
Efficient Sensitivity Analysis using Algorithmic
Differentiation in Financial Applications

Eric Sunnegårdh, Ludvig Lamm

September 16, 2015

Abstract

Efficient Sensitivity Analysis using Algorithmic Differentiation in
Financial Applications

by
Eric Sunnegårdh and Ludvig Lamm

One of the most essential tasks of a financial institution is to keep the
financial risk the institution is facing down to an acceptable level. This
risk can for example be incurred due to bought or sold financial contracts,
however, it can usually be dealt with using some kind of hedging technique.
Certain quantities refereed to as "the Greeks" are often used to manage
risk. The Greeks are usually determined using Monte Carlo simulation in
combination with a finite difference approach, this can in some cases be very
demanding considering the computational cost. Because of this, alternative
methods for determining the Greeks are of interest.

In this report a method called Algorithmic differentiation is evaluated.
As will be described, there are two different settings of Algorithmic differ-
entiation, namely, forward and adjoint mode. The evaluation will be done
by firstly introducing the theory of the method and applying it to a simple,
non financial, example. Then the method is applied to three different situ-
ations often arising in financial applications. The first example covers the
case where a grid of local volatilities is given and sensitivities of an option
price with respect to all grid points are sought. The second example deals
with the case of a basket option. Here sensitivities of the option with respect
to all of the underlying assets are desired. The last example covers the case
where sensitivities of a caplet with respect to all initial LIBOR rates, under
the assumption of a LIBOR Market Model, are sought.

It is shown that both forward and adjoint mode produces results aligning
with the ones determined using a finite difference approach. Also, it is shown
that using the adjoint method, in all these three cases, large savings in
computational cost can be made compared to using forward mode or finite
difference.

i

Sammanfattning

Effektiv Känslighetsanalys med Algoritmisk Differentiering i
Finansiella Tillämpningsområden

av
Eric Sunnegårdh och Ludvig Lamm

En av de mest centrala uppgifter för en finansiell institution är att hålla
sina finansiella risker på en acceptabel nivå. De risker som avses kan till ex-
empel uppkomma på grund av köpta eller sålda finansiella kontrakt. Oftast
kan dock dessa risker hanteras med hjälp av någon typ av garderingsteknik.
Ett antal känslighetsmått som används för att gardera mot risk är ofta refer-
erade till som the Greeks. Vanligtvis kan dessa beräknas genom att använda
Monte Carlo-simulering i kombination med finita differensmetoden, detta
kan dock bli mycket krävande med avseende på den datorkraft som behövs
för beräkningarna. Därför är andra metoder för att beräkna the Greeks av
intresse.

I denna rapport utvärderas en metod som kallas Algoritmisk differen-
tiering. Som det senare beskrivs, finns det två typer av Algoritmisk differ-
entiering, vilka kallas forward mode och adjoint mode. Utvärderingen görs
genom att först introducera teorin bakom metoden och sedan appliceras den
på ett lättare, icke finansiellt, exempel. Därefter appliceras metoden på tre
tillämpningsområden inom finansindustrin. Det första exemplet beskriver
ett fall där ett rutnät av volatiliteter är givet och känsligheter av ett option-
spris med avseende på alla punkter i rutnätet eftersöks. Det andra exemplet
beskriver fallet av en korgoption där känsligheter med avseende på alla un-
derliggande aktier för optionen eftersöks. I det sista exemplet beskrivs ett
fall där känsligheter av en ränteoption med avseende på alla initiala LIBOR-
räntor eftersöks, här görs antagandet om en LIBOR Marknadsmodell.

Det visas att både forward mode och adjoint mode producerar resultat
som är i linje med de värden som bestäms med hjälp av finita differensme-
toden. Det visas även att användning av adjoint mode, i alla tre finansiella
exempel, kan reducera den datorkraft som behövs i jämförelse med forward
mode och finita differensmetoden.

iv

Acknowledgements

We would like to thank Cinnober for giving us the opportunity to write
our thesis for them. Also, an especial gratitude goes to our Supervisor at
Cinnober, Magnus Sandström, who introduced us to this subject and also
triggered a lot of interesting discussions connected to it. Finally we would
like to sincerely thank our Supervisor at the Royal Institute of Technology,
Thomas Önskog, for outstanding feedback and help throughout the project.

Stockholm, September 2015

Eric Sunnegårdh
Ludvig Lamm

v

Contents

1 Background 2
1.1 Derivatives . 2
1.2 Stock price dynamics and the Monte Carlo method 3
1.3 Risk management and hedging 5
1.4 Sensitivities . 6

2 Algorithmic differentiation 10
2.1 Background and notations . 10
2.2 Forward and reverse mode . 12
2.3 Basic implementation example 15

2.3.1 Forward implementation 15
2.3.2 Adjoint implementation 16
2.3.3 Verifying the result . 17

2.4 Tools . 18

3 Implementing Algorithmic differentiation in finance 20
3.1 Volatility Surface . 20

3.1.1 Preliminaries . 22
3.1.2 Forward implementation 23
3.1.3 Adjoint implementation 28
3.1.4 Numerical results . 31

3.2 Basket option . 35
3.2.1 Forward implementation 36
3.2.2 Adjoint implementation 38
3.2.3 Numerical results . 38

3.3 LIBOR Market Model . 41
3.3.1 Forward implementation 42

vi

3.3.2 Adjoint implementation 45
3.3.3 Numerical results . 46

4 Conclusions 51

1

Chapter 1

Background

The financial markets are an ever growing world spanning industry. A lot of
effort is put into optimizing different aspects of it. In the following sections
an introduction to financial contracts and some fundamentals of risk man-
agement will be given to clarify when computational power, in some cases,
becomes a limiting factor.

1.1 Derivatives

In finance, a derivative is a contract which is dependent on one or more
underlying assets. An underlying asset can for example be a stock, bond or
commodity. A commonly traded type of derivative is an option. There are
different kinds of options, one example is the European call option. This
contract gives the buyer of the option the right, but not the obligation, to
buy some underlying asset at a predetermined date and price specified in
the contract. The predetermined date is generally referred to as maturity
date or time of exercise and the predetermined price as strike price [9]. The
payoff, f(ST), of such an option can mathematically be represented as,

f(ST) = max(ST −K, 0) (1.1)

where ST is the value of the asset at maturity date T and K the strike price.
In order to enter an option contract, the buyer of the option has to pay a

"premium" or price to the seller. There are various methods and models to
determine the price of the option, some of which will be investigated more
thoroughly later in this report. Though, common for all the methods is that

2

all strive to estimate the discounted expected payoff of the option, since this
obviously would be a fair price [9]. Whenever referring to an expected value,
if nothing else is said, the risk neutral measure is in mind and will be denoted
by E[(. . .)]. The risk neutral measure is a probability measure having the
property that every share price will be exactly the same as the discounted
expectation of the share price when using this specific measure. This is also
referred to as a martingale measure [10]. Hence, the price V of a European
call option can be expressed as,

V = exp (−rT) · E[max(ST −K, 0)], (1.2)

where r is the (constant) interest rate.
As already mentioned, apart from the European call option there are

several other contracts that are exchange traded. A European put option
differs from the call option in the way that the buyer of the option has
the right, but not the obligation, to sell an underlying asset. There are
also American options, which gives the buyer the possibility to exercise the
option at any time between now and the maturity date. All these contracts
are exchange traded and are often referred to as vanilla options [9].

In addition to the exchange traded contracts there are also over-the-
counter contracts. These kind of contracts are usually traded by financial
institutions and their clients. This opens up the possibility of entering very
complex contracts, which sometimes are hard to evaluate by analytically
means. In these cases simulation methods are widely used to estimate the
values of the contracts. However, this can be very costly when speaking
in means of computational power [2]. Commonly, option contracts traded
over-the-counter are usually referred to as exotic options [9].

1.2 Stock price dynamics and the Monte Carlo method

When evaluating expectations, such as Equation (1.2), it is common to model
the stock price dynamics as a stochastic differential equation (SDE) which
has the following form,

dS(t) = a(S(t), t)dt+ b(S(t), t)dW (t). (1.3)

3

Here a(S(t), t) is called the drift coefficient, b(S(t), t) is called the diffusion
coefficient and W is a Wiener process, also referred to as a Brownian mo-
tion. To clarify, Equation (1.3) is a short-hand expression for the following
equation,

S(t) = S(0) +

∫ t

0
a(S(u), u)du+

∫ t

0
b(S(u), u)dW (u),

where S(t) ∈ Rd1 andW (t) ∈ Rd2 , commonly d1 is equal to d2. This equation
has the characteristics of the sum of an ordinary Lebesgue integral and an
Itô integral [6]. In some cases the SDE can be explicitly integrated, as in the
Black-Scholes model which uses the following scalar SDE,

dS(t) = rS(t)dt+ σS(t)dW (t),

where r is the risk free interest rate and σ is the volatility. This is a geometric
Brownian motion which has the following solution,

S(T) = S(0) exp

(
(r − 1

2
σ2)T + σW (T)

)
. (1.4)

Using the expression above, an analytical expectation of f(S(T)) can be
derived using the probability distribution of W (T). Alternatively, a simula-
tion method, called Monte Carlo simulation, can be used to determine the
expectation. The Monto Carlo estimate can be denoted by,

V̂ = M−1
∑
m

f(Sm),

where Sm is determined using Equation (1.4) with independently sampled
values from the probability distribution forW (T) andM is the total number
of simulations ran.

Generally one can not explicitly integrate the SDE, so the time interval
[0, T] is split into N steps where each step has the size h = T/N . Then the
numerical approximation for each step is

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn (1.5)

where ∆W is a Wiener increment. These increments are independent and
have a normal distribution with zero mean and a variance equal to the time

4

step h. This means that for each of the M simulated paths, N independent
samples are generated to produce one ŜN . The variance for the Monte Carlo
simulation is M−1V ar[f(S)] [6] and since the samples are independent, the
error term is proportional to O(M−1/2).

1.3 Risk management and hedging

To hedge is to invest in a position, i.e. buy or sell contracts or assets, which
intent to eliminate risk, usually by reducing possible future profits. There
are numerous hedging techniques used in different situations in the financial
market. A farmer can for example hedge his future profit by entering a
forward contract giving him the right, and obligation, to sell a certain amount
of crop to a certain price at a certain time in the future. This way he
eliminates the risk associated with the crop dropping in price until the crop
is ready to be delivered [1].

Hedging is also widely used by financial institutions to manage their risk
incurred due to different investments. Sometimes the institutions want to
hedge themselves against interest rate risk incurred from portfolios consisting
of some assets and liabilities. The liability can for example be an issued
bond, i.e. a short position in a bond (the opposite of a short position is a
long position, which means buying a contract or asset). A commonly used
method in this case is the portfolio immunization strategy. The strategy
basically consists of ensuring that the average duration of the assets is equal
to one of the liabilities (duration is a measure of how long on average the
holder of a bond has to wait before receiving cash payments) [9]. Using this
strategy the profit (or loss) in the assets will offset the loss (or profit) in the
liabilities, as long as the interest rate is only affected by a parallel shift.

Another common situation when financial institutions are faced with
risk is when they issue over-the-counter contracts. Whenever these kind
of contracts are issued some kind of hedging is essential to keep the risk
acceptable. This is often done with dynamic hedging, i.e. adjusting the
hedge on a regular basis. In this case "a regular basis" is vague but commonly
means somewhere between once a day to once every month. The sensitivities
of the contract price, or the Greeks as they are often referred to, are used to
determine how each adjustment should be carried out. For example, the risk
associated with holding a short position in an option can be hedged using a

5

specific dynamic hedging technique called "delta-hedging", meaning buying
"delta" units of the underlying asset. Here, delta is the price sensitivity with
respect to the current price of the underlying asset, i.e.

∆ =
∂V

∂S0
,

where S0 is the current stock price and V is the option price [7].
In some cases closed form expressions can be found for the sensitivities,

although when this is not the case simulation techniques are commonly used.
This however, can be very demanding in terms of computational power [5].

1.4 Sensitivities

In addition to the sensitivity "delta" presented in the previous section, there
are other first order price sensitivities. The following list presents a few of
them,

• Vega (ν) - the derivative of the option price with respect to the volatil-
ity of the underlying asset, i.e. ν = ∂V

∂σ .

• Theta (Θ) - the derivative of the option price with respect to the pas-
sage of time, i.e. Θ = ∂V

∂τ . Here the passage of time is equivalent to
the time elapsed since the option was issued.

• Rho (ρ) - the derivative of the option price with respect to the risk free
interest rate, i.e. ρ = ∂V

∂r .

In some situation it can be beneficial to calculate second order price
sensitivities, one example is Gamma, which is the second derivative with
respect to the current stock price, i.e.

Γ =
∂2V

∂S2
0

.

Whenever these sensitivities are necessary to calculate and no closed
form expression can be formulated, the Monte Carlo simulation method is
commonly used. The following section will present three different approaches
combined with the Monte Carlo simulation.

Probably the most intuitive approach is to apply a finite difference ap-
proximation,

6

∂V

∂θ
≈ V (θ + ∆θ)− V (θ −∆θ)

2∆θ
,

for the first order derivative and,

∂V 2

∂θ2
≈ V (θ + ∆θ)− 2V (θ) + V (θ −∆θ)

(∆θ)2
,

for the second order derivative. Here V represents the option price and
θ an input parameter (e.g. current stock price, risk free interest rate or
volatility). The main shortcoming with this approach is that it requires
two additional sets of Monte Carlo simulations for each input parameter θ,
i.e. the computational cost increases proportional to the number of input
parameters and can therefore become large. Also great care must be taken
when choosing the size of ∆θ since a too large value will make the finite
difference approximation error significant, and a too small value can make the
variance become large if the payoff function of the option is discontinuous [7].

Another commonly used method is the Likelihood ratio method. Gener-
ally, this approach can be used whenever a probability distribution can be
determined for the underlying. Assume that the value of a derivative can be
expressed as,

E[f(S)] =

∫
R
f(S) · pθ(S)dS

where S is the underlying, f the payout function and pθ the probability den-
sity of the underlying which depend on the parameters θ. If differentiating
with respect to θ and then assuming f to be Lipschitz continuous and the
process S to be smooth, the order of integration and differentiation can be
interchanged [11]. Thus, the following can then be obtained,

∂E[f(S)]

∂θ
=

∫
R
f(S) · ∂pθ(S)

∂θ
dS =

∫
R
f(S)

∂logpθ(S)

∂θ
pθ(S)dS

= E

[
f(S)

∂logpθ(S)

∂θ

]
where the final expectation can be evaluated analytically, or if that is not
possible, numerical methods can be used. This method is beneficial when
dealing with discontinuous payoff functions since these will not have to be
differentiated. Although as stated earlier, this requires that a probability

7

density and the derivative of the probability density can be obtained. This
however, can be complicated. Also, this method does not generalise well
when it comes to path calculations involving multiple small timesteps since
this often leads to an estimator with a high variance [7]. This situation arises
when evaluating options with path dependent payoffs, for example American
options.

For the third approach called the Pathwise derivative method, assume
that the value of a derivative can be expressed as,

E[f(S)] =

∫
R
f(S(T)) · pW (W)dW

where pW (W) is the probability density function for W (T) given by,

pW (W) =
1√
2πT

exp(−W
2

2T
)

Notice that this also can be obtained from Equation (1.4) by performing a
change of variables [6]. Also notice that in Equation (1.4) the parameters in
θ enter the integral through the probability density of S(T) which is given
by,

pθ(S) =

(
∂S

∂W

)−1

pW =
1

Sσ
√

2πT
exp

−1

2

 log
(
S
S0

)
−
(
r − 1

2σ
2
)
T

σ
√
T

2

but in the second case the parameters enter through the expression of S(T)

given in Equation (1.4). Now, as in the case of the Likelihood ratio method,
this third approach uses the procedure of interchanging the expectation and
derivative, this gives,

∂E[f(S)]

∂θ
=

∫
∂f(S)

∂S(T)

∂S(T)

∂θ
pWdW = E

[
∂f(S)

∂S(T)

∂S(T)

∂θ

]
.

From here on the Monte Carlo method described in section 1.2 can be used
to estimate the expectation, i.e.

∂V̂

∂θ
= M−1

∑
m

∂f

∂S
(Ŝ

(m)
N)

∂Ŝ
(m)
N

∂θ

8

where Ŝ(m)
N is determined using the Euler scheme discretisation in Equation

(1.5) for every path m. If differentiating the Euler scheme, the following is
obtained,

∂Ŝn+1

∂θ
= (1 +

∂a

∂S
h+

∂b

∂S
∆Wn)

∂Ŝn
∂θ

+
∂a

∂θ
h+

∂b

∂θ
∆Wn, (1.6)

which then can be used to step by step determine the sensitivity of the path

to changes in the input parameters θ and finally determining a value of ∂Ŝ
(m)
N
∂θ

for every path.
As mentioned, this last method described, is called the pathwise deriva-

tive method. A benefit, compared to the likelihood ratio method, is that
it generalises well to path calculations [6]. But the major drawback with
this approach is that the payout function has to be differentiable. However,
when this is the case and multiple sensitivities are required there exists an
efficient implementation for the pathwise derivative method [5]. This imple-
mentation is generally referred to as algorithmic differentiation and comes
in two settings, the forward mode and the adjoint mode, these settings will
be described in the following chapter.

9

Chapter 2

Algorithmic differentiation

In this chapter an introduction to Algorithmic differentiation (AD), also
called Automatic differentiation, is given. This is then followed by a simple
example with numerical results to clarify the theory. The final section gives
some introduction to available tools performing these calculations automat-
ically.

2.1 Background and notations

Given a function in the form of a computer program, Automatic differen-
tiation is a set of techniques to rapidly and with high precision compute
partial derivatives to this function. The technique relies on the fact that
any computer program basically is a sequence of elementary functions such
as exponential functions or logarithms, combined by elementary operations
such as addition or subtraction. Hence, by using the chain rule of differentia-
tion, derivatives of all orders can be computed to just a small additional cost
of evaluating the original function itself. Using these facts, computer pro-
grams can be generated automatically to accurately and efficiently evaluate
derivatives of an arbitrary function [8]. Algorithmic differentiation basically
comes in two settings, namely, forward and reverse mode. Given a function
f(x) = g(h(x)) the chain rule yields

∂f

∂x
=
∂g

∂h

∂h

∂x
.

Using the first setting, forward mode, the chain of derivatives will be eval-
uated from the inside out, i.e. first ∂h

∂x should be determined and then ∂g
∂h .

10

In the second setting, reverse mode (also referred to as adjoint mode), the
derivatives should be evaluated from the outside to the inside, i.e. ∂g

∂h first
and then ∂h

∂x .
Consider the scalar function P = f(α) where α is an input vector. This

function calculates an intermediate vector S, which values are used to com-
pute the final P value. This function will be used as an example to explain
the notations used for both methods. The notations used in this report for
automatic differentiation will be the same as in the researching community.
Forward mode uses the dot notation, for example Ṡ means the derivative of
S with respect to one specific input parameter in α. Hence, using the chain
rule, Ṡ can be expressed as

Ṡ =
∂S

∂α
α̇,

here, ∂S∂α is the Jacobian of S as a function of α. Further on, if following the
dot notation, α̇ is the derivative of the input vector with respect to one of
its elements αi, i.e.

α̇ =
∂α

∂αi
=
[
0 · · · 0 1 0 · · · 0

]T
.

where the 1 has position i in the resulting vector. For example, if the deriva-
tive of P with respect to a specific input parameter is sought, where S is an
intermediate step, Ṗ can be expressed as follows,

Ṗ =
∂P

∂S
Ṡ,

here, ∂P∂S is a row vector. Using the chain rule this can be expanded to,

Ṗ =
∂P

∂S

∂S

∂α
α̇.

Notice that here the calculations are executed in the following order,

α̇→ Ṡ→ Ṗ . (2.1)

Reverse mode uses bar notation, for example S̄ means the derivatives of
P with respect to S and if using the chain rule this can be expanded to

S̄ =

(
∂P

∂S

)T
P̄

11

where T denotes either a matrix or vector transpose. Also, following the bar
notation, P̄ = ∂P

∂P = 1 is given by definition. Now, the derivative of P with
respect to the input vector α is denoted by ᾱ =

(
∂P
∂α

)T . Expanding this, the
following expression for ᾱ is obtained

ᾱ =

(
∂P

∂S

∂S

∂α

)T
=

(
∂S

∂α

)T
S̄,

and using the bar definition for S̄,

ᾱ =

(
∂S

∂α

)T (∂P
∂S

)T
P̄ . (2.2)

The returned ᾱ now contains derivatives with respect to all elements of the
input vector. Notice, that these calculations are carried out in the reverse
order, compared to forward mode, starting with P̄ ,

P̄ → S̄→ ᾱ.

For the current function P = f(α) , which only has one output and multiple
inputs, the reverse mode is the most efficient method when sensitivities with
respect to all input parameters are desired. This is due to the fact that
performing the calculations in Equation (2.2) results in a vector containing
all desired sensitivities while performing the calculations in Equation (2.1)
only one sensitivity is determined. Hence, if N sensitivities are desired,
Equation (2.1) has to be evaluated N times making the forward mode N
times more costly than the adjoint mode.

2.2 Forward and reverse mode

Consider the scalar function F (X), then the computation of the sensitivities,
using the forward notation, looks like the following

Ḟ =
dF

dX
Ẋ =

dF

dX1
Ẋ1 + ...+

dF

dXN
ẊN ,

the symbol d denoted a derivative where no implicit dependencies are con-
sidered. Following the researching community’s practice, it should be rep-
resented as a matrix equation. This can be done by including the trivial

12

equations Ẋ1 = Ẋ1, ..., ẊN = ẊN , yielding
Ẋ1

...
ẊN

Ḟ

 =

1

. . .

1
dF
dX1

· · · dF
dXN

Ẋ1

...
ẊN

 .

Notice that the empty entries in the matrix represents zeros. This matrix
is usually denoted by D and has the dimensions (N + 1) × N , where N is
the length of the input vector. To compute all the derivatives for the input
vector X, the matrix equation has to be evaluated N times. Each time with
an updated input vector Ẋ, for example, Ẋ = (1, 0, ..., 0)T will result in dF

dX1

and Ẋ = (0, ..., 0, 1)T will result in dF
dXN

.
Now consider the case of reverse mode, here the quantities X̄i are sought.

Using the notation for adjoint variables these can be expanded to the fol-
lowing,

X̄i =
dF

dXi
F̄ .

Now these equations can be written as a matrix equation having the following
appearance,

X̄

(0)
1
...

X̄
(0)
N

 =

1 dF

dX1

. . .
...

1 dF
dXN

X̄

(1)
1
...

X̄
(1)
N

F̄

assuming all bar values in the input vector,

[
X̄

(1)
1 . . . X̄

(1)
N F̄

]T
are equal

to zero except for F̄ = dF
dF = 1. The additional index introduced here

denotes that the values in the input vector are being updated. This way, the
sensitivities of F with respect to all input parameters are calculated in one
sweep. Notice that the matrix in the adjoint calculation is just the transpose
of the one in forward mode.

The previous example is a trivial case, in a more general setting interme-
diate variables and their sensitivities have to be calculated. Thus, assume
that Xn = Fn(Xn−1) gives an intermediate value in the process of calculat-
ing the final vector XN = FN (XN−1) and that,

13

Fn(Xn−1) ≡
(

Xn−1
fn(Xn−1)

)
(2.3)

where fn is a scalar function and Xn−1 is a column vector. Notice that each
time the function Fn is applied to the column vector Xn, it increases the
vectors length by one additional row.

Now differentiating Equation (2.3), and defining an intermediate vector
of derivative as Ẋn, gives the following relation,

Ẋn = DnẊn−1

and

Dn =

(
In−1

dfn
dXn−1

)
where In−1 represents the identity matrix with dimensions (k × k) where
k is equal to the length of Xn−1 and dfn

dXn−1
corresponds to a row vector

containing all partial derivatives of the currents step scalar function fn. So
for each step, evaluating intermediate sensitivities Ẋn, each new D matrix
will expand by one additional row and column compared to the D matrix of
the previous step. The final vector of sensitivities ẊN can then be computed
as

ẊN = DN ·DN−1 · ... ·D1 · Ẋ0.

Here, ẊN now contains sensitivities of the entire output vector XN with
respect to one element in the input vector X0. Usually, in financial applica-
tions, only the last element of ẊN will be of interest (this will be explained
more thoroughly later).

In the case of reverse mode, in this more general setting, consider the
column vector X̄n denoting the derivative of a specific element in the output
vector, for example X(i)

N , with respect to all elements in the intermediate
vector Xn. Using the chain rule, the following can be obtained,

X̄n−1 =

(
dX

(i)
N

dXn−1

)T
=

(
dX

(i)
N

dXn

dXn

dXn−1

)T
=

(
dXn

dXn−1

)T (dX
(i)
N

dXn

)T
= (Dn)T X̄n.

hence, this reveals the relation X̄n−1 = (Dn)T X̄n. Now, using this relation,

14

the following expression will give the sensitivity of one specific output element
X

(i)
N with respect to all elements of in the input vector X0,

X̄0 = (D1)T · ... · (DN−1)T · (DN)T · X̄N.

where X̄0 now contains sensitivities with respect to all input parameters X0.
Note that to perform the reverse mode calculations an initial forward sweep
is necessary to calculate and store all D matrices. Also, as in the previous
simpler case the reverse mode requires only one sweep (corresponding to
carrying out the N matrix multiplications of the D matrices) to determine
sensitivities with respect to all input parameters, while the forward mode
requires as many sweeps as sensitivities desired.

2.3 Basic implementation example

Consider the step function

an+1 = exp(0.05 · an + b) (2.4)

and assume that it is desired to calculate the sensitivity of a2 with respect
to a0 and b (which are considered to be known input parameters). To clarify
the theory explained in previous section these calculations will be carried
out using both the forward mode and backward mode. Notice that the same
intermediate variable a1 is used in both methods. According to the step
function in (2.4), a1 can be expressed as,

a1 = exp(0.05 · a0 + b). (2.5)

2.3.1 Forward implementation

To initiate the forward mode, the sensitivity of the intermediate variable is
expressed as,

ȧ1 =
da1

da0
ȧ0 +

da1

db
ḃ, (2.6)

where the partial derivatives can be determined using Equation (2.5),

da1

da0
= 0.05 exp(0.05 · a0 + b)

15

da1

db
= exp(0.05 · a0 + b)

If inserting the partial derivatives in Equation (2.6) and also introducing the
trivial equations ȧ0 = ȧ0 and ḃ = ḃ, then this system of equation can be
expressed using a matrix notation,

 ȧ0

ḃ

ȧ1

 =

 1 0

0 1

0.05 · exp(0.05 · a0 + b) exp(0.05 · a0 + b)

[ȧ0

ḃ

]
.

In a similar way, the system of equation of the next iteration to obtain ȧ2,
can be expressed as

ȧ0

ḃ

ȧ1

ȧ2

 =

1 0 0

0 1 0

0 0 1

0 exp(0.05 · a1 + b) 0.05 · exp(0.05 · a1 + b)

 ȧ0

ḃ

ȧ1

 ,

where ȧ2 is the sensitivity with respect to one element in the initial vector[
ȧ0

ḃ

]
. As mentioned earlier, to determine the sensitivity with respect to the

k-th element of the input vector, the above expressions has to be evaluated
for the initial vector having the k-th element set to one and all others set
to zero. Hence, in this case the forward mode calculations have to be done
twice (since sensitivities with respect to all elements were of interest), the

first time with the initial vector as

[
ȧ0

ḃ

]
=

[
1

0

]
and the second time as[

ȧ0

ḃ

]
=

[
0

1

]
.

2.3.2 Adjoint implementation

In the adjoint mode, the calculations are made in the reverse order. Notice
that the matrices containing the directional derivatives derived when apply-
ing the forward mode will still be very useful, they will just be transposed.
Starting from the back,

16

 ā
(1)
0

b̄(1)

ā
(1)
1

 =

1 0 0 0

0 1 0 exp(0.05 · a1 + b)

0 0 1 0.05 · exp(0.05 · a1 + b)

ā

(2)
0

b̄(2)

ā
(2)
1

ā
(2)
2

 ,

where ā2 = da2
da2

= 1 and the adjoint variables ā(2)
0 , b̄(2) and ā(2)

1 are initially
set to zero. The next backward iteration yields the desired sensitivities,

[
ā

(0)
0

b̄(0)

]
=

[
1 0 0.05 · exp(0.05 · a0 + b)

0 1 exp(0.05 · a0 + b)

] ā
(1)
0

b̄(1)

ā
(1)
1

 .
Hence, the final vector

[
ā

(0)
0

b̄(0)

]
now contains the the sensitivity of a2 with

respect to a0 and b. Notice that the adjoint calculations only had to be done
once to evaluate both sensitivities, in comparison to the forward mode where
two sweeps were necessary.

2.3.3 Verifying the result

To ensure the reader that the forward and adjoint mode gives identical results
and also aligns with results determined using a finite difference approach,
Table 2.1 presents numerical results from all three methods of the previous
example.

Table 2.1: Numerical results of sensitivities calculated by finite difference, forward
mode and adjoint mode.

Finite difference Forward Adjoint

∂a2
∂a0

0.02240258 0.02240252 0.02240252

∂a2
∂b 3.58407199 3.58384478 3.58384478

Note that the number of significant figures in the table is way to large consid-
ering the number of significant figures of the model and are not to be trusted,
but these are kept to show that the results of the adjoint and forward mode

17

indeed are identical. The reason why they are identical is because of the fact
that the exactly same computations are carried out in both modes, the only
difference is the order the operations are done. Also note that the results in
Table 2.1 are based on the input parameters chosen as a0 = 1 and b = 1 and
the finite difference scheme used was of first order, i.e.

∂f

∂x
≈ f(x+ h)− f(x)

h

where h = 10−6.

2.4 Tools

Implementing Algorithmic differentiation manually can be a quite mundane
and repetitive work, therefore there is a high risk of errors, but this can be
avoided by instead using Algorithmic differentiation tools. Currently, there
are two categories of AD tools, source code transformation and operator
overloading. Source code transformation tools uses the existing source code
as input and generates new code which will either perform a forward or
adjoint calculation. The other method, operator overloading, only works for
languages which support it. C++ is one of these languages and to implement
AD in C++ with operator overloading firstly new variable types have to be
created. For example, float becomes ADfloat. This new AD type will have
two properties, one is a list of all the values the variable has ever had, the
other is a list of all the derivatives the variable has ever had. This way the
program can trace how the variable has changed through out the program.
Now operators such as ∗ and + will not work for the new types. This is
where operator overloading becomes useful. In languages such as C++, the
compiler can be told how to handle operations between custom types, so for
each operator this new custom behavior has to be implemented, where the
current value and its derivative are saved in a list. There will be no difference
in the code except for the new types and that they will require some extra
memory, the operators such as ∗ should behave as before. An advantage
with the source code transformation tool is that it has a greater control of
how the source code is generated, it can perform some optimization which
operator overloading cannot [2]. These AD tools are still quite new and not a
lot of languages are supported, anything other than C, C++ or FORTRAN

18

can be hard to find.
No further investigation of these tools will be presented in this report,

instead the focus will be on the mathematical side of it and how Algorithmic
differentiation can be implemented in some real financial applications. Still,
it is important to mention that these tools exist and are probable to become
useful in the financial industry.

19

Chapter 3

Implementing Algorithmic
differentiation in finance

In this chapter the methods described in the previous chapter will be im-
plemented on three common financial cases. The first section covers the
fundamentals of a volatility surface and how the previously presented theory
can be used to determine sensitivities of an option price with respect to all
nodes on that volatility surface. The following section investigates the case
of a basket option where sensitivities with respect to all underlying stocks
are desired. This is followed by the last section covering the case of a caplet
where the sensitivities with respect to different forward rates are sought,
using the assumptions of a LIBOR Market Model.

3.1 Volatility Surface

The Black-Scholes framework for option pricing can in some senses be consid-
ered unrealistic. One reason is the assumption that the volatility is constant.
It might make more sense to assume that the volatility can be modeled as a
random variable, these models exists and are usually referred to as stochas-
tic volatility models. But the computational complexity of these models and
the procedure of fitting model parameters can be very difficult [4]. Instead,
Bruno Dupire showed how option prices quoted in the market could be used
to calculate a state-dependent volatility σ(St, t). If assuming that the under-
lying stock pays zero dividend and following Dupire’s approach, the formula
for calculating the local volatility can be expressed as,

20

σ(S, t;S0)|S=K,t=T =

√√√√√2
(
∂C(S0,T,K)

dT + rK ∂C(S0,T,K)
∂K

)
K2 ∂

2C(S0,T,K)
∂K2

(3.1)

where C represents an option price quoted in the market with strike price
K and time to maturity T [3]. Note that the derivatives in the Formula
(3.1) can be estimated using market data and forming a finite difference. If
this is done multiple times for different strike prices and maturities of an
option, a local volatility surface can be obtained interpolating the retrieved
volatilities. Now, this volatility surface can be used when simulating paths of
the option. The dynamics of the process will have the following appearance,

dSt = rStdt+ σ(St, t)dWt. (3.2)

where σ(St, t) is the state dependent volatility and r is the constant rate.
A problem with the Dupire formula (3.1) is that when the second deriva-

tive of the option price with respect to the strike price approaches zero the
whole denominator approaches zero. Also, a high level of instability can be
introduced when applying, for example, a finite difference approach to the
option prices to determine their derivatives since there might not be as much
available data as would be desired. How unstable the results become can vary
a lot depending on which techniques that are used and the amount of data
available when evaluating the derivatives. However, whatever method used,
it will be interesting evaluating how much an error in each node (obtained
from the Dupire formula) will influence the pricing of an option using the
dynamics of Formula (3.2). Now, if considering the adjoint method of Algo-
rithmic differentiation presented in the previous chapter, it seems likely that
great computational savings can be made for this scenario since sensitivities
of one output (the option price) with respect to multiple input parameters
(all sensitivity nodes) are desired.

In the following sections, the calculations required to determine sensitiv-
ity of an option price with respect to all of the volatility nodes are shown for
both forward and adjoint mode. This is then followed by numerical results
on the computation times of both methods.

21

3.1.1 Preliminaries

For this example the price of an European call option will be in focus. This
option has the payoff shown in Equation (1.1) and the price of the option is
shown in Equation (1.2). Here, the expectation can be evaluated using the
dynamics of St specified in Equation (3.2). Although, the dynamics of St
will be discretized by using an Euler Scheme as described in section 1.2, but
with the rate constant. Hence, the discretized scheme will have the following
appearance,

Sn+1 = Sn + rSn∆t+ σ(Sn, tn)Sn∆Wn. (3.3)

Further on, it is assumed that a grid of local volatilities is given, denoted
by σi,j where the indices i = 1 . . . I and j = 1 . . . J . Also, i and j corresponds
to certain times Ti and stock prices S∗j respectively, notice that the super-
index ∗ indicates the belonging to a certain grid point. So by definition,
σi,j = σ(S∗j , Ti). Notice that in Equation (3.3) the volatility depends on
both Sn and tn and that these points does not necessarily correspond to a
given grid point. Thus, the given grid points have to be interpolated, both
in time and stock price, creating a continuous surface of local volatilities.
The equations used for time interpolation is the following,

σnj = σi,j + (tn − Ti)
σi+1,j − σi,j
Ti+1 − Ti

(3.4)

where σnj then denotes a value on the local volatility surface that lies between
two grid points stock wise, but lies at a time tn determined by the Euler
scheme. It should be noted that the i-index now is suppressed since the n-
index states where in time this volatility should be used. The corresponding
interpolation relationship stockwise is,

σn = σnj + (Sn − S∗j)
σnj+1 − σnj
S∗j+1 − S∗j

. (3.5)

Here σn = σ(Sn, tn) and thus denote a local volatility at a certain point
(Sn, tn) obtained through the Euler scheme. Notice that for each σnj to be
determined, two grid points are needed and that for each σn both σnj and
σnj+1 are needed. Hence, it requires four nodes to calculate one σn. Here, it
should be noted that also the j-index is suppressed since the volatility does
not correspond to a certain grid point, but instead the n-index indicates the

22

value of the stock price, which is Sn.
The fact that the Euler Scheme allows for Sn to take values outside the

boundaries of the volatility grid creates some problems. To handle this, it is
assumed that whenever Sn jumps outside the grid the volatility is constant,
i.e. if Sn > S∗max then σ(Sn, tn) = σ(S∗max, tn) = σnJ and if Sn < S∗min
then σ(Sn, tn) = σ(S∗min, tn) = σn1 . Here S∗min and S∗max corresponds to the
boundary points on the volatility grid, stockwise. Although it is assumed
that the given grid of volatilities is large, i.e. it contains grid points cor-
responding to stock prices about three standard deviations away from the
current price. Hence, it is unlikely that the stock price will ever fall outside
the grid and therefore only a few of the trajectories will contain such values,
making the above restriction more justified.

3.1.2 Forward implementation

Looking back at the theory in chapter 2, the quantities sought here are
denoted by ∂P

∂σi,j
= Ṗ for i = 1 . . . I and j = 1 . . . J . To begin, consider

the derivative of P with respect to one of the nodes σi,j . The input vector,
initiating the computations of the derivatives will be,

x0 = [Ṡ0 σ̇1,1 ··· σ̇1,J σ̇2,1 ··· σ̇2,J ··· σ̇i,j ··· σ̇I,1 ··· σ̇I,J]
T .

Following the notations it is obvious that σ̇i,j =
∂σi,j
∂σi,j

= 1 and that all other
derivatives with respect to σi,j equals zero. Since there are multiple steps of
evaluating P = exp(−rT) max(SN −K, 0) there will also be multiple steps
evaluating the intermediate derivatives. Here P is the payoff function of the
call option times the discount factor from the pricing expression of Equation
1.2. Considering the definition of P and Equations (3.3),(3.4) and (3.5), the
first step of evaluating P is to use the interpolation relation (3.4) and deter-
mine σ0

j . Hence the first step now, evaluating the intermediate derivatives,
is to evaluate the derivative of σ0

j with respect to all input parameters. The
D1 matrix corresponding to this have the following appearance,

23

1

dσ0
j

dS0

dσ0
j

dσ1,1
. . .

dσ0
j

dσi,j
. . .

dσ0
j

dσI,J

here the 1 denotes the identity matrix. Performing this matrix and vector
multiplication D1x0 the output vector now contains the following values,

[
Ṡ0 σ̇1,1 · · · σ̇i,j · · · σ̇I,J σ̇0

j

]T
.

Notice here that only the quantities denoted by
dσ0

j

dσi,j
and

dσ0
j

dσi+1,j
in the matrix

D1 take values separated from zero. Computing these values gives,

dσ0
j

dσi,j
= 1 + (t0 − Ti)

0− 1

Ti+1 − Ti
=
Ti+1 − t0
Ti+1 − Ti

(3.6)

and

dσ0
j

dσi+1,j
= 0 + (t0 − Ti)

1− 0

Ti+1 − Ti
=

t0 − Ti
Ti+1 − Ti

The second step of evaluating P is to find σ0
j+1, which means that the

second step now is to evaluate the derivative of σ0
j+1 with respect to all

input parameters. This is very similar to the previous step and the matrix
D2 corresponding to these calculations have the following appearance,

1

dσ0
j+1

dS0

dσ0
j+1

dσ1,1
. . .

dσ0
j+1

dσi,j
. . .

dσ0
j+1

dσI,J

dσ0
j+1

dσ0
j

and multiplying this with the output vector of the previous step gives the
new output vector,

[
Ṡ0 σ̇1,1 · · · σ̇i,j · · · σ̇I,J σ̇0

j σ̇0
j+1

]T
.

Again, notice that the only derivatives not equal to zero in D2 are
dσ0

j+1

dσi,j+1

24

and
dσ0

j+1

dσi+1,j+1
. Similarly as before these can be computed to,

dσ0
j+1

dσi,j+1
=
Ti+1 − t0
Ti+1 − Ti

and

dσ0
j+1

dσi+1,j+1
=

t0 − Ti
Ti+1 − Ti

The third step of evaluating P is to determine σ0, therefore the third step
now is to determine the derivative of σ0 with respect to all input parameters.
This matrix D3 takes the form,

1

dσ0
dS0

dσ0
dσ1,1

. . . dσ0
dσi,j

. . . dσ0
dσI,J

dσ0
dσ0

j

dσ0
dσ0

j+1

and multiplying it with the output vector of the previous step gives the new
output vector,

[
Ṡ0 σ̇1,1 · · · σ̇i,j · · · σ̇I,J σ̇0

j σ̇0
j+1 σ̇0

]T
.

Similarly to the previous step, only a few of the derivatives in D3 will take
a nonzero value. In this case these derivatives are dσ0

dσ0
j
, dσ0
dσ0

j+1
and dσ0

dS0
which

take the following values,

dσ0

dσ0
j

= 1 + (S0 − S∗j)
0− 1

S∗j+1 − S∗j
=
S∗j+1 − S0

S∗j+1 − S∗j
, (3.7)

dσ0

dσ0
j+1

= (S0 − S∗j)
1− 0

S∗j+1 − S∗j
=

S0 − S∗j
S∗j+1 − S∗j

(3.8)

and

dσ0

dS0
=

1

S∗j+1 − S∗j
(σ0
j+1 − σ0

j). (3.9)

The fourth step of evaluating P is to determine S1, which means that the
fourth step here is to evaluate the derivative of S1 with respect to the in-

25

put parameters. The matrix D4 corresponding to this have the following
appearance,

1

dS1
dS0

dS1
dσ1,1

. . . dS1
dσi,j

. . . dS1
dσI,J

dS1

dσ0
j

dS1

dσ0
j+1

dS1
dσ0

and multiplying it with the output vector of the previous step gives the new
output vector,

[
Ṡ0 σ̇1,1 · · · σ̇i,j · · · σ̇I,J σ̇0

j σ̇0
j+1 σ̇0 Ṡ1

]T
.

The only nonzero derivatives in this matrix D4, are dS1
dS0

and dS1
dσ0

and their
values are,

dS1

dS0
= 1 + r∆t+ σ0∆W0 (3.10)

and

dS1

dσ0
= S0∆W0. (3.11)

Then, basically the above process starts over again by evaluating first σ1
j

followed by σ1
j+1, σ1, and finally Ṡ2. This process iterates N times until ṠN

is known, i.e. at this point there will be N · 4 different D matrices. When
ṠN is known there is only one more derivative to evaluate, namely the one
corresponding to the final step of evaluating the payoff function when SN

is known. The matrix DN ·4+1 corresponding to last step have the following
appearance,

1

dP
dS0

. . . dP
dσi,j

. . . dP
dσI,J

. . . dP
dσN−1

j+1

dP
dσN−1

dP
dSN

multiplying this D matrix with the input vector containing all dot values up

26

to ṠN gives the following output which contain the sought value Ṗ ,[
Ṡ0 σ̇1,1 · · · σ̇i,j · · · σ̇I,J · · · σ̇Nj σ̇Nj+1 σ̇N ṠN Ṗ

]T
.

The only derivative in DN ·4+1 taking a nonzero value is dP
dSN

= exp(−rT) ·
1SN>K .

Considering all these matrices, it is quite obvious that there are a lot
of unnecessary matrix operations carried out. These operations are likely
to create great performance issues. Although, this can be handled if taking
a slightly different approach than the algorithmic procedure previously de-
scribed and instead focusing on the derivatives actually contributing to the
sought value.

To begin, again consider the derivative of P with respect to one of the
nodes σi,j and expand it to Ṗ = ∂P

∂SN
ṠN . Here, considering the Equation 1.2,

then ∂P
∂SN

= exp(rT)1SN>K and SN will be known at the end of the forward
sweep, i.e. ∂P

∂SN
will be known. The trickier part is evaluating ṠN , for this

a recursion relationship is required. Taking the derivative of Equation (3.3)
with respect to σi,j the following recursion can be derived,

Ṡn+1 = Ṡn(1 + r∆t+ σ(Sn, tn))∆Wn + σ̇nSn∆Wn.

Notice that for each step in the recursion of Ṡn a new value σ̇n is required.
This dot value can be obtained by first taking the derivative of the interpo-
lation relationship in Equation (3.4) which get the following appearance,

σ̇nj = σ̇i,j + (tn − Ti)
σ̇i+1,j − σ̇i,j
Ti+1 − Ti

The interpolation relation in stock price, Equation (3.5), is then used to
derive the following relation for σ̇n,

σ̇n = σ̇nj + (Sn − S∗j)
σ̇nj+1 − σ̇nj
S∗j+1 − S∗j

.

This process should recursively be repeated until ṠN is known. When
this is done the sought value is determined as Ṗ = ∂P

∂SN
ṠN . Now everything

needed to run the Monte Carlo simulation is known and the sensitivity of
the option price V = exp(−rT) ·E[P (ST)] with respect to one node σi,j can
be estimated. However, since sensitivities of all local volatility nodes were

27

desired, this whole procedure has to be run I · J times, which of course will
be very demanding in computational power. The following section presents
the adjoint approach for the same scenario, which according to the theory
should be a lot more efficient.

3.1.3 Adjoint implementation

The strict algorithmic procedure of carrying out the adjoint calculations,
presented in chapter 2, can now easily be done using the information from
a forward sweep. Assuming all D matrices being saved during the forward
sweep, the vector containing sensitivities with respect to all input parameters
can be obtained through the following calculations,

x0 = (D1)T · (D2)T · . . . ·(DN ·4)T · (DN ·4+1)T · xN

where xN is the initial vector of the backward computations, i.e.

xN =
[
S̄0 σ̄1,1 · · · σ̄i,j · · · σ̄I,J · · · σ̄Nj σ̄Nj+1 σ̄N S̄N P̄

]T
here, all bar values are initially set to zero except for P̄ = ∂P

∂P = 1. But
following this blindly will, as in the case of forward mode, result in very
costly matrix vector multiplications. Also, saving all these large D matrices
can result in the computer running out of memory. Instead the essential
computations should be extracted and carried out manually. The following
part will describe which these calculations are, and what information needs
to be stored from the forward sweep.

To begin, P̄ is as before equal to 1 and the next step is to find a recursive
relationship to evaluate S̄n. This is done by first expanding S̄n to,

S̄n =
∂P

∂Sn
=
∂Sn+1

∂Sn
S̄n+1.

Now, using Equations (3.3) and (3.5),

∂Sn+1

∂Sn
= (1 + r∆t+ σn∆Wn) + Sn∆Wn

1

S∗j+1 − S∗j
(σnj+1 − σnj)

28

hence,

S̄n = ((1 + r∆t+ σn∆Wn) + Sn∆Wn
1

S∗j+1 − S∗j
(σnj+1 − σnj))S̄n+1.

This reveals the first values that needs to be stored from the forward sweep,
i.e.

dSn+1

dSn
= 1 + r∆t+ σn∆Wn,

dSn+1

dσn
= Sn∆Wn (3.12)

and

dσn
dSn

=
1

S∗j+1 − S∗j
(σnj+1 − σnj)

which corresponds to the derivatives, in the D matrices, from Equations
(3.9), (3.11) and (3.10). Since the value S̄N = ∂P

∂SN
is known at the end of

the forward sweep, this can be used to initialize the recursion of S̄n. Then,
using these bar values of S, the σ̄n values can be computed as,

σ̄n =
∂P

∂σn
= (

∂Sn+1

∂σn
)S̄n+1 = (Sn∆Wn)S̄n+1

The only values required for these calculations, except from the S̄n values,
are obviously the ones from Equation (3.12). Further on, using these σ̄n
values, derivatives of the partially interpolated values σ̄nj can be evaluated.
Here it is important to consider Equation (3.5) and notice that both σnj
and σnj+1 influences σn. It is therefore natural to believe that both σ̄nj and
σ̄nj+1 will be influenced by σ̄n, and if investigating this further the following
relations can be derived,

σ̄nj =
∂P

∂σnj
=

(
∂σn
∂σnj

)
σ̄n =

(
S∗j+1 − Sn
S∗j+1 − S∗j

)
σ̄n

and

σ̄nj+1 =
∂P

∂σnj+1

=

(
∂σn
∂σnj+1

)
σ̄n =

(
Sn − S∗j
S∗j+1 − S∗j

)
σ̄n.

29

In these relations additional values to be saved from the forward sweep are
revealed, namely the derivatives

dσn
dσnj

=
S∗j+1 − Sn
S∗j+1 − S∗j

dσn
dσnj+1

=
Sn − S∗j
S∗j+1 − S∗j

which correspond to those in Equations (3.7) and (3.8). Also note that if the
stock price drifts beyond the volatility grid, i.e. Sn > S∗J , then σn = σnJ since
σn is constant outside the grid. Therefore the corresponding bar relationship
is σ̄nJ = σ̄n.

The final step now is to compute the bar values of the grid points σ̄i,j ,
i.e. the sought derivatives. Similarly to the previous step determining σ̄nj , it
seems reasonable to believe that σ̄nj will influence both σ̄i,j and σ̄i+1,j , and
likewise that σ̄nj+1 will influence both σ̄i,j+1 and σ̄i+1,j+1. However, here it is
important to notice that the partially interpolated value σnj for every time-
step tn ∈ [Ti−1, Ti+1] will depend on the same grid point σi,j . Therefore these
calculations will be cumulative, in comparison to the previous calculations
where each sensitivity were unique for every time step tn. Investigating
this more thoroughly, cumulative relationships of all these bar values can be
found, starting with σ̄i,j the following is revealed,

σ̄
(n−1)
i,j = σ̄

(n)
i,j +

(
∂σnj
∂σi,j

)
σ̄nj .

Here the additional index (n) introduced denotes that the bar value of the
grid point is being updated, this means that the initial index of σ̄i,j will be
(N) and the final value of the index will be (0), i.e. σ̄(0)

i,j denotes the sought

value. Also, each derivative
∂σn

j

∂σi,j
gets the following appearance,

∂σnj
∂σi,j

=

(
Ti+1 − tn
Ti+1 − Ti

)
which corresponds to the derivative in Equation (3.6), i.e. these are also
values that needs to be stored when performing the forward sweep. Similarly
the following relations can be used to obtain the remaining bar values,

σ̄
(n−1)
i+1,j = σ̄

(n)
i+1,j +

(
tn − Ti
Ti+1 − Ti

)
σ̄nj ,

30

σ̄
(n−1)
i,j+1 = σ̄

(n)
i,j+1 +

(
Ti+1 − tn
Ti+1 − Ti

)
σ̄nj+1

and

σ̄
(n−1)
i+1,j+1 = σ̄

(n)
i+1,j+1 +

(
tn − Ti
Ti+1 − Ti

)
σ̄nj+1.

Notice that, for each step in n there will only be four grid points accumu-
lating an additional value when being updated, however the recently intro-
duced index (n) will decrease for all grid points in each step. This concludes
the adjoint calculations, since now the sensitivities with respect to all local
volatility nodes can be determined. One key observation to make is that
in forward mode, just a few of the nonzero derivatives contributes to the
retrieved value from one sweep, but in the case of adjoint mode all nonzero
derivatives will contribute to the result in one sweep. Also, notice that the
adjoint mode now only required one set of Monte Carlo simulated paths,
which is a factor of I ·J less than in the case of forward mode. The following
section will present some numerical results on the performance tests of both
methods.

3.1.4 Numerical results

In the following tables, Table 3.2, Table 3.3 and Table 3.4, numerical results,
computed using forward mode, adjoint mode and finite difference, are pre-
sented. Table 3.1 clarifies the correspondence of the indices I and J to stock
price and time respectively. The calculations were made for a hypothetical
grid of local volatilities. The grid was of size 5×5 and a linearly interpolated
illustration of the grid is shown in Figure 3.1.

31

Figure 3.1: A 3D-Plot showing the hypothetical local volatility surface used as
input for this example.

Also, the other input parameters were given the following values, K = 100,
S0 = 100, r = 0.05, T = 1. The number of steps in the discretisation in time
was set n = 100 and the number of Monte Carlo paths was set to M = 106.

Table 3.1: Indices values. The table shows the correspondence of the indices I
and J to stock price and time respectively.

Indices value 1 2 3 4 5

Stock price (i) 80 90 100 110 120

Time (j) 1
6

2
6

3
6

4
6

5
6

32

Table 3.2: Finite Difference. Numerical values of sensitivities calculated by
using a finite difference approach, each cell corresponds to the sensitivity of P with
respect to one grid point σi,j .

∂P
∂σi,j

j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.1018 0.9753 2.6703 0.8924 0.1594

i = 2 0.7382 2.3759 3.2527 1.9540 0.8973

i = 3 1.0368 2.3660 2.8260 1.8346 1.1489

i = 4 0.6104 2.3370 3.3493 1.8871 0.8021

i = 5 0.0649 0.8915 2.3402 0.8389 0.1065

Table 3.3: Forward mode. Numerical values of sensitivities calculated by using
forward mode, each cell corresponds to the sensitivity of P with respect to one grid
point σi,j .

∂P
∂σi,j

j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.1016 0.9669 2.7434 0.8793 0.1554

i = 2 0.7335 2.4214 3.3151 1.9429 0.9122

i = 3 1.0245 2.3716 2.8496 1.8436 1.1634

i = 4 0.6068 2.3673 3.3813 1.9162 0.8134

i = 5 0.0657 0.8936 2.3588 0.8494 0.1547

33

Table 3.4: Adjoint mode. Numerical values of sensitivities calculated by using
adjoint mode, each cell corresponds to the sensitivity of P with respect to one grid
point σi,j .

∂P
∂σi,j

j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.1003 0.9651 2.6930 0.8885 0.1567

i = 2 0.7350 2.4097 3.3258 1.9641 0.9109

i = 3 1.0196 2.3806 2.8352 1.8567 1.1500

i = 4 0.6067 2.3666 3.3780 1.9072 0.8014

i = 5 0.0670 0.8950 2.3642 0.8413 0.1319

Notice that a difference compared to the results of the simple example in
section 2.3 is that here the numerical values computed using forward and
adjoint mode are not identically. This is because of the randomness incurred
by the Monte Carlo simulation. However, the results computed using the
different methods are all agreeing on at least one decimal digits.

To give some insight of the computational cost, the plot in Figure 3.2
shows the computation times using forward, adjoint and finite difference to
compute sensitivities with respect to all nodes for grids of different sizes.
The grid sizes are varied from 2× 2 to 20× 20, i.e. 4 to 400 grid points.

34

Figure 3.2: The figure shows the computation time as a function of the number of
grid points on the volatility surface, for all three methods.

It can be seen that in this case the finite difference method outperforms
the forward mode, but this performance difference might be due to the way
it has been implemented in code. However, this plot clearly shows the per-
formance benefits of using the adjoint mode compared to both forward mode
and finite difference, especially when the size of the grid is large.

3.2 Basket option

In this section it will be shown how an algorithmic differentiation approach
can be used to evaluate the sensitivities of an basket option. A basket option

35

is a financial derivative where there are multiple underlyings, for example
stocks or commodities. The option gives the owner the right, but not the
obligation, to buy the underlying assets (assuming it is a call option). A
basket option which has stocks as underlyings has the following payout,

P = max

(
m∑
i=1

(w(i)SiN)−K, 0

)
, (3.13)

where m is the total number of stocks, w is the weight for each stock which
sums to one, N is the options maturity and K is the strike. Each underlying
stock is an independent stochastic process having the following dynamics,

dSit = rSitdt+ σ(i)dW i
t .

where σ(i) is the volatility which is independent of S and t, r is the risk-free
interest rate, and dW i

t the Wiener process increment of stock i. There is
no explicit solution for the price of a basket option, assuming there are at
least two underlying assets, instead Monte Carlo simulation can be used to
estimate the option price. The following will show how to implement both
the forward and adjoint mode for the case of a basket option.

3.2.1 Forward implementation

Now the calculation of the delta sensitivities for the basket option in forward
mode will be shown. Considering Equation (1.5), in the case of deterministic
interest rate and volatility, the step function for each stock Si takes the
following form,

Sin+1 = Sin(1 + r∆t+ σ(i)∆W i
n). (3.14)

In this example the stocks are uncorrelated with each other, so they will
not interfere with each others paths. To begin, consider only the derivative
with respect to one stock Si, i.e. ∂P

∂Si
0
. Using the theory of algorithmic

differentiation and starting with the initial vector of dot values,[
Ṡ1

0 . . . Ṡm0

]T
,

notice that only one of these enteries are equal to one and the rest are zero.
Then the first matrix vector multiplication takes the following form,

36

Ṡ1

0
...
Ṡm0
Ṡ1

1

 =

 1
dS1

1

dS1
0

. . .
dS1

1
dSm

0

Ṡ1

0
...
Ṡm0

 .
similar operations then has to be done m times calculating all Ṡ1

1 , Ṡ
2
1 . . . Ṡ

m
1 .

Then the Ṡ values of the following time step has to be calculated, starting
with Ṡ1

2 which gives the following matrix vector multiplication,

Ṡ1
0
...
Ṡm0
Ṡ1

1
...
Ṡm1
Ṡ1

2

=

1

dS1
2

dS1
0

. . .
dS1

2
dSm

0

dS1
2

dS1
1

. . .
dS1

2
dSm

1

Ṡ1
0
...
Ṡm0
Ṡ1

1
...
Ṡm1

.

This will then have to be repeated until all SiN values are determined. As
in the previous case of the local volatility surface, following this method
blindly, a lot of matrix vector operations then has to be carried out and
this is obviously not feasible. Instead this can be solved by analyzing which
derivatives are essential to determine the desired sensitivities. Again, con-
sider the derivative with respect to one specific stock, for example, ∂P

∂S1
0
. Now,

considering the equation Ṗ = ∂P
∂S1

N
Ṡ1
N , then

∂P
∂S1

N
will be known at the end of

a forward sweep, but Ṡ1
N will be more complex to evaluate. Although, using

Equation (3.14) yields the recursive relations for all Ṡ1,

Ṡ1
n+1 =

∂S1
n+1

∂S1
n

= (1 + r∆t+ σ(1)∆W 1
n)Ṡ1

n.

As mentioned, the ∂P
∂S1

N
part of Ṗ is trivial, because P only depends on the

values SiN which are known, i.e.

∂P

∂S1
N

= 1∑m
i=1(w(i)Si

N)>K .

To get a correct estimate of the sought value, the Monte Carlo method is

37

applied and the algorithm used to determine Ṗ = ∂P
∂S1

0
has to be run a large

number of times. Then to determine all deltas i.e. ∂P
∂Si

0
for all i = 1 . . .m,

this whole process has to be done for each of the underlying stocks in the
basket.

3.2.2 Adjoint implementation

By the same arguments made in the forward implementation, it is more ef-
ficient to extract the important derivatives and make the necessary calcula-
tions manually. Consider the equation for S̄in and expand it as the following,

S̄in =
∂P

∂Sin
=
∂Sin+1

∂Sin

∂P

∂Sin+1

then, using equation (3.14), yields the following relation,

S̄in =
∂Sin+1

∂Sin
S̄in+1 = (1 + r∆t+ σ(i)∆Wn

i)S̄in+1

This means that when the initial forward sweep is run, all the values corre-
sponding to the expression (1 + r∆t+ σi∆Wn

i) has to be stored which will
later be used to recursively calculate all S̄i0. But to initialize the recursion
in the adjoint mode the values S̄iN has to be evaluated, which is done the
following way [1],

S̄iN = w(i) exp(−rT)1∑m
i=1(w(i)Si

N)>K .

When these values are known the recursive process of evaluating S̄i0 can be-
gin, and if following the adjoint calculations all of these should be evaluated
during one sweep.
The returned vector S̄ contains derivatives with respect to all stocks. But
as in the case of forward mode, to get satisfactory results the Monte Carlo
method is applied.

3.2.3 Numerical results

In the following table, Table 3.5, numerical results, computed using forward
mode, adjoint mode and finite difference, are presented. The calculations
were made for a basket option with five underlying stocks, all with equal

38

initial stock value. The input parameters were given the following values,
K = 100, S0 = 100, r = 0.05, T = 1, with the stocks weights as w(1) = 1

15 ,
w(2) = 2

15 , w
(3) = 3

15 , w
(4) = 4

15 and w(5) = 5
15 and the volatilities σ(1) =

0.30, σ(2) = 0.35, σ(3) = 0.40, σ(4) = 0.45 and σ(5) = 0.50. The number of
steps in the discretisation in time was set n = 100 and the number of Monte
Carlo paths were set to M = 106.

Table 3.5: Basket option. Numerical results of sensitivities calculated by finite
difference, forward mode and adjoint mode.

Finite difference Forward Adjoint

∂P
∂S1

0
0.036 0.036 0.036

∂P
∂S2

0
0.075 0.075 0.075

∂P
∂S3

0
0.118 0.118 0.118

∂P
∂S4

0
0.168 0.167 0.167

∂P
∂S5

0
0.222 0.222 0.223

As can be seen, all methods produces equal estimates of the sensitivities up
to the third decimal digit.

To give some insight of the computational cost, the plot in Figure 3.3
shows the computation times using forward, adjoint and finite difference to
compute sensitivities with respect to all stocks for basket options containing
different number of underlings. The number of underlyings are varied from
two to twenty stocks. Here the volatilities of the stocks were set to the
following values σ(1) = 0.20, σ(2) = 0.21 . . . σ(20) = 0.40, i.e. for the basket
with two stocks σ(1) and σ(2) were used and for the case with three stocks
σ(1), σ(2) and σ(3) were used and so on.

39

Figure 3.3: The figure shows the computation time as a function of the number of
underlying stocks in the basket option, for all three methods.

Here, in comparison to the previous case of the volatility surface, it can be
seen that using forward mode is faster than using finite difference. Though,
similar to the previous case, adjoint mode outperforms both forward mode
and finite difference, especially when the number of underlyings is large.

40

3.3 LIBOR Market Model

The LIBOR Market Model is a collection of different LIBOR forward rates,
each having the following dynamics

dLi(t)

Li(t)
= µi(t)dt+ σi(t)

TdW (t). (3.15)

Here i is the index of one of the LIBOR forward rates, Li(t) is the LIBOR
forward rate with the index i observed at time t, dW (t) is from a m di-
mensional Wiener process where m is the number of LIBOR forward rates,
σi(t) is a column vector of volatilities, µi is the drift which is calculated the
following way

µi(L(t), t) =

i∑
j=η(t)

Lj(t)σi(t)
Tσj(t)

1 + Lj(t)∆t
∆t, (3.16)

where η(t) will return the time index of the next maturity of the LIBOR
forward rates as of time t. To price a derivative with LIBOR rates as un-
derlyings, one has to calibrate the LIBOR Market Model to the market. To
begin the LIBOR rates seen from today can be determined using today’s
yield rates. This can be calculated using the following formula [1],

F (t, T1, T2) =
1

T2 − T1

(
ZT1t − Z

T2
t

ZT2t

)
, (3.17)

where t is the time of today, T1 and T2 are the initiation and termination
time of the forward rate, respectively, and ZTit is the yield rate from t to
Ti. Note that in this report the time interval will always be half a year, so
the third argument in the LIBOR forward rate is omitted. Then using the
Black’s formula and currently traded derivatives (for example caplets) on
the market, the implied volatility for different maturities on the caplets can
be determined [1]. In this report a simplification is made for the volatilities
σi(t), a parametric scalar volatility function usually referred as a "hump
function" is used, which has the following appearance,σi(t) = (a(i− t) + b) exp(−c(i− t)) + d, if i ≥ η(t)

0, otherwise,

41

where the term (i − t) describes how much time there is left until the i:th
forward rate matures. To clarify, for example σi(t∗) contains the values σi(t)
for all t so that t∗ ≤ t ≤ tmax (here tmax corresponds to the maturity of the
last LIBOR rate being evaluated) and the values σi(t) with t < t∗ are set to
zero. The parameters a, b, c, d should be calibrated from the market, but no
calibration has been made in this report, instead previously calibrated values
has been used. These values are a = 0.3, b = −0.02, c = 0.7, d = 0.14 [12].
This simplification was justified since no market data could be retrieved
by reasonable means. Also, it does not effect the analysis of the methods
being evaluated in this project. However, now the simulation of the LIBOR
forward rates can begin, applying the Euler scheme to the logarithm of the
LIBOR rates the step function becomes,

Li(t+ 1) =

= Li(t) exp

(
(µ(Li, t)−

||σi(t)||2

2
)∆t+ σTn (t)W (n+ 1)

√
∆t

)
.

(3.18)

Here ||σi(t)|| denotes the euclidean norm of σi(t). Note that after a LIBOR
forward rate reaches maturity, the step equation for that LIBOR forward
rate becomes Ln(t + 1) = Ln(t). All the values for σn are known from the
calibration and the drift term has to be calculated for each step because it
depends on the current LIBOR forward rates. It is calculated using Equation
(3.16). When the simulation is done the paths can now be used to price
interest rate derivatives, such as a caplet. A caplet option has the following
payoff function, m∏

j=0

1

1 + Lj(j)∆t

max(0, Lm(m)−K)∆t. (3.19)

Note that in this report where ∆T = 1
2 , there will be as many maturities

indices as LIBOR forward rate indices. Therefore the discount part of (3.19)
will correspond to the correct time.

3.3.1 Forward implementation

Now the calculation of the delta sensitivities for the caplet option in forward
mode will be shown. Using the theory of algorithmic differentiation the

42

initial vector of dot values are,[
L̇0(0) . . . L̇m(0)

]T
,

notice that only one of these entries are equal to one and the rest are zero.
The first step is to calculate the derivative of µ0, hence the first matrix vector
multiplication takes the following form,

L̇0(0)
...

L̇m(0)

µ̇0(0)

 =

 1
dµ0(0)
dL0(0) . . . dµ0(0)

dLm(0)

L̇0(0)

...
L̇m(0)

 .

The derivative of (3.16) with respect to LIBOR forward rates is the following,

dµi(t)

dLj(t)
=

σi(t)σj(t)∆t

(1 + Lj(t)∆t)2
1i≥η(t).

Similar operations then has to be done m times calculating all µ̇1(0) , µ̇2(0)

. . . µ̇m(0). Then the L̇ values of the following time step has to be calcu-
lated, starting with L̇0(1) which corresponds to the following matrix vector
multiplication,

L̇0(0)
...

L̇m(0)

µ̇0(0)
...

µ̇m(0)

L̇0(1)

=

1

dL0(1)
dL0(0) . . . dL0(1)

dLm(0)
dL0(1)
dµ0(0) . . . dL0(1)

dµm(0)

L̇1
0
...
L̇m0
µ̇0(0)

...
µ̇m(0)

.

The derivative of (3.18) with respect to previous LIBOR forward rate is
only nonzero if it is the same LIBOR forward rate, then it is derivative is
dependent on the next maturity in the following way

dLi(t+ 1)

dLi(t)
=

d log(Li(t+ 1))

dLi(t)
Li(t+ 1) =

Li(t+1)
Li(t)

, if i ≥ η(t)

1, otherwise.

43

The drift derivatives are calculated in the following way

dLi(t+ 1)

dµj(t)
=

σi(t)

Tσj(t)∆t
(1+Lj(t)∆t)2

, if i ≥ η(t)

0, otherwise.

This will then have to be repeated until all Li(m) values are determined.
As in the previous case of the local volatility surface, following this method
blindly, a lot of matrix vector operations then has to be carried out and
this is obviously not feasible. Instead this can be solved by analyzing which
derivatives that are essential to determine the desired sensitivities. Again,
consider the derivative with respect to one specific LIBOR forward rate, for
example, ∂P

∂L1(m) . Now, considering the equation Ṗ = ∂P
∂L1(m) L̇1(m), then

∂P
∂L1(m) will be known at the end of a forward sweep, but L̇1(m) will be more
complex to evaluate. One way to do it is by first evaluating a drift step,
then evaluating a LIBOR forward rate step. Using Equation (3.16) yields
the drift step relation,

µ̇i(n+1) = Qη(n)(n, i)L̇η(n)(n)+Qη(n)+1(n, i)L̇η(n)+1(n)+ ...+Qi(n, i)L̇i(n),

where

Qn(t, i) =
σn(t)Tσi(t)∆t

(1 + Ln(t)∆t)2

Note that µ̇ is zero if the LIBOR forward rate has already matured. When
all the drifts have been calculated for one time step, the next step is to
determine the LIBOR forward rates u,sing the following relation,

L̇i(n+ 1) = µ̇i(n)∆t+
∂Li(t+ 1)

∂Li(t)
L̇i(n). (3.20)

This has to be repeated until all of the L̇(m) are calculated. The ∂P
∂L(m)

part of Ṗ depends on LIBOR rates at different maturities seen at different
times. But because of the step function for matured LIBOR rates, the payout
function in Equation (3.19) can be expressed as only being dependent on the
final LIBOR rates, instead of LIBOR rates for different maturities seen at

44

different times. Hence, ∂P
∂L(m) can be expressed as the following,

∂P

∂Li(m)
=

∆t
m∏
j=0

1

1 + Lj(m)∆t
(1Lm(Tm)>K

− (max(Lm(Tm)−K), 0)
∆t

1 + Li(T (m))∆t
)

if i = m

∆t

m∏
j=0

1

1 + Lj(m)∆t

(−max(Lm(Tm −K), 0)
∆t

1 + Li(T (m))∆t
).

otherwise

(3.21)

3.3.2 Adjoint implementation

By the same arguments made in the forward implementation, it is more
efficient to extract the important derivatives and make the necessary cal-
culations manually. Consider the equation for L̄(n) and expand it as the
following,

L̄(n) =

(
∂P

∂L(n)

)T
=

(
∂L(n+ 1)

∂L(n)

)T (∂P

∂L(n+ 1)

)T
=

(
∂L(n+ 1)

∂L(n)

)T
L̄(n+ 1).

Then it can be seen that what has to be saved from the forward sweep is
∂L(n+1)
∂L(n) for each step n. This is a matrix which values can be determined by

taking the derivative of Equation (3.18). The matrix will be a square matrix
since the number of maturities is the same as LIBOR rates in this example.
Hence, the diagonal elements can be determined the following way,

∂Li(n+ 1)

∂Li(n)
=

Li(n+1)
Li(n) + Li(n+1)||σi(n)||2∆t2

(1+Li(n)∆t)2
if i ≥ η(n)

1 otherwise.

For the other indices in the matrix the following equation can be derived,

∂Li(n+ 1)

∂Lj(n)
=

Li(n+1)σi(n)Tσj(n)∆t2

(1+Lj(n)∆t)2
if i > j ≥ η(n)

0 otherwise.

45

What is left to calculate is the initial value of L̄(N), this can be done using
Equation (3.21). When these values are known the recursive process of eval-
uating L̄(0) can begin and, because of the nature of the adjoint calculations,
this will be done in one sweep.

3.3.3 Numerical results

In Table 3.8, numerical results, computed using forward mode, adjoint mode
and finite difference, are presented. The calculations were made for a caplet
on the LIBOR rate two years from now, i.e. there are five underlying LI-
BOR rates to consider. The initial five LIBOR rates were determined using
yield rates from the market, these yield rates are given in Table 3.6. The
corresponding LIBOR rates, calculated by using Equation (3.17), are given
in Table 3.7. Also, the strike was set to K = 0.001 and the number of Monte
Carlo paths was set to M = 106.

Table 3.6: Yield rates. Yield rates collected from the market.

Time [Years] 1/12 3/12 6/12 1 2 3 5 7 10

Yield rate [%] 0.02 0.02 0.07 0.22 0.60 0.95 1.53 1.92 2.19

Notice that these yield rates also were interpolated so that the following
forward rates could be computed using Equation (3.17).

Table 3.7: Forward rates. Forward rates starting on different times in the future,
all lasting for 6 months.

Initiation time [Years] 0 0.5 1 1.5 2 2.5

Forward rate [%] 0.07 0.02 0.02 0.07 0.22 0.60

46

Table 3.8: Caplet. Numerical results of sensitivities calculated by finite difference,
forward mode and adjoint mode.

Finite difference Forward Adjoint

∂P
∂L1(0) -0.0035 -0.0034 -0.0034

∂P
∂L2(0) -0.0041 -0.0041 -0.0041

∂P
∂L3(0) -0.0047 -0.0049 -0.0047

∂P
∂L4(0) -0.0051 -0.0053 -0.0051

∂P
∂L5(0) 0.4805 0.4804 0.4809

As can be seen, all methods produces equal estimates of the sensitivities up
to the third decimal digit. Notice that the derivatives with respect to L1(0),
L2(0), L3(0), L4(0) are all negative while the derivative with respect to L5(0)

is positive. This is because of the fact that the four first LIBOR rates are
only used to discount the payoff, i.e. the value of the caplet decreases if the
rates increases. Also, the caplet is written on the fifth LIBOR rate which
means that if that increases the value of the caplet will also increase, which
apparently has a larger effect on the price than the fact that the fifth rate is
used for discounting as well.

As in the previous examples, to give some insight of the computational
cost, the plot in Figure 3.4 shows the computation times using forward,
adjoint and finite difference to compute sensitivities. Here, the sensitivities
are computed for caplets on different forward rates with respect to all initial
forward rates affecting the specific caplet under consideration. The caplets
considered, will be written on forward rates from half a year to seven years
with increment half a year, i.e. the number of underlying forward rates will
be varied from two to fifteen.

47

2 4 6 8 10 12 14

0
20
0

40
0

60
0

80
0

LIBOR rates

T
im
e(
s)

adjoint
forward
FDE

Figure 3.4: This figure shows the computation time as a function of the number
of underlying forward rates, for all three methods.

Here, it can be seen that using forward mode is more or less equally effi-
cient as using finite difference. Though, similar to the previous case, adjoint
mode outperforms both forward mode and finite difference, especially when
the number of underlyings is large. One difference in this case is the non-
linear growth in computation times for all three methods. This is because of
the fact that when increasing the number of forward rates the caplet payoff
requires further simulation on each forward rate. In the previous examples
the length of the simulations were always the same independent of how many
grid points or stocks there were in the basket option. Also, in the LIBOR
case, for each added forward rate, all previous forward rates will be influ-
enced. This results in that when simulating each step of the forward rates
additional operations has to be carried out, in comparison to the basket case,
where adding an extra stock has a negligible effect on the step function.

When estimating the order of complexity with respect to the number
of underlyings, other parameters such as Monte Carlo paths are neglected.

48

Considering the order of complexity of the adjoint mode, the code begins
with a loop for all the underlyings except the first one, this adds a factor of
(N − 1) to the complexity. Nested in this loop there is a loop going through
all underlyings an additional time and finally this second loop also contains
a nested loop going through all underlyings again, adding a factor (N2) to
the complexity. This yields the final order of complexity O((N − 1)N2) for
the adjoint method. Using forward mode, operations with similar order of
complexity as in the adjoint case has to be carried out. In addition to this,
forward mode has to run through all operations for each delta sought, thus
the order of complexity becomes O((N − 1)N3). To verify the theoretical
claim of the order of the complexity, a log-log plot of the run time is shown
in Figure 3.5.

.

Figure 3.5: This figure shows a log-log plot of the computation times versus the
number of underlyings for both adjoint and forward mode.

The slope for each method corresponds to their respective order of complex-
ity, and as can be seen in the figure, the slope is approximately three for the

49

adjoint method and four for the forward method. This confirms the theoret-
ical claim. In the previous case, the basket option, the order of complexity is
O(1) for the adjoint case and O(N) for the forward. When comparing this
to the LIBOR case, it is clear that the order of complexity gain that can be
made using the adjoint method is, in both cases, equal to a factor as large
as the number of underlyings.

50

Chapter 4

Conclusions

An overview of algorithmic differentiation has been presented and then ap-
plied to three cases commonly occurring in financial applications. The results
from all three implementation cases strongly indicates the benefits of using
the adjoint approach when calculating the sensitivities. The savings, con-
sidering the computational cost, that can be made using this approach is
highly dependent on the number of sensitivities desired, i.e. if the number
of sensitivities desired is high there are larger savings to be made. Also, the
estimated sensitivities, produced from the two different methods, are both
aligning with the results using finite difference and are therefore considered
to be accurate.

However, writing this code by hand can be very time consuming and er-
rors are easily made. Therefore further studies investigating and evaluating
the available tools performing algorithmic differentiation can be of great in-
terest. The requirement of the payoff function to be differentiable when using
algorithmic differentiation makes it interesting to evaluate how the Likeli-
hood ratio method, which does not have the same requirement, compliments
and works in combination with algorithmic differentiation.

51

Bibliography

[1] Thomas Björk. Arbitrage Theory in Continuous Time. Oxford Finance,
3rd edition, 2009.

[2] Luca Capriotti. Fast Greeks by Algorithmic Differentiation. 2011.

[3] Bruno Duprie. Pricing with a Smile. 2004. Bloomberg.

[4] J. Gatheral and M. Lynch. Stochastic Volatility and Local Volatility.
2002.

[5] M. Giles and P. Glasserman. Smoking Adjoints: Fast Monte Carlo
Greeks. 2006.

[6] Michael Giles. Monte Carlo evaluation of sensitivities in computational
finance. 2012.

[7] Paul Glasserman. Monte Carlo Methods in Financial Engineering.
Springer, 2003.

[8] Andreas Griewank. Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation. Society for Industrial and Applied Math-
ematics, 2nd edition, 2008.

[9] John C. Hull. Options, Futures and Other Derivatives. Prentice Hall,
8th edition, 2012.

[10] Rutkowski M. Musiela, M. Martingale Mehtods in Financial Modelling.
Springer, 2 edition, 2005.

[11] Vytautas Savickas. Fast Greeks: Case of Credit Valuation Adjustments.
2011. Utrecht University.

52

[12] John Schoenmakers. Robust Libor Modelling and Pricing of Derivative
Products. Chapman and Hall/CRC, first edition, 2005.

53

	Background
	Derivatives
	Stock price dynamics and the Monte Carlo method
	Risk management and hedging
	Sensitivities

	Algorithmic differentiation
	Background and notations
	Forward and reverse mode
	Basic implementation example
	Forward implementation
	Adjoint implementation
	Verifying the result

	Tools

	Implementing Algorithmic differentiation in finance
	Volatility Surface
	Preliminaries
	Forward implementation
	Adjoint implementation
	Numerical results

	Basket option
	Forward implementation
	Adjoint implementation
	Numerical results

	LIBOR Market Model
	Forward implementation
	Adjoint implementation
	Numerical results

	Conclusions

