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Abstract 

The modeling of electricity spot prices is still in its early stages, with various different 

competing models being proposed by different researchers. This makes model evaluation and 

comparison research an important area, for practitioners and researchers alike. However, there is 

a distinct lack in the literature of consensus regarding model evaluation tools to assess model 

validity, with different researchers using different methods of varying suitability as validation 

methods. In this thesis the current landscape of electricity spot price models and how they are 

currently evaluated is mapped out. Then, as the main contribution this research aims to make, 

a general and flexible framework for model validation is proposed, based on the Probability 

Integral Transform (PIT). The probability integral transform, which can be seen as a 

generalization of analyzing residuals in simple time series and regression models, transforms the 

realizations of a time series into independent and identically distributed U(0,1) variables using 

the conditional distributions of the time series. Testing model validity is with this method 

reduced to testing if the PIT values are independent and identically distributed U(0,1) 

variables. The thesis is concluded by testing spot price models of varying validity according to 

previous research using this framework against actual spot price data. These empirical tests 

suggest that PIT-based model testing does indeed point us toward the more suitable models, 

with especially unsuitable models being rejected by a large margin. 
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Sammanfattning 

Modelleringen av spotpriser på el är fortfarande i ett tidigt stadium, med många olika modeller 

som förespråkas av olika forskare. Detta innebär att forskning som fokuserar på 

modellutvärdering och jämförelse är viktig både för berörda parter i näringslivet och forskare 

inom detta område. Det finns dock en klar brist på konsensusmetoder att utvärdera modellers 

validitet, då olika forskare förespråkar olika metoder av varierande lämplighet som 

valideringsverktyg. I den här uppsatsen kartläggs det nuvarande landskapet av spotprismodeller 

och de metoder som används för att utvärdera dem. Sedan, som det huvudsakliga 

forskningsbidraget av detta arbete, presenteras ett generellt och flexibelt valideringsramverk 

som baseras på vad som kallas ”Probability Integral Transform” (PIT). PIT, vilken kan ses som 

en generalisering av att undersöka residualer i enkla tidsserie- och regressionsmodeller, 

transformerar utfallet av en tidsserie till oberoende och identiskt fördelade U(0,1) variabler med 

hjälp av tidsseriens betingade fördelningar. Att testa modellens validitet reduceras med denna 

metod till att testa om PIT – värdena är oberoende och identiskt fördelade U(0,1) variabler. 

Uppsatsen avslutas med tester av spotprismodeller av varierande validitet enligt litteraturen 

med hjälp av detta ramverk mot faktiskt spotprisdata. De empiriska testerna antyder att PIT – 

baserad modellvalidering faktiskt stämmer överrens med modellers validitet baserat på 

nuvarande konsensus, där särskilt opassande modeller förkastas med stora marginaler. 
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1 Introduction 

The last decades have seen a liberalization of electricity markets around the world, leading to 

electricity prices being determined by supply and demand. A multitude of contracts which all 

depend on the electricity spot price are traded on the markets or over-the-counter, making the 

spot price an entity of great importance for risk management and valuation for market 

participants. However, due to the non-storability of electricity as a commodity, its inelasticity 

and its dependence of weather conditions and consumer patterns, the electricity spot price has 

several unique characteristics. The three most pronounced characteristics are seasonality of 

mean price levels on various timescales, a mean-reverting fluctuation around said mean levels 

and the existence of large, but short lived, changes in price called “price spikes”. These 

characteristics have lead to many different modelling approaches in academia, with different 

researchers championing different modelling methods. As (Meyer et al 2015) put it: “Electricity 

price modeling is complex and still in its infancy”. 

The multitude of choices for the practitioner makes the process of model selection and 

validation an important related subject. However, while several papers handle cases of model 

selection, statistically rigorous validation or comparison procedures for models have been rare 

and different metrics and levels of statistical rigor are used by different authors. In this thesis, 

the concept of validation is interpreted as a method to determine a model’s adequacy, preferably 

in absolute terms rather than in a relative sense to some other model, but also possibly by 

showing model superiority to some benchmark model. As literature specifically on the subject of 

model validity is scant, the reasoning of this thesis relies heavily on the statistical adequacy 

model selection criterion outlined by (Spanos 2010), originally invented by Fischer:  

 

“the task [of model selection] is understood as one of selecting a statistical model that renders 

the data a typical realization thereof, or equivalently, the postulated statistical model `accounts 

for the regularities in the data'” 

  

In this thesis the term model validity and model validation will primarily refer to statistical 

adequacy and methods of measuring it. This definition also calls for model validation methods 

that do not depend on other models to benchmark against, but are freestanding. 
 

Based on the above observation, Vattenfall’s “Models and Methodology” unit has requested a 

comprehensive overview of validation procedures that can be found in the literature and, 

importantly, requested suggestions for rigorous methods of model validation. Based on a 

thorough investigation of the existing electricity spot price literature, a general validation 

method is suggested which is based on the so-called Probability Integral Transform, an out-of-

sample approach that transforms a time-series with known stochastic behavior into independent 

and identically distributed uniform random variables. The hypothesis of a correctly specified 
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model thus amounts to testing transformed data for independence and distribution. 

Furthermore, this validation method is used on some of the most common spot-price models in 

the literature. The purpose of this testing is not to absolutely determine which of the various 

relevant spot price models is better suited for modelling the electricity spot price, but rather to 

investigate what triggers acceptance and rejection depending on approach to check the 

transformed values and to showcase the suggested method of validation in action. 
 

The research contribution this thesis aims to make is to propagate this method of validation for 

use in future research papers as a basic test of general model adequacy, so that models in 

different papers may be compared more readily. Furthermore, the subject of model validation, 

rather than the models themselves, has not been the sole focus of any academic paper so far 

observed in the literature and can thus be said to constitute somewhat of a gap in the research. 

The outline of this thesis is as follows: First, in section 2, a background of the electricity 

markets will be given and the electricity spot price and its qualities will be outlined. Then, the 

literature review in section 3 will give a description of the most common models used for the 

electricity spot price as well as what validation procedures are used in the literature. This 

mapping of validation procedures should be seen as one of the key results of the thesis. In the 

mathematical background in section 4 the Probability Integral Transform (PIT) and associated 

testing procedures will be mathematically described and the choice of PIT-based validation will 

be mathematically motivated. As a secondary result, some limit theorems will be presented 

regarding the calculation of order-invariant statistics with regards to certain classes of mean-

reverting time series, to shed light on some of the validation methods observed in the literature. 

Section 5 and 6 are devoted to testing some common models using PIT-based validation, 

importantly testing both known good models and known bad models of the electricity spot 

price. This testing can be seen as the second main result of the thesis. Sections 7 and 8 are the 

Discussion and Conclusion chapters of the thesis. 
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2 Background 

2.1.1 The Electricity markets  

During the last decades, the electricity market in many countries has been increasingly 

liberalized, transforming the markets from heavily regulated and government controlled entities 

to deregulated and competitive ones (Bierbrauer et al 2007). Furthermore, most of these 

electricity markets are local, meaning that each market trades electricity in a certain zone, 

which may be a whole country. Most of the recently developed European markets are Power 

Exchanges, whose primary purpose is to match supply with demand and announce a market 

clearing price, known as the spot price. This is generally done via auctions the day before, where 

the bids concern the prices for different hours of the next day. However, it should be noted that 

exact bidding processes vary across different markets. There also exist balancing or real-time 

markets for delivery within short time horizons (Weron 2006).  

The creation of the liberalized electricity markets has led to the trading of a variety of contracts 

on electricity, for instance futures contracts and options, which may be either sold “Over-the-

counter” (i.e. bilaterally) or on the market. However, while for instance futures and forwards can 

be seen as long-term contracts, very short term spot contracts are also sold (Weron, 2006).  

2.1.2 Characteristics of the electricity spot price 

Since many contracts available on the electricity market depend on the electricity spot price, 

the understanding of the electricity spot price, and electricity as a commodity, is vital for 

pricing derivatives and calculating risk.  

The characteristics of electricity as a commodity, to begin with, are rather unique. First of all, 

electricity is a non-storable commodity and the stability of power systems requires a match 

between inputs and outputs. Secondly, in relation to non-storability, electricity exists only as a 

flow and is thus buyable only in terms of a certain effect (in watts) for a certain time (usually 

hours). Electricity prices also depend on weather conditions and on the real-time activities of its 

consumers (Weron 2014). Finally, the continuous flow of electricity is essential to many 

businesses, industries and private consumers, making electricity as a commodity inelastic in the 

short term (Weron 2006, Geman and Roncoroni 2006). 

The unique features of electricity as a commodity, often mentioned in papers on electricity spot 

prices, lead to three main characteristics which almost no article on electricity spot prices will 

fail to mention: mean reversion, seasonality and price spikes. 
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Mean reversion is a characteristic observed in many commodity prices, notably described in a 

mathematical sense by Schwartz (1997). Mean reversion means that spot prices fluctuate around 

some mean level that represents marginal cost (Geman and Roncoroni 2006). This mean level 

can possibly be time-varying and can be explained by fluctuation of demand leading to 

increased marginal costs (Bierbrauer et al 2007). Notably, the mean reversion in electricity 

prices is rather strong (Bierbrauer et al 2007), with some authors finding that prices return to 

mean level within days (see e.g. Cartea and Figueroa 2005). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: daily baseload price of the System price of the Nordpool market. The prices are quoted in EUR. 

This mean level of electricity prices also displays a more pronounced seasonality than any other 

commodity (Bierbrauer et al 2007). Since the electricity price depends heavily on weather 

conditions and the real-time activities, the electricity price experience daily seasonality (with 

some hours being “peak” hours with increased demand), weekly seasonality (weekdays and 

weekends have different demands) and annual seasonality (weather conditions change 

throughout the year and may affect power consumption) (Weron 2014).  

A final very characteristic feature of the electricity spot price is the occurrence of what is often 

called price spikes in the literature (Weron 2006, Benth et al 2008, Weron 2014, Geman and 

Roncoroni 2006). Price spikes are extreme moves in the spot price that quickly reverts back to a 

normal level. The reasons for price spikes include the inelasticity of the electricity price, the 

increasing marginal cost of producing electricity and the bidding strategies of producers (Benth 
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et al 2008). A famous example of such a spike is the June 1998 Cinergy Price spike in mid-

western USA, which momentarily saw the price rise from the typical level of 30 USD/MWh to a 

peak of 7500 USD/MWh with a daily average of 183.33 USD/MWh. This price spike resulted in 

the default of power obligations of at least two companies, Federal Energy Sales and Power 

Company of America, PCA, which had to file for bankruptcy (Weron 2006). A feature of price 

spikes in some markets is that the intensity of price spikes, be it the daily or annual, is observed 

to be time-inhomogeneous. Periods such as peak hours or the winter season in Scandinavia or 

the summer in Western USA are especially prone to price spikes (Weron 2006). 

A fact not always mentioned about the electricity spot price is that it is, due to transportation 

cost, regional. For instance, the 1998 Cinergy spike did not affect nearby markets. This is 

another factor that makes electricity as a commodity different from other financial and most 

commodity markets (Weron 2006).  

Finally, what is not always noted is that, due to the non-storability of electricity, the spot price 

behavior versus that of derivatives on it is not consistent with the usual no-arbitrage pricing 

formulae, as the dynamic hedging and cash-and-carry arguments in arbitrage pricing do not 

work in this context (Cartea et al 2009). This means that the electricity market is not complete 

(Benth et al 2012). 
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3 Literature Review 

The literature review is divided into three parts. First, the landscape of electricity spot price 

models and their uses will be mapped out. Secondly, the methods of validation of these models 

that are currently observable in the literature will be reviewed. Third, the proposed main 

method of validation proposed in this thesis, the LR test on PIT values, will be presented and 

its grounding in the literature established. 

3.1 Models of the electricity spot price in the literature 

3.1.1 Two classes of models in the literature and their uses 

Weron (Weron 2006, Weron 2014), amongst others, identifies two types of probabilistic models, 

with different uses: Quantitative (or reduced form models), which refers to a continuous time 

stochastic process approach to modeling the electricity spot price. The use for these kinds of 

models is, according to Weron, to “characterize the statistical properties of electricity prices over 

time, with the ultimate objective of derivatives evaluation and risk management” (Weron 2006). 

Their primary use is thus not point forecasting (Weron 2014).  (Cartea et al 2009) also write 

that the main purpose of reduced-form models is to capture the main characteristics of 

electricity prices. 

The second type of models is Statistical models, which refers to time-series models of type 

ARMA, ARIMA, GARCH, etc. The primary use of these, according to Weron, is point 

forecasting (Weron 2006).  Since these models are often compared based on different properties 

than the reduced-form models above, and are not generally used for valuation, they will not be 

the focus of this thesis.  

The rest of the literature does indeed confirm this partition of models: Reduced-form models in 

for instance (Benth et al 2011, Geman and Roncoroni 2006) are primarily used for futures 

valuations, while time series models in for instance (Weron 2006, Escribano et al 2011) are 

primarily used for point forecasting.  

All further discussion in this literature review will thus only be concerned with models used for 

risk and valuation. 

3.1.2 Seasonal and Stochastic components 

The modeling of the electricity spot price observed in the literature consists of two initial steps. 

The first step is to de-seasonalize the data to identify the seasonal component, which is often 

done using dummy variables and/or sinusoidal functions. The second, much more complicated, 
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step is to model the stochastic deviation from the seasonal component .This approach is, 

amongst others, used by (Benth et al 2011, Geman and Roncoroni 2006, Cartea et al 2009, 

Janczura et al 2010, Higgs and Worthington 2008, Escribano et al 2011).  However, whether to 

divide prices or log-prices in a stochastic and seasonal component differ between authors. 

Janczura et al (2013), for instance, identifies adding a seasonal component to the prices as an 

industry standard, while other authors (e.g. Benth et al 2012, Cartea et al 2009, Bierbrauer et al 

2007) divide log-prices into a seasonal component f(t) and stochastic component X(t) illustrated 

in equation (1). 

 ln( ( )) (t) X(t)P t f    (1) 

In (1), P(t) is the spot price process, f(t) is the deterministic part and X(t) is the stochastic 

part. Now, it is worth noting that while models in literature are generally identified by the 

stochastic component X(t), the model in its entirety is defined by the pair (f(t), X(t)). Thus a 

short review of the modelling of the deterministic part f(t) is in order, before the more extensive 

modelling of X(t) is handled. The method proposed by (Bierbrauer et al 2007) is a combination 

of a trend, a sinusoidal function and dummy variables: 

 T T

day month

2
( ) sin ( )

365
f t t t


   

 
      

 
d D m D   (2) 

Here the vectors D day and Dmonth are vectors of indicator functions for different days and 

months (to avoid issues with colinearity, these should include all but one day and month), and 

the vectors d and m are parameter vectors. The authors, similar to most other authors on this 

subject, use non-linear least-squares regression to estimate f(t) to data.  

Some combination of constant, trend, sinusoidal and dummy variables is used by most authors. 

For instance, (Benth et al 2012) models f(t) as a sum of a constant component, a trend 

component and two sinusoidal components, the first with one-year periodicity and the second 

with six month periodicity. (Cartea and Figueroa 2005), as another example, fit a Fourier series 

of order 5 to monthly average data. 

3.1.3 Jump-Diffusion models 

The most common reduced-form model observed in the literature so far is some variation of the 

Jump-Diffusion model, described in various forms by amongst others (Benth et al 2011, Weron 

2006, Cartea and Figueroa 2005, Geman and Roncoroni 2006, Weron et al 2004). One of the 

simplest Jump diffusion models is described by the dynamics (Cartea and Figueroa 2005) 

 d d ( )d ln( )dt t t tY Y t t W J q        (3) 
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Here Yt is the logarithm of the de-seasonalized spot-price and Wt is a standard Brownian 

Motion. With a slight abuse of notation, ln(J)dqt represent a compound Poisson process, i.e. 

jumps of size ln(J) (where J is an IID random variable for each jump) occurring at exponentially 

distributed intervals. Note, first off all, that without the last term this is an Ornstein-Uhlenbeck 

process. In fact, most of the reduced-form models encountered in the literature consist of an 

Ornstein-Uhlenbeck process, with some added dynamics to account for price spikes and varying 

volatility. These models are often abbreviated as MRJD (Mean Reverting Jump Diffusion) 

models. 

The dynamics of (3) as described by (Cartea and Figueroa 2005) are fairly simple: σ(t) is 

assumed to be rolling historical volatility, dqt is a time-homogeneous Poisson process with the 

intensity l, and J is log normally distributed such that E[J] = 1. 

However, any number of dynamics could be assigned to the model. For instance, since price 

spikes in some markets tend to be seasonal; (Geman and Roncoroni 2006) suggest introducing a 

time varying jump intensity, making the Poisson process in (3) time-inhomogeneous. The 

authors modifies the models in many other ways: They introduce time-varying volatility (in 

their case rolling historical volatility), giving the jumps a truncated exponential distribution and 

giving jumps signs according to whether or not the price is above or below some threshold (in 

this case jumps are given positive sign if the price is above the threshold). Due to this last 

change, (Benth et al 2012) refer to this model as the “threshold model”.  Note that this does not 

automatically mean that positive jumps are followed by negative jumps, thus this signing of 

jumps does not automatically generate the familiar spike-shapes of electricity spot prices. 

(Weron et al 2003), in contrast to the model in (Geman and Roncoroni 2006) dictates that a 

jump must be followed by a negative jump in order to achieve the familiar spike-shape of price 

spikes.  

Similarly, in many of the above and following models a large variety of different jump 

distributions have been tried by for instance (Benth et al 2012, Geman and Roncoroni 2006). 

Alternative spike-distributions include truncated exponential, Pareto and Gamma distributions. 

In total, variations on the Ornstein-Uhlenbeck Jump Diffusion model account a large part of 

reduced-form models in the literature, and could possibly be said to be the industry standard, 

based on the literature reviewed so far. 

3.1.4 Non-Gaussian diffusion models 

A slightly different approach propagated by Benth et al (2008) and Benth et al (2007) is an 

arithmetic model: 
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    ( ) Xt tS t    (4) 

    
1

n

i i

i

X t wY t


   (5) 

Where µ(t) is a deterministic and periodic function (representing the deterministic lower bound, 

not the mean, of the price process) and the non-Gaussian Ornstein-Uhlenbeck processes Yi(t) 

are governed by the dynamics: 

        d d di i i i iY t Y t t t L t      (6) 

The processes Li(t) i = 1, …,n are assumed to be independent increasing càdlàg pure jump 

processes. The idea of this model is that large jumps can be captured by one of the benefits of 

this model is that the price spikes can be represented by one of the summands in (5), which 

may have a very high mean reversion (creating the typical spike-shape), while more common 

price moves can be represented by the other processes with less mean-reversion.  

Common distributional choices for the stationary distribution of L are the Gamma or Normal 

Inverse Gaussian (NIG) distributions.  

Noteworthy, and also useful as an example, is that the Gamma stationary distribution simply 

corresponds to a time-homogeneous compound Poisson process with exponential jumps. If the 

Levy process L is specified as having the stationary distribution  L(1) ~ Γ(ν, α), this corresponds 

to jumps with an Exp(α) distribution arriving  according to a Poisson process with intensity ν.  

A positive aspect of this kind of model is that it allows for a comparatively simple calculation of 

futures prices given that it is arithmetic. 

The theory on these kinds of processes is detailed in (Benth et al 2008) and we won’t discuss it 

further here. 

3.1.5 Visible Regime-Switching models 

A different approach from the above involves modeling the spot price using a regime-switching 

model, such as in (Weron 2006, Rambharat et al 2005, Weron et al 2004, Janczura et al 2010, 

Cartea et al 2009). Noteworthy is that these kinds of models are taken up in Weron (2006) both 

under “Quantitative” models and “Statistical” models, implying that the classification of different 

spot price models, as might be imagined, is a bit fuzzy. 

 Weron (2006) roughly classifies regime-switching models in two categories: Ones where the 

regime is readily observable and one deterministically can determine historic and current 
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regimes and models where the regime is some unobserved hidden variable, whose possible 

historic values can only be inferred. Note that these models are discrete-time models, but their 

use seems to be mostly valuation as in for instance (Janczura et al 2010). 

A simple class of observable-regime models that Weron (2006) introduces is called a Threshold 

AutoRegressive (TAR) model. The model has the following dynamics: 

 
 

 
1

2

,  

,  

t t t

t t t

B P v T

B P v T

 

 

 


 
  (7) 

Where t is a threshold and ϕi(B) = 1 – ϕi,1B – …  – ϕi,pB
p
 where B is the backward shift 

operator. The threshold variable vt can be, for instance the lagged price Pt-d or some function 

thereof. As Weron (2006) points out, this type of model is quite rarely applied to the electricity 

spot price in the literature. However, for instance (Rambharat et al 2005) compare a TAR 

model with regime dependent distribution and mean reversion to a standard mean-reverting 

jump-diffusion model. Also, (Cartea et al 2009) employ an observable regime-switching model 

decided by the following variant of the jump-diffusion model: 

               d d ln d 1 dty t y t t t J N t t Z t         (8) 

Here ρ(t) is the regime parameter which takes the binary value of 0 or one, N(t) is a Poisson 

process and Z(t) is a Lévy process. In (Cartea et al 2009), ρ(t) is determined as the quotient 

between a demand forecast and a generation capacity forecast, figures which are readily 

available for the practitioner. 

3.1.6 Hidden Markov models 

More common than the above approach, however, is the hidden Markov or Markov regime-

switching models (commonly denoted HMM or MRS models) (Weron 2006, Janczura et al 2010, 

Weron et al 2003). An MRS model works as In the following way: Let Rt be a n-state time-

homogeneous Markov chain, i.e. Rt is a discrete-time random process which takes values in {1, 

…,n} and with the property (9):  

      1 2 1 2 1P  ,   ,    P     | | |P   t t t t tR j R i R k R j R i R j R i              (9) 

This yields that the distribution of Rt in vector form is equal to QTe j if Rt-1=j, where e j is the j: 

the unit vector in Rn. Q = (Qij)i,j = (P(R2 = j|R1= i))i,j is called the transition matrix of the 

Markov chain Rt (Janczura et al 2010). 
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Now, in a MRS model, we simply assume that the spot price process has n possibly distinct 

distributions depending on the value at time t of the non-observable regime variable Rt. In the 

observed literature so far, two- and three-regime models has been tried (Weron 2006). In 

general, a hidden Markov model can be described in equation form as follows (in the framework 

of for instance (Janczura et al 2010) 

 
, , ,d ( , )d ( , )dt b b t b b t b tX t X t t X W     (10) 

The pair t, b indicates time and regime respectively. Possibly, as in (Bierbrauer et al 2007), one 

could restrict the effects of regime-switching to just the diffusion parameters. The idea behind a 

two-regime model is to have one “normal” regime in which the spot price behaves as it usually 

does and one “spike” regime where we see a large increase or decrease in the spot price. As 

mentioned above, there is a great deal of effort in getting the spike-shape of a price spike just 

right. A proposed version of a three-regime MRS model solves this by having one “normal”, one 

“spike” and one “drop” regime. As the name imply, the “spike” regime consists of a drastic 

increase in the price process, and the transition matrix Q is sometimes specified so that  this 

regime is immediately followed by the “drop” regime which assures a drastic downturn of the 

process from the spike value. Furthermore, Q is in this case also specified so that the “drop” 

regime is followed by the “normal” regime. (Weron 2006) 

Since the user is free to specify basically any dynamics for the different regimes, this class of 

models is obviously very versatile. In the comparative article by (Janczura et al 2010), three 

different MRS models are tested and compared. In the paper the best suited model according to 

the tests is found to be a three-regime model with a heteroskedastic base regime and median-

shifted log-normal “spike” and “drop” regimes. Noteworthy for this model is that the states in 

this model are persistent, i.e. there is, for all states, a fairly large probability of staying within 

the regime. Hence, this particular three-state MRS model does not necessarily has to have pre-

specified “spike” and “drop” regime probabilities as described above. 
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3.2 Model validation methods currently observable in the literature 

In this chapter various validation procedures, or more commonly goodness-of-fit statistics, that 

can be found literature are presented. The distinction between these terms in this thesis is that 

a validation procedure contains some absolute accept-reject criterion and aims to ascertain 

statistical adequacy, i.e. the user is supposed to know if a model is unsuitable just based on the 

model performance in and of itself. By this distinction, goodness-of-fit statistics are measures of 

how well the estimated model fit the estimation data and does usually not contain an accept-

reject criterion. Rather, in model selection procedures, the model with the best fit to the data is 

chosen above the others. This does not necessarily mean goodness-of-fit statistics cannot be 

converted to a validation procedure, however. Rather, by comparing a proposed model to some 

benchmark industry standard model, a goodness- of fit test turn into a validation procedure. 

However, in comparison papers this is rarely done, i.e. none of the models compared is explicitly 

considered a “benchmark”. Furthermore, since goodness-of-fit tests test models against the same 

data used for estimation, it can be argued that this setting puts the modeler in an unrealistic 

situation and hence is generally inappropriate for model validation. 

Another distinction that can be made is in-sample and out of sample tests. In-sample tests are 

tests in which the same data that is used for calibration is also used to produce the test 

statistic. Goodness-of-fit tests are by the definition made above in-sample tests.  

In out-of sample tests, however, any realized data point may only enter into the test using 

information that is readily available before the data point is available. This hypothetically puts 

the modeler in a world where some portion of the data is unknown at the time of parameter 

estimation. An example of this is if we calibrate a model for one time-period, but test the model 

on a later time period. Another approach is to actually re-calibrate the model several times over 

the testing period. 

3.2.1 In sample ocular inspection 

Most authors use, as a complimentary qualitative evaluation tool, ocular inspection of a 

simulated curve compared to the dat. This is generally done in an in-sample manner, simulating 

the model with parameters estimated from the same data set which it is then compared to. One 

can then argue about visible differences or similarities between the curves (see for instance 

Geman and Roncoroni 2006, Cartea and Figuerora 2005, Cartea et al 2009, Benth et al 2012). A 

typical example on what can be achieved by this simple method is that one can make 

observations on mean reversion speed, apparent volatility of the price during non-spike periods 

or simply investigate if mean reversion and price spikes seem to be accurately represented (e.g. 

Benth et al 2012, Cartea and Figuerora 2005). Especially, if a model contains some glaring 

shortcomings, this could be spotted in this manner (too high/low mean reversion, say). 
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3.2.2 In sample comparison of descriptive statistics 

A common in-sample approach to goodness-of-fit is to compare descriptive statistics of the 

model estimated on a dataset with that of the dataset itself. For instance, many authors (e.g. 

Geman and Roncoroni 2006, Benth et al 2012, Cartea et al 2009), simply compare the first four 

moments of their models compared to that of their data. This is a fairly simple way to see what 

the model tend to overestimate and underestimate respectively, but one should note that the 

goodness of fit of the model in this regard may depend on the method of estimation. For 

instance, (Cartea et al 2009) actually uses the squared sum of differences between the first four 

empirical and model moments as the objective function in their parameter estimation algorithm. 

Thus one should be careful when utilizing this method for model evaluation and comparison, 

but it may of course be a very useful tool for spotting model inadequacies.  

 

While the above statistics are the most common within this method other statistics are used as 

well. For instance (Janczura et al 2010) use the Inter-Quartile and the Inter-Decile Range (IQR 

and IDR, respectively). These measures are the distances between the third and first quartiles, 

and ninth and first deciles respectively. The authors state robustness to outliers as reasons for 

using these measures. However, one should note that whatever the measure, there are no clear 

accept-reject criteria based on these, or a stated method of determining significance of 

differences. Rather, these statistics should probably be seen more as useful tools from a 

modelling standpoint to better understand the models.  

 

These kinds of statistics will be discussed in the last section of the mathematical background, 

since there are some limit theorems that informs us of what we are really measuring when we 

measure models using order-invariant statistics such as sample moments, IQR and IDR of 

stationary processes. 

 

3.2.3 Likelihood-related tests: AIC, BIC/SC, LR tests 

For comparative purposes, many authors perform likelihood-related tests on different models. In 

their paper comparing Markov regime-switching models (Janczura et al 2010) supplements 

various tests with Likelihood statistics for each model. (Higgs and Worthington 2008) and 

(Rambharat et al 2005) use the well-known Akaike Information Criterion (AIC) in order to rank 

the different models under consideration. The AIC is given by the equation (11) and adjusts 

likelihood, L with the number of parameters used, k (Spanos 2010). Note that measures such as 

the AIC are only useful in the model comparison setting, as the AIC in and of itself gives no 

real information. 

 

 2 2ln( )AIC k L    (11) 

Both these articles could be said to actually contain model validation of sorts, since they both 

compare more complex models with more standard, simpler “benchmark” models. For instance, 
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(Rambharat et al 2005) compares a more complex TAR model with a mean-reverting jump-

diffusion (MRJD) model and find a lower AIC for the TAR model than for the MRJD model. 

However, what constitutes a significant difference in AIC is not clearly explained in any case.  

 

(Bierbrauer et al 2007) however, introduces significance into likelihood-based model selection. 

Using the Likelihood Ratio (LR) test, the authors test nested pairs of models or unrelated 

models via pair wise testing. Regarding the nested case, the authors find evidence for the more 

complicated models being more appropriate. For instance, a regime switching model with two 

regimes and pre-specified probability 1 to return to the normal regime is rejected at 1 % level in 

favor of the more general model where probabilities are not pre-specified. Furthermore, by pair 

wise testing, the authors conclude that in terms of this test and for the dataset consisting of 

daily prices from the EEX market, a number of different regime-switching models are superior 

to all the considered diffusion-models. However, it should be noted that even this more rigorous 

kind of comparison is an in-sample test. 

 

3.2.4 Futures/Forwards-related investigations 

Various authors (e.g. Cartea and Figueroa 2005, Benth et al 2012, Bierbrauer et al 2007) have, 

as a part of model evaluation, investigated the implied behavior of forward or futures prices 

according to the model or models under evaluation. The market price of a forward with 

maturity t at time t is defined as (Benth 2012) 

 

  ( , ) ( ) | tF t T S TQ Q   (12) 

Where Q is an equivalent pricing measure and S(T) is the spot price at time t and t denotes 

the information up until time t (or rather, the σ-algebra representing the information up until 

time t in a filtered probability space). However, as the authors point out, the electricity market 

is incomplete and thus there exist several such measures Q. To identify such a Q, one usually 

restricts the choice to some parametric class which is then fitted to the data (Benth et al 2012). 

Generally, the qualitative behavior of the forward prices or the implied risk premium (market 

forward price minus predicted spot price) is observed and discussed.  

 

Since this is done in several papers, it is worth mentioning in the literary review. However, since 

derivatives valuation is not the focus of this thesis, this topic will not be delved into any 

further. One might also note that in the sources covered for this work, no clear test statistic is 

derived for this kind of investigation and from a model validation standpoint, modelling Q 

introduces additional model uncertainty apart from the modelling of the spot price and thus 

clouds the main issue of the thesis somewhat.  
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3.2.5 Hypothesis testing (“other”) 

A number of authors also perform various hypothesis tests that in this thesis will be classified as 

“other” hypothesis tests as they are not Likelihood based or based on the probability integral 

transform, which will be described in more detail below.  

 

First of all, there seems to be no consensus in the literature regarding spike distribution, thus in 

model selection different distributions are used in different papers. In their comparative paper, 

for instance, (Benth et al 2012) find evidence for choosing a Gamma distribution for jumps in 

two different diffusion models using the non-parametric Kolmogorov-Smirnov (K-S) test 

statistic. Authors like (Cartea and Figueroa 2005) simply assume normal jumps of de-

seasonalized log prices. 

 

More in line with model validation, in their paper comparing three different regime-switching 

models, (Janczura et al 2010) actually hypothesis test the implied distributions of the different 

regimes against data. This is done by transforming the data into a mixture of IID samples using 

smoothed inferences and testing the regimes individually as well as the whole dataset using the 

Kolmogorov-Smirnov test. In this way, by considering how many rejections occur, one can 

differentiate between different models in terms of adequacy. While no absolute accept-reject 

criterion is given, one could easily been construed. Although this approach is indeed a genuine 

model validation procedure, one should note that this specific method is only applicable to 

regime-switching models and furthermore that the test is an in-sample test. In any case the 

approach is similar to the proposed probability integral transform approach. However, it is 

difficult to determine exactly what these smoothed inferences can be intuitively thought of and 

what a rejection would mean for the modeler. 

 

(Meyer et al 2015) perform tests very similar in spirit to the probability integral transform 

method below, in a cross-validation setting. Put concisely, the authors remove one month at a 

time from the dataset, estimate their models on the rest of the data and make comparisons 

between simulated model paths and the data for that period. The result is a variety of accepted 

and rejected months and models can be compared by for how many months they are rejected. 

The hypothesis test performed is a rank sum test, which is a novel approach in the electricity 

spot price literature. An interesting note that the authors make is that for spot price models 

that are to be used for option pricing, for instance, the dispersion of the price is more important 

than the exact price forecast that the model makes. This is the same view on spot price model 

adequacy that this thesis takes, namely that the entire distribution of the model should be, in 

some sense, correct. However, we should again note that while not technically an in-sample 

validation method, cross validation in a time series setting uses information from ‘the future’ to 

model data from ‘the past’, making it a somewhat unrealistic setting, similar to an in-sample 

test. 
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3.2.6 Out of sample Interval forecasts 

Rigorously testing interval forecasts was notably discussed in the seminal article by 

(Christoffersen 1998). This approach will be described in-depth in the mathematical 

background, but intuitively, it is simply hypothesis testing of out-of-sample model implied 

confidence intervals where both coverage and dependence in time can be tested. 

 

While only (Bierbrauer et al 2007) in the reviewed literature have tested electricity spot price 

models using out of sample confidence intervals, they do not perform any hypothesis test, but 

rather compares the number of exceedencs between different models. An advantage of 

performing these kinds of tests is that it is useful in the context of Value-at-Risk back testing 

(Berkowitz et al 2009) and thus it seems logical to evaluate a spot price model in this way if one 

of its purposes regards risk. 

 

3.2.7 Probability Integral Transform 

The probability integral transform (PIT) is an out of sample transformation which transforms 

data into IID U(0,1) variables, under the hypothesis that the data is generated by the model of 

interest. This can be seen as a distributional test, but it also possible (and indeed advisable) to 

test for dependence. 

 

In the reviewed literature, only (Bierbrauer et al 2007) and (Escribano et al 2011) have used 

this test to validate models, but the general nature of this validation scheme along with its 

intuitive foundations makes this the primary focus of this thesis, and thus its mathematical 

background will be recapitulated in Chapter 4 below. 
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4 Mathematical Background  

In this section the relevant mathematical concepts of the thesis will be presented as they are 

described in the reviewed literature. In the last section of the mathematical background, the 

mathematical arguments for the choice of PIT – based validation will be presented, as well as 

some informative limit theorems for a wide class of models concerning order-invariant measures 

commonly seen in the literature. 

4.1 The Probability Integral Transform (PIT) 

Below the theory regarding the main validation idea for electricity spot price models will be 

presented. The test concerns the entire out-of-sample density functions that are implied by the 

model under testing, rather than just some statistic from the model. This method reduces the 

test of a model specification to a relatively simple test for distribution and independence for 

Independent and Identically Distributed (IID) variables. 

4.1.1 Density Forecasts and loss functions 

The concept of density forecasts and loss function as described by (Diebold et al 1998) will now 

be defined. Let {yt} be a time series, and let Ωt = {yt-1, yt-2, …}. Furthermore, let ft = f(yt| Ωt) 

be the density function of yt given the outcomes Ωt up to time t – 1. Note that in general we 

cannot observe f, rather, the modeler assumes {yt} to be generated by some model yielding a 

joint distribution. Thus, let pt = p(yt| Ωt) be the 1-step-ahead density forecasts, i.e. presuming 

the time series follow the model, the conditional densities will be given according to pt. 

The importance of making good density forecasts can be seen very clearly in the environment of 

decision theory. Assume that a density forecast p(y) of a random variable Y with density f is 

given. The forecast user is assumed to have a loss function L(a,y), where a represents an action 

choice out of some feasible action set A. The action a is chosen so that the expected loss from 

the forecaster’s perspective is minimized. Thus the action a* = a*(p(y)) satisfies: 

       i* m n ,
a A

p y L a ya p y dy


    (13) 

 Given an outcome Y = y the action choice will result in a loss L(a*,y). Note now that the 

‘true’ expected loss is given by: 

 [ ( *, )] ( *, ) ( )L a Y L a y f y dy    (14) 
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Now, clearly, a* might not (and indeed probably will not) minimize (14), hence if p(y) resembles 

f(y), the user will be more likely to achieve a low ‘true’ expected loss compared to if p(y) does 

not resemble f(y). Especially, this means that a density forecast p that coincides with f is always 

preferable with regard to the ‘true’ expected loss E[L(a*,Y)]. 

4.1.2 The Probability Integral Transform (PIT) 

Let {yt} , {ft}  and {pt} be defined as above. The objective now is to investigate whether or not 

one can reject the null hypothesis pt = ft. Equivalently, this means to testing whether or not the 

observed time series can be seen as a typical realization of the model yielding the density 

forecasts {pt}. Furthermore, let {Pt} be the cumulative distribution functions associated with 

{pt}. This can seem like a very difficult thing to determine, but the concept of the Probability 

Integral Transform allows the forecaster to approach this task. Define the Probability Integral 

Transform (PIT) of the values {yt} as (Diebold et al 1998): 

     
ty

t t t tz p u du P y


    (15) 

Let us investigate the density function qt of zt. We assume that ∂Pt
–1

(x)/∂x is continuous and 

non-zero over the support of yt and recall the relationship pt(x) = ∂Pt
–1(x)/∂x. Then zt has 

support on the unit interval with density: 
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 





 


  (16) 

This equality holds for the entire unit interval. Now particularly, if pt(x) = ft(x), for all x, then 

qt will be equal to 1 on the unit interval, meaning that zt is U(0,1) distributed. In fact this 

result can be extended: If pt(x) = ft(x), for all x and all t, the time series {zt} is IID U(0,1) 

distributed. More formally, the result can be summarized by the following proposition with 

proof from (Diebold et al 1998), first studied in (Rosenblatt 1952): 

PROPOSITION:  Suppose {yt} (t = 1, …m) is generated from {ft(yt| Ωt )} (t = 1, …m)  , 

where  Ωt = {yt-1, yt-2, …}. If a sequence of density forecasts {pt(yt)} (t = 1, …m)  coincides 

with {ft(yt|Ωt )} (t = 1, …m)  , then under the usual condition of a nonzero Jacobian with 

continuous partial derivatives, the sequence of probability integral transforms of {yt}              

(t = 1, …m) with respect to {pt(yt)} (t = 1, …m)  is IID U(0,1).  
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PROOF: The joint density of {yt} can be decomposed as follows: 

 
1 1 1 1 1 1 1( ,..., | ) ( | ) ( | )... ( | )m m m m m m mf y y f y f y f y        (17) 

Now, we use the change of variables formula to compute the joint density of {zt}: 
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  (18) 

The last inequality is due to the Jacobian being lower triangular, which follows from the 

decomposition in (17). Now we may obtain the following expression for the density: 
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  
  (19) 

Now, if pt(x) = ft(x) for all x and t, {zt} is IID distributed, since the density is a product of the 

marginal distributions (all having the value one).  

□  

To put it concisely, we can try to reject the null hypothesis of correct density forecasts by 

simply testing whether or not the sequence is IID uniform, which to be sure is a surprisingly 

simple task compared to what one might expect from the problem formulation. 
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4.2 Testing for distribution and independence 

After a given time series {yt} is transformed using PIT, all validation procedures in the 

literature consist of testing the transformed values {zt} for independence and distribution in 

some manner. The most prolific of these methods are covered below. 

4.2.1 The importance of testing both distribution and independence: An illustrative example 

It might not be obvious what the significance of testing both distribution and independence of 

the PIT values of a time series. For that reason, we will here give an example of an incorrect 

density forecast which yields uniformity but not independence, illustrating the importance of 

testing both for distribution and independence. Afterwards, we will give an example of how this 

could occur in practice. 

Consider a time series {Xt |t=1,…,n},  with realized values {xt |t=1,…,n}, and the empirical 

distribution function Fn given by: 

 {x x}

1

1
( ) 1

i

n

n

i

F x
n





    (1.20) 

This distribution can easily be smoothed so that it has a corresponding density function, but 

coincides with Fn on the values {xt |t = 1,…,n}. Let us call the smoothed function F and its 

derivative f. Now consider the density forecast, which we in reality can only make ex post, of fi 

= f for i = 1,…,n. Further assume that the time series has some dependence, for instance 

autocorrelation, making these density forecasts incorrect. However, the values zi = F(xi) will 

take the values: 
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     (1.21) 

Where o(xi) denotes the order statistic of xi i.e. the number of values in the time series that are 

less than or equal to xi. Hence, {zi |t = 1,…,n } = {i/n |i = 0,…,n }, meaning that the PIT 

values will be almost perfectly evenly distributed on the unit interval. Thus, we can expect            

{zi |t = 1,…,n } to pass any distributional test for uniformity, but presuming the underlying 

time series has for instance autocorrelation, the PIT values zi will retain autocorrelation since 

the time series values are all transformed by a the same strictly increasing function. 

In practice and without hindsight, if we consider data generated by an Ornstein-Uhlenbeck 

process and make the time-invariant density forecast given by the limiting/unconditional 

marginal distribution of the process, we can expect to have similar results to above; uniformly 
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distributed, but not independent, PIT values. This is due to the limit theorems provided in the 

last section of the mathematical background: The empirical distribution of (amongst other) 

most Ornstein-Uhlenbeck processes tend towards the limiting marginal distribution of the 

process. Hence, even if we observe an Ornstein-Uhlenbeck process and make density forecasts 

out-of-sample, we could still estimate the limiting distribution of the process and make the 

constant density forecasts of the limiting distribution, yielding PIT values that will probably 

look uniform, but display a very clear autocorrelation. For some more examples of incorrect 

density forecasts yielding uniform looking histograms, see also (Balabdaoui et al 2007). One 

should note that this is primarily an example concerning properties of the PIT, as many 

electricity spot price models are not stationary (having for instance time-dependent volatility). 

This example might in other words not be directly relevant to electricity spot price models. 

Hence, testing both distribution and independence actually tests the time-dependent dynamics 

of the model, rather than just its very large-scale distributional properties. 

4.2.2 The Likelihood Ratio Test 

A common PIT-based test of a density forecast model is to test the null hypothesis {xt} ~ IID 

N(0,1) in the Likelihood Ratio framework (see for instance Berkowitz 2001 and Bao et al 2007). 

What is commonly done for testing methods in the likelihood ratio framework is to write xt = 

Φ-1(zt), where Φ(x) is the distribution function of the standard normal distribution. Then the 

objective is to test the null hypothesis   {xt} ~ IID N(0,1). The reason for this additional 

transformation is that there exist formulas regarding the above mentioned hypothesis in the 

Likelihood Ratio framework. The method suggested by (Berkowitz 2001) is to assume {xt} 

follows an AR(k) model: 
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  (22) 

Writing θ  = (µ, σ, ρ1, …,ρk) one then tests the null hypothesis  θ   = (0,1,0,…0) using the 

likelihood ratio (LR) statistic: 

     2 0,1,0, ,0LR L L    *
θ   (23) 

Where L(θ ) is the log-likelihood function of the model and θ * is the parameter vector that 

maximizes the log-likelihood. Under the null hypothesis, LR ~ χ2(k+2), since there are k+2 
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restrictions. In their paper validating and testing different GARCH-style models, (Escribano et 

al 2011) uses the likelihood ratio test for an AR(1) model:  

  1t t tx x        (24) 

A clear advantage with the above approach is that the forecaster may use textbook methods to 

calculate the likelihood ratio (Berkovitz 2001). The above AR approach can be extended to 

second- and third-order autoregression, and also the normality assumption can be relaxed (see 

e.g. Bao et al 2007). However, (Berkovitz 2001) points out that as the number of restrictions 

increases, the test will increasingly start to resemble a non-parametric test, in the sense that it 

“will, in principle, reject the null in the presence of any departure from iid normality in large 

samples”.  

4.2.3 Non-Parametric tests 

In their paper on evaluating inflation density forecasting, (Diebold et al 1999) discuss evaluating 

whether or not the series {zt} is indeed IID U(0,1) using the Kolmogorov-Smirnov test statistic 

Dn. The test statistic Dn of whether a set of samples {s1, … sn} are generated from a distribution 

governed by the cdf F(x) is (Kim and Whitt): 

     supn n
x

D F x F x    (25) 

Where Fn denotes the empirical distribution of {s1, … sn}. However, as (Diebold et al 1999) 

point out, little is known regarding the impact on Dn when the samples depart from 

independence. Indeed, we note that the test statistic Dn is entirely independent of the order of 

{s1, … sn}, and thus the samples could easily be designed, when viewed as a time series, to be 

dependent in time (by making the series increasing, say). This suggests that using the K-S test 

alone for the joint hypothesis of IID uniformity might be unsuitable with regards to 

independence. 

(Bierbrauer et al 2007) uses the Kuiper test statistic of (Stephens 1970) in order to test their 

PIT values. This statistic, called V, is a variation of the K-S test, and is given by: 
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In this case, the K-S test statistic would be given by max(D+, D-) in this case and that this test 

is one specifically for uniformity. Note, however, that this test too is order-independent and thus 

probably not good for testing independence. 

The Kolmogorov-Smirnov test is not very sensitive to discrepancies in the tails (Mason et al 

1983) and thus the Kuiper test statistic is often considered preferable (Tygert 2010). 

4.2.4 Visualization of results: Histograms and Correlograms 

 (Diebold et al 1998) propose, in combination with more rigorous testing, that histograms and 

correlograms should be inspected for easy understanding by the practitioner. The argument for 

these graphical methods is that given that given that the model failed a test, the model user 

would want to know why. For instance, if the histogram of the {zt} series seems to be fatter at 

the ends, it would mean that a lot of outcomes have been placed in the tails of the density 

forecast; hence the user could surmise that the proposed model is too thin-tailed. Importantly, 

note that under the IID U(0,1) assumption, individual confidence interval for bin heights are 

easily constructed, since the bin heights will be binomially distributed. Similarly, confidence 

intervals for the correlograms may be construed (Diebold et al 1999). 

This graphical approach, according to (Diebold et al 1998), is “less formal, but more revealing”. 

Since these graphics take almost no effort to produce compared to actually producing the PIT 

transformed values, there seems to be no reason for the user not to supplement formal test with 

this kind of graphical methods. 

Another argument for visual evaluation is that each failure of a model to pass the PIT-test must 

be analyzed on a case-by case basis. As an example: If extreme values of {zt} cluster around 

some time period, that would imply that the model might not be very good for risk applications 

since several unexpected extreme events (from the model’s perspective) could happen 

consecutively, rather than spread out in time. This example is relevant since this could happen 

if one models the electricity spot price without accounting for price spike seasonality and 

predicts an even distribution of price spikes in time. Similarly, if a model for electricity spot 

price totally lacks spike modeling, one could reasonably expect the model to fail the test for 

uniformity and probably exhibit more values close to 0 or 1 (in the IID U(01) context) than 

would be expected for an IID U(0,1) sequence. 
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4.3 Ranking validated density forecasts using sharpness 

(Balabdaoui et al 2007) propose a simple way to compare models yielding PIT values that are 

validated as uniformly distributed, but are maybe not independent as discussed in section 4.2.1. 

In addition to testing PIT values for IID behavior, the authors also suggest ranking the different 

density forecasts according to sharpness, which intuitively means that the density forecast 

should be as concentrated as possible around the outcome while still being valid, or as 

(Balabdaoui et al 2007) put it, calibrated. One way of measuring sharpness is to evaluate the 

average width of the two-sided 50% and 90% confidence intervals implied by the model. 

According to the sharpness principle that the authors propose, the narrower these average 

confidence intervals are, the better.  

An advantage with this approach to ranking is that it is simple to evaluate and intuitively 

makes sense. Another advantage is that this pragmatic and flexible approach holds for k-step-

ahead forecasts; i.e. forecasts where we condition on information available k-steps before the 

outcome. In this case, the PIT values are at most k – 1 dependent and should still display 

uniformity (Balabdaoui et al 2007). However, one can see that rigorously testing this 

dependence may be difficult, other than by inspecting autocorrelation, and thus the sharpness 

principle in concert with uniformity tests and inspection of autocorrelation allows us to compare 

density forecasts via sharpness conditionally on that they are correctly calibrated (i.e. pass the 

PIT-related tests). 

A disadvantage of using this approach for the practitioner is that this method does not seem to 

be very well explored. First of all, the equivalence between sharpness and the preferability of 

forecast, and the exact nature thereof, is an open question. As far as is known, only when 

comparing very well-calibrated models does sharpness asymptotically prove equivalent to the 

ideal forecaster (Balabdaoui et al 2007), although useful counter-examples for the case of less 

well-calibrated models are unknown. Furthermore, there does not seem to exist any agreed upon 

way to assess sharpness in the literature, though looking at the widths of confidence intervals 

seems like a logical candidate. 

These issues notwithstanding, when faced with two models which one cannot distinguish 

between using PIT, i.e. two validated models, the alternative to compare by sharpness should be 

considered. 
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4.4 Evaluating interval forecast performance of models 

An even simpler, but still useful, way of validating statistical models is to evaluate their 

performance in terms of interval forecasts, i.e. out of sample one-step-ahead confidence intervals, 

which can be either one-sided or two-sided. (Christoffersen 1998) gives a detailed and rigorous 

testing framework for testing interval forecasts, with methods that are analogous to the 

approach regarding density forecasts described above. The main difference is that instead of 

testing the distribution, one simply tests for coverage, i.e. if the ex post price falls within the 

forecasted confidence interval or not.  

Note first, however, that this is not model validation in the strictest sense; rather, it is a 

validation of the interval forecasts the model makes. In the words of the author: “The aim is to 

develop tests of the forecasting methodology being applied – regardless of what it might be – not 

of any hypothesized underlying true conditional distribution” (Christoffersen 1998). Thus a 

failure to reject a model based on its interval forecasts still does not mean the model is 

necessarily correctly specified. However, with regards to risk purposes, correct interval forecasts 

may be an integral part of the model purpose, thus a specifically designed test for this is 

potentially very useful. 

The framework introduced by (Christoffersen 1998) is as follows (with a slight difference in 

notation): Given a sample path of a time series { yt  | t = 1, … t }, let {(Ut, Lt) | t = 1, … T} 

be a set of out of sample interval forecasts and let {It  | t = 1, … T} be the indicator functions 

of the events yt ∈ (Ut, Lt). Note that if we have PIT values, the {It} values are easily generated. 

Furthermore let these interval forecasts be such that P(yt ∈ (Ut, Lt)) = p for some confidence 

level p. One could also say that the interval forecasts have coverage 1 – p. The interval forecasts 

are said to be efficient if E[It | {It-1 , … I1}]= p for all t = 1, … T. Note that making interval 

forecasts for time t conditional on {yt-1 , … y1} will yield efficient interval forecasts, since It will 

then be independent of { yt-1 , … y1} and by extension independent of {It-1 , … I1}.  

What (Christoffersen 1998) concludes is that if interval forecasts are efficient and have coverage 

p, then the indicator functions It are IID Bernoulli(p) distributed variables. Now, similarly to 

the PIT case one can now test for distribution (or coverage) and independence. Independence in 

this case can be very important in the risk evaluation case: dependence between forecasts can 

indicate that extreme events cluster around certain periods, thus posing a more concentrated 

risk than is indicated by just the coverage. This is also called testing for correct conditional 

coverage by the author. 
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(Christoffersen 1998) proposes as the basic framework likelihood ratio test (again, similar to the 

approach of (Berkovitz 2001)), testing the hypothesis of IID Bernoulli(p) distributed variables 

against a Markov chain alternative as the simplest test that one can perform.  

4.5 Motivation for the use of PIT-based validation methods 

In this section, further and more detailed arguments for and discussion of PIT-based validation 

techniques will be laid out. Furthermore,  some mathematical framework is provided that show 

the potential error in comparing order-invariant statistics of data with those of models, such as 

for instance the sample moment comparison made by several authors. These limit theorem 

results are however only relevant for stationary processes and given that many spot price 

models have for instance time-varying volatility, these limit theorems should be seen more as 

illustrative examples of where one could go wrong in practice when using order-invariant 

statistics. This also provides a useful general example of a constant density forecast yielding 

uniform, though not independent, PIT values as was discussed in section 4.2.1. 

4.5.1 Limit theorems for some classes of AR(1) processes 

We will first present results regarding the empirical distribution function of stationary processes 

with weak dependence.  Put simply, the results say that if we look at the empirical distribution 

function of a stationary and weakly dependent time series, in the same way as we would with 

IID variables, the empirical distribution would tend to the limiting or unconditional marginal 

distribution of the elements in the time series. This in turn implies that if we look at things like 

sample moments and other order-independent statistics of a process with these qualities, all we 

really do is measure statistics of the limiting distribution of the process, rather than the time 

series itself in some sense. This result is hopefully useful for practitioners as information of what 

looking at the entire empirical distribution of a time-series really means. 

 To start with, we define the necessary weak dependence conditions and show that all ARMA 

processes under certain conditions are weakly dependent in that way (Marquardt et al 2007): 

DEFINITION (strong (α-) mixing): Consider a set of random variables {X(t) | t } on a 

probability space (Ω, ,P). Define n
m
 = σ{Xt | n ≤ t ≤ m} be the sigma field generated by the 

random variables {Xn, … Xm}. Define 

 
( ) sup | P(E F) P(E) P(F) |

,, n

n m

m

n E F




 

  

  
  (27) 

{X(t)}is said to be strongly mixing or α-mixing if α(m) tends to zero as m tends to infinity.  
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Furthermore, (Athreya et al 1986) state that under some mild conditions, any AR(1) process is 

mixing: 

THEOREM: Let Yt be an autoregressive process given by Yt = ρYt−1 + et , t = 1, 2, … where 

|ρ| ≤ 1 and |et| are IID random variables independent of Y0. Assume that  

(a) E[{log|e1|}
+
] is finite, and  

(b) e1 has a non-trivial absolutely continuous component.  

Then, for any initial distribution Λ of Y0, {Yn} is strong mixing.  

Under the further conditions of the characteristic equation having roots less than one in 

modulus and Y0 being independent of {ej}, this result actually holds for general ARMA 

processes. 

Mixing implies ergodicity, i.e. the sample moments of the process will converge to that of the 

unconditional marginal distribution (Stelzer 2011). In the case of an AR(1) process, this 

distribution is given by the random variable 

 
0

k

k

k

 




   (28) 

Here {εk} are IID and distributed as the innovations of the AR(1) process and ρ is the 

autoregression parameter of the AR(1) process. Note that the unconditional marginal 

distribution is also the limiting distribution of the AR(1) process, as these terms can be used 

more or less interchangeably. 

This gives us an interesting insight: When authors compare sample moments of data to the 

sample moments of a model, what they are actually comparing is the limiting distribution of the 

process to that of the data. However, depending on what dependence structure a models display, 

this limiting distribution is not unique up to a model and may in any case not be of primary 

importance for practitioners. 

Under some more conditions, we may have an even stronger result: If the infinite sum of mixing 

parameters converges, the empirical distribution converges to the unconditional marginal 

distribution (Rio 2013). 
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THEOREM: Let {X(t) | t } be a strictly stationary sequence of real-valued random 

variables and let {α(k)} denote the sequence of strong mixing coefficients defined by (27). 

Suppose that the common distribution function F of the random variables is continuous. Define 

by Fn the empirical distribution function of {X(1), … X(n)} and let νn = n
1/2

(Fn(x) – F(x)) then 
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   (29) 

Now, interestingly for us, (Marquardt et al 2007) show that a class of processes called CARMA 

processes, which include AR(1) processes with a driving Levy process, have geometrically 

declining mixing coefficients (which thus have a converging infinite sum). This means that all 

such processes have empirical distributions that converge to their limiting/unconditional 

marginal distributions as described in (29). Furthermore we note that Levy-driven mean 

reverting processes include most mean reverting jump processes as well as regular Brownian 

motion driven mean reverting processes. For a more detailed description of Levy-driven mean 

reverting processes, see for instance (Barndorff-Nielsen et al 2001). 

Since all the time-homogeneous jump diffusion processes we consider here can be seen as simply 

the sums of independent Levy-driven mean reverting processes, our final result is that the 

empirical distributions for this class of models converge as in (29) to the limiting/unconditional 

marginal distributions. This means that almost any measure on a model-generated dataset 

which is not dependent on the order of the data (and hence is given entirely by the empirical 

distribution function) is only a measure on the limiting/unconditional marginal distribution of 

the model if it falls into this category. This of course includes sample moments.   

Another consequence of this limit theorem is that if one calculates the unconditional marginal 

distribution for a model and makes the erroneous density forecast as described in section 4.2.1, 

we will get PIT values that look uniform but displays dependence.  

4.5.2 Motivation for the use of PIT-based validation 

Of what has been observed in the literature, the model testing performed by different authors 

roughly fall in one of three categories: 

(1) They are insufficient for model validation, i.e. they measure the wrong thing and/or lack 

any acceptance/rejection criteria 

(2) They are based on model comparison, often via likelihood and are not freestanding 

(3) They closely resemble the PIT-methodology or actually involve the Probability Integral 

Transform 
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With regards to (1), a common special case that warrants some deeper discussion is the Monte 

Carlo estimation of sample moments and comparison to the moments of the data. Due to the 

results in the section above, the empirical cumulative distribution function (ecdf) converges 

uniformly, in a sense, to the limiting distribution of Levy-driven AR processes, and thus when 

we measure any statistic that depends on the ecdf alone, what we really do is compare the 

limiting distribution of our model to the distribution of the data. If the limiting distribution is 

all that the modeler is interested in, these measures are of course not irrelevant, but it is 

imperative that these types of statistics are understood as statistics of the limiting distribution 

of the model. However, if we are interested in the dependency structure of the time series in any 

way, any order-invariant statistics should be seen as of at most secondary importance. This 

same argument of course holds for other statistics that treats dependent time series data as IID 

variables, such as the inter-quartile and inter-decile ranges. 

With regards to (2), (Spanos 2010) argues that model selection based on the AIC or similar 

measures can lead to erroneous model selection choices since the step of validating any of the 

models compared is ignored. As mentioned, he instead argues for model selection based on 

statistical adequacy. Furthermore, there does not seem to be any description on what 

constitutes a significant difference in AIC. The only proper hypothesis tests that falls into 

category (2) are the pair wise Likelihood Ratio tests performed by (Bierbrauer et al 2007). 

However, these are not performed as a model validation tool in the article; rather, it works as a 

pure model selection tool, and the selected models are themselves validated with PIT 

methodology afterwards. Furthermore, as observed in the literature overview article by (Weron 

2014), it is common that authors compare their favored models against simpler models from 

some other class, making the comparison between the models biased towards their preferred 

model. This is another good motivation for a freestanding validation scheme such as the one 

given by the PIT - approach. Finally, if we recall the definition of statistical adequacy, the AIC 

does not really inform us of whether or not the data can be seen as a typical realization of the 

model of interest. 

This brings us to category (3), of which PIT seems to be the most rigorous and model non-

specific version. If we consider the methodology of (Janczura et al 2010) for instance, they 

identify what they call “smoothed inferences” of MRS models, which should be IID. However 

rigorous, this concept is of course restricted to MRS models and is difficult to generalize. 

Furthermore, as mentioned in section 3.2.5, rejection of smoothed inferences is difficult to 

interpret, unless one is intimate with the estimation process of the model. The PIT values, 

however, can be readily interpreted, as discussed in for instance (Diebold et al 1998). For 

instance, from the histogram one can see whether volatility seems to be over- or underestimated. 
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For practitioners, the fact that PIT is relatively easy to calculate, understand and interpret is a 

very important advantage of the method over many others. 

The PIT-based approach, however, only requires that a model implies at time t-1 a density 

function at time t, which any stochastic model does. Another PIT-related approach is to 

investigate residuals of a process, as in for instance (Collet et al 2006). With residuals means the 

outcome of the process at time t minus the expected value of the process at time t-1, given by 

Rt in (30). 

 
1 2E[X | X ,X ...]t t t t tR X      (30) 

These residuals are also commonly analyzed in the form of mean-squared error in many papers 

concerning point forecasts. However, the PIT values of a process can be seen as the generalized 

version of residuals. As a matter of fact (Yun 2014) refer to PIT values as “generalized residuals” 

in an article on density forecasting of jump-diffusion models. This is because for an AR(1) 

process with known parameters, for instance, the residuals are in fact the IID innovation terms 

and can thus be tested for independence and distribution much like PIT values. But because 

some models are more complicated than this that we introduce the notion of PIT, since this case 

residuals might not be IID. 

As we have argued for the advantages of PIT-based validation over some other methods above, 

it is also worth considering the merits of this methodology in and of itself. The main merit of 

PIT-based validation is that this method is the most intuitive and well documented of all 

methods of evaluation of density forecasts in the literature. Thus, insofar as an electricity spot 

price model can be viewed as a density forecast, the use o PIT is well-grounded in the density 

forecast literature. If the sole purpose of a model is to make point forecasts, the PIT 

methodology might indeed be unnecessary, but as (Meyer et al 2015) note, if we are interested 

in for instance option pricing we are interested in the entire dispersion of the price that the 

model indicates. Hence the suggested methodology is not excessively complicated if the purpose 

of the model is at all dependent on the implied distributions in their entirety. Finally, the PIT 

methodology tries to answer the question, as (Spanos 2010) puts it, if the model “accounts for 

the regularities in the data” i.e. if the regularities are embedded in the model, the PIT values 

should be IID. 

Furthermore, on a related note, the manner in which the PIT values are tested can be adapted 

to model usage. If, for instance, the model is primarily used for VaR purposes, we test the PIT-

values for exceedences of confidence intervals in the manner of (Christoffersen 1998). Similarly, 

(Berkowitz 2001) elaborates of various ways to put emphasis on extreme values in the LR 

testing framework. 
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5 Methodology 

In this section the set up of the tests to be performed is outlined. Overall, the tests are 

structured as follows: For each combination of model and dataset, the model is estimated on the 

first half of the dataset and out-of-sample probability integral transforms are calculated on 

second half. Each dataset spans four years. Following this, various tests on the PIT data are 

performed. 

5.1 Data description 

Below the markets from which the data is gathered are presented, as are the specific periods 

chosen from the markets. The set-up of the testing is as follows: Two four-year periods are 

chosen from each market. For each such period, the first two years are used to estimate the 

models and the two last years are used for extracting PIT values.  

Since, as can be seen from the datasets, market fundamentals can change over time, it seems 

reasonable to try to pick datasets which display some degree of constant behavior during the 

selected period. Otherwise, p-values from the validation procedure will probably be quite low for 

all models, making ranking difficult. However, selection is done purely based on ocular 

inspection, so some of the pairs of estimation/validation datasets can be expected to be worse 

than others. 

A further note on the data is that by “daily spot prices”, we refer to the daily baseload price, 

which is the arithmetic mean of all hourly spot prices from day-ahead auctions for each 

respective market. 

5.1.1 Six Datasets 

The data is gathered, via Vattenfall, from the European Energy Exchange (EEX), the 

Scandinavian/Baltic Nordpool Market and Netherlands power data from the APX NL market.  
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 Figure 2: The daily baseload price of the System price of the Nordpool market. The prices are quoted in 

EUR. 

From the EEX market, the periods 2005-01-01 – 2008-12-31 and 2009-06-02 – 2013-06-01 are 

chosen. These datasets will be denoted EEX1 and EEX2, respectively. From the Nordpool 

System spot prices, the periods 2006-01-01 – 2009-12-31 and 2010-01-01 – 2013-12-31 are chosen 

and denoted SYS1 and SYS2, respectively. From the APX NL market, the periods 2001-01-01 – 

2004-12-31 and 2011-01-01 – 2014-12-31 are chosen and denoted NL1 and NL2, respectively. All 

prices are quoted in EUR/MWh. 
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Figure 3: From top-right to bottom-left: The datasets EEX1, EEX2, SYS1, SYS2, NL1 and NL2. 
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5.2 Deterministic Component 

5.2.1 Model assumptions 

The modeling of the stochastic and deterministic component will follow that of for instance 

(Benth et al 2012, Bierbrauer et al 2007) and be divided geometrically: 

 ln( ( )) (t) X(t)P t f    (31) 

 

Where, as before, P(t) denotes the spot price, f(t) is the deterministic  component and X(t) is 

the stochastic component. Since one of the datasets, EEX2, display negative prices during some 

downward spikes, making the geometric model problematic. This is solved using a simple affine 

transformation, analyzing the transformed price P’(t) = P(t)+100 for this dataset. This value is 

arbitrarily chosen, but shouldn’t make a great difference to the analysis. It is in any cased 

preferred here to just removing negative spike values, as is the approach in (Meyer et al 2015). 

In order to account for regularities down to daily granularity (since the data tested will be daily 

average spot prices) the deterministic component of (Bierbrauer et al 2007) is chosen: 

 T T T
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 
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d D m D y D   (32) 

The vectors D day and Dmonth are vectors of indicator functions for different days and months. 

The addition made to the trend function of (Bierbrauer et al 2007) is the introduction of a 

dummy variable for the year, D year, in the cases of varying yearly market condition not showing 

any linear or cyclic occurrences.. Note though that this last addition can only be used in the 

case of in-sample fitting. To avoid issues with colinearity, the dummy variables do not contain 

the first day, month or year. The vectors d, m and y are parameter vectors. The parameters 

are estimated on the entire datasets. 

An important note on the modeling of the seasonal component is that f(t) in this thesis is 

estimated on the entire dataset as opposed to X(t) which is estimated on a part of the data set. 

The reason for this is that the primary goal of these tests is to validate the modeling of X(t). 

Hence, the choice in this thesis is to make the conditions for the stochastic component X(t) as 

good as possible, so that acceptance/rejection of the modeling of X(t) should be affected by f(t) 

as little as possible. In any case, since this is an active choice (and not an obvious one) which 

may differ a lot from estimating f(t) on the same dataset as X(t), this choice should be duly 

noted. 
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5.2.2 Parameter estimation 

The parameters of f(t) are estimated using non-linear least squares estimation. However, 

following the recommendation of (Bierbrauer et al 2007) the spikes are be filtered out using the 

“three sigma rule”. This simple procedure consists of removing any log return whose absolute 

value exceeds three standard deviations of the log returns. The data point causing the spike is 

then replaced via a “similar day” method, which here denotes replacing the extreme data point 

the median of all data points of the same day and month. This filtering procedure is then 

repeated five times or until such time no more spikes are filtered out. An important technical 

note is that the log-returns must be recalculated after each data point replacement; else the log 

return following a spike might be classified as a spike as well. 

The parameters of f(t) are then estimated on the filtered data, using on-linear least squares. 

Least squares estimation means choosing parameters of f(t) = f(t; α, β, d, m,y, γ,τ) such that 

the following optimization problem is solved: 

 2
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f t P t
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Here Pfiltered denotes the filtered spot price data and t = 0, 1 … t is the observed days. This 

optimization problem can for instance be solved using MATLAB, as is done in this thesis. 

5.3 Diffusion Models 

As noted in the literature review, mean reverting jump-diffusion models are a popular 

alternative to model X(t) in equation (21). In order to test the appropriateness of validating 

models using PIT values as well as investigating the suitability of this model, diffusion models 

of increasing complexity and suitability (according to the literature) are tested. Intuitively 

speaking, if the proposed method of validation is appropriate, the “bad” models of X(t) should 

be clearly rejected, and “good” models should not be, at least at low confidence levels. The 

initial assumptions of which models for the electricity spot price are “bad” and “good” are 

derived from the literature, as well as from whether or not they possess the basic properties X(t) 

should have (jumps and mean-reversion). 

5.3.1 Brownian Motion (Model BM) 

One of the simplest models for any stochastic process is one guided by a stochastic differential 

equation (SDE) with constant terms: 

 d ( ) d d ( )X t t W t     (34) 
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This model will be referred to as model BM. This corresponds to a process X(t) with IID 

increment s X(t+1) – X(t) ~N(µ,σ
2
). Note that this stochastic process neither possesses any 

mean reversion quality, nor any spike-behavior.  

The density forecast of model BM at time t is as follows: 
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ϕ is the density function for the standard normal distribution function. This follows directly 

from the normal IID increment property. 

5.3.2 Ornstein- Uhlenbeck model (Model OU) 

An Ornstein-Uhlenbeck model is proposed by for instance (Lucia and Schwartz 2002) and is 

governed by the following SDE: 

 d ( ) ( )d d ( )X t X t t W t      (36) 

Here λ > 0 and is called the mean reversion rate. This model will be referred to as model OU. 

Note that this special case of the Ornstein-Uhlenbeck process is reverting back to zero, since f(t) 

is supposed to be the mean price level. An important note is that (36) observed at times t = 0, 

1, … is equivalent  to an AR(1) model: 
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This can be derived from the solution of the constant parameter Ornstein-Uhlenbeck process 

(see appendix). Note that this is not an approximation of (36) but an exact expression which 

follows from the solution of (36). If we change notation slightly and let σ instead denote the 

volatility factor of (37), the density forecast at time t of model OU is clear: 
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  (38) 

This model has the mean-reversion property, but for instance (Collet et al 2006) found the fit 

lacking due to the lack of spikes in the data. 
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5.3.3 Simple Jump-diffusion model (Model JD) 

One of the simplest conceivable models with both the mean reversion and spike property is the 

following jump-diffusion model (called model JD): 

 dX d d dt t t tX t W q       (39) 

Here, qt denotes a compound Poisson process, i.e. shocks arrive at exponentially distributed time 

intervals which are IID. Mathematically, let {N(t) | t = 1, 2 …} be IID random variables and let 

Po(t) be a Poisson process. Then the compound Poisson process qt can be described by: 
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The Poisson process is here assumed to have constant intensity l, making the discretization of 

(27) as follows (with the same abuse of notation as above, letting σ denote the volatility term in 

both cases, even though it differs): 
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Here J(t) (t=1,2 …) has the same distribution as the variable N(t), the discretization turns the 

Poission process into a Bernoulli process. For this simple model, jumps are assumed to be 

normally distributed   J(t) ~ N(ν,τ2). 

Density forecasts for this type of models are more easily calculated using the cumulative 

distribution rather than the density function. Since the PIT actually is formulated as Pt(X(t)), 

where Pt is the cumulative distribution forecast at time t of the process X(t), this is no problem. 

Using basic probability laws we get (denoting the probability measure conditional on 

observations up to time t-1 by P(t)): 
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 (42) 

Here “Jump” and “No Jump” denotes the events of a jump occurring or not occurring at time t. 

Note that it is due to the normality of J(t) that one can express the two summands in (30) so 

concisely. If J(t) is not normally distributed one must convolute the density functions in of the 

innovation variable εt and the jump variable J(t). In the general jump distribution case, if a 

jump occurs and letting g denote the density function of the underlying AR process density 
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forecast, and letting h denote the jump density function, we get the following density function in 

the case of a jump (Gut 2009): 

 ( * )( ) ( ) ( )dg h z g z y h y y





    (43) 

5.3.4 Factor model (Model 2F) 

A way to increase the suitability of model JD is to give jumps time-varying intensity and give 

the jumps a mean-reversion coefficient separate from that of the regular market fluctuation. To 

do this, a two-factor model is introduced, denoted model 2F: 

 1
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  (44) 

Unlike the setup of model JD, here dqt is a compound Poisson process with not necessarily 

normally distributed jumps. This type of model, although with non-Gaussian driving processes, 

is proposed by (Benth et al 2012) and is also the “Jump diffusion”-style model in (Bierbrauer et 

al 2007) which performs the best. In (Bierbrauer et al 2007) though, jumps are assumed to be 

normally distributed. Furthermore, this class of models, although with GARCH-style volatilities, 

is explored by (Meyer et al 2015). Due to the large numbers of models to be tested, we will only 

extend model JD by introducing separate mean reversion rates and introducing different jump 

distributions.  

With regards to jumps, we will follow the lead of (Meyer et al 2015) and introduce a mixture 

distribution for jumps. Given that a jump occurs, with probability l as in model JD, the jump 

will be positive with probability w and negative with probability 1-w. This approach differs 

slightly from that of (Meyer et al 2015), who technically allow for a positive and a negative 

jump to occur simultaneously, which is not allowed here. For the two factor model, as is done 

by (Meyer et al 2015), we will use a mixture of log-normal jumps. We assume the following 

discrete dynamics, given a jump occurrence (with probability l): 
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  (45) 

Where the + and (–) indicate positive and negative jump directions. With regards for density 

forecasting, the only difference from model JD is that since the mean-reversion rates of Y and Z 
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differ, these processes must be separated for each density forecast, using the same methodology 

as will be described below for parameter estimation. The variable X(t+1) will be forecasted as: 

 1 2

1

ˆ ˆ( 1) ( ) ( ) ( ) ( )

t

t

X t e Y t e Z t dW t dq t
  



 
       (46) 

Here ˆ ˆ,  Y Z  denotes the estimates of the processes Y and Z, made at time t, since these processes 

cannot be directly observed. The random part of the process is discretized and forecasted just as 

in model JD. 

5.4 Methodology for model validation 

In this thesis, all tests performed on the models of choice will be based on the transformed 

values, i.e. PIT values that the models yield. This will be done as follows: for the first halves of 

the datasets, the models will be estimated. Then on the second halves of the datasets, the PIT 

values will be calculated. After that various tests for distribution and independence will be 

performed on these. 

5.4.1 Visual Methods 

First off, the visual methods of (Diebold et al 1998), i.e. histograms and correlograms of the PIT 

values are calculated and displayed. Under the IID U(0,1) assumption, individual confidence 

interval for bin heights are easily constructed, since the bin heights will be binomially 

distributed (although the bin heights of a histograms are obviously not independent). Similarly, 

confidence intervals around zero of the autocorrelation function the PIT values are easily 

construed (as is done by MATLAB’s autocorrelation function, for instance). As has been noted, 

these visual methods do not make up a proper model validation scheme by themselves, but they 

are very simple to calculate and offer some graphical depiction of the results, as opposed to just 

displaying the values of the test statistics used. 

5.4.2 Non-parametric tests 

Since it is very easily done in various programming languages, the Kolmogorov-Smirnov, Kuiper 

and the Anderson-Darling test statistics of the normalized PIT values against their presumed 

normal distribution will be calculated. As previously laid out, these tests are not effective for 

testing independence since they are order-invariant. However, since at least the simple 

Likelihood Ratio (LR) tests contain some assumption of normality even in the alternate 

hypothesis, testing just the distribution can be seen as a complement to the LR tests. It also 
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gives us the chance to investigate which of the two tests can be said to be “stricter” than the 

other. 

5.4.3 AR(1) Likelihood Ratio test 

As detailed in the mathematical background, the simplest LR test one can perform is to test the 

PIT values (transformed to hypothesized IID normal random variables via the further 

transformation xt = Φ
-1
(zt)), against an AR(1) model: 

 
 1

~ (0,1)

t t t

t N

x x      
  (47) 

If we by θ  denote the parameter vector (µ,σ,ρ)  and letting θ* denote the maximum likelihood 

estimate of the parameters given by the normalized PIT values, the likelihood ratio is given by: 

     2 0,1,0LR L L   *
θ   (48) 

And the specific likelihood function, although somewhat long, is given explicitly in for instance 

(Berkowitz 2001). The test statistic is in this case χ2(3) distributed under the null hypothesis θ  

= (0,1,0). Since this test assumes normality due to the assumptions in (47), this test is paired 

with the non-parametric tests for distribution of the PIT values. 

This means that for a Type II error to occur, i.e. for a badly specified model to pass the tests, it 

must be one that both a) produces uniform PIT values and b) Whose normalized PIT values are 

fairly close to one variance, zero mean and zero first-order autocorrelation. Thus, if the case 

would occur that separate models both pass the proposed tests, it would be prudent to look into 

further dependence-related testing. For sufficient sample sizes, the Type I error probabilities are 

roughly given by the p-values and can be handled by testing the models for several datasets. 

Considering to the examples and comments in (Berkowitz 2001), two years of testing data 

should be enough. 

5.5 Parameter estimation  

Below, the parameter estimation for the different models is described as exhaustively as 

possible. The aim is to clarify all the modelling choices made, as well as allowing for replication. 

Note that in the parameter estimation description we will only be working with the discretized 

versions of all the models. Furthermore, we assume that the estimation dataset consists of the 

values {X(t) | t = 0, …, n}.  

 



46 

 

5.5.1 Model BM 

The parameters µ and σ of model BM are estimated by taking sample mean and sample 

standard deviation of the increments  ΔX(t) = X(t+1) – X(t). Leading to the following 

estimates: 
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5.5.2 Model OU 

Let b = exp(-λ) and recall the discretization of the zero-reverting Ornstein-Uhlenbeck process: 

 ( 1) ( ) tX t bX t      (50) 

With this in mind, we may estimate b and σ via linear least-squares regression. Letting X t = 

(X(1),…X(n)) and X t-1 = (X(0),…X(n-1)) we get the following estimates: 
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  (51) 

Here, for brevity, std() stands for the sample standard deviation of a vector. 

5.5.3 Model JD 

The main difficulty of estimating the parameters of model JD versus model OU is to estimate 

the jump-related components. Here a very simple to implement and robust iterative method is 

suggested. First, we estimate the mean reversion factor b = exp(-λ) and the standard deviation 

σ of the innovations as for model OU. Afterwards, jumps are identified as returns exceeding 

three standard deviations, are filtered out and we re-estimate b and σ. This is repeated until 

new jumps stops being identified, or otherwise five times. The filtering procedure works as 

follows: If X(t) is identified as a jump it is replaced by bX(t-1). From the filtered jumps, the 

jump mean and standard deviation is estimated. The daily jump probability l is estimated 

simply as the number of jumps identified divided by the number of days in total. 

Note that in this procedure we do not remove the jump effect on the time series as the jump 

value exponentially declines in time, but only the jump value itself. This differs from the 

estimation of the model 2F, as will be outlined below.  
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5.5.4 Model 2F 

Since this model actually consists of two summands with different speeds of mean reversion (Y 

for the regular process and Z for the jumps), this model is slightly less straight-forward to 

estimate than model JD. The iterative procedure that is used here is inspired by (Bierbrauer et 

al 2007) and (Meyer et al 2015) and works very similarly to that of model JD: First, the 

parameters of a Model OU, with initial guess λ2 = λ1, are determined. Then, as for model JD, 

we identify jumps using the “three sigma rule” as above. Then λ2 is re-estimated by fitting the 

realization of Z to the data via least squares. This can be done since Y and Z are assumed to be 

independent. After this, Y can be identified and the values of λ1 and σ can be re-estimated. 

After all this is done, the jump related variables attached to the process Z can be estimated 

from the identified jump occurrences just as in model JD. 

The exact estimation procedure used in this thesis is modeled after that of (Meyer et al 2015) 

and relies on the following expression for ΔX(t) (letting bi=exp(-λi) and ai=1-bi): 
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  (52) 

Since the processes W(t) and q(t) both have independent increments, this allows us to treat the 

sum of these increments as IID random variables, given that we have separated Y(t) and Z(t) 

and have estimates of a1 and a2. The iterative procedure works as follows: 

 We start out by an initial estimate of the model parameter and an initial estimate of the 

process (σΔW(t)+ Δq(t)). These initial values are obtained by making the initial assumption a1 

= a2, and estimating a1 from the following linear regression that arises from (52): 

 
1( ) a ( ) ( )X t X t t      (53) 

The initial estimate of σ is obtained by taking the sample standard deviation of the random 

error term in (53). Thus from this we gain initial model parameter estimates and an initial 

estimate of the increments (σΔW(t)+ Δq(t)). 

First σΔW(t) and Δq(t) are separated from each other using the three sigma rule. This means 

that if (σΔW(t)+ Δq(t))>3σ, put Δq(t)= (σΔW(t)+ Δq(t)) and  σΔW(t)=0. After this, we 

re-estimate σ from the new separation of W(t) and q(t). From these new estimations of W(t) 

and q(t), we calculate Y(t) and Z(t). Here it is assumed that Y(0) = X(0), Z(0) = 0. 

After the processes Y(t) and Z(t) are separated, we re-estimate a1 and a2 via least-squares from 

(52) and thus completes our re-estimation of all model parameters, and we may start over again. 



48 

 

For the tests performed in this thesis, 1000 iterations were deemed to be sufficient for 

reasonably stable parameter estimates. 

Note that for density forecast purposes, one can simply perform these iterations without actually 

re-estimating parameters, as the only purpose in this case is to separate the two processes Y(t) 

and Z(t) in order to calculate the conditionally deterministic part in (46), i.e., the mean 

reversion effects from previous price movements. The PIT transformed is then calculated via 

Monte Carlo simulation using 10
6
 simulations, as this was empirically deemed sufficient. 
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6 Results 

In this section, the results of the parameter estimation and testing are presented. The results 

and their implications will then be discussed in the Discussion part of this thesis. 

6.1 Parameter estimation results 

6.1.1 Deterministic part 

Below, the result of the parameter estimation of f(t), as described in (32), are presented 

graphically due to the large number of parameters included. For full results, see Appendix A1. 

 
Figure 4: Trend curve (orange) and log dataset (blue) of EEX1 (left) and EEX2 (right)

Figure 5: Trend curve (orange) and log dataset (blue) of SYS1 (left) and SYS2 (right) 
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Figure 6: Trend curve (orange) and log dataset (blue) of NL1 (left) and NL2 (right) 

In order to assess the effect of removing the deterministic part of the data, it is informative to 

compare the autocorrelation functions of the data P(t)  and X(t), as defined in (31). For the 

datasets EEX1-2 and SYS1-2, most of the weakly seasonality seems to be captured by the 

procedure, but especially for the dataset NL2 we can see that there seems to be a lot of weakly 

seasonality left in the autocorrelation: 
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Figure 7: Autocorrelation functions, from top left to bottom right: The logarithm of the dataset EEX1, the 

stochastic part of EEX1, The logarithm of the dataset NL2, the stochastic part of NL2 

Finally, the estimated components X(t) are presented for each of the six datasets. This is also 

informative for purposes of visually discerning in what ways the first half of the dataset may 

differ from the second. Especially note the apparent difference in daily volatility of the first and 

second halves of the dataset NL2. 
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Figure 8: Stochastic part of datasets. From top left to bottom right: Estimation of X(t) from EEX1, 

EEX2, SYS1, SYS2, NL1 and NL2. 
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6.1.2 Model parameter results 

In tables 1 – 3, the parameter estimation results for models BM, OU, JD and 2F are presented. 

Note especially the low rate of mean reversion for the datasets SYS1 and SYS2 and the high 

rate of jumps for model JD for these. The reason for this is that the mean-reversion effect of 

jumps is not taken into account in the model JD parameter estimation procedure, which 

conflicts with the persistent nature of the market movements of Nordpool for these periods.  

  M odel BM    M odel OU   

  µ σ λ σ 

EEX1 -0.00181 0.197 0.235 0.188 

EEX2 0.000115 0.0551 0.628 0.0483 

SYS1 0.00102 0.0811 0.0491 0.0802 

SYS2 0.000172 0.111 0.0829 0.109 

NL1 0.00261 0.404 0.611 0.351 

NL2 0.0000693 0.129 0.0989 0.591 

Table 1: Parameter estimation results for models BM and OU 

 

Table 2: Parameter estimation results for model JD 

 

 M odel 2F       

  λ1 λ2 σ ν+ ν(-) τ+ τ(-) l w 

EEX1 0.166 0.364 0.129 -0.554 -0.661 0.353 0.296 0.0479 0.371 

EEX2 0.283 1.281 0.028 -2.241 -1.975 0.320 0.550 0.0384 0.393 

SYS1 0.0235 0.254 0.051 -1.437 -1.502 0.387 0.328 0.0521 0.447 

SYS2 0.0133 0.181 0.053 -1.357 -1.303 0.388 0.430 0.0795 0.362 

NL1 0.611 0.611 0.224 0.0792 -0.113 0.334 0.297 0.0547 0.675 

NL2 0.481 1.277 0.097 -1.077 -1.011 0.147 0.192 0.0233 0.412 

Table 3: Parameter estimation results for model 2F 

 

M odel JD     

  λ σ ν τ l  

EEX1 0.188 0.127 0.0542 0.818 0.0548 

EEX2 0.330 0.0284 -0.0424 0.187 0.0452 

SYS1 0.0203 0.0468 -0.184 0.325 0.179 

SYS2 0.0426 0.0558 -0.230 0.527 0.136 

NL1 0.571 0.227 0.788 1.141 0.0547 

NL2 0.591 0.0989 -0.102 0.459 0.0205 
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6.2 Visual results of PIT transforms 

 

 

 

 

Figure 9:Histograms and autocorrelation functions for the PIT transformed values of the EEX1 dataset. 

From top to bottom: Model BM, OU, JD and 2F. 
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As an example of visual validation, above histograms and autocorrelation functions for the 

EEX1 dataset for the models are presented. Note the increased evenness as model 

complexity/suitability increases. 

6.3 Test statistics 

In tables 4 – 6, the validation results for models BM, OU, JD and 2F are presented, grouped by 

market. The tests are denoted K-S for Kolmogorov-Smirnov, Kuiper for the Kuiper test statistic 

and LR AR(1) for the Likelihood Ration test based on an AR(1) model as described in (47) and 

(48). Please note the very low p-values for the models BM and OU and the general increase in 

p-values as the model complexity and parameter estimation sophistication increases. Bolded 

figures indicate failure to reject at 5% confidence for the K-S and LR AR(1) test and 1% for the 

Kuiper test statistic. 

  EEX1       EEX2     

  K-S Kuiper LR AR(1)   K-S Kuiper LR AR(1) 

Model BM 0.00194 2.21E-10 5.17E-04 
 

5.06E-06 1.04E-20 5.38E-08 

Model OU 0.00366 2.54E-09 0.102 
 

0.000177 1.19E-14 1.97E-12 

Model JD 0.225 0.0479 0.0209 
 

0.00748 3.12E-07 0.000271 

Model 2F 0.337 0.0321 0.0574   0.000670 1.38E-06 0.00123 

Table 4: Validation results of the models BM, OU, JD and 2F for the markets EEX1 and EEX2. 

 

  SYS1       SYS2     

  K-S Kuiper LR AR(1)   K-S Kuiper LR AR(1) 

Model BM 3.53E-07 6.00E-19 0.000380 
 

2.22E-13 1.03E-45 4.41E-09 

Model OU 0.00468 6.08E-07 0.000998 
 

8.46E-08 3.69E-27 2.31E-09 

Model JD 0.00115 0.00580 0.000201 
 

0.00200 0.000429 0.000755 

Model 2F 0.393 0.116 0.228   0.0513 0.0128 0.759 

Table 5: Validation results of the models BM, OU, JD and 2F for the markets SYS1 and SYS2. 

 

  NL1       NL2     

  K-S Kuiper LR AR(1)   K-S Kuiper LR AR(1) 

Model BM 3.07E-18 1.08E-63 1.17E-07 
 

1.48E-12 1.84E-45 6.22E-15 

Model OU 1.62E-14 1.28E-53 0.000303 
 

2.05E-10 1.04E-33 3.89E-10 

Model JD 4.64E-09 3.03E-22 0.0374 
 

3.89E-07 3.42E-21 1.30E-08 

Model 2F 1.09E-07 5.75E-21 0.0127   2.29E-06 2.71E-21 1.19E-08 

Table 6: Validation results of the models BM, OU, JD and 2F for the markets NL1 and NL2. 
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7 Discussion 

Since the results are presented plainly, a more in-depth discussion of the results is in order. First 

off, we should note the difference in the order of magnitude of model p-values for the different 

datasets from the different markets. This can be seen as a consequence of what was touched on 

previously: That out-of-sample testing is only appropriate insofar the estimation dataset can 

reasonably be used to model the testing dataset. In this case, at least without the use of 

exogenous variables to explain yearly differences, the electricity markets visually seem to change 

fundamental behavior over time and thus make the effectiveness of out-of-sample testing 

questionable. Since the datasets were chosen purely based on ocular inspection, it is reasonable 

to expect that not all fundamental market behavior changes can be caught in this manner. 

Rather, some statistical measure of the consistency of market behavior seems in order for us to 

ensure p-values that are not in the order of 10-7. However, these remarks mainly concern on the 

NL datasets, for which me must surely reject all suggested models, since it is conceivable that a 

more suitable model could still pass the hypothesis testing for the EEX2 dataset, for which all 

the models suggested here must also be rejected. Also we should particularly note that since the 

SYS1 and SYS2 dataset show a very slow mean reversion both with regards to spikes and 

regular movements, the parameter estimation procedure of model JD leads to an overestimation 

of jump probability and thus very low test results. This shows the importance of cleaning up 

jump reversion effects rigorously in the parameter estimation procedure, rather than just 

removing the jump itself. 

An interesting note from the histograms is that due to the absence of spike modelling, the 

volatility of “regular” market movements is overestimated in the models BM and OU. This 

makes these models seem to be excessively thick tailed, which is represented by the fact that 

most of the actual price movements are grouped in the middle of the histogram. However, since 

the actual spike occurrences are deemed very unlikely in model BM and OU, this makes them 

simultaneously thin-tailed with regards to extreme price events.  

These points aside, if we recall that the models BM, OU, JD and 2F are chosen according to 

increasing adequacy according to the literature, there is a clear pattern of increasing p-values as 

model adequacy increases. Actually, the p-values are almost across the board increasing with 

few exceptions. With our notion of validity as the representativeness of the data, this clearly 

points to the model 2F being more valid, both in the testing performed in this thesis and the 

literature. Even for data yielding very low p-values, the data is a more likely realization of 

model 2F than the rest of the models, even though it is an unlikely realization of model 2F. This 

reasoning actually allows comparison of models based on p-values, even if all models are rejected 
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at some confidence level. However, model comparison based on p-values does not seem to be 

thoroughly grounded in the literature and caution should of course be observed when making 

these kinds of arguments. In any case, at least as far as this testing and these models are 

concerned, the PIT based validation approach does indeed point us towards the better models.  

Consistent with being more focused on tails, the Kuiper test statistic consistently produces 

lower p-values than does the K-S test. This can be expected, since spikes tend to vary in size 

and are difficult to model, with several researchers trying several different distributions, for 

instance in (Benth et al 2012). Furthermore, since spikes are rare, we can also expect worse 

spike modeling due to the rather small spike-dataset that we use to estimate spike distribution 

parameters, to model a small number of future spikes. To put it simply, we are using something 

along the lines of 40 spikes to model some similar number of future spikes, thus we cannot 

expect the tail fit of the models to be as adequate as the fit of regular price movements. 

However, since spikes are an integral part of electricity price modelling, it is still appropriate to 

use a test that is somewhat tail focused. Due to its base in the literature, the Kuiper test 

statistic is thus a reasonable choice of non-parametric distributional test. Regarding the 

difference in “strictness” between the different tests we perform, the Kuiper test seems to be the 

most difficult to get a model past, followed by the LR AR(1) test of (Berkowitz 2001) and then 

by the K-S test. Since both the Kuiper test and the K-S test are non-parametric distributional 

tests, the Kuiper test, in light of its strictness in this setting, could conceivably replace the K-S 

test entirely, as is done in (Bierbrauer et al 2007).  

A non-numeric key result of this thesis is the survey of what methods of testing and measuring 

electricity spot price models are commonly used in practice apart from the PIT-based ones. 

Since these methods are discussed at length in sections 3.2 and 4.4, a non-rigorous, very brief 

summary of these results is in order.  First off, different authors seem to put varying amounts of 

effort into actually testing the models they propose. The utility as validation methods of some 

of the measures used is lacking as they do not possess any accept-reject criteria and/or are 

measuring statistics of questionable usefulness; for instance, order-independent measures, such as 

sample moments, for mean reverting models asymptotically measure the limit distribution of the 

process and does not in any case measure any dependence factors of the data such as 

autocorrelation. From this background, PIT-based validation emerges as the best alternative, 

partly due to the unsuitability of some methods for model validation, and partly because it 

resembles or generalizes other validation method’s used by other authors, for instance the 

smoothed inferences of (Janczura et al 2010) and the testing of (Meyer et al 2015). Furthermore, 

in (Bierbrauer et al 2007) PIT values are tested for distribution, while in (Escribano et al 2011) 

PIT values are tested according to the LR AR(1) test as described by (Berkowitz 2001). In this 
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thesis both tests are performed, as the LR AR(1) test presumes some degree of normality. A 

final argument for the PIT transform is that insofar we consider electricity spot price models as 

density forecasts, the PIT approach is the most developed testing method of density forecast 

testing in the literature. Put simply, it is the most commonly used method to test a set of non-

IID random variables on a set of presumed outcomes of these. 

There are a lot of opportunities for future research in this area, as this thesis merely scratches 

the surface of potential model complexity and possible testing procedures. Below, four key 

points that would be interesting future research are presented: 

 In future model development papers, the PIT framework presented here should be used 

as a model validation scheme, so that different articles may be compared more readily. 

Especially, it would be interesting to see even more complicated models tested than 

those that the scope of this thesis permitted. For instance, no Markov Regime Switching 

models were tested here, but since these form a sizeable part of the spot price literature, 

research in which these are tested using PIT would be of great value. 

 

 So far, we have only observed PIT in the setting where parameter estimation is made in 

an out-of-sample fashion. PIT used in an in-sample or cross-validation scheme could 

perhaps be a useful tool to measure goodness-of-fit in a validation sense. In any case, it 

is not an explored area. 

 

 The impact of the choice of deterministic component, as well as an out-of-sample setting 

for the deterministic component has not been heavily researched as far as the reviewed 

literature is concerned. Here the PIT-validation approach could be used to compare 

models with the same modelling of the stochastic component X(t), but different model 

approaches of the deterministic component f(t). 

 

 If a number of models are can be fairly consistently validated using the PIT, a 

comparison of density forecasts using sharpness, as is briefly described in section 4.3 

could be in order. Also, research of other methods to distinguish between the validated 

models’ PIT values would then be of importance. 
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8 Conclusion 

In this thesis, the need for a comprehensive and general model validation scheme has been 

established, both due to the lack of such a scheme in the literature surveyed and the request of 

practitioners at Vattenfall’s Models and Methodology unit. Such a validation scheme, based on 

the Probability Integral Transform (PIT) is suggested and motivated. Finally some models, for 

which we can be fairly sure of the order of adequacy based on previous research, are evaluated 

using the PIT approach. It is found that the more adequate models are indeed consistently 

ranked higher by the proposed tests, although the model seems not be valid for some of the 

datasets, depending on confidence level. Finally, it is firmly recommended that researchers and 

practitioners alike to use this suggested validation scheme in their evaluation of electricity spot 

price models, due to the mathematical soundness of doing so and so that models and articles 

can, in the future, be more readily compared. 
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10 Appendix A1: Tables 

Below the full parameter estimation results for the deterministic function, defined as in(32). 

EEX1 

            alpha beta gamma to 

       

 

3.144 0.000579 0.3849 146.260 

       

              2006 2007 2008   

       y -0.146 -0.646 -0.259 

        

              feb mar apr may jun jul aug sep oct nov dec 

m 0.2468 0.3261 0.4274 0.308 0.393 0.257 -0.097 -0.097 -0.164 -0.142 -0.288 

              Sun Mon Tue Wed Thu Fri 

     d 0.48981 0.57281 0.5784 0.5438 0.490 0.2713 

     Table 7: Parameter estimation results for the deterministic part of EEX1 

 

EEX2 

            α β γ τ 

       

 

4.861 -0.000366 0.0587 271.244 

       

              2010 2011 2012 2013 

       y 0.183 0.361 0.440 0.551 

       

              feb mar apr may jun jul aug sep oct nov dec 

m 0.0532 0.0647 0.0987 0.121 0.136 0.135 0.121 0.126 0.126 0.108 0.105 

              Fri Sat Sun Mon Tue Wed 

     d 0.00331 -0.00244 -0.0101 -0.0588 -0.105 -0.0158 

     Table 8: Parameter estimation results for the deterministic part of EEX2 
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SYS1 

            α β γ τ 

       

 

3.788 0.000488 -0.176 353.812 

       

              2007 2008 2009   

       y -0.773 -0.462 -0.850 

        

              feb mar apr may jun jul aug sep oct nov dec 

m 0.0356 -0.00662 0.0299 -0.228 -0.098 -0.252 -0.243 -0.192 -0.181 -0.144 

-

0.188 

              Mon Tue Wed Thu Fri Sat 

     d 0.14304 0.14746 0.1488 0.1400 0.118 0.0509 

     Table 9: Parameter estimation results for the deterministic part of SYS1 

 

SYS2 

            α β γ τ 

       

 

3.735 -0.001200 0.4499 73.442 

       

              2011 2012 2013   

       y 0.278 0.301 1.002 

        

              feb mar apr may jun jul aug sep oct nov dec 

m 0.1773 0.2321 0.4204 0.579 0.713 0.601 0.601 0.610 0.472 0.429 0.370 

              Sat Sun Mon Tue Wed Thu 

     d -0.08140 -0.11665 0.0178 0.0208 0.022 0.0139 

     Table 10: Parameter estimation results for the deterministic part of SYS2 
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NL1 

            α β γ τ 

       

 

3.359 -0.000692 0.2941 159.860 

       

              2002 2003 2004   

       y 0.171 0.691 0.851 

        

              feb mar apr may jun jul aug sep oct nov dec 

m 0.1437 0.2094 0.2185 0.233 0.367 0.117 0.029 0.093 0.083 0.267 0.149 

              Tue Wed Thu Fri Sat Sun 

     d 0.07738 0.07172 0.0938 0.0107 -0.250 -0.5257 

     Table 11: Parameter estimation results for the deterministic part of NL1 

 

NL2 

            α β γ τ 

       

 

3.900 -0.000220 0.085 115.783 

       

              2012 2013 2014   

       y -0.008 0.158 0.006 

        

              feb mar apr may jun jul aug sep oct nov dec 

m 0.0904 0.1076 0.1369 0.154 0.122 0.053 0.067 0.108 0.076 0.111 0.059 

              Sun Mon Tue Wed Thu Fri 

     d -0.06950 -0.11783 0.0347 0.0497 0.054 0.0339 

     Table 12: Parameter estimation results for the deterministic part of NL2 


