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Abstract

Credit risk management is a significant fragment in financial institutions’
security precautions against the downside of their investments. A major
quandary within the subject of credit risk is the modeling of simultaneous
defaults. Globalization causes economises to be a↵ected by innumerous
external factors and companies to become interdependent, which in turn
enlarges the complexity of establishing reliable mathematical models. The
precarious situation is exacerbated by the fact that managers often su↵er
from the lack of data. The default correlations are most often calibrated
by either using financial and/or market information. However, there exists
circumstances where these types of data are inaccessible or unreliable. The
problem of scarce data also induces di�culties in the estimation of default
probabilities. The frequency of insolvencies and changes in credit ratings are
usually updated on an annual basis and historical information covers 20-25
years at best. From a mathematical perspective, this is considered as a small
sample and standard statistical models are inferior in such situations.

The first part of this thesis specifies the so-called entropy model which
estimates the impact of macroeconomic fluctuations on the probability of de-
faults, and aims to outperform standard statistical models for small samples.
The second part specifies the CIMDO, a framework for modeling correlated
defaults without financial and market data. The last part submits a risk
analysis framework for calculating the uncertainty in the simulated losses.

It is shown that the entropy model will reduce the variance of the regres-
sion coe�cients but increase its bias compared to the OLS and Maximum
Likelihood. Furthermore there is a significant di↵erence between the stu-
dent’s t CIMDO and the t-Copula. The former appear to reduce the model
uncertainty, however not to such extent that evident conclusions were carried
out.



Sammanfattning

Kreditriskhantering är den enskilt viktigaste delen i bankers och finan-
siella instituts säkerhets̊atgärder mot nedsidor i deras investeringar. En
p̊ataglig sv̊arighet inom ämnet är modelleringen av simultana konkurser.
Globalisering ökar antalet parametrar som p̊averkar samhällsekonomin, vil-
ket i sin tur försv̊arar etablering av tillförlitliga matematiska modeller. Den
prekära situationen förvärras av det faktum att analytiker genomg̊aende
saknar tillräcklig data. Konkurskorrelation är allt som oftast kalibrerad
med hjälp av information fr̊an årsrapporter eller marknaden. Dessvärre ex-
isterar det omständigheter där s̊adana typer av data är otillgängliga eller
otillförlitliga. Samma problematik skapar även sv̊arigheter i skattningen av
sannolikheten till konkurs. Uppgifter s̊asom frekvensen av insolventa företag
eller förändringar i kreditbetyg uppdateras i regel årligen, och historisk data
täcker i bästa fall 20-25 år. Syftet med detta examensarbete är att ge ett
övergripande ramverk för kreditriskhantering i avsaknad av finansiell infor-
mation och marknadsdata. Detta innefattar att estimera vilken p̊averkan
fluktueringar i makroekonomin har p̊a sannolikheten för konkurs, modelle-
ra korrelerade konkurser samt sammanfatta ett ramverk för beräkning av
osäkerheten i den estimerade förlustdistributionen.

Den första delen av examensarbetet specificerar den s̊akallade entropy
modellen. Denna skattar p̊averkan av makroekonomin p̊a sannolikheterna för
konkurs och ämnar att överträ↵a statistiska standardmodeller vid små da-
tamängder. Den andra delen specificerar CIMDO, ett ramverk för beräkning
av konkurskorrelation när marknads- och företagsdata saknas. Den sista de-
len framlägger ett ramverk för riskanalys av förlustdistributionen.

Det visas att entropy modellen reducerar variansen i regressionskoe�ci-
enter men till kostnad av att försämra dess bias. Vidare är det en signifikant
skillnad mellan student’s t CIMDO och t-Copula. Det förefaller som om den
förstnämnda reducerar osäkerheten i beräkningarna, men inte till den grad
att uppenbara slutsatser kan dras.
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Chapter 1

Introduction

Credit risk is defined as the risk of a lender incurring losses due to a credit
downgrade or default of a counterparty. It is of paramount importance that
these losses are calculated correctly so that banks and financial institutions
can protect themselves from potential downsides in investments, hence con-
tributing to the economic stability.

Over the past two decades, the subject of credit risk has developed
rapidly from being interdisciplinary to become purely quantitative. The
greatest advance occurred in 2004, when the Basel Committee on Banking
Supervision (BCBS) released Basel II. Among others, the accords contain
the Internal Rating Based approach, allowing banks to autonomously cal-
culate the regulatory capital to provide bu↵er against the risks emerging
from credit activities. For this reason the main target for any investor is to
calculate the potential loss distribution of their loan portfolio, from where
this bu↵er capital is obtained.

The execution is usually done in two separate steps, where it starts
by estimating the Probability of default (PD), Loss given default (LGD)
and Exposure at default (EAD). The subsequent step is developing a model
which properly captures the default correlation among the risk components
making up the portfolio. This is particularly important in order to correctly
simulate simultaneous defaults among the counterparties, hence accurately
estimate the credit losses.

1.1 Background

Despite the progress from the conventions by BCBS, the US subprime mort-
gages crisis was triggered in 2007, causing innumerous bankruptcies and
worldwide financial paralysis whose adverse e↵ects are still present today.
In retrospect, experts have identified incorrect model assumptions regard-
ing the dependence structure, rather than erroneous calculations as the main
reason for the crisis.
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The literature is far from consentaneous about what should be included
in the concept of default modeling and how it should be accomplished. From
a broad perspective it is obvious that common factors such as recessions or
changes in government and monetary policies are a↵ecting the likelihood of
default. Furthermore, today’s globalized world expands the amount of pa-
rameters impacting the default correlation of counterparties, thereby driving
the complexity further and making it even more di�cult to reliably calibrate
mathematical models aimed for the purpose.

The precarious situation is exacerbated by the fact that risk managers
often su↵er from lack of data. In most published frameworks the default
correlation is calibrated by either using information in financial reports or
from the secondary market. However, there exists circumstances where these
types of data are inaccessible or unreliable. Such scenarios could arise when
publicly unlisted companies, SME’s and obligors in emerging markets or
developing countries are making up the portfolio. Another example is when
the lender and borrower sign the loan deal through a financial intermediary.

The trivial solution in these scenarios is to make assumptions on the
interaction of the counterparties. But this was precisely such unsubstantial
claims that led to the escalation of the crisis. Consequently, there is a need
to accomplish adequate default modeling based on the data that is actually
available.

The problem of scarce data also induces di�culties in the estimation of
the PD’s, however in a di↵erent way. The frequency of insolvencies and
changes in credit ratings are usually updated on an annual basis and histor-
ical information covers 20-25 years at best. From a mathematical perspec-
tive, this is considered as a small sample and standard statistical models are
inferior in such situations.

The information considered available in this thesis will only be the credit
rating of each company, the number of defaults per year in each rating class,
the number of companies per year in each rating class and macroeconomic
variables. Hence, the information on accounting and market data is consid-
ered inaccessible. The following section submits a literature review on PD
estimation and modeling correlated defaults, partly from a broad perspective
but also in the light of what has been presented in this section.

1.2 Literature Review

1.2.1 Probability of Default Modeling

Several methods for estimating the PD of an obligor have been developed
over the years. These are mainly divided into two broad groups; market-
based models and fundamental-based models.

Market-based models are applicable whenever there exists a secondary
market of publicly traded securities connected to the obligors. One technique
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is the utilization of the high correlation between the CDS spread and PD’s.
The PD is derived from the insurance premium and the expected recovery
rate.

The fundamental-based models are useful when market information is
unavailable. This group is in turn divided into three categories; econo-
metric, credit-scoring and hybrid models. The first category attempts to
calibrate the macro economy with the default rate movements. Usually the
obligors are clustered into sectoral or rating groups. Credit-scoring models
use accounting data such as sales growth and liquidity ratios to calculate
a score which subsequently is transformed into a PD. A famous example
is EDFTM developed by Moody’s KMV [12]. Finally, hybrid models are as
the name suggests, hybrids between the econometric and scoring models.
Details on all these methods are found in the two surveys by Chan-Lau (see
[10] and [11]).

In Section 1.1, the foundation of this thesis was outlined by assuming
that information on accounting and public market data are inaccessible. It is
therefore inevitable that almost all of the models above are omitted, leaving
the econometric models as the only alternative to predict the PD’s. Focusing
on this particular category, the articles by Wilson ([37], [38]) present one of
the first attempts of linking the PD’s to the business cycle. Wilson’s model is
based on a distributed lag regression model where optional macroeconomic
variables are inputs and an index is the response variable. The index in
turn is obtained by a logistic transformation of the historical default rates
of companies clustered by their sectorial belonging.

Several extensions has been made after Wilson’s model. Virolainen [36]
introduces univariate time-series modelling on each of the exogenous vari-
ables and connects these by correlating their error terms. Thereafter the
parameters are estimated by seemingly unrelated regression. Breuer et. al.
[7] go further by an ARMAX set-up, i.e. modelling the PD’s with lagged
time dependence along with exogenous macro variables and additional dis-
turbance. Wong et. al. [39] develop a dynamic framework where the default
rates also a↵ect the macro variables. Nevertheless, none of these articles
address the problems and consequences of small samples.

1.2.2 Modeling Correlated Defaults

Recall from Section 1.1 that default modeling is the last step in the procedure
of obtaining the credit losses. This part is particularly important since
simultaneous defaults must be correctly simulated, so that the losses could
be accurately calculated. Opinions di↵er as to how modeling correlated
defaults should be accomplished, most methods utilize in some way market
data for this purpose.

However, the mixture models1 are close at hand since frameworks within
this category typically requires minimal input data. What generally applies
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for all mixture models is the PD of a borrower is linked through a function
to a set of common macroeconomic and/or market variables. Given a re-
alization of these factors, defaults of the counterparties are assumed to be
independent [32]. Thus, if ⇥⇥⇥ = [✓1, . . . , ✓M ] represents the set of common
factors and F : RM ! [0, 1] is the link function, then the PD of borrower i
is

Pr
h

Borr. i defaults |⇥⇥⇥
i

= F (⇥⇥⇥). (1.1)

The various frameworks based on this representation di↵er in the choice
of the link function and common factors. The most famous model in the
financial industry, CreditRisk+ by Credit Suisse, uses an exponential link
function along with market sector weights [19]. Tiwari [35] develops the
original CreditRisk+ version further by introducing dependence among the
considered markets. The CreditRisk+ framework assumes low PD’s for large
portfolios, which naturally is a major drawback [13] in cases of high risk
investments or if a small portfolios is considered.

Denuit et. al. [15] insert a max function in the argument of the link
function to capture whether class specific or global factors mostly a↵ect
the PD. The authors claim that their method will minimize the risk of
underestimating the extreme losses.

Bae and Iscoe [1] utilize the class of double mixtures where they fit a
joint distribution describing the likelihood of simultaneous defaults. The
correlation between any two borrowers is dynamic and dependent on the
common factors. However, the framework presumes homogeneous credit
portfolios and the correlation structure is calibrated with market data.

Another class of default modeling framework tries to correlate default
events through the asset processes of the counterparties. This methodol-
ogy stems from Merton’s paper issued in 1974 [33]. Several modifications
of the original model has been made afterwards, see for instance Jakubik
[27] or Hashimoto [24]. The idea is that any borrower is unable to meet
its obligations whenever its liabilities exceed the assets. The asset process
methodology simplifies the correlation structure and is closely related to the
mixture models, which will be shown in Section 2.5.2.

Frey and McNeil [20] go further by fitting copulas to the univariate assets
in order to simultaneously generate outcomes. However, the copula approach
does not account for the data that is actually available and is more or less
an assumption on the multivariate distribution of the assets. Nevertheless,
the copula approach will serve as a benchmark model for this thesis.

1The notation refers to mixture of normals. Also known as static reduced-form models.
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1.3 Purpose

The aim of this thesis is to bypass the obstacles presented in Section 1.1 for
loan portfolios exclusively. In other words, the work will focus on how to
overcome the absence of financial and market data in the context of credit
risk modeling. Estimation of the LGD and EAD are excluded, hence PD
estimation and modeling correlated defaults are the two main topics, see
Figure 1.1 below.

It is immediately announced that no real data was available during the
work and therefore the overall report should be perceived as informative
rather than evidential. What is considered to be known is stated in the last
paragraph in Section 1.1. The focal points are

• to specify and analyze an econometric model for estimating the PD’s
which outperforms standard statistical techniques for small samples,

• to specify and analyze a default modeling framework which is not only
based on assumptions (such as the copulas), but also takes into account
the data that is actually available.

Furthermore, all models have shortcomings which bring insecurity in the
estimation of the loss distribution. If this uncertainty is quantified, there will
be opportunities to make judgments on which default modeling framework
that performs best. Hence, the final goal of the thesis is

• to specify a risk analysis method for quantifying the uncertainty in the
loss distribution. This method will be used to compare the specified
default modeling framework with the copula approach.

Figure 1.1: A general scheme showing the separate steps of credit risk man-
agement. The goal is to obtain the loss distribution. The PD, LGD and
EAD is estimated first. The next step is to model the default dependency
among the counterparties. LGD and EAD estimation is excluded in this
thesis.

The rest of this paper is organized as follows. In the subsequent chapter
assumptions, delimitations and fundamental parts of credit risk are stated,
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set-ups for PD estimation and modeling correlated defaults are presented as
well. Chapter 3 highlights the mathematical details used within the thesis.
Chapter 4 describes the econometric models used the for estimating the
impact of macroeconomic changes on the PD’s. Chapter 5 describes the
selected frameworks for modeling correlated defaults. Chapter 6 provides
a risk analysis method for quantifying the risks in the loss distribution.
Chapter 7 reports results, discussions and analyzes. Chapter 8 concludes.
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Chapter 2

Preliminaries

This chapter describes the fundamental parts of credit risk more closely
and presents predetermined assumptions and delimitations. Credit losses
are defined, and the set-up for PD modeling as well as modeling correlated
defaults are presented.

2.1 Basel II and its Risk Parameters

As aforementioned, BCBS released Basel II in 2004, which consists of rec-
ommendations for banking supervision and risk management. The most
essential part is the minimum capital requirement a financial institution
must hold to protect against the risks due to business activities. Within the
accords there are three risk parameters explicitly mentioned to be estimated,
namely the PD, EAD and LGD. The definitions are listed below.

• As the name suggests, PD is the likelihood of a borrower being un-
able to meet its financial obligations over a predetermined time period
(usually set to one year).

• The EAD is the gross exposure a creditor faces in case of default. EAD
is divided into two parts, outstanding and commitments. The first is
often treated as deterministic while the latter is calibrated, usually by
the creditworthiness of the borrower. EAD is measured in currency.

• LGD is the actual loss incurred by the creditor. It is determined by
the recovery rate, which in turn is a↵ected by the type and quality of
the collateral, potential insurances, additional costs due to repurchase
etc. LGD is measured in percent of the EAD.

For more details on the risk parameters see Bluhm et. al. [5]. BCBS also
released Basel III in 2010. However, the updated version focuses on capital
allocation and is not concerning this thesis.
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2.2 Credit Portfolio Losses

Financial institutions are keen to estimating the loss distribution in order to
calculate capital requirements and supervise the overall risk within the busi-
ness. The loss distribution describes the potential losses a lender may incur
over a fixed time period due to simultaneous defaults of the counterparties.

Consider L as the random variable representing the losses. Furthermore,
let i denote the i:th borrower in the portfolio and let t be a predetermined
future time point. According to Huang and Oosterlee [26], the total credit
loss is defined as

L(t) =
N
X

i=1

EADit · LGDit · 1it, (2.1)

where N is the total amount of borrowers in the portfolio. 1it is the de-
fault indicator taking value 1 if the borrower i defaults up to time t, and
0 otherwise. The Expected loss (EL) refers to the expectation of the total
losses. From business point of view, EL is interpret as the normal cost of
doing credit business and is calculated as

EL(t) =
N
X

i=1

EADit · LGDit · pit, (2.2)

where pit is the PD up to time t of borrower i. The Unexpected losses (UL)
are larger losses occurring more occasionally. UL is defined by the BCBS as
the Value-at-Risk (VaR) at level 99.9% of the loss distribution, see Section
3.6.1 for the definition of VaR. The di↵erence between UL and EL is equal
to the Economic capital (EC), i.e. the amount a creditor must put aside to
manage financial distressed periods. Figure 2.1 gives an illustration of EL,
UL and EC as fractions of the loss distribution. The shaded area reflects
the losses exceeding the UL. These are losses which are excluded from the
EC since they are considered too expensive to hold.
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Figure 2.1: Illustration of the loss distribution along with the EL, UL and
EC.

Thus, proper estimation of LGD, EAD, PD as well as default correlation is
a necessity to accurately calculate the loss distribution.

The remainder of the chapter presents, for this thesis specifically, the
set-up for PD modeling as well as modeling correlated defaults.2 However,
first the borrowers must be categorized.

2.3 Categorization of Borrowers

In most credit risk frameworks some sort of classification of the borrowers
making up the portfolio is implemented. This varies across the literature,
in most applications the borrowers are divided into groups by either their
market sector, geographical location and/or rating class. Subsequently, as-
sumptions concerning certain properties shared among all borrowers within
the same group are assigned. From a mathematical point of view, the clas-
sification is crucial since it significantly reduces the model parameters and
thereby making the calculations feasible.

In this thesis the borrowers will be divided into 6 rating classes. All
borrowers within the same rating will have equal PD. Hence, instead of cal-
culating the PD for each individual counterparty, the number of parameters
to be estimated is reduced to six. Rating 1 contains borrowers less likely
to default (lowest PD), whereas rating 6 contains the borrowers associated
with the greatest risk (highest PD). Furthermore, the ratings are regarded
as fixed through time, i.e. a borrower either jumps directly into default or
remains in the same rating.3 Therefore, all methods based on rating migra-
tions are excluded.

2LGD and EAD estimation are excluded in this thesis. These will be set as constants.
See Appendix A.4 for a short comment on these parameters.

3In some credit rating frameworks the companies could move from one rating to an-
other, i.e. downgrading/upgrading in creditworthiness.
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2.4 Set-Up for PD modeling

Recall from Section 1.1 that it was assumed that accounting and public
market data are inaccessible, leaving the econometric models as the only
alternative to predict the PD’s (see the Literature review 1.2 for details).
Moreover, recall the assumption that each borrower i has the same PD as all
other counterparties within the same rating class. Hence, the endogenous
variables in the model, i.e. the PD’s corresponding to rating r at time t, are
given by

pit = prt =
drt
nr
t
, if i 2 r, r = 1, . . . , 6. (2.3)

Here drt is the number of defaults in rating r at time t, and nr
t is the total

number of borrowers in rating r at time t. drt and nr
t are assumed to be

known, see the last paragraph in Section 1.1.
Furthermore, let X be a vector containing optional macroeconomic vari-

ables and consider the set of functions g : R ! [0, 1].4 Then one may link
the PD’s and macroeconomic variables by

prt = g(�r ·X), r = 1, . . . , 6 (2.4)

where �r is the vector of regression coe�cients.
The choice of econometric models are by no means uncontroversial.

These models have some appealing properties but also some serious draw-
backs. For detailed explanation on this issue, the interested reader is referred
to Appendix A.1. Section 1.3 outlined the goals of this thesis, in which one
is to specify an econometric model outperforming standard statistical meth-
ods for small samples. This model is presented in Chapter 4 and further on
compared to the standard methods in Chapter 7.

2.5 Set-Up for Modeling Correlated Defaults

The idea of the default modeling is to estimate the number of counterparties
that are simultaneously unable to meet their obligations. This is the final
step and enables to forecast credit losses, see Figure 1.1 and Equation 2.1.
The PD’s have been calculated at an earlier stage and therefore the potential
defaults could theoretically be determined by using Bernoulli random vari-
ables, or some sort of corresponding multivariate representation. However,
such approaches are rudimentary and perhaps impossible in some aspects.
For instance, if marginal Bernoulli’s are selected then no account is taken
on the correlation between the obligors in the portfolio. Furthermore, on a
multivariate level the joint PD of two or more companies are required for

4The set of functions must map its arguments to the unit interval due to the dependent
variable in Equation (2.4) is indeed a probability.
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calibration. Loan portfolios vary heavily in size and content as loans are
continuously refunded and new contracts are signed, which is why the joint
PD’s are almost impossible to estimate from empirical data.

Thus, there is a demand to enforce a model facilitating the correlation
among the borrowers. Only then opportunities arise to develop sophisti-
cated methods for modeling correlated defaults. To completely grasp the
selected framework, the so-called Vasicek model, the underlying economic
interpretation must first be declared.

2.5.1 Economic Interpretation

Intuitively, all companies have assets emerging through various business
activities. Likewise, just as indisputable is that companies have liabilities
such as provisions and loans. If the liabilities exceed the assets, the company
becomes insolvent and hence incapable to meet its obligations. This applies
irrespective of whether the information regarding assets and liabilities are
available. Therefore, this conception will be accepted in the further work.

It is of great importance to emphasize that this does not, by any means,
implies the actual asset process is estimated. Instead the asset return should
be viewed as a latent variable, or a parametric assumption describing an
unknown but real event.

2.5.2 The Vasicek Model

To visualize the Vasicek model, contemplate Figure 2.2 below. The black
curve represents the asset process between two time points of borrower i be-
longing to a rating class with PD=3%. One could simulate random numbers
from a normal distribution5 to represent the asset returns at the end of the
time period and compare these to the threshold value ��1(0.03) ⇡ �1.88,
pictured as the blue line in Figure 2.2. If a specific sample is below the
quantile, then borrower i is considered defaulted, whereas if the sample is
above then the same borrower is considered solvent. Certainly 3% of all the
outcomes will fall into the default zone, pictured as the blue shaded area, if
su�cient amount of samples are generated.

Now consider PD=10% with the corresponding threshold value -1.28.
The increase of simulated defaults are visualised by an expanding of the
default zone where the red shaded area now is included.

5There is no explicit reason for normal distribution other than its simplicity and man-
ageability. Student’s t distributions are also used, see Appendix A.3 for details.
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Figure 2.2: The black curve shows the asset process between two time points.
If the PD=3% then the default zone constitutes of the blue shaded area. If
the PD increases to 10%, the default zone is expanded to also include the
red shaded area as well.

The actual values from the normal distribution representing the asset returns
are not of interest, but rather whether these falls above or below the quantile.
Thus, the entire concept is in fact a two state model such as Bernoulli
random variables.

Until now no account has been taken on the correlation between bor-
rowers. This is where the Vasicek model becomes useful. According to
Hashimoto [24], the asset return of obligor i at time t is

Ait =
p
⇢rSt +

p

1� ⇢rUit i 2 r, (2.5)

where St represents the common systematic risk6 while Uit is the idiosyn-
cratic risk7, both assumed to be standard normally distributed and inde-
pendent of each other. Here ⇢r denotes the asset correlation of rating r
and explains to what extent the asset return is a↵ected by the risk factors
respectively. Ait will also be standard normal because the asset correlation
is defined on the unit interval.

The asset correlation could be estimated by using for instance Maximum
Likelihood, see Appendix B.1 for details. However, the estimation of the
asset correlation is not the main focus in this thesis and the absence of real
data makes it irrelevant to calculate them. Instead, the asset correlations

6
Systematic risk is also known as market risk, a↵ects all borrowers and cannot be

prevented by diversification of the held portfolio. Recessions and changes in monetary
policies are examples of systematic risk.

7
Idiosyncratic risk is commonly known as the risk connected to a single borrower and

it is prevented by diversification.
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will further on be varied to examine di↵erent scenarios. The logic behind
estimating the asset correlation by rating class, and not for instance by
market sector, is also discussed in Appendix B.1.

The covariance between two asset returns of the borrowers (i, j) belong-
ing to the rating classes (r, r0) is given by

�i,j = Cov[Ai, Aj ] = E[Ai ·Aj ]� E[Ai] · E[Aj ]

= E
h

�p
⇢rSt +

p

1� ⇢rUit
��

p

⇢r0St +
p

1� ⇢r0Ujt
�

i

=
p

⇢r⇢r0 .
(2.6)

Since all asset returns have variance equal to 1 the correlation between two
asset returns is equal to the covariance. Equation (2.6) shows how the
Vasicek model simplifies the establishment of correlation structure. Instead
of finding the correlation of each individual pair of counterparties, there is
a reduction in parameters which is significantly lower.

Moreover, recall that all borrowers within same rating have the same
PD. Let �it denote the liabilities at time t for borrower i belonging to rating
r, then

pit = {Eq. (2.3)} = prt = Pr(Ait < �it) = �(�it) )
prt = �(�

r
t ),

(2.7)

where �(·) is the cumulative distribution function (CDF) of a standard nor-
mal variable. Equation (2.7) shows that the liabilities will be equal for all
borrowers belonging to the same rating class8 and is in fact equal to the
quantile pictured in Figure 2.2. For this reason, henceforth the liabilities
will be referred to as the threshold value, and denoted �rt instead. Com-
paring Equations (2.7) and (2.4) reveals that the threshold value is through
the PD indirectly a↵ected by the macroeconomic state. Thus, if an adverse
macroeconomic shock causes the PD of any rating class to rise, it will in the
Vasicek model be equivalent to an increase of the threshold value and an
expansion of the default zone, see Figure 2.2.

Lastly, the conditional probability of default is defined. Conditioned on
the realization St = s, the conditional PD for obligor i in rating r is

pit(s) = prt (s) = Pr[Ait < �rt | S = s] = Pr[s
p
⇢r + Uit

p

1� ⇢r < �rt ]

prt (s) = �

 

��1(prt )� s
p
⇢rp

1� ⇢r

!

.
(2.8)

If the systematic risk is realized, then the only remaining risk is Uit and
therefore all obligors will be independent of each other. By comparing
Equations (2.8) and (1.1) it becomes apparent that the Vasicek model has
a mixture representation. Here, the gaussian CDF is the link function and

8Obviously is this not true in reality. However, since the parameters in the Vasicek
model are latent factors it is regarded as accepted.
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the common factors are St and also the macroeconomic variables through
��1(prt ) (see Equation (2.3)). Hence, the Vasicek model and other mix-
ture models are closely related, the di↵erence is roughly the distributional
assumption.

2.5.3 Additional Comments

For various reasons the literature concerning credit risk has modified the
Vasicek model. For more details on this particular subject, the interested
reader is referred to Appendix A.3.

Given the information presented until now, it is feasible to simulate
the losses by generating joint asset movements using Equation (2.5), or by
calculating the conditional PD from the mixture representation. However
these are poor approaches in practice. Long before the aftermath of the cri-
sis Frey and McNeil [20] emphasized that asset correlation certainly a↵ects
the default correlation, nevertheless, these terms should not be equated.
Furthermore, mixture models have been heavily criticized for their tenu-
ous assumption regarding the default dependency merely stems from the
dependence of individual PD’s on the set of common variables.

Therefore, to simulate the losses, the idea is to calibrate a multivariate
distribution for the univariate Vasicek asset returns described in previous
section. The Vasicek model provides a manageable foundation to estimate a
correlation matrix for this multivariate distribution. From the distribution,
the assets of the borrowers could be simultaneously generated and thence
compared to their corresponding threshold value. These threshold values
are in turn obtained by first estimating the relationship between the PD’s
and the macro economy by econometric modeling. Thereafter, new PD’s
could be predicted and inserted into Equation (2.7) to obtain the threshold
values for each rating class respectively.

Chapter 5 presents the methods for fitting a multivariate distribution
to the Vasicek asset returns, and Chapter 4 presents the methods for PD
estimation. Chapter 6 provides a method for quantifying the uncertainty in
the generated loss distribution. Therefore, the next chapter is dedicated for
explaining the mathematical details behind these methods.
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Chapter 3

Mathematical Background

This chapter outlines the fundamental mathematical parts used in this the-
sis. The objective is to provide the reader with a deeper understanding of
the formulas and derivations within the models in the subsequent chapters.
Readers who are familiar with these concepts could skip to the next Chapter.

3.1 Calculus of Variations

The field of calculus of variations is aimed to find a minimum or maximum
of any functional, i.e. integrals containing functions with corresponding
derivatives and arguments. The optimization is performed by applying the
Euler-Lagrange equations, where the solution is expressed as an extremal
function. The theorem of Euler-Lagrange is given below.

Theorem 3.1. Let x = [x1, x2, . . . , xm] be a vector of variables. Consider
the set of functions f1, . . . , fn with corresponding derivatives f 0

j,i = @fj/@xi.
Furthermore, let H(·) and G(·) be any functional on some sample space ⌦.
Then the integral

Z

⌦
H
�

f1, .., fn, f
0
1,1, .., f

0
n,m,x

�

dmx

subject to the constraints

�k

Z

⌦
Gk(f1, .., fn, f

0
1,1, .., f

0
n,m,x)dmx k = 0, . . . ,K < 1

attains a minimum if and only if the following condition holds

@H

@fj
�

m
X

i=1

@

@xi

@H

@f 0
j,i

+
K
X

k=0

"

�k

 

@Gk

@fj
� @

@xi

@Gk

@f 0
j,i

!#

= 0,

for j = 1, . . . , n. The system of equations is commonly known as the Euler-
Lagrange equations.
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The Euler-Lagrange equations stated in Theorem 3.1 is an extended version
of the original definition. First, the theorem allows several functions to be
included in the functional. Second, there exists a finite set of constraints
which is not the case in the initial formulation. For more information, the
interested reader is referred to [8].

3.2 Entropy Measure

Entropy is a measure of the unpredictability in a random variable or model.
Higher randomness is equivalent to higher entropy. A simple example is a
coin toss. If the coin has two heads, the randomness is zero and consequently
the entropy is at its minimum. Whereas if the coin has both head and tail
with the equal probability, it is impossible to predict the next toss and hence
the entropy is maximized. Depending on usage, the definition of entropy is
di↵erent. However this thesis will work with the following notation

H(X) = �
X

i

Pr(xi) ln
⇥

Pr(xi)
⇤

, (3.1)

where X is the random variable, the xi’s are the possible outcomes and
Pr(xi) is the probability of being in state xi.

3.3 Kullback-Liebler Divergence

Suppose the distribution Q is used for approximating another distribution
P . The Kullback-Leibler (KL) divergence9 measures the information lost
due to the approximation. Another interpretation of KL-divergence is that it
measures the distance between Q and P . By definition [6] the KL-divergence
for one-dimensional continuous distributions is formulated as

D(p | q) =
Z 1

�1
p(x) ln

hp(x)

q(x)

i

dx, (3.2)

where p and q are the density functions of P and Q respectively. The KL-
divergence is demonstrated by the following example. Consider a standard
normal distribution and a logistic distribution with location parameter 2 and
scale parameter 0.7. The left plot in Figure 3.1 shows the density functions.
In the right plot the integrand function in Equation (3.2) is displayed for two
cases. The solid red function is the situation where the standard normal is
used for approximating the logistic distribution. The dashed blue function is
the opposite case, the logistic is used for approximating the standard normal.
The red and blue areas under the curves are equal to the KL-divergence, for
each case respectively.

9Also known as the cross entropy distance or relative entropy.

16



−4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 
Standard normal
Logistic

Figure 3.1: Left : The density functions of the standard normal and the logis-
tic distributions. Right : Demonstration of the Kullback-Leibler divergence.
The red solid curve corresponds to the case where the logistic distribution
is approximated by the standard normal. The dashed blue curve is the
opposite scenario, the standard normal is approximated by the logistic.

From the two curves in the right plot in Figure 3.1 it is obvious that the
KL-divergence is non-symmetric. More interestingly, the areas under these
curves are not equal. When the logistic is approximated, the area (i.e. the
KL-divergence) is 2.02, whereas in the reversed case the area is 2.06. In
fact, generally D(p | q) 6= D(q | p). Consequently the KL-divergence does
not fulfill the criterion of being a distance in the formal sense.

3.4 Mahalanobis Distance

Suppose x = (x1, . . . , xN ) is an arbitrary point on the real coordinate space
RN generated by the multivariate distribution X = (X1, X2, . . . , XN ), with
covariance matrix ⌃ and possible location parameters µµµ = (µ1, . . . , µN ).
The Mahalanobis Distance (MD) is the length, measured in standard devi-
ations, between the point x and the average of X. It is defined as

M(x) =
q

(x�µµµ)T⌃�1(x�µµµ). (3.3)

If X is multivariate normal, then M 2 �2(N). Similarly, if X is student’s
t-distributed with ⌫ degrees of freedom, then ⌫

N(⌫�2)M 2 F (N, ⌫). MD also
works ex post, where in such case x is an outcome and X is a fitted or
predetermined multivariate distribution.

For illustration, let (X,Y ) have a bivariate normal distribution with
covariance equal to 0.5 and mean µµµ = [2, 2]T . The MD for the points
(x1, y1) = (7, 5), (x2, y2) = (�1, 3), (x3, y3) = (�1, 1) and (x4, y4) = (2, 2)
are shown in Figure 3.2 together with 10’000 other samples from the distri-
bution.
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Figure 3.2: Samples from a bivariate normal distribution with mean value
2 and covariance 0.5. The plot also shows the Mahalanobis distance for the
points (7, 5), (�1, 3), (�1, 1), (2, 2).

3.5 The Rearrangement Algorithm

The Rearrangement Algorithm (RA) made by Embrechts et al. [17] is purely
a computational tool for minimizing the variance of the row sums in a matrix.
The algorithm is given below.

Algorithm 3: The Rearrangement Algorithm

1 Given a R⇥K dimensional matrix M , exclude column k.

2 Calculate the row sums of the remaining columns.

3 Sort each element in column k in

inversely descending order from the row sums.

4 Repeat (1)-(3) for all columns 1 6 k 6 K.

To get an intuition of how the RA works, consider the 3 ⇥ 3 matrix given
below. From the beginning the row sums are 16, 10 and 7. After applying the
RA the row sums become 12, 11 and 10. Hence the variance has decreased.

c1 c2 c3 !1 7 8
0 2 8
2 4 1

c2 + c3 !15
10
5

�!

c1 c2 c3 !0 7 8
1 2 8
2 4 1

c1 + c3 !8
9
3

�!

c1 c2 c3 !0 4 8
1 2 8
2 7 1

c1 + c2 !4
3
9

�!

c1 c2 c3 !0 4 8
1 2 8
2 7 1
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3.6 Risk Measures

According to Lindskog et al. [31], by using di↵erent risk measures a manager
is capable of comparing di↵erent portfolios, make decisions regarding posi-
tion changes, and determining the amount of bu↵er capital (EC, see Figure
2.1) that should be hold to prevent insolvency in case of financial distress.

3.6.1 Value-at-Risk

Value-at-Risk (VaR) is the most used risk measure in the financial industry.
If L represents the random loss variable and FL(`) is the corresponding CDF,
then the VaR at confidence level p 2 (0, 1) is defined as

VaRp(L) = F�1
L (p) = inf{` 2 R | FL(`) > p}. (3.4)

The interpretation is as follows. Suppose p = 0.99, then VaR describes the
value where greater losses will occur only 1% of the time.

VaR has endured a lot of criticism because of its drawbacks. For instance
it is not sub-additive, meaning that the merging of two portfolios might
have larger VaR than the sum of the VaR of the same portfolios separately.
Consequently VaR ignores the e↵ect of diversification. Furthermore, VaR
neglects the losses exceeding above p, which could be catastrophic if these
losses are extreme. To compensate for these disadvantages, the Expected
Shortfall is introduced.

3.6.2 Expected Shortfall

The Expected Shortfall (ES) is defined as

ESp(L) = E[L | L > V aRp(L)] =
1

1� p

Z 1

p
V aRu(L)du. (3.5)

ES is interpreted as the average of the losses greater than the loss obtained
by VaR at level p. ES is sub-additive and consequently it satisfactorily
compensates VaR as a risk measure. Similarly, the Left Tail Value-at-Risk
(LTVaR) is the average of the losses lower than the loss obtained by VaR at
level p, i.e.

LTV aRp(L) = E[L | L < V aRp(L)] =
1

p

Z p

0
V aRu(L)du. (3.6)

In this thesis, LTVaR will solely be used as a tool for computing bounds of
VaR, see Section 6.0.6.
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Chapter 4

Econometric Modeling

This chapter outlines the econometric model used to capture the impact of
macroeconomic fluctuations on the PD’s. The first two sections describe
standard techniques for estimating regression coe�cients. These will later
on be compared to the entropy model.

To contemplate how the endogeneous variables are obtained, see Section
2.4. Also recall from Section 2.3 that all counterparties within the same
rating have equal PD. Therefore, all the econometric models are performed
on each rating class separately.

4.1 Ordinary Least Squares

Let t = (0, . . . , T ) be the time vector and let ���r = [�rT , . . . , �
r
0 ] denote the

vector of dependent variables. Here �rt = ��1(prt ), where �
r
t is the threshold

value, ��1(·) is the inverse CDF of a standard normal10 and prt is the PD of
rating class r at time t, see Equations (2.3) and (2.7). Furthermore let X be
a T⇥K matrix containingK optional explanatory macroeconomic variables,
���rOLS = [�r1, . . . ,�

r
K ] denotes the vector of coe�cients to be determined and

er = [erT , . . . , e
r
0] is the vector of error terms. The linear function

���r = X���rOLS + er, r = 1, . . . , 6 (4.1)

has the solution

b���
r

OLS = (XTX)�1XT���r. (4.2)

OLS has the advantages of being comprehensible and easily manageable.
Unfortunately the method has several disadvantages. In situations where
the sample size is small the regression coe�cients will be sensitive to small

10This is true under the assumptions of assets being standard normal. If another dis-
tribution is selected, then �(·) is substituted to the corresponding CDF.
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changes in the data set and both have large standard errors as well as mean
square errors (MSE).

4.2 Maximum Likelihood

If the link function in Equation (2.3) is the CDF of a standard normal vari-
able, then the equation is commonly known as the probit model. Typically
the maximum likelihood technique is the used to obtain the coe�cients in
such situations. Let ���r and er be defined as in the previous section. Fur-
thermore, define xt as the vector containing the outcomes of the selected
macroeconomic variables at time t. If the elements in er are assumed be
independent and follow a standard normal distribution, then the Maximum
Likelihood (ML) function is formulated as

K(xt, �
r
t ) =

1p
2⇡

exp

"

� (�rt � xt���
r
ML)

2

2

#

ML =
T
Y

t=0

K(xt, �
r
t ), r = 1, . . . , 6

(4.3)

where the coe�cients ���rML are obtained by maximizing ML for each rating
class r respectively. The ML procedure is easily implemented in statistical
programmes and has similar advantages and drawbacks as the OLS.

4.3 The Entropy Model

A more sophisticated model originally developed by Golan et. al. [22]
aims to minimize the shortcomings of regular regression models in situations
where the sample size is small. This section explains the method and the
theory behind it.

The essential equation of the entropy model is still the linear function in
Equation (4.1). The main di↵erence is that each coe�cient �r1, . . . ,�

r
K are

treated as random variables instead of constants. To obtain the distribution
of each regression coe�cient it is suitable to perform bootstrap. Fox [18]
describes the procedure as Algorithm 4 below.
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Algorithm 4: The Bootstraping Procedure

1 Calculate the error ei = Yi � bYi, where i = 1, . . . , n. bYi are

estimates from OLS while Yi are the original samples.

2 Produce a new vector e⇤ = [e⇤1, . . . , e
⇤
n] by drawing with

replacement from e = [e1, . . . , en].

3 Compute a new sample vector, Y ⇤
i = bYi + e⇤i .

4 A new coe�cient vector ���⇤ is estimated by the OLS,

���⇤ = (XTX)�1XTY⇤.

5 Store ���⇤ and repeat (2)-(4) N times. X is fixed

through all iterations.

The question now is how to find the optimal �rk’s from the bootstrapped
distributions which will result in the smallest MSE. The most trivial way is
to set �rk to be equal to the mean of its corresponding distribution. However,
since the bootstrap procedure is based on the OLS it will not be expected
that such simple solution would make any improvement over the OLS.

Bootstrap on smaller sample size is likely to cause larger variance of the
generated distribution and/or making it skewed. To capture this di↵usion,
an alternative way is to select U > 2 outcomes from the bootstrapped distri-
bution, and find the optimal coe�cient by weighting these outcomes. This
is the approach of the entropy model.

Bootstrap is not performed for the error terms. One can instead use the
standard deviation of the dependent variable, ����r , and use it as outcomes
of the errors.11 For computational purposes let Zr and Vr be matrices
containing the selected outcomes, namely

Zr =

2

6

6

6

6

6

6

4

zr11 zr12 · · · zr1U
...

...
. . .

...
zrk1 zrk2 · · · zrkU
...

...
. . .

...
zrK1 zrK2 · · · zrKU

3

7

7

7

7

7

7

5

, Vr =

2

6

6

6

6

6

6

4

vr11 vr12 · · · vr1J
...

...
. . .

...
vrt1 vrt2 · · · vrtJ
...

...
. . .

...
vrT1 vrT2 · · · vrTU

3

7

7

7

7

7

7

5

(4.4)

For the regression coe�cients, if U is set to 3, then the outcomes could simply
be chosen to be the mean and one standard deviation from the mean, i.e.
zrk1 = ��, zrk2 = µ and zrk3 = �. See Figure 4.1 for illustration. For the error
terms, if J is set to 2 then the outcome could for instance be vrt1 = �2����r

and vrt2 = 2����r .

11The statement is founded on the following basic theory. If the explanatory variables
and the error terms are independent then Var[Y ] = Var[X� + e] = Var[X�] + Var[e]. In
addition, if X is fixed then Var[X�] = 0 is indeed true.
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Figure 4.1: Example of a coe�cient distribution generated by the bootstrap
algorithm. The mean value and one standard deviations are also plotted.
These outcomes is obtained from the distribution could be used in the en-
tropy model.

Moreover, Golan et. al. [22] defines weights qrku 2 [0, 1] and wr
tj 2 [0, 1] such

that each �rk and ert are expressed as a linear combination like

�rk =
U
X

u=1

zrkuq
r
ku ert =

J
X

j=1

vrtjw
r
tj . (4.5)

qrku and wr
tj could be viewed as the probabilities of being in state zrku and vrtj

respectively, although it is formally incorrect. In any case, the reformula-
tion in Equation (4.5) of the model parameters causes the linear regression
function in Equation (4.1) to be rewritten as

���r = XZrqr +Vrwr, r = 1, . . . , 6. (4.6)

The only unknown parameters remaining are the weights. The principle of
maximum entropy will be used to obtain them.

4.3.1 Principle of Maximum Entropy

To obtain qr and wr the idea is to maximize their entropy. At first sight
this may seem confusing since this infer to maximize the uncertainty of the
weights. However, as Penfield [28] points out, the principle of maximum
entropy is to avoid redundant assumptions and restrictions on the distribu-
tion of the considered parameters, consequently removing additional bias.
Thus, in resemblance to Section 3.2 the weights are calculated maximizing
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the following equation

F [qr,wr] = �
h

K
X

k=1

U
X

u=1

qrku ln[q
r
ku]

i

�
h

T
X

t=1

J
X

j=1

wr
tj ln[w

r
tj ]
i

. (4.7)

Some limitations must be taken into consideration. The most obvious is
that the linear function in Equation (4.6) must be satisfied. Moreover, qr

and wr are viewed as probabilities in the context of entropy measure and
therefore they must sum to 1. To summarize, the constraints of F are

�rt =
K
X

k=1

U
X

u=1

xtkz
r
kuq

r
ku +

J
X

j=1

vrtjw
r
tj , t = 0, . . . , T

U
X

u=1

qrku = 1,
J
X

j=1

wr
tj = 1.

(4.8)

With everything stated, the Lagrangian L to be maximized is

L(qr,wr;���,⌘⌘⌘,   ) =�
"

K
X

k=1

U
X

u=1

qrku ln[q
r
ku]

#

�
"

T
X

t=0

J
X

j=1

wr
tj ln[w

r
tj ]

#

+
T
X

t=0

�t

"

�rt �
K
X

k=1

U
X

u=1

xtkz
r
kuq

r
ku +

J
X

j=1

vrtjw
r
tj

#

+
K
X

k=1

⌘k

"

1�
U
X

u=1

qrku

#

+
T
X

t=0

 t

"

1�
J
X

j=1

wr
tj

#

,

(4.9)

where ��� = (�0, . . . ,�T ), ⌘⌘⌘ = (⌘1, . . . , ⌘K) and    = ( 0, . . . , T ) are vectors
of Lagrangian multipliers. The solution of the weights are (see proof in
Appendix B.2)

bqrku(
b���) =

exp
⇥

�
PT

t=0
b�txtkz

r
ku

⇤

⌅(b���)
bwr
tj(
b���) =

exp
⇥

�
PT

t=0
b�tv

r
tj

⇤

 (b���)
, (4.10)

where

⌅(b���) =
U
X

u=1

"

exp
⇥

�
T
X

t=0

b�txtkz
r
ku

⇤

#

 (b���) =
J
X

j=1

"

exp
⇥

�
T
X

t=0

b�tv
r
tj

⇤

#

.

(4.11)

The weights are obtained by first finding the vector ��� which maximizes L,
and subsequently insert these multipliers into the solution stated in Equa-
tion (4.10). However, Equation (4.9) is somewhat complicated to compute
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numerically. For this reason, Golan [30] rewrites L into a dual concentrated
formulation. The ”new” function, denoted as C(���), is

C(���) =
T
X

t=0

h

�t�
r
t + ln

⇥

 (���)
⇤

i

+
K
X

k=1

ln
⇥

⌅(���)
⇤

. (4.12)

Minimizing Equation (4.12) is equivalent to maximizing Equation (4.7). The
concentrated version has two main advantages. First, C(���) has closed-form
expressions of its first and second derivatives. Secondly, the function is
strictly convex, i.e. C is increasing in ��� which results in an unique global
solution. A minimum of Equation (4.12) is obtained by numerical methods,
e.g. Newton-Raphson.12

4.3.2 Additional Comments on Econometric Modeling

The econometric models are flexible in the sense that they all permit lag on
any explanatory variable. Furthermore, it is feasible to extend the entropy
model and the OLS to also have time dependence on the dependent variable.
The latter is commonly known as the Autoregressive Distributed Lag (ADL)
model.

The OLS, ML and the entropy model are compared during a simulation
exercise to study which of them performs best (giving the smallest MSE)
for small samples. The results are presented and discussed in Section 7.2.

12Although a function has a unique solution, Newton’s method does not guarantee
convergence to this point. This happens when the initial value is poor. However, to
choose a good starting guess could be impossible, specially in cases where the function
depends on several variables. Instead, one could iterate a starting guess using a di↵erent
numerical method with guaranteed convergence, for instance the Gradient descent method.
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Chapter 5

Modeling Correlated
Defaults

This chapter presents two techniques for fitting multivariate distributions to
the univariate Vasicek asset returns described in Section 2.5.2. The copula
approach is regarded as a benchmark model while the main model is the
CIMDO.

5.1 Copula Approach

According to Lindskog et al. [31], a common problem for risk managers
is when a random vector X = (X1, . . . , XN ) has well known marginal dis-
tributions but whose multivariate representation is merely partially or not
understood. A useful solution in such situations is the construction of copu-
las. Copulas are multivariate probability distributions substantiated on two
properties, namely the probability integral transform and the quantile trans-
form. The probability integral transform says that if X is a random vari-
able with continuous distribution function FX(x), then FX(X) is standard
uniformly distributed. The quantile transform says that if U is standard
uniformly distributed and if G is any distribution function, then G�1(U)
has distribution function G. In other words, if the marginals of X have
continuous distribution functions FX1 , . . . , FX

N

, then the random vector

Y =
⇣

G�1
1

�

FX1(X1)
�

, . . . , G�1
N

�

FX
N

(XN )
�

⌘

(5.1)

is indeed corresponding to a multivariate model with predetermined marginals.
The distribution function C whose components are standard uniform is
called copula, i.e.

C(u1, . . . , uN ) = P (U1 6 u1, . . . , UN 6 uN ). (5.2)
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The Gaussian and student’s t copula are defined as follows

CG
⌃⌃⌃ (u) = �⌃⌃⌃

⇣

��1(u1), . . . ,�
�1(ud)

⌘

Ct
R,⌫(u) = tR,⌫

⇣

t�1
⌫ (u1), . . . , t

�1
⌫ (ud)

⌘

,
(5.3)

where ⌃⌃⌃ and R is the covariance and correlation matrix respectively, ⌫ is
the degrees of freedom.

The whole concept of copulas is best understood by example. Using
same notations as above, consider X being two dimensional with student’s
t marginals with 3 degrees of freedom and correlation equal to 0.2. Now a
Gaussian copula and t3-Copula are applied on X. The scatter plots below
show the outcomes of the copulas.

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Figure 5.1: Left plot : t3-Copula with student’s marginals. Right plot : Gaus-
sian copula with student’s marginals.

Figure 5.1 clearly reveals that the t3-Copula exhibits both heavier left and
right tails than the Gaussian copula. This is regardless of the marginal being
student’s t-distributed.

5.1.1 Additional Comments

Copulas are a simple and comprehensible method for calibrating a multi-
variate distribution to asset returns. With Vasicek model as the basis, the
covariance and correlation matrix become easy to compute. Having said
that, copulas are still only an eloquent guess on the multivariate distribu-
tion of the asset returns.

Note that a Gaussian copula with normal marginals is equal to a multi-
variate normal distribution. Same applies for the t-Copula with student’s t
marginals, if the these have the same degree of freedom.
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5.2 Consistent Information Multivariate Density
Optimization

The Consistent Information Multivariate Density Optimizing (CIMDO) method-
ology by Segoviano [3] proceed from the premises of the Vasicek model. In
contrast to the copula approach, the CIMDO methodology endeavour to
minimize the assumptions concerning the multivariate distribution of the
asset returns. To show this, let A = [A1, . . . , Ar] represent the random
vector of asset returns in each rating class. Denote the unknown but true
multivariate density function as p(a), representing the likelihood of joint
movement of A. Now capitalizing the fact that the following system of
equations (S) must hold13

Z 1

�1

Z 1

�1
· · ·

Z 1

�1
p(a)dra = 1

Z 1

�1

Z 1

�1
· · ·

Z �1
t

�1
p(a)dra = p1t

...
Z 1

�1

Z 1

�1
· · ·

Z �r

t

�1
p(a)dra = prt

(5.4)

or alternatively,
Z

⌦
p(a)dra = 1

Z

⌦
p(a)1{a1 < �1t }dra = p1t

...
Z

⌦
p(a)1{ar < �rt }dra = prt .

(5.5)

Here �rt is the threshold value of rating r defined in Section 2.5.2, 1{ar < �rt }
is the default indicator function taking the value 1 if ar < �rt (i.e. default)
and zero otherwise, and prt is the PD of borrowers belonging to rating r at
time t.

Although the system of equations (S) is true, it is in solitude insu�cient
to find or compute the true multivariate density p(a). The reason is as fol-
lows. The only certain information available is the PD’s of each rating class,
which are either known beforehand or forecasted by using some econometric

13The integral
R1
�1

R1
�1 · · ·

R
�

y

t

�1

R
�

x

t

�1 p(a)dra = p

x,y

t

, where p

x,y

t

is the joint probability
of default of ratings x and y at time t, must also hold. However in this context it is
impractical to include this condition since it will lead to an overdetermined system of
equations.
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model (see Section 4). If the Vasicek model is presumed to hold, then the
PD’s reveal the frequency of the realized asset returns passing above/below
the threshold value for each rating class respectively, see Figure 2.2 and
Equation (2.7). What is of interest now is the asset returns jointly passing
above or below the threshold value, which is embedded in p(a). However,
the probabilities of the asset returns jointly taking particular values and
the particular values themselves are unknown. From the supposed available
data described in Section 1.3, there are no possibilities of estimating these
outcomes nor probabilities. Therefore, the amount of potential densities
p(a) satisfying (S) is indeed innumerous.

Instead of solving (S) directly, one could approximate p(a), henceforth
referred to as the posterior, by using a known density. Let q(a) denote this
arbitrary chosen density, henceforth referred to as the prior. Through any
approximation it will naturally emerge information losses. Thus, it appears
logical to minimize the KL-divergence (described in Section 3.3) between
the prior and posterior.

However, (S) must yet be satisfied. If these equations are viewed as con-
strains of KL-divergence it is possible to formulate the Lagrangian function
L as

L(p | q) =
Z

⌦
p(a) ln

hp(a)

q(a)

i

dra+ �0

"

Z

⌦
p(a)dra� 1

#

+ �1

"

Z

⌦
p(a)1{a1 < �1t }dra� p1t

#

...

+ �r

"

Z

⌦
p(a)1{ar < �rt }dra� prt

#

,

(5.6)

where �0, . . . ,�r are the Lagrangian multipliers. The calculus of variations
(described in Section 3.1) is utilized in order to find an optimal solution
for the Lagrangian. In Equation (5.6) there are no derivatives on the func-
tions and therefore the Euler-Lagrange equations are automatically reduced.
Moreover, since the prior is arbitrarily chosen and consequently known, it
will in the context of Theorem 3.1 be treated as a constant. Thus, the
Euler-Lagrange equations are actually a single equation depending on one
function. After applying the calculus of variations the posterior is easily
obtained by

ln
hp(a)

q(a)

i

+ 1 + �0 + �11{a1 < �1t }+ · · ·+ �r1{ar < �rt } = 0 )

p(a) = q(a) exp
h

� 1� �0 � �11{a1 < �rt }� · · ·� �r1{ar < �rt }
i

.

(5.7)
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Equation (5.7) is the optimal solution which minimizes the KL-divergence
between the prior and posterior, and is at the same time consistent with the
restrictions composed in (S). The Lagrangian multipliers are obtained by
inserting the solution into (S) and thereby using optional numerical approx-
imation technique on the integrals. In Appendix B.3 the solution is derived
by using the very definition of calculus of variations.

5.2.1 Additional Comments

To summarize, the CIMDO methodology starts from an assumption on the
multivariate distribution of the asset returns. However, in contrast to the
copula approach which does not make any further interventions, the CIMDO
proceeds by incorporating the available data to influence the conjecture.
This is accomplished by minimizing the KL-divergence between the starting
guess (prior) and the true but unknown density (posterior).

Thus, from this thesis starting point one could for instance estimate the
correlation matrix of the asset returns by using the Vasicek model (spe-
cially Equations (2.6) and (B.1)), thence selecting a Gaussian or student’s t
multivariate distribution as the prior.

Nevertheless, this does not imply that the selection of prior will not a↵ect
the final result. By a quick look at the optimal solution in Equation (5.7),
it is inevitable that properties of the prior will be inherited by the posterior.
For instance, a choice of multivariate Gaussian as prior is likely to cause the
posterior to presumably underestimate the extreme losses. A comparison
between the prior and posterior in two dimensional case is presented in the
Result Section 7.3.

The CIMDO in its original formulation is a�rmative to any prior as
long as the premises of the Vasicek model is maintained. Thus, if additional
data is available this could be included indirectly, either by extending the
Vasicek or changing the prior. Furthermore, it may be plausible to adapting
the CIMDO to be acceptable for mixture models such as the CreditRisk+,
however this will not be investigated in this thesis.
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Chapter 6

Risk Analysis of the Loss
Distribution

As mentioned earlier, the losses can be forecasted after PD modeling is com-
pleted and a default modeling framework is in place14, see Figure 1.1. Recall
Section 1.3, the last goal in the thesis is to define a risk analysis method
for quantifying the uncertainty in the generated loss distribution. The mo-
tivation is to be capable of form perceptions and make judgments on which
default modeling framework that performs best, for instance comparing the
CIMDO with the Copula approach.

This chapter presents the method by Bernard and Vandu↵el [4]. They
claim that the major model risk emerges due to the complexity of fitting
a multivariate distribution to asset returns, which also was pointed out in
Section 2.5.2. There it was mentioned that the latent factor representation,
i.e. the simulation from a normal distribution to symbolize the outcome of
an asset return, works well for each obligor separately. The di�culty is to
simultaneously generate asset returns to properly reflect multiple defaults.
Misspecifications in the multivariate distribution will lead to inaccurate cal-
culations of the losses.

Thus, it is desirable to quantify the inaccuracy emerging due to multi-
variate distribution fitting. The method by Bernard and Vandu↵el estimates
bounds on the variance, the VaR and the ES of the loss distribution.15 The
wider these bounds are, the more uncertainty there is on the multivariate
distribution. The remainder of this chapter explains the method by Bernard
and Vandu↵el.

14See Equation 2.1 to see how losses are calculated. Modeling of LGD and EAD are
excluded. However, these parameters will be set to constants.

15See Section 3.6 for the definition of VaR and ES.
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6.0.1 Distribution Uncertainty

Let am = (am1 , . . . , amN ) represent the m:th sample from an N -dimensional
multivariate distribution. In context of this thesis, suppose that this multi-
variate distribution has been fitted by the CIMDO approach or some Cop-
ula, and that the vector am represents a simultaneous simulation of the asset
returns of N obligors.

With regard to what has been aforementioned, there is an awareness of
misspecification. For this reason, the space RN is divided into two parts; a
trusted area T and an untrusted area U . The samples considered su�ciently
creditable to have been generated from the fitted distribution are included
in T , whereas the rest belongs to U . Although the samples comprised in U
are generated from the fitted distribution, these will be treated as if they
are from an unknown distribution. By definition

RN = T
[

U , ; = T
\

U .

Now the question is how to determine whether a specific sample belongs
to the subset T or U . A realized vector from any arbitrary distribution is
intuitively most likely to be located nearby the expected value. Thus, it is
suitable to utilize the Mahalanobis Distance (MD), described in Section 3.4.
Therefore, the trusted area will be defined as

T ⌘
�

am 2 RN , m = 1, . . . ,M | M(am) 6 c(pT )
 

, (6.1)

where M is the total number of samples and M(am) is the MD of am.
pT = Pr[am 2 T ] is the level of trustworthiness one has on the distribution
and is arbitrarily selected. The closer pT is to 1, the more confidence one has
on the distribution. The reverse is true when pT is close to zero. c(pT ) is the
threshold value and is equal to the quantile at level pT of the distribution
of M.

To visualize all this, Figure 6.1 below shows the qq-plot of samples pre-
sumed to come from a two-dimensional normal distribution against the cor-
responding MD-distribution.
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Figure 6.1: Samples presumed to come from a two-dimensional normal dis-
tribution, against the theoretical MD-distribution. pT is set to 0.85 giving
c(pT ) around 4. Black samples are included in T while reds are included in
U .

6.0.2 Defining Upper and Lower Bounds

Before defining the upper and lower bounds on the variance and risk mea-
sures, see Equation 2.1 to recall how the losses are calculated. Recall also
that obligor i is considered defaulted when the asset return falls below the
corresponding threshold value, see Section 2.5.2 and Figure 2.2. Consider
a vector R representing one random simulation of the asset returns. For
clearness, if this particular sample belongs to T then R is renamed A, while
if it belongs to denote U then R is renamed Z. For simplicity, the LGD and
EAD are set to 1 for all obligors. The loss could now be expressed as

L
d
= 1[R2T ]

X

i

1{Ai < �i}+ 1[R2U ]

X

i

1{Zi < �i}, (6.2)

where the indicator function 1[R2T ] is equal to 1 if R belongs to T . Here
1{Ai < �i} is equal to 1 if the asset return falls below the threshold.

Once again it is important to emphasize, any vector Z in U is treated
as having an unknown multivariate distribution. Hence it is inevitable that
certain characteristics regarding the loss distribution is inherited from Z.
In financial mathematics, the term comonotonicity is a central concept de-
scribing the existence of maximum correlation between stochastic variables.
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In general, a portfolio is most risky if a comonotonic dependence structure
is prevailing among its components. Let Zcom denote the comonotonic rep-
resentation of Z. According to Lindskog et. al. [31] for any convex function
f(x) the following statement holds

E
h

f
⇣

X

i

Zi

⌘i

6 E
h

f
⇣

X

i

Zcom
i

⌘i

. (6.3)

Equation (6.3) is intuitively reasonable. In general, stronger correlation will
yield outcomes jointly having larger magnitude, hence the sum of realized
random variables inserted into a convex function will naturally be greater.
Thus, implementing a comonotonic dependence among the risk components
in the untrusted area will yield an upper bound for any convex function.
Moreover, Dhaene et. al. [16] prove the following statement

E
h

f
⇣

X

i

Zi

⌘i

> E
h

f
⇣

X

i

E[Zi]
⌘i

= E
h

f
⇣

X

i

E[Zcom
i ]

⌘i

. (6.4)

The inequality sign on the left in Equation (6.4) comes directly from Jensen’s
inequality. The equality sign is intuitive. Commonotonicity depicts max-
imum correlation among random variables but does not change the corre-
sponding marginal distributions. Therefore the sum of expected values of
any random variables is in fact equal to the sum of expected values of their
comonotonic representation.

Hence the Equations (6.3) and (6.4) yield the upper and lower bounds
of any convex risk measure ⇢ applied on credit losses, i.e.

⇢� = ⇢
h

X

i

⇣

1[R2T ]1{Ai < �i}+ 1[R2U ]1{E[Zcom
i ] < �i}

⌘i

⇢+ = ⇢
h

X

i

⇣

1[R2T ]1{Ai < �i}+ 1[R2U ]1{Zcom
i < �i}

⌘i

.
(6.5)

Next section outlines how the upper and lower bound is obtained in practice.

6.0.3 Preparation for Approximation of Bounds

Let mT be the total number of samples allocated to T while mU is the
remaining samples allocated to U , thus mT +mU = M . Furthermore, denote
aj = (aj,1, . . . , aj,N ) as the j:th sample in T , where j = 1, . . . ,mT . Similarly,
zv = (zv,1, . . . , zv,N ) is the v:th sample in U , where v = 1, . . . ,mU .

All samples will be inserted into an M⇥N matrix V. The first mT rows
of V are the samples from T . For simplicity, let the LGD and EAD be equal
to 1 for all obligors. Let sj =

PN
i=1 1{aj,i < �i} be the loss generated from

sample j. All the generated losses will be sorted in a column vector ST .
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For future computational purposes, the losses will be sorted in descend-
ing order, i.e. s1 > s2 > · · · > smT . The sample with the highest loss will be
inserted into the first row in V, the sample with the second highest loss will
be inserted into the second row in V etc. The sorting will neither violate
the dependence structure nor the distribution.

The sorting procedure of the last mU rows in V is di↵erent. Recall
that samples in the untrusted area are treated as if they where coming
from some unknown multivariate distribution, or in other words, there are
no assumptions regarding the dependence structure between the random
variables in zv. However, from Equation (6.5) it is obvious that comonotonic
dependence between the random variables in zv is desirable. To obtain
this, all samples from U is first arbitrarily inserted into V, thereafter the
elements in each column is sorted in descending order, i.e. z1,n > z2,n >
· · · > zmU ,n for n = 1, . . . , N . After the sorting is complete, the loss esv =
PN

i=1 1{zv,i < �i} is calculated for v = 1, . . . ,mU and stored in the column
vector SU . Hence, matrix V with corresponding matrices of the credit losses
are structured as

V =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N
...

...
. . .

...
amT ,1 amT ,2 · · · amT ,N

z1,1 z1,2 · · · z1,N
z2,1 z2,2 · · · z2,N
...
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. . .

...
zmU ,1 zmU ,2 · · · zmU ,N
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PN

i=1 1{z1,i < �i}
es2
...

esmU

3

7

7

7
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(6.6)

To fully grasp this section, the reader is encouraged to study the example
provided in Appendix B.4. The rest of this chapter presents how the bounds
on the variance and risk measures are obtained from the matrices in (6.6).

6.0.4 Bounds on Variance

The implementation of comonotonic dependence between the marginals in
the untrusted area makes the calculation of the upper bound of the portfolio
variance straightforward. The upper bound is given by

⇢+variance =
1

M

 

mT
X

i=1

⇣

si � s̄
⌘2

+
mU
X

i=1

⇣

esi � s̄
⌘2
!

, (6.7)

where s̄ is the total average of ST and SU . Obtaining the lower bound is
trickier, Equation (6.5) shows that the expected value of each comonotonic
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random variable must be calculated. The information available is the sums
in SU . However, for any random vector X = (X1, . . . , Xn),

Pn
i=1Xi =

Pn
i=1 E[Xi] is true if the sum of the marginals have constant quantile on

(0, 1). This is commonly known as joint mixability and is asymptotically
obtained as the elements in SU gets closer to each other. Recall the RA
described in Section 3.5, the tool used for decreasing the variance of the row
sums in any matrix. In general, minimization of variance is equivalent to
minimizing the spread of the sample. Thus, to obtain joint mixability in
practice, the RA is applied on the untrusted area of V. The lower bound is
subsequently calculated by

⇢�variance =
1

M

 

mT
X

i=1

⇣

si � s̄
⌘2

+
mU
X

i=1

⇣

esi
RA � s̄

⌘2
!

, (6.8)

where esi
RA is the elements of SU after the RA is implemented.

6.0.5 Bounds on Expected Shortfall

To calculate the bounds on ES at level p, all the values in ST and SU are
first sorted in descending order. To obtain the upper bound, pick out the k
highest values, where k = M(1�p), and calculate the ES from these values.

For the lower bound, apply the RA on SU and proceed just like the upper
bound. The argument for applying the RA is the same as for the variance.

6.0.6 Bounds on Value-at-Risk

As mentioned in Section 3.6.1, VaR is not sub-additive and for this reason
not convex. Therefore Equation (6.5) can not be applied directly. Fortu-
nately, obtaining the upper and lower bound are similar to the variance and
ES. For the upper bound, the sum of the untrusted comonotonic marginals
are replaced with the sum of the ES of the untrusted comonotonic marginals.
Similarly, for the lower bound, the sum of the expected value of untrusted
comonotonic marginals are replaced with the sum of the LTVaR of the un-
trusted comonotonic marginals. In Algorithm 5 below yields the approxi-
mation of the bounds on VaR. For details and derivations see Bernard and
Vandu↵el [4].
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Algorithm 5: Computing bounds on Value-at-Risk at level p

1 Compute ↵1 = max
�

0, p+pT �1
pT

 

, ↵2 = min
�

1, p
pT

 

and k = M(1� p).

2 For the upper bound, calculate

↵⇤ = inf
n

↵ 2 (↵1,↵2) | VaR↵(ST ) > ES p�pT ↵

1�pT
(SU )

o

,

and for the lower bound

↵⇤⇤ = inf
n

↵ 2 (↵1,↵2) | VaR↵(ST ) > LTVaR p�pT ↵

1�pT
(SU )

o

.

3 Calculate �⇤ =
p�pT ↵⇤
1�pT

and �⇤⇤ =
p�pT ↵⇤⇤
1�pT

. For the upper bound,

perform the RA on the first b(1� �⇤)mT c rows of the untrusted part of V.

For the lower bound, perform the RA on the last d�⇤⇤mUe rows of V.

4 Calculate the losses and sort them in descending order

s1 > s2 > · · · > sM . The maximum/minimum VaR is sk.

6.0.7 Additional Comments

The method by Bernard and Vandu↵el [4] provides a satisfactorily platform
to measure the uncertainty in the losses generated by the CIMDO and Cop-
ula approach. The idea is to compare the variance, ES and VaR bounds
of the loss distribution generated by the copula approach and the CIMDO
at di↵erent level of trustworthiness. The smaller the bounds are the more
certainty there is on the modeling framework.

Since pT is arbitrarily selected, the modeller is able to shift the level of
trustworthiness for investigation purposes. The bounds will certainly get
wider as pT get closer to 0.

The method could also be applied under various scenarios to study how
the uncertainty in the loss distribution changes. For instance, one could
test the CIMDO and Copula approach during adverse macroeconomic con-
ditions, see Appendix A.2 for detailed explanation of stress-testing.
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Chapter 7

Results

In this chapter results, analyses and discussions of the selected models are
presented.

7.1 Data

Unfortunately, no real data was available for this thesis. Instead, the process
of generating data was as follows. First Japan’s GDP annual growth rate
and Nikkei 22516 annual growth rate were selected as the exogenous vari-
ables. The reason for this particular choice was that the correlation between
these macro indicators is relatively weak (about 0.2), i.e. the motive was to
minimize the e↵ects of multicollinearity as much as possible.

Six rating classes were considered, where rating 1 had the lowest expected
default rate whereas rating 6 had the highest. The regression coe�cients
of the macro indicators plus an intercept were fixed, in such way that if
a normal economic scenario corresponding to a GDP growth of +2% and
an increase of Nikkei 225 by +15% were inserted into the OLS solution in
Equation (4.1), the default probabilities became 1%, 3%, 5%, 8%, 14% and
30% for each rating class respectively. The fixed coe�cients are presented
in Table 7.1 in the subsequent section.

To obtain the yearly default rates for each rating class, historical out-
comes over the past 15 years of the chosen macro variables (see Figure 7.1)
was inserted into Equation (4.1). Note that in statistical terms 15 data
points is considered as a small sized sample. Finally, a normally distributed
disturbance where added with standard deviation equal to the standard de-
viation of the generated default rates.

16The Nikkei 225 Stock Average is a price-weighted index of the 225 best blue chip
companies on the Tokyo Stock Exchange.
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Figure 7.1: Historical values from year 2000 to 2014 of Japan’s GDP annual
growth rate and Nikkei 225 annual growth rate.

7.2 Econometric Models

Recall Chapter 4, where the econometric models were explained. Bootstrap
was performed 10’000 times in order to obtain the distribution of each coef-
ficient. Seven points were selected for the entropy model, namely the mean
and ±3,±2,±1 standard deviations from the mean. The resulting coe�-
cients along with the OLS and ML estimates are given in Table 7.1 below.
The bootstrapped distributions are shown in Figure 7.2.
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Figure 7.2: The distributions of all coe�cients generated by bootstrapping
10’000 times. Upper left plots corresponds to rating 1, upper right plots
corresponds to rating 2, middle left plots for rating 3 etc.
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Rating 1 2 3 4 5 6

Fixed �
Intercept -2.30 -1.83 -1.60 -1.35 -1.01 -0.45
GDP -1.7 -2.0 -2.30 -2.80 -3.0 -3.2
Nikkei -0.2 -0.15 -0.12 -0.10 -0.08 -0.07

b�OLS
Intercept -2.3130 -1.8257 -1.6053 -1.3507 -1.0141 -0.4466
GDP -1.5994 -1.9495 -2.9921 -2.7066 -3.2886 -3.5998
Nikkei -0.2600 -0.1458 -0.1375 -0.1240 -0.1002 -0.010

b�ML
Intercept -2.3123 -1.8251 -1.6049 -1.3502 -1.0140 -0.4465
GDP -1.5710 -1.9400 -2.9243 -2.6969 -3.2380 -3.5729
Nikkei -0.2576 -0.1448 -0.1375 -0.1269 -0.1017 -0.019

b�ent.
Intercept -2.3129 -1.8257 -1.6054 -1.3506 -1.0140 -0.4466
GDP -1.6087 -1.9494 -2.9893 -2.7124 -3.2897 -3.6003
Nikkei -0.2599 -0.1459 -0.1375 -0.1238 -0.1003 -0.011

Table 7.1: Table showing the fixed coe�cients of all exogenous variables
and rating classes along with the estimates from OLS, ML and the entropy
model.

Table 7.1 reveals several interesting things. The OLS, ML and the entropy
model have almost the same size on all coe�cients. Most importantly, all
models correctly estimate the signs. The estimates of the intercepts are
su�ciently accurate in all models, however, some coe�cients of the macro
variables are not. For instance the Nikkei coe↵. in rating class 6 is about
85% lower than correct value, and the GDP coe↵. in rating 3 is 30% greater
than the fixed coe�cient. Note that due to the added disturbance the out-
comes will be moderately di↵erent each time one estimates the coe�cients.
Therefore, the results from the historical values should be viewed as repre-
sentatively illustrating. Same applies for the bootstrapped distributions in
Figure 7.2.

The result from the historical values does not establish whether the en-
tropy model actually reduces the MSE compared to the OLS and ML. For
this reason a simulation exercise was carried out. First, the GDP and the
Nikkei 225 were fitted to a multivariate AR(2)-process by utilizing historical
values from the past 40 years. 15 outcomes were simulated from this time-
series model and subsequently inserted to the regression model (fixed coe�-
cients with additional disturbance) to generate new default rates. Thereafter
new coe�cients were estimated by OLS, ML and the entropy model. The
points on the bootstrapped distributions were selected exactly as before.
The procedure was repeated 100’000 times in order to calculate the vari-
ance, bias and MSE of each coe�cient. Recall that MSE is defined as the
sum of variance and squared bias. The result for the OLS and entropy model
is presented in Table 7.2 below.
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Rating 1 2 3 4 5 6

Var.
�Int.
OLS 1.9·10�3 1.5·10�3 1.5·10�3 1.9·10�3 2.0·10�3 2.2·10�3

�GDP
OLS 2.3058 1.7456 1.7321 2.1556 2.1330 2.1824

�Nikk.
OLS 2.15·10�2 1.68·10�2 1.69·10�2 2.15·10�2 2.16·10�2 2.25·10�2

�Int.
ent. 1.6·10�3 1.3·10�3 1.3·10�3 1.7·10�3 1.9·10�3 2.5·10�3

�GDP
ent. 1.0395 0.7231 0.7143 0.9123 0.8838 0.9425

�Nikk.
ent. 7.6·10�3 5.4·10�3 5.4·10�3 7.0·10�3 7.1·10�3 7.5·10�3

�Int. 20.77% 16.29% 13.38% 11.39% 6.07% -11.74%

�GDP 121.81% 141.41% 142.50% 136.27% 141.35% 131.56%

�Nikk. 183.81% 211.63% 214.19% 206.10% 204.08% 198.55%

Bias sqr.
�Int.
OLS 1.16 ·10�4 6.06 ·10�5 5.24 ·10�5 5.49 ·10�5 3.42 ·10�5 7.88 ·10�6

�GDP
OLS 1.52 ·10�2 8.27 ·10�3 7.03 ·10�3 1.48 ·10�2 6.88 ·10�3 1.48 ·10�3

�Nikk.
OLS 1.78·10�4 5.18·10�5 2.40·10�5 1.20·10�5 3.46·10�6 1.38·10�6

�Int.
ent. 8.1·10�6 3.24·10�7 4.55·10�7 1.83·10�5 1.07·10�4 1.01·10�3

�GDP
ent. 6.68·10�2 0.213 0.344 0.504 0.618 0.541

�Nikk.
ent. 4.52·10�3 2.44·10�3 1.28·10�3 5.43·10�4 1.77·10�4 8.43·10�6

MSE
�Int.
OLS 2.03·10�3 1.58·10�3 1.57·10�3 1.99·10�3 2.05·10�3 2.22·10�3

�GDP
OLS 2.321 1.754 1.739 2.170 2.140 2.183

�Nikk.
OLS 2.16·10�2 1.69·10�2 1.69·10�2 2.15·10�2 2.16·10�2 2.25·10�2

�Int.
ent. 1.59·10�3 1.31·10�3 1.34·10�3 1.76·10�3 2.0·10�3 3.52·10�3

�GDP
ent. 1.106 0.936 1.058 1.416 1.502 1.484

�Nikk.
ent. 1.2·10�2 7.84·10�3 6.65·10�3 7.55·10�3 7.28·10�3 7.55·10�3

�Int. 27.46% 20.90% 17.25% 13.35% 2.11% -36.84%

�GDP 109.80% 87.40% 64.41% 53.27% 42.29% 47.19%

�Nikk. 79.11% 115.12% 154.07% 184.27% 196.72% 198.24%

Table 7.2: The variance, bias squared and the MSE of each coe�cient ob-
tained from the simulation.

Looking at the MSE di↵erence in Table 7.2, one can conclude that the
entropy model is most e�cient for all coe�cients except one. For many
coe�cients the improvement is above 100%.

The reason lies in the reduction of the variances. By using the OLS, the
variances become extremely large, specially for the GDP coe�cients. The
presumed explanation is that the small sample size leads the OLS to cause
overfitting, a term outlining when a statistical model describes the error
in the data set rather than the underlying relationship. Some textbooks
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mention an informal rule to at least have 15-20 data points per indepen-
dent variable in order to prevent against overfitting. Thus, if for example
3 macroeconomic indicators with yearly update are chosen, one has to col-
lect data up to 60 years. This is obviously unrealistic and shows the huge
drawback of the OLS.

The squared biases, however, are worse in most cases for the entropy
model. This has probably to do with the so-called bias-variance tradeo↵.
In general, if one of these variables decrease, the other will increase. This
phenomenon becomes visually apparent by looking at the definitions. If ✓ is
the parameter to be estimated and b✓ is the actual estimation, then the bias
is defined as E[b✓]� ✓ and the variance is E[(b✓�E[b✓])2]. From the result one
can conclude that the entropy model reduces the variance, but at the cost
of increasing the bias. The worst case is the GDP coe�cient in rating 5,
yielding approximately 25% wrong estimation from the true value. For the
intercepts and the Nikkei coe�cients, the biases are su�ciently small to be
acceptable. Nevertheless, the overall picture is that the entropy significantly
improves the estimation.

Furthermore, the number and allocation of the selected points on the
bootstrap distribution for the entropy model are strongly a↵ecting its per-
formance. Segoviano [2] claims that the selection of five points is optimal,
but from an examination it turned out not be true in this case. Nevertheless,
no attempts were made to find the best solution and thus it is possible to
decrease the variance and/or bias further and thereby making the entropy
model even more e�cient.

Due to absence of real data, no attempts were made on testing an ADL
set-up nor time dependency lag on the explanatory variables. However, the
result is expected to be similar as above. Finally, the entropy model also
outperforms the ML. The results are similar and presented in Appendix C.

7.3 Comparison of Prior and Posterior in Two Di-
mensional Case

The actual di↵erence between the prior and posterior distribution will now
be analyzed. Two rating classes (X,Y ) is considered, and the bivariate
standard normal and student’s t-distribution with 3 degrees of freedom will
be selected as prior. The PD’s are set to 5% and 10% respectively, and the
(asset) correlation is 0.15. The Lagrangian multipliers are given in Table
7.3 below.
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LM Prior Normal Prior Student
b�0 -1.000 -0.910
b�1 -0.001 -1.017
b�2 -0.003 -1.024

Table 7.3: The Lagrangian multipliers.

In order to visualize the di↵erence, the qq-plots for each rating (X,Y ) and
each scenario were plotted, see Figure 7.3 below.
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Figure 7.3: QQ-plots of each asset return (x, y) generated by the posterior
and prior distribution. Upper left : Asset return x when prior is normally
distributed. Upper right : Asset return y when prior is normally distributed.
Lower left : Asset return x when prior is student’s t. Lower right : Asset
return y when prior is student’s t.

From the upper two plots in Figure 7.3 one can see that the qq-plots are
linear, which is a indication of no di↵erence between the prior and posterior.
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In the lower two plots, when the prior is student’s t, the qq-plots are curving
downwards for both low and high quantiles. This demonstrates that the pos-
terior has heavier left tail but lighter right tail compared to the prior. This
is further visualized by scatter plots and figures of the densities in Appendix
C.2. Also, similar results are obtained when the PD’s and correlation are
varied, see Appendix C.3.

The conclusion is that, depending on the prior, there could be a signif-
icant di↵erence between the posterior and prior distributions. Hence, the
choice of prior is directly a↵ecting the size of disparity between the two
distributions. Although it may be apparent from the optimal solution in
Equation (5.7), these figures establish that the posterior inherits the charac-
teristics of the prior. Thus the risk manager must carefully select the prior,
for instance in the light of economic theory or preferably empirical data.

7.4 Analysis of Variance, ES and VaR Bounds

To perform a risk analysis on the loss distribution, a portfolio of 55 obligors
was considered; 5 from rating 1, 20 from rating 2, 15 from rating 3, 10 from
rating 4, 4 from rating 5 and 1 from rating 6. The portfolio was simulated
under the following four scenarios

• Scenario I: The asset correlations for the ratings are set to [0.02 0.018
0.015 0.01 0.008 0.001] and the macroeconomic condition is regarded
as normal, i.e. the PD’s are equal to those stated in Section 7.1.

• Scenario II: Same asset correlations as in Scenario I, however the
macroeconomic condition is adverse. The PD’s are 1.5%, 4%, 7%,
11%, 19% and 38% for each rating class respectively.

• Scenario III: The asset correlations for all ratings are set to [0.06
0.054 0.045 0.03 0.024 0.015] and the PD’s are same as in Scenario I.

• Scenario IV: Same asset correlations as in Scenario III and the PD’s
are the same as in Scenario II.

Four distributions were considered, namely standard normal marginals with
Gaussian copula, standard normal marginals with normal CIMDO, student’s
t marginals with 3 degrees of freedom with student’s t copula, and student’s
t marginals with 3 degrees of freedom with student’s t CIMDO.

The procedure was as follows. From the multivariate distributions, the
joint movement of the borrowers’ asset returns were simulated 1’000’000
times. By utilizing the MD the outcomes were inserted into T and U , see
Equation (6.1). The borrowers were checked whether they defaulted or not
by comparing each simulated asset return to their threshold value17. Finally,

17The threshold value is obtained by taking the inverse CDF of the PD’s, see Equation
(2.7).
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for obtaining the risk measure bounds, the losses were inserted into matrix
V exactly as in the example described in Appendix B.4. Losses from each
counterparty were randomly predefined between 0.15 and 0.75.

The standard deviation of the Gaussian copula and the CIMDO with
normal prior under the four scenarios are shown in Figure 7.4. The level of
trustworthiness, pT , is varied from 1 (no uncertainty) to 0.5.
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Figure 7.4: Standard deviation bounds of the loss distribution at di↵erent
levels of trustworthiness. Left plot : Gaussian copula. Right plot : CIMDO
with normal prior.

Not surprisingly, the left and right graphs are almost identical and thus
they confirm former statements regarding no practical di↵erence between
the Gaussian copula and the CIMDO when multivariate normal is selected
as prior.

For all four scenarios the upper bounds are increasing rapidly while the
lower bounds declines much slower. For example, already at pT = 95%
the upper bound in Scenario II is approximately twice as large as when no
model uncertainty is concerned. As pT approaches 50%, the same upper
bound increases to be almost 4.6 times larger than the benchmark value.
This strongly indicates that the risk of underestimation is overwhelming.

Furthermore, estimating the variance is more doubtful during adverse
macroeconomic set-ups than normal conditions. The conclusion predicates
from the end points of the curves in Figure 7.4. The bounds in Scenario II
and IV compared to Scenario I and III are disproportionate over the levels
of trustworthiness. More precisely, the former two scenarios have faster
increase of the upper bounds.

The standard deviation of the t-Copula and the CIMDO with student’s
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t prior are shown in Figure 7.5.
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Figure 7.5: Standard deviation bounds of the loss distribution at di↵erent
levels of trustworthiness. Left plot : Student’s t copula with 3 degrees of
freedom. Right plot : CIMDO with student’s t prior.

The shape of the curves in Figure 7.5 are similar to those in Figure 7.4. How-
ever, the upper bounds for the t-Copula have shrank. For Scenario II, the
upper bound at pT = 0.5 is 2.3 times larger than when no model uncertainty
is concerned, which is a decrease by half compared to the corresponding case
when using the Gaussian copula.

The student’s t CIMDO also appear to decrease the model risk further.
The ratio of the upper bound when pT = 0.95 and no model uncertainty is
8% smaller for the CIMDO in comparison to the t-Copula. Moreover, the
curves seem to be more proportionate when CIMDO is used, suggesting that
the stressed scenarios are not riskier in the CIMDO framework.

We now turn to the bounds on VaR and ES. The result of the Gaussian
copula is presented in Table 7.4 below.
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Gaussian Copula

pT 1 0.99 0.98 0.97 0.96 0.95

Sc. I

ES0.995 4.60 (4.48, 8.15) (4.41, 11.50) (4.35, 14.69) (4.29, 17.72) (4.24, 20.39)
ES0.99 4.28 (4.18, 6.07) (4.12, 7.77) (4.07, 9.41) (4.02, 10.99) (3.98, 12.50)
ES0.98 3.94 (3.86, 4.83) (3.81, 5.68) (3.77, 6.51) (3.72, 7.31) (3.69, 8.08)

VaR0.995 4.15 (4.06, 5.06) (4.00, 9.14) (3.96, 13.11) (3.90, 16.38) (3.86, 19.31)
VaR0.99 3.80 (3.73, 4.13) (3.68, 4.88) (3.65, 6.66) (3.61, 8.72) (3.59, 10.67)
VaR0.98 3.45 (3.40, 3.60) (3.36, 3.78) (3.33, 4.09) (3.29, 4.56) (3.26, 5.32)

Sc. II

ES0.995 5.62 (5.52, 9.89) (5.44, 13.88) (5.39, 17.71) (5.32, 21.32) (5.27, 23.73)
ES0.99 5.27 (5.18, 7.43) (5.12, 9.48) (5.06, 11.48) (5.00, 13.40) (4.96, 15.23)
ES0.98 4.90 (4.82, 5.98) (4.76, 7.02) (4.72, 8.03) (4.67, 9.01) (4.63, 9.96)

VaR0.995 5.12 (5.04, 6.35) (4.99, 11.64) (4.93, 16.13) (4.86, 20.36) (4.71, 22.73)
VaR0.99 4.74 (4.67, 5.14) (4.63, 6.11) (4.58, 8.46) (4.54, 11.24) (4.49, 13.58)
VaR0.98 4.34 (4.29, 4.51) (4.24, 4.77) (4.21, 5.14) (4.17, 5.74) (4.14, 6.92)

Sc. III

ES0.995 5.29 (5.18, 8.77) (5.11, 11.76) (5.03, 14.82) (4.98, 17.61) (4.93, 20.22)
ES0.99 4.86 (4.78, 6.63) (4.72, 8.15) (4.65, 9.74) (4.60, 11.25) (4.56, 12.69)
ES0.98 4.45 (4.37, 5.33) (4.32, 6.10) (4.27, 6.90) (4.23, 7.66) (4.19, 8.40)

VaR0.995 4.66 (4.59, 5.72) (4.52, 8.86) (4.49, 13.05) (4.37, 16.12) (4.51, 19.09)
VaR0.99 4.26 (4.20, 4.61) (4.16, 5.28) (4.10, 6.70) (4.07, 8.60) (4.05, 10.53)
VaR0.98 3.83 (3.79, 4.01) (3.74, 4.20) (3.69, 4.47) (3.65, 4.89) (3.62, 5.48)

Sc. IV

ES0.995 6.60 (6.51, 10.73) (6.44, 14.31) (6.37, 17.98) (6.30, 21.34) (6.24, 23.97)
ES0.99 6.11 (6.04, 8.23) (5.98, 10.08) (5.91, 11.99) (5.86, 13.80) (5.80, 15.51)
ES0.98 5.61 (5.54, 6.68) (5.49, 7.63) (5.43, 8.61) (5.38, 9.55) (5.34, 10.45)

VaR0.995 5.92 (5.83, 7.25) (5.78, 11.58) (5.74, 16.22) (5.72, 20.13) (5.68, 23.02)
VaR0.99 5.40 (5.33, 5.86) (5.28, 6.70) (5.24, 8.61) (5.19, 11.14) (5.17, 13.51)
VaR0.98 4.86 (4.81, 5.07) (4.78, 5.34) (4.72, 5.71) (4.69, 6.24) (4.65, 7.12)

Table 7.4: The bounds on VaR and ES for various scenarios and di↵erent
levels of trustworthiness when using the Gaussian copula.

Regardless of risk measure, confidence level and scenario, the lower bounds
are slowly declining as pT decreases. On the other hand, the upper bounds
grows rapidly as the model uncertainty increases, specially for confidence
level 99% and 99.5%. VaR and ES at 98% appear to have somewhat tight
bounds for all four scenarios. Thus, a pattern are distinguished from the
results in Table 7.4 and Figure 7.4, namely the likelihood of inaccurate
forecasts of the losses is increasing as one moves closer to the extreme values.

Adverse macroeconomic condition seems to increase the upper bounds
but stronger correlation appears to not impacting the uncertainty.

The normal CIMDO yields similar bounds as the Gaussian Copula and
is therefore presented in Appendix C.4. The VaR and ES bounds for the
student’s t copula is presented in Table 7.5 below.
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Student’s t Copula

pT 1 0.99 0.98 0.97 0.96 0.95

Sc. I

ES0.995 12.35 (10.69, 22.60) (9.67, 28.08) (8.92, 28.63) (8.33, 28.71) (7.82, 28.74)
ES0.99 11.20 (10.37, 16.13) (9.41, 20.66) (8.72, 24.67) (8.16, 27.24) (7.69, 27.57)
ES0.98 9.88 (9.75, 12.07) (9.19, 14.19) (8.56, 16.16) (8.04, 18.01) (7.60, 19.73)

VaR0.995 10.77 (9.19, 19.36) (8.78, 27.16) (8.16, 27.94) (7.58, 27.98) (7.13, 28.07)
VaR0.99 9.46 (8.14, 10.88) (7.36, 17.09) (6.79, 23.58) (6.60, 26.17) (6.55, 26.50)
VaR0.98 7.85 (7.00, 8.14) (6.38, 9.40) (5.91, 11.68) (5.52, 14.45) (5.18, 17.41)

Sc. II

ES0.995 13.12 (11.61, 23.72) (10.71, 28.54) (9.99, 28.72) (9.47, 28.80) (9.02, 28.84)
ES0.99 12.35 (10.69, 22.60) (9.67, 28.08) (8.92, 28.63) (8.33, 28.71) (7.82, 28.74)
ES0.98 11.20 (10.37, 16.13) (9.41, 20.66) (8.72, 24.67) (8.16, 27.24) (7.69, 27.57)

VaR0.995 11.67 (10.34, 20.71) (10.24, 27.74) (9.63, 27.96) (9.34, 28.11) (8.49, 28.11)
VaR0.99 10.77 (9.19, 19.36) (8.78, 27.16) (8.08, 27.94) (7.84, 27.98) (7.68, 28.08)
VaR0.98 9.46 (8.14, 10.88) (7.36, 17.09) (6.79, 23.58) (6.60, 26.17) (6.55, 26.50)

Sc. III

ES0.995 13.47 (11.57, 23.17) (10.42, 28.09) (9.72, 28.64) (9.04, 28.72) (8.47, 28.75)
ES0.99 12.05 (10.88, 16.84) (9.85, 21.15) (9.16, 24.82) (8.56, 27.21) (8.05, 27.57)
ES0.98 10.51 (10.23, 12.68) (9.49, 14.74) (8.82, 16.64) (8.27, 18.40) (7.80, 20.03)

VaR0.995 11.47 (9.96, 19.41) (9.65, 27.08) (9.50, 27.97) (8.78, 27.98) (8.21, 28.02)
VaR0.99 9.89 (8.70, 11.64) (7.88, 17.23) (7.25, 23.77) (7.12, 25.89) (7.04, 26.49)
VaR0.98 8.19 (7.28, 8.70) (6.63, 9.89) (6.18, 12.01) (5.78, 14.43) (5.44, 17.54)

Sc. IV

ES0.995 14.31 (12.79, 24.20) (11.75, 28.47) (11.19, 28.72) (10.57, 28.80) (10.04, 28.84)
ES0.99 12.99 (11.85, 18.04) (10.94, 22.57) (10.35, 26.36) (9.80, 27.80) (9.33, 28.16)
ES0.98 11.54 (11.16, 13.92) (10.42, 16.18) (9.83, 18.31) (9.33, 20.27) (8.92, 22.15)

VaR0.995 12.46 (11.25, 20.64) (10.35, 27.55) (9.83, 28.07) (9.24, 27.97) (8.77, 28.07)
VaR0.99 11.00 (9.98, 12.71) (9.26, 18.90) (8.76, 25.44) (8.23, 26.70) (8.04, 27.09)
VaR0.98 9.38 (8.52, 9.98) (7.97, 11.02) (7.54, 13.28) (7.15, 16.32) (6.86, 19.87)

Table 7.5: The bounds on VaR and ES for various scenarios and di↵erent
levels of trustworthiness when using the student’s t copula.

As expected, the extreme losses at pT = 1 (no model risk) are much higher
for the student’s t copula than in the Gaussian Copula. However, what is
somewhat unexpected is the fact that the bounds are extremely wider for
the t-Copula in compassion to the Gaussian Copula and normal CIMDO
(for the latter see Appendix C.4). The upper bounds rapidly converge to 30
as the level of trustworthiness decreases.

Finally, the results for the student’s t CIMDO is presented in Table
C.3 below. The Metropolis-Hastings algorithm18 was used for generating
samples.

18This is a Markov chain Monte Carlo method for generating random samples. For
definition and details, see Gentle et. al. [21].
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CIMDO, prior student’s t

pT 1 0.99 0.98 0.97 0.96 0.95

Sc. I

ES0.995 14.84 (13.44, 25.90) (12.55, 28.71) (11.83, 28.85) (11.22, 28.92) (10.71, 28.96)
ES0.99 13.81 (12.90, 19.41) (12.05, 24.54) (11.40, 28.13) (10.86, 28.64) (10.41, 28.71)
ES0.98 12.58 (12.35, 15.21) (11.71, 17.78) (11.12, 20.22) (10.63, 22.58) (10.22, 24.78)

VaR0.995 13.47 (12.14, 23.71) (12.00, 27.91) (11.23, 28.14) (10.90, 28.18) (10.38, 27.97)
VaR0.99 12.21 (11.08, 13.72) (10.33, 21.77) (10.04, 27.15) (9.96, 27.75) (9.88, 27.91)
VaR0.98 10.63 (9.80, 11.08) (9.17, 12.26) (8.68, 15.09) (8.23, 19.64) (7.82, 23.46)

Sc. II

ES0.995 15.38 (14.22, 26.41) (13.58, 28.76) (12.88, 28.90) (12.37, 28.97) (11.94, 29.00)
ES0.99 14.39 (13.53, 20.11) (12.86, 25.40) (12.25, 28.52) (11.80, 28.72) (11.40, 28.78)
ES0.98 13.27 (12.97, 16.04) (12.39, 18.76) (11.87, 21.34) (11.44, 23.82) (11.08, 26.09)

VaR0.995 13.99 (13.05, 24.39) (12.14, 28.01) (11.39, 28.19) (11.20, 28.20) (11.02, 28.33)
VaR0.99 12.89 (12.02, 14.33) (11.39, 23.03) (11.19, 27.60) (11.05, 27.92) (10.85, 28.01)
VaR0.98 11.53 (10.84, 11.99) (10.30, 13.14) (9.85, 16.15) (9.47, 20.93) (9.12, 24.99)

Sc. III

ES0.995 16.24 (15.02, 26.40) (14.24, 28.73) (13.56, 28.85) (12.93, 28.93) (12.32, 28.98)
ES0.99 15.05 (13.98, 20.44) (13.20, 25.29) (12.56, 28.25) (11.99, 28.66) (11.47, 28.74)
ES0.98 13.65 (13.19, 16.30) (12.51, 18.83) (11.92, 21.25) (11.41, 23.51) (10.96, 25.78)

VaR0.995 14.62 (13.54, 24.13) (12.54, 28.04) (11.93, 28.12) (11.33, 28.24) (10.96, 28.22)
VaR0.99 13.19 (12.18, 14.87) (11.45, 22.65) (11.29, 26.92) (11.16, 27.92) (10.67, 27.97)
VaR0.98 11.47 (10.72, 12.13) (10.08, 13.39) (9.56, 16.03) (9.11, 20.44) (8.67, 24.29)

Sc. IV

ES0.995 16.95 (15.95, 27.01) (15.29, 28.77) (14.67, 28.90) (14.15, 28.98) (13.71, 29.01)
ES0.99 15.84 (14.89, 21.26) (14.25, 26.10) (13.64, 28.59) (13.12, 28.74) (12.71, 28.79)
ES0.98 14.54 (13.95, 17.25) (13.36, 19.87) (12.82, 22.39) (12.35, 24.73) (11.98, 26.84)

VaR0.995 15.47 (14.53, 25.13) (13.93, 28.13) (13.37, 28.23) (12.89, 28.23) (12.49, 28.36)
VaR0.99 14.15 (13.23, 15.83) (12.62, 23.84) (12.61, 27.84) (12.16, 27.97) (11.67, 27.98)
VaR0.98 12.49 (11.76, 13.14) (11.24, 14.33) (10.78, 17.07) (10.37, 21.92) (9.98, 25.76)

Table 7.6: The bounds on VaR and ES for various scenarios and di↵erent
levels of trustworthiness when using CIMDO with student’s t prior.

The loss outcomes from the student’s t CIMDO, when there is no uncer-
tainty, are greater in the tails than the t-Copula. Unfortunately, the fast
convergence of the upper bounds remain unchanged. On the other hand,
the bounds have been reduced. Take for instance VaR0.98 in Scenario IV.
The ratio of the upper bound when pT = 0.98 and no model uncertainty
is 2.3% smaller for the CIMDO in comparison to the t-Copula. Another
examples are ES0.98 in Scenario II and VaR0.98 in Scenario I, the ratios of
the upper bound when pT = 0.99 and no model uncertainty are 19% and
4.8% respectively. This ratio will be greater as the confidence level increases
and/or when pT decreases. However, this has presumably its explanation in
the fact that the student’s t CIMDO generates larger losses during no model
uncertainty, and not that it is performing remarkably better. The extreme
convergence as pT decreases is still present, which is an indication of poor
performance. Hence, no distinct conclusions can be established.

The overall results from this section should be treated cautiously. It
should rather be viewed as an intimation that both the copula approach
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and CIMDO are in solitude presumably insu�cient to reliably forecast future
losses.

Moreover, the results are demonstrating that the Gaussian copula is more
accurate in the tails than the t-Copula. However, this is not indicating that
the Gaussian copula is making correct predictions as such statement is in
direct contradiction to the well-known fact that the model underestimates
the extreme losses. Thus, the whole model risk framework should not be
utilized for comparing distributions with di↵erent characteristics, but rather
within the same distribution where additional information has been added
or further interventions has been carried out.
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Chapter 8

Conclusions

By simulating artificial samples it is shown that the entropy model reduces
the variances of the regression coe�cients when compared to traditional
statistical methods such as the OLS and Maximum Likelihood. In other
words, in environment of small samples the risk of overfitting will be re-
markably lower when using the entropy model. On the other hand, due to
the bias-variance trade-o↵ the biases become worst in the entropy model.
However, no attempts were made in this thesis to optimize the outcomes of
the entropy model and hence the performance could plausibly be improved
further.

Depending on the initial distributional guess (prior) there could be a sig-
nificant di↵erence between the prior and posterior in the CIMDO method-
ology. For multivariate normal priors the di↵erences are negligible, whereas
using a student’s t causes the posterior to have fatter right tail and thinner
left tail than the prior.

The overall conclusion from the risk analysis framework is that the un-
certainty of the simulated losses become more extensive as one moves closer
to the extreme values of the distribution. The student’s t CIMDO appears
to reduce the uncertainty in comparison to the t-Copula, however the results
are by no means articulate. Instead, the conclusion is that the CIMDO is
rather a commencement towards modeling credit risk without unsubstantial
assumptions, and not in solitude su�cient for estimating the potential credit
losses. No model risk reduction were found when the normal CIMDO was
compared to the Gaussian copula.
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Appendix A

Nontechnical Comments

A.1 Pros and Cons of Econometric Models

The advantages of the econometric models are that macroeconomic variables
are numerous, easily accessible, well understood and recorded over a long pe-
riod of time. Due to their structure, the econometric models are well suited
for stress-testing19 on regional, national and global level. Moreover, these
models do usually not require complex mathematical tools for calibration.

On the other hand, to capture the whole picture data must be accumu-
lated during at least one business cycle, which is a problem since it is not
unusual that the length of one cycle could exceed ten years.

Furthermore, most macro variables are highly correlated, which in the
context of regression analysis are referred to as multicollinearity. The phe-
nomenon causes the standard errors of the coe�cients to become larger and
the impact of a single exogenous variable on the response variable, ceteris
paribus, to be inaccurate.

Many macro indicators are updated each quarter at best. Consequently,
the PD’s could only be updated with the same time period if one solely
chooses these kind of variables. This is a disadvantage if the defaults in a
certain sector or geographical area fluctuates heavily for a relatively short
period of time. In such situations the econometric models are unlikely to
predict these deviations. In this regard the marked-based models are having
an advantage since the market is more likely to instantaneously respond to
the fluctuations, or perhaps even react ahead of them.

According to Chan-Lau [10], another major drawback is the so-called
Lucas critique. Changes in government policy rules and the fact that every
business cycle is unlike the other, are making econometric models improbable
of remaining trustworthy over time. In other words, although one estimates
the regression coe�cients with data collected over the past ten years, it is
not a guarantee that the calibrated model will show correct predictions over

19See Appendix A.2 for definition and details.
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the next ten years.

A.2 Stress-Testing

There is no formal definition of what stress-testing implies. Nonetheless,
the consensus is that it is the process of purposely inserting extreme values
into a system with the intention to examine the response. Stress-testing is
used in all the financial risk categorizations. For example in market risk,
factors such as yield curves, currencies and volatility are tested since these
parameters are instantaneously a↵ecting the price process of the underlying.

Within credit risk applications, the concept is better known as macro
stress-testing. The added term refers to exposing the portfolio to abnormal
but plausible macroeconomic scenarios. The objective is to study how the
loss distribution reshapes by various levels of negative shocks. In contrast to
market stress-testing, the procedure is indirect in the sense that the prob-
ability of default is first a↵ected, thereby the losses. Macro stress-testing
should be viewed as a complimentary tool to the risk measures such as VaR.
For instance the modeller could examine how the EC increases at di↵erent
levels of financial distress. Thus, the combination of both yields a reliable
quantitative instrument for risk management.

The di�culty lies in the very design of the adverse macroeconomic sce-
narios. The reasons are many. For example, is the invented scenario adverse
enough and at the same time plausible to happen? And, what macro vari-
ables should be stressed?

Depending on situation, the second question could have a straightforward
answer. For example, the choice would naturally fall on oil price if the
portfolio exclusively consisted of companies heavily exposed to the transport
industry. However, scenario designing becomes more complicated as the
portfolio gets more diversified. Even if some candidates are selected for a
specific portfolio it is di�cult to sort them from worst scenario to best ex
ante. Furthermore, financial distress a↵ects di↵erent portfolios to di↵erent
degrees, making the designing of universal stress tests troublesome ex ante,
according to Stein [34].

Multicolinearity, the phenomenon of macro variables being highly corre-
lated, also causes uncertainty. This is due to the di�culty of predicting how
selected macro variables will interact in reality during abnormal conditions.
Misspecified scenarios could lead to incorrect forecasts.

In addition, managers and authorities usually want to formalize such
adverse scenarios where it is unlikely that the available data contains similar
situations. Since the calibration is on less painful situations there will be
uncertainties on whether the model will respond correctly, and hence the
risk of results being inaccurate is huge.
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A.3 Extensions of the Vasicek Model

The literature concerning credit risk has modified the Vasicek model with-
out changing its premise. Among others, Castro [9] extends the one-factor
model into a K-factor model where a global risk component a↵ecting all bor-
rowers has been introduced along with multi-index risk factors, allowing the
modeller to incorporate several systematic risk components. In the dynamic
factor model by Lamb and Perraudin [29] the initial assumption of standard
normal risk factors is substituted into a model where the systematic factor
is an AR(1)-process.

The unanimous argument for all the extended versions is that the origi-
nal Vasicek model leads to erroneous perception of true correlation and does
not correctly imitate the actual sequence of asset movements. Nevertheless,
these models induce calibration di�culties and sometimes also cause inaccu-
rate results. The problems occur since as the models become more advanced,
the number of parameters to be estimated grows rapidly, but the amount of
data remains unchanged [14]. Furthermore, due to absence of real data it is
impossible to test these di↵erent versions, hence this thesis will maintain to
the formulations above.

Empirical evidence are showing asset processes are closer to being stu-
dent’s t-distributed than normal. There is a simple way to compensate for
this without significantly changing the equations in the previous section. Let
W be an independent Wald-distributed random variable with location and
scale parameter equal to ⌫/2 and let Ait be defined as in the previous section.
Then Zit =

p
WAit is in fact a student’s t-distributed asset return with ⌫

degrees of freedom. Using this notation, the correlation between borrowers
remains the same as when the asset returns are normally distributed.

A.4 Short Comment on LGD and EAD Estima-
tion

There exists substantial evidence on the connection between the LGD and
the economic environment, see Höchstötter and Nazemi [25]. However, this
is not necessarily concordant with the PD’s correlation to buisness cycle.
For example, if the collateral of the loan is a commodity with a volatile
secondary market, it is doubtful whether adverse periods coincide with fi-
nancial distress. However, the losses will be enormous if the LGD is high
during a period of multiple defaults, which is why proper LGD estimation
is vital.

Quantitative research on the EAD is less extensive. Some researchers
claim that the commitment part of EAD is linked to external factors such
as balance sheets and market indicators. Nevertheless, modeling of LGD
and EAD was outside the scope of the thesis.
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Appendix B

Mathematical Details

B.1 Maximum Likelihood for Asset Correlation

There exist two alternatives for estimating the asset correlation in the Va-
sicek factor model, namely maximum likelihood (ML) and method of mo-
ments (MM). Gordy and Heitfield [23] conclude in their article that in en-
vironment of small samples, the ML is more accurate than the MM as the
latter lacks of downward bias. If the asset returns are assumed to be nor-
mally distributed, then according to Hashimoto [24] the general ML equation
for obtaining the asset correlations is

ML =
T
Y

t=0

Z 1

�1

R
Y

r=1

✓

nr
t

drt

◆
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prt (s)
⌘dr
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1� prt (s)
⌘nr

t

�dr
t

�(s)ds, (B.1)

where t is each time point in which data has been collected, drt is the number
of defaults in rating r at time t and nr

t is the total number of borrowers in
rating r at time t. prt (s) is the conditional default probability defined in
Equation (2.8) and R is the total number of rating classes. The proof of
Equation (B.1) is given in the subsequent section.

It may appear most logical to estimate the asset correlation for each
market sector considered. This is justified by the argument that companies
belonging to the same sector should be a↵ected equally by the systematic
risk. On the other hand, the financial performance of larger companies are
stronger correlated to the business cycle than smaller companies, which in
turn are more vulnerable to individual risk factors, according to Hashimoto
[24]. Since larger companies have in general higher credit rating it is com-
monly accepted to estimate the asset correlation for each rating class sep-
arately. Furthermore, the borrowers have already been categorized into
homogeneous groups by their the rating, causing the estimation of asset
correlation for each market sector to be complicated.
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B.1.1 Proof of Maximum Likelihood

The conditional PD of rating r at time t is given by

prt (s) = �

 

��1(prt )� s
p
⇢rp

1� ⇢r

!

(B.2)

Obligors are independent if mixture representation is considered and the
common factors are realized. Hence, the probability of drt defaults at rating
r and time t is given by a binomial distribution
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Obligors are not only independent within same rating, but also across all
the R classes. Hence the probability of total amount of defaults dt at time
t is
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Integrating out the systematic risk and multiplying over all time points
yields the unconditional likelihood function

ML =
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B.2 General Solution of Maximum Entropy

Suppose there exists a random variable X with x1, . . . , xn outcomes. Let
p = (p1, . . . , pn) contain the probabilities of each outcome. Define H as the
entropy of X, i.e. H(p) = �

Pn
i=1 pi ln pi. Furthermore, consider a finite

set of functions fk(X), 1  k  K < n such that

fk(xi) = Ck, 1  k  K < 1 (B.6)

where the Ck’s are fixed constants. The entropy measure subject to the
constrains yields the Lagrangian

L = H(p)�
K
X

k=1

�k

⇣

n
X
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fk(xi)pi � Ck

⌘

� µ
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n
X

i=0

pi. (B.7)

Di↵erentiating the Lagrangian with respect to pi and set equal zero to find
the maximum

@L
@pi

= 0. for i = 1, . . . , n (B.8)
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Thus we have
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= � ln[pi]� 1�
K
X

k=1

�kfk(xi)� (�0 � 1) = 0 )

pi = exp
⇣

� �0 �
K
X

k=1

�kfk(xi)
⌘

. for i = 1, . . . , n

(B.9)

By definition
Pn

i pi = 1. Inserting Equation (B.9) into this statement yields

1 =
n
X

i=1

pi =
n
X

i=1

exp
⇣

� �0 �
K
X

k=1

�kfk(xi)
⌘

)

exp(��0) =
1

Pn
i=1 exp

⇣

�
PK

k=1 �kfk(xi)
⌘ .

(B.10)

Thus, the solution is given by

pi =
exp

⇣

�
PK

k=1 �kfk(xi)
⌘

Pn
i=1 exp

⇣

�
PK

k=1 �kfk(xi)
⌘ . (B.11)

B.3 Obtaining the Posterior by Calculus of Vari-
ations

The Lagrangian L was stated as

L(p, q) =
Z

⌦
p(a) ln

hp(a)

q(a)

i

dra+ �0

"

Z

⌦
p(a)dra� 1

#

+ �1

"

Z

⌦
p(a)1{a1 < �1t }dra� p1t

#

...

+ �r

"

Z

⌦
p(a)1{ar < �rt }dra� prt

#

,

(B.12)

where �0, . . . ,�r are the Lagrangian multipliers. We will now use the defini-
tion of calculus of variations to obtain the optimal solution of the posterior
distribution. In the context of calculus of variations, p and q are viewed as
variables rather than functions. Furthermore, since the prior is known and
fixed the variation will only be implemented on p. Formally we have

L(p+ ✏f, q), (B.13)
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where ✏ is a small quantity (approximately zero) and f(a) is an arbitrary
continuous function which fulfills the properties of being at least once dif-
ferentiable and bounded with value zero at the endpoints of the integral in
question. Applying the variations in Equation (B.12) yields

L(p+ ✏f, q) =

Z 1

�1
· · ·

Z 1

�1

⇣

p(a) + ✏f(a)
⌘

ln
hp(a) + ✏f(a)

q(a)

i

dra

+ �0

"

Z 1

�1
· · ·

Z 1

�1

⇣

p(a) + ✏f(a)
⌘

dra� 1

#

+ �1

"

Z 1

�1
· · ·

Z 1

�1

⇣

p(a) + ✏f(a)
⌘

1{a1 < �1t }dra� p1t

#

...

+ �r

"

Z 1

�1
· · ·

Z 1

�1

⇣

p(a) + ✏f(a)
⌘

1{ar < �rt }dra� prt

#

.

(B.14)

Taking the derivative of L with respect to ✏ yields

dL(p+ ✏f, q)

d✏
=

Z 1

�1
· · ·

Z 1

�1

"

f(a) ln
hp(a) + ✏f(a)

q(a)

i

+
⇣

p(a) + ✏f(a)
⌘⇣q(a)f(a)/q(a)

p(a) + ✏f(a)

⌘

#

dra

+ �0

Z 1

�1
· · ·

Z 1

�1
f(a)dra

+ �1

Z 1

�1
· · ·

Z 1

�1
f(a)1{a1 < �1t }dra

...

+ �r

Z 1

�1
· · ·

Z 1

�1
f(a)1{ar < �rt }dra

()
dL(p+ ✏f, q)

d✏
=

Z 1

�1
· · ·

Z 1

�1

"

ln
hp(a+ ✏f(a)

q(a)

i

+ 1 + �0 + �11{a1 < �1t }+ . . .

+ �r1{ar < �rt }
#

f(a)dra.

(B.15)

Since the interest is in minimizing L, the derivative in Equation (B.15) is
set to zero. Using the fundamental lemma of calculus of variations20 and
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evaluating for ✏! 0 yields

ln
hp(a)

q(a)

i

+ 1 + �0 + �11{a1 < �1t }+ · · ·+ �r1{ar < �rt } = 0 )

p(a) = q(a) exp
h

� 1� �0 � �11{a1 < �1t }� · · ·� �r1{ar < �rt }
i

.

(B.16)

B.4 Application to Credit Portfolios

Suppose a six dimensional distribution has been fitted from which eight
samples have been generated. Furthermore, assume that it has already
been determined whether the outcomes belong to T or U . In Matrix (B.17)
below the samples are shown. They are not sorted by any particular rule,
however outcomes belonging to U are highlighted in red.

0

B

B

B

B

B

B

B

B

B

B

@

�4.77 �1.54 �9.33 �9.18 �11.30 1.12
�6.54 �1.47 �6.68 7.22 11.11 �3.18
�0.70 �4.53 �5.81 �4.88 10.29 0.51
�6.58 9.72 2.47 �9.95 �6.31 4.30
�7.90 11.51 5.07 �5.70 �0.99 �2.51
�6.47 10.16 �2.19 �4.35 5.53 �6.44
8.26 �1.68 2.28 �1.82 �0.27 �0.27
�7.33 �7.56 �5.71 0.19 1.88 2.98

1

C

C

C

C

C

C

C

C

C

C

A

(B.17)

For credit portfolios, the manager is interested in the losses due to defaults
of the conterparties. If the numbers in Matrix (B.17) are viewed as asset
outcomes, then the first step is determining which borrowers have defaulted.
Each separate outcome is compared to the threshold value. If the borrower
defaulted (asset falls below the threshold) the asset outcome is replaced by
the product of the exposure and loss given default. If the borrower did not
default, the outcome is replaced by 0.

For simplicity, the threshold value is set to -3 for all six borrowers. The
Matrix (B.18) below shows how Matrix (B.17) is reformulated after de-
termining whether a borrower defaulted or not. The losses are randomly
assigned.

20In general , if g is the set of continuous functions fulfilling {g : g(x) 2 C

k[a, b], g(a) =

g(b) = 0}, and
R

b

a

f(x)g(x) = 0, then f(x) = 0 on [a, b].
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0

B

B

B

B

B

B

B

B

B

B

@

0.16 0 0.21 0.44 0.15 0
0.13 0 0.27 0 0 0.72
0 0.22 0.26 0.34 0 0

0.08 0 0 0.31 0.19 0
0.14 0 0 0.45 0 0
0.15 0 0 0.4 0 0.77
0 0 0 0 0 0

0.12 0.3 0.1 0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

(B.18)

V, ST and SU are now obtained as

V =

0

B

B

B

B

B

B

B

B

B

B

@

0.15 0 0 0.4 0 0.77
0.16 0 0.21 0.44 0.15 0
0 0.22 0.26 0.34 0 0

0.12 0.3 0.1 0 0 0
0 0 0 0 0 0

0.14 0 0.27 0.45 0.19 0.72
0.13 0 0 0.31 0 0
0.08 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

ST =

0

B

B

B

B

@

1.32
0.96
0.82
0.52
0

1

C

C

C

C

A

SU =

0

@

1.77
0.44
0.08

1

A

(B.19)

The rows in the trusted area has been sorted by their total row sums. For
the highlighted part of V, each column has been sorted in descending order.
Thereafter the row sums have been calculated and inserted into SU .
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Appendix C

Figures and Tables

C.1 Entropy Model vs Maximum Likelihood

The variance, bias and mean square error for the entropy model and ML are
presented in Table C.1 below. Note that the values for the entropy model
are somewhat di↵erent from those in Table 7.2. The reason is that two
separate simulations were performed.

The results are similar to those in Table 7.2, however it is inevitable that
the ML seems to perform better than the OLS. Nevertheless, the entropy
model reduces the MSE in all cases except for three coe�cients.
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Rating 1 2 3 4 5 6

Var.
�Int.
ML 1.5·10�3 1.3·10�3 1.4·10�3 1.7·10�3 1.9·10�3 2.2·10�3

�GDP
ML 1.6589 1.4550 1.4895 1.8719 1.9601 2.1085

�Nikk.
ML 1.53·10�2 1.39·10�2 1.46·10�2 1.19·10�2 2.01·10�2 2.15·10�2

�Int.
ent. 1.6·10�3 1.3·10�3 1.3·10�3 1.7·10�3 1.9·10�3 2.5·10�3

�GDP
ent. 1.0521 0.7387 0.7195 0.9337 0.8965 0.9475

�Nikk.
ent. 7.6·10�3 5.4·10�3 5.4·10�3 7.2·10�3 7.1·10�3 7.4·10�3

�Int. -7.29% 1.05% 1.21% -0.54% -0.9% -14.35%

�GDP 57.68% 96.96% 107.02% 100.48% 118.63% 122.54%

�Nikk. 101.31% 158.84% 169.32% 164.12% 183.75% 189.26%

Bias sqr.
�Int.
ML 3.47 ·10�6 2.26 ·10�6 1.63 ·10�6 2.39 ·10�6 1.85 ·10�6 1.42 ·10�7

�GDP
ML 1.39 ·10�4 3.18 ·10�4 9.63 ·10�5 1.46 ·10�4 2.29 ·10�4 3.09 ·10�4

�Nikk.
ML 1.50·10�6 7.83·10�7 2.47·10�6 2.62·10�7 6.46·10�9 2.05·10�8

�Int.
ent. 9.17·10�6 2.62·10�7 9.78·10�7 1.77·10�5 1.02·10�4 1.00·10�3

�GDP
ent. 6.92·10�2 0.210 0.339 0.510 0.617 0.534

�Nikk.
ent. 4.50·10�3 2.42·10�3 1.24·10�3 5.28·10�4 1.75·10�4 7.69·10�6

MSE
�Int.
ML 1.48·10�3 1.31·10�3 1.37·10�3 1.73·10�3 1.89·10�3 2.16·10�3

�GDP
ML 1.659 1.455 1.490 1.872 1.960 2.109

�Nikk.
ML 1.53·10�2 1.39·10�2 1.46·10�2 1.90·10�3 2.01·10�2 2.15·10�2

�Int.
ML 1.60·10�3 1.30·10�3 1.35·10�3 1.75·10�3 2.01·10�3 3.52·10�3

�GDP
ML 1.121 0.945 1.058 1.444 1.513 1.482

�Nikk.
ML 1.21·10�2 7.80·10�3 6.65·10�3 7.72·10�3 7.24·10�3 7.44·10�3

�Int. -7.60% 1.21% 1.25% -1.4% -5.81% -38.76%

�GDP 47.97% 54.07% 40.76% 29.63% 29.55% 42.32%

�Nikk. 26.54% 78.46% 119.15% 146.06% 176.89% 188.96%

Table C.1: The variance, bias squared and the MSE of each coe�cient
obtained from the simulation.

C.2 Additional Plots for Comparing Prior and Pos-
terior Distributions

The upper two graphs in Figure C.1 show the posterior density and the
subtraction between posterior and prior, when the prior was normally dis-
tributed. Similarly, the lower two plots show the posterior and the subtrac-
tion between posterior and prior, in the case when the prior is Student’s t
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distributed.
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Figure C.1: All graphs correspond to the case when PD=(5%, 10%) and
the correlation is 0.15. Upper left : The posterior density when prior is
normally distributed. Upper right : Di↵erence between posterior and prior,
when prior is normally distributed. Lower left : The posterior density when
prior is student’s t distributed with ⌫ = 3. Lower right : Di↵erence between
posterior and prior, when prior is student’s t distributed.

By looking at the upper right plot in Figure C.1 the di↵erence between the
posterior and prior seems small. In the scenario where the prior is student’s
t distributed however, it appears to be a significant di↵erence. To visualize
this further, approximately 10’000 samples were generated from both the
posterior and prior distributions from the same scenario. Because of the
complex structure of the posterior, rejection sampling was used to generate
samples.
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Figure C.2: All graphs correspond to the case when PD=(5%, 10%) and
correlation is 0.15. Samples generated from the posterior is marked with ⇥⇥⇥
and samples from the prior is marked with ���. Left plot : Posterior and prior
correspond to the case when prior is normally distributed. Right plot : Poste-
rior and prior corresponding to the case when prior is student’s t distributed
with ⌫ = 3.

Focusing on the right scatter plot in Figure C.2 one can perceive that the
posterior distribution exhibits heavier left tail than the prior. In the left
plot, where the prior is assumed to have normal distribution, the di↵erences
are not as obvious. Furthermore, the samples in the right plot are taking
larger values than the outcomes in the right plot.

C.3 QQ-plots of Prior And Posterior for Di↵erent
Scenarios

This section presents the di↵erence between the prior and posterior in vari-
ous scenarios. The qq-plots in Figure C.3 shows that there is no di↵erence
between the prior and posterior when the prior is selected to be multivari-
ate normal. A prior as multivariate student’s t will cause the posterior to
have fatter left tail but thinner right tail in comparison to the prior. The
Lagrangian multipliers are presented in Table C.2.
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Correlation 0 0.15 0.5

PD (X, Y) LM Normal Student Normal Student Normal Student

(0.5%, 3%)
�̂0 -1.00 -0.975 -1.00 -0.976 -1.00 -0.976

�̂1 0.022 -1.046 0.022 -0.911 0.022 -0.581

�̂2 0.002 -1.381 0.002 -1.376 0.001 -1.379

(5%, 10%)
�̂0 -1.00 -0.906 -1.00 -0.910 -1.00 -0,919

�̂1 -0.001 -1.097 -0.001 -1.017 0.00 -0.812

�̂2 -0.003 -1.055 -0.003 -1.024 -0.003 -0.969

Table C.2: The Lagrangian multipliers for the di↵erent scenarios.
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Figure C.3: QQ-plots of asset returns (X,Y ) corresponding to the case
when prior is standard normal. Left column is when PD = (0.5%, 3%)
and right column is when PD = (5%, 10%). Upper plots is the case when
the correlation is 0, middle plots for correlation=0.15 and lower plots for
correlation=0.5.
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Figure C.4: QQ-plots of asset returns (X,Y ) corresponding to the case when
prior is student’s t distributed with ⌫ = 3 degrees of freedom. Left column is
when PD = (0.5%, 3%) and right column is when PD = (5%, 10%). Upper
plots is the case when the correlation is 0, middle plots for correlation=0.15
and lower plots for correlation=0.5.
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C.4 VaR and ES bounds for normal CIMDO

CIMDO, prior normal

pT 1 0.99 0.98 0.97 0.96 0.95

Sc. I

ES0.995 4.57 (4.47, 8.10) (4.41, 11.40) (4.35, 14.45) (4.31, 17.39) (4.28, 20.00)
ES0.99 4.27 (4.18, 6.03) (4.12, 7.71) (4.07, 9.28) (4.03, 10.82) (4.00, 12.30)
ES0.98 3.93 (3.85, 4.81) (3.81, 5.56) (3.77, 6.44) (3.73, 7.22) (3.70, 7.80)

VaR0.995 4.14 (4.06, 5.07) (4.00, 8.83) (3.96, 12.81) (3.92, 16.17) (3.86, 18.88)
VaR0.99 3.80 (3.72, 4.11) (3.68, 4.85) (3.65, 6.52) (3.61, 8.46) (3.58, 10.38)
VaR0.98 3.43 (3.38, 3.58) (3.35, 3.77) (3.31, 4.06) (3.28, 4.50) (3.25, 5.23)

Sc. II

ES0.995 5.63 (5.52, 9.90) (5.44, 13.89) (5.39, 17.54) (5.34, 21.07) (5.32, 23.75)
ES0.99 5.27 (5.17, 7.43) (5.11, 9.48) (5.07, 11.39) (5.02, 13.28) (4.99, 15.11)
ES0.98 4.89 (4.82, 5.97) (4.76, 7.01) (4.72, 7.99) (4.69, 8.95) (4.66, 9.90)

VaR0.995 5.12 (5.05, 6.34) (4.99, 11.60) (4.93, 16.00) (4.86, 19.95) (4.79, 22.84)
VaR0.99 4.74 (4.66, 5.12) (4.62, 6.13) (4.58, 8.30) (4.55, 11.03) (4.51, 13.37)
VaR0.98 4.35 (4.29, 4.52) (4.25, 4.76) (4.22, 5.10) (4.19, 5.72) (4.16, 6.78)

Sc. III

ES0.995 5.38 (5.25, 8.93) (5.17, 12.03) (5.12, 15.02) (5.08, 17.68) (5.03, 20.28)
ES0.99 4.95 (4.85, 6.76) (4.78, 8.34) (4.73, 9.89) (4.69, 11.33) (4.65, 12.75)
ES0.98 4.51 (4.43, 5.41) (4.37, 6.21) (4.33, 7.00) (4.29, 7.74) (4.25, 8.47)

VaR0.995 4.78 (4.71, 5.72) (4.62, 9.20) (4.58, 13.08) (4.54, 16.21) (4.50, 19.02)
VaR0.99 4.32 (4.25, 4.73) (4.21, 5.31) (4.16, 6.75) (4.13, 8.63) (4.10, 10.58)
VaR0.98 3.87 (3.80, 4.04) (3.77, 4.26) (3.72, 4.53) (3.69, 4.93) (3.66, 5.52)

Sc. IV

ES0.995 6.66 (6.56, 10.86) (6.49, 14.54) (6.42, 18.10) (6.36, 21.41) (6.32, 23.87)
ES0.99 6.16 (6.07, 8.31) (6.01, 10.20) (5.94, 12.07) (5.90, 13.84) (5.85, 15.55)
ES0.98 5.65 (5.57, 6.73) (5.51, 7.70) (5.46, 8.66) (5.41, 9.58) (5.37, 10.47)

VaR0.995 5.96 (5.88, 7.24) (5.80, 11.71) (5.73, 16.25) (5.70, 20.42) (5.66, 22.94)
VaR0.99 5.44 (5.35, 5.90) (5.32, 6.77) (5.25, 8.63) (5.22, 11.17) (5.17, 13.53)
VaR0.98 4.90 (4.83, 5.10) (4.78, 5.37) (4.75, 5.71) (4.71, 6.26) (4.67, 7.14)

Table C.3: The bounds of VaR and ES for various scenarios and di↵erent
levels of trustworthiness when using CIMDO with normal prior.
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