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Modelling Swedish Inflation Using Market Data

Abstract

This study is an attempt to model Swedish CPI inflation using ARIMA and variations
of distributed lag model with market data as explanatory variables. The model will
be constructed on the CPI subcomponents level and the results are aggregated to
the CPI. Three approaches are tested in this report. In the first approach, only
ARIMA model is used to model each of the subcomponents. In the second approach
we use a distributed lag model (DLM) on subcomponents with significant correlation
to the market data, the residual of the DLM is then modelled using ARIMA. In the
third approach we use an restricted finite distributed lag model (RFDLM) instead of
DLM. The study found that RFDLM was the best approach to model inflation with
20% RMSE compared to 32% of the naive forecast. However, there is little forecast
potential using this approach due to the short lag of market data used as input. The
model would be most useful in testing CPI inflation scenarios using predictions or
assumptions of market data as input.
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Modellering Av Svensk Inflation Med Marknads-

data

Abstrakt

Denna studie är ett försök att modellera svenska inflation genom att använda ARIMA-
modell och variationer av distributed lag model med marknadsdata som förklarande
variabler. Modellen är konstrukterad p̊a underkomponents niv̊an av KPI och sedan
aggregerad till KPI. Tre metoder prövas i denna studie. I första metoden mod-
elleras underkomponenterna direkt med ARIMA-modeller. I andra metoden används
distributed lag model (DLM) p̊a underkomponenter med signifikant korrelation till
marknadsdata, residualen fr̊an DLM modelleras i sin tur med ARIMA-modeller. I
den tredje metoden ersätter vi DLM med restricted finite distributed lag model
(RFDLM). Resultaten fr̊an studien visar att RFDLM är den bästa metoden att
modellera inflationen och hade ett RMSE p̊a 20%. Detta jämfört med den naiva
prognosen som hade en RMSE p̊a 32%. Däremot har RFDLM inte särskilt mycket
praktiskt nytta i prognostisering av inflationen d̊a man behöver marknadsdatan för
prognosperiod i förhand p̊a grund av att modellen använder sig av väldigt korta
lagg. Däremot skulle modellen kunna ha nytta i scenario byggande med prognoser
and antagande p̊a marknadsdatan som input.
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Chapter 1

Introduction

1.1 Background

This report was written as a Master’s thesis for 30 ECTS at the end of a two year
Master’s Program at KTH. The report documents a statistical modelling project
of the Swedish inflation using distributed lag model (DLM) and ARIMA model.
The data has mainly been provided by the Macro Research team at Nordea which
also has provided with ideas and knowledge regarding inflation measuring. Assistant
professor Thomas Önskog at KTH has also provided mathematical insights and ideas
to the project.

1.2 What is CPI?

Inflation is a variable that is seen in all investment decisions made by pension funds,
risk capital funds, corporations and even households. In some cases and for some
asset classes (such as fixed income), inflation is often seen as one of the most impor-
tant factors to consider and could directly impact the asset’s valuation. The most
common way to measure inflation is using the Consumer Price Index (CPI), a largely
internationlly standardized metrics computed by the country’s statistical agency. In
Sweden, the CPI statistics is computed by Statistics Sweden (SCB) and is released
on a monthly basis [1].

Consumer Price Index tracks the change in goods and services sold to private do-
mestic consumers and should reflect the price consumers actually paid. That means
the index should also reflect the cost for households to maintain a constant stan-
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dard of living, which sounds simple but is difficult to meassure. The basic idea is to
construct a basket of goods that reflects what an average consumer purchase each
month and measure the price change of these products on a monthly basis [1].

SCB classifies the CPI basket in 12 main groups of products and services, ranging
from food, restaurants to housing. The 12 main groups are in turn divided into 44
subcomponents which can be further split into over 350 product groups. For example
the main group ”Food and non-alcoholic beverages” include among other, ”Coffee,
tea and cocoa” which in turn include the product groups ”coffee”, ”tea” and ”cocoa”
with a price index for each. On the lowest level, product group is aggregated through
measurement of actual price of various product in the category from different vendors
and locations. The indices for product group is also referred to the elementary indices
as it is the building block to aggregating CPI. See Figure 1.1 for an illustration of
the decomposition of CPI.

Figure 1.1: Illustrative decomposition of the CPI

As the usage of CPI has changed over the years, the methodology has undergone
changes as well and most recently in 2005 and 2012. CPI is used today by many
type of organisations such as government institutions, labour unions, central bank,
investors and enterprises. It can be referred to in wage discussions, investment
evaluations and many more situations so there is no doubt that CPI is one of a
key economic metrics of every country[1, 2].
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1.3 Purpose

This report will attempt to model CPI by modelling the subcomponents using a com-
bination of time series methods such as ARIMA together with econometric regression
methods for lagged correlation with explanatory variables, such as distributed lag
models (DLM). The explanatory variables will mainly consist of easy to access mar-
ket data that is available. The idea is that this model could potentially be used in
two ways.

The first is to use the model to predict inflation. However, this will largely be
limited by the shortest lag used for the market data as input to the DLM. In this
study, we will be selecting lags simply based highest correlation, if the best lag turns
out to be zero, we will not be able to predict inflation beyond zero lag, current in-
flation level. In other words, this would be Nowcasting.

Predicting inflation is known to be difficult and there is a good chance that the
model used in this approach would not make any significant improvement to the
current methods used by economist. However, a second and maybe more important
use of the model would be to, a tool for scenario analysis based on market events.
For example, market makers in Sweden typically use simple rule of thumbs that a
10% drop in oil prices corresponds to a 0.1% drop in inflation two years later, which
was concluded by a study conducted by the Riksbank in 2008. [14] If the market
makers had model that could more accurately indicate how inflation is moving in
real time than a rule of thumb or a naive guess, they could maybe price financial
products related to the level of inflation more accurately and be able to price as well
as hedge their positions better.

Thus, another important goal of this report is to create a model that is modular-
ized and thus easy to maintain. The mode should be able to be updated in live time
with automated input data that could be found through Bloomberg and Reuters.

Five explanatory variables have been used in this model, but the concept can
easily be expanded to include many more explanatory variables.

1.4 Previous Models

Inflation is one of the main economic indicators for a country and a very complex one
to model. There are no universal models that fits every country due to the difference

7



in economical structure. For example a country with larger amount of imports would
be more affected by their currency rate and a country with large domestic market
would be more affected by their labour market situation. However, in general there
are mainly two categories of approaches, a top-down and a bottom up approach.

The most straightforward and easiest way would be to model inflation using macro
variables and thus a top-down approach, Philip’s curve being one of the more com-
mon ones. Philip’s curve states that the is a historical inverse correlation between
the rate of unemployment and inflation. Therefore, a decreasing unemployment rate
will lead to a higher inflation rate. The model has been modified many times since
the original publications of William Philips in 1958, adding the rule of the ”money
illusion” measured by inflation expectation and also the so called long-run Philip’s
curve respective short-run Philip’s curve. However, many economists have started to
questions if the relationship between unemployment rate and inflation has broken up
due to the implications of the modern economical structure with supply side policies
that allow economies to expand without inflation [3, 4, 5].

The bottom-up approach is easy in theory but is usually not very practical to
implement. In reality, the measurement of CPI is in itself is a bottom-up approach
to estimate the ”real” inflation in the economy from a consumer’s point of view by
tracking prices of products consumer buy. Statistic Sweden has a large team collect-
ing price data on nearly everything in the economy, assembling them together for
the CPI data release each month. If one wish to make a perfect model of the CPI,
then the most accurate method would be to copy Statistics Sweden methods and
collect various price data to create a ”shadow CPI”. However, in reality, this would
be very resource consuming and not very practical. Given the increasing amount
of e-commerce activities, the amount of accessible data have increased tremendously
and one could in theory automate the price collection for creating a shadow CPI with
web-scrapping algorithms. This has been done to a certain degree by Nordea on a
few products such as fuel price, electricity and food. In reality, forecasters will use
multiple approaches in order to triangulate the best forecast possible by combining
top-down and bottom-up approaches. Any improvements on existing models will be
highly demanded.

A study from Yu-chin Chen, Stephen J. Turnovsky, and Eric Zivot tried to predict
inflation in five commodity producing countries using commodity prices and least-
angle regression and generalized autoregressive distributed lag model and compared
it to a AR(1) process. They found that commodity prices did indeed outperform the
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AR(1) process, although with only modest improvement in some cases. [16]
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Chapter 2

Mathematical methods description

This chapter will provide the reader with a mathematical description of the models
used in this project. We will cover the two main models used in this report, DLM,
ARIMA models, and their variations. The methodology of aggregating the CPI itself
will also be covered in this section.

2.1 Distributed lag model

A distributed lag model (DLM) is a dynamic model that describes the effect on the
dependent variable y through an explanatory variable x where the effects occurs over
time rather than immediately. The distributed lag model in the finite form can be
written as

yt = α +

q∑
l=0

βlxt−l + εt, (2.1)

where α is the intercept, βl is the coifficient for lag l and ε is the error term. This is
very similar to the MA-model described later in Equation (2.5), with the difference
being that the white noise εt−l in the MA-model has been replaced by a explanatory
variable xt−l.[6]

In theory one can model a temporary change in x to a permanent change in
y, but this would require q to be infinite and βl to be larger than 0 for all lags,
creating an un-stationary relationship between x and y. Therefore one important
factor to consider is that x and y both need to be stationary and have the same
level of differentiation. In other words, if x measures a change then y should mea-
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sure a change as well, if x is a nominal level then y need to be a nominal level as well.

For example if we would model the effect on inflation with the year on year change
of oil price at year t denoted as xt, xt would be positive for one year and 0 for the
subsequent years if oil prices stays stable. If yt is the inflation index level, β in
Equation (2.1) would need to be non-zero and extend into the indefinite future. One
approach to fix this would be to redefine xt to be the price level of oil prices instead
of year on year change, the problem is then solved as xt would be permanent higher
with a price increase. A second and maybe easier approach would be to redefine yt
to the change in inflation instead of index level, the problem would be solved as the
increase in yt would only be temporary as well and the number of terms in Equation
(2.1) would be less.

There are some disadvantages with the distributed lag model in the finite form.
The first problem is multicollinearity, as x can be highly autocorrelated even if it is
stationary. This means for example if we would estimate yt by yt = β1xt + β2xt−1 +
β3xt−3, the lag weights β will be bouncing between positive and negative values and
might not be statistically significant, which is inconsistent with economic theories.
This is especially common for economic and financial raw data. [6]

A second problem is that the number of observations available for estimation ob-
servations would drop quickly with increasing lag length. If we have T observations
of data, the data that can be used for estimation is T−q as we need q periods of data
in the beginning before starting to estimate the data. This would allow us T −2q−2
degree of freedom, assuming that intercept need to be estimated as well. For each
lag we add to the model, the degree of freedom would be reduced by 2. [6]

This means that the distributed lag model is a suitable method only when the
lag coefficients β decline to zero quickly for each lag, the predicting variables are not
highly correlated and the time series of available observation is much longer than
the lag length q. In other words, this model can almost never be used as there are
nearly no economic or financial data that satisfies all these conditions. However, a
possible solution to the problem is to use Restricted Finite DLM. [6]

2.1.1 Restricted Finite DLM

Restricted finite distributed lag models (RFDLM) would solve the two disadvan-
tages of multicollinearity and decreasing number of observations described earlier.
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The model is based on the idea that βl should be a smooth function of the lag l. Even
if the lag weights β does not follow the smoothness naturally if regression is made on
the variables independently, one could impose it by restricting βl, thus solving the
multicollinearity problem. By predefining the smoothness of the βl as a function, we
can reduce the number of lag weights that need to be estimated to one, as shown in
the example of Equation (2.2), thus solving the second problem of the unrestricted
model as well [6].

One example of a restriction that could be implemented is simply the linear one.
Redefine βl as the following

βl =
q + 1− l
q + 1

β0, l = 1, 2, . . . , q. (2.2)

Combining Equation (2.1) and Equation (2.2) gives us the RFDLM on the form

yt = α + β0

q∑
l=0

q + 1− l
q + 1

xt−l + εt. (2.3)

We see that in Equation (2.3) only α and β0 need to be estimated given that q has
been selected, thus increasing the number of observations for estimation and simpli-
fying the computation.

The same approach can be used for other types of restricting functions on Bl.
Some other common functions are quadratic and ”tent” shaped model.

2.2 Auto Regressive Moving Average models

This section will cover the different variations of Auto-Regressive-Moving-Average
(ARMA) models used. We will start by giving a very brief description of ARMA,
as more details can be found in many textbooks or articles on time-series analysis.
ARIMA model and Seasonal ARIMA (SARIMA) will be covered later on in further
detail as they are used to a large extent in this report.

2.2.1 ARMA model

The ARMA model itself can be defined as the combination of the autogressive (AR)
model and moving average (MA) model. Assuming no constants, the AR model can
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be written as: [8]

Xt =

p∑
i=1

φiXt−i + zt, (2.4)

where p is the order of the AR-model, φi are parameters and zt is the white noise. In
this case, we can model the white noise zt with a Moving-Average model assuming
no no constants

zt = εt +

q∑
i=1

θiεt−i, (2.5)

where q is the order of the MA-model, θi are the parameters and εi is the white noise
error term. Combining Equations (2.4) and (2.5) gives us the ARMA(p, q) model on
the form

Xt −
p∑
i=1

φiXt−i = εt +

q∑
i=1

θiεt−i, (2.6)

where εt is white noise, denoted εt ∼ WN(0, σ2), that satisfy the following conditions

1 Every variable in {εt} has zero mean, E(εt) = E(εt−1) = . . . = 0

2 Every variable in {εt} has a constant variance, σ2, E(ε2t ) = E(ε2t−1) = . . . = σ2

2 {εt} is serially uncorrelated, E(εtεt−s) = E(εt−1εt−s−1) = . . . = 0 for all s

This also means that the white noise process does not have to be i.i.d as it only
requires the time series to be uncorrelated but it does not have to be independent.
However, by definition a i.i.d noise is also a white noise.

The estimation of the parameters in a ARMA-model is usually done through
Maximum-Likelihood (ML) methods, but there are also analytical solutions for cer-
tain model orders. Also, when q is zero, ARMA(p, 0) is simply the AR(p) model
which can be estimated through Ordinary Least Square (OLS). The problem be-
comes simply selecting the parameters {ε} which minimize the sum of squared white
noise. In the case of AR(1) with intercept, we have Xt = c+ φXt−1 + εt, which can
be estimated by φ = 1− c

µ
, where µ = E(Xt) due to stationarity. When MA-terms

are included, OLS can no longer be used as the ε white noise is not directly observed.
Therefore Maximum-likelihood is a common method used to estimate the parameters
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in ARMA models.

If we assume that the white noise {ε} follows a normal distribution with mean
zero and variance σ2, the likelihood function Lt for εt is defined as

Lt =
1√

2σ2π
e−ε

2
t /2σ

2

,

since the observations of {ε} occurs independently, the joint likelihood function is

L =
T∏
i=1

1√
2σ2π

e−ε
2
t /2σ

2

,

Taking the natural logarithms on both sides, we get the log likelihood function

ln(L) = −T
2

ln(2π)− T

2
ln(σ2)− 1

2σ2

T∑
i=1

ε2t , (2.7)

this function is then maximized by selecting the optimal parameters. [9]

The simplest example of non linear estimation is the MA(1) process given by

Xt = εt + θεt−1,

which can also be written with the lag operator Lyt = yt−1 as

εt = Xt − θ1εt−1 = Xt − θ1Lεt.

Solving for ε and using the formula of a geometric series, we get

εt =
Xt

1 + θ1L
=
∞∑
i=0

(−θ)iXt−i. (2.8)

In reality, the sum in Equation (2.8) needs to be truncated at t − 1 and using
maximum likelihood estimation from Equation (2.7) we get the loglikelihood function

ln(L) = −T
2

ln(2π)− T

2
ln(σ2)− 1

2σ2

T∑
i=1

( t−1∑
i=0

(−θ)iXt−i

)2
, (2.9)

where we maximize by choosing appropriate θ and σ. Even though MA(1) is the
simplest example, it is difficult to solve this problem analytically. Numerical methods
are usually used to maximize the likelihood function [7]. For this study, all estimation
was done through R using ML method.
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2.2.2 ARIMA Model

The Autoregressive Integrated Moving-Average model (ARIMA) is an ARMA model
that has been differentiated to the point where the serie has become stationary. To
extend the ARMA model into an ARIMA model, we simply need to differentiate
Xt, d times. We can define this using the difference operator ∆Xt = Xt −Xt−1 and
rewrite Equation (2.6) to

∆dXt −
p∑
i=1

φi∆
dXt−i = εt +

q∑
i=1

θiεt−i.

This can also be represented using the backward operator B where BnXt = Xt−n as

φ(B)∆dXt = θ(B)εt, (2.10)

where

φ(B) = 1− φ1B − . . .− φpBp,

θ(B) = 1 + θ1B + . . .− θqBq.

Also, Xt and εt need to be stationary for the model to become an ARMA-process.
The stationary requirement is fulfilled for Xt if 1−

∑p
i=1 φir

p is outside the unit circle
and for εt if

∑q
i=1 θ

2
i and (θ1 + θ1θs+1 + θ2θs+2 + . . .) are both finite for all s. [8]

In practice, the number of differentiations d is determined with the Kwiatkowski
Phillips Schmidt Shin (KPSS) test, which is essentially what we described above.
The KPSS test describes {Xt} as:

Xt = rt + βt+ εt,

where rt is a random walk, βt is a deterministic trend and εt ∼ WN(0, σ2) is the
error term, the error will be stationary if σ2 = 0. The test statistics is then given
by the Lagrange Multiplier for testing σ2 = 0 against the alternative that σ2 > 0
defined as

KPSS = (
T∑
t=1

St)/σ̂
2 (2.11)

Where St =
∑t

i=1 ui where ut is the residual of the regression on Xt and σ̂ is the esti-
mated variance of the error. The time-series is differentiated until this test is passed
and by replacing it with a new variable X∗t = ∆dXt, a standard ARMA parameter
estimation can be performed on X∗t . [10]

15



2.2.3 Seasonal ARIMA

A seasonal component could be added to the ARIMA model and defining the new
model as ARIMA(p, d, q)(P,D,Q)m where P,D and Q are the order of the AR-model,
the differentiation and the MA-model respectively for the seasonal part. m is the
number of periods per season. With Seasonal ARIMA, we can then simply include
any potential seasonal components to the model directly through ARIMA modelling
instead of adjusting the raw data for seasonal components beforehand.

The seasonal part of the model is very similar to the non-seasonal components
of the model, the only difference is that the backshift operator moves in step of m
instead of one. For example, seasonal AR(2) model would become Xt = φ1Xt−m +
φ2Xt−2m wherem is the period of a season.[10] The seasonal ARIMA(p, d, q)(P,D,Q)m
can be built on Equation (2.10) and is then written as

Φ(Bm)φ(B)∆D
m∆dXt = Θ(Bm)θ(B)Zt, (2.12)

where

Φ(Bm) = 1− Φ1B
m − . . .− ΦPB

Pm

φ(B) = 1− φ1B − . . .− φpBp

Θ(Bm) = 1 + Θ1B
m + . . .+ θQB

Qm

θ(B) = 1 + θ1B + . . .+ θqB
q.

The procedure and method for order selection of Seasonal ARIMA is almost the
same as ARIMA except from the fact that the order and paramters of the seasonal
AR, differentiation and MA parts need to be selected as well.

2.2.4 Model evaluation: AICc

When using ARMA(p, q) model, where we simply estimate p, q, (φ, θ), and σ2 through
ML estimation, we will most likely get very high values of p and q which would give
us a model that fit the data very well but has low degree of freedom and is less useful
as a predictor. Therefore a penalty factor could be introduced for high numbers of
p and q to reduce the risk of over-fitting models. One known such criterion is the
”Akaike’s Information Criterion biased-Corrected” (AICc) where p, q and (φp, θq)
are chosen to minimize

AICc = −2ln(L(φp, θq)) +
2(p+ 1 + 1)n

n− p− q − 2
, (2.13)
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where L is the ML estimate. The AICc is rather easy to compute and simplifies
ARMA analysis when having a large amount of data [8].

However, AICc is not the perfect indicator for model selection in all situations
as the best ARMA(p,q) according to AICc might not always be the best model in
reality. There are other criterion as well such as the Bayesian information criterion
(BIC) and the Minimum description length (MDL) criterion. In this report, AICc
will be used as the main selection criterion.

2.2.5 Model evaluation: Ljung-Box

The residual from the ARIMA model can be checked to make sure that it behaves like
white noise with the Ljung-Box statistical test. The test checks if the autocorrelation
of the time series is different from zero. The test statistic is defined as

Q = n(n+ 2)
h∑
l=1

ρ2l
n− l

, (2.14)

where n is the sample size, ρl is the sample autocorrelation at lag l and h is the
number of lags being tested. The calculated Q value is then compared to the chi-
squared distribution and the hypothesis that the series is white noise is rejected
if

Q > χ2
1−a,d,

where a is the significance level and d is the degree of freedom, which is set to be
h − p − q − P − Q since the seasonal ARMA components of P and Q need to be
included as well [8].

In practice, the calculation is done in R where the function Box.text() is used
to calculate the significance level a given the residual from the SARIMA model,
p, q, P,Q and the number of lag tested is set to 24. By setting the required level of
significance of atleast a = 0.05, t our calculated significance level from R a∗ need to
be a∗ > 0.05 in order for the series to be white noise.
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2.2.6 Model evaluation: RMSE

Root-mean-squared-error is a common way to evaluate the model created for the
estimator. It is defined as

RMSE =

√√√√ 1

n

n∑
i=1

(ŷ − yi)2,

where ŷ is the estimated value, y is the actual measured value and n is the number
of observations. In practise, residuals of the ARIMA parameter estimation is equal
to y − ŷ and can therefore be used directly in the calculation of RMSE.

Normalized RMSE (NRMSE) is also used in many situations, since it makes it
easier to compare the results between different series with different scales, as in this
study. As we will be modelling the changes in inflation, we will be normalizing RMSE
based on the difference between the maximum and minimum observed value instead
of using the mean.

NRMSE =
RMSE

ymax − ymin
. (2.15)

In this report, we will only be using Normalized RMSE to track the improvement of
the model using various approaches for both forecast and fitted values. From now
on, we will refer to it simply as RMSE.

2.3 CPI subcomponents and aggregation

The aggregation of the CPI itself has some complexity to it and is therefore explained
in this section.

2.3.1 Aggregation of CPI

The CPI is aggregated using in many layers. Jevons and Dutot index are used on
the most elementary layer where the actual price is aggregated to the elementary
indices, i.e the indices on product group level. For example, for the product groups
”coffee” includes prices for several different coffee types from different shops that is
aggregated using Jevons index [2]. The Jevons price index Pj is a geometrical mean
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of the measured price p at time t for item i compared to the price for base period 0.
N is the number of items

Pj =
n∏
i

(
pi,t
pi,0

)1/n,

while the Dutot index is defined as mean price p for a selected product i at time t
divided by mean price in time 0

Pd =
1
N

∑N
i pi,t

1
N

∑N
i pi,0

=

∑N
i pi,t∑N
i pi,0

,

The Dutot formula should not be used in heterogeneous item groups, such as elec-
tronics, where the products change frequently. In Sweden, the Dutot price index is
only used on municipal services for home owners, such as water and sewerage. The
Jevons index is used for all other indices. This is the first level of aggregation of in-
flation and the result from Jevons index and Dutot index are often referred to as the
elementary aggregate indices, which is the elementary building block for aggregating
CPI [2][11].

For the macro-level aggregation the Walsh and Laspeyres index formulas are used
to build the yearly index chains that is used for aggregating the entire CPI index. The
yearly index chains I t+1

t is defined as an index where the value is 100 at the beginning
of year t and I t+1

t at the beginning of year t+1. To construct the yearly index chains,
index of each product group I t+1

t,g for Walsh index or I t+2,m
t,g for Laspeyres index is

also needed. These indices are calculated using so called elementary aggregate which
is compiled using the Jevon price index and will be denoted as I t+1,m

t,dec,g (i.e index of
price change for product g from December year t to year t + 1 at month m) using
the following formula:

I t+1
t,g = I t,dect−1,dec,g

∑12
m=1 I

t+1,m
t,dec,g/12∑12

m=1 I
t,m
t−1,dec,g/12

,

I t+2,m
t,g =

I t,dect−1,dec,g∑12
m=1 I

t,m
t−1,dec,g/12

I t+1,dec
t,dec,g I

t+2,dec
t+1,dec,g,

The Walsh index Î t+1
t is defined as the following

Î t+1
t =

∑
g

W t
w,g × I t+1

t,g ,
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Where I t+1
t,g is the index for the product group g and W t

w,g is the Walsh weight for
each product group g and should sum up to one. The Walsh weight for the product
group g is defined as

Ww,g =

√
U t
g × U t+1

g /I t+1
t,g∑

g′

√
U t
g′ × U

t+1
g′ /I t+1

t,g′

,

where U i
g is the consumption value for product group g during the year t and g′

denotes all product groups. The idea for the weight adjustment is that, as the price
of an product increase/decrease, the real weight of the product during the year will
increase/decrease as well. This effect is adjusted in the Walsh weight by using the
consumption value at the year t and t+ 1 and the price change for the product given
by I t+1

t,g .

The Laspeyres index Ĩ t,mt−2 is used to calculate the last part of the index due to lack
of consumption data and calculate index up to a monthly basis. Laspeyres index is
defined as the following

Ĩ t+2,m
t =

∑
g

WL,g × I t+2,m
t,g ,

where I t+1,m
t,g is the index chain index and WL,g is Laspeyres weight for each product

group g and should sum up to one. Laspeyres weight only uses the consumption
weight at year t is defined as

WL,g =
U t
g/I

y,m
t,g∑

g′ U
t
g′/I

y,m
t,g′

,

Walsh and Laspeyres index is used to build the actual aggregated CPI index Iy,m1980

going from year 1980 to year y and month m. Laspeyres index is used for the chain
for the last 2 years as the consumption value Ug is calculated based on the GDP
which is released later than inflation while the remaining index is calculated using
Walsh index [2]. The CPI Iy,m1980 is then defined as

Iy,m1980 =

y−2∏
t=1980

Î i+1
t × Ĩy,my−2,
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Chapter 3

Data

This chapter will describe the data used in this study and also discuss the data
quality and its applicability in the context of this study.

3.1 CPI data

The most important data in this study is of course the underlying CPI data used.
All the CPI data are originally from Statistics Sweden. Inflation index data for the
sub groups were downloaded directly from Statistics Sweden’s data bank. Data on
inflation weights were, however, retrieved from Macrobond, a database software that
have compiled macro data from almost every country. Long term historical data on
sub group weights were only partly available from Statistics Sweden’s data bank.

For this study, the monthly CPI index of the 44 subcomponents between March
1996 and February 2016, will be used resulting in 240 data points for each subcom-
ponent. The reason for not using older data is that the CPI index has gone through
structural changes with some subcomponents being removed or added.

Out of the 240 data points, (equivalent to 20 years of data) 18 years of CPI data
will be used in constructing the models and the last 2 years will be used to bench-
mark the accuracy of the forecast.

Some of the subcomponents’ historical weight data prior to 2001 were missing
and have been assumed to be constant in this study. Since we will be modelling each
subcomponent individually, this would only affects the accuracy of the aggregated
CPI historically and does affect the forecast. The accuracy of the aggregated CPI
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using subcomponents and the approach described in Chapter 2.3.1 is shown in Figure
3.1. As shown, the results from the aggregated CPI assuming constant historical
weights and the actual CPI are very similar. From here on when referring the the
CPI index, we will be referring to the aggregated index.

Figure 3.1: Aggregated CPI index vs actual CPI index

The methods of measuring and aggregating price data have changed multiple
times historically. The latest change was made in 2005 where the price change
during a year chain was changed to reflects the average price change instead of
change from December to December. It is rather unlikely that this change would
have a considerable impact on forecasts.

3.2 Market data

The market data used in this study are retrieved from some of the most frequently
used financial data providers namely Reuters, Bloomberg and Macrobond. For this
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study, time series for five different types of market data was selected but this could
easily be expanded to include additional data.

3.2.1 KIX currency index

Currency is known to affect the CPI due its direct effects on the price of imported
goods. As the Swedish Krona weakens it will become more expensive to import.
Therefore CPI will increase as a consequence of more expensive imported goods. A
large portion of the product measured in CPI is imported, such as food, electronics
and other products. It would therefore be wise to include a currency indicator to
a CPI model. However, not all product would be directly affected by changes in
currency. Some companies might have hedged their currency exposure and therefore
effects of large currency changes might be delayed and small currency fluctuations
might have no affect at all on the CPI.

KIX is The Riksbank’s weighted currency index for the Swedish Krona. The
index has a base of 100, and an increase in value means Swedish Krona has been
weakened while a drop in value means a stronger Krona. 32 currencies valued against
the Krona is included in the index with different weights. The weights are calculated
based on the value of trade between Sweden and the country, which in theory should
reflect the importance of the counterpart’s currency on Swedish Krona. EUR, NOK
and USD are therefore the currencies with the highest weight in KIX. In the best case,
one would want to use a currency basket that is specified for the CPI component.
For example, most food are imported from countries within Europe therefore weight
on EUR/SEK should be higher for subcomponents for food and electronics from
Asia, therefore CNY/SEK or JPY/SEK should be higher for the subcomponent for
electronics. However, this is not feasible as the trade data is not on this detailed
level and it is more practical to use the KIX instead. This could however mean that
we do not capture all the correlations between the subcomponent and currencies.

3.2.2 Electricity price

Price of electricity futures play a role in inflation as the subcomponent ”Electricity”,
which measures the consumer price of electricity is directly related to the price of
the futures contract. The data we used is based on future contracts for floating
electricity price per region from Stockholm Nasdaq’s database. The regional data is
then weighted and aggregated to a combined price based on SCB’s methodology of
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measuring the price of electricity. This methodology is a combination of weighting of
actual electricity prices with different floating or fixed time contracts for each region.
In theory, one has to correct for the energy tax that could differ as well from year
to year and from region to region. For simplicity we have not done that in this study.

This weighting and analysis was done by the macro research team at Nordea and
the time series used in this study was directly provided by Nordea.

3.2.3 Oil price

Oil price has a clear impact on many subcomponents of the CPI, the most obvious
being the impact on energy prices, car fuels and prices of flight tickets. Apart from
that, there should be an impact on all imported goods as well since oil prices affects
the cost of logistics. With the correlation analysis, this effect is however seen to be
very small and hardly notable.

Brent Crude and WTI are the two most common oil prices indices that essentially
measure the price of the same commodity, oil. Brent Crude is the price of North Sea
oil while WTI is the price of American West Texas oil index. The two indices have
a very similar underlying product and are highly correlated. In this study, we have
chosen to use Brent Crude and the time series was retrieved using Reuters Eikon’s
database.

3.3 Interest rates

The relationship between interest rate and the CPI inflation is complex. On the
one hand, inflation affects the interest rate directly since, if inflation is higher, in-
vestors would be less willing to lend money at a lower interest rate than inflation.
On the other hand, with higher interest rate, mortgage rates would increase, thereby
increasing housing expenses, which would increase inflation rate as well. Creating a
loop of causal connections.

To try to simplify some of the relationships, the fixed mortgage rate of five year
maturity was used. Maturity of five year was used as it is the longest maturity and
is often least affected by short-term events such as declines in oil prices, reducing
the cross correlation with other terms. The data was retrieved directly from the
Riksbank’s database of mortgage rates.
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3.3.1 Cotton price

Cotton is a raw material used in many consumer products, such as clothing. In
theory, the price of cotton could have a direct impact on the price of the clothes.
However, it could also be the case that the material cost is such a small portion
of the total cost and that clothing may not be sensitive to cotton prices at all.
But cotton price correlates well with various other agriculture products such as soy
beans and coffee and could therefore provide additional information even on the food
components. The cotton price data was retrieved from Reuter Eikon’s database.
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Chapter 4

Forecasting model structure

This section will describe the construction of the model, describing overall approach
and methodology based on mathematical models from Chapter 2 are used in the
model.

The model will be constructed on a subcomponent basis, as basing the model on
a main group level would mean that some important information about the subcom-
ponent might be lost in the aggregation. For example it would be difficult to say
if the main group ”Food and non-alcoholic beverage” have seasonal patterns, but
it might be easier to say something about the subcomponents ”Fruits” or ”Vegeta-
bles”. Another example is that it is difficult to say how the main group ”Housing”
correlate with market data, but the subcomponents ”Electricity” and ”Fuels” will
be more likely to correlate with the market data for electricity and oil prices. One
can also argue that one should model by product groups instead. However, this
would not be practical as the number of variables that need to be modelled increase
exponentially and data for product groups is not available to the public and need to
be purchased from SCB. Also data of product groups are much more sensitive to the
effect of changing items in the product groups [11]. This means for example that, if
the Swedish retailer ICA have sales on coffee one month or if they decide to bring in
new coffee brands, thus would affect the product group data ”Coffee” dramatically.
This type of situation would be difficult to model by regression and ARIMA.

The models will be built using both the Distributed Lag Models and ARIMA
described earlier on each subcomponent as shown in Figure 4.1. Depending on the
approach used and the level of correlation between subcomponent and the market
data, DLM might not be on used on all subcomponent while ARIMA model will
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always be used. This means that each subcomponent will either be:

� fitted by distributed lag model if the correlation is high enough and the residual
modelled using ARIMA, or

� modelled directly through ARIMA

Figure 4.1: Illustrative overview of general process

Three forecasting approaches will be tested and compared to see which yields the
best result in terms of RMSE. All modelling calculations will be performed in R and
Excel.

For all approaches, the model input will be the 12 month change in CPI instead
of the actual index. For each subcomponent i, the change is simply calculated as

Yi,t =
Ii,t+12

Ii,t
− 1,

where Ii,t is the index level for subcomponent i at time t measured in month.

In this report, we will be comparing the result from our three approaches with
two benchmarks, The Riksbank’s historical inflation forecast as well as the naive
forecast. The Riksbank’s forecasts are retrieved from March 2014 as that is the start
of our forecast horizon and the naive forecast is simply defined as the same value as
one year ago, i.e. inflation for April 2014 will be equal to April 2013.
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4.1 Approach 1: Direct ARIMA

In the first approach, we will use the most straight forward way to model inflation
simply by modelling the time series of each subcomponent using seasonal ARIMA
and aggregating the results in the end.

Considering that in each ARIMA model there are 6 variables that need to be
identified and that the number of models that need to be checked increases expo-
nentially with each additional variable, this is an optimization problem that can not
be brute forced. This problem is resolved by using a step-wise algorithm created by
Hyndman and Khandakar [7]. The actual calculation is performed in R using the
auto.arima function that optimizes the order of the model by minimizing AICc.

Step 1: The series are differentiated d and D times until the time-series pass the
KPSS stationarity test described earlier in Equation (2.11).

Step 2: Try four different models to start with

� ARIMA(2, d, 2)(1, D, 1)

� ARIMA(0, d, 0)(0, D, 0)

� ARIMA(1, d, 0)(1, D, 0)

� ARIMA(0, d, 1)(0, D, 1)

The model with the smallest AICc is selected and denoted the current model

Step 3: Consider up to thirteen variations of the current model

� where one of p, q, P and Q is allowed to vary by ±1 from the current model

� where p and q both vary by ±1 from the current model

� where P and Q both vary by ±1 from the current model

� where the intercept c is included if the current model has c = 0 or excluded if
the current model has c 6= 0.

If any of the variation yields a lower AICc, it is set to be the new current model.
Step 2 is repeated until no model with lower AICc can be found. [10]
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After the model has been selected, the residual will be checked to see if it is con-
sistent with white-noise using Ljung-Box. Then the forecast for each subcomponent
will be made and aggregated using the methods described earlier in Chapter 2.3
regarding CPI aggregation [2]. Then we will plot the forecast compared with naive
forecast and the Riksbank’s forecast. Finally, we calculate the RMSE as shown in
Equation (2.15).

4.2 Approach 2: Simple DLM and ARIMA

By adding regression of market data to the model, we provide the model with addi-
tional information and should therefore provide a better result than only using the
historical time-series as information.

In the second approach, we will be using the simple Distributed Lag Model with
simply one lag. This means that for each subcomponent with significant correlation
with any of the market data at a certain lag, we will perform the regression on the
one lag that resulted in the highest correlation. Essentially rewriting Equation (2.1)
as:

yt = α + xt−l̂ + εt, (4.1)

where l̂ is the lag with the highest correlation between x and y.

4.2.1 When to use DLM

Not all subcomponents will correlate with any of the chosen market data, and it
makes little sense to use DLM in situations where the data does not correlate. Be-
fore we start identifying the correlation of the subcomponent and the market data,
we need to define what should be an appropriate level of correlation in order to in-
clude it in the model.

The cross correlation function (CCF) for lag j of the time series {Xi}1≤i≤N and
{Yi}1≤i≤N assuming that they are two independent N(0, σ)-distributed random vari-
ables, can be calculated as

ρ(j) =

1
N−j

∑N−j
t=1 XtYt+j√

1
N−j

∑N−j
t=1 Xt

√
1

N−j
∑N−j

t=1 Yt+j

≈ 1

Nσxσy

N∑
t=1

XtYt+j
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Where the last step is valid for N � n where n is the number of month include in
the CCF. The product XtYt+j can then be written as σxσy

2
(Q1 − R1), where Q1, R1

are χ2(1)-distributed random variables. Hence

ρ(j) ≈ 1

2N
(QN −RN)

We are the interested in finding the largest correlation, for the set of investigated
lags, i.e.

E
[

max
1≤j≤n

ρ(j)
]

=
1

2N
E
[

max
1≤j≤n

(QN −RN)
]

Using that the moment generating function for (QN − RN) is (1 − 4s2)−N/2 and n
being the number of lags included and N the number of data points[15], we end up
with

E
[

max
1≤j≤n

ρ(j)
]
≤ 2 log(n)

N
√

1− n−2/N
(4.2)

A maximum lag of n = 24 month has been set in this study, and with N = 216 i.e
216 month (or 18 years) of CPI data, the absolute value of the correlation should be
significantly higher than 0.17 to be included in regression.

For simplicity, a threshold of 0.40 has been set for performing the regression
analysis. In Table 4.1, significant correlations are marked in green. As seen in the
table, a majority of the subcomponents did not have a significant correlation with
the market data for this approach. A similar table was also created with the limit
that the maximum lag must be larger than six and the result is shown in Table 4.2
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Table 4.1: Cross correlation matrix between the CPI subcomponents and market
data at optimal lags
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Table 4.2: Cross correlation matrix between the CPI subcomponents and market
data at optimal lags with restriction of minimum lag of 6
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For the significant correlations, only one market data variable will be used in
the regression. For the variable with multiple market data with correlation above
0.4, we will select the market data that are more likely to have a causal effect on
the component. For example in Table 4.1, we can see that components 22 and 23
correlates with cotton and KIX but clearly the component actually measures price
for rent, therefore the interest rate will be used for regression.

Another observation from Table 4.1 is that the model will have little predictive
power since the maximum lag was zero for many of the significant correlations be-
tween subcomponent and market data. Also, restricting the value of the maximum
lag to be above six as shown in Table 4.2 did not improve the prospect of the pre-
dictive power. In most cases, the components that had the maximum correlation at
a lag below six previously now had the maximum correlation at lag six (or larger in
some cases) with lower correlation than previously. Considering that such a model
would be based on the autocorrelation of the market data, it is difficult to imagine
that a DLM model based on setting the minimum lag allowed would perform bet-
ter than constructing the DLM model with no restrictions and then forecasting the
market data using ARIMA as input for forecasts.

After the appropriate market data correlations and lags have been identified, we
perform the DLM regression on each of the subcomponent with the significant lag
and model the residual with ARIMA. For the subcomponent without any significant
correlations, results from ARIMA model in Approach 1 could be used directly. We
then make forecasts based on the model and compare it to the other approaches and
calculate RMSE of the forecast.

4.3 Approach 3: RFDLM and ARIMA

Building on Approach 2, the idea of the third approach is to capture a larger amount
of the information in the market data by including more steps of lag in the regres-
sion. Ideally, one would want to fit a function to the cross-correlation function and
use it as the restriction for regression. However, such a model would be difficult
to maintain and unpractical to implement, therefore we will use the linear RFDLM
described in Equation (2.3) using a linear function to restrict the lags.

It is easy to reduce Equation (2.3) to a new single point regression as shown in

33



Equation (4.1) by recalculating the time series {Xt}1≤t≤N as

X∗t = β0

q∑
j=0

q + 1− j
q + 1

Xt−j (4.3)

We can then calculate the new cross-correlation between our new market data time
series {X∗t }1≤t≤N−q and {Yt}1≤t≤N−q and then determine which correlations are sig-
nificant enough to include in the regression, just as in Approach 2. Also note that
the number of observations has decrease by q as a number of data points will be used
to construct the new time series.

Another factor that needs to be determined is q, the number of lags that is to
be included in Equation (4.3) for the best possible fit. This is a crucial variable in
the RFDLM model but also difficult to determine. The simplest method would be
to calculate the average correlation of all subcomponents and market data and see
how it varies with different lags. This is shown the first column in Table 4.3 and
we can see that, of course, the correlation improves with every lag we add but with
diminishing improvements for each lag added. This is shown in the third column of
the table. For the purpose of this study, we have chosen to build the model with
lag 6 because the marginal improvement is still high at lag 6 and from a rational
perspective, it’s hard to argue how for example an increase in oil prices over 6 month
ago should have a significant impact on inflation today.

Table 4.3: Improvement in correlation vs lag used

Lag (q)
Average
correlation

∆ Average
correlation

∆ Average corr.
per lag

0 0.271 - -
3 0.288 0.017 0.006
6 0.299 0.028 0.005
9 0.310 0.039 0.004
12 0.317 0.046 0.004
24 0.342 0.071 0.003
36 0.348 0.077 0.002

From Table 4.4 we see that the correlation using RFDLM with lag 6 improved for
most but not all components. In theory, one could create an algorithm that selects
the optimal RFDLM for each component and market data instead of using a general
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model such as in this study.

After selecting q = 6, Equation (4.3) can be calculate and {Xt}1≤t≤N replaced
with{X∗t }1≤t≤N . The modelling process then becomes similar to in Approach 2 where
we model the subcomponent with market data where correlation was above 0.4.
After the model has been created, forecasts will be calculate and compared to the
naive forecast and the Riksbank’s forecast same as previously. RMSE will then
be calculated after the subcomponents have been aggregated and compared to the
benchmarks.
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Table 4.4: Improvement in max correlation between market data and CPI subcom-
ponent after using RFDLM with 6 lag
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Chapter 5

Results and discussion

In this section we will present the results from the three approaches described in
Chapter 4 and discuss the results.

5.1 Approach 1

After fitting an ARIMA model for each of the components, the Ljung-Box test and
RMSE in percentage was calculated for every time series as shown in Table 5.1. Out
of the 44 series, the ARIMA model for 37 series passed the Ljung-Box test. How-
ever, the error of fitted values are still smaller than the naive approach. On the
other hand, 4 of the series that passed the Ljung-Box test still performed slightly
worse than the naive forecast. Seasonal components of 12 months were found in every
ARIMA model, despite the fact that the data was already year-on-year inflation rate.

Comparing at Table 5.2 and 5.1 we notice that RMSE of the forecast and fitted
data have rather large difference, this is common as past correlations does not always
predict the future. In total, forecasts for 10 of the components performed worse than
the naive forecast. The components that did not pass the Ljung-Box test generally
had worse RMSE for the forecast as well in comparison to the naive forecast but
there are some components that passed the Ljung-box test but still performed worse
than the naive forecast. This is in-line with the finding from RMSE of the fitted data
points. Some of the components, such as ”Electricity” and ”Fuel”, had particularly
bad results using the ARIMA model and had RMSE of over 90% as shown in Table
5.2. As the period forecasted was April 2014 to March 2016, the large RMSE could
also be explained by the sharp fall of oil prices during the period. The fall in oil prices
would have affected both components directly and many of the other components
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indirectly, this fall would of course not have been possible to predict using ARIMA
models.

Table 5.1: Resulted ARIMA model for each subcomponents and result of tests
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Table 5.2: RMSE of the forecasts during the period April 2014 to March 2016 for
each component using approach 1
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Aggregating the data, we see from Figure 5.1 that the ARIMA model appear
to have performed worse than the naive forecast in the long term, diverging further
away from the actual values than the naive forecast especially during January 2015
to January 2016. However, it still performed better than the Riksbank’s that had a
forecast which was far off from the actual inflation. The RMSE percentage was 70%
for the ARIMA model, 138% for the Riksbank’s forecast and only 32% for the naive
forecast for the forecast period April 2014 to March 2016.

It is however known that ARIMA models tend to work well in the short-term and
worse for the long term. Looking at the 6 month RMSE value from April 2014, the
ARIMA model had a value of 44%, the Riksbank had 52% and the naive forecast had
77%. The ARIMA approach forecast tends to converge to a value in the long term.
We can see from the beginning of 2015, the forecast start to become less volatile and
start converging towards a single value.

It is evident that some form of external data is needed to improve the long term
forecast of this model. As mentioned earlier, the oil price dropped by around 50%
and this had a large impact on the CPI levels. If the oil price drop had not happened,
ARIMA could have been an more accurate forecast.

Figure 5.1: Aggregated and comparison for Approach 1
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5.2 Approach 2

In the second approach, we have added the market data to the model by using
DLM regression and combined it with the ARIMA model. The result of the forecast
improved significantly, as shown in Figure 5.2. The RMSE value is now 40% which
is a 30% improvement compared to only using the ARIMA model. We can see that
the model is tracing the actual values much more than in Approach 1.

Figure 5.2: Aggregated and comparison for Approach 2

There are also some issues with this approach. It can be observed from the chart
that the drop in oil price at the end of 2014 and the beginning of 2015 have had an
immediate impact on the model, making the modelled CPI undershoot the actual
CPI. Similarly, the reverse effect can be seen in the beginning of 2016 when the
mortgage rate as well as oil price increased drastically in a short amount of time,
making the modelled CPI overshoot the actual CPI. This model is therefore sensi-
tive to changes in market data, overshooting or undershooting the actual CPI with
sudden changes in market data.

Looking at the result at a more detailed level, we can investigate the performance
of the forecast for each component compared to the naive forecast. In Table 5.3 we
note that DLM-model was used on 17 components and out of these, 10 had better
results than the naive forecast while 7 had worse results, an improvement over Ap-
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proach 1. However, we note that using mortgage rate to predict series 21 and 22 had
particularly bad results and the naive forecast outperformed the DLM model by a
large amount. On the other side, market data for electricity and oil price appears to
have improved the forecasts for a few components, especially ”Electricity”, ”Fuel”
and ”Operation of Vehicles”, by a large margin compared to Table 5.2 in Approach
1. As oil prices had very large movements during the forecast period, the effect
on annual change of CPI has been high. Therefore including oil prices appears to
have helped to improve the prediction on these affected components drastically and
therefore improved the overall results. Cotton price and KIX had smaller effects on
the forecast, some minor improvements or worsening of RMSE.

One limitation due to the inclusion of the market data is that the actual fore-
cast ability is limited by the shortest lag used in this model, which was zero for
many components as shown in Table 5.3. This means that the model can actually
only forecast current results. However, one can always use ARIMA model on these
components or on the market data itself to use as input for the forecast.
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Table 5.3: RMSE of the forecasts during the period April 2014 to March 2016 for
each component using Approach 2
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5.3 Approach 3

In Approach 3, we used RFDLM regression on the market data and combined it
with the ARIMA model. From the correlation analysis in Table 4.3, it was shown
that correlation increased with larger lags but with diminishing marginal effects and
q = 6 was selected for modelling. We will also present the result of a test made with
q = 24 and call it ”Approach 3b”.

In Figure 5.3 we can see that Approach 3 appears to be the best performing
model out of the three approaches. Indeed the RMSE was only 20% compared to
32% of the naive forecast. It’s clear that the forecast in Approach 3 displayed in
Figure 5.3 is more ”smooth” compared to forecast made in Approach 2 displayed in
Figure 5.2, which is natural since the restricting function in RFDLM is similar to a
moving average.

Figure 5.3: Aggregated and comparison for approach 3

Looking at the results for the subcomponents in Table 5.4 we can see that out of
the 22 components we have used RFDLM on, the RFDLM forecast performed better
than the naive forecast on 15 and worse on 7 of them just as in Approach 3, but
with a larger number of subcomponents getting correlation above 0.40. It appears
that mortgage rate became a better predictor in Approach 3 than in Approach 2
while Electricity has become worse. It is hard to identify exactly why the aggregated
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CPI from Approach 3 performed better than Approach 2, just by comparing sub-
component by subcomponent between Table 5.4 and 5.3. It appears that Approach
2 actually performed better on many of the component, but on average Approach
3 performed better and more components were modelled using market data. The
improvement is difficult to pin-point to a single factor.

5.3.1 Approach 3b

According to Table 4.3, the correlation improved with increasing q and a RFDLM
was q = 24 was tested and the result is displayed in Figure 5.4. It appears in the
figure that the model performed a lot worse with q = 24 than q = 6 and the forecast
had RMSE of 76% which is even worse than the ARIMA model. The forecast appear
to have a negative offset compared to Approach 3 and one reason for this could be
due to the large drop in oil prices which the model overestimated due to the large
number of lags. This had never occurred in the data used for calibration and the
coefficient was therefore not adjusted to predict this type of effects.

Figure 5.4: Aggregated and comparison for Approach 3b
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Table 5.4: RMSE of the forecasts during the period April 2014 to March 2016 for
each component using approach 3b
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5.4 Comparisons

Comparing all the models at once in Figure 5.5 and Table 5.5, we can clearly see that
the Riksbank’s forecast performed the worst, it is not entirely fair to compare the
Riksbank’s forecast with Approach 2 or Approach 3 where market data during the
forecast period was used, which the Riksbank of course did not have access in March
2014 when the forecast was made. However, it still performed worse than Approach
1 using only ARIMA and also worse than the naive forecast. Approach 2 and 3 that
used market data as explanatory variables performed close to naive forecast, this is
not surprising considering the information advantage of having future market data
as input, thus the predictive value in practice is small using DLM or RFDLM. But
if the market data are known in advance, Approach 3 would be the best method to
model inflation using this knowledge advantage. If the accuracy of this model could
further be improved, it could have some applications for market makers that trades
products related to the level of inflation in order to monitor inflation on a live basis.

Figure 5.5: Aggregated comparison for all approaches
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Table 5.5: RMSE in percentage and maximum forecast error for the different ap-
proaches

Riksbank Naive forecast Approach 1 Approach 2 Approach 3
RMSE 138% 32% 70% 40% 20%
Max error 2.89% 1.01% 1.55% 1.00% 0.57%
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Chapter 6

Conclusions

It is difficult to draw any decisive conclusion on the causal effect between the explana-
tory variables and the response variable as the underlying relationships based on a
statistical study. Even thought we have narrowed it down quite a lot by using the
individual CPI subcomponents as the starting point, the causal effects still can not
be fully understood. For the two year forecast period of April 2014 to March 2016,
it was shown that inflation does indeed correlate with market data and Restricted
Finite Distributed lag model (RFDLM) and ARIMA is the model that creates the
best model results compared to ARIMA or DLM and ARIMA. It has been shown
in previous study that commodity prices offer improvement to the AR(1) forecast
[16], although not entirely compare able to this study, we can also conclude that
market data does indeed offer more accurate model of the CPI, using RFDLM but
cannot forecast as market data need to be known. On the other hand, this modelling
approach could still be useful for someone monitoring the market in live time and
speculating on fixed income that with priced in inflation.

Even though the study showed the correlation between market data and inflation,
the forecast was not always improved by the market data. Oil price and electricity
price improved some of the components directly, KIX and cotton price had a mixture
of effects and mortgage rate actually decreased the accuracy of our forecast on the
component level. Even with just oil price and electricity price as input, it would be
difficult to make accurate long term forecast, due to the fact that the lag used was
very short. This means that only a forecast of the current or near-term inflation
could be made, this is also called nowcast or livecast. Alternatively, the forecaster
would need to make forecasts on the market data to use the model. This is of course
not very useful, since making forecasts on the market data is probably just as diffi-
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cult, if not more difficult, than forecasting the inflation. With this said, there might
be a value in using the model to create inflation scenarios of for example, low and
high oil prices to estimate the effect on inflation these scenarios.

One mechanism not fully understood by the author while performing the test
is that, even if the accuracy decreased component by component the result of the
aggregated forecast could still be improved for some reason. For example, a test was
made to replace the component 21, 22 and 23 that had worse RMSE using mortgage
rate as forecast to the actual values. The RMSE of the aggregated result decreased
from 20% in the model to 65%, despite using the actual values in the model.

As always, further research could be done in this area to potentially improve
the results. One improvement of high potential would be to test a larger class of
restricting functions in RFDLM such as a roof function, exponential functions or
setting the restricting function dynamically for each subcomponent and market data
to fit the cross correlation curve. Also, instead of using a general model for all
subcomponent, one could in theory create an algorithm that determines the best
model to use for each market data and subcomponent. More types of explanatory
data could also be used, such as additional market data or even economical data
that are release on a monthly basis. Unemployment rate and inflation expectation
surveys are two variables that are currently used by many economist to forecast CPI
inflation. One could also consider to remove some elements of the model, such as the
5 year mortgage rate which decreased the model accuracy on a component level. In
addition, adjusting for structural factors such as tax hikes and financial crises could
improve the forecast even further.
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