sampling distribution.
When using an estimator the aim is to obtain estimates that are close to
the true parameter value. An estimator is said to be unbiased when the
expected value of the estimator is equal to the true value. The bias of an
estimator is given by the following relation

Bias = E(γ̂)− γ

where γ̂ is the estimator of the true parameter value γ. In many cases it
is not possible to obtain estimators that are unbiased. Thus it is desirable
that the bias is small. The mean squared error (MSE) gives the variance of
the estimator around the true value and is defined by the following relation

MSE = E[(γ̂ − γ)2].

When the MSE is low it indicates that estimates for any sample are likely to
be close to the true value. Taking the squared root of the MSE gives the root
mean squared error (RMSE). The standard error is defined as the standard
deviation of the sampling distribution. A small standard error indicates that
an estimator is precise since repeated experiments gives similar estimates
[24].

In order to investigate the accuracy of the maximum likelihood estimators a
simulation experiment was performed. This was done by computing a Monte
Carlo experiment on the sample size used for parameter estimation. The
simulation study was computed by using the maximum likelihood estimates
determined from historical data given in Table 3 and Table 5 to simulate new
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samples using equation (25) and (26). The sample size was chosen to 753
which is equal to the number of observations in the historical data set and
the simulations were repeated 1000 times [22]. For every set of simulated
data parameters in (11) and (14) were estimated by applying equation (34),
(35), (36) and equation (28) and (29). This resulted in 1000 estimates for
each parameter. After that the sample mean and sample standard deviation
giving the standard error was calculated. Lastly the root mean squared error
was estimated from the following relation

R̂MSE =

√√√√ 1
m

m∑
i=1

(γ̂i − γ)2,

where m is the number of replications, γ is the true parameter value and γ̂i
is the estimated value from simulation i where i ∈ 1, · · · ,m [25]. Results
for parameters in (11) is presented in Table 14 and for parameters in (14)
in Table 15-16.

Sample mean Standard error RMSE
µ 4.2171 0.0193 0.0180
α 5.1259 2.1632 2.6690
σ 0.1154 0.0030 0.0030

Table 14: Table shows sample mean, standard error and RMSE for param-
eters µ, α and σ for 753 samples and 1000 replications.

aκ Sample mean Standard error RMSE
κ = 1

12 2.3535 1.2128 1.5252
κ = 2

12 2.9579 1.4939 2.2089
κ = 3

12 2.2808 1.2601 1.6419
κ = 4

12 0.5809 0.6871 0.1227
κ = 5

12 3.2954 1.5366 2.7179
κ = 6

12 3.2045 1.7300 2.4945
κ = 7

12 3.6912 1.7845 3.0210
κ = 8

12 3.5040 1.6531 2.9007
κ = 9

12 3.2656 1.5752 2.6857
κ = 10

12 4.5065 1.9539 3.8064
κ = 11

12 10.7623 2.8955 10.0167
κ = 12

12 3.3778 1.5856 2.7536

Table 15: The table shows sample mean, standard error and RMSE for
parameters aκ for κ = 1

12 , · · · ,
12
12 for 753 samples and 1000 replications.
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bκ Sample mean Standard error RMSE
κ = 1

12 0.3357 0.0086 0.0087
κ = 2

12 0.1628 0.0042 0.0042
κ = 3

12 0.1148 0.0030 0.0030
κ = 4

12 0.0776 0.0020 0.0020
κ = 5

12 0.0523 0.0013 0.0014
κ = 6

12 0.0441 0.0011 0.0012
κ = 7

12 0.0354 0.0009 0.0009
κ = 8

12 0.0304 0.0008 0.0008
κ = 9

12 0.0274 0.0007 0.0007
κ = 10

12 0.0532 0.0014 0.0014
κ = 11

12 0.0289 0.0008 0.0008
κ = 12

12 0.0263 0.0007 0.0007

Table 16: The table shows sample mean, standard error and RMSE for
parameters bκ for κ = 1

12 , · · · ,
12
12 for 753 samples and 1000 replications.

Results presented in column 2 in Table 14-16 show that point estimates for
long term mean and volatility parameter are on average close to the true
values when comparing to Table 3 and Table 5. This is not the case for
parameters representing the speed of mean reversion α and aκ since point
estimates are on average not close to the true value. This can be seen by
comparing values in column 2 in Table 14 and Table 15 to Table 3 and 5.

Column 3 in Table 14-16 shows that estimators for µ, σ and bκ have standard
errors that are significantly smaller than for estimators of α and aκ. Similar
results are shown for RMSE, see column 4 in Table 14-16 where estimators
of long term mean and volatility have smaller RMSE than for estimators of
mean reversion parameters.

Summarising, results presented in Table 14-16 show that point estimates
are on average close to the true value for estimators of σ and bκ. The es-
timators also have the smallest RMSE and standard error among the anal-
ysed estimators. Therefore the conclusion is drawn that estimators for the
volatility parameter appear to be the most accurate among the analysed es-
timators. Table 14-16 show that estimators for α and aκ for κ = 1

12 , · · · ,
12
12

generated point estimates that were on average not close to the true pa-
rameter value. Results also suggest that these estimators had the largest
standard errors and RMSE among the analysed estimators. This leads to the
conclusion that estimators for parameters representing the speed of mean
reversion seem to be the most inaccurate. This result is consistent with
results found in literature see for example [22].
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Next, the sample mean, standard error and RMSE was computed for differ-
ent sample sizes. Since the same method for parameter estimation is used
for both state variable processes it was chosen to analyse only the process
representing the logarithm of average futures price. The result is presented
in Figure 41-46.
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Figure 41: Left: Mean for estimates of µ when increasing the number of
samples from 100 to 9600 with a step size of 500. The simulations were
repeated 1000 times for every sample size. Right: Mean for estimates of α
when increasing the number of samples from 100 to 9600 with a step size of
500. For every sample the simulation were repeated 1000 times.
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Figure 42: Mean for estimates of σ when increasing the number of sam-
ples from 100 to 9600 with a step size of 500. For every sample size the
simulations were repeated 1000 times.
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Sample size
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Figure 43: Left: Standard error for µ when increasing the number of sam-
ples from 100 to 9600 with a step size of 500. For every sample size the
simulations were repeated 1000 times. Right: Standard error for α when
increasing the number of samples from 100 to 9600 with a step size of 500.
For every sample size the simulations were repeated 1000 times.
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Figure 44: Standard error for σ when increasing the number of samples from
100 to 9600 with a step size of 500. For every sample size the simulations
were repeated 1000 times.
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Figure 45: Left: RMSE for µ when increasing the number of samples from
100 to 9600 with a step size of 500. For every sample size the simulations
were repeated 1000 times. Right: RMSE for α when increasing the number
of samples from 100 to 9600 with a step size of 500. For every sample size
the simulations were repeated 1000 times.
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Figure 46: RMSE for σ when increasing the number of samples from 100
to 9600 with a step size of 500. For every sample size the simulations were
repeated 1000 times.

From the left plot in Figure 41 and Figure 42 it can be seen that the sample
mean was close to the true value for all sample sizes. This was not really
the case for α, see right plot in Figure 41 where sample sizes greater than
1100 was needed to get a sample mean just over 4. However this is still not
as close to the true value as for estimators of µ and σ.

Figure 43 and Figure 44 shown how the standard error depends on sample
size for the three estimators. From the left plot in Figure 43 it can be seen
that the standard error decrease significantly for sample sizes 600 which is
needed to obtain standard errors of order 10−2. In Figure 44 one can see
that the standard error is of order 10−3 already for sample size 100. How the
standard error depends on sample size for the estimator of α is shown in the
right plot in Figure 43. The figure shows that in order to obtain standard
errors that are of order 10−1 a sample sizes greater than 2100 is needed.

70 August 16, 2015



Master’s Thesis Applied Mathematics

Lastly how the RMSE depends on sample size is discussed. For the estimator
of α the right plot in Figure 45 shows that sample sizes greater than 2100
are needed to obtain RMSE of order 10−1. This is not close to the estimator
of σ that seem to have an RMSE of order 10−3 for all sample sizes analysed,
see Figure 46. For the estimator of µ, see the left plot in Figure 45 showing
that a sample size of 600 is needed to obtain RMSE of order 10−2.

Due to the results in Figure 41-46 the conclusion is drawn that parameters
representing the speed of mean reversion needs the largest number of samples
among the estimators analysed in order to improve the accuracy. However
the accuracy obtained for very large samples is still far from the accuracy
for the estimator of σ.
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8 Summery and conclusion

In this thesis the aim was to suggest a method to validate the market com-
modity forward curve. The method proposed was to create a reference curve
using theoretical models. It was chosen to simulate futures prices with the
seasonal cost-of-carry model and create the reference curve using linear in-
terpolation between the simulated values. The seasonal cost-of-carry model
was chosen because; it models futures prices under the real world proba-
bility measure, it is claimed to be applicable to commodities with seasonal
patterns and uses a more stable quantity as state variable than the spot
price.

The validation method was applied to UK natural gas futures for every
trading day in December 2013. It was noticed that the simulated curves
seemed to capture the seasonal behaviour of UK natural gas in a correct
way. This is because futures prices for contracts maturing in the winter
months were larger than for contracts maturing in the summer, see Figure
26 and 27. However the spread among the simulated curves increased when
moving away from the last observed data point, compare Figure 27 to the
upper plot in Figure 26.

In the seasonal cost-of-carry model the logarithm of the average futures price
and stochastic convenience yield are assumed to follow Ornstein Uhlenbeck
in discrete time given by equation (25) and (26). In section Original data
set it was analysed if observed time series fulfil these assumptions.

First the logarithm of average futures prices was analysed for the observation
period 2011-01-01 to 2013-11-30. The sample ACF for model residuals, see
left plot in Figure 28 suggests that the residuals seem to be realisations of
IID noise. Results were consistent with Ljung-Box Q-Test. However the
distribution of the residuals did not seem to fulfil the assumption given in
equation (25). The conclusion was drawn because the qq-plot in Figure 29
does not show a linear plot with slope equal to one. The graphical result
was consistent with result generated from one sample Kolmogorov-Smirnov
test. Therefore the conclusion was drawn that the observed time series for
2011-01-01 to 2013-11-30 did not meet assumptions in (25).

The same analysis was repeated for the stochastic convenience yield. Sample
ACF shown in Figure 30-31 and Figure 47-56 in Appendix E suggests that for
every κ except κ = 4

12 the residuals seem to be realisations of IID noise. This
result was consistent with Ljung-Box Q-test presented in Table 6. Graphical
analyses of qq-plots and histograms, see Figure 32-33 and Figure 57-65 in
Appendix E show that for κ = 5

12 ,
8
12 the residuals appear to satisfy the

assumption of the distribution of the noise in (26). Results were consistent
with one sample Kolmogorov-Smirnov test, see Table 7. Due to the presented
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results it appears plausible to conclude that model assumptions for observed
time series for stochastic convenience yield only satisfy assumptions in (26)
for κ = 5

12 ,
8
12 .

Since price data was volatile in the beginning of the observation period the
data set was shorted to 2012-07-01-2013-11-30. An analysis was therefore
performed to investigate if shortening the observation period could improve
the result that the majority of observed time series did not satisfy model
assumptions. This was done in section Different set of historical observations
with the same method as for the original data set. Results suggests that the
observed time series for ln(F̄ (t)) still did not fulfil the assumption in (25).
The conclusion was drawn by analysing Figure 35 and Figure 36. The results
were consistent with results found when performing Ljung-Box Q-test and
one sample Kolmogorov-Smirnov test.

For the stochastic convenience yield the results were slightly improved since
for κ = 6

12 ,
7
12 ,

8
12 ,

9
12 ,

11
12 ,

12
12 the assumptions given in (26) seem to be fulfilled.

The conclusion was drawn by investigating Figure 37-38, Figure 66-75 and
Figure 76-83. The graphical analysis was consistent with statistical tests,
see Table 8 and Table 9 except for κ = 4

12 ,
10
12 .

In the section Reduce processes to random walks? an analysis was performed
to investigate if there is a possibility to reduce observed time series for the
state variables to random walks. This was done by applying likelihood
ratio test with the null hypothesis of setting the speed of mean reversion
equal to zero. Results are presented in Table 10 and Table 11 suggesting
that for κ = 3

12 ,
4
12 ,

5
12 ,

9
12 ,

12
12 the null hypothesis is accepted. Therefore it

seemed possible to reduce these processes to random walks. Since observed
time series for κ = 3

12 ,
4
12 ,

5
12 ,

9
12 ,

12
12 could be reduced to random walks it is

difficult to predict future values from these processes because the random
walk is none stationary. Shorting the observation period 2012-07-01-2013-
11-30 did not improve the results.

In the last section of the report the maximum likelihood method for estimat-
ing parameters in the stochastic process was analysed. First it was investi-
gated if the parameter estimation procedure works. Estimating parameters
with OLS gave consistent results with maximum likelihood estimates, see
Table 12 and Table 13. Therefore the conclusion was drawn that the esti-
mation procedure works. Then it was analysed if the maximum likelihood
estimates captures the behaviour in historical data. From Figure 39 and
40 it could be concluded that the behaviour in historical data was correctly
captured by the estimates.

Then the accuracy of the estimators was investigated. Results in Table 14-
16 suggests that estimators of volatility parameters are the most accurate.
This is because point estimates were on average close to the true values and
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the estimators had smallest RMSE and standard errors among the analysed
estimators. The presented results also show that estimators of mean rever-
sion parameters have the poorest accuracy. This is because point estimates
where on average not close to the true values and the estimators had the
largest standard errors and RMSE.

Finally it was analysed how the accuracy of the estimators depend on sample
size. Figure 41-46 show that estimator of mean reversion parameter needs
large sample sizes to improve the accuracy. But even for large sample sizes
the accuracy was still significantly less than for the estimator of the volatility.

The conclusion is drawn that the suggested model does not seem applicable
for validating the market forward curve for UK natural gas futures. Firstly,
due to that observed time series did not satisfy model assumptions. Perhaps
the assumptions would be satisfied for all state variable process if the val-
idation method was applied to another time period. However it is difficult
to use a model for validation if it is not always the case that historical data
meets model assumptions. The second reason is because it was found that
for some observed time series it was possible to set the parameter repre-
senting the speed of mean reversion equal to zero. This is a negative aspect
since these time series cannot be used for prediction.
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Appendices

Appendix A Mathematical background

In this Appendix essential mathematical background needed in the report is
presented, starting with probability theory and time series analysis. After
that some stochastic calculus is presented and lastly maximum likelihood
estimation.

A.1 Probability theory

In this section some concepts in probability theory will be presented. First
the definition of sample space, empty space, sigma algebra and filtration are
going to be discussed, following with the definition of probability measure,
stochastic processes and the concept of martingales.

The sample space is denoted Ω and is defined as the set of all possible
outcomes of a certain experiment. Outcomes of an experiment that are not
possible to occur belong to the empty set symbolised by ∅.

The collection of subsets under the sample space is denoted F and called a
sigma algebra if the following properties are fulfilled:

• The empty ∅ set belongs to F .

• If an event Xi belong to F , then also the complement event to Xi

belongs to F .

• If the events X1, X2, X3 · · · belong to F , then the union of the events
also belong to F .

If there exists a set of increasing sigma algebra and if the following chain of
sigma algebras can be constructed

F1 ⊂ F2 ⊂ · · · ⊂ Fn,

where the sign ⊂ means that every set in F1 also belong to F2, then the
constructed chain is called a filtration [4].

The filtration will be denoted {Ft}nt=1 and can be thought of as the infor-
mation available up to time n [13].

Now the definition of a probability measure on (P̃ ,F) is going to be pre-
sented. In order for P̃ to be a probability measure the following properties
must be fulfilled
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• P̃ (Ω) = 1

• P̃ (∅) = 0

• P̃ (B) ≥ 0

• If for every event Bi for i = 1, 2, 3, · · · that belong F it holds that
union of Bm and Bn for every m 6= n is the empty set, then

P̃ (∪∞i=1Bi) = Σ∞i=1P̃ (Bi).

The above properties are requirements that have to be fulfilled in order for
a measure to be considered as a probability measure. In this report the real
world probability measure will be all through the report be denoted P and
the risk neutral measure will be denoted Q. The probability space is given
by (P̃ ,Ω,F) and consist of the probability measure P̃ , the sample space Ω
and the sigma algebra F of subsets of Ω [4].

Continuous stochastic processes can be viewed as models for how random
events develop over time. A stochastic process is defined as the set of random
variables given by

Y = {Yt}nt=1,

where all Yt are defined on the same probability space [17].

In order for a stochastic process Y to be a martingale with respect to the
filtration {Ft}nt=1 the following properties must be fulfilled

• Y must be measurable with respect to the sigma algebras Ft that
construct the filtration {Ft}nt=1.

• For all t it must hold that E[|Yt|] <∞.

• E[Yt|Ft−1] = Yt−1 martingale property

The martingale property can be interpreted as, that the best guess of the
price tomorrow given the information today is the price today [13].

A.2 Time series analysis

Now some basic result in time series analysis will be presented. First the
concepts of stationarity and the definition of autocovariance function and
mean function, following with a presentation of IID noise and random walk.
Lastly the autoregressive processes and its properties will be discussed.

The sequence {Zt, t = 0,±1,±2, · · · } is said to be a stationary time series
if the statistical properties that drive the evolution of the process are inde-
pendent of time. If outcomes from the sequence are given by Zt1 , · · · , Ztn

78 August 16, 2015



Master’s Thesis Applied Mathematics

and Zt1−h , · · · , Ztn−h have the same joint distribution for all lags h and all
time points t1, · · · , tn the series is said to be strictly stationary [21]. A time
series is said to be weakly stationary if the following conditions are fulfilled

• The autocovariance function is independent of time for all lags.

• The mean function is independent of time.

In this report a time series that is weakly stationary will be referred to as a
stationary time series.

If a stationary time series given is by the sequence {Zt, t = 0,±1,±2, · · · },
the autocovariance function is defined as

γZ(h) = Cov(Zt+h, Zt),

where h is the lag.

The mean function is defined as

µZ(t) = E[Zt],

where t = ±1,±2, · · · .

If the set of observations from {Zt}nt=1 are given by z1, · · · , zn the sample
autocovariance function can be calculated by the following relation

γ̂(h) = 1
n

n−|h|∑
t=1

(zt+|h| − z̄)(zt − z̄), −n < h < n,

where z̄ is the sample mean of the set of observations z1, · · · , zn. The sample
autocorrelation function (ACF) is defined as

ρ̂(h) = γ̂(h)
γ̂(0)

[20].

A.2.1 IID noise

A time series of random variables that are independent and identically dis-
tributed with zero mean and constant standard deviation is called IID noise.
Since the IID noise is a sequence of independent random variables with mean
zero and constant variance the autocovariance function for all lags h is given
by {

γ(t, t) = σ2

γ(t+ h, t) = 0 if h 6= 0.
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In order to check if data is a realisation of IID noise the sample ACF can be
analysed. For an IID sequence it holds that for large sample sizes and lags
greater than zero the sample ACF is normally distributed mean zero and
variance 1

n where n is the sample size. Therefore a sample can be considered
as IID noise if 95 percent of the sample ACF for lags larger than zero do
not exceed the IID threshold given by ±1.96√

n
[20].

A.2.2 Random walk

If a sequence {εt, t = ±1,±2, · · · } consist of independent and identically dis-
tributed random variables with zero mean and constant standard deviation
a new time series {Zt, t = ±1,±2, · · · } can be constructed by performing
the following steps 

Z1 = ε1

Z2 = ε1 + ε2
...

Zt = ε1 + · · · εt

which can be summerized as

Zt = Zt−1 + εt. (45)

The time series given by equation (45) is called a random walk. Because
the sequence ε1, ε2, · · · has zero mean the time series given by (45) will also
have zero mean for all t. For all lags h > 0 the autcovariance function can
be calculated as

γ(t+ h, t) =Cov(Zt+h, Zt)
=Cov(ε1 + · · ·+ εt + εt+h, ε1 + · · ·+ εt)
=tσ2

ε ,

where σε is the standard deviation for every random variable in time series
{εt, t = ±1,±2, · · · }. One can therefore notice that the random walk is not
stationary since the autocovariance function is an increasing function of time
[21].

A.2.3 Autoregressive process

If a random variable is a linear combination of the m most nearest past
values together with random term given by IID noise the process is said to
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be an autoregressive process of order m (AR(m)). If the series {Yt}nt=1 is
autoregressive process of order m then

Yt = β0 + β1Yt−1 + β2Yt−2 + · · ·+ βmYt−m + εt,

where β0, · · · , β1 are coefficients. Letting the process be of order one gives

Yt = β0 + β1Yt−1 + εt.

The above process is called an autoregressive process of order one and is
stationary if |β1| < 1. On the other hand if |β1| ≥ 1 the process is not
stationary. For the case when β1 = 1 and β0 = 0 the process is reduced to
a random walk, see equation (45) [21].

A.3 Stochastic calculus

In this section some stochastic calculus need in the report is presented.
First the definition of Brownian motion, then some theory about stochastic
differential equations. After that the definition of Ito’s formula is presented.
Lastly some examples of stochastic process are going to be outlined.

Brownian motion

On the real world probability space the Brownian motion is denoted Bt
and defined as a continuous real valued stochastic process with the follow-
ing properties

• At t = 0 the value of the process is zero.

• For every time point greater than zero it holds that Bt is measurable
w.r.t Ft.

• Bt is normally distributed with zero mean and variance t for every
time point t greater than zero.

• The process has trajectories that are almost surly continuous [4].

The differential of the Brownian motion is written dBt. Due to properties
of the Brownian motion presented above, it will hold that dBt normally
distributed with mean zero and variance dt [11].

Stochastic differential equations
Deterministic differential equations can be used to describe dynamics of
different phenomenon. The simplest differential equation is obtained when
the dynamics can be described by first order derivatives. An example of
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such a differential equation is given by{
y′(t) = a(t, y(t))
y(0) = y0.

In the above system the initial condition is a deterministic quantity. But in
some cases the initial conditions is not deterministic but instead a function
of some random event. For those cases the initial condition must instead be
described as function of a noise term, where the distribution of the noise is
known in advance. When the initial condition is stochastic the differential
equation is called a stochastic differential equation (SDE) and the solution is
given by a stochastic process. One can therefore describe the dynamics of a
stochastic process by using stochastic differential equations. In many cases
the random noise can be described by the differential of Brownian motions
and for those cases a general form of the SDE is given by{

dYt = a(t, Yt)dt+ b(t, Yt)dBt
Ys = Zs,

(46)

where the functions a(t, Yt) and b(t, Yt) are real valued deterministic func-
tions representing the rate of change for dt and dBt respectively. The dt
term is called drift and dBt term is called diffusion. A solution to the SDE
(46) is obtained by integrating the left and right side of the above equation
respectively. This gives

Yt − Ys =
∫ t

s
a(t, Yu)du+

∫ t

s
b(t, Yu)dBu. (47)

The second integral in equation (47) is a stochastic integral, these are called
Ito integrals [4].

Ito’s formula

For some SDE’s there exists exact solutions, examples of such are the dy-
namics of the Geometric Brownian Motion (GBM) and Ornstein-Uhlenbeck
process (mean reverting process). In order find a solution to a SDE Ito’s
formula can be used. If it is assumed that a function denoted g has continu-
ous second order derivatives. Then for every t greater or equal to zero Ito’s
formula in differential form is given by

dg(Bt) = g′(Bt)dBt + 1
2g
′′(Bt)dt

[4].

Below some examples of SDE’s for different stochastic process are going to
be presented together with some properties for each process respectively.
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Geometric Brownian motion
The stochastic process called Geometric Brownian motion (GBM) is often
used for different financial applications. If a process Yt is a GBM. Then it
is a solution to the following SDE

{
dYt = µYtdt+ σYtdBt

Ys = Zs,

where µ and σ positive constants [12]. The GBM is a process that can possi-
bly take values between minus infinity and infinity. This property of a very
large spread of possible values is not always applicable for financial appli-
cations. Hence in some cases another process called Ornstein–Uhlenbeck is
more appropriate to use [11].

Ornstein–Uhlenbeck (mean reversion)

An Ornstein–Uhlenbeck (mean reverting) process is a solution to the follow-
ing SDE {

dYt = α(µ− Yt)dt+ σdBt

Ys = Zs,
(48)

where α is called the speed of mean reversion, µ is the long term mean, dBt
is the differential of the Brownian motion and Ys is the initial condition.
The mean reverting process has the property of always striving back to its
long term mean given by µ with speed given by α [12]. In contrary to GBM
the mean reverting process cannot take values between minus infinity and
infinity. It is instead a process that fluctuates around its mean value. The
mean revering property can be analysed by considering the expected value
of equation (48)

E[dYt] = E[α(µ− Yt)dt+ σdBt] = E[α(µ− Yt)dt] = α(µ− Yt)dt. (49)

In the above calculations it was used that the differential of a Brownian
motion has zero mean and that Yt is observed at time t. From equation
(49) it can be concluded that if µ > Yt, the expected value will be positive
and the process will increase to approach the long term mean. On the other
hand if µ < Yt the expected value is negative and the process will decrease
to reach the long term mean.

For commodities it has been observed that the spot price tend to revert back
to a long term mean representing the marginal production cost. Hence the
mean reverting process is often used to model price dynamics for commodi-
ties [11].
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A strong solution to equation (48) is given by (see Appendix B for compu-
tations)

Yt = Yse
−α(t−s) + µ(1− e−α(t−s)) +

∫ t

s
σe−α(t−u)dBu.

In the above relation it can be noticed that the third term is a stochastic
integral with a deterministic integrand. Therefore due to properties of the
stochastic integral the distribution is

∫ t

s
σe−α(s−u)dBu ∼ N

(
0, σ

2

2α
(
1− e−2α(t−s)

))
.

Hence given the observation Ys the distribution of the process is

Yt ∼ N
(
Yse
−α(t−s) + µ(1− e−α(t−s)), σ

2

2α
(
1− e−2α(t−s)

))
. (50)

[4].

Because the future value Yt depends only on the past through the current
observation given by Ys, the mean reverting process is a Markov process.
Thus the process has no memory of the past because it only needs the
current observation in order to decide the next future value [14].

A.4 Maximum likelihood estimation

Parameters in the SDE giving the dynamics of a process can be determined
by a method called maximum likelihood estimation. When estimating pa-
rameters with maximum likelihood the goal is to find parameters so that
the likelihood of obtaining a set of observations is maximized [12]. The in-
terpretation of the method is intuitive for the case when observations have
a discrete distribution. Then the likelihood function is a product of the
probabilities for every observation in the set. When random variables have
a continuous distribution the likelihood function is given by the joint density
function for the random variables constructing the set. The likelihood func-
tion for a set of random variables with a continuous distribution function is
given by

L(Θ) = fY0,··· ,Yn(Θ),

where Y0, · · · , Yn are observations. If observations are independent and iden-
tically distributed the likelihood function can be simplified to

L(Θ) =
n∏
i=0

fY1(Θ) · · · fYn(Θ).
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Where Θ is the set of unknown parameters. Taking the logarithm of the
above relation gives the log-likelihood function

lnL(Θ) = Σn
i=0 ln fYi(Θ).

The aim of the maximum likelihood estimation is to find the set of parame-
ters Θ so that the likelihood function is maximized. Often the log-likelihood
function is considered instead since calculations are simplified when consider-
ing a sum instead of products. Because the logarithm is a strictly increasing
functions the same parameters are found when maximizing the log-likelihood
function instead of the likelihood function [16]. It is also important to notice
that likelihood estimates for large number of observations are consistent, ef-
ficient and that the distribution of the estimators are asymptotically normal
[12].

A.4.1 Independent normally distributed set of observations

Application of maximum likelihood estimation will now be shown on a set
of observations {Yt}Mt=1 that are independent and normally distributed with
mean γ and standard deviation β. The density function for one observation
Yt is given by

fYt(Θ) = 1√
2πβ2 exp−(Yt − γ)2

2β2 ,

where Θ = {γ, β}. When observations are independent and normally dis-
tributed the likelihood of observing the entire set is given by

L(γ, β) =
M∏
i=1

1√
2πβ2 exp−(Yi − γ)2

2β2 .

The aim is now to find parameters γ and β so that the likelihood of observing
Y1, · · · , YM is maximized. For this case the log-likelihood function is given
by

ln(L(γ, β)) =
M∑
i=0
− ln(

√
2πβ2)− (Yi − γ)2

2β2 .

Parameters β and γ can be determined by computing the gradient of the
log-likelihood function with respect to β and γ and setting it equal to zero
and solving each equation respectively [12].
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A.4.2 Interference for parameters in mean reverting process

Maximum likelihood estimation can be used to determine parameters in
equation (48) given a set of historical observations. However observations
from a mean reverting process are not independent due to the Markov prop-
erty of the process. One can start by letting discrete observations from the
mean reverting process with dynamics given by (48) for equally spaced time
differences be denoted Y0, · · · , YN . The time difference between observation
is written ∆t.

The exact updating formula for the discrete representation of the mean
reverting process with dynamics given by equation (48) is

Yt = Yt−1e
−α∆t + µ(1− e−α∆t) +

(
σ2

α2
(
1− e−α2∆t

))
ε, (51)

where ε is a standard normal variable. The density function for observation
Yt follow from the updating formula (51) and is given by

fYt|Yt−1(α, µ, σ) = 1√
2π
(
σ2

α2
(
1− e−α2∆t)) exp−

(Yt − Yt−1e
−α∆t − µ

(
1− e−α∆t

)
)2

2
(
σ2

α2
(
1− e−α2∆t)) .

The likelihood function for observing the entire set is given by

L(α, µ, σ) = fY1|Y0,··· ,Yn|Yn−1(α, µ, σ).

Which is equivalent to

L(α, µ, σ) =
N∏
t=1

fYt|Yt−1(α, µ, σ).

Hence the likelihood function is given by

L(α, µ, σ) =
N∏
t=1

1√
2π
(
σ2

α2
(
1− e−α2∆t)) exp−

(Yt − Yt−1e
−α∆t − µ

(
1− e−α∆t

)
)2

2
(
σ2

α2
(
1− e−α2∆t)) .

Setting β2 = σ2

α2

(
1− e−α2∆t

)
and computing the logarithm gives the log-

likelihood function

ln(L) = −N2 ln(2π)− N

2 ln(β2)− 1
2β2

N∑
t=1

(
Yt − Yt−1e

−α∆t − µ
(
1− e−α∆t

))2
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Parameters maximizing the log-likelihood are found by solving the following
set of equations

∂ ln(L)
∂β

= 0 (52)

∂ ln(L)
∂α

= 0 (53)

∂ ln(L)
∂µ

= 0. (54)

From equation (52)-(54) estimators for parameters α, µ and σ can be deter-
mined. Since the mean reverting process has a density that can be expressed
analytically it is one of few processes for which exact maximum likelihood
estimation can be performed [22]. It can be noticed that the model repre-
senting the exact updating formula given by (51) is an autoregressive process
of order one. If the speed of mean reversion is zero the process given by (51)
will be reduced to a random walk.
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Appendix B Analytic solution

In this Appendix steps for calculating analytic solutions for equation (48),
(11) and (14) will be presented.

An exact solution to equation (48) can be found by computing the ansatz
Xt = eαtYt and apply Ito’s formula to Xt = eαtYt, this gives

dXt = αeαtYtdt+ eαtdYt.

Hence the following expression is obtained

dXt = αµeαtdt+ eαtσdBt.

Integrating the left and right hand side from s to t while assuming that s < t
gives

Xt −Xs = µ(eαt − eαs) +
∫ t

s
eαuσdBu.

The initial condition for the process is Ys. This implies that Xs = Yse
αs

which gives

Xt = Yse
αs + µ(eαt − eαs) +

∫ t

s
eαuσdBu.

Now the solution is transformed back to a solution for Yt

Yt = Yse
−α(t−s) + µ(1− e−α(t−s)) +

∫ t

s
e−α(t−u)σdBu. (55)

The third term in (55) is a stochastic integral with a deterministic in-
tegrand and is therefore normally distributed with mean 0 and variance∫ t
s e
−2α(t−u)σ2du. Hence the distribution for Yt is given by

Yt ∼ N
(
Yse
−α(t−s) + µ(1− e−α(t−s)),

∫ t

s
e−2α(t−u)σ2du

)
(56)
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An an analytic solution to equation (11) can be found by performing the
same steps as described above for (48). The analytic solution for (11) is

Xt = Xse
−α(t−s) + µ(1− e−α(t−s)) +

∫ t

s
e−α(t−u)σdB1

u.

An exact solution to (14) is also obtained by computing the same steps as
for equation (48). The solution is given by the following equation

δkt = δκs e
−aκ(t−s) +

∫ t

s
e−a

κ(t−u)bκdB2
u.

[4].

Appendix C Model constraints

In this Appendix constraints that are need to be fulfilled in order for equation
(9) to hold are going to be analysed. One can start by computing the
logarithm of equation (7). This gives

ln(F (t, T )) = ln(F̄ (t)) + s(T )− δ(t, T − t)(T − t).

Which is equivalent to

ln(F̄ (t)) = ln(F (t, T ))− s(T ) + δ(t, T − t)(T − t).

Inserting relation (9) gives

ln(F̄ (t)) = ln(F (t, T ))− s(T ) + δ(t, T − t)(T − t) = 1
n

(
n∑

T=1
ln(F (t, T ))

)
.

This is equivalent to

ln(F̄ (t)) = 1
n

(
n∑

T=1
ln(F̄ (t) + (s(T )− δ(t, T − t)(T − t)

)
=

ln(F̄ (t))− 1
n

(
n∑

T=1
s(T )

)
+ 1
n

(
n∑

T=1
δ(t, T − t)(T − t)

)
.

The second term in the above relation is zero since the model claims that
the sum of seasonal components for all calender months is zero. Therefore
the following relation is obtained
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ln(F̄ (t)) = ln(F̄ (t))− 1
n

(
n∑

T=1
δ(t, T − t)(T − t)

)
.

Hence it can be concluded that the sum of aggregated convenience yield
must be zero in order for equation (9) to hold [10].

Appendix D Futures price dynamics

In order to analyse the dynamics of futures prices for the seasonal cost-of-
carry model the following calculations must be performed.

Inserting the dynamics of the state variables given by (11) and (14) in (17)
and setting δ(t, κ) = δκt gives

d ln(F (t, T )) = αµdt− αXtdt+ σdB1
t − κ(−aκδtdt+ bκdB2

t )− δκt dt.

Integrating the above equation while assuming that 0 < t together with the
initial condition ln(F (0, T )) = ln(F̄ (0)) + s(T )− δκ0 gives

ln(F (t, T ))− ln(F (0, T )) =∫ t

0
(αµ− αXu + κaκδκu − δκu)du

− κ
∫ t

0
bκdB2

t +
∫ t

0
σdB1

u.

The second and third term in the above equation are stochastic integrals
with deterministic integrands. Since the Brownian motions B1

t and B2
t are

independent, the logarithm of the futures price will be normally distributed
and equivalently the futures price is log-normally distributed [10].

Appendix E Figures original set of observations

In this Appendix figures are presented used for analysis in the section Orig-
inal historical data set. First figures giving the sample ACF and realisation
of model residuals given by relation (38) are presented in Figure 47-56.
Following with qq-plots of empirical quantiles of normalised model residuals
against standard normal quantiles together with histograms in Figure 57-65.
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Figure 47: Left: ACF for model residuals for convenience yield time series
for κ = 3

12 , where the IID thresholds are given by the blue horizontal lines.
Right: Time series of model residuals for convenience yield.
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Figure 48: Left: ACF for model residuals for convenience yield time series
for κ = 4

12 , where the IID thresholds are given by the blue horizontal lines.
Right: Time series of model residuals for convenience yield.
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Figure 49: Left: ACF for model residuals for convenience yield time series
for κ = 5

12 , where the IID thresholds are given by the blue horizontal lines.
Right: Time series of model residuals for convenience yield.

August 16, 2015 91



Master’s Thesis Applied Mathematics

Lag
0 2 4 6 8 10 12 14 16 18 20

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1
Sample Autocorrelation Function

Time in days
0 100 200 300 400 500 600 700 800

R
e
s
id

u
a
ls

-0.015

-0.01

-0.005

0

0.005

0.01

0.015
Time series for model residuals for stochastic convenience yield κ = 6

12

Figure 50: Left: ACF for model residuals for convenience yield time series
for κ = 6

12 , where the IID thresholds are given by the blue horizontal lines.
Right: Time series of model residuals for convenience yield.
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Figure 51: Left: ACF for model residuals for convenience yield time series
for κ = 7

12 , where the IID thresholds are given by the blue horizontal lines.
Right: Time series of model residuals for convenience yield.
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Figure 52: Left: ACF for model residuals for convenience yield time series
for κ = 8

12 , where the IID thresholds are given by the blue horizontal lines.
Right: Time series of model residuals for convenience yield.
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Figure 53: Left: ACF for model residuals for convenience yield time series
for κ = 9

12 , where the IID thresholds are given by the blue horizontal lines.
Right: Time series of model residuals for convenience yield.
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Figure 54: Left: ACF for model residuals for convenience yield time series
for κ = 10

12 , where the IID thresholds are given by the blue horizontal lines.
Right: Time series of model residuals for convenience yield.
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Figure 55: Left: ACF for model residuals for convenience yield time series
for κ = 11

12 , where the IID thresholds are given by the blue horizontal lines.
Right: Time series of model residuals for convenience yield.
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Figure 56: Left: ACF for model residuals for convenience yield time series
for κ = 12

12 , where the IID thresholds are given by the blue horizontal lines.
Right: Time series of model residuals for convenience yield.
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Figure 57: Left: QQ-plot for normalised model residuals against quantiles
of standard normal distribution for κ = 3

12 . Right: Histogram of normalised
residuals together with density of standard normal distribution.
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Figure 58: Left: QQ-plot for normalised model residuals against quantiles
of standard normal distribution for κ = 5

12 . Right: Histogram of normalised
residuals together with density of standard normal distribution.
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Figure 59: Left: QQ-plot for normalised model residuals against quantiles
of standard normal distribution for κ = 6

12 . Right: Histogram of normalised
residuals together with density of standard normal distribution.
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Figure 60: Left: QQ-plot for normalised model residuals against quantiles
of standard normal distribution for κ = 7

12 . Right: Histogram of normalised
residuals together with density of standard normal distribution.
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Figure 61: Left: QQ-plot for normalised model residuals against quantiles
of standard normal distribution for κ = 8

12 . Right: Histogram of normalised
residuals together with density of standard normal distribution.
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Figure 62: Left: QQ-plot for normalised model residuals against quantiles
of standard normal distribution for κ = 9

12 . Right: Histogram of normalised
residuals together with density of standard normal distribution.
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Figure 63: Left: QQ-plot for normalised model residuals against quantiles
of standard normal distribution for κ = 10

12 . Right: Histogram of normalised
residuals together with density of standard normal distribution.
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Figure 64: Left: QQ-plot for normalised model residuals against quantiles of
standard normal distribution for κ = 11

12 . Right: Histogram for normalised
residuals together with density for standard normal distribution.

96 August 16, 2015



Master’s Thesis Applied Mathematics

Standard Normal Quantiles

-4 -3 -2 -1 0 1 2 3 4

E
m

p
ir
ic

a
l 
q
u

a
n
ti
le

s

-8

-6

-4

-2

0

2

4

6

8

QQ-plot for model residuals for δκ
t
scaled with

√

(bκ)2

2aκ
(1− e−2aκ∆t)

-10 -5 0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

Histogram for scaled model residuals for δκ
t

Figure 65: Left: QQ-plot for normalised model residuals against quantiles of
standard normal distribution for κ = 12

12 . Right: Histogram for normalised
residuals together with density for standard normal distribution.
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Appendix F Figures different set of observations

In this section figures are presented used in the analysis in section Differ-
ent set of historical observations. First sample ACF plots and time series
for model residuals calculated with (38) for the time period 2012-07-01 to
2013-11-30 are presented, see Figure 66-75. After that qq-plots are pre-
sented where the empirical quantiles are given by normalised residuals plot-
ted against standard normal quantiles together with histograms, see Figure
76-83.
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Figure 66: Left: ACF for model residuals for convenience yield time series
for κ = 3

12 , where the blue horizontal lines represent the IID threshold.
Right: Time series of model residuals for convenience yield.

Lag

0 2 4 6 8 10 12 14 16 18 20

S
a

m
p
le

 A
u

to
c
o

rr
e

la
ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1
Sample Autocorrelation Function

Time in days

0 50 100 150 200 250 300 350 400

R
e
s
id

u
a
ls

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
Time series for model residuals for stochastic convenience yield κ = 4

12

Figure 67: Left: ACF for model residuals for convenience yield time series
for κ = 4

12 , where the blue horizontal lines represent the IID threshold.
Right: Time series of model residuals for convenience yield.
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Figure 68: Left: ACF for model residuals for convenience yield time series
for κ = 5

12 , where the blue horizontal lines represent the IID threshold.
Right: Time series of model residuals for convenience yield.
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Figure 69: Left: ACF for model residuals for convenience yield time series
for κ = 6

12 , where the blue horizontal lines represent the IID threshold.
Right: Time series of model residuals for convenience yield.
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Figure 70: Left: ACF for model residuals for convenience yield time series
for κ = 7

12 , where the blue horizontal lines represent the IID threshold.
Right: Time series of model residuals for convenience yield.
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Figure 71: Left: ACF for model residuals for convenience yield time series
for κ = 8

12 , where the blue horizontal lines represent the IID threshold.
Right: Time series of model residuals for convenience yield.
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Figure 72: Left: ACF for model residuals for convenience yield time series
for κ = 9

12 , where the blue horizontal lines represent the IID threshold.
Right: Time series of model residuals for convenience yield.
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Figure 73: Left: ACF for model residuals for convenience yield time series
for κ = 10

12 , where the blue horizontal lines represent the IID threshold.
Right: Time series of model residuals for convenience yield.
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Figure 74: Left: ACF for model residuals for convenience yield time series
for κ = 11

12 , where the blue horizontal lines represent the IID threshold.
Right: Time series of model residuals for convenience yield.
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Figure 75: Left: ACF for model residuals for convenience yield time series
for κ = 12

12 , where the blue horizontal lines represent the IID threshold.
Right: Time series of model residuals for convenience yield.
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Figure 76: Left: QQ-plot for normalised model residuals for stochastic con-
venience yield for κ = 3

12 against standard normal quantiles. Right: His-
togram of normalised residuals together with density of standard normal
distribution.
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Figure 77: Left: QQ-plot for normalised model residuals for stochastic con-
venience yield for κ = 4

12 against standard normal quantiles. Right: His-
togram of normalised residuals together with density of standard normal
distribution.
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Figure 78: Left: QQ-plot for normalised model residuals for stochastic con-
venience yield for κ = 6

12 against standard normal quantiles. Right: His-
togram of normalised residuals together with density of standard normal
distribution.
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Figure 79: Left: QQ-plot for normalised model residuals for stochastic conve-
nience yield for κ = 7

12 against standard normal quantiles. Right: Histogram
of normalised model residuals together with standard normal density.

102 August 16, 2015



Master’s Thesis Applied Mathematics

Standard Normal Quantiles

-3 -2 -1 0 1 2 3

E
m

p
ir
ic

a
l 
q

u
a
n

ti
le

s

-4

-3

-2

-1

0

1

2

3

4

5

QQ-plot for model residuals for δκ
t
scaled with

√

(bκ)2

2aκ
(1− e−2aκ∆t)

-5 0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Histogram for scaled model residuals for δκ
t

Figure 80: Left: QQ-plot for normalised model residuals for stochastic conve-
nience yield for κ = 8

12 against standard normal quantiles. Right: Histogram
of normalised model residuals together with density of standard normal dis-
tribution.
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Figure 81: Left: QQ-plot for normalised model residuals for stochastic conve-
nience yield for κ = 9

12 against standard normal quantiles. Right: Histogram
of normalised model residuals together with standard normal density.
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Figure 82: Left: QQ-plot for normalised model residuals for stochastic conve-
nience yield for κ = 11

12 against standard normal quantiles. Right: Histogram
of normalised model residuals together with density of standard normal dis-
tribution.
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Figure 83: Left: QQ-plot for normalised model residuals for stochastic conve-
nience yield for κ = 12

12 against standard normal quantiles. Right: Histogram
of normalised model residuals together with standard normal density.
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