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Abstract

Three methods for claims reserving are compared on two data sets. The first two
methods are the commonly used chain ladder method that uses aggregated payments
and the relatively new method, double chain ladder, that apart from the payments
data also uses the number of reported claims. The third method is more advanced,
data on micro-level is needed such as the reporting delay and the number of payment
periods for every single claim. The two data sets that are used consist of claims with
typically shorter and longer settlement time, respectively. The questions considered
are if you can gain anything from using a method that is more advanced than the
chain ladder method and if the gain differs from the two data sets. The methods
are compared by simulating the reserves distributions as well as comparing the point
estimates of the reserve with the real out-of-sample reserve. The results show that
there is no gain in using the micro-level method considered. The double chain lad-
der method on the other hand performs better than the chain ladder method. The
difference between the two data sets is that the reserve in the data set with longer
settlement times is harder to estimate, but no difference can be seen when it comes
to method choice.

Keywords: Claims reserving, Chain Ladder Model (CLM), Double Chain Ladder
(DCL), Micro-model





Sammanfattning

Tre reservsättningsmetoder jämförs p̊a tv̊a dataset. De första tv̊a metoderna är
den välkända chain ladder-metoden som använder sig av aggregerade utbetalningar
samt den relativt nya metoden double chain ladder som förutom utbetalningarna
använder sig av antalet anmälda skador. Den tredje metoden baseras p̊a mikro-niv̊a
och kräver information om varje enskild skada, s̊asom anmälningstid och antalet
utbetalningsperioder. De tv̊a dataseten som används är ett som inneh̊aller skador
med typiskt kortare avvecklingstider och ett som som inneh̊aller skador med typiskt
längre avvecklingstider. Fr̊agorna som behandlas är om man vinner n̊agot p̊a att
använda en mer avancerad metod än chain ladder och om det skiljer sig åt mellan
dataseten. Metoderna jämförs genom simulering av reserven, men ocks̊a genom att
jämföra punktskattningar med den verkliga reserven. Resultaten visar att man i
detta fall inte vinner n̊agot p̊a att använda mikro-metoden. Double chain ladder å
andra sidan presterar bättre än chain ladder. Skillnaden mellan de tv̊a dataseten är
att det är sv̊arare att estimera reserven när avvecklingstiden är längre, men ingen
skillnad ses när det gäller val av metod.

Svensk titel: Reservsättning p̊a makro- och mikro-niv̊a

Nyckelord: Reservsättning, Chain Ladder Method (CLM), Double Chain Ladder
(DCL), Mikro-niv̊a
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Chapter 1

Introduction

The idea of insurance is that persons can share the risk that they are exposed to.
Everyone pays a bonus for being covered by the insurance, and those who suffer
an accident receive compensation. The problem with this idea is that the future is
unknown, we do not know how many accidents will occur. Therefore, the company
must find a way to estimate the risk in order to be able to pay all future claims.
This is important to the company in order to be profitable, but also to be able to
report the correct numbers to the authority. One part of the risk that an insurance
company faces comes from the risk of a future claim to occur. Another part of the
risk comes from the claims that have occurred already. It takes some time until a
claim is reported and the final payment of a claim is not known until it is closed. To
be prepared for this part of the risk, the insurance company estimates how much the
claims that have occurred already will cost. This estimation process is called claims
reserving.

Traditionally, the claims reserving has been preformed by the use of aggregated
methods, also called macro-level methods. Aggregated methods use data where
many payments have been summed up. The most common such method is the chain
ladder method (CLM). This is a method that uses payment data that is summed
up with respect to accident time and the time delay between accident and payment.
This method has been proposed in many variations in the literature, and one of these
extensions is double chain ladder (DCL). This method uses the same payment data as
the chain ladder method, but also aggregated data of the number of reported claims.
In later years, more advanced claims reserving methods have been developed, the
micro-level methods. These methods do not use data that is summed up. Instead
they use data from every single claim. They have not done any break through in
practice and this is probably due to the fact that they need a lot more effort. It takes
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more time to understand a micro-level method, the implementation can be tedious
and for a large data set the estimation of parameters can take a long time. Despite
all these drawbacks, we still end up with the following question. If a huge data set
consisting of detailed information is available to the company, why not use it?

It could be that the micro-level methods perform better and make it worth all
extra effort, but the claims reserving actuary does want to know that it will end
up profitable for the company before spending too much time with it. Therefore,
the aim of this thesis is to compare a micro-level method with the two aggregated
methods chain ladder and double chain ladder. The micro-level method that will be
used is inspired by one that fits the development of payments to a multivariate skew
normal distribution, but here we will use historical simulation instead of a statistical
distribution. The reason is that the data does not fit the multivariate skew normal
distribution. Two aggregated methods are included in the thesis since one of them
is very simple and the other one a bit more complicated. This will enable us to see
if we need to go all the way to the complicated micro-level method, or if a small
extension from the chain ladder method is sufficient for better results.

In the articles where micro-level methods have been proposed, similar compar-
isons have been made comparing the micro-level method with the chain ladder
method. No comparison between a micro-level method and the double chain lad-
der method is known to the author. Also, the insurance companies do not want to
share their confidential data and the same data set occurs in more than one article.
This thesis will contribute with the comparisons on two data sets that have not been
seen in the literature before. One data set consists of short-tail data, which means
that the time between accident and closure of the claims is typically short. The other
data set consists of claims with typically longer settlement time, long-tail data. This
data set should give a more insecure estimate of the reserve than the other, so it
is possible that this data set makes more profit from an advanced method than the
other data set.

In claims reserving, it is beyond all the expected value that is of interest, but
a point estimate does not say much. The reserve could be distributed close around
the expected value, but it could also have a very large variance. In the later case
the reserve could be set above the expected value. Therefore, the distribution of the
reserve will be simulated and compared for all three methods.

This thesis will start by two sections where the three methods that will be com-
pared are explained, the first section includes the two macro-level methods and the
second is about the micro-level method. Afterwards, the two data sets are presented
and then the subject of choosing the right distributions for the micro-level method
is treated. Finally the results are presented followed by the conclusion chapter.
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Chapter 2

Macro-Level Methods

The chain ladder method is probably the most famous and well known claims re-
serving method. During the years, it has been the subject of many articles. An
important such article is when a simple method of calculating the distribution-free
standard error of the chain ladder method was presented (Mack, 1993). In the same
time, several authors were investigating the subject of finding a stochastic model for
the chain ladder method that before was interpreted as non-stochastic. In 1994, a
distribution-free stochastic model that gives exactly the same results as the chain
ladder was presented (Mack, 1994). Later, different stochastic chain ladder methods
were compared (Hess and Schmidt, 2002). Despite all stochastic methods suggested,
the work of finding the insecurity of the standard non-stochastic chain ladder keeps
on moving. A few years ago this insecurity was estimated by comparing the reserves
estimate at time m with the reserves estimate at time m+ 1 (Wthrich et al., 2009).
The chain ladder method has also been extended as well as combined with other
methods. An example is the extension of considering both the payment triangle as
well as the number of counts triangle, leading to the double chain ladder method
(Miranda et al., 2012). Extensions to the double chain ladder method have been
made with special focus on inflation, see (Martnez-Miranda et al., 2013) and (Mi-
randa et al., 2015). Below, the two methods chain ladder and double chain ladder
will be explained in more detail, but first some basic concepts will be illustrated. In
the following, the chain ladder method will be abbreviated by CLM and the double
chain ladder method will be abbreviated by DCL.
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2.1 Basic Concepts

A very common concept when it comes to claims reserving on macro-level is the
aggregated claims triangle. An illustrative example of such can be seen in Figure
2.1. In the figure we look at m + 1 accident years, which are represented by the
left vertical axis. As can be seen the accident years are numbered from 1 to m + 1.
This means that if we consider three accident years, 2001, 2002 and 2003, then 2001
will be denoted by 1, 2002 by 2 and 2003 by 3. Therefore, all payments related to
accidents that happened in 2001 will be placed in the first row of the triangle.

Which column a payment is placed in depends on how long time it has taken
between the occurrence of the accident and the payment. If less than one year has
past, the payment will be placed in the first column of the row, denoted by 0. If the
payment delay instead is at least one year but not two years, the payment will be
placed in the second column, denoted by 1. The same logic holds for all columns.
The easiest way of deciding which development period a payment should belong to
is to simply say that if an accident occurred in 2000, then payments made in 2000
belongs to development period 0, payments in 2001 belongs to development period
1 etc. This is the interpretation that will be used in this thesis.

Notice that the value in the triangle at row i and column j is not the total amount
paid from accident year i with j years delay. It is instead this amount summed to all
payments that has been made earlier for that accident year. This is called that the
triangle consists of aggregated data. Another fact worth noticing is that the period
considered does not have to be a year, it could be a day, a week, a month and so
on. We will use a year as time period. Also, the data does not have to be payments,
even if it often is. It could also be the number of reported claims at the time as in
DCL.
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Figure 2.1: The figure shows a claims triangle with the accident years as rows and
the development years as columns. The gray area is the known payments and the
turquoise area is the reserve we want to estimate.

2.2 Chain Ladder Method

The chain ladder method that we are using relies on the assumption that the cu-
mulative payment from an accident year increases with a development factor, fj,
for each development period j. The number of observed development periods must
be large enough, so that we can make the assumption that all claims are closed at
the end of the payment triangle. Denote the cumulative payments from the first
development period of each accident year by Ci,0, then the cumulative payment Cij

can be calculated by

Cij = Ci,0

j−1∐
k=0

fk.
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The develop factors are estimated from the cumulative payments triangle explained
above, by

f̂j =

∑m−j
k=1 Ck,j+1∑m−j
k=1 Ck,j

, j = 0, 1, . . . ,m− 1.

The total amount that will be paid for each accident year can be estimated by
multiplying the last known cumulative payment, Ci,m+1−i, with the development
factors for the future development periods. Then the reserve for that accident year
is the paid amount subtracted to the total amount and the total reserve is simply
the sum of the reserves for each accident year. the formula for calculating the total
reserves amount for accident year i will look like

Ĉi,m = Ci,m+1−i

m−1∐
k=m+1−i

f̂k, i = 2, 3, . . . ,m+ 1.

Finally, we state the formula for the total reserve,

ReserveCL =
m+1∑
i=2

Ci,m − Ci,m+1−i.

2.3 Double Chain Ladder Method

The method in this section is the same as the one presented in the paper (Miranda
et al., 2012) and all formulas are contributed to the authors of this paper. The
double chain ladder method uses the same payment triangle, ∆m, as the chain ladder
method, but it also uses a triangle of the number of claims reported (incurred counts).
This triangle is denoted by ξm. The name double comes from the fact that two
triangles are used instead of one. We start by the number of claims from accident
period i that are reported in development period j and denote this by Nij. This is
in incremental form. The expected value of this quantity is assumed to depend on
two parameters,

E[Nij] = αiβj.

These claims will be settled at different times, so focus on the claims from all Nij

claims that are settled with l periods from reporting (all claims are assumed to have
only one payment, so settlement is the same as payment in this case). This number
is denoted by Nijl and has the conditional expected value

E[Nijl|ξm] = Nijπ̃l.
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The expected value of the k:th payment from the Nij claims is

E[Y k
ij ] = µγi,

which means that we assume that the mean value of the payments is the same over
all development periods. The parameter γi can be seen as an inflation parameter.

Now, when the model setup has been presented, the estimation of the included
parameters will be described. We start with the development factors f̂j from the

payment triangle. Use these to get ˆ̃αi and ˆ̃βj by

ˆ̃αi = Ci,m+1−i

m−1∏
j=m−i+1

f̂j,

ˆ̃β0 =
1∏m−1

k=1 f̂k

and
ˆ̃βj =

f̂j − 1∏m−1
k=j f̂k

.

The same calculations gives us α̂i and β̂j from the incurred counts.
Once this is done, the values of π̃l for all l are received by solving the following

equation system,
ˆ̃β0
ˆ̃β1
...

ˆ̃βm−1

 =


β̂0 0 . . . 0

β̂1 β̂0 . . . 0
...

...
. . . 0

β̂m−1 β̂m−2 . . . β̂0




π0
π1
...

πm−1

 .

The mean value of the payments can be estimated by

µ̂ =
ˆ̃α1

α̂1

,

which enable us to calculate the inflation parameters as

γ̂i =
ˆ̃αi

α̂iµ
, i = 1, . . . ,m+ 1.
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Finally, the reserve can be calculated separately for the claims that have been
reported, X1

ij, and the claims that have not yet been reported, X2
ij,

X̂1
ij =

j∑
l=i−m+j

Ni,j−lπ̂lµ̂γ̂i

and

X̂2
ij =

i−m+j−1∑
l=0

N̂i,j−lπ̂lµ̂γ̂i,

with N̂i,j−l = α̂iβ̂j−l. The total reserve is determined by summing X1
ij and X2

ij for
all i, j in the turquoise area in Figure 2.1.

2.4 Simulation of Reserves Distribution

The process of creating a distribution for the reserve can be done by bootstrapping,
either a parametric bootstrapping or a non-parametric. It is common to use errors
to bootstrap a claims reserves distribution, which is a non-parametric bootstrapping
method. Consider the following residual,

r =
Xij − ˆ̃αi

ˆ̃βj√
ˆ̃αi

ˆ̃βj

,

for the incremental observed payment Xij. This is the unscaled Pearson residual and
it has been suggested that this residual should be scaled with a scaling factor φ in
order to take the number of observations, no, as well as the numbers of parameters,
np, under consideration (England, 2001). The scaling factor φ is calculated by

φ =

∑
r2

no − np

.

In the paper by England it is suggested to start with the estimated incremental pay-
ments triangle and then generate random residuals from the set of scaled residuals.
The generated residuals are added to the estimated incremental payments creating
a new payment triangle. This triangle is used to produce a bootstrapped CLM re-
serves estimate. By repeating this process many times a reserves distribution will be
determined.
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The same idea can be extended to other models than the CLM. Here, we will
use the same bootstrap method to find the distribution of the DCL reserve. This
means that we will calculate one set of residuals for the payments triangle and one
set of residuals for the incurred counts triangle. After scaling the residuals, two new
triangles are generated and used in the DCL algorithm. Now, the point estimates
from CLM and DCL are extended into two reserves distributions.
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Chapter 3

Micro-Level Methods

The main question of this thesis is to investigate if you can gain something from
considering individual claims data instead of aggregated data. Two decades ago, it
was rare with methods considering individual claims, but there existed methods that
used more information than can be found in the ordinary claims triangle. Already
in 1978, a method was proposed (Reid, 1978) that was based on the number of
claims that was open, closed with payment and closed without payments. This
was a quite complex method and the author extended it later, which means that it
became very flexible. An early work that described the use of marked point processes
for the development of a claim was published in 1989 and it used a martingale
approach (Arjas, 1989). The idea of using a marked process for the individual claim
development was later extended by Norberg, who used a marked Poisson process in
his two papers (Norberg, 1993) and (Norberg, 1999). A closer description of these
kind of methods can be found in chapter 10 in the book (Wtrich and Merz, 2008).
Another extension using a non-parametric Bayesian framework for the process was
published in 1996 (Haastrup and Arjas, 1996). Closed related to the individual claims
methods was the method presented in 1997 (Wright, 1997), it used the empirical
distribution of all individual payments.

The past few years, the development of the so-called micro-level methods has been
faster. An approach that fits the individual claims development with generalized
linear models was proposed by Taylor and McGuire (Taylor and McGuire, 2004). In
2007, Larsen presented a work based on the marked Poisson processes used before
(Larsen, 2007), he used some stochastic models in his work. A model that combines
parametric framework with non-parametric was proposed in 2009 (Zhao et al., 2009)
and the year after a method that considers copulas was presented (Zhao and Zhou,
2010). A substantial case study of the marked Poisson process method has recently
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been published (Antonio and Plat, 2014).
Now, a method for claims reserving that combines parts from the multivariate

skew normal framework (Pigeon et al., 2013) with ordinary historical simulation will
be presented. This is the method that will be used in the analysis here. An extension
of the multivariate skew normal framework was presented in 2014 (Pigeon et al.,
2014). First, some basic concepts are introduced and then the method is presented.
Finally, the process used for simulating the reserves distribution is explained. The
point estimate of this model is simply the mean value of the simulated distribution.

3.1 Basic Concepts

The information used in a micro-level method consists of several dates, the time
between them and the amounts of payments. The dates that are of interest are
presented as points in Figure 3.1, where a claim is represented by a line. The accident
date is the date when the accident, resulting in a claim, occur. The insurance
company will not know about the claim until the reporting date, when the insurance
holder reports the accident to the company. The time that it takes for the insurance
holder to report the claim is denoted by Tik, where the index ik stands for claim ik.
This means that the claim is the kth claim of all claims with occurrence period i.

11



Figure 3.1: The figure shows examples of four types of claims. From above, the lines
correspond to a closed claim, a Reported But Not Settled claim, a Reported But
Not Paid claim and an Incurred But Not Reported claim, respectively. The accident
date is presented as a red point, the reporting date as a blue one. Payments are the
green points and the black point is the closing date. The letters Tik, Qik and Nikj

represents the time between the two points they are placed between.

After the claim has been reported it may take some time until the first (if any)
payment, this time will be called Qik. If there is no payment, then Qik represents
the time until closure and in this case the closure will be seen as a payment of 0. For
claims with one or more payments, the time from the jth payment until the next
payment or closure is denoted by Nikj. The number of payment periods is denoted
by Uik. It equals 0 if there are 0 or 1 payment, 1 if there are 2 payments, 2 if there
are three payments etc.

Depending on how far in the development process a claim has come, it can be
sorted into one of four types of claims, as Figure 3.1 illustrates. The claims that are
considered as completed are called closed claims. The claims that have had one or
more payments without being closed are called Reported But Not Settled, RBNS.
The reported claims that have not yet been paid and not closed are called Reported
But Not Paid, RBNP. Finally, the claims that have occurred but are not yet known
to the insurance company are called Incurred But Not Reported, IBNR.

The notations that have been introduced in this section are inspired and very
similar to the ones introduced in (Pigeon et al., 2013). The same kind of information
is used in other micro-level methods as well.
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3.2 Historical Simulation Method

With these introduced notations, the historical simulation method that will be used
can be explained. But first the method by (Pigeon et al., 2013) is introduced. It relies
on a discrete time line and in this thesis the time will be one month. This means
that all payments made in April one year will be summed into one payment during
that time step. This method is inspired by the development factors in CLM, but
here development factors for the development of every single claim are considered.
A vector with a claims first payment as the first component followed by development
factors will be denoted by

ΛΛΛuik+1 = [Yik1 λik1 . . . λikuik
]′. (3.1)

This means that the second incremental payment is given by Yik1 · λik1 , the third
incremental payment is Yik1 · λik1 · λik2 etc. The logarithm of this vector is, as the
name of the model indicates, fitted to a multivariate skew normal distribution. In the
historical simulation method, the multivariate skew normal distribution is replaced
by the observed payments. This operate better since both data sets consist of a large
amount negative payments. The development vectors could of coarse be fitted to the
multivariate skew normal distribution without logarithms, but this leads to a very
bad fit.

The other parameters in the model, which is the time delays and number of peri-
ods introduced under Basic Concepts, are fitted to discrete distributions of a specific
form. These discrete distributions are combinations of a truncated probability dis-
tribution and a number of degenerate components. Let us denote their probability
mass functions by gT , gQ, gU and gN , and let them correspond to Tik, Qik, Uik and
Nik, respectively. Their cumulative density functions will be denoted by G with the
same indexing.

In the following, the theory that is needed to analyze the model will be described.
First the likelihood function for how likely the observed data is will be introduced.
This is partly used to perform parameter estimates for some of the components in
the model, and partly used to calculate the AIC and BIC statistics. The work of
estimating all parameters is explained afterwards. Then we will go forward to the
process of simulating the reserve distribution.

3.2.1 Likelihood

The expressions for the likelihood functions are taken from the work by (Pigeon et al.,
2013), with the likelihood for the multivariate skew normal removed. All likelihood
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expressions will be on the following form,

L = g(x; y|z). (3.2)

The value that is observed is placed as x, this could be the reporting delay for
example. The parameters that are to be estimated are placed as y, these parameters
could be a vector, a matrix or even several vectors and matrices and depends on
which statistical model that is used. Finally, there is often a time condition that is
known, if we sample the data today, then we know that all reporting delays that are
observed must have occurred before today. This initial condition is placed where z is
placed in (3.2). With the notation t∗i for the number of periods between occurrence
period i and the latest observed event date, it must hold for all observed time delays
from occurrence period i that they are smaller than t∗i .

An observed reporting delay of tik has the likelihood function

LT = gT (tik;ννν|Tik ≤ t∗i ). (3.3)

In the same manner, the observed payment delay qik has a likelihood function that
looks like

LQ = gQ(qik;ΨΨΨ|Qik ≤ t∗i − tik) (3.4)

and the observed number of payment periods uik has

LU = gU(uik;βββ|Uik ≤ t∗i − tik − qik). (3.5)

Finally, the likelihood function for the observed lengths, nikj, of the uik payments
periods will be stated. This function includes the indicator function Ij>1, which
equals 1 if j > 1 and 0 otherwise. Notice that when uik equals 0, there is no observed
lengths nikj and hence the corresponding likelihood should not be a part of that
claim’s likelihood. The likelihood function looks like

LN =

uik∐
j=1

gN(nikj;φφφ|0 < Nikj ≤ t∗i − tik − qik − uik + j − Ij>1

j−1∑
p=1

nikp). (3.6)

The condition in this likelihood looks a bit different than for the other likelihood
functions, which could be confusing. Therefore, let us try to convince ourselves that
the given condition is correct. First of all, Nikj must be at least 1. This is due
to the definition of Nikj that does not accept a Nikj to be 0. The upper limit in
the condition consists of one part that is similar as before, but it also consists of
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−uik + j − Ij>1

∑j−1
p=1 nikp). The −uik + j can be thought of as a security to be

sure that there will be at least one period left for the nikj that have not yet been
considered. The sum is simply a subtraction of the previous nikj.

Now, the likelihood function for all different kind of claims can be stated with the
help of the above introduced likelihood functions. For a closed claim with at least
1 payment period, the likelihood function consists of all above likelihoods since this
claim has observation of all parameters. The likelihood function is

LCL+ = LT · LQ · LU · LN , (3.7)

where the index CL+ stands for a closed claim with at least one payment period.
The likelihood for a closed claim with no payment period (0 or 1 payment) is the
same except that the likelihood for lengths of payment periods is omitted. If we
index these types of claims by CL0, the likelihood is given by

LCL0 = LT · LQ · LU . (3.8)

The likelihood for a RBNS claim can be found in the same manner, depending
on if there is any yet observed payment periods or not. Although, we do not know
how many payment periods it finally will be for that claim, we only know that it
will be at least u∗ik, which is the number yet observed. Therefore, we cannot use
the likelihood for U , but the cumulative distribution function for U can be used to
express the probability

Pr(uik ≥ u∗ik) = Pr(uik > u∗ik − 1) = 1− Pr(uik ≤ u∗ik − 1). (3.9)

The second step can be done because U is discrete. This means that the likelihood
for a RBNS claim with at least 1 payment period is likelihood is given by

LRBNS+ = LT · LQ · (1−GU(u∗ik − 1;βββ)) · LN . (3.10)

If the RBNS claim has only one observed payment, then u∗ik will be 0 and 3.9 will
simply be 1 and can be ignored. Also, there is no observed nikj, so this part of the
likelihood disappears. This leads to the following expression,

LRBNS0 = LT · LQ. (3.11)

The only type of claims that is left are the RBNP claims. For these claims, the
only parameter that is observed is the reporting delay. But one can also be sure that
the payment delay must exceed the time from the reporting time to the last observed
time step in the data, which is to say that qik > t∗i − tik. This probability can be
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computed with the help of a cumulative distribution function, G, as before. From
this we have the final likelihood function as

LRBNP = LT .(1−GQ(t∗i − tik; Ψ)). (3.12)

The likelihood function for the whole data set is now determined by multiplying the
likelihood for all claims with each other.

3.2.2 Parameter Estimation

The parameters in all the discrete distributions are estimated by maximum likelihood.
The probability mass functions gT , gQ, gU and gN have the following form,

gX(k) = Pr(X = k) =

p∑
s=0

νsIs(k) + (1−
p∑

s=0

νs)g̃Y |Y >p(k), (3.13)

for all natural numbers k including zero. The function g̃Y |Y >p(k) is the truncated
cumulative density function for a discrete distribution, such as Poisson or negative
binomial. This is zero if k ≤ p. The indicator function Is(k) equals one if k = s and
0 otherwise. We can verify that the sum of the probability mass function gX(k) over
all natural numbers k equals 1, as must be the case for a probability mass function.
This is verified by∑∞

k=0 gX(k) =
∑p

s=0 νs + (1−
∑p

s=0 νs)
∑∞

k=0 g̃Y |Y >p(k) =

∑p
s=0 νs + (1−

∑p
s=0 νs)

∑∞
k=p+1 g̃Y (k)∑∞
k=p+1 g̃Y (k)

=

∑p
s=0 νs + 1−

∑p
s=0 νs = 1.

The probability mass functions gX in (3.13) is a weighed of the observed fractions of
periods s smaller than or equal to p and a discrete probability distribution for periods
larger than p. This can be motivated by the fact that many periods are small, and can
work as estimates by themselves, but for larger lengths there are fewer observations
and a distribution seems to be better. This also enable us to calculate the probability
of observations larger than observed. The unknown parameters in this model are p,
all the νs and the parameters in the discrete distribution. They are estimated by the
following steps:

• First, a value of p is chosen.
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• Then, it can easily be shown that the estimates of the νs that maximizes the
likelihood are the fraction of observations in period s. This means that if 50
% of the claims are reported in the first period after occurrence, then ν0 = 0.5
for the reporting delay.

• Finally, the parameters in the discrete distribution are estimated. The only
thing to remember in this step is to use the truncated distribution and not the
original in the fitting process.

Now all steps can be repeated with another value of p and the model to choose can
be evaluated with AIC or BIC as well as the mean squared error.

3.3 Simulation of Reserves Distribution

When all parameters in the distributions are estimated, the work left for receiving a
reserves distribution is straight forward. For the RBNS claims we simply simulate the
number of development periods, given that the number must be at least the numbers
observed today. If the number of payments exceeds the observed, the remaining
payments are generated from the observed claims with the same number of claims.
Let us take an example. We have an observed RBNS claim with two payments. We
simulate that the claim will have four payments in total, then we generate one claim
from all observed closed claims with four payments. From this claim we take the
two last payments. This procedure is repeated for all claims observed and then the
RBNS reserve can be summed up. The same holds for RBNP claims except that for
these claims, all payments from the generated claim will be used.

The simulation for the IBNR claims follows the same manner, except for the fact
that the number of such claims is unknown. Therefore it has to be generated as well,
which is done from a Poisson distribution with the expected value

θ̂ω(i)(1− FT (t∗; ν̂νν)), (3.14)

for each occurrence period.
The three parts of the reserve can be summed into one observation from the

reserves distribution. The simulation process must be done that many times that the
given distribution becomes stable. If we only want to consider the future payments
during a specific time line (the time line of the claims triangle for example), we must
also simulate the time delays and stop simulations when the time exceeds this limit.
If the number of payment periods in a simulation step becomes larger than 4, the
payments after the fifth payment will equal the simulated fifth payment.
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Chapter 4

Data Description

The data consists of information about individual events in the claims. An event
could be the claim being reported, a payment being made to the insurance holder, or
a claim being closed. The information available about the events is the development
date, the date when the event occurred, and the paid amount. The accident date is
known as well for every claim.

Two data sets are analyzed, one with typically shorter settlement times and one
with typically longer settlement times, which we denote by short-tail and long-tail
data, respectively. This is interesting since this is one of the most distinct partitions
that can be made between different lines of business in insurance. The settlement
time also have an important affect on the work of reserving, since a line of business
with short settlement time will have less remaining amount to reserve than one with
very long settlement times. Therefore, it is of interest to investigate if different
methods work differently on a short-tail data set and a long-tail data set. One
property that holds for both data sets is that the fraction of open claims with more
than one payment is very low, and therefore it is believed that a small simplification
of the likelihood function (3.10) will not disturb the comparison. The simplification
mentioned is to use the likelihood function for the observed number of payment
periods instead of using the cumulative distribution function. Now we move on to an
individual description of each data set followed by an explanation of how the data
has been manipulated.

4.1 Short-Tail Data

This is a data set with a good behavior. It consists of many observations and the
characteristics of each claim, such as reporting delay and paid amounts, seem to have
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a normal variance. The mean reporting delay is 3 months and the mean settlement
time is 8 months. Many of the observed settlements are equal to zero. This means
that the settlement time follow a right skew distribution. A percentage distribution of
how many payments the closed claims have can be seen in Figure 4.1. The evaluation
date for this data set is March 2015.

Nr. of Payments 0 1 2 3 4 5 6+
Fraction [%] 23 54 15 5 1 1 1

Table 4.1: The table shows how large the fraction of the closed short-tail claims with
a certain number of payments is.

4.2 Long-Tail Data

This is a data set with an extremely bad behavior. It consists of less observations
than the data set above and the characteristics of each claim vary a lot. Some of the
claims include extreme payments and it seems to be hard to predict the future for
this data set. The mean reporting delay is 12 months and the mean settlement time
is 15 months. The settlement time for this data set follow a right skew distribution,
as the data set above. A percentage distribution of how many payments the closed
claims have can be seen in Figure 4.2. The evaluation date for this data set is July
2015.

Nr. of Payments 0 1 2 3 4 5 6+
Fraction [%] 56 23 12 4 2 1 2

Table 4.2: The table shows how large the fraction of the closed long-tail claims with
a certain number of payments is.

The analysis for this data set were first done as for the first one, resulting in very
bad predictions of the reserve. Therefore the conclusion was made that the whole
data set is not suited for being treated by the methods considered. Instead one
part of the data set were picked out to be treated alone. The partition was natural
since all claims belong to one of several classes in the line of business considered.
The class that was chosen is the greatest class in this line of business. Still, the
estimated reserve was far from the observed one. After some considerations, it could
be concluded that this was due to a few claims with extremely large payments. These
clams were omitted from the analysis with the argument that they must be treated
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individually by the help of the claims adjusters. The remaining part of the data set
gave much better predictions.

4.3 Data Manipulation

Data from both data sets is available for about 30 years back in time. The judgment
has been made that the earlier part of the data set is not very informative when
predicting the reserve in present time. The behavior of the number of reported
claims and the paid amounts differ for earlier dates and later dates. The claims that
have been a part of the analysis has an accident date at January 1999 or later. To
be able to perform out of sample prediction, the claims that were reported no later
than December 2007 are used to estimate the reserve. It is assumed that all claims
are closed at the evaluation date, which almost is the case. This means that the
estimated reserve should be able to be compared to the observed reserve.

All analysis are made on the real data sets and presented for the actuaries at
Länsförsäkringar. To be able to present any analysis here, the data must first be
transformed so that the confidential information disappears. This is done by two
steps. The first step is to transform all amounts of money by a chosen formula. It is
possible that such a formula change some patterns in the data or make some claims
affect the analysis more than they should have done otherwise, but the formula is
chosen in order to make this impact small and in order to make the results here
agree with the results on the real data. This should result in fair valuations of the
methods considered. The second step in the transformation of the data is to use
random chosen claims instead of using the whole data set. The number of claims
analyzed is the same number of claims that is available in the data, but they are
randomly chosen with replacement. All analysis are done in the Python language.

20



Chapter 5

Model Selection

In order to make the result chapters more concise and clear, the model selection have
an own chapter. The methods considered consist of many variations, especially the
micro-level method where you can choose between many statistical distributions. In
this thesis, the only model choice that is made is the choice between four discrete
distributions in the micro-level method. These distributions are used to model the
reporting delay as well as the number of payment periods. The four distributions
considered are Poisson, negative binomial, binomial and geometric, with different
number of degenerate components.

The choice between several statistical models is often made by AIC and BIC
statistics. These are two values that takes into account how likely the observed
outcome is under the model considered, but it also takes the number of parameters
into account. This means that the model with the most parameters not necessarily
will be the best one, which saves us from choosing a model with too many parameters.
Let the number of observations be no and the number of parameters in a model be
np. With the log likelihood denoted by `, the two statistics are calculated as

AIC = 2np − 2` (5.1)

and
BIC = np · log(no)− 2`. (5.2)

A model with lower AIC or BIC is better than one with larger. Besides the goal
of maximizing the likelihood, the goodness of fit must be considered. The AIC and
BIC can suggest a model that fits the data very badly. The goodness of fit can
be illustrated by plotting the fitted distribution together with the observed values,
as well as calculating the Mean Squared Error (MSE). Here, only the MSE will
be presented due to secrecy. Say we have the vector u of the observed cumulative
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distribution function as well as the vector v of the cumulative distribution function
of the fitted model. Then the MSE can be calculated as

MSE =
1

no

nm∑
i=0

(ui − vi)2, (5.3)

with nm being the largest observed value in the data set. The MSE should, of coarse,
be as small as possible.

5.1 Short-Tail Data

For the short-tail data it is assumed that all claims will be paid during the time
limit of the payment triangles, or more specifically, as stated in the data description
chapter, it is assumed that all claims are paid before evaluation. This means that we
do not need to simulate the delay between payments in order to see which payments
that fall inside the same time limit as in the macro-level methods. This would
otherwise be necessary to be able to compare the different reserves estimates. This
also enable us to compare the reserves estimates with the observed reserve. Now we
only need to know the distribution of the reporting delay to be able to estimate the
number of IBNR claims, as well as the distribution for numbers of payment periods.

The models are then compared with respect to the AIC, BIC and MSE. The
models with the best values of the statistics are presented in Table 5.1. It seems like
the Poisson distribution is a bad choice for the reporting delay, at least according
to the AIC and BIC. The best distribution according to these statistics is negative
binomial closely followed by the binomial. The MSE says something else, namely
that the geometric distribution with 1 degenerate component is far better than the
other models for the reporting delay. The reason for the difference is that AIC and
BIC only says how likely the observed values are under the model considered, but
not how good the fit is. In our case, we have a very skewed distribution of observed
values, most of them are small but also very large values exists. The AIC and BIC
prefers a model that gives a large likelihood for the smaller values, even if this gives
a model that does not fit to the larger observations. The model choice will therefore
fall on the distribution suggested by MSE, geometric, with 1 degenerate component.

For the number of payment periods, see Table 5.2, negative binomial seems to
be a bad choice. The other three gives values of AIC and BIC that are more closely
to each other, but the best value is determined from the binomial distribution. As
before, the MSE says something else. The geometric distribution gives the smallest
MSE for the number of payment periods. Therefore, the number of payment periods
will be fitted to a geometric distribution with 1 degenerate component.
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p Distribution AIC BIC MSE
25 Poisson 68,956 69,155 0.00062
29 Poisson 68,966 69,196 0.00061
2 NegBin 60,477 60,508 0.00587
3 NegBin 59,027 59,065 0.00604
0 Binomial 60,359 60,374 0.00176
1 Geometric 66,466 66,481 0.00009

Table 5.1: The AIC, BIC and MSE statistics for the short-tail data reporting delay.
The number of degenerate components is p.

p Distribution AIC BIC MSE
0 Poisson 17,240 17,247 0.00061
1 Poisson 7,976 7,992 0.00091
0 NegBin 16,337 16,352 0.00236
0 Binomial 16,557 16,572 0.00104
1 Binomial 6,679 6,702 0.02099
1 Geometric 7,888 7,904 0.00017

Table 5.2: The AIC, BIC and MSE statistics for the short-tail data number of
payment periods. The number of degenerate components is p.

5.2 Long-Tail Data

As for the short-tail data, we assume that all claims are paid at the end of the
payment triangle as well as at the evaluation date. The negative binomial distribution
has been omitted in the comparison for the long-tail reporting delay. This is due to
the lack of parameter estimates, the distribution does not seem to fit the data. Among
the other distributions showed in Table 5.3, the binomial gives too large values of all
statistics considered. The remaining two distributions are more close to each other
and as we saw in the previous section, the AIC and BIC contradict the MSE. The
differences between AIC and BIC are not as large as the difference between the MSE,
which leads to the decision to choose the model with the lowest MSE. Therefore, the
geometric distribution with one degenerate component is chosen.

The statistics for the number of payment periods in the long-tail data follow a
similar pattern as for the other model choices. Negative binomial has too large values
of AIC and BIC and is not used, despite that it leads to a satisfying value of MSE.
It leads to, together with the geometric distribution, the best value of MSE. The

23



binomial distribution that with one degenerate component gives low values of AIC
and BIC results in the worst value of MSE. Since the AIC and BIC for the geometric
is the second lowest, and due to the fact that it leads to a good MSE value, we will
again choose the model geometric distribution with one degenerate component.

p Distribution AIC BIC MSE
24 Poisson 10,127 10,262 0.00058
27 Poisson 10,131 10,281 0.00044
0 Binomial 21,113 21,123 0.00178
1 Binomial 18,465 18,481 0.00221
1 Geometric 10,746 10,757 0.00002

Table 5.3: The AIC, BIC and MSE statistics for the long-tail data reporting delay.
The number of degenerate components is p.

p Distribution AIC BIC MSE
1 Poisson 876 886 0.00176
0 NegBin 1,689 1,700 0.00030
0 Binomial 1,982 1,993 0.00375
1 Binomial 776 792 0.05887
1 Geometric 869 880 0.00030

Table 5.4: The AIC, BIC and MSE statistics for the long-tail data number of payment
periods. The number of degenerate components is p.
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Chapter 6

Results

In this chapter, the results for the short-tail data are presented first. It begins with
an investigation of how large sample size that is needed followed by the simulated
reserve for both of the macro-level methods. The result for the micro-level method
is presented in the same manner. Lastly, all point estimates are compared to the
observed reserve. Then the results for the long-tail data are presented in the same
order.

6.1 Macro-Level for Short-Tail Data

In order to make a decision on how large the sample size must be to reach a stable
simulated distribution, the distribution was simulated five times for different sample
sizes. The sample sizes considered are 100, 1,000 and 10,000. The resulting mean,
median, 0.05 quantile and 0.95 quantile are plotted as functions of the sample size for
the CLM, see Figure 6.1. The mean is probably the statistic we are most interested
in when estimating a reserve, but it is interesting to see how much the distribution
changes in the tails as well. The mean still varies when using a sample size of 10,000
and an even larger sample size would be beneficial. The reason for not increasing
the sample size even more in this thesis is due to the fact that the simulations would
take too much time and the judgment is made that this sample size is large enough
to be able to compare the models considered. As the reader will see, the models
leads to quite spread estimates and the spread in the statistics for the 10,000-sample
distribution is small enough to not trouble the comparison.
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Figure 6.1: The figure shows the mean, median, 0.05 and 0.95 quantile of the reserve
distribution received by the CLM. The sample sizes considered are 100, 1,000 and
10,000 and the reserve distribution is simulated 5 times for each sample size.

The sample size for the DCL distribution is evaluated in the same way, see Figure
6.2. Compare this figure with Figure 6.1, and you can see that the plots looks very
similar. The reason for this is that the CLM and DCL distribution was simulated
at the same time, which means that the same payment triangle was used in every
simulation step for both models. This makes us suspect that the DCL is influenced
more by the payment triangle than the counts triangle. This could be the explanation
for DCL resulting in estimates close to the CLM, both here and in the literature. As
decided for the CLM distribution, we hence also here choose to simulate the reserve
with a sample size of 10,000.
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Figure 6.2: The figure shows the mean, median, 0.05 and 0.95 quantile of the reserve
distribution received by the DCL. The sample sizes considered are 100, 1,000 and
10,000 and the reserve distribution is simulated 5 times for each sample size.

The reserve distribution received by CLM is shown in Figure 6.3, where the
sample size used is 10,000. The distribution looks almost symmetric, but with the
tendency of being right skewed. The distribution seems to have a large variance
since the values of possible future reserves goes from negative values up to almost
20 millions in the figure. But it still seems that most of the simulations leads to a
reserve estimate a bit under 10 millions. The DCL reserve distribution that is shown
in Figure 6.4 looks the same as the CLM distribution and does not need any further
comments.
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Figure 6.3: The figure shows the reserve distribution received by the CLM with a
sample size of 10,000.
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Figure 6.4: The figure shows the reserve distribution received by the DCL with a
sample size of 10,000.

6.2 Micro-Level for Short-Tail Data

In contrary to the macro-models, a sample size of 10,000 seems to be satisfying for
the micro-model, see Figure 6.6. The mean converges already for a sample size of
1,000. The quantiles variations are acceptable at a sample size of 10,000. The plot
of the median does not look as smooth as the other three, but this is simply caused
by the fact that the y-axis for the median covers a thinner interval. As for the
macro-models, a sample size of 10,000 will be used in the simulations.
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Figure 6.5: The figure shows the mean, median, 0.05 and 0.95 quantile of the reserve
distribution received by the micro-model. The sample sizes considered are 100, 1,000
and 10,000 and the reserve distribution is simulated 5 times for each sample size.

The reserve distribution for the micro-model looks a bit right skewed, as for the
macro-models. Another similarity is that many of the values is placed slightly under
10 millions. A difference is that this distribution has a lower variance, it does not
take negative values and stays under 16 millions.
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Figure 6.6: The figure shows the reserve distribution received by the Micro with a
sample size of 10,000.

6.3 Observed Reserve for Short-Tail Data

The point estimates of the reserve for the three models are presented and compared to
the observed reserve in Table 6.1. The micro-model does not produce a point estimate
by itself, so we need do calculate it from the mean of the simulated distribution. We
have simulated five distributions of size 10,000, if we calculate the mean of all these
estimates together we have the mean of a distribution with sample size 50,000. The
estimate received by the micro-model is far away from the real reserve. Certainly, it
lies within the same tenfold as the real reserve, but the other two models perform
much better. The CLM produce an estimate a little higher than the DCL, which is
a pattern that also has been seen in the literature. Despite this returning pattern,
this could perfectly well be caused by the data. The DCL that is the model that
gives the point estimate closest to the real reserve, have an estimation error in this
case of about 3.4 percents.

31



Observed 6,192,082
CLM 6,555,806
DCL 6,401,330
Micro 8,075,538

Table 6.1: The table shows the observed reserve and the estimated reserve from the
three models. The point estimate for the micro-model is the mean from the five
simulations with sample size 10,000.

6.4 Macro-Level for Long-Tail Data

With respect to how varied the long-tail data set is, the statistics in Figure 6.9
converges very well. It is the 0.95 quantile that converges poor which one can see
by checking the scale on the y-axis. This is not surprisingly, since it is here the
most extreme values of the distribution lies. Since we, as stated in the previous
chapter, believe that the mean is the most important statistics to consider, we make
the decision that 10,000 as a sample size is sufficient.
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Figure 6.7: The figure shows the mean, median, 0.05 and 0.95 quantile of the reserve
distribution received by the CLM. The sample sizes considered are 100, 1,000 and
10,000 and the reserve distribution is simulated 5 times for each sample size.

The same statistics for the DCL are shown in Figure 6.10, and as in the previous
chapter it looks similar to the CLM plots. This is due to the fact that the same
payment triangle is used for both methods in the simulation process, as stated before.
The mean here converges a little better, but is very similar to the CLM mean. The
opposite hold for the median, the convergence for the median was better for the
CLM. The 0.05 quantile converges to a lower value this time and the 0.95 quantile
seem to converge to a higher value this time. As for the CLM, a sample size of 10,000
will be used.
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Figure 6.8: The figure shows the mean, median, 0.05 and 0.95 quantile of the reserve
distribution received by the DCL. The sample sizes considered are 100, 1,000 and
10,000 and the reserve distribution is simulated 5 times for each sample size.

Despite some small differences between the statistics for CLM and DCL, their
distributions looks the same, see Figure 6.9 and 6.10. It has a symmetric look with a
tendency of right skewed behavior. many values are centered at minus 5 millions up
to 15 millions, which is a large spread. The distribution has in reality an even larger
variance since the most extreme values had to be removed to get a clear graph.
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Figure 6.9: The figure shows the reserve distribution received by the CLM with a
sample size of 10,000.
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Figure 6.10: The figure shows the reserve distribution received by the DCL with a
sample size of 10,000.

6.5 Micro-Level for Long-Tail Data

The mean, median, 0.05 and 0.95 quantile for the micro-model are shown in Figure
6.11. The convergence of the mean is acceptable already for a sample size of 1,000.
The median has a similar behavior, but looks even better for a sample size of 10,000.
The same holds for the quantiles, you can see an improvement for their convergence
from a sample size of 1,000 to 10,000. As before, we choose to simulate with a sample
size of 10,000 since it seems like this sample size will enable a comparison while the
simulations does not take to much time.
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Figure 6.11: The figure shows the mean, median, 0.05 and 0.95 quantile of the reserve
distribution received by the micro-model. The sample sizes considered are 100, 1,000
and 10,000 and the reserve distribution is simulated 5 times for each sample size.

The reserve distribution in Figure 6.12 shows a clear right skewed behavior. The
values that are covered are all positive and stays under 5 millions. most of the values
are centered between 1 million and 2 millions.
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Figure 6.12: The figure shows the reserve distribution received by the micro-model
with a sample size of 10,000.

6.6 Observed Reserve for Long-Tail Data

The point estimates for all models, as well as the observed reserve, are shown in Table
6.2. The point estimate of the micro-model is calculated as in the previous chapter.
This time the micro-model gives an estimate that is lower than the real reserve. It is
still not the best model. The pattern of CLM producing higher estimates remains,
and also here the DCL is the model which gives the point estimates that is closest to
the real reserve. The estimation error of DCL is about 8.9 percents, which is higher
than the error for the best model of the short-tail data. This feature is expected
since the long-tail data include a more varying behavior.
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Observed 1,796,845
CLM 2,305,610
DCL 1,957,216
Micro 1,445,736

Table 6.2: The table shows the observed reserve and the estimated reserve from the
three models. The point estimate for the micro-model is the mean from the five
simulations with sample size 10,000.
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Chapter 7

Conclusions

Before drawing any conclusions, be aware of the fact that we have assumed that all
claims are closed at evaluation date and at the end of the payment triangle. Even
if it seems to be a reasonable assumption, it could cause disturbance in the results.
With this said and with the results presented at hand, we can say a few things about
how the methods preformed on the two data sets.

• The micro-level method does not estimate a better reserve than the two other
methods for any of the two data sets.

• The micro-level method has a lower variance than the two other methods.

• The DCL point estimates of the reserve are lower than the estimates from CLM
for both data sets.

• The DCL estimates were closest to the observed reserve for both data sets.

• The variance of the CLM reserve and DCL reserve are similar to each other
and larger than for the micro-level method.

• The observed reserve lies inside of the limits of the simulated distribution for
all methods and both data sets.

One of the questions that this thesis was meant to investigate was if you gain
something from using a micro-level method. From the results received, the answer
to this question is no. But remember these results only hold for this particular
micro-level method and these two data sets. We cannot say anything about other
micro-level methods. The problem with the micro-level method used is that we
assume that likely future payments have been observed in the past. This means that
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we confine ourselves that all possible future payments must be one that has already
been seen. This is not very intuitive, the payments can vary a lot and the variance
of the reserves distribution can be much larger than what has been observed in the
past. An interesting future research topic is to find a distribution that can replace
the historical simulation used here.

Let us now discuss the idea of using a micro-level method in more general sense,
not focusing on any particular method. The micro-level methods use very much
information in the data, such as number of reported claims and singular payments.
For a micro-level method to be useful, we must be able to say that all this information
observed in the past follow a pattern that will remain in the future. If suddenly the
reporting delays increase, the micro-level method will fail. And what happens if
there has been a large fire, a sudden depression or if there has been large changes
in the line of business considered? The conclusion is that one must know the data
well and consider the model choice carefully before expecting to gain anything from
a micro-level method.

The DCL however, seems to be beneficial compared to the ordinary CLM. Still
remember that this only holds for the data set at hand and not necessarily hold in
general. Another benefit from using the DCL is that one can calculate the reserve
that lies outside the ordinary payment triangle and that one can separate the cal-
culated reserve in one part for the already reported claims and one part for the not
yet reported claims. The conclusion when it comes to the DCL is that since it seems
to have many advantages and is a very simple method to implement, it could be a
good idea to use it.

The other question that this thesis is studying is if there is any differences in
which model to use depending on the settlement time of the data set. This question
has no clear answer. It seems like the variability in the data set makes it harder to
forecast the reserve in general and we cannot say that any method is better on this.
We can remind ourselves how problematic the long-tail data set was in the beginning
before dividing it into parts and removing the most extreme claims. The answer to
the question must therefore be that it is probably more important to choose how to
divide the data and which claims to treat separately, than which method you are
using. This is an important topic for future research.

This thesis has contributed with a comparison of three claims reserving methods
on two very different data sets. This has illustrated how different the features of
data sets can be and how different estimation results the methods can come up
with depending on the features of the data set. We can create a lot of advanced
methods, but nothing compares to having a good knowledge and understanding for
the underlying data set. Without any knowledge of the data set, it is impossible to
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draw any conclusions about which method to use.
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