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Abstract

Point estimates of the Standard Chain Ladder method (CLM) and of the more complex Mu-
nich Chain Ladder method (MCL) are compared to real data on 38 different datasets in order
to evaluate if MCL produces better predictions on average with a dataset from an arbitrary
insurance portfolio. MCL is also examined to determine if the future paid and incurred claims
converge as time progresses. A bootstrap model based on MCL (BMCL) is examined in order
to evaluate its possibility to estimate the probability density function (PDF) of future claims
and observable claim development results (OCDR). The results show that the paid and incurred
predictions by MCL converge. The results also show that when considering all datasets MCL
produce on average better estimations than CLM with paid data but no improvement can be
seen with incurred data. Further the results show that by considering a subset of datasets which
fulfil certain criteria, or by only considering accident years after 1999 the percentage of datasets
in which MCL produce superior estimations increases. When examining BMCL one finds that
it can produce estimated PDFs of ultimate reserves and OCDRs, however the mean of estimate
of ultimate reserves does not converge to the MCL estimates nor do the mean of the OCDRs
converge to zero. In order to get the right convergence the estimated OCDR PDFs are centered
and the mean of the BMCL estimated ultimate reserve is set to the MCL estimate by multipli-
cation.

Keywords: Claim reserving, Munich Chain Ladder (MCL), Bootstrap
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Sammanfattning

Punktskattningar gjorda med Standard Chain Ladder (CLM) och den mer komplexa Munich
Chain Ladder-metoden (MCL) jämförs med verklig data för 38 olika dataset för att evaluera
om MCL ger bättre prediktioner i genomsnitt än CLM för en godtycklig försäkringsportfölj.
MCLs prediktioner undersöks ocks̊a för att se om de betalda och de kända skadekostnaderna
konvergerar. En bootstrapmodell baserad p̊a MCL (BMCL) undersöks för att utvärdera om
möjligheterna att estimera täthetsfunktionen (probability density function, PDF) av framtida
skadekostnader och av ”observable claim development results (OCDR)”. Resultaten visar att
MCLs estimerade betalda och kända skadekostnader konvergerar. Resultaten visar även att
när man evaluerar alla dataseten s̊a ger MCL i genomsnitt bättre prediktioner än CLM med
betald data, men ingen förbättring kan ses med CLM med känd skadekostnadsdata. Vidare
visar resultaten även att genom att bara titta p̊a dataset som uppfyller vissa krav, eller genom
att bara använda olycks̊ar efter 1999, s̊a ökar andelen dataset där MCL ger bättre predik-
tioner än CLM.Vid evaluering av BMCL ser man att den kan producera estimerade PDF:er för
ultimo-reserver och OCDR:er, men att medelvärdet av ultimo-reserv prediktionerna fr̊an BMCL
inte konvergerar mot MCL-prediktonerna och att medelvärdet av OCDR:erna inte konverg-
erar mot noll. För att f̊a rätt konvergens s̊a centreras OCDR PDF:erna och ultimo-reservernas
medelvärden sätts till mostsvarande MCL-prediktionens värde genom multiplikation.

Svensk Titel: Om Bootstrapping Av Munich Chain Ladder

Nyckelord: Reservsättning, Munich Chain Ladder (MCL), Bootstrap
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Chapter 1

Introduction

The main idea behind insurance is that people can pool their risks and thereby drastically de-
crease the risk for each individual, meaning for example that each individual does not need
to have enough capital to buy a new house if their house burns down. By paying a premium
the individual gets covered by the insurance and if something happens the individual receives
compensation.

The insurance company does not need to have enough capital at hand to cover all claims if every
risk they are exposed to occurs at once, as the probability of that happening is near zero and it
would defeat the entire point of pooling the risks together. However, the individual taking an
insurance policy needs to know that if something happens the insurance company has enough
reserve capital to pay his claim. This means that the insurance company needs to have enough
reserve capital that the likelihood of it not being able to pay future claims to their insurance
policy holders is extremely low, while not requiring so much capital that the advantages of pool-
ing the risks disappear.

When calculating the estimated total claim cost for an insurance portfolio the most commonly
used method is the Standard Chain Ladder method (CLM). CLM can use either paid or incurred
claims to estimate the total claim cost. A problem is that the estimation of the total claim cost
can differ by a large margin depending on if the paid or the incurred data is used. An idea is that
by applying a method that uses both paid and incurred data one can improve the estimation
of the total claim cost. One method that uses both the paid and incurred data is the Munich
Chain Ladder method (MCL) (Mack and Quarg (2004)).

There are several different methods based on CLM that can be used to estimate future proba-
bility density functions (PDF) of claims and claim reserves. These methods include the over-
dispersed Poisson (ODP) bootstrap model (Renshaw and Verrall (1998) and England (2002))
and Mack’s Model (Mack (1993)) with a distribution assumption. MCL is a newer and more
complex method which does not have as much research into it as CLM. As such it does not
have as many methods to estimate claim and reserve PDFs, however there are some. One is a
blockwise bootstrapped method that is proposed in (Liu and Verrall (2010)).
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In the papers where MCL and Liu-Verrall method are presented they are applied to datasets
with no missing data and datasets which fit the methods well. In this thesis the methods are
applied to 38 different datasets from 38 different insurance portfolios with different times to
settle claims, different number of accident years and some with missing data, faulty data and/or
problematic parametric values. The questions that are asked are; can MCL decrease the differ-
ence in future reserve estimations between the predictions made with paid and incurred claims,
can MCL give an improvement of accuracy in estimating the total claims cost over CLM and
can an estimated PDF of reserves be made with a method based on MCL.
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Chapter 2

Chain Ladder Methods

2.1 Standard Chain Ladder

The Standard Chain Ladder method (CLM) is often used in the insurance industry to calculate
the needed reserves as it is a simple method which gives an estimation of the future reserves.
With CLM one approximates the factor describing how cumulative paid or incurred (paid plus
claim reserve) claims grows over a development period, often from one year to the next.

2.1.1 Method

CLM assumes that one can make a good approximation of future cumulative paid or incurred
claims by setting:

CPi,j+1 = CPi,j · fPj and CIi,j+1 = CIi,j · f Ij (2.1)

where CP
i,j is the cumulative paid claims and CI

i,j is the cumulative incurred claims for accident period i

after j periods of development, fPj and f Ij are two scalars, the paid and incurred development factor for

development period j.

From Eq. (2.1):

CPi,J = CPi,j

J−1∏
k=j

fPk and CIi,J = CIi,j

J−1∏
k=j

f Ik (2.2)

given that Ci,j and fj . . . fJ are known and J > j

Claim Triangle and Development Factor

Before approximating the development factor a claim triangle is needed. To set up a claim
triangle one starts by looking at an accident period, i = 1, J periods ago, which has had
J periods to develop. The next accident period, i = 2, has had J−1 development periods, and
this goes on until accident period J which has only had one period to develop. By putting all
the cumulative claims for each accident period and development period into a J × J matrix
where the rows are accident periods and columns are development periods one creates a claim
triangle, see Table 2.1 for an example.
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The development factor is given by:

fKj =

J−j∑
n=1

CK
n,j+1

J−j∑
n=1

CK
n,j

(2.3)

where J − j is the number of accident years which has had j + 1 periods of development. K=
{P, I}

1 2 3 4 J = 5

1 C1,1 C1,2 C1,3 C1,4 C1,5

2 C2,1 C2,2 C2,3 C2,4

3 C3,1 C3,2 C3,3

4 C4,1 C4,2

J = 5 C5,1

Table 2.1: J = 5. Cumulative claim triangle with the accident years as rows and the development years
as columns. Ci,j is the cumulative paid or incurred claim for accident year i after j development years.
The calendar year is i+ j − 1.

Predicting Future Claims

With Eq. (2.1) and (2.3) a claim triangle can be filled and thereby predicting the cumulative
claim for each accident periods development period up to development period J , see Table 2.2.

1 2 3 4 J = 5

1 C1,1 C1,2 C1,3 C1,4 C1,5

2 C2,1 C2,2 C2,3 C2,4 C2,4 · f4
3 C3,1 C3,2 C3,3 C3,3 · f3 C3,3 · f3 · f4
4 C4,1 C4,2 C4,2 · f2 C4,2 · f2 · f3 C4,2 · f2 · f3 · f4

J = 5 C5,1 C5,1 · f1 C5,1 · f1 · f2 C5,1 · f1 · f2 · f3 C5,1 · f1 · f2 · f3 · f4

Table 2.2: Same as Table 2.1 but with filled in predictions of claims for future development of the
accident periods

10



2.2 Advanced Chain Ladder Methods

2.2.1 Assumptions of CLM

Despite being a central part of loss reserving in the insurance industry CLM has several weak-
nesses because of the strong assumptions of the model. These assumptions are:

1. The development of the claim is not dependent on the year of the accident.

2. The average development factor is a good estimator of the future claim development.

3. To use known paid or incurred claims gives a good estimate of the development of the
claim.

These strong assumptions are made to make the CLM as simple and straight forward as possible
at the possible cost of accuracy in its predictions. There are several more advanced Chain Ladder
methods (CL) that use weaker assumptions and include more variables in order to improve the
accuracy of the predictions at the cost of simplicity.

2.2.2 Examples of Advanced Chain Ladder Methods

The separation method (Verbeek (1972) and Taylor (1977)) is an advanced CL, which includes
the concept of claim inflation. With claim inflation the separation method uses both calandar
years and development year when estimating future claims, this means that assumption 1. is
thereby replaced by a weaker assumption:

• The development of the claim is dependent on the year of the accident in a way that can
be modelled.

Another advanced CL is the double chain ladder method (Miranda et al. (2012) and (2015))
which considers two triangles, the paid claims triangle, Table 2.1, and a triangle consisting of
the number of reported claims.

A third advanced CL is the Paid Incurred Chain Claims Reserving Method (Merz and Wüthrich
(2010)) or the PIC method. This method works by considering both the paid and incurred
data and forcing the cumulative paid and incurred values for the final development year to be
identical. This method weakens assumption 3:

• Using known paid and incurred claims together simultaneously gives a good estimate of
the development of the claim.
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2.3 The P/I -Problem with Standard Chain Ladder

In this section the P/I -divergence, a problem given by assumption 3. is examined. From now
on Pi,j and Ii,j will be used interchangeably with CPi,j and CIi,j respectively.

2.3.1 P/I -ratio

The P/I -ratio, Q(i, j), is the ratio of the paid and incurred claim:

Q(i, j) =
CPi,j

CIi,j
(2.4)

As the incurred claims are the paid claims plus the claim reserve, Rclaim, the equation can be
rewritten as:

Q(i, j) =
CPi,j

CPi,j +Rclaimi,j

(2.5)

An assumption that can be made is that Rclaim should rarely, if ever, be negative as it is meant to
be a reserve and not a loan. Another assumption that can be made is that as development time
progresses the cumulative paid claims grows and the needed reserve becomes smaller. Those
assumptions together with Eq. (2.5) give:

• Q(i, j) ≤ 1.

• lim
j→∞

Q(i, j) = 1

In the following subsection the P/I -ratio will be examined in both real data and in predictions
from CLM.

P/I -ratio In Real Data and CLM

The datasets, dataset A and B, that are presented in this section are from (Mack and Quarg
(2004)) and (Merz and Wüthrich (2010)) respectively. The development periods in all datasets
in this thesis are development years.

The real data in both graphs in Fig. 2.1 follows the conclusions from 2.3.1 as neither have
a Q(i, j) greater than 1 and in both datasets Q(i, j) goes toward 1 as the development time
increases. However looking at the predictions from CLM it is clear that their Q-values neither
converge nor stay below 1.
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Figure 2.1: Datasets with real life paid and incurred claims. Development year on the X-axis and the
Q-ratio on the Y-axis. Blue ”+” are real claim data, black ”o” are predicted claim data. The red line is
at the Q-ratio equal to 1 and as can be seen, all real data points are below it.

2.3.2 Correlation Between Paid and Incurred Claims

One possible explanation for some of the difference in the Q-ratio pattern could be that CLM
does not take into consideration any correlation between the claim triangles that might exist. In
this subsection two correlations will be examined: one between Q-ratios and incurred individual
development factors and one between I/P -ratios and paid individual development factors. The
individual development factors are defined as:

Fi,j =
Ci,j+1

Ci,j

In order to get enough data points to be able to see if there is an underlying correlation and not
just the random nature of real life data, this thesis will consider all development years at the
same time instead of considering one development year at the time. In order to evaluate all the
development years at the same time one can consider the standardized residuals instead of the
values, see section 2.4.1.

Fig. 2.2 clearly shows that there is a significant correlation in dataset A, especially between the
individual paid development factor and the I/P -ratio, however Fig. 2.3 on the other hand shows
that dataset B does not have a correlation nearly as strong.
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Figure 2.2: Dataset A. Both the X- and Y-axis are the standardized residuals. The correlation between
Q−1 and FP is 0.6151 and the correlation between Q and F I is 0.4415. The two red lines are linear
regressions without a constant with λP = 0.6360 and λI = 0.4362 respectively

Figure 2.3: Dataset B. Both the X- and Y-axis are the standardized residuals. The correlation between
Q−1 and FP is 0.1704 and the correlation between Q and F I is 0.1365. The two red lines are linear
regressions without a constant with λP = 0.1764 and λI = 0.1404 respectively
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2.4 The Munich Chain Ladder Method

The Munich chain ladder method (MCL) is an advanced Chain Ladder method that uses both
paid and incurred data simultaneously in order to better follow the Q-pattern that the real life
data shows. MCL was suggested by Mack and Quarg and all theory and equations in this section
is taken from (Mack and Quarg (2004)).

2.4.1 Definitions

Sigma-Algebras

The following three sigma algebras will be used:
Pi(s) = σ{Pi,1, ..., Pi,s} , Ii(s) = σ{Ii,1, ..., Ii,s} and Bi(s) = σ{Pi,1, ..., Pi,s, Ii,1, ..., Ii,s}

Residual

The standardized conditional residual of a stochastic variable X and a sigma algebra B is defined
as:

Res(X|B) =
X −E(X|B)√
V ar(X|B)

Linear Regression Without a Constant

With two datasets X̄ and Ȳ , λ̂ is defined as the λ̂ that minimizes the sum of square errors,
∑
θ2

in equation

X̄ = λ̂Ȳ + θ

2.4.2 Method

There are several assumptions used in MCL, the first one is the same as Eq. (2.3) used in CLM,
rewritten with expected values:

E(
Pi,j+1

Pi,j
|Pi(j)) = fPj and E(

Ii,j+1

Ii,j
|Ii(j)) = f Ij (2.6)

One also assumes that there exists proportionality constants σPj ≥ 0 and σIj ≥ 0 (Mack (1993))
such that:

Var(
Pi,j+1

Pi,j
|Pi(j)) =

(σPj )2

Pi,j
and Var(

Ii,j+1

Ii,j
|Ii(j)) =

(σIj )2

Ii,j
(2.7)

These assumptions gives that a higher cumulative claim has a lower variance in its individual
development factor.

The same ideas are used for Q and QInv, with q(j) and qInv(j) as conditional expected values
and σQj and σQInv

j as proportionality constants.
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A third assumption is an independence assumption:

• {P1,j}...{Ph,j} are independent and {I1,j}...{Ih,j} are independent.

Where h is the number of accident years that have j development years.

MCL Individual Development Factors

So far none of the assumptions have said anything about the correlation between the paid
and the incurred claim triangle. The correlation between the triangles are given by the fourth
assumption:

E[
Pi,j+1

Pi,j
|Bj ] = fPMCL(i, j) = fPj + λP ·

σ(
Pi,j+1

Pi,j
|Pj)

σ(Q−1i,j |Pj)
· (Q−1i,j − qinv(j)) (2.8)

E[
Ii,j+1

Ii,j
|Bj ] = f IMCL(i, j) = f Ij + λI ·

σ(
Ii,j+1

Ii,j
|Ij)

σ(Qi,j |Ij)
· (Qi,j − q(j)) (2.9)

where fP and f I are from Eq. (2.6), σ(
Pi,j+1

Pi,j
|Pj) and σ(

Ii,j+1

Ii,j
|Ij) are from Eq. (2.7), σ(

Pi,j+1

Pi,j
|Pj)

and σ(
Ii,j+1

Ii,j
|Ij) are the standard deviations of FP

i and F I
i and finally λP and λI are the slopes of the

regression lines without a constant for FP , Q−1 and FI , Q respectively.

Eq. (2.8) and (2.9) can be simplified by:

σ(
Pi,j+1

Pi,j
|Pj)

σ(Q−1i,j |Pj)
=

√
Var(

Pi,j+1

Pi,j
|Pj)√

Var(Q−1i,j |Bj)
=

√
(σP

j )2

Pi,j√
(σ

QInv
j )2

Pi,j

=
σPj

σQInv
j

(2.10)

where the second equal sign is given by Eq. (2.7)

By doing this and the same for Eq. (2.9) one gets:

E[
Pi,j+1

Pi,j
|Bj ] = fPMCL(i, j) = fPj + λP ·

σPj

σQInv
j

· (Q−1i,j − qInv(j)) (2.11)

E[
Ii,j+1

Ii,j
|Bj ] = f IMCL(i, j) = f Ij + λI ·

σIj

σQj
· (Qi,j − q(j)) (2.12)

Eq. (2.11) and (2.12) are not explicitly written in (Mack and Quarg (2004)), however they are
used in the practical example.
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Eq. (2.11) and (2.12) can be rewritten into:

fPMCL(i, j) = fPj + ∆fPi,j and ∆fPi,j = λP ·
σPj

σQInv
j

· (Q−1i,j − qinv(j)) (2.13)

f IMCL(i, j) = f Ij + ∆f Ii,j and ∆f Ii,j = λI ·
σIj

σQj
· (Qi,j − q(j)) (2.14)

where fPj and f Ij are the ordinary CLM development factors and ∆fPi,j and ∆f Ii,j are terms that are added

to the development factors in order to take the two correlations of FP , Q and F I , QInv into account.

With Eq. (2.11) and (2.12) MCL deviates from the idea that using known paid or incurred
claims independently each give good estimates of the development of the claims, and instead
suggest that using known paid and incurred claims together gives a good estimate of the devel-
opment of the claims.

With Eq. (2.11) and (2.12) the claim triangles can be filled.

Different signs of λP and λI

With Eq. (2.13), Eq. (2.14) and depending on the sign of λP and λI one can get four different
cases, the first two of which are analyzed in (Mack and Quarg (2004)):

1. The first case is when both λs are positive. If λP > 0, λI > 0 then ∆fPi,j and ∆f Ii,j will

have the same sign as (Q−1i,j − qinv(j)) and (Qi,j − q(j)) respectively, because
σP
j

σ
QInv
j

≥ 0

and
σP
j

σ
QInv
j

≥ 0. This means that the accident years with lower than average Q-values get

a higher Q-value the next development year and vice versa.

2. The second case is when both λs are zero. If λP = λI = 0 then ∆fPi,j = ∆fPi,j = 0 which

gives fPMCL(i, j) = fPj and f IMCL(i, j) = f Ij , ∀ i and the method is identical to CLM.

The first case is the most common case and is the case MCL was designed for.

MCL was not designed for datasets with λP < 0 and/or λI < 0 and can give strange predictions
for these datasets. In section 3.4.1 these cases will be considered.
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2.5 MCL Bootstrapping

MCL does only give a point estimate for future claims, however often a point estimate is not
enough information and an estimated future PDF is needed. A common way to get an estimated
future PDF for a stochastic variable that is defined by one or several stochastic variables is to
use a bootstrapping method (Efron (1979) and Efron and Tibshirani (1993))

2.5.1 Bootstrapping Algorithm

Bootstrapping is not a single method, but a broad definition of methods that uses random
sampling with replacement. All data and parameters that are created by bootstrapping methods
will be denoted by a tilde. The bootstrapping algorithm works in four steps:

1. Manipulate the data, X = {X1, X2.....Xn}, by functions that have well defined inverses,
Fi(Xi) = Zi resp. F−1i (Zi) = Xi, and which has an output, Zi, that can reasonably be
assumed to be I.I.D, i.e. Z = {Z1, Z2.....Zn} is I.I.D. Z is often a set of residuals.

2. Resample with replacement the output {Z1, Z2.....Zn}.

3. Input the resampled Z̃ into the inverse, F−1i (Zk) = X̃i, to calculate pseudo-random data

{X̃1, X̃2.....X̃n}.

4. Use the pseudo-random data {X̃1, X̃2.....X̃n} to calculate θ̃, where θ̃ is an observed statistic
of interest e.g. the mean, a quantile or the standard deviation.

Step 2 to 4 is then done N number of times and with each iteration a θ̃ is calculated. With N
number of θ̃ it is possible to get an empirical PDF of θ̃ which as N increases should converge to
the true PDF of θ̃. The PDF of θ̃ can be assumed to be a good approximation of the PDF of
the true θ. This mean as N increases the empirical PDF of θ̃ becomes a better approximation
of the PDF of the true θ. To get a good approximation N is often set to at least 1,000.

Blockwise Bootstrapping

When bootstrapping with several different sets of residuals at the same time one needs to decide
if to use a blockwise bootstrap method. The blockwise and non-blockwise methods are identical
in all steps of the bootstrapping algorithm except in the resampling, step 2.

If one has two sets of residuals, Z and W, with a non-blockwise method they are resampled in-
dependently of each other. By doing the resampling independently any correlations that existed
between them does not carry over to the resampled Z̃ and W̃.

With a blockwise bootstrap method a new combined set of residuals, U, is defiend as:
U = {(Z1;W1), (Z2;W2), .....(Zn;Wn)}. U is then resampled, meaning that there is only one
resampling and Zi is still with Wi for all elements that are resampled. With the blockwise
bootstrapping the correlations between the residuals are carried over to the resampled Z̃ and
W̃.
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When bootstrapping CLM only one set of residuals are resampled as CLM considers either
paid or incurred data. This means that the bootstrapped CLM methods do not use blockwise
bootstrapping. An example of a CLM bootstrap method is the over-dispersed Poisson (ODP)
bootstrap method (Renshaw and Verrall (1998) and England (2002)).

2.5.2 Liu-Verrall MCL Bootstrapping Method

As MCL uses both paid and incurred claims and uses the FP , QInv and F I , Q correlations, a
more advanced bootstrapping method than the ones that can be used for CLM is needed. One
method proposed in (Liu and Verrall (2010)) uses a blockwise bootstrapping of the residuals of
the individual development factors, FP and F I , the Q-ratios and the QInv-ratios.

Method

The Liu-Verrall MCL method does not change the paid or incurred claims data but it re-
estimates the parameters (the development factors, the proportionality constants, λP and λI )
in each iteration. By doing a blockwise bootstrapping of all four sets of residuals the correlation
between FP , QInv and F I , QInv can be maintained after the resampling for the pseudo-random

F̃P , F̃ I , Q̃ and Q̃−1. By rewriting the definition of the development factors and conditional
expected values of Q and Q−1, see Eq. (2.15) to (2.18), one can create the pseudo-random f̃P ,
f̃ I , q̃ and q̃Inv.

fPj = E(
Pi,j+1

Pi,j
|Pi(j)) = E(

Pi,j · FPi,j
Pi,j

|Pi(j)) (2.15)

f Ij = E(
Ii,j+1

Ii,j
|Ii(j)) = E(

Ii,j · F Ii,j
Ii,j

|Ii(j)) (2.16)

q(j) = E(
Pi,j
Ii,j
|Bi(j)) = E(

Ii,j ·Qi,j
Ii,j

|Bi(j)) (2.17)

qInv(j) = E(
Ii,j
Pi,j
|Bi(j)) = E(

Pi,j ·Q−1i,j
Pi,j

|Bi(j)) (2.18)

With F̃P , F̃ I , Q̃, Q̃−1, f̃P , f̃ I , q̃ and q̃Inv λ̃
P and λ̃I can be approximated and the MCL

development factors can be calculated using Eq. (2.19) and (2.20)

f̃PMCL(i, j) = f̃Pj + λ̃P ·
σ̃Pj

σ̃QInv
j

· (Q̃−1i,j − q̃Inv(j)) (2.19)

f̃ IMCL(i, j) = f̃ Ij + λ̃I ·
σ̃Ij

σ̃Qj
· (Q̃i,j − q̃(j)) (2.20)

With f̃PMCL(i, j), f̃ IMCL(i, j) and normally distributed error terms the future claims can be
predicted:
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C̃K
i,j+1 = N(Ci,j · f̃KMCL(i, j), (σ̃Kj )2 · Ci,j) (2.21)

where N(µ,σ2) is a normally distributed variable with a mean value of µ and a variance of σ2.

With Eq. (2.21) the claim triangles can be filled and the reserves can be estimated. By doing
this N number of times an empirical estimated PDF can be made of the needed reserves.

2.5.3 Bootstrapped Munich Chain Ladder Method

The Liu-Verrall MCL method is a good method, however the method lacks a way of dealing
with high Sigma-ratios, see section 3.4.2, and how to deal with missing data. Also in the paper
where the method is described (Liu and Verrall (2010)) the last σp and σI , which cannot be
calculated and needs to be assumed, are not given any values.

For these reasons a modified version of the Liu-Verrall MCL method will be used in this thesis.
This modified method, the Bootstrapped Munich Chain Ladder method (BMCL) can deal with
missing data, see section 3.3.1, and has a way of alleviating the problem given by high Sigma-
ratio. The last σp and σI are assumed to be 0.1, as done in (Mack and Quarg (2004)). A final
difference between the Liu-Verrall MCL method and BMCL is that BMCL does not add error
terms when estimating future claims.

2.6 Calculating Reserves

2.6.1 Ultimate Reserves and Ultimate Reserve Risk

In this thesis the claims are assumed to be settled at the last known development year, J , that
is:

CK
i,J = CK

i,J+1 = .... = CK
i,inf (2.22)

and given this assumption the ultimate reserve, R∞, can be calculated as:

RK
∞ =

J∑
i=2

CK
i,J − Pi,J−i+1 (2.23)

Eq. (2.22) is a very strong assumption and another more complex long tail assumption could be
used to include the fact that some of the claims are not settled at development year J , however
using Eq. (2.22) makes comparing the predictions to real data very simple.

With a defined R∞ a new variable, r∞, can be defined as:

r∞ = V aR0.995(R∞ − E[R∞]) (2.24)
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2.6.2 One Year Reserve Risk

At calendar year J the ultimate reserve is calculated with D(J), where D(J) is a sigma algebra
that represents all paid and incurred claims known at time J . As time progresses money is paid
out and new information is learned. At time J one does not know how much will be paid out
next year nor how the estimated ultimate reserve will change, however one can use methods
to estimate different Dn(J + 1) and their probabilities. Using these scenarios a new ultimate
reserve can be calculated for the same accident years, [RK

∞|Dn(J + 1)]. The relation between
the old and the new reserve can be written as:

RK
∞ = [RK

∞|Dn(J + 1)] +
J∑
i=2

(Pi,J−i+2 − Pi,J−i+1)−
J∑
i=2

εKi (n) (2.25)

where RK
∞ is the estimated ultimate reserve with the information at time J , [RK

∞|Dn(J + 1)] is the ulti-

mate reserve for the same accident years but with the information at time J + 1,
J∑

i=2

(Pi,J−i+2−Pi,J−i+1)

is the amount paid out during calendar year J and ε is the term that corrects for the change in estimation

of the ultimate reserve given by the new information.

[RK
∞|Dn(J + 1)] can be rewritten as:

[RK
∞|Dn(J + 1)] =

J∑
i=2

(CK
i,J+1|Dn(J + 1)− Pi,J−i+2) =

J∑
i=2

(CK
i,J |Dn(J + 1)− Pi,J−i+2) (2.26)

where Ci,J+1 = Ci,J from Eq. (2.22).

Eq. (2.23), (2.25) and (2.26) give:

J∑
i=2

(CK
i,J − Pi,J−i+1) =

J∑
i=2

(CK
i,J |Dn(J + 1)− Pi,J−i+2) +

J∑
i=2

(Pi,J−i+2 − Pi,J−i+1)−
J∑
i=2

εKi (n)↔

J∑
i=2

εKi (n) =

J∑
i=2

(CK
i,J |Dn(J + 1)− CK

i,J) (2.27)

This means that εi(n) can be seen as the difference between two predictions of the ultimate
loss for an accident year. εi(n) is called the observed claim development result (OCDR) (Merz
and Wüthrich (2008)). The one year reserve risk, r1, is defined as (Lauzeningks and Ohlsson
(2008)):

J∑
i=2

εi(n) = ε(n)→ r1 = V aR0.995(ε) (2.28)
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Chapter 3

Implementation

In the following sections, both the paid and incurred data is assumed to be complete, with all
elements ≥ 0, and being able to be written it in the form of Table 3. This is not always the case
with real life data and in section 3.3 ways to adjust the methods to imperfect and missing data
will be discussed.

1 2 3 4 J = 5

1 P1,1 P1,2 P1,3 P1,4 P1,5

2 P2,1 P2,2 P2,3 P2,4

3 P3,1 P3,2 P3,3

4 P4,1 P4,2

J = 5 P5,1

1 2 3 4 J = 5

1 I1,1 I1,2 I1,3 I1,4 I1,5
2 I2,1 I2,2 I2,3 I2,4
3 I3,1 I3,2 I3,3
4 I4,1 I4,2

J = 5 I5,1

Table 3.1: Complete paid and incurred triangles.

3.1 MCL

3.1.1 Estimating The Parameters

All equations in this section are taken from (Mack and Quarg (2004)). The variables needed to
be estimated are: the ordinary CLM development factors (fPj and f Ij ), the conditional expected

value of Q and QInv (q and qInv), the proportionality constants (σp, σp, σQ and σQInv) and the
slopes of the regression lines without a constant for FP , Q−1 and FI , Q (λP and λI).

Development Factors and The Expected Value of Q and QInv

The development factors for the paid and incurred claims (f̂P and f̂ I) are estimated by Eq. (2.3)
and in an equivalent way q̂ and q̂Inv are estimated by :

q̂(j) =

J−j+1∑
n=1

Pn,j

J−j+1∑
n=1

In,j

and q̂Inv(j) =

J−j+1∑
n=1

In,j

J−j+1∑
n=1

Pn,j

(3.1)
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Proportionality Constants

The proportionality constants for the paid and incurred claims (σ̂p(j) and σ̂I(j)) for j = 1. . . J−2
are estimated by:

σ̂P (j) =

√√√√ 1

J − j − 1

J−j∑
n=1

Pn,j(
Pn,j+1

Pn,j
− f̂Pj )2 (3.2)

σ̂I(j) =

√√√√ 1

J − j − 1

J−j∑
n=1

In,j(
In,j+1

In,j
− f̂ Ij )2 (3.3)

For the penultimate development year, J−1, there is only one individual development factor
and the proportionality constant cannot be approximated by Eq. (3.2) and (3.3), and therefore
needs to be assumed. However, then the difference in Q is often small and the last sigma is not
of great importance. In (Mack and Quarg (2004)) the last σp and σI is simply set to 0.1, and
the same is done in this thesis.

In a similar way as σ̂P (j) and σ̂I(j) are approximated, the proportionality constants for Q-ratio
and QInv-ratio (σ̂Q and σ̂QInv) are estimated by:

σ̂Q(j) =

√√√√ 1

J − j

J−j+1∑
n=1

In,j(Qn,j − q̂(j))2 (3.4)

σ̂QInv(j) =

√√√√ 1

J − j

J−j+1∑
n=1

Pn,j(Q
−1
n,j − q̂Inv(j))2 (3.5)

Slopes of The Regression Lines Without A Constant

To calculate λP and λI the residuals for FP , Q−1 F I and Q needs to be calculated first. The
residuals for FP and F I are calculated by:

Res(
Pi,j+1

Pi,j
|Pj) = R̂es(FPi,j) =

FPi,j − f̂Pj
σ̂(

Pi,j+1

Pi,j
|Pj)

=
FPi,j − f̂Pj
σ̂P (j)

√
Pi,j (3.6)

Res(
Ii,j+1

Ii,j
|Ij) = R̂es(F Ii,j) =

F Ii,j − f̂ Ij
σ̂(

Ii,j+1

Ii,j
|Ij)

=
F Ii,j − f̂ Ij
σ̂I(j)

√
Ii,j (3.7)

The residuals for Q and Q−1 are calculated in a similar way:

Res(
Pi,j
Ii,j
|Bj) = R̂es(Qi,j) =

Qi,j − q̂(j)
σ̂(Qi,j |Bj)

=
Qi,j − q̂(j)
σ̂Q(j)

√
Ii,j (3.8)

Res(
Ii,j
Pi,j
|Bj) = R̂es(Q−1i,j ) =

Q−1i,j − q̂Inv(j)
σ̂(Q−1i,j |Bj)

=
Q−1i,j − q̂Inv(j)
σ̂QInv(j)

√
Pi,j (3.9)
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The slopes of the regression lines without a constant (λI and λP ) can now be calculated as

λ̂P =

∑
A

R̂es(Q−1i,j )R̂es(FPi,j)∑
A

R̂es(Q−1i,j )2
and λ̂I =

∑
A

R̂es(Qi,j)R̂es(F Ii,j)∑
A

R̂es(Qi,j)2
(3.10)

where A is the set of all (accident years, development years) pairs with four well defined residuals.

3.2 BMCL

3.2.1 Method

BMCL does not change the paid or incurred claims but it re-estimates the parameters (the de-
velopment factors, the proportionality constants, λP and λI) in each iteration. BMCL calculates
the parameters in the same way as the Liu-Verrall MCL method and all equations and theory
in this subsection is from (Liu and Verrall (2010)).

BMCL is done in six steps:

1. Calculate and blockwise resample the four sets of residuals used in the ordinary MCL,

multiply them by
√

J−j
J−j−1 and together with the non-bootstrapped conditional expected

values f̂Pj , f̂ Ij , q̂ and q̂Inv create the pseudo-random F̃P , F̃ I , Q̃ and Q̃−1.

2. Calculates the new development factors (f̃Pj and f̃ Ij ) and conditional expected values of Q

and Q−1 (q̃ and q̃Inv) with F̃P , F̃ I , Q̃ and Q̃−1 .

3. Calculate λ̃I and λ̃P using the pseudo-random residuals.

4. Calculate the proportionality constants (σ̃P , σ̃I , σ̃Q and σ̃QInv) using F̃P ,F̃ I ,Q̃ and Q̃−1

and their conditional expected values f̃Pj , f̃ Ij , q̃ and q̃Inv.

5. Calculate f̃PMCL(i, j) and f̃ IMCL(i, j) using the bootstrapped parameters (the parameters
with a tilde).

6. Estimating future claims using Eq. (2.19) and (2.20) and with future claims calculate the
estimated reserves needed.

These six steps are done N number of times which means that an empirical distribution can be
created for the reserves.

The Liu-Verrall MCL method has a seventh step, adding a normally distributed error with a
zero mean value and a standard deviation linear to the square of the claim to each future claim,
however this is not done in BMCL. The reason the step is not used in BMCL, is that it is
quite a strong assumption to make that the paid and incurred claims for an accident year are
independent, and it can often lead to predictions with Q-values over 1.
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3.2.2 Estimating The Parameters

The residuals are calculated in the same way as with the ordinary MCL, see Eq. (3.6) to (3.9).

However to correct bootstrap bias the residuals are multiplied by
√

J−j
J−j−1 where J is the total

number of development years.

R̃es = R̂es ·

√
J − j

J − j − 1
(3.11)

Individual Development Factors and Q- and QInv-ratios

The bootstrapped individual development factors are created by:

F̃Pi,j =
R̃es(F̃Pi,j)σ̂

P (j)√
Pn,j

+ f̂Pj and F̃ Ii,j =
R̃es(F̃ Ii,j)σ̂

I(j)√
In,j

+ f̂ Ij (3.12)

In a similar way Q and QInv are created by:

Q̃i,j =
R̃es(Q̃i,j)σ̂

Q(j)√
In,j

+ q̂(j) and Q̃−1i,j =
R̃es(Q̃−1i,j )σ̂QInv(j)√

Pn,j
+ q̂Inv(j) (3.13)

Development Factors and The Expected Value of Q and QInv

The bootstrapped development factors (f̃Pj and f̃ Ij ) are created by:

f̃Pj =

J−j∑
n=1

Pn,jF̃
P
i,j

J−j∑
n=1

Pn,j

and f̃ Ij =

J−j∑
n=1

In,jF̃
I
i,j

J−j∑
n=1

In,j

(3.14)

In a similar way the bootstrapped expected value of Q̃ and Q̃Inv (q̃(j) and q̃Inv(j)) are created
by:

q̃(j) =

J−j∑
n=1

In,jQ̃i,j

J−j∑
n=1

In,j

and q̃Inv(j) =

J−j∑
n=1

Pn,jQ̃
−1
i,j

J−j∑
n=1

Pn,j

(3.15)

Slopes of The Regression Lines Without A Constant

The bootstrapped slopes of the regression lines without a constant (λ̃I and λ̃P ) can now be
calculated as:

λ̃P =

∑
A

R̃es(Q̃−1i,j )R̃es(F̃Pi,j)∑
A

R̃es(Q̃−1i,j )2
and λ̃I =

∑
A

R̃es(Q̃i,j)R̃es(F̃ Ii,j)∑
A

R̃es(Q̃i,j)2
(3.16)

where A is the set of all (accident years, development years) pairs with four well defined residuals.
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Proportionality Constants

The proportionality constants for paid and incurred claims (σ̃p and σ̃I) are estimated by:

σ̃P (j) =

√√√√ 1

J − j − 1

J−j∑
n=1

Pn,j(F̃Pi,j − f̃Pj )2 (3.17)

σ̃I(j) =

√√√√ 1

J − j − 1

J−j∑
n=1

In,j(F̃ Ii,j − f̃ Ij )2 (3.18)

In the same way the proportionality constants for Q-ratio and QInv-ratio (σ̃Q and σ̃QInv) are
estimated by:

σ̃Q(j) =

√√√√ 1

J − j − 1

J−j∑
n=1

In,j(Q̃n,j − q̃(j))2 (3.19)

σ̃QInv(j) =

√√√√ 1

J − j − 1

J−j∑
n=1

Pn,j(Q̃
−1
n,j − q̃Inv(j))2 (3.20)

σ̃Q(j) and σ̃QInv(j) both have a factor
√

1
J−j−1 instead of

√
1

J−j as done in the ordinary MCL,

this is because the blockwise bootstrapping does only resample the (accident year, development
year) pair which has all four residuals. This means that there is one less residual resampled per
development year than there are Q and QInv residuals.

3.2.3 One Year Reserve Risk BMCL

Calculating r1 using BMCL is done by the following steps:

1. Create Dn(J + 1) by estimating the paid and incurred claims at time J + 1 with BMCL.

2. Input Dn(J + 1) into MCL to estimate CK
i,J |Dn(J + 1) .

3. Calculate ε(n).

Repeat step 1 to 3 N number of times, and then

4. Create an empirical PDF of ε(n).

5. Use the empirical PDF to calculate r1 using Eq. (2.28).

As empirical PDFs converge slower at the tails to the true PDFs, a high N is needed to get a
good estimate of the 99.5 percentile of ε and thereby r1.
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3.3 Data problem

As mentioned in the beginning of this chapter MCL and BMCL assumes that paid and incurred
data can be written as complete triangles and with cumulative claims ≥ 0 for each element.
However this is often not the case. In the following sections several types of data discrepancies
will be examined and suggestions on how to deal with the problems that arises from these
data discrepancies will be proposed. In general there are three ways of dealing with a data
discrepancy:

1. Adapting MCL and BMCL to be able to handle the discrepancy.

2. Change or estimate the data in order to ”repair” it.

3. Skip the entire development or accident year.

The first option is preferred as it keeps all the good data and does not add a risk of inducing
errors from the changing of data. However in some cases the first option cannot be done while
maintaining a good prediction model and one has to consider the second or third option.

A dataset can have several types of problems at the same time and in such cases a decision will
have to be made on a case by case basis on how it should be handled.

3.3.1 Missing Data

The missing data can be put into four different groups, types 1 to 4. Type 1 and 2 are missing
data points on accident years in which there is no known data in the preceding development
years, while Type 3 and 4 there is known data in the preceding development years. Type 1 and
3 are symmetrical, meaning that an (accident year, development year) pair have both unknown
paid and incurred data, while Type 2 and 4 are asymmetrical, meaning that an (accident year,
development year) pair only have paid or incurred unknown. See Table 3.2 for a dataset with
all four types of missing data.

1 2 3 4 J = 5

1 NA P1,2 P1,3 P1,4 P1,5

2 P2,1 NA P2,3 P2,4

3 P3,1 P3,2 P3,3

4 P4,1 NA

J = 5 P5,1

1 2 3 4 J = 5

1 NA NA I1,3 I1,4 I1,5
2 I2,1 NA I2,3 I2,4
3 I3,1 I3,2 I3,3
4 I4,1 I4,2

J = 5 I5,1

Table 3.2: Dataset with all four types of missing data.{1,1} is Type 1 missing data, {1,2} is Type 2
missing data, {2,2} is Type 3 missing data and {4,2} is Type 4 missing data.

Type 1 Missing Data

With Type 1 missing data MCL and BMCL are adapted to ignore the missing data points and
only use data from (accident years, development years) pairs with paid and incurred data when
calculating the parameters. This way no data needs to be added or changed and all of the
available data can be used, which means that no information is lost and no error can be induced
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by data manipulation. For this reason this is the chosen way to deal with Type 1 missing data.

Another way of dealing with Type 1 missing data is to approximate the missing data by CLM.
This way f I and fP stays the same, but q, qInv, λ

P and λI do not stay the same and an possible
error has then been induced. Therefore this method is not used in this thesis.

Nearly all of the missing data points in the datasets examined are Type 1 missing data.

1 2 3 4 J = 5

1 NA NA P1,3 P1,4 P1,5

2 NA P2,2 P2,3 P2,4

3 P3,1 P3,2 P3,3

4 P4,1 P4,2

J = 5 P5,1

1 2 3 4 J = 5

1 NA NA I1,3 I1,4 I1,5
2 NA I2,2 I2,3 I2,4
3 I3,1 I3,2 I3,3
4 I4,1 I4,2

J = 5 I5,1

Table 3.3: Dataset with Type 1 missing data

Example

With the suggested method and the data in Table 3.3 f̂P1 and f̂P2 are approximated by:

f̂P1 =

4∑
n=3

Pn,j+1

4∑
n=3

Pn,j

and f̂P2 =

3∑
n=2

Pn,j+1

3∑
n=2

Pn,j

(3.21)

In these equations the sums do not include P1,1, P2,1 and P1,2 as the data is missing. By excluding
the missing data points fP is well defined for 1 . . . J−1 again. The same is done for f I , q and
qInv. In a similar way σ̂P (1) and σ̂P (2) are approximated by:

σ̂P (1) =

√√√√1

1

4∑
n=3

Pn,1(
Pn,2
Pn,1

− f̂P1 )2 and σ̂P (2) =

√√√√1

1

3∑
n=2

Pn,2(
Pn,3
Pn,2

− f̂P2 )2 (3.22)

By changing P to I one approximates σ̂I(1) and σ̂I(2).

σ̂Q(1) and σ̂Q(2) are approximated by:

σ̂Q(1) =

√√√√1

2

5∑
n=3

In,1(
Pn,1
In,1
− q̂(1))2 and σ̂Q(2) =

√√√√1

2

4∑
n=2

In,2(
Pn,2
In,2
− q̂(2))2 (3.23)

σQInv(1) and σQInv(2) are approximated by switching P and I.

The residuals are calculated the same way as with complete data, and the slopes of regression
with no constant are approximated by Eq. (3.9), the same as with the complete data, only with
a redefined A that no longer contains the elements {1, 1}, {2, 1} and {1, 2}.
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Type 2 Missing Data

The suggested way, and the one chosen in this thesis, of handling Type 2 missing data is to
treat all (accident years, development years) pairs as completely missing data if either the paid
or incurred data point is missing. Another way is to approximate the missing paid or incurred
data with CLM for each (accident years, development years) pair which only have the paid or
incurred data. This way all information is used, but error can be induced by the approximation
of the missing data.

1 2 3 4 J = 5

1 NA P1,2 P1,3 P1,4 P1,5

2 NA P2,2 P2,3 P2,4

3 P3,1 P3,2 P3,3

4 P4,1 P4,2

J = 5 P5,1

1 2 3 4 J = 5

1 NA NA I1,3 I1,4 I1,5
2 I2,1 I2,2 I2,3 I2,4
3 I3,1 I3,2 I3,3
4 I4,1 I4,2

J = 5 I5,1

Table 3.4: Dataset with Type 1 and Type 2 missing data

Example

With the suggested method and data in Table 3.4 P1,2 and I2,1 are treated as missing data,
which means that Table 3.3 and Table 3.4 give the exact same results independently of the
values of P1,2 and I2,1. This is a weakness of the method.

Using the other method, to estimate the missing data by CLM, does not give identical results
independent of the values of P1,2 and I2,1, which is reasonable. However as always there is the
risk of inducing errors when estimating data.

Type 3 Missing Data

Type 3 missing data is handled using the same method that is used for Type 1 missing data, as
long as the unknown claims are not in the latest known calendar year. For Type 3 missing data
in the latest known calendar year the unknown claims needs to be approximated to be able to
calculate future claims. The suggested way of doing this approximation is by the MCL method.

Type 4 Missing Data

With type 4 missing data one can get a better estimation of the missing data than with type 2
using MCL. With type 4 missing data one should decide on a case by case basis which method
to use. None of the 38 datasets considered in this thesis had any Type 4 missing data.
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3.3.2 Problematic Data

Zero Values

The zero value is used to approximate q, qInv and fP or f I depending on if the zero value is
a paid or an incurred claim. The zero value claim is not used to calculate Q, Q−1,F I nor FP

as when a paid claim is zero then Q−1 and FP are not defined and when an incurred claim is
zero then Q and F I are not defined. This means that one does not calculate the residual for the
(accident year, development year) pair with the zero value claim and it is not used in calculating
λP and λI .

If the zero value claim is in the final calendar year the fMCL for that (accident year, development
year) pair is not defined, which means that the future claims will be undefined. This problem
is solved by rewriting Eq. (2.11) and (2.1) into Eq. (3.24). The same can be done for incurred
claims by rewriting Eq. (2.12) and (2.1) into Eq. (3.25).

Pi,j+1 = Pi,jf
P
MCL(i, j) = Pi,j+1(f

P
j + λP ·

σPj

σQInv
j

(Q−1i,j − qInv(j)))

= Pi,jf
P
j + λP ·

σPj

σQInv
j

(Q−1i,j Pi,j − qInv(j)Pi,j) = Pi,jf
P
j + λP ·

σPj

σQInv
j

(
Ii,j
Pi,j

Pi,j − qInv(j)Pi,j) =

= Pi,jf
P
j + λP ·

σPj

σQInv
j

(Ii,j − qInv(j)Pi,j)

Pi,j+1 = Pi,jf
P
j + λP ·

σPj

σQInv
j

(Ii,j − qInv(j)Pi,j) (3.24)

Ii,j+1 = Ii,jf
I
j + λI ·

σIj

σQj
(Pi,j − q(j)Ii,j) (3.25)

1 2 3 4 J = 5

1 0 P1,2 P1,3 P1,4 P1,5

2 P2,1 P2,2 P2,3 P2,4

3 P3,1 P3,2 P3,3

4 P4,1 P4,2

J = 5 0

1 2 3 4 J = 5

1 I1,1 I1,2 I1,3 I1,4 I1,5
2 0 I2,2 I2,3 I2,4
3 I3,1 I3,2 I3,3
4 I4,1 0

J = 5 I5,1

Table 3.5: Dataset with zero value claims.

Negative Values

Neither MCL nor BMCL is designed to handle negative values. In MCL and BMCL both the
Q and QInv will be negative if a paid or incurred claim is negative, meaning that the method
will try to correct it for both a too high Q-ratio and a too high QInv-ratio at the same time,
and also the approximation of λP and λI will use these misrepresenting Q and QInv values.
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Negative value claims will not be used and will either have to be assumed to be missing data,
or manipulated, or the entire accident year not used at all, depending on the dataset.

1 2 3 4 J = 5

1 P1,1<0 P1,2 P1,3 P1,4 P1,5

2 P2,1 P2,2 P2,3 P2,4

3 P3,1 P3,2 P3,3

4 P4,1 P4,2

J = 5 P5,1

1 2 3 4 J = 5

1 I1,1 I1,2 I1,3 I1,4 I1,5
2 I2,1 I2,2 I2,3 I2,4
3 I3,1 I3,2 I3,3
4 I4,1 I4,2

J = 5 I5,1

Table 3.6: Dataset with negative value claims

3.4 Bad Parametric Values

3.4.1 Negative λP or λI

When λP < 0 or λI < 0 MCL and BMCL can have some problems. The advantage of MCL is
that it converges Q-values as time progresses by increasing the paid and decreasing the incurred
development factors for accident years with lower than average Q-values, and vice versa. This
is done by Eq. (2.13) and (2.14), however if λP or λI is negative, this gets reversed.

fPMCL(i, j) = fPj + ∆fPi,j , ∆fPi,j = λP ·
σPj

σQInv
j

· (Q−1i,j − qinv(j)) (2.13)

f IMCL(i, j) = f Ij + ∆f Ii,j , ∆f Ii,j = λI ·
σIj

σQj
· (Qi,j − q(j)) (2.14)

For an accident year with a lower than average Q-value, (Q−1i,j − qinv(j)) < 0, in a dataset with

λP ≤ 0, the individual paid development factor is calculated as:

fPMCL(i, j) = fPj +λP ·
σPj

σQInv
j

·(Q−1i,j −qinv(j))→ fPMCL(i, j) = fPj −D → fPMCL(i, j) < fPj (3.26)

where D is a positive constant.

Eq. (3.26) gives that for accident years which has a lower than average Q-value the paid individ-
ual development factors are lower than with CLM. This decreases the already too low Q-value
the following development year, see Fig. 3.1

If both of the λs are negative then they will both diverge the Q-values and the entire reason to
use MCL is not only lost but it actually makes the problem it was supposed to solve worse. If
one λ is negative and one is positive then one of them will try to diverge the Q-values and one
to converge them, meaning that in some cases MCL will work and make the Q-values converge
and in some cases it will not. Looking at Fig. 3.2, which has a negative λI , it can be seen that
converging Q-values is possible despite a negative λ.
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Figure 3.1: Dataset 36, negative λP , blue ”+” are real claim data, black ”o” is predicted claim data.
The left is predicted by CLM and the right figure by MCL. In the left figure the Q-value convergence
near 1, that one expects from MCL, does not exist. Looking at the accident year with the lowest Q-value
one can see that MCL makes it diverge from the average Q instead of converge towards it.

Figure 3.2: Dataset 6, negative λI , blue ”+” are real claim data, black ”o” is predicted claim data. The
right figure is predicted by MCL and the left by CLM. The predictions by MCL converge to the Q-value
of 1 despite the negative λI .
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3.4.2 High Sigma-ratio

Eq. (2.13) and (2.14) shows that the individual development factors in MCL and BMCL,
fMCL(i, j), can be written as the CLM development factor, fj , plus a correction term, ∆fi,j ,
that is accident year dependent. The correction term, as long as λP and λI are positive, in-
creases the Q-value of the next development year for accident years that have a lower than
average Q-value and vice versa.

The correction terms are linearly dependent of the ”Sigma-ratios” ,
σP
j

σ
QInv
j

and
σI
j

σQ
j

. The Sigma-

ratios have for the most part a value below 1, often even below 0.1. However the Sigma-ratio
can be much larger, in a few cases up to 20. In these cases the correction from ∆fi,j can become
far too large, leading to accident years with lower than average Q-values to get a far to high
Q-value next development year, see the right graph in Fig. 3.3.

To help alleviate this problem an upper limit can be put on the Sigma-ratio. This improves the
methods ability to produce good predictions without changing the correlations, see Fig. 3.3 for
a comparison of predictions made by MCL with and without an upper limit on the Sigma-ratio.

Figure 3.3: Both figures are predictions of the same dataset predicted with MCL. The left has no upper
limit for the Sigma-ratio while the right one has a upper limit of 5. As one can see at year seven MCL
gives extreme Q-values for the unlimited case, and while the limited case get Q-values greater than 1
they are not nearly as extreme.
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Chapter 4

Result and Analysis

4.1 The Datasets

The data used to calculate the results in this thesis are from 36 different portfolios from both
Trygg-Hansa and Codan, and from different line of businesses. The insurance portfolios are
differing in number of development years, in size of claims and in number of unknown data
points. These datasets will simply be referred to as ”dataset 1” to ”dataset 36”. Any missing
or strange data will be dealt with as written in section 3.3.

Dataset A and B will also be examined but they will not be in the results when considering
dataset 1 to 36.

4.2 MCL

In this section the result of MCL will be discussed, the result from BMCL will be in the next
section.

4.2.1 Q-ratios

In 37 of 38 different datasets (A,B and 1-35) the Q-values can be seen to converge better with
MCL than with CLM, however the difference in convergence vary greatly from dataset to dataset.
For example, for dataset A and B, see Fig. 4.1, the Q-values converge better to 1 when using
MCL, however the size of the improvement is much greater for dataset A than for dataset B.

The one dataset that does not get helped by MCL to converge the Q-values is dataset 36, see
Fig. 3.1 and the reasons behind this is discussed in subsection 3.4.1.

34



Figure 4.1: Dataset A on the top and dataset B on the bottom, prediction by CLM on the left, MCL
to the right. Development year on the X-axis and the P/I -ratio on the Y-axis. The red line is at
theP/I -ratio equal to 1.
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1 2 3 4 J = 5

1 C1,1 C1,2 C1,3 C1,4 C1,5

1 C2,1 C2,2 C2,3 C2,4 C2,5

1 C3,1 C3,2 C3,3 C3,4 C3,5

1 C4,1 C4,2 C4,3 C4,4 C4,5

J = 5 C5,1 C5,2 C5,3 C5,4 C5,5

Table 4.1: J = 5. Cumulative claim triangle with the accident years as rows and the development years
as columns. Ci,j is the cumulative paid or incurred claim for accident year i after j development years.
The calendar year is i+ j − 1.

4.2.2 Reserve and Future claims

In this section the error of estimated reserves and future claims from MCL and CLM are com-
pared. By using the filled triangles, where all of the accident years have J known development
years, see Table 4.1, and Eq. (2.23) one can calculate an ultimate reserve, RFilled∞ .

By considering the same triangle, but non-filled, and calculating estimated ultimate reserves by
MCL and CLM (RMCL

∞ and RCLM∞ ) the differences between the estimated and the real reserves
can then be calculated. The difference between the estimated and real reserves, ∆R, are defined
as:

∆RMCL = RFilled∞ −RMCL
∞ ∆RCLM = RFilled∞ −RCLM∞ (4.1)

The claims at calendar year J + 1, CK,MCL
i,J−i+2 and CK,CLM

i,J−i+2 ∀i, will also be compared to the real
claims, Ci,J−i+2. The comparison of claims at calendar year J + 1 will be done by comparing
∆CMCL and ∆CCLM :

∆CMCL =
J∑
i=2

(CK,MCL
i,J−i+2 − C

K,Real
i,J−i+2) ∆CCLM =

J∑
i=2

(CK,CLM
i,J−i+2 − C

K,Real
i,J−i+2) (4.2)

By comparing the absolute ∆RMCL, ∆RCLM , ∆CMCL and ∆CCLM one can evaluate the accu-
racy of the predictions of MCL compared to CLM.

In this thesis MCL is examined using several different sets of datasets:

1. All of the 36 datasets except dataset 21 and 35.

2. The datasets in which MCL have positive λI and λP .

3. The datasets in which MCL have positive λI and λP and no Q-value above 1.02.

The comparison of MCL and CLM will also be done with all available accident years and then
only with accident years after 1999.
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All Accident Years, All Datasets

When considering all insurance portfolios with all accident years, Table 4.2, MCL was better
than CLM with paid claims in predicting both the ultimate reserve and the paid claims one
year in the future in a majority of the datasets. MCL was also slightly better than CLM with
incurred data in predicting the incurred claims one year in the future, however it was worse in
predicting the ultimate reserve.

n=34 Incurred Paid

Number of |∆RMCL| < |∆RCLM | 15 19

% of |∆RMCL| < |∆RCLM | 44.1% 55.9%

Number of |∆CMCL| < |∆CCLM | 18 20

% of |∆CMCL| < |∆CCLM | 52.9% 58.8%

Table 4.2: Dataset 1-36 except dataset 21 and dataset 35.

All Accident Years, All Datasets with λI ≥ 0 and λP ≥ 0

By excluding the datasets with negative λI or λP one could assume that MCL will perform
better. MCL is superior to CLM with paid data in predicting both the ultimate reserve and
claims one year in the future, however it was slightly worse than CLM with incurred data at
predicting both, see Table 4.3.

n=25 Incurred Paid

Number of |∆RMCL| < |∆RCLM | 12 16

% of |∆RMCL| < |∆RCLM | 48% 64%

Number of |∆CMCL| < |∆CCLM | 12 17

% of |∆CMCL| < |∆CCLM | 48% 68%

Table 4.3: Only the datasets with λI ≥ 0 and λP ≥ 0.

All Accident Years, All Datasets with λI ≥ 0, λP ≥ 0 and Qi,j ≤ 1.02, ∀(i, j)

By further excluding datasets that do not have Qi,j ≤ 1.02,∀(i, j) one removes datasets which
do not have the Q-pattern which MCL is trying to emulate. This should be an advantage for
MCL. With this small set of datasets, MCL outperforms CLM with both paid and incurred data
in predicting both the ultimate reserve and the claims one year in the future. However drawing
conclusions one have to keep in mind there are only 14 datasets compared.

n=14 Incurred Paid

Number of |∆RMCL| < |∆RCLM | 8 9

% of |∆RMCL| < |∆RCLM | 57.1% 64.3%

Number of |∆CMCL| < |∆CCLM | 8 8

% of |∆CMCL| < |∆CCLM | 57.1% 57.1%

Table 4.4: Only the datasets with λI ≥ 0, λP ≥ 0 and no Q-Values greater than 1.02.
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Accident Years after 1999, All Datasets

When considering all accident years, for some of the datasets the first being as early as 1976,
the final one being in 2013 one makes two implicit assumptions that:

1. It makes no significant difference in how a claim from 1976 and a claim from 2013 develop
over time.

2. The incurred claims are reported and estimated in the same way from 1976 until 2013.

The first one can be discussed, and the second one is not true. As MCL is a more complex
method than CLM any induced error from incorrect or incomplete data is likely to induce larger
errors into BMCLs predictions.

Comparing Table 4.2 and Table 4.5 one can see that MCL improves its predictive abilities com-
pared to CLM with paid data when only considering accident years after 1999. The percentage
of superior predictions of MCL increases significantly, from 55.9% to 65.7% and 58.8% to 68.6%
in ultimate reserve and claims one year in the future respectively.

n=35 Incurred Paid

Number of |∆RMCL| < |∆RCLM | 17 23

% of |∆RMCL| < |∆RCLM | 48.6% 65.7%

Number of |∆CMCL| < |∆CCLM | 18 24

% of |∆CMCL| < |∆CCLM | 51.4% 68.6%

Table 4.5: Datasets 1 to 35, considering only accident years after 1999.

Accident Years after 1999, All Datasets with λI ≥ 0, λP ≥ 0

Sorting for datasets with λI ≥ 0 and λP ≥ 0 when only using accident years after 1999 does not
have the expected outcome. The relative accuracy of prediction for MCL decreases instead of
increases, as in the case with all accident years. No mathematical or theoretical reason why the
relative accuracy of prediction should fall can easily be seen. It is possible it is only stochastic
chance as there are only 24 datasets, however it should be noted and future research can examine
this strange behavior with different datasets.

n=24 Incurred Paid

Number of |∆RMCL| < |∆RCLM | 10 15

% of |∆RMCL| < |∆RCLM | 41.7% 62.5%

Number of |∆CMCL| < |∆CCLM | 11 16

% of |∆CMCL| < |∆CCLM | 45.8% 66.7%

Table 4.6: The datasets that when considering only accident years after 1999 have λI ≥ 0 and λP ≥ 0 .
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4.3 BMCL

In this section the BMCL will be examined. The things that will be examined are:

1. How the convergence of mean and VaR depend on the number of simulations.

2. How the mean value of the BMCL reserve and MCL reserve compares.

3. The estimated future distribution of the ultimate reserve.

4. The OCDR and the estimated one year reserve risk.

4.3.1 Number of Simulations and Convergence

When using stochastic simulation models there is always a simulation error induced by using
a finite number of simulations. In order to see the approximate size of the simulation error
the BMCL program is run five times with 10,000 simulations each. By checking the mean and
V aR0.995 of subsets of the 10,000 simulations each time the program run one can see how well
they converge when increasing the size of the subsets.

Fig. 4.2 and 4.3 clearly shows that the means and V aR0.995 converge as sample size increases,
however at 4,000 to 5,000 samples the rate of convergence seems to slow down. As more simula-
tions will always decrease the simulation error and one does not have infinite computing power
and memory one has to make a decision where the decrease in simulation error is not worth the
extra simulations. Due to these constrains the 36 different dataset will only be simulated 4,000
times for R∞ and for r1.

Figure 4.2: Convergence of mean and V aR0.995. Mean values in the left graph and V aR0.995 in the right
one.
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Figure 4.3: Convergence of mean and V aR0.995. Mean values in the left graph and V aR0.995 in the right
one.

4.3.2 Mean BMCL Reserve and MCL Reserve

The mean of the ultimate reserves estimated by BMCL does not seem to converge to ultimate
reserve estimated by MCL. The difference in value between the MCL ultimate reserve and the
mean BMCL ultimate reserve is highly dependent on the dataset. By examining the relative
difference ∆B, see Eq. (4.3), it can be seen that additional simulations have some effect on ∆B,
however it would seem like ∆B is not solely responsible for ∆B > 0 (see Table 4.7).

∆B =
|RMCL
∞ − E[R̄BMCL

∞ ]|
RMCL
∞

(4.3)

The 12.5 % of reserve predictions (9 out of 72) that had a ∆B > 0.2 for 4,000 simulations
all had problems with the data or with parametric values. Each of these datasets had missing
data, Q-values over 1.02, negative λ and/or high Sigma-ratio. However the datasets which have
reserve predictions with 0.05 < ∆B < 0.2 does not all have these problems. It would seem
that there are datasets that do not have any of the previous data or parametric problems with
RMCL
∞ 6= E[R̄BMCL

∞ ] even when the number of simulations goes to infinity.

n=36 ∆B < 0.02 0.02 < ∆B < 0.05 0.05 < ∆B < 0.2 ∆B > 0.2

1000 simulations 41.7% 22.2% 27.8% 8.3%

4000 simulations 51.4% 13.9% 22.2% 12.5%

Table 4.7: Dataset A, B and 1 to 36 except dataset 21 and 35.
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To make the distributions given by BMCL have a mean of RMCL
∞ the reserves estimated by

BMCL are multiplied by a factor:

RBMCL
∞ (n) =

RMCL
∞

E[R̄BMCL
∞ ]

R̄BMCL
∞ (n) (4.4)

4.3.3 Distribution of Ultimate Reserve and Ultimate Reserve Risk

The distributions of ultimate reserves are made by BMCL with 4,000 simulations. Fig. 4.4 and
4.5 show that for Dataset B the variance differ greatly between the ultimate reserve distributions
from the paid and incurred claims and the mean ultimate reserve differ for dataset A and dataset
4. However for dataset 1, 2 and 3 the estimated distributions are very close for the paid and
incurred claims. To easily compare r∞ for different datasets a new variable is defined as:

δr∞ =
2r∞

RMCL,Paid
∞ +RMCL,Incurred

∞

Dataset A Dataset B Dataset 1 Dataset 2 Dataset 3 Dataset 4

δrPaid∞ 0.148 0.189 0.618 0.646 0.471 0.0782

δrIncurred∞ 0.161 0.0444 0.640 0.632 0.613 0.0971

Table 4.8: δr∞ for dataset A, B and 1 to 4.

Figure 4.4: Estimated ultimate reserve distribution, blue is from the incurred triangle and black is from
the paid triangle.
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Figure 4.5: Estimated ultimate reserve distribution, blue is from the incurred triangle and black is from
the paid triangle. The unit on the X-axis is 0.5RMCL,Paid

∞ + 0.5RMCL,Incurred
∞

.
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4.3.4 OCDR and The One Year Reserve Risk

When estimating the distribution of OCDR and the one year reserve risk, r1, there is a problem.
The mean of ε calculated with BMCL is not equal to zero, nor does it seem to converge to zero
when the number of simulations increases as expected (Lysenko, Merz and Wüthrich (2009)).
To work around this problem and get a reasonable estimate of r1 one makes the approximation of:

EB(J+1)[E[CK
i,J |Bn(J + 1)]|B(J)] = CK

i,J (4.5)

Eq. (2.27) and (4.5) gives

ε(n) =
J∑
i=2

(CK
i,J |Bn(J + 1)− EB(J+1)[E[CK

i,J |Bn(J + 1)]|B(J)]) (4.6)

With Eq. (4.6) the PDF of OCDR is centered around zero and r1 can be calculated. In the
same way as in subsection 4.2.3 a new variable is defined as:

δr1 =
2r1

RMCL,Paid
∞ +RMCL,Incurred

∞

Comparing Fig. 4.4 and 4.5 to Fig. 4.6 and 4.7 it can be seen that OCDR has a lower variance
than the ultimate reserves BMCL estimate. This is expected as the OCDR only includes risks
occurring in the next calendar year while the ultimate reserve distributions looks at the entire
claim development time. It is also shown that the difference in variance between the ultimate
reserve and the OCDR is highly dependent on the dataset.

Figure 4.6: The PDF of OCDR, blue is from the incurred triangle and black is from the paid triangle.

Comparing Table 4.8 and 4.9 shows that for dataset A δr∞
δr1

is equal to 1.37 and 1.18 for paid
and incurred respectively, while for dataset 1 it is equal to 9.13 and 9.43 respectively.
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Dataset A Dataset B Dataset 1 Dataset 2 Dataset 3 Dataset 4

δrPaid1 0.109 0.0764 0.0677 0.327 0.148 0.0374

δrIncurred1 0.136 0.0270 0.0679 0.331 0.154 0.0404

Table 4.9: δr1 for dataset A, B and 1 to 4.

Figure 4.7: The PDF of OCDR, blue is from the incurred triangle and black is from the paid triangle..
The unit on the X-axis is 0.5RMCL,Paid

∞ + 0.5RMCL,Incurred
∞ .
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Chapter 5

Conclusions

In this thesis both MCL and BMCL, a bootstrapped MCL model were considered. With the
results presented in this thesis the following conclusions can be drawn about MCL:

1. The predicted paid and incurred claims seems to converge for almost all datasets. This is
true for all but one of the 38 insurance portfolios examined.

2. When looking at an arbitrary insurance portfolio, MCL seems to provide superior predic-
tions compared to CLM with paid data in a small majority of the cases.

3. When only examning more recent accident years (after 1999) MCL seems to increase its
relative predictive performance.

4. The relative performance of MCL compared to CLM seems to increase on average when
only considering the datasets which fits the criteria of λI ≥ 0, λP ≥ 0 and no Q-value
above 1.02

5. MCL does not seem to give any improvement on average over CLM with incurred data
in predicting future claims. (Table 4.4 indicates that there could be a small improvement
with datasets which fits the criteria of positive slopes and no Q-value above 1.02, however
with n=14 it is hard to draw any conclusions.)

It was also shown that for some datasets MCL severely overcompensates when trying to converge
the paid and incurred claims, leading to extreme divergence of the Q-values. These overcom-
pensations can be alleviated by adding an upper limit to the Sigma-ratio.

The fact that the predicted paid and incurred claims converge means that when using MCL the
choice of looking at future paid or incurred claims does not matter as much as when using CLM.

Conclusions two to five means that if one uses CLM with incurred data to calculate reserves
there does not seem to be any great incentive to start using MCL instead. However if one is
using CLM with paid data and if MCL have no negative λ for that dataset, then it could be
advantageous to use MCL instead.

The fact that MCLs relative performance over CLM increases as the data is sorted, indicates
that MCL is more sensitive to incomplete or incorrect data. This is expected as the MCL is
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a more complex method and as such there are many more ways an error in input data can
propegate through the method.

With the results presented in this thesis the following conclusions can be drawn about BMCL:

1. An upper limit on the Sigma-ratio helps to alleviate overcompensation.

2. BMCL does have problems in that the mean of OCDR and the mean of estimated ulti-
mate reserves do not converge to the wanted values (zero and the MCL ultimate reserve
respectively).

3. Missing data, Q-value above 1.02, high Sigma-ratios and negative λ, all seems to increase
the risk of a large difference between the wanted and the actual estimated means.

4. BMCL can be used to estimate both OCDR and the ultimate reserve PDF after the
estimates mean values are set to the wanted values.

5. The PDF for paid and incurred reserves and risks estimated by BMCL seems to be very
similar for most datasets, but not for all.

6. The one year risk estimated by BMCL is lower than the ultimate reserve risk estimated
by BMCL, but how much lower is highly dependent on the dataset.

The fact that BMCL estimates do not converge to the right value is a potential weakness of the
BMCL model and something that should be looked into. The fact that all the datasets with a
20 % or higher difference between the wanted and the actual estimated means had missing data,
Q-values over 1.02, negative λ and/or high Sigma-ratio seems to indicate that BMCL is method
that is vulnerable to datasets with these characteristics. Therefore perhaps one should not use
BMCL to estimate the PDF for the ultimate reserve and OCDR for these datasets. However
not all datasets with missing data, Q-values over 1.02, negative λ and/or high Sigma-ratio did
have a large difference in the wanted and the actual estimated means.

The simulation error was not insignificant even at 10,000 simulations for dataset A and B, which
indicates that if BMCL should be used in production it would be advantageous to use a higher
number of simulations.
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