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Abstract

In this thesis, the pricing of counterparty credit risk on an OTC plain vanilla interest rate
swap is investigated. Counterparty credit risk can be defined as the risk that a counterparty
in a financial contract might not be able or willing to fulfil their obligations. This risk has
to be taken into account in the valuation of an OTC derivative. The market price of the
counterparty credit risk is known as the Credit Value Adjustment (CVA). In a bilateral
contract, such as a swap, the party’s own creditworthiness also has to be taken into account,
leading to another adjustment known as the Debit Value Adjustment (DVA). Since 2013,
the international accounting standards (IFRS) states that these adjustments have to be
done in order to reflect the fair value of an OTC derivative.

A short background and the derivation of CVA and DVA is presented, including related
topics like various risk mitigation techniques, hedging of CVA, regulations etc.. Four
different pricing frameworks are compared, two more sophisticated frameworks and two
approximative approaches. The most complex framework includes an interest rate model
in form of the LIBOR Market Model and a credit model in form of the Cox-Ingersoll-
Ross model. In this framework, the impact of dependencies between credit and market
risk factors (leading to wrong-way/right-way risk) and the dependence between the default
time of different parties are investigated.

Keywords: OTC derivatives, Credit Value Adjustment, Debit Value Adjustment, wrong-
way risk, interest rate swaps, LIBOR Market Model, Cox-Ingersoll-Ross process.



Kreditvärdighetsjustering: Prissättning av motpartsrisk för
en ränteswap

Sammanfattning

I den här uppsatsen har prisättning av motpartsrisk för en OTC ränteswap undersökts.
Motpartsrisk kan defineras som risken att en motpart i ett finansiellt kontrakt inte har
möjlighet eller viljan att fulföja sin del av kontraktet. Motpartsrisken m̊aste tas med i
värderingen av ett OTC-derivat. Marknadspriset p̊a motpartrisken är känt som Credit
Value Adjustment (CVA). I ett bilateralt kontrakt, t.ex. som en swap, m̊aste även den
egna kreditvärdighet tas med i värderingen, vilket leder till en justering som är känd som
Debit Value Adjustment (DVA). Sedan 2013 skall, enligt den internationella redovisnins-
gsstandarden (IFRS), dessa prisjusteringar göras vid redovisningen av värdet för ett OTC
derivat.

En kort bakgrund samt härledningen av CVA och DVA är presenterade tillsammans
med relaterade ämnen. Fyra olika metoder för att beräkna CVA har jämförts, tv̊a mer
sofistikerade metoder och tv̊a approximativa metoder. I den mest avancerade metoden
används en räntemodell i form av LIBOR Market Model samt en kreditmodell i form av
en Cox-Ingersoll-Ross modell. I den här metoden undersöks även p̊averkan av CVA d̊a
det existerar beroenden mellan marknads- och kreditriskfaktorer samt beroenden mellan
kreditvärdigheten för tv̊a olika parter.
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Chapter 1

Introduction

In this chapter follows a short introduction to CVA, explaining what it is and why it is
needed.

1.1 Counterparty Credit Risk

Counterparty credit risk is closely related to the traditional credit risk, which can be
regarded as lending risk. The lending party has a future obligation to repay the other
party and there is a risk that the lending party wont meet their obligations, e.g. due to
default. This can concern loans, bonds, mortgages and so on. Counterparty credit risk
can be defined as the risk that a counterparty in a financial contract might not be able or
willing to fulfil the obligations on their side of the contract. However, compared to credit
risk there are two sides to counterparty credit risk. The first one being the market risk
which influences the exposure over time to a counterparty and the second one being the
credit risk of the counterparty. Another big difference compared to traditional credit risk
is the presence of bilateral financial contracts. A bilateral financial contract is a contract
where each counterparty has a possible future exposure and hence also a risk towards
the other party. Counterparty credit risk mainly arises for derivatives contracts in the
over-the-counter (OTC) derivatives market, where contracts such as FX forwards, interest
rates swaps, credit default swaps etc. are traded. Some reasons why counterparty credit
risk mainly arises in the OTC derivatives market are due to the size of the market, many
OTC products are long-dated and the existence of unsecured exposure (trades where a
counterparty are unable or unwilling to post margin) (Gregory, 2012).

1



Chapter 1. Introduction 2

1.2 The Financial Credit Crisis and The Credit Value Ad-
justment

The U.S. housing crisis in 2007 was followed by the global credit crisis where the whole
financial system was set out of balance. Before the financial crisis, the aspect of coun-
terparty credit risk in financial contracts had often been overlooked, especially for trades
where collateral where posted. Big counterparties with a good credit rating were consid-
ered to be risk-free and the expression ”too big to fail” was often used for the largest
financial institutions. However when the systems breaking down, the credit spreads of
several large firm s spiked and their credit ratings were downgraded. As an effect of this
several firms had huge mark-to-market (MtM) losses in their trading books. In 2008 one
of the largest investments banks, Lehman Brothers, was put into default and some other
huge financial institutions only made it because they were rescued by the government or
purchased by other institutions. At the time of default, Lehman Brothers had around half
a million derivative contracts with around 8000 different counterparties. Most of these
counterparties probably never even considered a scenario where Lehman would default.
Although some firms were rescued by the government, the overall ”too big to fail” view of
large financial institutes was clearly proven to be wrong (Gregory, 2012).

In the wake of the financial crisis it is now common practice to take the counterparty
credit risk into account when valuing OTC derivatives. This adjustment of the price is
known as the Credit Value Adjustment (CVA). CVA is something that applies to the new
accounting standards and the principle of accounting the fair value of a position, in order
to reflect the market value. Furthermore, along with the harder regulations in Basel III,
there is now also a capital requirement on CVA. These new regulations will be discussed
more later on in this chapter.

So from being overlooked before the financial crisis, CVA and counterparty credit risk
now plays a big role in valuation, risk management and accounting. Nowadays almost
every large bank has a CVA (or XVA) desk. Dorval and Schanz (2011) divides a bank’s
CVA strategy into the following four levels, where sophistication and cost are increasing
for each level.

1. Measuring. A CVA measuring capability is created to calculate and aggregate CVA
risks. Accounting and risk management departments will be the principal users of this
function. This stage fulfils compliance obligations under accounting and regulatory
standards.

2. Advising. The bank will advise its trading desks with risks related to CVA. For
example, limits on positions may be set to include CVA.

3. Hedging. Here CVA is moved from the trading desks to a CVA desk. The CVA desk
is then responsible for managing the CVA P&L.



Chapter 1. Introduction 3

4. Trading. Besides hedging its own CVA risks the bank is also taking CVA positions
with the goal of making a profit.

1.3 Basel III

Basel III is the latest regulatory framework for banks, developed by the Basel Committee
on Banking Supervision (BIS). BIS were established in 1930 and has 60 member central
banks, representing countries that together make up about 95% of the world GDP (BIS,
2011a). Basel III aims to strengthen the regulation, supervision and risk management of
the banking sector. Furthermore, three main reasons to why Basel exists is according to
BIS (2011a).:

• Improve the banking sector’s ability to absorb shocks arising from financial and eco-
nomic stress, whatever the source.

• Improve risk management and governance.

• Strengthen bank’s transparency and disclosures.

1.3.1 CVA Capital Requirement

As stated earlier one of the new sections in Basel III, compared to Basel II, is the CVA
capital requirement which falls under credit counterparty risk. In Basel II there had only
been a capital requirement for the default risk in counterparty credit risk. Potential CVA
losses arises from changes in the exposure driven by market risk factors and changes in
counterparties or the investor’s credit spreads. The new capital requirement originate from
the financial crisis where, as stated by BIS (2011b), about two-thirds of the credit losses
were due to CVA losses and only one-third due to actual defaults. This gives a very good
picture to why banks should keep capital to protect themselves from potential CVA losses.

The regulatory CVA is a value-at-risk (VaR) measure on a 99% level with a time horizon
of 1 year. This can be interpreted as: that a bank should have put enough capital aside
to be able to handle CVA losses, occurring within one year, with a probability of 0.99. An
accurate calculation of CVA VaR is carried out by simulating market risk factors under
the real world measure P, up to the time horizon. In each scenario a CVA is calculated by
taking expectations under the risk-neutral measure Q, thus receiving a distribution of CVA
at the time horizon. From the distribution the VaR can easily be computed as a quantile
at the chosen probability of the distribution (Brigo et al., 2013). Using a brute-force
simulation technique, this leads to nested simulations.

In Basel III the regulatory CVA VaR is calculated using either a standard or an ad-
vanced method. The standard method is based on a variance-type formula and a normal
distribution assumption. The advanced method is a simulation-based method similar to
the procedure above but with some critical assumptions, see Gregory (2012).
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1.4 IFRS

The International Financial Reporting Standards (IFRS) is a set of accounting standards
developed by the International Accounting Standards Board (IASB). These accounting
standards were introduced as a global business language to achieve understandable and
comparable accounting of business affairs. These were introduced as a consequence of the
internationalization of business and shareholding (IFRS, 2013).

1.4.1 Fair Value Measurement

In IFRS 13, which became effective in January 13, the concept of fair value measurement
was introduced to accounting. This was introduced in order to account the fair value of
assets and liabilities. A fair value is defined as the price that would be received when
selling an asset, or paid to transfer a liability, in an orderly transaction between market
participants at the measurement date. This emphasises that fair value is a market-based
measurement, not an entity-specific measurement. Since it is a market-based measurement
it implies the valuation of counterparty credit risk, i.e. CVA, in a derivative position (IFRS,
2013). However IFRS does not come with a technical appendix and methods on how to
calculate CVA. As an effect of this various methods are used by market participants in
order to estimate CVA on OTC derivatives.

1.4.2 The Over-The-Counter Market

The over-the-counter (OTC) market is a market where parties trade with another directly
without using a central marketplace such as an exchange. Thus in the OTC market the
participants acts as market makers and agrees on a price together. The prices of a trade
in the OTC market do not need to be public, making it a less transparent market than an
exchange. According to BIS (2014), in June 2014, the size of the OTC market was 691,492
billion US dollars in terms of notional amount and 17,423 billion US dollars in terms of
gross market value. From these huge amounts the interest rate derivatives stands for about
81% respectively 77% of the total amounts.

In the OTC market, securities like stocks, bonds, derivatives, commodities, etc. are
traded. The OTC market is way more flexible than a standardized exchange, e.g. when it
comes to specific volumes or tailored products. In an exchange there is a need of liquidity
and the available products need to be highly standardized which places certain restric-
tions on volumes, quality and conditions. However, in the OTC market two parties can
for example agree on a trade with a non-standard quantity or a financial contract with
some unusual conditions. This makes the OTC market a very important market in a risk
management perspective. Because of its flexibility it is possible to obtain more accurate
hedges than through an exchange.

Historically an OTC transaction has been made without a clearing house as in an
exchange. However since the financial crisis the OTC market has also been harder regulated
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via the Dodd-Frank Wall Street Reform and Consumer Protection Act, in July 2010,
and via the European Market Infrastructure Regulation (EMIR), which was proposed in
September 2010. As an effect of regulations and as will be discussed in Section 1.6 most of
the standardized OTC derivative transactions today should go through a clearing house.
The clearing house takes the counterparty risk as they guarantee to fulfil the agreements
in case of default for one of the parties. Although CCPs decrease counterparty credit risk
there are still transactions that take place without being cleared and the prices of these
derivatives needs to be adjusted for the counter party credit risk (Gregory, 2012).

1.5 EMIR

The European Market Infrastructure Regulation (EMIR), which came into force in Au-
gust 2012, is a regulatory framework for OTC derivatives on the European market. This
includes clearing obligations of some OTC derivatives and risk mitigation techniques for
non-cleared OTC derivatives. The clearing obligation concerns some standard derivatives
like interest rate swaps and index credit default swaps traded by financial counterparties
(banks, insurance companies, asset managers, etc.). For non-financial counterparties there
are certain clearing thresholds regarding the notional of derivatives used in non-hedging
purposes. (ESMA, 2015).

1.6 Central Counterparties

Since the financial crisis a larger and larger part of all transactions in the OTC derivatives
market are today being cleared through a central counterparty (CCP). A CCP is a clearing
house that processes executed trades and steps in between counterparties to guarantee that
each party follow through with their obligations. It can be seen as a CCP acts as buyer
to every seller and vice versa. Thus clearing an OTC derivative through a CCP reduces
the counterparty credit risk. CCPs handles default losses through methods like netting,
margining and loss mutilation. By clearing transactions an investor also increases the
possibility of netting contracts. However, the overall intention with CCPs is of course to
reduce counterparty and systematic risks (Gregory, 2014).

One of the largest CCPs is LCH.Clearnet. According to SwapClear (2015) in 2014
about 50% of all outstanding and 95% of all cleared OTC plain vanilla interest rate swaps
were cleared through LCH.Clearnet’s service SwapClear. Since 1999, in total, more than
9.6 million OTC interest rate swaps have been cleared.

However, a lot of derivatives, e.g. cross currency interest rate swaps or exotic deriva-
tives, cannot yet be cleared through a CCP and are thus more exposed to counterparty
credit risk.



Chapter 2

Credit Value Adjustment

In this chapter the mathematical concepts of CVA is presented. Different cases are pre-
sented when the investor is seen as risk-free and when it is not. This chapter is based on
the work of Brigo et al. (2013).

2.1 Credit Value Adjustment

As explained in Chapter 1, CVA can be seen as the market price of counterparty credit risk.
Technically speaking, CVA is an option on the residual value of a portfolio, with a random
maturity which is given by the default time of the counterparty. Therefore CVA is a strictly
positive value which is subtracted from the price. This is very intuitive, since entering into
an agreement with a more risky counterparty would lead to a larger CVA and thus a lower
price. It is important to point out that since CVA is concerning valuation rather than risk
measuring, the calculations are done under the risk-neutral measure following the standard
valuation principles.

Calculating CVA is a difficult matter. One of the things that makes it difficult is
that CVA introduces model dependence into the valuation. Even for products for which
the valuation of the product itself does not require a model, the CVA of the product
does require a model. For example, consider a plain vanilla interest rate swap (IRS). The
valuation of an IRS only requires the initial term structures and is thus model independent.
However when it comes to the CVA, we want to value an option of the residual value of
that IRS with the maturity given by the default time of the counterparty. Suddenly we are
looking to value a swaption (an option of a swap) with a random maturity, and evidently,
valuation of a swaption does require an interest rate model.

Furthermore, CVA is calculated on an aggregated portfolio-level. Thus in order to
estimate the CVA impact of a new trade in an existing portfolio one would have to calculate
two CVA’s of the whole portfolio including and excluding the new trade. The CVA for the
new trade is thus the difference between the CVA including the new trades and the CVA

6
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of the initial portfolio.
The most basic way to define the CVA, at time t, is as the difference of the default-

risk-free price Π(t;X) and the true price Π̃(t;X) of a financial contract X, thus

CVA = Π(t;X)− Π̃(t;X).

A better or more technical definition of CVA is in terms of an expected future loss due to
default of a counterparty.

2.1.1 Unilateral CVA

Following the derivation of CVA in Brigo et al. (2013) and starting with a probability space
(Ω,G,Gt,Q), where Ω is the outcome space such that an outcome ω ∈ Ω. G is the σ-algebra
and Gt the filtration up to time t such that for a time t ≤ u the following hold Gt ⊆ Gu ⊆ G.
The filtration Gt can be interpreted as the total market information up to time t, i.e. Gt
includes all market risk factors and default events up to time t. Furthermore let F denote
the σ-algebra such that the filtration Ft contains the same information as Gt but the default
events. In other words Ft is a sub-filtration of Gt, i.e. Ft ⊆ Gt, where Ft contains only the
risk-free market information. The probability measure Q is the risk-neutral measure such
that under the risk-free bank account, following the process

dBt = Btrtdt, B0 = 1,

all tradeable assets divided by Bt (i.e. discounted) are martingales.
Suppose that at time t we have a portfolio consisting of derivative contracts with a

risky counterparty up to a maturity of T . Following risk-neutral valuation, and denoting
a future claim of a derivative at time Ti in the portfolio by XTi , the risk-free value of the
portfolio is

V (t, T ) =
∑

Ti∈(t,T ]

EQ[ Bt
BTi

XTi

∣∣Ft].
Lets say that the counterparty defaults at time τ < T and that we can recover R percent
of our exposure, i.e. R is the recovery rate. Then at t = 0 we have a discounted loss of

L = 1{τ≤T}(1−R)
B0

Bτ
(
∑

Ti∈(τ,T ]

EQ[ Bτ
BTi

XTi

∣∣Fτ ])+

= 1{τ≤T}(1−R)
B0

Bτ
(V (τ, T ))+

= 1{τ≤T}(1−R)D(0, τ)(V (τ, T ))+.
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WhereD(t, T ) denotes the discount factor Bt/BT . CVA is then the risk-neutral expectation
of this loss. Thus giving

CVA = EQ[
1{τ≤T}(1−R)D(0, τ)(V (τ, T ))+

∣∣G0

]
. (2.1)

By partitioning the time such that 0 = t0 < t1 · · · < tN = T the equation 2.1 can be
expressed as a sum of expected values on an interval (ti, ti+1] such that

CVA =
N∑
i=1

EQ[
1{ti−1<τ≤ti}(1−R)D(0, ti)(V (ti, T ))+

∣∣G0

]
. (2.2)

An alternative expression for CVA can be derived using the risk-neutral cumulative
distribution function for the default time τ , denoted by QD(t) such that QD(t) = Q(τ ≤ t).
Conditioning on the default time τ , Equation 2.1 can be rewritten as

CVA = EQ[
1{τ≤T}EQ[(1−R)D(0, t)(V (t, T ))+

∣∣τ = t
]∣∣G0]

=

∫ T

0
EQ[(1−R)D(0, t)(V (t, T ))+

∣∣τ = t
]
dQD(t) (2.3)

By assuming independence between the exposure and the probability of default equation
2.3 can be simplified. Furthermore the recovery rate R will be assumed to be deterministic.
The integral is discretized by partitioning the time (0, T ] such that ti for i = 0, . . . , N where
0 = t0 < t1 · · · < tN = T . This yields

CVA = (1−R)
N∑
i=1

EQ[D(0, ti)(V (ti, T ))+
∣∣F0

](
QD(ti)−QD(ti−1)

)
, (2.4)

or by using the ti-forward measure the discounting can be moved outside the expectation
such that

CVA = (1−R)
N∑
i=1

P (0, ti)EQti [(V (ti, T ))+
∣∣F0]

(
QD(ti)−QD(ti−1)

)
.

2.2 Debit Value Adjustment

Debit value adjustment (DVA) is the adjustment of the price made because of a possible
default of the own party. This is a strictly positive value which is added to the price. The
DVA of a transaction is thus the CVA in the counterparty’s point of view.

DVA has quite a strange feature. Imagine a situation where an investor I has a deriva-
tive contract with counterparty C, with positive MtM for the investor I. If the credit
rating suddenly were to drop for the investor I the DVA of the derivative contract would
increase, since it would now be more likely that the investor would default. Hence the
investor I’s derivative position would increase in MtM due to their own credit rating drop.
So if a companies credit quality would decrease their recalculated DVA would give rise to
a gain in positive MtM.
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2.2.1 Unilateral DVA

Since DVA is the same thing as CVA in the counterparty’s point of view, deriving an
expression for DVA is straightforward. Let τI denote the default time of the investor and
RI the recovery rate from the investor, then DVA can be defined as

DVA = EQ[
1{τI≤T}(1−RI)D(0, τI)(−V (τI , T ))+

∣∣G0

]
. (2.5)

Thus (−V (τ, T ))+ is the exposure the counterparty has towards the investor. Or alternative
by conditioning on the default time τI ,

DVA =

∫ T

0
EQ[(1−RI)D(0, t)(−V (t, T ))+

∣∣τI = t
]
dQID(t), (2.6)

where QID(t) denotes the the risk-neutral cumulative distribution function of the default
time τI . Discretization of the equations 2.5 and 2.6 can be done in the same way as above
for CVA.

2.3 Bilateral Credit Value Adjustment

Bilateral credit value adjustment (BCVA) is used when both parties in a bilateral trans-
action are regarded as risky, i.e. there is a probability of default of both parties. BCVA
is defined as the difference between CVA and DVA. BCVA is thus a positive or negative
value which is subtracted to the risk-free price of a derivative.

However, it is not as simple as calculating CVA and DVA as above in equations 2.1
and 2.5. When calculating CVA and DVA one has to use a ”first to default” approach,
otherwise we would in some way be double counting the risk.

In a bilateral contract between two non-default-free parties, an investor I and a coun-
terparty C, there are a few possible scenarios during the lifetime of the contract. Let τI
be the default time for the investor and τC be the default time for the counterparty. Let
τ = min{τI , τC} be the first default time of either the investor or the counterparty. Fur-
thermore it is assumed that simultaneously default is not possible, i.e. Q(τI = τC) = 0.
Then the following scenarios are possible.

• The counterparty defaults before or at the maturity T of the contract and before the
investor, i.e. τ = τC ≤ T, τ = τC < τI .

– If the value of the contract at time τ is positive for the investor only a recovery
rate RC of the exposure is paid to the investor.

– If the value of the contract at time τ is negative for the investor the full exposure
is paid to the defaulted counterparty.
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• The investor defaults before or at the maturity T of the contract and before the
counterparty, i.e. τ = τI ≤ T, τ = τI < τC .

– If the value of the contract at time τ is positive for the defaulted investor the
full exposure is paid to the defaulted investor.

– If the value of the contract at time τ is negative for the defaulted investor only
a recovery rate RI of the exposure is paid to the counterparty.

• No party defaults before or at the maturity T of the contract.

– If the value of the contract at time T is positive for the investor the full exposure
is paid to the investor.

– If the value of the contract at time T is negative for the investor the full exposure
is paid to the counterparty.

Thus in the valuation all these scenarios need to be taken into consideration.
In order to derive an expression for BCVA, lets look at the price of a contract X with

the default-risk-free price V (0, T ) = Π(0;X) at time t = 0. Under bilateral counterparty
risk the price of the contract becomes

Π̃(0;X) =V (0, T ) + EQ[(1−RI)1{τI≤T,τI<τC}D(0, τI)(−V (τI , T ))+
∣∣G0

]
− EQ[(1−RC)1{τC≤T,τC<τI}D(0, τC)(V (τC , T ))+

∣∣G0

]
.

Thus for a bilateral derivative contract the CVA is given by

BCVA = CVA−DVA, (2.7)

where

CVA = EQ[(1−RC)1{τC≤T,τC<τI}D(0, τC)(V (τC , T ))+
∣∣G0

]
and

DVA = EQ[(1−RI)1{τI≤T,τI<τC}D(0, τI)(−V (τI , T ))+
∣∣G0

]
.

2.4 Collateral

Collateral is posted in an OTC derivatives transaction in order to decrease the counterparty
credit risk and leave some security for possible future obligations to the other party. Col-
lateralization of OTC derivatives transactions is similar to the collateralization of lending
risk, where collateral is posted to reduce the credit exposure. However, the management of
collateral is way more complex in OTC derivatives transactions, because of the fluctuation
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of exposure and the possible bilateral nature of a contract. Since the exposure to a coun-
terparty in a derivative often is volatile with daily changes, collateral needs to be managed
frequently in order to have the exposure under control. Collateral is posted by the party
whose MtM is negative and it is generally posted in form of risk-free cash flows or of assets.
The party whom receives the collateral, pays an interest rate back to the party posting
the collateral. This interest rate paid is often an overnight rate such as the EONIA rate,
described in Section 3.1.2.

The collateral agreements in a transaction is generally specified under a Credit Support
Annex (CSA) to the ISDA Master Agreement, presented later in Section 2.7. The CSA
specifies what type of assets and in which currencies that collateral is accepted. It also
includes how the collateral should be managed, including frequencies, margin levels etc..

In order to calculate CVA in the presence of collateral, the exposure has to be adjusted.
Let C(t) denote the posted collateral at time t. The exposure at time t of a portfolio with
the value V (t, T ) is with the presence of collateral (V (t, T )− C(t))+. The unilateral CVA
thus becomes

CVA = EQ[
1{τ≤T}(1−R)D(0, τ)(V (τ, T )− C(t))+

∣∣G0

]
. (2.8)

and is in the same way extended to DVA (Brigo et al., 2013).

2.5 Re-Hypothecation

Re-hypothecation means that the party who receives collateral have the right to re-allocate
the collateral into an investment or as collateral to another trade. This can increase the
counterparty credit risk.

Consider a situation where an investor posts collateral in the form of cash, to a counter-
party. The counterparty uses the collateral to post collateral in another trade where they
have a negative MtM. A short period later the MtM of the first trade changes in favour
of the investor, and before the next collateral adjustment margining date the counterparty
defaults. The counterparty is now not only unable to fulfil their obligations in the contract,
but neither are they able to repay the posted (and re-invested) collateral. Thus the investor
suffer from a loss, both from the initial trade and the posted collateral (Brigo et al., 2013).

2.6 Netting

The exposure on a counterparty-level can be greatly reduced by the means of netting. A
netting agreement is an agreement between two counterparties, that allows aggregation
of all trades between the two counterparties in the case of default. This means that the
exposure towards a defaulted counterparty is checked at a netted portfolio level rather
than for each trade. More generally there can exist several netting agreements between
two counterparties, creating different netting sets (Pykhtin and Zhu, 2007).
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Consider a portfolio Vtot(t, T ) =
∑N

i=1 Vi(t, T ) consisting of N different financial con-
tracts. It is the same counterparty to each of the financial contracts Vi(t, T ). If the portfolio
can be netted, the exposure at time s ≥ t is greater or equal to the sum of each exposure.
Writing this with equations we have

(Vtot(s, T ))+ ≤
N∑
i=1

(Vi(s, T ))+.

This is a trivial relationship, however this also holds for CVA, i.e.

CVAtot ≤
N∑
i=1

CVAi.

Thus the CVA of a netted portfolio Vtot(t, T ) is smaller or equal to the CVA of a sum of
the portfolios Vi(t, T ).

A very simple case is when an investor has entered into one payer swap and one receiver
swap with the same counterparty. Both interest rate swaps are equivalent regarding condi-
tions such as swap rate, notional, maturity, etc.. If the portfolio can be netted the CVA is
equal to zero, since the net exposure to the counterparty is also equal to zero. However, if
the portfolio can not be netted one of the swap will have a positive exposure V1(t, T ) and
the other swap a negative exposure of the same size −V2(t, T ). The total exposure then
becomes V1(t, T ), which will give rise to a CVA.

One of the biggest advantages when it comes to CCPs is that the whole portfolio of
contracts with different counterparties can be netted in order to reduce the exposure.

2.7 The ISDA Master Agreement

The International Swaps and Derivatives Association (ISDA) is an organization for OTC
derivative trading. The ISDA master agreement is a legal framework which outlines the
terms and conditions between two parties in an OTC derivatives trade. This agreement and
the including CSA is used in order to minimize legal uncertainties and to specify standard
terms of things like netting, collateral, definition of default etc.. Multiple transactions can
be done under the master agreement, which makes parties not have to negotiate the terms
of each transaction (Brigo et al., 2013).

2.8 Wrong-Way Risk

Wrong-way risk (WWR) is when the exposure to a counterparty increases with the risk of
default of the counterparty.

A classic example of WWR is when an investor has taken a long position in a put option
on the underlying stock SC . The counterparty of the option is the same company as of
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the underlying stock, i.e. company C. Consider a situation where company C runs into
financial trouble. The stock is likely to decrease in value, which means that the investor’s
put option is increasing in value. Because of company C’s financial trouble, the risk is
increasing that they won’t be able to fulfil their obligations to the investor and pay for the
put option at maturity. Hence from the investor’s point of view both the exposure and risk
to counterparty C has significantly increased. This is known as WWR.

Another scenario that might be more likely is when a counterparty post collateral in a
trade. As mentioned earlier collateral is posted in order to leave some security of a trade
and reduce the counterparty credit risk. However, if a counterparty would post their own
assets, like a bond written on themselves or their own stocks, wrong-way risk arises. Even
though this does not cause increased exposure in the initial contract between the parties,
it explicitly increases the exposure since the value of the posted bond or stock probably
would decrease if the default risk of the counterparty would increase.

Vice Versa, so that the risk is decreasing with increasing exposure, it is known as right-
way risk (RWR). In order to capture WWR/RWR it is essential to have a model that
models the dependence between underlying market risk factors and credit risk factors. So
in the first example above, one would want to be able to capture the dependence between
the default risk and the stock price of company C. As mentioned above if the counterparty’s
credit spreads would increase significantly in a company, this is very likely to also effect
their stock price (in a negative way).

2.9 Hedging CVA

Nowadays it is very common that large financial institutions have a CVA (or XCA) desk
where CVA is calculated and hedged. As discussed in Section 1.3 about two thirds of
the credit losses in the financial crisis was actually CVA losses. In order to reduce these
potential losses and also reduce capital requirements it is important to be able to hedge
CVA.

As discussed earlier, counterparty credit risk and thus also CVA can be reduced by
diversification, netting, posting collateral etc.. However in order to accurately hedge CVA,
one has to both hedge the default risk and the market risk. One can do so by buying CDS’s
written on the counterparty combined with hedging the exposure.

An easier way to hedge CVA is using a contingent credit default swap (CCDS) contract.
A CCDS is essentially the same as a CDS but with one difference. Instead of buying
protection on a notional (fixed amount) as in a CDS the CCDS lets you buy protection on
a (random) value of reference security. Hence the CCDS is the perfect hedge for CVA.

DVA can be hedged in the same way as CVA but since it is not possible to sell a CDS
(or preferably a CCDS) on yourself, DVA can be proxy hedged by selling CDS contracts on
a reference portfolio of similar companies which are highly correlated with the own firm.
This can however be considered risky since there is a possibility of default in the reference
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portfolio. Selling CDS contracts on a reference firm or index thus proxy hedges the credit
spread risk but not the jump to default risk.

Another important aspect to bear in mind is the potential counterparty credit risk
arising from the hedge itself (Brigo et al, 2013).

2.10 Data Challenges

In this chapter, CVA has been defined and some complications that comes with CVA has
been presented. One of the biggest challenges in the procedure of calculating CVA is finding
the correct data in order to estimate models. Since CVA is calculated under the risk-free
measure Q, the risk factor models needs to be calibrated under Q.

One point that is needed in a CVA calculation is the risk-neutral probabilities of de-
fault. These probabilities can be stripped down from either Credit Default Swap (CDS) or
corporate bond data, but for many counterparties it does not exist a liquid CDS or even a
quoted bond. In these cases an option is to approximate with a CDS index or a corporate
bond written on another company similar to the counterparty.

An even harder task may be finding correlations, also specified under Q, between market
risk factors and credit spreads. These correlations are important in order to be able to
model WWR. An alternative here is to use historical correlations, i.e. under the historical
probability measure P. This is of course not ideal, since it is measured under the wrong
measure, but it can still give better information than just guessing (Brigo et al., 2013).

2.11 Funding Value Adjustment

The Funding Value Adjustment (FVA) is another adjustment made to the price of an OTC
derivative transactions in order to reflect the funding costs and benefits. Whether to make
an FVA or not has been a debated thing in the financial world. For instance, Hull and
White (2014) claims that an FVA could lead to arbitrage opportunities.

After the financial crisis, the funding for a bank has become much more expensive.
Earlier a bank could lend money at the LIBOR rate, but today the lending for many banks
are done at LIBOR plus a spread. A trader needs funding in order to be able to hedge the
initial trade and to be able to post collateral.

A collateralized trade is said to be funded by the collateral. If a party receives the
collateral, this can be used to fund the collateral for the hedge of the initial trade. Vice
versa, if a party needs to post collateral for the initial trade, they can fund this using the
received collateral from the hedge.

For an uncollateralized trade, the funding of the hedge has to be done at the banks
average funding cost. The FVA is done in order to reflect this funding cost, or benefit, e.g.
for an uncollateralized trade with positive MtM (Hull and White, 2014).
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FVA is just mentioned and will not be analysed in this thesis. For further reading, see
Hull and White (2014) or Brigo et al. (2013).



Chapter 3

Introduction to Interest Rate and
Credit Modelling

In this chapter some concepts of interest rate and credit modelling are introduced.
Following the notations in Chapter 2 we will work on a probability space (Ω,G,Gt,Q),

where Ω is the outcome space such that an outcome ω ∈ Ω. G is the σ-algebra and Gt
the filtration up to time t such that for a time t ≤ u the following hold Gt ⊆ Gu ⊆ G.
The filtration Gt can be interpreted as the total market information up to time t, i.e. Gt
includes all market risk factors and default events up to time t. Furthermore let F denote
the σ-algebra such that the filtration Ft contains the same information as Gt but the default
events. In other words Ft is a sub-filtration of Gt, i.e. Ft ⊆ Gt, where Ft contains only the
risk-free market information. The probability measure Q is the risk-neutral measure such
that under the risk-free bank account, following the process

dBt = Btrtdt, B0 = 1,

all tradeable assets divided by Bt (i.e. discounted) are martingales.

3.1 Brief Interest Rate Theory

Below follows a short interest rate theory presentation of concepts used in this report.
Starting by defining a continuously compounded forward rate F (t;S, T ) at time t for a
period [S, T ] as

eF (t;S,T )(T−S) =
P (t, S)

P (t, T )
.

Furthermore introducing an instantaneous forward rate such that

f(t, T ) = lim
∆→0

F (t;T, T + ∆).

16
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The continuously compounded short rate is defined as r(t) = f(t, t), such that a risk-free
bank account evolves according to Bt = exp{

∫ t
0 r(s)ds}. For simplification the discount

factor at time t for a cash flow received at time T will be denoted by

D(t, T ) =
Bt
BT

= exp{−
∫ T

t
r(s)ds}.

The price of a risk-free zero-coupon bond at time t received for sure at time T is given by

P (t, T ) = exp{−
∫ T

t
f(t, s)ds},

where f(t, s) is the instantaneous forward rate, or equivalent using the short rate

P (t, T ) = EQ[ exp{−
∫ T

t
r(s)ds}

∣∣Ft].
3.1.1 LIBOR Rates

The London Interbank Offered Rate (LIBOR) is a reference rate for a specific maturity for
which leading banks in London would be charged if borrowing money from other banks.
The LIBOR rates are calculated each day as the average of the rates estimated by the
banks, excluding the largest and smallest rates, for 5 different currencies and 7 maturities.
Since these banks are not risk-free counterparties there is a credit risk in the LIBOR rates.

The LIBOR spot rate is a simple compounded interest rate defined as

L(t, T ) =
1

T − t

( 1

P (t, T )
− 1
)

(3.1)

and the LIBOR forward rate is defined as

L(t;T, S) =
1

T − S

(P (t, T )

P (t, S)
− 1
)
. (3.2)

An Actual/360 day-count convention is used for the LIBOR rates. For a more convenient
notation, the LIBOR forward rate seen at t between between time Ti−1 and Ti will be
denoted

Li(t) = L(t;Ti−1, Ti).

3.1.2 The Overnight Indexed Swap Rate

Overnight Indexed Swaps (OIS) are interest rate swaps where a fixed rate is exchanged
for a floating rate, where the floating rate is an overnight index rate. This index rate is a
weighted average on the unsecured overnight lending rates in the interbank market. The
overnight index rate is for U.S. dollars is the effective federal funds rate, in Euro the Euro
Overnight Index Average (EONIA) or in Sterling the Sterling Overnight Index Average
(SONIA). Since these index rates are based on overnight lending rates they
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3.1.3 Discounting

LIBOR rates and LIBOR swap rates have often been used as proxies for the risk-free in-
terest rates when discounting future cash flows. However when the market started shaking
during the credit crisis in 07-08, the LIBOR rates were traded with a large spread com-
pared to treasury bills and OIS rates. The 3-month U.S. dollar LIBOR-Treasury spread,
known as the TED spread, had historically before the credit crisis been less than 50 ba-
sis points, but in the middle of the crisis it spiked to an all-time high at over 450 basis
points. Similarly the EURIBOR-OIS spread, which historically had been around 10 basis
points under normal market conditions, rose to about 350 basis points after the Lehman
bankruptcy announcement (Hull and White, 2013). This clearly indicates that the LIBOR
rates are poor proxies for the risk-free rates, at least in a stressed market environment.

Hull and White (2013) says that the practice among market participants is to discount
collateralized cash flows with the OIS rates and uncollateralized cash flows with the LIBOR
rates. The reason for using the OIS rates when discounting a collateralized derivative is
that this trade is funded by the collateral, which often pays the overnight interest rate
and hence is linked to the OIS rates. But for a non-collateralized derivative the LIBOR
rates are better proxies for the dealers cost of funding, and hence the reason to an FVA as
discussed in Section 2.11. However Hull and White (2013) argue for instead using the OIS
rates for the purpose of discounting in all situations.

3.2 Multi-Curve Framework

Together with the discounting, another area that has changed post-crisis is the interest
curve methodology. The classical approach has been to build a single LIBOR yield curve
bootstrapped using money market instruments, FRA’s and swap rates. From this yield
curve, using arbitrage arguments combined with an assumption of no credit risk, all for-
ward curves for different tenors such as 1-month, 3-month, 6-month etc. was derived. As
discussed in the section above, the same yield curve was used for discounting.

Nowadays the market has adopted a multi-curve framework. The credit risk in the
LIBOR rates are no longer ignored, and thus there is a difference between a 3-months and
a 6-months curve. With the presence of credit risk, it becomes less risky to roll over the
lending at a 3-months rate compared to lending at a 6-month rate. This can be observed
in the markets from the quoted spreads of basis swaps. A basis swap is a swap where two
floating rates of different tenors are exchanged, e.g. one party receives a 3-month LIBOR
rate quarterly and pays a 6-month LIBOR rate semi-annually to the counterparty. Before
the financial crisis these spreads for different spreads were very small, but during the crisis
these spreads rose significantly and have since then the spreads have stayed at levels which
are too large to be ignored.

The procedure of building multiple yield curves is often done by building one curve for
the most liquid tenor and then building the curves for the other tenors by using quotes of
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basis swaps. E.g. for the EUR market, a typical approach is to build a 6-month curve by
using the 6-month EURIBOR rate, FRA’s on the underlying 6-month EURIBOR rate and
fixed-for-floating swaps with a 6-month tenor on the floating leg. From this 6-month curve,
the 3-month curve can be derived by using the quoted spreads of 3-month vs 6-month basis
swaps etc..

However, in this thesis a single curve framework will be used and an simple approach of
building a single yield curve is described in Section 3.5 (Ametrano and Bianchetti, 2013).

3.3 Interest Rate Swaps

The most common interest rate swap is the fixed-for-floating interest rate swap, which is
known as a plain vanilla swap. A pays a floating rate L (typically a 3- or 6-month LIBOR
rate) to B, which in turn pays a predetermined fixed (swap) rate S (typically a 6-month
or a 1-year rate) , to A. The direction of the swap is often referred to as either a payer or
a receiver swap. In the case above, A has a receiver swap (A receives the fixed rate) and
B has a payer swap (B pays the fixed rate).

Let payment of the fix leg occur at the dates T1, . . . , Tn, payment of the floating leg
at the dates T ′1, . . . , T

′
N and the initiation of the swap at T0. Furthermore let the notional

amount of the swap be K and let ∆Ti = Ti − Ti−1 and ∆T ′i = T ′i − T ′i−1. Then at time T ′i
A will pay

KL(T ′i−1, T
′
i )∆T

′
i

and at time Ti receive

KS∆Ti.

If Ti = T ′i and ∆Ti = ∆T ′i , the net cash flow at time Ti is

K∆Ti
(
L(Ti−1, Ti)− S

)
.

3.3.1 Swap Rate

A swap can be regarded as two bonds. With this view A has bought a fixed rate bond with
return S issued by B and receives coupons based on the fix rate. B has bought a floating
rate bond issued by A and receives coupons according to the prevailing spot rate. Usually
the swap rate S is determined such that the initial value of the swap is zero. With the
swap starting at T0 and payments of the fix leg occurring at T1 < · · · < Tn and payments
of the floating leg at T ′1 < · · · < T ′N . Again let ∆Ti = Ti − Ti−1 and ∆T ′i = T ′i − T ′i−1. In
order to have a fair swap, a swap rate S should be determined such that at time t ≤ T0

Π(t; swap) = Pfixed(t)− Pfloating(t) = 0.
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Following risk-neutral valuation

KS

n∑
i=1

P (t, Ti)∆Ti −KBt
N∑
i=1

EQ[ 1

BT ′i
L(T ′i−1;T ′i−1, T

′
i )∆T

′
i

∣∣Ft] = 0

and using that the LIBOR forward rate L(T ′i−1;T ′i−1, T
′
i ) is a martingale under the QT

′
i -

measure

KS

n∑
i=1

P (t, Ti)∆Ti −K
N∑
i=1

P (t, T ′i )L(t;T ′i−1, T
′
i )∆T

′
i = 0

and using the definition of the LIBOR forward rate in equation 3.2

KS

n∑
i=1

P (t, Ti)∆Ti −K
N∑
i=1

P (t, T ′i )
(P (t, T ′i−1)

P (t, T ′i )
− 1
)

= 0.

Simplifying yields,

KS

n∑
i=1

P (t, Ti)∆Ti −KP (t, T0) +KP (t, T ′N ) = 0.

Solving this for S yields the fair swap rate

S =
P (t, T0)− P (t, T ′N )∑n

i=1 P (t, Ti)∆Ti
. (3.3)

3.3.2 Valuing Interest Rate Swaps

Valuing an IRS in between coupons is a bit different. Let t be such that Ti−1 < t < Ti <
· · · < Tn and T ′i−1 < t < T ′i < · · · < T ′n. The IRS can be seen as a fix cash flow plus a
forward swap. Using that the cash flow at time Ti is known at time t the value of a receiver
swap at time is

Π(t; swap) = KS
n∑
j=i

P (t, Tj)∆Tj +KP (t, Tn)−KP (t, T ′i )
(
1 + ∆T ′iL(T ′i−1, T

′
i )
)
. (3.4)

3.3.3 PV01

PV01 (or DV01) is a common risk measure of interest rate swaps. It measures the price
sensitivity to a parallel shift in the underlying yield curve. More precise, PV01 measures
the change in present value of the swap when the yield curve moves with a parallel shift
of 1 basis point (bp), i.e. 0.01%. Since the underlying yield curve does not just move in
parallel shifts, this measure is often combined with measures of the price sensitivities to
shifts of 1bp in different parts of the yield curve.
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3.4 Swaptions

A swaption is simply an option on a swap. From the risk-neutral valuation and using
equation 3.3, the price of a payer swaption at time t with maturity T of a swap starting
at Tα > T and maturing at Tβ > Tα with swap rate K is

Π
(
t; swaption(Tα, Tβ,K, T )

)
= BtEQ[ 1

BT

(
swap(T ;Tα, Tβ,K)

)+∣∣Ft]
= BtEQ[ 1

BT
Aα,β(T )

(
Sα,β(T )−K)

)+∣∣Ft]. (3.5)

Where Aα,β(T ) =
∑β

i=α+1 ∆TiP (T, Ti) is the accrual term and Sα,β(T ) the forward swap
rate at time T .

3.5 Yield Curve

The initial term structure of the current interest rates is often referred to as the yield curve.
A yield curve or a zero-coupon bond curve is needed in order to price swaps and calibrate
an interest rate model. The following method on bootstrapping a yield curve is described
by Davis (2010). Note that this is the classical approach of building a single yield curve.
However, the bootstrapping methodology is also adaptable to the multi-curve framework.

Starting from a set of LIBOR rates for maturities up to 1 year and with a set of LIBOR
swap rates with maturity up to 10 years a yield curve and thus also a discount curve can
be constructed.

Starting with the LIBOR rates and by inverting equation 3.1 the zero-coupon bond
prices are given by

P (t, Ti) =
1

1 + L(t, Ti)(Ti − t)
.

Since the LIBOR rates only are available for maturities up to 1 year the rest of the curve
will be constructed using swap rates. Assuming swap rates of swaps that pays coupons
semi-annually and also assuming the presence of a swap rate for each coupon date. Then
the zero-coupon bond prices can be solved recursively using equation 3.3 such that

P (t, Ti+1) =
1− Si+1Ai

1 + ∆Ti+1Si+1

where Ai =
∑i

k=0 ∆TkP (t, Tk) is the accrual term and ∆Ti+1 = Ti+1 − Ti is the time
between coupons.

However the assumption of having a swap rate with maturity at each coupon date is
unrealistic and as a solution to this interpolation is used. To determine an interpolated
value of P (t, Tk) between the known values P (t, Tk−1) = e−rk−1Tk−1 and P (t, Tk+1) =
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e−rk+1Tk+1 one can use linear interpolation of the rates rk−1 and rk+1. By writing the time
Tk as a linear combination such that Tk = (1−λ)Tk−1 +λTk+1 one can get an interpolated
value P̂ (t, Tk) = erk−1(1−λ)Tk−1+rk+1λTk+1 .

So by using a binary search algorithm and interpolation we can still determine each
zero-coupon bond. Assuming that we have determined P (t, Tk) and that the next swap
rate available is Sk+j . Furthermore let i = 1, . . . , j−1 and P̂ (t, Ti) be the interpolated zero-
coupon bond price between the known P (t, Tk) and the unknown value p of the zero-coupon
bond maturing at time Tk+1. The swap rate at time Tk+1 can be written as

Ŝk+1 =
1− p

Ak + ∆Tk+1P̂ (t, Tk+1) + · · ·+ ∆Tk+j−1P̂ (t, Tk+j−1)−∆Tk+jp
.

Since the true swap rate Sk+1 is known a value of p can be found such that |Sk+1−Ŝk+1| < ε
for a small value ε. Following this approach the following binary search algorithm can be
used.

1. Set l = 0 and r = 1

2. Set p = (l + r)/2

3. If Ŝk+1 < Sk+1 set r = p else set l = p

4. Repeat 2 and 3 until |Sk+1 − Ŝk+1| < ε

5. Return P (t, Tk+j) = p

3.6 Interest Rate Model

The market practice has for a long time been to price simple interest rate derivatives such as
caps, floors and swaptions by using an extension of Black’s formula. In order to have logical
and arbitrage free models which prices caps, floors and swaptions in a Black’s formula-
form the market models were developed. The LIBOR Market Model (LMM) models the
LIBOR forward rates as lognormal random variables and prices caps and floors with Black’s
formula. Similarly the Swap Market Model (SMM) models the forward swap rate as a
lognormal random variable and prices swaptions with Black’s formula (Björk, 2009).

3.6.1 LIBOR Market Model

Usually in an interest rate model either the short rate rt or the instantaneous forward
rate f(t, T ) is modelled. However none of these two rates are observable in the market.
In the LMM instead the observable forward LIBOR rates L(t;Ti−1, Ti), i.e. the simple
compounded rate seen at time t between time Ti−1 and Ti, are modelled.
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Furthermore the LIBOR forward rate Li(t) = L(t;Ti−1, Ti) is a martingale under its
own forward measure QTi , which is the measure associated with P (t, Ti) as numeraire.
Under QTi the LIBOR forward rate has the following dynamics

dLi(t)

Li(t)
= σi(t)dW

QTi
i (t) i = 1, . . . , N.

Here σi(t) is a scalar and represents the instantaneous volatility of forward rate Li(t) and

WQTi
i (t) is a QTi-Brownian Motion. Using this model to price a cap with the payoff(

Li(Ti−1)−K
)+

∆Ti

leads to Black’s formula for caps.
One is often looking to model the future LIBOR forward rates of a finite set of times

T1, . . . , TN . Using a change-of-numeraire technique one can derive the dynamics under a
fix forward measure QTk , with P (t, Tk) as numeraire, such that the LIBOR forward rates
have the following dynamics

dLi(t)

Li(t)
=



−
(∑k

j=i+1
∆TjLj(t)σi(t)σj(t)ρi,j

1+∆TjLj(t)

)
dt+ σi(t)dW

QTk
i (t) if i < k

σi(t)dW
QTk
i (t) if i = k

(∑i−1
j=k

∆TjLj(t)σi(t)σj(t)ρi,j
1+∆TjLj(t)

)
dt+ σi(t)dW

QTk
i (t) if i > k.

Where ρi,j denotes the correlation between forward rate Li(t) and Lj(t).
A third specification of the LMM is under the spot measure, which is a measure similar

to the usual risk-neutral measure. Since the modelling is done for a finite set of forward rates
there is no point of using the usual continuous bank account numeraire Bt = exp{

∫ t
0 rsds}.

Instead a discrete bank account B∗(t) can be introduced such that

B∗(t) = P (t, Tη(t)−1)

η(t)−1∏
i=0

(
1 + ∆TiLi(Ti)

)
.

Where η(t) is the index of the first forward rate that has not expired by t, i.e. η(t) = m
if Tm−2 < t ≤ Tm−1. The measure associated with B∗(t) as numeraire is called the spot
measure and will be denoted by Q∗. Under the spot measure the forward LIBOR rates has
the following arbitrage-free dynamics

dLi(t)

Li(t)
=
( i∑
j=η(t)

∆TjLj(t)σi(t)σj(t)ρi,j
1 + ∆TjLj(t)

)
dt+ σi(t)dW

Q∗
i (t), i = 1, . . . , N. (3.6)

(Brigo and Mercurio, 2012).
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3.6.2 Swap Market Model

The Swap Market Model (SMM) is the market model designed for swaption pricing. Imag-
ine a swap with start at Tα and with payments occurring at Tα+1, . . . , Tβ. Then the SMM
models the forward swap rate Sα,β as a lognormal random variable and especially Sα,β is
a martingale under the swap measure Qα,β. The swap measure Qα,β is the measure with
the accrual term Aα,β(t) =

∑β
i=α+1 ∆TiP (t, Ti). Under Qα,β the forward swap rate has

the following dynamics

dSα,β(t) = σα,β(t)Sα,β(t)dWQα,β (t). (3.7)

Consider a payer swaption with the setting above. From equation 3.5 the price is

Π
(
t; swaption(Tα, Tβ,K, T )

)
= BtEQ[ 1

BT
Aα,β(T )

(
Sα,β(T )−K)

)+∣∣Ft].
Changing measure using Girsanov’s Theorem with the Radon-Nikodym derivative

dQα,β

dQ

∣∣∣
Ft

=
Aα,β(t)B(0)

Aα,β(0)B(t)

yields

Π
(
t; swaption(Tα, Tβ,K, T )

)
= Aα,β(t)EQα,β[ 1

Aα,β(T )
Aα,β(T )

(
Sα,β(T )−K)

)+∣∣Ft]
= Aα,β(t)EQα,β[(Sα,β(T )−K)

)+∣∣Ft].
This leads to Black’s formula for swaptions and at t = 0 the price is

Π
(
0; swaption(Tα, Tβ,K, T )

)
= Aα,β(0)

(
Sα,β(0)N(d1)−KN(d2)

)
(3.8)

where

d1 =
log(Sα,β(0)/K) + 0.5v2

α,β(T )T

vα,β(T )
√
T

d2 = d1 − vα,β(T )
√
T

where vα,β(T ), called the Black’s volatility, is the average volatility such that

vα,β(T ) =
1

T

∫ T

0

(
σα,β(t)

)2
dt. (3.9)
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3.6.3 Pricing Swaptions in LMM

Instead of using the SMM, swaptions can be priced in the LMM using Monte Carlo sim-
ulation or by using an analytical approximative formula. Starting with the Monte Carlo
technique, the forward rates involved in the swaption are simulated and using the relation-
ship

Sα,β(t) =

β∑
i=α+1

wi(t)Li(t) (3.10)

where

wi(Lα+1(t), . . . , Lβ(t)) =
∆Ti

∏i
j=α+1

1
1+∆TjLj(t)∑β

k=α+1 ∆Tk
∏k
j=α+1

1
1+∆TjLj(t)

.

By calculating swap rates in each simulation one can compute swaption prices as the
average discounted payoff Aα,β(T )(Sα,β(T )−K)+.

The analytical approximative formula for swaptions in the LMM is a modified version
of Black’s formula obtained using a so called ”freezing coefficients” technique. Starting
with the Black’s swap volatility from equation 3.9 in the SMM

v2
α,β(Tα) =

1

Tα

∫ Tα

0

(
σα,β(t)

)2
dt.

Using the ”freezing coefficients” technique and equation 3.10 one can show that an approx-
imation of the Black’s swap volatility in the LMM is given by

(
vLMM
α,β (Tα)

)2
=

1

Tα

β∑
i,j=α+1

wi(0)wj(0)Li(0)Lj(0)ρi,j
Sα,β(0)2

∫ Tα

0
σi(t)σj(t)dt. (3.11)

By using this proxy and Black’s formula one have an approximative analytical formula for
swaption prices also in the LMM.

3.6.4 Calibration of the LMM to Swaptions

In general a calibration procedure is an optimization problem where a function which
describes the distance between market and model prices is minimized. In this section it
will be described how the LMM can be calibrated to swaption prices, or rather swaption
volatilities, since the market practice is to quote swaption prices with the corresponding
Black’s volatility.

Brigo and Mercurio (2012) describe the so called analytical cascade calibration method.
This calibration method is based on a piecewise-constant parametrization of the volatilities
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such that σ1(t) = σ1,1 on the interval t ∈ (0, T0] and where the volatility is ”dead” after
T0. The volatility is ”dead” after T0 since the forward rate L1(t) is deterministic at t = T0.
The whole volatility matrix will look like

Σ =


σ1,1 0 0 · · · 0
σ2,1 σ2,2 0 · · · 0
σ3,1 σ3,2 σ3,3 · · · 0

...
...

...
. . .

...
σm,1 σm,2 σm,3 · · · σm,n

 . (3.12)

Using the approximation in equation 3.11 and the assumption of piecewise-constant volatil-
ities the following equation is received

(
vLMM
α,β (Tα)

)2
=

1

Tα

β∑
i,j=α+1

wi(0)wj(0)Li(0)Lj(0)ρi,j
Sα,β(0)2

α∑
h=0

(Th − Th−1)σi,h+1σj,h+1. (3.13)

Rewriting equation 3.13 yields

TαSα,β(0)2
(
vLMM
α,β (Tα)

)2
=

β−1∑
i,j=α+1

wi(0)wj(0)Li(0)Lj(0)ρi,j

α∑
h=0

(Th − Th−1)σi,h+1σj,h+1

+ 2

β−1∑
j=α+1

wβ(0)wj(0)Lβ(0)Lj(0)ρβ,j

α−1∑
h=0

(Th − Th−1)σβ,h+1σj,h+1

+ 2

β−1∑
j=α+1

wβ(0)wj(0)Lβ(0)Lj(0)ρβ,j(Tα − Tα−1)σβ,α+1σj,α+1

+ wβ(0)2Lβ(0)2
α−1∑
h=0

(Th − Th−1)σ2
β,h+1

+ wβ(0)2Lβ(0)2(Tα − Tα−1)σ2
β,α+1. (3.14)

Using equation 3.14, the following calibration algorithm can be constructed.

1. Select the number s of rows in the swaption matrix that are of interest for the
calibration.

2. Set α = 0.

3. Set β = α+ 1.

4. Solve equation 3.14 in σβ,α+1.

5. Set β = β + 1. If β ≤ s go back to step 4, otherwise set α = α+ 1.
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6. If α < s go back to step 3, otherwise stop.

Thus for a given swaption volatility matrix and given correlations between the forward
rates the volatility of the model can be calibrated. However since this approach is based
on the solution of a second degree equation, there are possible solutions which are either
negative or imaginary. As investigated in Brigo and Mercurio (2012), the output volatilities
of this cascade calibration method are often negative or imaginary when a non-smooth
input swaption volatility matrix is used. A purposed solution to this problem is to use a
parametric function to describe the input swaption matrix in order to remove misaligned
market quotations corresponding to illiquid swaptions.

Smooth Input Swaption Matrix

As proposed by Brigo and Mercurio (2012), a smooth version of the input swaption volatil-
ity matrix will, in most cases, remove negative or imaginary volatilities received from the
calibration routine above. They also propose the following parametric function

v̂(S, T ) = γ(S) +
(exp{f log(T )}

eS
+D(S)

)
exp

{
− β exp{p log(T )}

}
(3.15)

where

γ(S) = c+ (exp{h log(S)}a+ d) exp
{
− b exp{m log(S)}

}
and

D(S) = (exp{g log(S)}q + r) exp
{
− s exp{t log(S)}

}
+ δ.

Using the implied swaption volatilites from the market v(S, T ), where S represents the
maturity of the option and T is the tenor of the underlying swap, the parametric function

v̂(S, T ) can be estimated using an optimization algorithm which minimizes
∑

i

(
v(Si, Ti)−

v̂(Si, Ti)
)2

.

An estimated volatility surface can be seen beneath in Figure 3.1.
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Figure 3.1: Left: Market implied swaption volatility from Bloomberg 7/5/2015. Right:
Smooth market implied volatility from the parametric function in equation 3.15.

Calibration with Optimization Routine

Another way to ensure real and positive output volatilities is to use a simple optimization
routine. Again assuming a piecewise linear specification of the LMM volatilities and the
presence of market swaption prices and correlations between forward rates. Consider the
following optimization problem.

minimize
σ

||v − v(σ)LMM||

subject to σi,j ≥ 0, i = 1, . . . ,m, j = 1, . . . , n.

This thus becomes a least squares problem, where v represents a vector with implied
volatilites from market quoted swaptions and v(σ)LMM the approximative Black volatilites
from equation 3.13 with the LMM volatility matrix σ in equation 3.12 as input. A so-
lution to this problem guarantees positive and real volatilites σi,j in the LMM model.
This optimization problem can easily be solved using a numeric least squares optimization
algorithm.

3.6.5 Historical Correlation

Following the calibration algorithm above one of the assumptions is that the correlation
between forward rates is known. One way to specify the correlation is simply using his-
torical correlation, i.e. calibrate the correlation under P. However since the volatility is
calibrated to market data, the model will still reproduce market prices and in other words
be calibrated under Q.

Following Brigo and Mercurio (2012) and assuming that the daily log returns of the
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forward rates L1(t), . . . , Ln(t) have a multivariate normal distribution such that[
log
(L1(t+ ∆t)

L1(t)

)
, . . . , log

(Ln(t+ ∆t)

Ln(t)

)]
∼ N(µ,Σ).

The mean vector µ and the covariance matrix Σ are estimated using the standard sample
approach. Given data from N + 1 trading days with corresponding time vector t0, . . . , tN
the estimates are

µ̂i =
1

N

N−1∑
k=0

log
(Li(tk + ∆t)

Li(tk)

)
and

Σ̂i,j =
1

N − 1

N−1∑
k=0

[(
log
(Li(tk + ∆t)

Li(tk)

)
− µ̂i

)(
log
(Lj(tk + ∆t)

Lj(tk)

)
− µ̂j

)]
.

The correlation matrix ρ can then be estimated as

ρ̂i,j =
Σ̂i,j√

Σ̂i,iΣ̂j,j

. (3.16)

By using historical LIBOR and swap rates and following the bootstrapping procedure
in Section 3.5 historical discount curves are received. From each historical discount curve
the LIBOR forward rates L1(t), . . . , Ln(t) can be calculated and the correlation in 3.16 can
be estimated.

Smooth Correlation Matrix

From an estimated historical correlation matrix ρ̂ it is convenient to fit a function g(Ti, Tj) ≈
ρ̂i,j to describe how a forward rate Li(t) = L(t;Ti, Ti+∆Ti) is correlated to another forward
rate Lj(t) = L(t;Tj , Tj + ∆Tj). This will be done by fitting the following function

g(Ti, Tj) = α+ (1− α)e−β(|Tj−Ti|), (3.17)

where α and β are constants. Using this parametrization one assures a correlation of 1 if
Tj = Ti and the constant α can be seen as the limit correlation such that when |Tj − Ti|
is large the correlation converges towards α. This function can be estimated using least
squares estimation such that

∑
i,j

(
ρ̂i,j − g(Ti, Tj)

)2
is minimized. This results in a smooth

version of the historical correlation matrix (Brigo and Mercurio, 2012).
In Figure 3.2 both the historical correlation ρ̂i,j in equation 3.16 and the smooth ver-

sion g(Ti, Tj) in equation 3.17 are shown. The correlation for the LIBOR forward rates



Chapter 3. Introduction to Interest Rate and Credit Modelling 30

L(t;Ti−1, Ti) for i = 1, . . . , 10, where Ti = i years, are estimated using one year of historical
data.
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Figure 3.2: Left: Historical correlation Right: Smooth historical correlation.

3.6.6 Simulation of the LMM

With a set of forward rates L1(t), . . . , Ln(t) the aim is to generate future paths of each
forward rate for the later use of Monte Carlo pricing. Using an Euler scheme on logLk(t)
as done in Glasserman (2003), the forward rate Lk(t + ∆t) under the spot measure, see
equation 3.6, can be simulated as

logLk(t+ ∆t) = logLk(t) + σk(t)∆t
k∑

j=η(t)

ρk,j∆Tjσj(t)Lj(t)

1 + ∆TjLj(t)
− σk(t)

2

2
∆t+ σk(t)

√
∆tZk.

(3.18)

In this discretization ∆t is the time step, ∆Tj = Tj − Tj−1 the time between maturities
of forward rates, ρk,j the correlation between the forward rates Lk(t) and Lj(t) and Zk a
standard normal random variable.

The forward rate Lk(t) is simulated until t+ ∆t = Tk, since after Tk this forward rate
is deterministic.

3.7 Credit Model

In order to be able to describe the future dynamics of probabilities of default for a company
a credit model is needed. Historically firm value (or structural) models have been a popular
credit model. In a firm value model the firm life is modelled as the firms ability to pay
back its debt. These kinds of models are based on the work of Merton (1974). Usually the
firms total value V , which is the sum of the firms equity S and its debt D, is modelled as
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a Geometric Brownian Motion (GBM). When the firms total value V is less or equal to its
debt D, the firm has defaulted.

Another more convenient type of credit model is an intensity (or reduced form) model.
These models describe the default time τ as the first jump time of an inhomogeneous
Poisson process, with intensity λ(t). Over an infinitesimal time period dt the probability
of default at time τ is given by

P(t < τ ≤ t+ dt|τ > t) = λ(t)dt.

This kind of model is suitable to model credit spreads and can quite easily be calibrated
to corporate bond or CDS data.

From a default intensity model we are looking for risk-neutral probabilities of defaulting,
i.e. Q(τ ≤ t) = 1 − Q(τ > t) for a given time t. First defining the strictly increasing,
cumulated intensity as

Λ(t) :=

∫ t

0
λ(s)ds.

Using the fact that for an inhomogeneous Poisson, the transformation of the time until
a jump τ according to its own cumulated intensity Λ(t) leads to an exponential random
variable, hence

Λ(τ) = ξ ∼ Exp(1).

So by inverting this equation an expression for the default time is given by

τ = Λ−1(ξ).

Using the cumulative distribution function of a exponential distribution and that Λ(t) is a
strictly increasing function, an expression for the risk-neutral survival probabilities is given
by

Q(τ > t) = Q(Λ(τ) > Λ(t)) = Q(ξ > Λ(t)) = exp{−
∫ t

0
λ(s)ds}.

Which is the same expression as for a discount factor with a continuous compounded spot
rate. If the default intensity λ(t) is stochastic we get

Q(τ > t) = EQ[ exp{−
∫ t

0
λ(s)ds}

∣∣Gt]. (3.19)

Hence the same expression as the price of a zero-coupon bond. This is very convenient
since an interest rate model can be used to model the default intensity λ(t) and the default
probabilities can then be easily calculated using analytical formulas (Brigo et al., 2013).
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3.7.1 CIR++ Model

The Cox-Ingersoll-Ross (CIR) model was introduced in 1985 as an extension of the Vasicek
model and is often used as a model for the short rate r(t). The CIR++ model is an
extension of the CIR model and under the risk neutral measure Q the CIR++ process
follows

dx(t) = κ[θ − x(t)]dt+ σx
√
x(t)dW x(t), x(0) = x0

λ(t) = x(t) + ϕ(t) (3.20)

where the parameters κ, θ and σ correspond to speed of adjustment, mean and volatility.
W x(t) is a Q-Brownian Motion and ϕ(t) is a deterministic function used in order to fit the
initial term structure. The model has a mean reversion property towards θ and one of the
biggest advantages of the CIR++ model is that it implies a positive λ(t) as long as the
condition 2κθ ≥ σ2 and ϕ(t) ≥ 0 hold. Because of this feature the CIR model is suitable
for modelling default intensities and also for stochastic volatilities.

The distribution of future values of a CIR process follows a non-central chi-squared
distribution with d = 4κθ/σ2 degrees of freedom and a non-centrality parameter η(t, T ) =
x(t)4κe−κ(T−t)/σ2(1−e−κ(T−t)). Thus x(t) has the following cumulative distribution func-
tion

Fx(z; d, η) = e−η/2
∞∑
i=0

(η/2)i

i!2d/2+iΓ(d/2 + i)

∫ z

0
yd/2+i−1e−z/2dy (3.21)

(Brigo and Mercurio, 2012)

3.7.2 Probability of Default

From a standard CIR process

dx(t) = κ[θ − x(t)]dt+ σx
√
x(t)dW x(t), x(0) = x0

the zero-coupon bond price is given by

P (t, T ) = EQ[ exp{−
∫ T

t
x(s)ds}

∣∣Gt].
This can be determined by computing the moment generating function of the integrated
CIR process such that

EQ[ exp{−u
∫ T

t
x(s)ds}

∣∣Gt] = A(t, T, u)e−B(t,T,u)x(t)
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where

A(t, T, u) =

[
2hu exp{(κ+ hu)(T − t)/2}

2hu + (κ+ hu)(exp{hu(T − t)} − 1)

]2κθ/σ2

B(t, T, u) =
2(exp{hu(T − t)} − 1)

2hu + (k + hu)(exp{hu(T − t)} − 1)

hu =
√
κ2 + 2uσ2.

By setting u = 1 and denoting A(t, T, 1) = A(t, T ) and B(t, T, 1) = B(t, T ), the zero-
coupon bond price can be written

PCIR(t, T ) = A(t, T )e−B(t,T )x(t). (3.22)

Using this and the equation 3.19, the risk-neutral survival function of the default time τ
at time 0 is given by

Q(τ > t) = EQ[ exp{−
∫ t

0
λ(s)ds}

∣∣G0

]
= EQ[ exp{−

∫ t

0
x(s)ds−

∫ t

0
ϕ(s)ds}

∣∣G0

]
= exp{−

∫ t

0
ϕ(s)ds}A(0, t)e−B(0,t)x(0). (3.23)

(Brigo et al., 2013)

3.7.3 Calibration of the CIR++ Model

Before using an intensity model as the CIR++ model it needs to be calibrated such that
it reproduces the probabilities of default, implied by the market CDS term structure, and
such that it has the accurate risk-neutral dynamics under the Q-measure.

Calibration to the CDS Term Structure

As stated above the aim is for the model to imply the same default probabilities as the
market. From equation 3.23, the survival probability in the CIR++ intensity model is
given by

Q(τ > t)model = exp{−
∫ t

0
ϕ(s)ds}A(0, t)e−B(0,t)x(0).

Let the survival probability implied by the market be given by

Q(τ > t)market = e−Γ(t) = e−
∫ t
0 γ(s)ds.
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Where γ(t) is the implied hazard rates from the market. In order for the model to imply
the market default probability the following must hold

Q(τ > t)model = Q(τ > t)market.

Or equivalent

exp{−
∫ t

0
ϕ(s)ds}A(0, t)e−B(0,t)x(0) = e−

∫ t
0 γ(s)ds.

Solving for ϕ(t) yields ∫ t

0
ϕ(s)ds = log

(
A(0, t)e−B(0,t)x(0)

e−
∫ t
0 γ(s)ds

)

or equivalent ∫ t

0
ϕ(s)ds = log

(
PCIR(0, t)

Q(τ > t)market

)
. (3.24)

Thus using the implied market hazard rates γ(t) or the implied survival probabilities, the
model in equation 3.20 can be fitted to the initial term structure (Brigo and Alfonsi, 2005).
In the sections beneath follows a method on how the market implied survival probabilities
can be obtained.

Credit Default Swaps

The most popular way to determine implied risk-neutral probabilities of default is by
stripping them down from credit default swap (CDS) prices. A single name CDS is a
financial contract that protects the buyer from the risk that a specific party will default.
Similar to an interest rate swap, a CDS consist of two legs, one premium leg and one
protection leg. Also similar to an interest rate swap, the interest rate in the premium leg
is often determined such that the initial value of the contract is equal to zero.

Consider a company A that buys protection, hence a CDS, from another company B.
The event that A buys protection on is the event of default of a third company C. The
contract offers protection on a predetermined time interval [T0, Tn] and on a predetermined
notional K. Thus if C would default at time τC ∈ [T0, Tn], then B would pay the amount
(1 − R)K to A at time τC , where R denotes the recovery rate. In return for getting this
protection A has to pay coupons with a rate of s(Tn) on the amount (1−r)K to B at a set of
predetermined times [T1, . . . , Tn], let’s denote this set of times by {Ti} and ∆Ti = Ti−Ti−1.
Following the derivation in Brigo and Alfonsi (2005), the arbitrage free price of a CDS at
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time t ∈ [Tβ(t)−1, Tβ(t)] with the notional K = 1 is

CDS(t, {Ti}, Tn, s(Tn), (1−R)) =1τ>t

[
EQ[s(Tn)D(t, τ)(τ − Tβ(τ)−1)1τ<Tn

∣∣Gt]
+ EQ[ n∑

i=β(t)

s(Tn)D(t, Ti)∆Ti1τ>Ti
∣∣Gt] (3.25)

− EQ[
1τ<TD(t, τ)(1−R)

∣∣Gt]].
Furthermore assuming independence between the interest rate and the default time and
assuming τ > t, i.e. dropping 1τ>t, the price of this CDS is equal to

CDS(t, {Ti}, Tn, s(Tn), (1−R)) =s(Tn)

∫ Tn

t
P (t, u)(u− Tβ(u)−1)dQ(τ ≤ u)

+ s(Tn)
n∑

i=β(t)

P (t, Ti)∆TiQ(τ > Ti) (3.26)

− (1−R)

∫ T

t
P (t, u)dQ(τ ≤ u).

By letting the risk-neutral survival function be given by Q(τ > t) = e−Γ(t) and Q(s < τ ≤
t) = e−Γ(s) − e−Γ(s) the CDS price in equation 3.26 can be written as

CDS(t, {Ti}, Tn, s(Tn), (1−R); Γ(.)) =s(Tn)

∫ Tn

t
P (t, u)(Tβ(u)−1 − u)du(e−(Γ(u)−Γ(t)))

+ s(Tn)

n∑
i=β(t)

P (t, Ti)∆Tie
Γ(t)−Γ(Ti) (3.27)

+ (1−R)

∫ T

t
P (t, u)du(e−(Γ(u)−Γ(t))).

The J.P. Morgan Model

The J.P. Morgan Model is a discrete CDS valuation model which also assumes independence
between interest rates and default probabilities. This model can be used to estimate a
hazard rate curve from CDS spreads using a piecewise linear assumption as described by
Castellacci (2008).

The CDS price at time t = 0 is here written as

CDS(t = 0, {Ti}, Tn, s(Tn), (1−R); Γ(.)) = PVPremium(Tn)− PVProtection(Tn) (3.28)
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The present value of the premium leg can be approximated as

PVPremium(Tn) = s(Tn)
n∑
i=1

∆TiP (0, Ti)Q(Ti < τ) +
s(Tn)

2

n∑
i=1

∆TiP (0, Ti)Q(Ti−1 < τ ≤ Ti)

(3.29)

= s(Tn)

n∑
i=1

∆TiP (0, Ti)e
−Γ(Ti) +

s(T )

2

n∑
i=1

∆TiP (0, Ti)
(
e−Γ(Ti−1) − e−Γ(Ti)

)
(3.30)

= s(Tn)
n∑
i=1

∆TiP (0, Ti)
e−Γ(Ti−1) + e−Γ(Ti)

2
, (3.31)

where again Q(τ > t) = e−Γ(t) = e−
∫ t
0 γ(s)ds is the risk-neutral survival function. The

present value of the protection leg can be approximated as

PVProtection(Tn) = (1−R)

n∑
i=1

P (0, Ti)Q(Ti−1 < τ ≤ Ti) (3.32)

= (1−R)

n∑
i=1

P (0, Ti)
(
e−Γ(Ti−1) − e−Γ(Ti)

)
. (3.33)

The key assumption in bootstrapping the CDS term structure is assuming piecewise
linear hazard rates γ(t). By partitioning the time 0 = T0 < · · · < Tn, the intensity rate

γ(t) = γi, ∀t ∈ (Ti−1, Ti].

From this assumption the survival function can be written

Q(τ > t)market = S(t) = exp
{
−

η(t)∑
i=1

γi∆Ti + γη(t)+1

(
t− Tη(t)

)}
,

where η(t) := max{i ≤ n : Ti ≤ t} and ∆Ti = Ti − Ti−1.
The implied hazard rates are then found by observing the CDS spreads s(Ti) at time

t = 0, i.e. today, for a set of maturities T1, . . . , Ti, . . . , Tn and then solving for Γ(.) such
that the CDS price in equation 3.28 satisfies CDS(0, {Ti}, Ti, s(Ti), (1 − R)K; Γ(.)) = 0.
This can be solved using a Newton-Raphson method.

Calibration to Market Prices

Calibrating the CIR++ model to have the correct dynamics under the risk-neutral measure
Q, require some market price data of credit derivatives which are priced with a credit model,
e.g. options on CDS contracts. However, derivatives like CDS single name options are very
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rare and illiquid, i.e. there is a very small possibility of finding a liquid set of CDS options
prices for different maturities of the options and the underlying single name CDS contracts.
This makes it very difficult to calibrate an credit intensity model for a certain firm.

A more likely approach would be to use a set of CDS index options and calibrate the
model for each party to the same set of prices.

An alternative approach, as suggested by Brigo et al. (2013), is to calibrate the model
to a set of hypothetical (i.e. made up) CDS single name option prices.

3.7.4 Simulation of the CIR Model

Producing sample paths of a square-root process is a more complicating issue. The intuitive
way would be using a Euler-Maruyama scheme, but then one runs into a problem since the
discretized version of the CIR model won’t guarantee a positive x(t) and thus the value of√
x(t) becomes imaginary.

Exact Simulation

However since the future distribution of the CIR process is known, see equation 3.21, it can
be simulated from this distribution. Using that a non-central chi-squared distribution can
be seen as a normal chi-squared distribution with a Poisson-distributed degrees of freedom.
The following algorithm from Andersen et al. (2010) can be used to generate sample paths
from the CIR model.

1. Draw a Poisson random variable N , with E[N ] = 1
2x(t)η(t, t+ ∆t).

2. Given N , draw a regular chi-square random variable χ2
ν with ν = d+ 2N degrees of

freedom.

3. Set x(t+ ∆t) = χ2
ν

e−a∆t

η(t,t+∆t)

This is though a very time-consuming simulation technique and not suitable for a pricing
framework where one would want to simulate a large number of samples.

Modified Euler Scheme

A fast way to generate samples of the CIR process is by using a modified version of the
Euler-Maruyama scheme. This modified version assures positive values of x(t) simply by
adding a x(t)+ = max(x(t), 0). The process can then be simulated using the following
discretized equation

x(t+ ∆t) = x(t) + κ(θ − x(t)+)∆t+ σ
√
x(t)+

√
∆tZ.

Where Z is a standard normal random variable.
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Quadratic-Exponential Scheme

Another scheme described in Andersen et al. (2010) is the Quadratic-Exponential (QE)
scheme. The QE scheme is a biased, moment matching scheme. This scheme is more
advanced than the modifier Euler or the Milstein scheme but it guarantees positive values
for the CIR process for a larger set of the input parameters (κ, θ, σ).

The idea behind the QE scheme is that the density function of x(t+ ∆t) conditioning
on x(t) can be well approximated by simple distributions. If x(t) is large let

x(t+ ∆t) = a(b+ Z)2, (3.34)

where a and b are constants determined by moment matching and Z a standard normal
variable. If x(t) is small let

x(t+ ∆t) =


0 if U ≤ p

1
β log

( 1−p
1−U

)
if U > p.

(3.35)

where p and β are constants and U a standard uniformly distributed variable.
From moment matching the conditional mean is

m = E[x(t+ ∆t)|x(t) = x̂(t)] = θ + (x(t)− θ)e−κ∆t

and the conditional variance is

s2 = var
(
x(t+ ∆t)|x(t) = x̂(t)

)
=
x(t)σ2e−κ∆t

κ
(1− e−κ∆t) +

θσ2

2κ
(1− e−κ∆t)2.

Let φ = s2/m2 and the constants (a, b, p, β) above be determined such that

a =
m

1 + b2
, b2 =

2

φ
− 1 +

√
2

φ
(
2

φ
− 1)

and

p =
φ− 1

φ+ 1
, β =

2

m(φ+ 1)

If φ ≤ φc simulation is done using equation 3.34 and else simulation is done using equation
3.35. According to Andersen et al. (2010) the choice of φc is non-critical and they suggest
φc = 1.5.

In order to compare the different schemes the future simulated distributions of x(t)
one year from now are compared. In Figure 3.3 both simulations from the modified Euler
scheme and from the QE scheme are compared to the exact simulation.
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Figure 3.3: Histogram of simulated values of a square-root process. Left: Modified Euler
scheme. Right: QE scheme.

In Table 3.1 some statistics comparing the schemes are presented. By comparing the
histograms and the first two moments of the schemes the QE scheme is to prefer.

Scheme Ê[x(t)] v̂ar(x(t))

Exact 0.0025 1.19e-05
Mod. Euler 0.0024 1.42e-05
QE 0.0025 1.18e-05

Table 3.1: Statistics of the three different schemes.



Chapter 4

CVA Frameworks

In this chapter several different CVA frameworks are presented. Both cases where the
investor is considered risk-free (unilateral CVA) and the more realistic case where both
parties are considered risky (BCVA) are concerned. Note that for all methods the recovery
rate R is taken to be deterministic. For notations and definitions see Chapter 2 and Chapter
3.

4.1 Expected Future Exposure Approach

The expected future exposure CVA approach is probably the most used and known frame-
work. The key features of this framework is that it uses simulation of market risk factors
to capture the future exposure of a portfolio and that it assumes independence between
the exposure and probability of default. This means that the method ignores potential
WWR/RWR.

By partitioning the time, CVA can be approximated as a sum of discounted future expo-
sures weighted by the risk-neutral probabilities of default in each time bucket. The future
exposure is simulated by valuing a portfolio at a future time, based on simulated mar-
ket risk factors. Using a Monte Carlo approach, based on Ns simulations, the discounted
expected positive exposure at time ti

EQ[D(0, ti)(V (ti, T ))+
∣∣F0

]
is approximated by

EPE(ti) =
1

Ns

Ns∑
j=1

Dj(0, ti)(Vj(ti, T ))+, V (0, T ) = v0 (4.1)

40
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and the discounted expected negative exposure by

ENE(ti) =
1

Ns

Ns∑
j=1

Dj(0, ti)(−Vj(ti, T ))+, V (0, T ) = v0. (4.2)

Here j denotes the simulation index. From the law of large numbers this will converge to
the expected value when Ns is large.

4.1.1 UCVA

Starting with the case where the investor is considered to be risk-free. The setup of the
probability space and filtrations are the same as in Section 2.1.1. As shown in Section
2.1.1, by assuming independence between the exposure and the probability of default and
by partitioning the time (0, T ] such that ti for i = 0, . . . , N where 0 = t0 < t1 · · · < tN = T
we have

CVA = (1−R)
N∑
i=1

EQ[D(0, ti)(V (ti, T ))+
∣∣F0

](
Q(τ ≤ ti)−Q(τ ≤ ti−1)

)
,

where V (ti, T ) is the future portfolio value at time ti and Q(τ ≤ ti) is the risk-neutral
cumulative distribution function of the default time τ of the counterparty. By using the
Monte Carlo approximation in equation 4.1 CVA can be approximated by

CVA ≈ (1−R)
N∑
i=1

EPE(t̄i)
(
Q(τ ≤ ti)−Q(τ ≤ ti−1)

)
where t̄i = (ti−1 + ti)/2 is the midpoint. A midpoint valuation is chosen in order to get a
better convergence of the discretized integral.

4.1.2 BCVA

In Section 2.3 we derived an expression for bilateral CVA from an investor I’s point of view
with a risky counterparty C as

BCVA =EQ[(1−RC)1{τC≤T,τC<τI}D(t, τC)(V (τC , T ))+
∣∣Gt]

− EQ[(1−RI)1{τI≤T,τI<τC}D(t, τI)(−V (τI , T ))+
∣∣Gt].

Again by assuming independence between the exposure and the default times we end up
with the discretized equation

BCVA =(1−RC)

N∑
i=1

EQ[D(0, ti)(V (ti, T ))+
∣∣F0

](
Q(ti−1 < τC ≤ ti, τI > ti)

)
− (1−RI)

N∑
i=1

EQ[D(0, ti)(−V (ti, T ))+
∣∣F0

](
Q(ti−1 < τI ≤ ti, τC > ti)

)
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By assuming independence between the default time of the investor τI and the default
time of the counterparty τC , a bivariate distribution can be constructed such that the
cumulative distribution function is

Q(τI ≤ tI , τC ≤ tC) = Q(τI ≤ tI)Q(τC ≤ tC)

Using this and the expected positive exposure (EPE) and the negative expected exposure
(ENE) calculated via the Monte Carlo approximations in equations 4.1 and 4.2 the bilateral
CVA can be approximated as

BCVA ≈(1−RC)

N∑
i=1

EPE(t̄i)Q(τI > ti)
(
Q(τC ≤ ti)−Q(τC ≤ ti−1)

)
− (1−RI)

N∑
i=1

ENE(t̄i)Q(τC > ti)
(
Q(τI ≤ ti)−Q(τI ≤ ti−1)

)
where once again t̄i = (ti−1 + ti)/2 is the midpoint time.

4.1.3 Model

In order to be able to simulate future exposure of interest rate swaps we need to model the
underlying risk factors, i.e. the interest rates.

Interest Rates

Starting with a model for the interest rate model we will use the LIBOR Market Model
presented in Section 3.6.1. In the LMM the forward rate Li(t) is a log normal model under
its own forward measure QTi . Furthermore the LMM has the following dynamics under
the so called spot measure Q∗,

dLi(t)

Li(t)
=
( i∑
j=η(t)

∆TjLj(t)σi(t)σj(t)ρi,j
1 + ∆TjLj(t)

)
dt+ σi(t)dW

Q∗
i (t), i = 1, . . . , N.

In the LMM with this setting a T -claim X is priced using the following risk-neutral formula

Π(t;X) = B∗(t)EQ∗ [
1

B∗(T )
X(T )

∣∣Ft]
where

B∗(t) = P (t, Tη(t)−1)

η(t)−1∏
i=0

(
1 + ∆TiLi(Ti)

)
is the discrete bank account acting as numeraire of the spot measure and η(t) = m if
Tm−2 < t ≤ Tm−1.
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4.2 Default Model Approach

The default model CVA framework is a more sophisticated framework which includes both
credit and market risk factor models. This framework lets us model dependence between
exposure and probability of default, which captures potential WWR/RWR. This is thus a
more complex framework than the one in Section 4.1 and also a more computer intensive
framework, since it demands more simulation.

The methodology is to simulate default times τ j , for each scenario j and value the
portfolio in each scenario at each time τ j . Again using a Monte Carlo approach CVA is
approximated by the average portfolio value of these scenarios.

4.2.1 UCVA

Again the setup of the probability space and filtrations are the same as in Section 2.1.1.
With a risk-free investor and a risky counterparty C, we have just as in Equation 2.1 the
expression for CVA as

CVA = EQ[
1{τ≤T}(1−R)D(0, τ)(V (τ, T ))+

∣∣G0

]
. (4.3)

and with a partition of time time 0 = t0 < · · · < ti < · · · < tN = T ,

CVA =

N∑
i=1

EQ[
1{ti−1<τ≤ti}(1−R)D(0, ti)(V (ti, T ))+

∣∣G0

]
.

Let j denote the simulation index,

CVA ≈ 1

Ns

Ns∑
j=1

( N∑
i=1

1{ti−1<τ j≤ti}(1−R)Dj(0, t̄i)(Vj(t̄i, T ))+
)
.

Where the portfolio is valued at a midpoint time t̄i = (ti−1 + ti)/2.

4.2.2 BCVA

Consider an investor I and a counterparty C, where both are non-default-free parties.

BCVA = CVA−DVA.

using a partition of the time such that 0 = t0 < · · · < ti < tN = T and taking into account
which party that defaults first we get

CVA =
N∑
i=1

EQ[
1{ti−1<τI≤ti,τI<τC}(1−RI)D(0, ti)(V (ti, T ))+

∣∣G0

]
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and

DVA =

N∑
i=1

EQ[
1{ti−1<τC≤ti,τC<τI}(1−RC)D(0, ti)(−V (ti, T ))+

∣∣G0

]
.

Using a Monte Carlo approach based on Ns number of simulations, CVA and DVA is
approximated by

CVA ≈ 1

Ns

Ns∑
j=1

( N∑
i=1

1{ti−1<τ
j
I≤ti,τ

j
I<τ

j
C}

(1−RC)Dj(0, t̄i)(Vj(t̄i, T ))+
)
.

and

DVA ≈ 1

Ns

Ns∑
j=1

( N∑
i=1

1{ti−1<τ
j
C≤ti,τ

j
C<τ

j
I }

(1−RI)Dj(0, t̄i)(−Vj(t̄i, T ))+
)
.

Again j denotes the simulation index and the portfolio is valued at a midpoint time t̄i =
(ti−1 + ti)/2.

4.2.3 Model

In order to be able to simulate default times and future exposure of interest rate swaps
some models are needed.

Interest Rates

As in the expected future exposure approach the interest rates will be modelled using the
LIBOR Market Model, see Sections 3.6.1 and 4.1.3.

Credit

In order to simulate default times a credit model is needed. We will here use a default
intensity model, where the default intensity is modelled by a CIR process and a determin-
istic function. This model is presented in Section 3.7.1. For both the investor I and the
counterparty C the following model will be used

dxk(t) = κk[θk − xk(t)]dt+ σk

√
xk(t)dW xk(t),

λk(t) = xk(t) + ϕk(t), k ∈ (I, C). (4.4)

Set Λk(T ) =
∫ T

0 λk(s)ds, which is a strictly increasing function. Default times τk for each
party can then be simulated by the inverse mapping

τk = (Λk)
−1(ξk), k ∈ (I, C) (4.5)

where ξk is a standard exponential random variable.
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Dependence

Dependence between interest rate and credit models are modelled with a linear correlation
between the Brownian Motions such that

dWi(t)dW
xk(t) = ρkdt ∀i, k ∈ (I, C). (4.6)

Dependence between default times of each counterparty k can be modelled either with
a copula method between ξk with correlation or with linear correlation in credit models
dW xI

t dW xC
t = ρxI ,xCdt. However according to Brigo et al. (2010), default correlation

between ξk creates a larger dependence than correlation in the intensity models does.

4.2.4 Copula Distributions

In order to model the dependence between the two exponential variable ξI and ξC two
different copula distributions will be used. The copula distributions comes from two im-
portant properties of distribution. The first one is the probability transform. It says that if
X is a random variable with a continuous distribution function F , then F (X) is uniformly
distributed on (0, 1). The second property is the quantile transform. The quantile trans-
form says that if U is uniformly distributed on (0, 1) and G is any distribution function,
then G−1(U) has a G-distribution.

The distribution function C of a random vector U whose components Uk are uniformly
distributed on the interval (0, 1) is called a copula, hence

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud).

(Hult et al., 2010)

Gaussian copula

The Gaussian copula is one of the most used copula distributions. For a d-dimensional
vector of random variables the Gaussian copula function is

CGaR (u) = Φd
R(Φ−1(u1), . . . ,Φ−1(ud)).

Student’s tν copula

Again for a d-dimensional vector of random variables the student’s t copula with ν degrees
of freedom is

Ctν,R(u) = tdν,R(t−1
ν (u1), . . . , t−1

ν (ud)).

In Figure 4.1 one can see the difference between the default times of two companies
when modelling the dependence from a Gaussian copula and from a Student’s t copula
with correlation ρξI ,ξC = 0.5.
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Figure 4.1: Left: Gaussian copula. Right: Student’s t copula with degrees of freedom equal
to 3.

4.3 Variable Exposure Approach

An easier approach to calculate CVA, described in EY (2014), is the variable exposure
approach. This method requires no simulation and thus ignores both future potential
exposures and possible WWR. This approach estimates CVA as the cost of buying credit
default protection for the remaining future exposure. If we consider a series of future cash
flows which are forecasted by the current forward prices, then at each cash flow date the
sum of the remaining cash flows is calculated. CVA is then approximated by the cost of
buying CDS protection for each cash flow date on a notional that equals the sum of all
remaining cash flows. Each CDS protection starts at time ti and expires at time ti+1.
Using the notations from EY (2014), CVA can be expressed as

CVA =
∑
i

PVPremium(CDS(ti)).

This approach also takes into account bilateral derivative contracts and in case the remain-
ing cash flow is negative one applies the investors credit spreads instead of the counterparty.

Since this method forecasts the future exposure with current forward prices, the po-
tential future exposure, is not taken into consideration. Thus in the case of a very volatile
future exposure this method would underestimate the unilateral CVA. However due to the
same reason this method is easy to implement and not at all time consuming.

The methodology in this method is that CVA should be equal to the cost of hedging
the counterparty credit risk. However as known from Section 2.9, in order to accurately
hedge the counterparty credit risk one needs to hedge both the credit and the market risk.
This approach however only hedges the credit risk for an expected cash flow and, as stated
earlier, is thus underestimating the hedging cost for the unilateral case. When it comes
to a bilateral derivative the hedging cost of the market risk cannot be disregarded either.
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As will be seen later the expected positive and the expected negative future exposure are
often not equal. So depending on the future exposure profile this method will overestimate
or underestimate BCVA.

4.3.1 IRS Example

Considering CVA of a plain vanilla receiver swap on a notional K and swap rate S which
is initiated at time t with payments of the fix leg occurring at the times T1, . . . , Ti, . . . , Tn
and payments of the floating leg at the times T ′1, . . . , T

′
i , . . . , T

′
N .

Introducing a new time partition of all payments T̃1, . . . , T̃i, . . . , T̃Ñ such that either the

fix, floating or both payments occur at time T̃i. At time t one should buy CDS protection
with an expiry at time T̃1 on all cumulative future cash flows of the swap, and at time T̃1

one should buy CDS protection with an expiry at time T̃2 on all cumulative future cash
flows of the swap minus the cash flow at time T̃1 etc.. Thus at time T̃i−1 one should buy
CDS protection with expiry at time T̃i on the notional

Ci(T̃i) =
n∑

j=β(T̃i)

P (T̃i, Tj)K∆TjS −
N∑

j=η(T̃i)

P (T̃i, Tj)K∆T ′jLj(T̃i)

where β(T̃i) = k if Tk−1 < T̃i ≤ Tk and η(T̃i) = k if T ′k−1 < T̃i ≤ T ′k. CVA is then the
present value of the cost of buying protection at each payment date.

Denoting the investor by I and the counterparty by C and denoting the CDS spread
with expiry T of the investor by sI(T ) and of the counterparty by sC(T ). Furthermore at
time t the expected future cumulative cash flow at time T̃i will be denoted by Ci(t) such
that

Ci(t) =
n∑

j=β(T̃i)

P (t, Tj)K∆TjS −
N∑

j=η(T̃i)

P (t, T ′j)K∆T ′jLj(t).

From Section 3.7.3, using equation 3.29, the premium leg of the CDS and thus the bilateral
CVA is

BCVA =

Ñ∑
i=1

PVPremium(Ci(T̃i))

=

Ñ∑
i=1

∆T̃iCi(t)
(
sC(T̃i)Q(T̃i < τC)1{Ci(t)>0} + sI(T̃i)Q(T̃i < τI)1{Ci(t)<0}

)

+
1

2

Ñ∑
i=1

∆T̃iCi(t)
(
sC(T̃i)Q(T̃i−1 < τC ≤ T̃i)1{Ci(t)>0}

+ sI(T̃i)Q(T̃i−1 < τI ≤ T̃i)1{Ci(t)<0}

)
. (4.7)
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Depending on a positive or a negative cumulative cash flow at each time the counterparty
or the investors own credit spreads and default probabilities are used.

4.4 Discounted Cash Flow Approach

The fourth and the most simple approach considered is the discounted cash flow approach.
This approach described in EY (2014) takes a future projected cash flow and compares
the risk-free value of that cash flow with the risky value. The risky value of the cash
flow is calculated by adjusting discount rates with an additional credit spread. Using the
notations from EY (2014), CVA can be expressed as

CVA = FVRisk free − FVCredit adjustment.

There are some variations on this method regarding when the investor’s or the counter-
party’s credit spread should be added to the discount factors. In this thesis we will use
the counterparty’s credit spread when each individual future cash flow is an asset and the
investor’s credit spreads when each individual future cash flow is a liability.

Using the risk-free zero-coupon bond price P (t, T ) and assuming independence between
a default time τ and interest rates yields the default-able zero-coupon bond price P̃ (t, T )
as

P̃ (t, T ) = EQ[D(t, T )1{τ>T} +RD(t, τ)1{τ≤T}
∣∣Gt] (4.8)

= P (t, T )EQ[
1{τ<T}

∣∣Gt]+REQ[P (t, τ)1{τ≤T}
∣∣Gt] (4.9)

= P (t, T )Q(τ > T ) +R

∫ T

t
P (t, u)dQ(τ ≤ u). (4.10)

So the CVA is approximated by the difference of the cashflow when discounted using risk-
free zero-coupon bonds and the default-able version in equation 4.8.

Neither this method consider the potential future exposure or possible WWR, which of
course is a disadvantage. However, since simulation is not needed, it is an efficient method
which is easy to implement. Furthermore, the only data needed, with the exception of own
portfolio data, are credit spreads of the counterparty and the own firm.

4.4.1 IRS Example

Considering a plain vanilla receiver swap on a notional K and swap rate S which is initiated
at time t with payments of the fix leg occurring at the times T1, . . . , Ti, . . . , Tn and payments
of the floating leg at the times T ′1, . . . , T

′
i , . . . , T

′
N .

Introducing a new time partition of all payments T̃1, . . . , T̃i, . . . , T̃Ñ such that either the

fix, floating or both payments occur at time T̃i.
Using the LIBOR forward rates Li(t) with and the IRS theory in Section 3.3, the future

cash flow of the fixed leg at time Ti is K∆TiS and the future cash flow of the floating leg
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at time T ′i is K∆T ′iLi(Ti−1). The projected cashflow of the receiver swap at time T̃i can
be divided up in three different cases such that

ci =


K∆TjS if T̃i = Tj

−K∆T ′kLk(t) if T̃i = T ′k

K∆TjS −K∆T ′kLk(t) if T̃i = Tj and T̃i = T ′k.

Using the default-able zero-coupon bond price in equation 4.8, the bilateral CVA calculation
becomes

BCVA =
Ñ∑
i=1

P (t, T̃i)ci −
N∑
i=1

ci

(
1{ci>0}P̃C(t, T̃i) + 1{ci<0}P̃I(t, T̃i)

)
(4.11)

where discount factors are adjusted according to counterparty or own survival probabilities
depending on a positive or negative cash flow.



Chapter 5

Results

In this chapter the results of the different CVA frameworks in Chapter 4 are presented. Uni-
lateral and bilateral CVA are calculated of a plain vanilla interest rate swap. Furthermore
the impact of different dependencies in the default model approach are investigated.

5.1 Model Settings

In order to do a proper calculation with real market data we will take Nokia as the investor
I and Handelsbanken as the counterparty C. The CDS spreads of contracts written on
Handelsbanken and Nokia can be seen in the left plot in Figure 5.1. The CDS spreads have
a quarterly frequency with an actual/360 day count convention. Furthermore the spreads
are interpolated using a cubic spline interpolation.

Following the bootstrapping procedure in Section 3.7.3, the risk neutral default proba-
bilities are received as shown in the right plot of Figure 5.1. It can be seen that the market
considers Nokia (the investor) as more risky, i.e. more likely to default, than Handelsbanken
(the counterparty).

50



Chapter 5. Results 51

0 2 4 6 8 1 0 1 2

Tim e  (ye a rs )

0

5 0

1 0 0

1 5 0

2 0 0

C
D

S
 s

p
re

a
d

CDS s p re a d s

Ha n d e ls b a n ke n

Nokia

0 2 4 6 8 1 0

Tim e  (ye a rs )

0 .0 0

0 .0 5

0 .1 0

0 .1 5

0 .2 0

0 .2 5

0 .3 0

P
ro

b
a

b
il

it
y

Ma rke t  im p lie d  d e fa u lt  p rob a b ilit ie s

Ha n d e ls b a n ke n

Nokia

Figure 5.1: Left: CDS spreads of Handelsbanken and Nokia in basis points from Bloomberg
6/5/2015. Right: Market implied default probabilites from the CDS spreads of Handels-
banken and Nokia.

The EUR yield curve observed at the 6th of May 2015 can be seen below in Figure 5.2.
The yields are bootstrapped from EURIBOR, FRA and swap rates with maturities from
6 months up to 10 years. The yields are interpolated using a cubic spline interpolation. It
can be seen that the yield curve is an upward sloping curve.
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Figure 5.2: EUR yield curve with annual compounding from Bloomberg 6/5/2015.

Recovery Rate

In all results presented below the recovery rate is taken to be 40%, i.e. R = 0.4. This
may seem to be taken out of the blue, but it is a quite standard assumption in credit risk
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modelling and which also have some support from historical default data. Looking at the
average recovery rate across all debt seniorities, it can be seen that the average recovery
rate have been around 30-50% (Gregory, 2012).

LIBOR Market Model

For the EFE approach and the default model approach an interest rate model is needed in
order to simulate the future exposure of an IRS. Since we will be looking at a swap with
a 6-month floating rate, these forward rates will be modelled. Note that in this thesis we
will use a single-curve valuation, i.e. we will not discount cash flows using OIS rates as
discussed in Section 3.1.3. For each scenario, and using equation 3.18, the following rates
will be simulated 

L1(T0) 0 0 · · · 0
L2(T0) L2(T1) 0 · · · 0
L3(T0) L3(T1) L3(T2) · · · 0

...
...

...
. . .

...
Ln(T0) Ln(T1) Ln(T2) · · · Ln(Tn−1)


where T0 is the initiation date of the swap and T1, . . . , Tn the cash flow dates of the swap.

The correlations between forward rates are required inputs in the calibration of the
LMM volatilities, and they are estimated using 1 year historical data, following the pro-
cedure in Section 3.6.5. From historical correlations the parametric function in equation
3.17 is estimated with the following parameters in Table 5.1.

α β

-0.156 0.070

Table 5.1: Estimated parameters of the function in equation 3.17.

The LMM volatilites are calibrated to Black’s at-the-money swaption volatilities, taken
from Bloomberg, according to the calibration procedure explained in Section 3.6.4. Before
doing the calibration, the parametric function in equation 3.15 is fitted to the input swap-
tion volatilities in order to remove possible misaligned market quotations. The following
parameters in Table 5.2 are received.

a b c d e f g h

-0.0166 1.0288 0.5943 -0.0287 0.0211 0.004 -0.9308 3.1778

m p q r s t β δ

0.7210 0.7102 -0.2922 -0.1301 -4.6918 -0.0631 1.1478 4.7305

Table 5.2: Estimated parameters of the function in equation 3.15.
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Using both these estimated parametric functions together with the yield curve in Figure
5.2 the calibration of the LMM volatilities can be carried out. Beneath in Figure 5.3 both
the smooth historical correlation and the smooth market implied swaption volatilities are
visualized.
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Figure 5.3: Left: Smooth historical correlation. Right: Smooth market implied swaption
volatilites.

CIR++ Model

For the default model approach a credit model is needed in order to simulate default times.
Each credit model in equation 4.4 is calibrated to each CDS term structure according to
the procedure in Section 3.7.3. The free parameters in the CIR process are set arbitrarily
with the constraints that 2κθ ≥ σ2 and ϕ(t) ≥ 0 in order for λ(t) to stay positive and
Λ(t) =

∫ t
0 λ(s)ds to be a strictly increasing function. The CIR processes are simulated

using the QE scheme in Section 3.7.4.
The following parameters in Table 5.3 are used for the default intensity of the counter-

party C.

xC0 κC θC σC
0.001 1 0.0025 0.07

Table 5.3: Parameter setting in CIR++ model of the counterparty.

The following parameters in Table 5.4 are used for the default intensity of the investor
I.

xI0 κI θI σI
0.002 1.2 0.007 0.12

Table 5.4: Parameter setting in CIR++ model of the investor.
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Comparing the parameters in Tables 5.3 and 5.4 one can see that the counterparty’s
credit model has a less volatile setting than the investor’s credit model. Comparing the
implied market default probabilities in Figure 5.1 this seems reasonable. In order for the
conditions 2κθ ≥ σ2 and ϕ(t) ≥ 0 to hold both models above have very low volatilities.
However later in Section 5.2.4 we will see the impact of larger volatilities when the condition
2κθ ≥ σ2 is dropped.

5.1.1 Dependence

In the default model approach in Section 4.2 there are three free parameters in order to
model dependence. The first two parameters are the correlations ρI and ρC . These are
linear correlations between the rates Li(t) and the credit spreads of the investor I and
counterparty C. The third parameter is the correlation ρξI ,ξC which models the correlation
in the copula distributions between the exponential random variables ξI and ξC . In all
CVA calculations below in Tables 5.6, 5.7, 5.8 and 5.9 these three parameters are set to
zero, i.e. ρI = ρC = ρξC ,ξI = 0. Later on these parameters will be varied and the resulting
CVA will be shown in plots.

5.1.2 Sample Size

In order to determine a sufficient simulation sample size the BCVA is plotted against the
number of simulations for the EFE and the default model method. The plot is shown
below in Figure 5.4. It can be seen, as expected, that the default model method requires
a lot more samples than the EFE method in order to get a sufficient convergence. This
is because of the need to generate a sufficient number of default times such that τ < T
where T is the maturity of the contract. The probability of surviving past the expiry of
the contract is often much greater than the probability of defaulting before the expiry of
the contract. Let’s say that there is a 5% default probability before the maturity of the
contract, then using a sample size of Ns = 106 will only generate about 5 · 104 scenarios
where there has been an default and the portfolio is valued. A sample size of Ns = 105

seems to be enough for the EFE approach and a sample size of Ns = 106 for the default
model approach. For consistency throughout this report, all results from the EFE and the
default model approach have a sample size of Ns = 106.
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Figure 5.4: Convergence of BCVA for EFE approach and for default model approach.

5.2 Results

An plain vanilla interest rate swap is investigated. The swap has the following setting

• Currency: EUR

• Notional: 10 Million EUR

• Tenor: 5 year

• Initiated: 6/5/2015

• Floating rate: 6-month EURIBOR paid semi-annually with an actual/360 day count
convention.

• Fix rate: Fair swap rate paid annually with an 30/360 day count convention.

Using the initial EUR yield curve in Figure 5.2 and equation 3.3 the fair swap rate
S = 0.365% is received. The projected cash flow of the receiver swap can be seen in Table
5.5.

T1 = 0.5 T2 = 1 T3 = 1.5 T4 = 2 T5 = 2.5

-3 199.5 33 445 -4 490.6 28 131.8 -12 777.9

T6 = 3 T7 = 3.5 T8 = 4 T9 = 4.5 T10 = 5

18 715.4 -24 017.4 5 918.0 -36 593.7 -5 739.7

Table 5.5: Projected cash flow of a receiver swap.
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5.2.1 PV01

The PV01 for the payer swap is approximately 4950 EUR (-4950 EUR for the receiver
swap). This means that if the market moves, resulting in a parallel shift upwards in the
yield curve of 10bps, the owner of the payer swap would have a PnL of approximately
49500 EUR. Having these numbers in mind, it is easier to get an idea of the magnitude of
the resulting CVA of the swap.

5.2.2 Payer Swap

In Figure 5.5 the discounted expected positive and negative exposures for the payer swap
are shown. The payer swap is valued in each simulated scenario in between of each cash
flow. It can be seen that the expected positive exposure is greater than the expected
negative exposure. As explained in Pykhtin and Zhu (2007) when then yield curve is
upward sloping, as our curve in Figure 5.2, the exposure is greater for a payer swap than
the receiver swap. The opposite is true when the yield curve is downward sloping.
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Figure 5.5: Future expected positive and negative exposure of a payer swap.

The results from the unilateral CVA calculations, when the investor is considered
default-risk-free, are shown in Table 5.6. The default model approach and the expected
future exposure approach should converge to the same CVA when there is no dependence
in the default model approach. It can be seen that both the variable exposure approach
and the discounted cash flow approach underestimates the unilateral CVA. As discussed in
Sections 4.4 and 4.3 this was expected, since fluctuations of the exposure are ignored using
these methods.
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Method CVA Diff

EFE Approach 1930 0%
Default Model Approach 1922 -0.4%
Variable Exposure Approach 519 -73.1%
Discounted Cash Flow Approach 1193 -38.2%

Table 5.6: Unilateral CVA of a payer swap and difference in percentage of CVA compared
to the EFE approach.

The result from the BCVA calculations, when both parties are considered risky, are
shown i Table 5.7. All methods show a positive BCVA which means that the investor
should receive money from the counterparty. Once again the default model approach and
the expected future exposure approach should converge to the same values here since no
dependence is modelled in the default model approach. Again, as expected the variable
exposure and the discounted cash flow approach underestimates the DVA. However, com-
pared to the EFE method, the resulting BCVA is overestimated by the variable exposure
approach and underestimated by the discounted cash flow approach.

Method CVA DVA BCVA Diff

EFE Approach 1764 1474 328 0%
Default Model Approach 1824 1501 323 -1.5%
Variable Exposure Approach 519 4 515 57.0%
Discounted Cash Flow Approach 1193 1026 167 -49.1%

Table 5.7: CVA, DVA and BCVA of a payer swap and difference in percentage of BCVA
compared to the EFE approach.

Dependencies in the default model approach

In Figure 5.6 the unilateral CVA and BCVA are plotted as a function of the correlation
between forward rates in the LMM model and credit spreads in the CIR++ models. For
BCVA both correlations are varied simultaneously, i.e. ρI = ρC in equation 4.6.

For the unilateral CVA in the left plot it can be seen that when the correlation ρC
increases the CVA increases. It can also be seen that CVA is more sensitive when ρC > 0.
This is because the value of the payer swap increases at the same time as the default risk
of the counterparty increases, i.e. there is a case of WWR. When ρC < 0 the value of the
payer swap decreases simultaneously as the default risk of the counterparty C increases,
hence there is a case of RWR.

For the bilateral CVA in the right plot it can be seen that BCVA increases almost as
a linear function with the correlations ρI = ρC . Remember the reasoning for CVA above.
For DVA when ρI < 0, the value of the reverse position in the payer swap (i.e. a receiver
swap) increases simultaneously as the default risk of the investor I increases, i.e. there
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is WWR. When ρI > 0, the value of the reverse position in the payer swap decreases
simultaneously as the default risk of the investor I increases, i.e. there is RWR. So the
DVA will have the reverse characteristics as the unilateral CVA in the left plot, hence when
ρI < 0 is decreasing the DVA will also increase and when ρI > 0 is increasing not so much
will happen to the DVA.
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Figure 5.6: Left : Unilateral CVA with varying correlation ρC between forward rates and
credit spread. Right : BCVA with varying correlations ρI = ρC between forward rates and
credit spreads.

The surface of the bilateral CVA when both varying ρI and ρC can be seen in Figure
5.7. As pointed out before there is wrong-way risk when ρC > 0 and ρI < 0. When ρC > 0
and ρC increases the BCVA also increases and when ρI < 0 and ρI < 0 decreases the BCVA
also decreases. However in absolute values the effect of ρC is greater. This is because of
the expected positive exposure towards the counterparty C is greater than the expected
negative exposure towards the investor I.
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Figure 5.7: The surface of BCVA when varying the correlations ρI and ρC .

In Figure 5.8 the resulting bilateral CVA is plotted as a function of the correlation
between default times ρξI ,ξC in a Gaussian and a Student’s t copula distribution. It can be
seen that BCVA decreases with a larger correlation. Furthermore BCVA decreases faster
when using a Student’s t copula, which is because of the more extreme scenarios occurring
with a Student’s t-distribution, see Figure 4.1.
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Figure 5.8: BCVA with varying ρξI ,ξC , which describe the correlation between ξI and ξC
in a Gaussian and a Student’s t copula.

5.2.3 Receiver Swap

In Figure 5.9 the discounted expected positive and negative exposures for the receiver swap
are shown. The receiver swap is valued in each simulated scenario in between each cash
flow. This is simply the opposite of the exposures for the payer swap in Figure 5.5. So
here the expected negative exposure is greater than the expected positive exposure.

0 1 2 3 4 5

Tim e  (ye a rs )

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

E
x

p
s

o
u

re
 (

E
U

R
)

Re ce ive r s wa p

EPE

ENE

Figure 5.9: Future expected positive and negative exposure of a receiver swap.



Chapter 5. Results 61

The results from the unilateral CVA calculations, when the investor is considered
default-risk-free, are shown in Table 5.8. Since the default model approach is modelled
with no dependence it is very close to the value received from the expected future exposure
approach. As stated earlier, both the other methods underestimates the unilateral CVA.
However for the variable exposure approach the resulting unilateral CVA is equal to 2 which
is way off compared to the other methods. This is because the sum of the future projected
cash flow is negative for all dates except for T1 = 0.5 and this method approximates CVA
as the cost of buying CDS protection on this projected future exposure. The projected
cash flow can be seen in Table 5.5.

Method CVA Diff

EFE Approach 741 0%
Default Model Approach 744 0.4%
Variable Exposure Approach 2 -99.7%
Discounted Cash Flow Approach 470 -36.6%

Table 5.8: Unilateral CVA of a receiver swap and difference of CVA compared to the EFE
approach.

The results from the bilateral CVA calculations, when both parties are considered
risky, are shown i Table 5.9. All methods give a negative BCVA, which means that the
counterparty should receive money from the investor. Compared to the payer swap, the
BCVA has changed sign and is a lot larger. This is because the expected negative exposure
is larger for the receiver swap and since the investor is more likely to default than the
counterparty. Once again, since no dependence is modelled in the default model approach
the BCVA of the first two methods converges to the same value. Both the variable exposure
and the discounted cash flow approach underestimates BCVA. Again the discounted cash
flow approach is closer to the value from the EFE approach.

Method CVA DVA BCVA Diff

EFE Approach 684 3644 -3024 0%
Default Model Approach 709 3732 -3023 0.0%
Variable Exposure Approach 2 1092 -1090 -64.0%
Discounted Cash Flow Approach 470 2244 -1774 -41.3%

Table 5.9: CVA, DVA and BCVA of a receiver swap and difference in percentage of BCVA
compared to the EFE approach.

Dependencies in the default model approach

In Figure 5.10 the unilateral CVA and BCVA are plotted as a function of the correlation
between forward rates in the LMM model and credit spreads in the CIR++ models. For
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BCVA both correlations are varied simultaneously, i.e. ρI = ρC in equation 4.6.
From the left plot it can be seen that the unilateral CVA increases with a larger negative

correlation ρC , but almost nothing happens when ρC > 0. This is because of the presence of
WWR when ρC < 0 and RWR when ρC > 0. When ρC < 0 the receiver swap is increasing
in value with lower rates at the same time as the probability of default is increasing with
increasing credit spreads. When ρC > 0 the receiver swap is decreasing in value with
larger rates at the same time as the probability of default is increasing with increasing
credit spreads.

For the bilateral CVA in the right plot it can be seen that BCVA decreases with the
correlations ρI = ρC . Remember the reasoning above for the unilateral CVA. For DVA
wrong-way risk is occurring when ρI > 0. The reverse position in a receiver swap (i.e. a
payer swap) increases with larger rates and simultaneously the default risk of the investor
I is increasing. When ρI < 0 there is right way risk and thus the effect on DVA is small.
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Figure 5.10: Left : Unilateral CVA with varying correlation ρC between forward rates and
credit spread. Right : BCVA with varying correlations ρI = ρC between forward rates and
credit spreads.

The surface of bilateral CVA when both varying ρI and ρC can be seen in Figure 5.11.
As stated above there is a presence of wrong-way risk when ρC < 0 and when ρI > 0.
Another important thing to notice is that the bilateral CVA is way more sensitive to the
correlation between forward rates and the credit spreads of investor I, i.e. ρI . Similar to
the payer swap but the other way around this make sense because the expected negative
exposure in Figure 5.9 is larger than the expected positive exposure.
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Figure 5.11: The surface of BCVA when varying the correlations ρI and ρC .

In Figure 5.12 the resulting bilateral CVA is plotted as a function of the correlation
between default times ρξI ,ξC in the Gaussian copula and the Student-t’s copula. It can be
seen that BCVA increases with a larger positive correlation but when ρξI ,ξC > 0.9 BCVA
suddenly decreases rapidly. This feature seems very strange and one would perhaps expect a
similar behaviour as in Figure 5.8 where BCVA decreases with an increasing correlation, but
in the opposite direction. However what happens when the correlation ρξI ,ξC is extremely
large is that the two exponential random variables is approximately equal, i.e. ξI ≈ ξC .
Since the default times is given by τI = (ΛI)

−1(ξI) and τC = (ΛC)−1(ξC) the party with
larger initial default probabilities, i.e. larger Λ(t), will almost always default before the
other party. In our case the investor I has a greater default risk, as can be seen in Figure
5.1, thus when ξI ≈ ξC the investor I will almost always default before the counterparty
C.
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Figure 5.12: BCVA with varying ρξI ,ξC , which describe the correlation between ξI and ξC
in a Gaussian and a Student’s t copula.

5.2.4 Impact of Credit Model Volatilities

When modelling dependencies in the default model approach the settings in the credit
model can be quite crucial. In the results above the parameters in Tables 5.3 and 5.4 were
used in each credit model. These parameters were chosen arbitrarily with the constraints
that 2κθ ≥ σ2 and ϕ(t) ≥ 0. However it is possible to drop the constraint 2κθ ≥ σ2, which
is the constraint that guarantees a positive x(t) in equation 4.4. Using the QE simulation
scheme in Section 3.7.4 and keeping the constraint ϕ(t) ≥ 0, the process λ(t) will stay
positive anyway. This means that a larger set of the parameters in the credit models are
possible to use.

The volatilities σC and σI in equation 4.4 are the parameters with most impact, if there
is a dependence between the exposure and the credit model is used. In Figure 5.13 the
unilateral CVA of both the payer and the receiver swap are plotted against the correlation
ρC for different volatilities σC in the credit model. It can be seen that the unilateral CVA
changes dramatically when the volatility σC is increased. The effect of the WWR increases
with a larger volatility.
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Figure 5.13: Left : CVA of a payer swap when varying the correlation ρC and with different
volatilities σC in the credit model. Right : CVA of a receiver swap when varying the
correlation ρC and with different volatilities σC in the credit model.

In Figure 5.14 the bilateral CVA of both the payer and the receiver swap is plotted
against the correlations ρC = ρI for different volatilities σC and σI in both credit models.
Again it can be seen that the WWR increases for both CVA and DVA with increasing
volatilities. There is however a big difference between the BCVA of payer and the receiver
swap. This is due to the expected positive/negative exposure combined with the default
risk of the counterparties. For the payer swap there is a larger expected positive exposure
which is towards the less risky counterparty. But for the receiver swap there is a larger
expected negative exposure which is towards the more risky investor.
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Figure 5.14: Left : BCVA of a payer swap when varying the correlations both ρC = ρI and
with different volatilities σC and σI in both credit models. Right : BCVA of a payer swap
when varying the correlations both ρC = ρI and with different volatilities σC and σI in
both credit models.
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Discussion and Conclusions

In this chapter the results and performance of the different methods are discussed. Some
further extensions of the models and other methods are also briefly discussed.

6.1 CVA Frameworks

In this thesis four different methods for calculating CVA have been compared. From
advanced frameworks based on theoretical models to easier approximative frameworks.

From the derivation of CVA in Chapter 2, it is easy to understand that the EFE and the
default model approach are the two most correct approaches from a theoretical viewpoint.
The EFE approach is constructed using the critical assumptions of independence between
exposure and the default time of a counterparty and independence between default times
of different parties. Whereas in the default model approach, both dependencies between
the exposure and default times of counterparties and dependencies between the default
times of different parties can be modelled. The results in the tables in Chapter 5 are
presented using no dependence and one can see that both models converge to the same
values. However when adding dependencies in the default model approach, the resulting
CVA changes drastically.

Comparing the result of the two easiest frameworks, namely the variable exposure and
the discounted cash flow approach we have seen that the discounted cash flow approach
seems to produce more accurate results. Compared to the BCVA from the EFE approach
the discounted cash flow approach is approximately off by 40%, whereas the variable ex-
posure approach is approximately off by 60% or more. Clearly, what could be seen from
the results, and also which was expected, is that these two methods underestimates the
absolute value of the unilateral CVA and DVA.

It is however difficult to draw general conclusions since only interest rate swaps have
been investigated in this thesis. But in order to achieve an accurate valuation of the coun-
terparty credit risk of a portfolio of interest rate swap, a more sophisticated framework like
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the EFE or the default model approach is needed. Since these are more advanced methods
and more computer intensive they require a bigger knowledge of financial modelling and a
more sophisticated IT infrastructure. For an investor with a small portfolio and the need
for a simple method, the discounted cash flow method is to prefer, at least for interest rate
swaps. This method is both easy to understand and to implement. Furthermore the only
required data are credit spreads and forward prices. However using this method one should
be aware of its limitations and that the approximation can be quite rough.

6.1.1 Wrong-Way Risk

As wrong-way risk is a key feature in CVA it is important to be able to capture these
effects if they exist in a portfolio. In Chapter 5 we have seen that dependence between
exposure and the default risk, and also dependencies between default risk of different
parties, have a big effect on the CVA calculations. However, the fact that these correlations
often are non-observable in the market causes problems. As discussed earlier a possible
solution to this would be to use historical correlations between credit spreads and the
exposures. Furthermore we have also seen some effects the volatilities in the credit models
have on CVA, when the exposure is correlated with the credit spreads. This causes another
big problem since, as discussed in Section 3.7.3, the parameters in the credit models are
often very hard to specify under the risk-neutral measure. To do an accurate risk-neutral
calibration of the credit model one needs to have market prices of instruments like single
name CDS options, and these types of derivatives are rare and probably rather illiquid.

From a risk management perspective, it is very important to be able to capture the
effect of possible dependencies between the exposure and default risk of a counterparty.
Though it is hard, from a theoretical point of view, to capture this effect correct, a trade
with WWR would need to be ”penalized” with a larger unilateral CVA compared to an
equivalent trade with no WWR.

The dependence between the default time of counterparties may be more significant.
It seems likely that two companies in the same sector, e.g. two banks, have a larger
default correlation than two companies coming from different sectors. Again correlations
like these are non-observable in the market and it is also impossible to measure historically
since default only occurs once. A possible solution would be to estimate these correlations
from historical credit spreads of the two parties.

If one suspects the presence of wrong-way risk in a portfolio, a framework like the
default model approach is a preference. However, as has been discussed above it is difficult
to calibrate such a framework under the risk-neutral measure. Furthermore one should be
aware of the impacts of CVA that the correlations and the parameters in the credit models
have and set them with caution.
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6.1.2 Performance

Since CVA needs to be calculated at a portfolio level rather than at a trade level, the
calculation speed becomes an issue. In this thesis the CVA of a simple IRS has been cal-
culated. However, calculating CVA for a large OTC portfolio which contains thousands of
trades towards hundreds of counterparties quickly becomes more demanding and complex.
In CVA frameworks as the EFE approach or the default model approach, it is often the
valuation that is the most time-consuming part. One way of speeding up the valuation is
by using a Least Squares Monte Carlo valuation. This is especially needed when a port-
folio contains instruments which needs to be priced using simulation, e.g. path-dependent
exotic derivatives, since the CVA calculation of such an instruments otherwise leads to
nested simulations.

Both the EFE and the default model framework are very costly when it comes to
computational time and computer power since these two methods are based on simulation
and Monte Carlo valuation. For CVA as a pricing component this becomes a problem
since pricing often needs to be done very fast. However for the purpose of accounting the
fair value of assets and liabilities it does not have to be a problem. So depending on the
purpose of the CVA calculations different methods may be preferred.

The default model approach is based on simulating default times of companies that
often are not very likely to default. This means that even with a very large number of
simulations the number of default times before maturity of the contracts in a portfolio is
likely to be a few. Since just a few default times are received the Monte Carlo valuation
may not be very accurate. As seen in Figure 5.4 one often needs to simulate more than 106

scenarios in order to have enough scenarios where a default actually took place in order to
get some convergence. However when calculating CVA for a large portfolio, as discussed
above, it is the valuation that is most time-consuming. So since the default model only
needs to be valued where there has been a default, it requires less valuation points than
to the EFE approach. The EFE approach has to perform a valuation in each time step
in each simulation. So although a larger initial sample size has to be used for the default
model approach, the number of valuations is often less than in the EFE approach.

6.2 Further Work

One thing that is very critical for the calculation of CVA but which has been taken to be
deterministic in this thesis is the recovery rate R. An interesting extension of the advanced
methods would be to combine these with a model of the recovery rate. However estimating
such a model is again very difficult because of the lack of data.

Another thing that has not been taken into consideration in this thesis is the multi-
curve valuation methodology. Here, the discounting has been done using LIBOR rates and
only one yield curve has been used. As mentioned in Section 3.1.3 and 3.2, a multi-curve
framework for valuation of interest rate derivatives is now the market practice. Thus a
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recommended and more proper valuation of interest rate swaps and hence a more accurate
CVA would require a multi-curve framework.

As discussed in Section 6.1.2, pricing often needs to be done fast, a Monte Carlo
approach is not always suitable. Therefore approximating analytical or so called semi-
analytical formulas for CVA are often desired. These methods often produce more accu-
rate results than methods like the variable exposure and the discounted cash flow approach.
For further studies about analytical CVA approximations for interest rate swaps see for
example Nisiba (2011) or Cern and Witzany (2014).
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