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Abstract 

The modeling of non-maturity deposits is a topic that is highly important to many banks because of the large 

amount of funding that comes from these products. It is also a topic that currently is in the focus of 

legislators. Although a non-maturity deposit may seem to be a trivial product, it has several characteristics 

that make it rather complex. One of the two purposes of this thesis is to compare different models for the 

deposit rate of non-maturity deposits and to investigate the strengths and weaknesses of the models. The 

other purpose is to find a new model for the deposit rate of non-maturity deposits. Several different models 

that are suggested in the literature are described and evaluated based on the four aspects; goodness of fit, 

stability, negative interest rate environment and simplicity. Three new models for the deposit rate are 

suggested in this thesis, one of which shows a very good performance compared to the models that can be 

found in the literature. 

  





 

 
Modellering av kundräntor för icke tidsbunden inlåning 
 

Sammanfattning 

Modellering av icke tidsbunden inlåning är ett ämne som är mycket viktigt för många banker på grund 
av den stora andel finansiering som kommer från dessa produkter. Det är också ett ämne som för 
närvarande väcker lagstiftares intresse. Även om icke tidsbunden inlåning kan tyckas vara en trivial 
produkt, har den flera egenskaper som gör den komplex. Ett av de två syftena med detta arbete är att 
jämföra olika modeller för kundräntan i icke tidsbunden inlåning och att undersöka modellernas 
styrkor och svagheter. Det andra syftet är att introducera en ny modell för kundräntan i icke 
tidsbunden inlåning. Flera olika modeller från litteraturen beskrivs och utvärderas baserat på de fyra 
utgångspunkterna passform, stabilitet, negativ räntemiljö och enkelhet. Tre nya modeller av 
kundräntor för icke tidsbunden inlåning föreslås i detta arbete, varav en visar ett mycket bra resultat 
jämfört med de modeller som föreslås i litteraturen. 

ireneh
Typewritten Text

ireneh
Typewritten Text

ireneh
Typewritten Text

ireneh
Typewritten Text

ireneh
Typewritten Text

ireneh
Typewritten Text

ireneh
Typewritten Text

ireneh
Typewritten Text

ireneh
Typewritten Text





iii 

 

Acknowledgements 

I would like to give thanks to my supervisor at KTH Royal Institute of Technology, Camilla Landén, for 

her valuable comments and discussions throughout the study. I would also like to thank Magnus Hanson 

and the others at Group Risk Control at Handelsbanken for their insightful support during the process of 

writing this thesis. Thanks should also be given to all other people who have supported me in any way 

during this time. 

Stockholm, May 2017 

Andreas Kördel  





iv 

 

Contents 

1. Introduction ............................................................................................................................................... 1 

1.1 Background ......................................................................................................................................... 1 

1.2 Problem ............................................................................................................................................... 1 

1.3 Research Questions ............................................................................................................................. 2 

1.4 Structure of the Thesis ......................................................................................................................... 2 

2. Non-Maturity Deposits .............................................................................................................................. 3 

2.1 Characteristics of NMDs ..................................................................................................................... 3 

2.1.1 Withdrawals .................................................................................................................................. 3 

2.1.2 Partial Adjustments ...................................................................................................................... 3 

2.1.3 Asymmetric Adjustment Speed .................................................................................................... 3 

2.1.4 Discretization ................................................................................................................................ 4 

2.1.5 Caps and Floors on Deposit Rates ................................................................................................ 4 

2.1.6 Other Aspects ............................................................................................................................... 4 

2.2 Regulations .......................................................................................................................................... 5 

3. Theoretical Framework ............................................................................................................................. 6 

3.1 Models for Deposit Rates .................................................................................................................... 6 

3.1.1 Linear Models ............................................................................................................................... 6 

3.1.2 Jarrow and van Deventer .............................................................................................................. 7 

3.1.3 Asymmetric Partial Adjustment Models ...................................................................................... 8 

3.1.4 Static Replicating Portfolio .......................................................................................................... 9 

3.1.5 Ordinal Response Model ............................................................................................................ 11 

3.1.6 Dynamic Replicating Portfolio ................................................................................................... 13 

3.1.7 Other Models .............................................................................................................................. 13 

3.2 What Characterizes a Good Model? .................................................................................................. 15 

4. New Models ............................................................................................................................................ 16 

4.1 Motivation and Mathematical Preliminaries ..................................................................................... 16 

4.2 First Model ........................................................................................................................................ 16 

4.3 Second Model .................................................................................................................................... 17 

4.3 Third Model ....................................................................................................................................... 17 

5. Methodology ........................................................................................................................................... 18 

5.1 Description of the Data ...................................................................................................................... 18 

5.2 Evaluation Methods ........................................................................................................................... 20 



v 

 

5.2.1 Goodness of Fit .......................................................................................................................... 20 

5.2.2 Stability ...................................................................................................................................... 20 

5.2.3 Negative Interest Rate Environment........................................................................................... 20 

5.2.4 Simplicity ................................................................................................................................... 21 

5.3 Choice of Models .............................................................................................................................. 21 

5.4 Valuation ........................................................................................................................................... 22 

6. Results ..................................................................................................................................................... 23 

6.1 Goodness of Fit ................................................................................................................................. 23 

6.2 Linear Models.................................................................................................................................... 25 

6.3 Jarrow and van Deventer ................................................................................................................... 26 

6.4 Asymmetric Partial Adjustment Model ............................................................................................. 27 

6.5 Static Replicating Portfolio ............................................................................................................... 27 

6.6 Ordinal Response Model ................................................................................................................... 29 

6.7 New Models ...................................................................................................................................... 30 

6.8 Valuation ........................................................................................................................................... 31 

7. Discussion ............................................................................................................................................... 32 

7.1 Goodness of Fit ................................................................................................................................. 32 

7.2 Stability ............................................................................................................................................. 32 

7.3 Negative Interest Rate Environment ................................................................................................. 33 

7.4 Simplicity .......................................................................................................................................... 33 

7.5 Valuation ........................................................................................................................................... 34 

7.6 Duration of the Static Replicating Portfolio ...................................................................................... 34 

7.7 Comments on the Characteristics of NMDs ...................................................................................... 35 

8. Conclusion and Further Research ............................................................................................................ 36 

8.1 Conclusion ......................................................................................................................................... 36 

8.2 Further Research ................................................................................................................................ 36 

References ................................................................................................................................................... 37 

Appendix 1 – Interest Rate Models ............................................................................................................. 39 

A1.1 Forward Rates ................................................................................................................................. 39 

A1.2 Interest Rate Models ....................................................................................................................... 39 

A1.3 Calibration of the One-Factor Vasicek Model................................................................................ 40 

Appendix 2 – Fisher’s Scoring Algorithm .................................................................................................. 41 

A2.1 Maximum Likelihood Estimation ................................................................................................... 41 

A2.2 Newton-Raphson Iterations ............................................................................................................ 41 

A2.3 Fisher’s Scoring Algorithm ............................................................................................................ 42 



vi 

 

List of Figures 

Figure 1. Historical deposit rates ................................................................................................................. 18 
Figure 2. Deposit rate of the PM-konto and STIBOR T/N ......................................................................... 19 
Figure 3. Linear models ............................................................................................................................... 25 
Figure 4. The Jarrow and van Deventer model ........................................................................................... 26 
Figure 5. The asymmetric partial adjustment model ................................................................................... 27 
Figure 6. Static replicating portfolio ........................................................................................................... 28 
Figure 7. The ordinal response model ......................................................................................................... 29 
Figure 8. The new models ........................................................................................................................... 30 
Figure 9. STIBOR 1 week ........................................................................................................................... 35 

  



vii 

 

List of Tables 

Table 1. Caps on core deposits and average maturity ................................................................................... 5 
Table 2. Example of liquidity constraint ..................................................................................................... 11 
Table 3. Goodness of fit .............................................................................................................................. 23 
Table 4. Goodness of fit, out-of-sample analysis ........................................................................................ 24 
Table 5. Durations according to the static replicating portfolio .................................................................. 28 
Table 6. Valuation ....................................................................................................................................... 31 
 

  



1 

 

1. Introduction 

1.1 Background 

A non-maturity deposit (NMD) is, as the name suggests, a deposit that does not have a predetermined 

maturity, i.e. the deposit can be withdrawn at any time. Examples of NMDs are savings accounts, demand 

deposits and current accounts. While these products may seem rather simple at a first glance, they have two 

main features that make them difficult to model. Firstly, the customer may at any time change the balance 

of the deposit, by adding or withdrawing funds, often without penalty. Secondly, the bank may adjust the 

interest rate at any time. 

Even though NMDs can be withdrawn at any time, the volumes of NMDs have historically been relatively 

stable. This has also been true at times when market rates change a lot. Also, deposit rates in NMDs have 

typically been much lower than for other types of products, although that is currently not true due to the 

exceptionally low interest rate environment. Therefore, NMDs have been a stable and cost-effective source 

of funding that is very important for many banks. This makes the modeling of NMDs a highly interesting 

topic for most banks. 

The behavior of NMDs can be explained by the two factors, received and perceived value by the customer. 

For instance, Cipu and Udriste (2009) claim that an NMD with a high deposit rate relative to other NMDs 

and with high barriers to exit generally have longer maturities. Others claim that balances of accounts with 

high deposit rates are more sensitive to changes in terms of the account compared to changes in terms of 

other accounts. This second opinion is based on the idea that those who keep deposits for saving purposes 

search for the best deposit rate, while those who keep deposit for transactional purposes care more about 

other aspects. Therefore, deposits held for transactional purposes are usually seen as more stable even 

though they often have lower deposit rates. 

In recent years more and more focus has been given by legislators to the handling of interest rate risks in 

the banking industry. The regulations focus on modeling the amount of core deposits of NMDs and on the 

expected maturity of this core deposit. The core deposit is the part of the NMD that would remain in the 

deposit even if unfavorable events would occur. 

One important aspect of modeling NMDs is to understand how the net interest income of a bank will change 

in different scenarios. To predict the net interest income, it is important to know the dynamics of the deposit 

rate of NMDs. For that purpose a good model for the deposit rate is needed. 

1.2 Problem 

A difficulty that has appeared in the last few years is the extremely low interest rate environment. The short 

market rates are negative, while deposit rates are almost always non-negative. This means that a strategy of 

taking in deposits and investing them in short term market rates would be a bad business for banks, which 

is a new situation. It also proves difficult to model the future evolution of deposit rates when they have been 

floored at zero for a long time. 

Models for NMDs often consist of three components; a model for market rates, a model for deposit volumes 

and a model for deposit rates. In some models these components are modeled separately, while in other 
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models they are modeled in an intertwined way, e.g. with a vector autoregressive system of equations. This 

thesis focuses on the modelling of deposit rates.  

The purpose of this thesis is twofold. The first is to make an overview of the different models for deposit 

rates of NMDs that can be found in the literature and to assess the eligibility of these models. The second 

part is to develop a new method for modelling the deposit rate of NMDs and in a similar manner assess its 

strengths and weaknesses.  

1.3 Research Questions 

The research question of this thesis is: 

 How should the deposit rate of an NMD be modeled? 

To answer this question, the following questions have to be answered first: 

 What characterizes a good model? 

 Which models exist in the literature today? 

 Are there other possible approaches to modeling deposit rates? 

1.4 Structure of the Thesis 

In Chapter 2 the characteristics of NMDs and some of the regulations on them are described in more detail. 

That chapter shows some of the complexity of NMDs. In Chapter 3 existing models for deposit rates of 

NMDs are described and critically reviewed in. Most of the models for the deposit rates are taken from a 

bigger context, for instance from a valuation framework and therefore, the context where the models are 

used is also briefly described for most models. In Chapter 4 three new models are described and motivated. 

These new models are an attempt to improve the already existing models, especially when it comes to 

handling a negative interest rate environment. In Chapter 5 the methodology that has been used is described, 

including a description of the data that has been used. In Chapter 6 the results from the different models are 

shown and describe.  In Chapter 7 there is a discussion on the findings. The thesis ends with a conclusion 

and suggestions for further research in Chapter 8. 

The thesis is written at Svenska Handelsbanken AB (Handelsbanken). Therefore, examples and data from 

Handelsbanken will be used.  
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2. Non-Maturity Deposits 

Non-maturity deposits (NMD) are usually a vital part of a bank’s funding. For instance, 41.4 % of 

Handelsbanken’s liabilities at the end of 2016 had no specified maturity. (Handelsbanken, 2017) This 

chapter contains a description of some of the most important characteristics of NMDs and a brief summary 

of the most relevant regulations on them. The described characteristics show the complexity of modeling 

NMDs, while the description of the regulations explains why and how banks are required to pay more 

attention to the modeling of NMDs. 

2.1 Characteristics of NMDs 

At first glance an NMD seems to be a rather simple financial product, but it quickly turns out to be quite 

difficult to model NMDs. This is mainly due to the fact that customers may change the balance at any time 

and without warning, while the bank can change the deposit rate in the same manner. Blöchlinger (2015) 

shows that these facts cause significant option risk, where some of the options are in favor of the bank and 

some are in favor of the customers. Jarrow and van Deventer (1998) explain the difference between deposit 

rates and market rates with search/switching costs, regulatory barriers and asymmetric information. Below, 

the different embedded options and characteristics of NMDs are described. 

2.1.1 Withdrawals 
The most prominent characteristic of NMDs is the customers’ right to withdraw their money from the 

deposit account at any time, often without any additional fees. When other investments yield a higher return, 

the value of the NMD often decrease for the customers and they can simply withdraw their money. When 

the difference between the deposit rate and alternative investments becomes too large, customers will move 

their money to other investments. Bank of Japan (2014) shows that volumes of NMDs decrease in a high 

interest rate environment and increase in a low interest rate environment. Bardenhewer (2007) describes the 

customer’s possibility to withdraw money as an enormous portfolio of nested options, where the customer 

has the option to withdraw different amounts at different times. For instance, a customer could withdraw 

10% of her deposit volume today and the other 90% next week. This portfolio would be impossible to model 

without a simplification. 

2.1.2 Partial Adjustments 
Blöchlinger (2015) shows that increases in interbank rates are only partly passed on to the depositors. 

Historically, the spread between interbank rates and deposit rates has been higher when there is a large 

increase in interbank rates, which implies that the value of the possibility to use partial adjustments is higher 

in a high interest rate environment. This possibility is in favor of the bank. However, the value of partial 

adjustments could be neutralized by the customers’ right to withdraw money, since if they think they could 

get better terms somewhere else they could simply reallocate their money. Therefore, this characteristic is 

highly dependent on the bank’s market power. 

2.1.3 Asymmetric Adjustment Speed 
It is a consensus in the literature that deposit rates are generally adjusted much faster when interest rates 

decrease than when they increase. This reflects customers’ slow reaction to changes in conditions and the 

banks exploitation of customers reaction speed. Unsurprisingly, Paraschiv and Schürle (2010) find that the 
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adjustment of the deposit rate is faster when the deviation from the equilibrium relationship between the 

deposit rate and market rates is larger. Neumark and Sharpe (1992) conclude that the asymmetry is bigger 

the bigger the banks market power is, for instance if the market concentration is high. 

2.1.4 Discretization 
Deposit rates are most often given in a discretized way, rather than on a continuous scale. For instance, 

interest rates are often quoted in tenths or hundreds of a percentage point and are usually not changed every 

day. This makes deposit rates less affected by small changes in market rates. 

2.1.5 Caps and Floors on Deposit Rates 
Some countries have regulated caps and floors on the deposit rates of NMDs. In Sweden there are no such 

regulations. However, there is an informal floor to the deposit rates set at zero. Although deposit rates could 

be negative, there seems to be a general belief that negative rates would deter customers and make them 

withdraw their money. The floor is in favor of depositors, while a cap would be in favor of the bank. Though 

it is unlikely that deposit rates fall below zero, it is more likely that fees on NMDs will increase, which is 

similar to negative deposit rates. 

2.1.6 Other Aspects 
Some NMDs are used by customers for purely transactional purposes and are therefore almost unaffected 

by the aforementioned options and characteristics. These accounts are important in businesses’ or people’s 

daily transactions and would be used almost regardless of the terms of the NMD. Some customers are poorly 

informed and therefore do not react to changes in conditions of their deposits. Other customers are well 

aware of the conditions, but get better terms for other products, for instance mortgages, when doing all their 

banking errands at the same bank and are thereby tied up. Some customers just want to use the same bank 

for all banking errands to save time compared to using several banks and therefore care relatively little about 

the interest rates on NMDs, as other factors dominate their choice of bank. 

In many cases other factors than the terms of the NMD determines the customer’s choice of bank and 

account type. For instance, the availability of the banking services is an important factor. While some 

customers still prefer to do their banking errands at a branch, the world is being more and more digitalized, 

making banking services available anywhere and anytime for anyone with an Internet access. The 

digitalization is transforming the banking industry, making customers much better informed and making it 

much easier for customers to transfer their money to the deposit that pays the best interest rate. 

In many countries there is a deposit insurance on NMDs. In Sweden the deposit insurance was first 

introduced in 1996 with a coverage limit of 250 000 SEK. This limit has been increased a few times and in 

July 2016 the coverage limit was set to 950 000 SEK. The institutions that are included in the insurance pay 

a fee depending on the amount of guaranteed deposits and some risk factors. (Swedish National Debt Office, 

2017) The deposit insurance should lead to lower deposit rates, as customers expect less risk premium, but 

for banks that have a high level of reliability the effect could be the opposite. This is since banks with lower 

level of reliability are also insured, which takes away the competitive advantage of being trustworthy. 

There are of course other reasons for fluctuations in deposit volumes, such as people’s personal 

circumstances and economic situation. The deposit volume of some accounts vary depending on time of the 

year or month. This implies that many different macroeconomic factors could affect NMDs in an intricate 

way. All these different characteristics make the NMD a highly complex instrument to model. One important 

factor in such a model is the behavior of the bank, which is the focus of this thesis. 
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2.2 Regulations 

The Basel Committee on Banking Supervision (2016) divides NMDs into three different categories; 

retail/transactional, retail/non-transactional and wholesale. The definition of a retail deposit is that it is made 

by individuals at a bank. To this category it is also possible to add deposits placed by small business 

customers with total aggregated liabilities smaller than € 1 million, if they have similar interest rate 

characteristics as retail accounts and if they are managed as retail exposure. The retail deposits are 

categorized as transactional either if regular transactions are made in the account or if the account is non-

interest bearing. In any other case the retail deposit is to be considered non-transactional. Deposits that are 

placed from either legal entities, sole proprietorships or partnerships are considered to be wholesale deposits. 

Further, the NMDs can be divided into a stable and a non-stable part. The stable part is the portion of the 

NMD that is unlikely to be withdrawn. The portion of the stable part that will remain undrawn with a high 

likelihood even during significant changes in interest rate environment is called core deposits, while the rest 

of the NMD is called non-core deposit. These portions should be determined using observed volume changes 

over the past 10 years according to Basel Committee on Banking Supervision (2016). 

NMDs are then slotted into time buckets, depending on estimated average maturity. Non-core deposits are 

automatically considered to be overnight deposits that should be put into the shortest time bucket. To limit 

overestimation of the proportion of core deposit and the time to maturity of the core deposit the Basel 

Committee on Banking Supervision has determined the upper limits of these metrics for the different 

account types. These caps are shown in Table 1. 

Table 1. Caps on core deposits and average maturity 

  Cap on proportion of 

core deposits (%) 

Cap on average maturity 

of core deposits (years) 

Retail/transactional 90 5 

Retail/non-transactional 70 4.5 

Wholesale 50 4 

The table shows the caps on proportion of core deposits and the caps on average maturity of core deposits for different account 

types decided by the Basel Committee on Banking Supervision (2016). 

Other interest rate-sensitive assets and liabilities in the banking book are also slotted into time buckets. The 

banking book consists of the banks securities that are not being actively traded and are expected to be kept 

until maturity. The interest rate risk in the banking book (IRRBB) can now be assessed by first netting the 

assets and liabilities in all time buckets and then calculating the loss in economic value of equity under 

certain interest rate shock scenarios. Two examples of such interest rate shocks are parallel shifts up and 

down. 

In their model for IRRBB, the Swedish Financial Supervisory Authority (Finansinspektionen – FI) (2015) 

set the repricing date for NMDs to zero. The Swedish Banker’s Association claims that this is a 

simplification that does not show the actual risk characteristics. FI motivates the assumption with the 

observation that there are no objective methods to determine repricing dates that could be considered to be 

constant over time. FI suggests that if a bank wants to reduce the capital requirement for IRRBB, they should 

increase the proportion of deposits that have an agreed repricing date. 

The recent focus from legislators on NMDs has made banks pay more attention to the topic. For that reason 

this thesis is highly relevant.  
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3. Theoretical Framework 

This chapter provides an overview of different approaches to modeling NMDs and in particular to the 

modeling of deposit rates. The models have somewhat different purposes. Some of the articles calculate the 

value of NMDs, some try to find hedging strategies, some focus on the liquidity risk management and some 

focus on the interest rate risk management. Although they all study NMDs, they do not cover exactly the 

same products. Some use daily, some use monthly and some use quarterly data. Some look at specific 

account types at specific banks, some on aggregated data for a bank and some use aggregated data for a 

whole country. Despite these differences they all tackle the modelling of NMDs and are therefore of interest 

to this thesis. In the end of the chapter there is a section about what is thought to characterize a good model 

in this thesis. 

3.1 Models for Deposit Rates 

3.1.1 Linear Models 
Nyström (2008) models NMDs by suggesting models for the three components; market rates, deposit rates 

and deposit volumes. The market rates are modeled using an extended one-factor Vasicek model (see 

Appendix 1) and the deposit volume is modeled with behavioral models. These behavioral models are based 

on the behavior of individual customers, for instance by considering the customers’ income. The volume is 

assumed to go towards a target volume, which is a fraction of the average monthly income of the customers 

and is supposed to cover the customers’ liquidity needs. The speed of convergence to this target volume and 

the amount that is passed on to other investments are also modelled. 

In Nyström’s framework, deposit rates are allowed to be modeled in any way as long as it is a function of 

the market rate and/or volume. No explicit model is given, but in an example given in the article the deposit 

rate, 𝑑𝑡, is modeled by 

    𝑑𝑡 = 𝛽1𝑟𝑡 (1) 

where 𝑟𝑡 is a short market rate. Nyström calls the deposit rate function a policy function that is determined 

by the bank. In the example model, 𝛽1 is a constant determined by the bank. The aim of the paper of Nyström 

is to value NMDs and to create a framework that can find the theoretically optimal policy function. 

Elkenbracht and Nauta (2006) aim to stabilize the margin between the investment return and deposit rates 

by introducing two dynamic hedge strategies. Similarly to Nyström (2008), they do not give an explicit 

model for the deposit rates, but use a linear model for the deposit rate as an example, 

    𝑑𝑡 = 𝛽0 + 𝛽1𝑟𝑡 (2) 

where 𝑟𝑡 is a short market rate and 𝛽0 and 𝛽1 are constants that should be fitted. 

Bardenhewer (2007) describes an option adjusted spread (OAS) model. This approach uses the three 

components; term structure, deposit volume and deposit rate to model NMDs. The deposit rate is modeled 

by 

    𝑑𝑡 = 𝛽0 + 𝛽1 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 1 𝑀 𝐿𝑖𝑏𝑜𝑟 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 6 𝑚𝑜𝑛𝑡ℎ𝑠 + 
          𝛽2 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 5𝑌 𝑠𝑤𝑎𝑝 𝑟𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 6 𝑚𝑜𝑛𝑡ℎ𝑠 

(3) 
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The volume is modeled by a withdrawal process dependent on a moving average of the short market rate, 

the long term market rate six months earlier and dummy variables depending on what season of the year it 

is. Bardenhewer stresses the importance of using an appropriate term structure, but does not restrict the 

model to one term structure model. With this approach Bardenhewer calculates the present value of the 

NMD using discounted future cash flows. The interest rate risk can then be hedged with interest rate swaps 

by looking at the delta profile of the NMD. 

3.1.2 Jarrow and van Deventer 
Jarrow and van Deventer (1998) use an arbitrage free approach to model NMDs. They divide the market 

into two parts, banks and individuals. They assume that there are significant entry barriers for banks to 

supply NMDs, but that both banks and individuals have unrestricted access to the treasury market. With 

these assumptions they derive a formula for the value of NMDs. The value at time 0, denoted Ψ0, is decided 

by the following expression 

    

Ψ0 = 𝐸0
𝑄

[∑
𝑉𝑡(𝑟𝑡 − 𝑑𝑡)

𝐵𝑡+1

𝜏−1

𝑡=0

] 

 

(4) 

where 𝑉𝑡 is the volume at time t and 𝜏 is the number of periods used. The value of the money market account 

at time t is denoted 𝐵𝑡 and is obtained by  

    𝐵𝑡 = 𝐵𝑡−1(1 + 𝑟𝑡−1) 

𝐵0 = 1. 
 

(5) 

The expectation 𝐸0
𝑄[∙] is taken under the unique risk neutral martingale measure 𝑄 generated by the term 

structure. For a proof of equation (4) see Appendix A of Jarrow and van Deventer (1998). The valuation 

formula (4) has the economic interpretation of an exotic interest rate swap that receives the floating short 

market rate and pays the deposit rate with a principal 𝑉𝑡 in period t. 

The present value of the NMD liability to the bank at time 0 equals the initial demand deposit less the net 

present value of the NMD or 

    𝑉0 − Ψ0. 
 

(6) 

This value can be hedged by investing 𝑉0 in the bond with shortest maturity available and by shorting the 

exotic interest rate swap that is represented by Ψ0. Jarrow and van Deventer also present a similar model in 

continuous time 

    

Ψ0 = 𝐸0
𝑄

[∫
𝑉𝑡 ∗ (𝑟𝑡 − 𝑑𝑡)

𝐵𝑡
𝜕𝑡

𝜏

0

]. 

 

(7) 

Jarrow and van Deventer use a model for the deposit rate, 𝑑𝑡, that has a short market rate as the driving 

factor. They describe a model in discrete time and a similar model in continuous time. The model in discrete 

time is 

    Δ𝑑𝑡 = 𝑑𝑡−1 + 𝛽0 + 𝛽1𝑟𝑡 + 𝛽2(𝑟𝑡 − 𝑟𝑡−1) 
 

(8) 

or equivalently 
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𝑑𝑡 = 𝑑0 + 𝛽0𝑡 + 𝛽1 ∑𝑟𝑡−𝑗

𝑡−1

𝑗=0

+ 𝛽2(𝑟𝑡 − 𝑟0) . 
(9) 

In continuous time the model is 

    𝜕𝑑𝑡 = (𝛽0 + 𝛽1𝑟𝑡)𝜕𝑡 + 𝛽2𝜕𝑟𝑡 (10) 

or  

    
𝑑𝑡 = 𝑑0 + 𝛽0𝑡 + 𝛽1 ∫ 𝑟𝑠

𝑡

0

𝜕𝑠 + 𝛽2(𝑟𝑡 − 𝑟0) 

 

(11) 

where  β 0, β1 and β2 are parameters that should be estimated. 

Kalkbrener and Willing (2004) present a model that is based on the three components market rates, deposit 

rates and deposit volumes. The model is used to value NMDs and to handle interest rate and liquidity risk. 

The market rates are modeled with a non-parametric two-factor HJM model (see Appendix 1). Kalkbrener 

and Willing find that deposit volumes and market rates do not have a high correlation and therefore introduce 

a new stochastic factor for deposit volumes. The deposit volume is modeled with a linear trend term and an 

Ornstein-Uhlenbeck process, where the Ornstein-Uhlenbeck process is driven by the two Wiener processes 

that drives the market rate model together with a third Wiener process. Deposit rates are modeled in the 

same way as suggested by Jarrow and van Deventer (1998). 

3.1.3 Asymmetric Partial Adjustment Models 
O’Brien (2000) models the adjustments in deposit rates with 

    Δ𝑑𝑡 = (𝜆+𝟏{𝑑𝑡
𝑒>𝑑𝑡−1} + 𝜆−𝟏{𝑑𝑡

𝑒<𝑑𝑡−1})(𝑑𝑡
𝑒 − 𝑑𝑡−1) + 𝑒𝑡 (12) 

where  𝑑𝑡
𝑒 = 𝛽0 + 𝛽1𝑟𝑡, is an equilibrium rate that the deposit rate adjusts to, where 𝛽0 and 𝛽1 are parameters 

to estimate. The indicator function 𝟏{𝑑𝑡
𝑒>𝑑𝑡−1} is 1 if 𝑑𝑡

𝑒 > 𝑑𝑡−1 and 0 otherwise. The parameters 𝜆+ and 𝜆−  

represent the adjustment speed when interest rates increase and decrease, respectively. The use of 𝜆+ and 

𝜆−  makes the model take into account the asymmetric adjustment speed of the deposit rate. The equality  

𝜆+ = 𝜆− indicates symmetric adjustments. Finally, e is a zero-mean random disturbance. This model for the 

deposit rate is similar to the linear model suggested by Elkenbracht and Nauta (2006) with the difference 

being the asymmetry given by the difference between 𝜆+ and 𝜆− and the partial adjustment that comes from 

𝜆+ and 𝜆− being in the interval [0,1]. 

The deposit volume, 𝑉𝑡, is modeled by 

    log(𝑉𝑡) = 𝛼0 + 𝛼1(𝑟𝑡 − 𝑑𝑡) + 𝛼2 log(𝑖𝑡) + 𝛼3 log(𝑉𝑡−1) + 𝑣𝑡. (13) 

The volume depends on the opportunity cost, 𝑟𝑡 − 𝑑𝑡, and a measure of income, 𝑖𝑡.  The measure of income 

used by O’Brien (2000) is taken either from data interpolated from quarterly national income or from 

interpolated annual income at each bank in the study. This model also contains a zero-mean random 

disturbance, 𝑣𝑡. The market rate, rt , is modeled by a one factor CIR model (see Appendix 1). The value of 

the NMD is then calculated as the discounted future cash flows. 



9 

 

3.1.4 Static Replicating Portfolio 
A commonly used approach to model NMDs is to use a static replicating portfolio. The aim of this approach 

is to reduce the complexity of the NMD into a portfolio of simpler instruments that hopefully have similar 

characteristics as the NMD. The idea is to mimic the evolution of the deposit rate of the NMD using a bond 

portfolio. The duration of the NMD is then assumed to be the same as for the replicating portfolio. 

Maes and Timmermans (2005) describe a model where the tracking error is minimized, i.e. the standard 

deviation of the spread between the portfolio return and the deposit rate. As an alternative approach they 

instead maximize the Sharpe ratio, i.e. the risk adjusted margin. Maes and Timmerman divide the deposit 

volume into three parts; core deposits, volatile deposits and remaining balance. The core deposit is invested 

in a long horizon bond (seven years) and the volatile deposit is invested in short horizon bond (one month). 

The remaining balance is replicated by the portfolio. However, it is unclear how they determine the ratio of 

the three different parts. The model specification is 

𝑀𝑖𝑛 𝑠𝑡𝑑(𝑟𝑡
𝑝

− 𝑑𝑡) 𝑜𝑟 𝑀𝑎𝑥 𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 

𝑠. 𝑡.  

                     (𝑖)                              𝑟𝑡
𝑝

= ∑𝜔𝑖𝑟𝑖,𝑡

𝑛

𝑖=1

   𝑓𝑜𝑟  𝑡 = 1,… , 𝑇 

(𝑖𝑖)                             ∑𝜔𝑖 = 1

𝑛

𝑖=1

                      

 (𝑖𝑖𝑖)                           𝜔𝑖 ≥ 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖          

where 𝑟𝑡
𝑝

 is the return of the replicating portfolio at time t, {𝜔𝑖}𝑖=1
𝑛  are the weights of the assets in the 

portfolio with return {𝑟𝑖,𝑡}𝑖=1
𝑛  at time t, 𝑑𝑡 is the deposit rate, n is the number of bonds with different 

maturities that are chosen to be in the portfolio and 𝑇 is the number of periods used in the historical sample. 

In this model no short sales are allowed and all the weights sum up to 1. The standard deviation, 

𝑠𝑡𝑑(𝑟𝑡
𝑝

− 𝑑𝑡), is estimated as the square root of the sample variance where the entire historical sample is 

used. The Sharpe ratio is defined as 

    𝑟𝑡
𝑝

− 𝑑𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑠𝑡𝑑(𝑟𝑡
𝑝

− 𝑑𝑡)
 

 

(14) 

where 𝑟𝑡
𝑝

− 𝑑𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the mean of the difference between the portfolio payoff and the deposit rate. 

Maes and Timmermans (2005) construct a replicating portfolio using four different assumptions and model 

specifications and get four quite different results. For instance, the duration varies between 1.6 and 3.7 years. 

This shows that the model is rather unstable with regards to the assumptions. They use portfolios consisting 

of assets with 3 month, 6 month, 12 month, 3 year, 5 year and 10 year maturities. Using assets with other 

maturities would probably give another result. 

Bardenhewer (2007) also minimizes the tracking error of the replicating portfolio. However, he takes the 

volume, 𝑉𝑡, of the deposits into account and adds a linear, quadratic or exponential trend function of the 

volume, 𝐹𝑡. He also uses moving averages of the market rates. 
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𝑚𝑎𝑖,𝑡 =
1

𝑁𝑖
∑ 𝑟𝑖,𝑡−𝑗

𝑁𝑖−1

𝑗=0

 

 

(15) 

where 𝑚𝑎𝑖,𝑡 is the moving average of the return of bond i at time t, N is the number of periods of the moving 

average and corresponds to the maturity time of asset i and 𝑟𝑖,𝑡 is the return of bond i at time t. The model 

is specified as 

𝑀𝑖𝑛 𝑠𝑡𝑑(𝑟𝑡
𝑝

− 𝑑𝑡) 

𝑠. 𝑡.  

                                                           (𝑖)                                𝑟𝑡
𝑝

= 𝛽0 +
𝐹𝑡

𝑉𝑡
∑𝜔𝑖𝑚𝑎𝑖,𝑡

𝑛

𝑖=1

+
𝐴𝑡

𝑉𝑡
𝑟1,𝑡   𝑓𝑜𝑟  𝑡 = 1,… , 𝑇 

(𝑖𝑖)                             ∑𝜔𝑖

𝑛

𝑖=1

= 1                   

(𝑖𝑖𝑖)                             𝜔𝑖 ≥ 0     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖    

where  𝐴𝑡 is the balancing volume 𝑉𝑡 − 𝐹𝑡 and 𝑟1,𝑡 is the interest rate of the shortest bond. The portfolio 

weights are denoted 𝜔𝑖 and 𝛽0 is a parameter to be estimated. 

The duration of the replicating portfolio is calculated by summing the portfolio weights multiplied by the 

time to maturity, 𝑡𝑖, of the respective bond 

    
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = ∑𝜔𝑖 ∗ 𝑡𝑖

𝑛

𝑖=1

. 

 

(16) 

Bardenhewer (2007) also adds a liquidity constraint to the model. The maximum historical volume 

changes in the different estimation periods are cumulated and compared to the cumulated weights given 

by the model up to that period. The used weights are chosen so that the maximum cumulated weights are 

matched. An explanatory example of this approach is shown in Table 2.  
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Table 2. Example of liquidity constraint 

Time buckets  1 month 3 month 6 month 12 month 2 year 5 year 10 year 

(1) Optimal 

weights 
5% 10% 25% 15% 20% 0% 25% 

(2) Liquidity 

constraint 
20% 10% 5% 25% 10% 30% 0% 

(3) Row (1) 

cumulated 
5% 15% 40% 55% 75% 75% 100% 

(4) Row (2) 

cumulated 
20% 30% 35% 60% 70% 100% 100% 

(5) Final 

weights 
20% 10% 10% 20% 15% 25% 0% 

The table shows an example of the liquidity constraint suggested by Bardenhewer (2007). Row (1) is the optimal weights given by 

the model, row (2) is maximum historical volume change over a time period of the given time bucket, row (3) and (4) cumulates 

row (1) and (2) respectively and row (5) are the final weights given by the difference between the largest value of row (3) and (4) 

at the current time bucket and the largest value of row (3) and (4) at the time bucket that is one step to the left. If row (5) were to be 

cumulated it would be a row of the largest values from row (3) and (4). 

3.1.5 Ordinal Response Model 
Blöchlinger (2015) takes the discretized nature of NMDs into account and suggests an ordinal response 

model for the deposit rate, i.e. he models deposit rates with a jump process. Firstly he suggests an ordinal 

decision variable 

    𝑌𝑡 = 𝑋𝑡
𝑇𝛽 + 𝜉𝑡 (17) 

where 𝑋𝑡 is a vector of covariates that are known at time t, 𝛽 is a vector of parameters that are estimated 

using maximum likelihood and 𝜉𝑡 is a random effect with cumulative distribution function 𝐹(∙). Blöchlinger 

suggests that {𝜉𝑡} should be independent and identically distributed and follow a logistic distribution. The 

deposit rate is then modeled by 

    

𝑑𝑡 = 𝑑𝑡−1 + ∑ Δk𝟏{𝜃𝑘−1<𝑌𝑡≤𝜃𝑘} =

𝐾

𝑘=1

𝑑𝑡−1 + ∑ Δk𝟏{𝜃𝑘−1<𝑋𝑡
𝑇𝛽+𝜉𝑡≤𝜃𝑘}

𝐾

𝑘=1

 

 

(18) 

where  {𝜃𝑘|𝑘 = 0,… , 𝐾} are cutoff values, 𝜃0 = −∞ and 𝜃𝐾 = +∞ , {Δ𝑘|𝑘 = 1,… , 𝐾} are the jump sizes, 

which for instance could be multiples of 0.1 % and K is the number of jump sizes including no jump. This 

gives the conditional probability function 

    𝑷(𝑑𝑡 = 𝑑𝑡−1 + Δ𝑘|𝑋𝑡) = 𝑷(𝜃𝑘−1 < 𝑌𝑡 ≤ 𝜃𝑘|𝑋𝑡) = 𝐹(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) − 𝐹(𝜃𝑘−1 − 𝑋𝑡

𝑇𝛽) 

 
(19) 

and expected value 

    

𝑬[𝑑𝑡|𝑑𝑡−1, 𝑋𝑡] = 𝑑𝑡−1 + ∑ Δk(𝐹(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) − 𝐹(𝜃𝑘−1 − 𝑋𝑡

𝑇𝛽))

𝐾

𝑘=1

. 

 

(20) 

The covariates 𝑋𝑡 are chosen to capture the characteristics and optionality present in NMDs. Blöchlinger 

suggests that the ordinal decision variable could be written 

    𝑌𝑡 = 𝛽1𝑑𝑡−1 + 𝛽2𝐿3,𝑡 + 𝛽3𝐶60,𝑡 + 𝛽4𝟏{𝑑𝑡−1<0.005} + 𝛽5𝟏{𝐿3,𝑡>0.07} + 𝛽6|𝐿3,𝑡 − 𝐿3,𝑡−1| + 𝜉𝑡 

 

(21) 
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where 𝐿3,𝑡 is the three month LIBOR rate at time t, 𝐶60,𝑡 is the five year swap rate at time t and 𝟏{∙}
 is an 

indicator function. 

The parameters 𝜃 and 𝛽 are estimated using Fisher’s scoring algorithm (see Appendix 2). Using the log-

likelihood function 

    

𝑙(𝜃, 𝛽) = ∑ ∑ 𝟏{𝑖𝑡=𝑖𝑡−1+Δ𝑘} log(𝐹(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) − 𝐹(𝜃𝑘−1 − 𝑋𝑡

𝑇𝛽))

𝐾

𝑘=1

𝑇

𝑡=1

 

 

(22) 

Blöchlinger derives the score vector to be 

 

    𝜕𝑙(𝜃, 𝛽)

𝜕𝛽
= ∑ ∑ −𝟏{𝑖𝑡=𝑖𝑡−1+Δ𝑘}  

𝑓(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) − 𝑓(𝜃𝑘−1 − 𝑋𝑡

𝑇𝛽)

𝐹(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) − 𝐹(𝜃𝑘−1 − 𝑋𝑡

𝑇𝛽)
𝑋𝑡

𝐾

𝑘=1

𝑇

𝑡=1

 

𝜕𝑙(𝜃, 𝛽)

𝜕𝜃𝑙
= ∑ ∑ 𝟏{𝑖𝑡=𝑖𝑡−1+Δ𝑘}  

𝟏{𝑘=𝑙} 𝑓(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) − 𝟏{𝑘−1=𝑙} 𝑓(𝜃𝑘−1 − 𝑋𝑡

𝑇𝛽)

𝐹(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) − 𝐹(𝜃𝑘−1 − 𝑋𝑡

𝑇𝛽)

𝐾

𝑘=1

𝑇

𝑡=1

 

 

(23) 

and Fisher information matrix to be 

    
𝐸 [

𝜕𝑙(𝜃, 𝛽)

𝜕𝛽

𝜕𝑙(𝜃, 𝛽)

𝜕𝛽𝑇
] = ∑∑  

(𝑓(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) − 𝑓(𝜃𝑘−1 − 𝑋𝑡

𝑇𝛽))
2

𝐹(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) − 𝐹(𝜃𝑘−1 − 𝑋𝑡

𝑇𝛽)
𝑋𝑡𝑋𝑡

𝑇

𝐾

𝑘=1

𝑇

𝑡=1

 

𝐸 [
𝜕𝑙(𝜃, 𝛽)

𝜕𝜃𝑛

𝜕𝑙(𝜃, 𝛽)

𝜕𝜃𝑙
] = 𝟏{𝑛=𝑙} ∑∑  

(𝟏{𝑘=𝑙}𝑓(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) − 𝟏{𝑘−1=𝑙}𝑓(𝜃𝑘−1 − 𝑋𝑡

𝑇𝛽))
2

𝐹(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) − 𝐹(𝜃𝑘−1 − 𝑋𝑡

𝑇𝛽)
𝑋𝑡𝑋𝑡

𝑇

𝐾

𝑘=1

𝑇

𝑡=1

 

 

(24) 

with the cross-product terms 

    

𝐸 [
𝜕𝑙(𝜃, 𝛽)

𝜕𝛽

𝜕𝑙(𝜃, 𝛽)

𝜕𝜃𝑙
] = −∑ ∑

(𝐴 − 𝐵) ∗ (𝟏{𝑘=𝑙}𝐴 − 𝟏{𝑘−1=𝑙}𝐵)

𝐹(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) − 𝐹(𝜃𝑘−1 − 𝑋𝑡

𝑇𝛽)
𝑋𝑡

𝐾

𝑘=1

𝑇

𝑡=1

 

 

𝐴 = 𝑓(𝜃𝑘 − 𝑋𝑡
𝑇𝛽) 

𝐵 = 𝑓(𝜃𝑘−1 − 𝑋𝑡
𝑇𝛽) 

 

 

(25) 

where 𝑓(∙) is the first derivative of 𝐹(∙). This method assumes that the cumulative distribution function    

𝐹(∙) is differentiable and could for instance be the logistic cumulative distribution function, which is used 

by Blöchlinger. 

Blöchlinger models logarithmic deposit volumes with an autoregressive process and the short rate as a time-

heterogeneous process. He then suggests a valuation formula for NMDs and a hedging approach using deltas 

and vegas. 

This approach to modelling deposit rates is similar to the friction models described by Paraschiv (2011). 

Paraschiv points out some problems that apply both to the friction models and the ordinal response model. 

One problem is that it requires large samples, since jumps in deposit rates do not occur very frequently and 

a sufficient number of jumps are required to obtain a significant result. Another drawback is that a large 

number of parameters have to be estimated by a complex non-linear optimization problem. 
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3.1.6 Dynamic Replicating Portfolio 
Frauendorfer and Shürle (2007) formulates a dynamic replicating portfolio for NMDs through a multistage 

stochastic optimization. The result of this method is a dynamic replicating bond portfolio that is meant to 

hedge the NMD. The objective function in the optimization they use is to minimize ∫ ∑ 𝑥𝑡
𝑀𝑑𝑃(𝜔)𝑇

𝑡=0
 

Ω
, 

under several constraints, where 𝑥𝑡
𝑀 is the negative surplus (or loss) at time t. The vector stochastic process 

ω contains three stochastic factors and is generated using a scenario tree. The control variables are assumed 

to follow a multivariate normal distribution. A scenario tree means that values are generated in time steps. 

From each value created in one time step, new values are created in the next time step, creating a tree of 

scenarios. These stochastic factors drive the processes for the market rates, deposit rates and deposit 

volumes. 

The method models the evolution of the market rates using a two factor extended Vasicek model (see 

Appendix 1). Frauendorfer and Shürle models the deposit rate similarly to Blöchlinger’s (2015) ordinal 

response model described above. They introduce a control variable that is driven by the stochastic factors 

that were generated by the scenario tree. Depending on the control variable and some threshold values the 

deposit rate makes a jump from one time period to the other. The allowed deposit rate increments are chosen 

and includes 0 for no jump. The deposit volume, 𝑉𝑡, is modeled with a positive linear trend and the stochastic 

variables, 𝜂1, 𝜂2 and 𝑒𝑡, that are generated by the scenario tree. The evolution of the deposit volume is 

modeled by 

    ln 𝑉𝑡 = ln𝑉𝑡−1 + 𝛽0 + 𝛽1𝑡 + 𝛽2𝜂1,𝑡 + 𝛽3𝜂2,𝑡 + 𝑒𝑡 . 
 

(26) 

The model becomes very complex due to the fact that many parameters have to be estimated and due to the 

generation of a scenario tree. 

3.1.7 Other Models 
This section briefly mention some of the other approaches to modeling NMDs. 

Sheehan (2013) firstly separates retained deposit volumes from total deposit volumes. Retained volumes are 

defined as the total volume in the accounts that are open at the beginning of the sample period, while the 

total volume is the total volume in all accounts. Retained volumes, total volumes and market rates are 

forecasted using a vector autoregressive system of equations. The system contains 3i equations, where i is 

the number of different account types in the bank. Each equation contains at least 7 parameters that should 

be estimated. This leads to that a large number of parameters are supposed to be estimated. 

Hutchison and Pennacchi (1996) values the rents earned by banks in NMDs. They assume that a rational 

bank would at all times set deposit rates so that the expression 

    (𝑟𝑡 − 𝑑𝑡 − 𝑐𝑡)𝑉𝑡 (27) 

is maximized, where 𝑟𝑡 is the market rate, 𝑐𝑡 is the cost of issuing the deposit for the bank and 𝑉𝑡 is the 

volume of the deposit. Function (27) would be maximized by 

    
𝑑𝑡 = 𝑟𝑡 − 𝑐𝑡 −

𝑉𝑡

𝜕𝑉/𝜕𝑑
.  

 

(28) 

In perfect competition the elasticity 𝜕𝑉/𝜕𝑑 would go towards infinity and make the deposit rate equal to 

𝑟𝑡 − 𝑐𝑡. 



14 

 

Paraschiv and Schürle (2010) formulates a model for deposit rates and for the deposit volumes. The purpose 

of their study is to investigate the dynamics of deposit rates and for the deposit volumes. The specification 

for the movement in the deposit rates are 

    Δ𝑑𝑡 = 𝛽0 + 𝛽1Δ𝑑𝑡−1 + 𝛽2Δ𝑟𝑡−1 + 𝛽3Δ𝑟𝑡−1
𝑙𝑜𝑛𝑔

+𝛽4𝐸𝐶𝑡−1 + 𝑒𝑡 (29) 

where Δ𝑟𝑡
𝑙𝑜𝑛𝑔

 is the change in a long market rate at time t, 𝐸𝐶𝑡 is the error correction term at time t and 𝑒𝑡 

is a residual term. The purpose of the error correction term is to make the process go towards a long-run 

equilibrium. They also experiment with adding a threshold value. For instance, if Δ𝑟𝑡−1 is above a certain 

threshold they might add 𝛽5Δ𝑟𝑡−1 to (29). 

De Jong and Wielhouwer (2003) also formulate a model with error correction for the deposit rate. Their 

model is 

    𝜕𝑑𝑡 = 𝛽1(𝑟𝑡 − 𝛽0 − 𝑑𝑡)𝜕𝑡 + 𝜎𝜕𝑊𝑡 
 

(30) 

where 𝑟𝑡 − 𝛽0 is the long-run value and 𝑊𝑡 is a Wiener process. The purpose of this study is to measure 

interest rate risk with duration. 

Dewachter et al. (2006) suggests a multi-factor model for valuation and risk management of NMDs. The 

value is the expectation of discounted future cash flows. Deposit rates are modeled as depending on the term 

structure and on a spread factor. The short rate is modeled as the sum of N latent term structure factors 

{𝑓𝑖,𝑡}𝑖=1

𝑁
 

    

𝑟𝑡 = ∑𝑓𝑖,𝑡

𝑁

𝑖=1

. 

 

(31) 

The deposit rates are modeled with the same latent factors and a spread factor. The dynamics of the deposit 

volume is modeled with the difference between the deposit rate at time t and a constant withdrawal rate, w. 

The model is 

    𝑑𝑉𝑡 = (𝑟𝑡 − 𝑤)𝑉𝑡𝑑𝑡. (32) 
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3.2 What Characterizes a Good Model? 

To be able to evaluate the models it is necessary to determine what it is that characterizes a good model. 

This can be done in several ways and it is up to the reader to decide what is most important. In this thesis 

the following criteria are assumed to represent a good model: 

 Goodness of fit 

The model should have a good fit with the historical sample. 

 Stability 

The model should be stable with regards to assumptions and depending on what historical sample is 

being used to calibrate the model. 

 Negative interest rate environment 

The model should be able to handle a negative interest rate environment. 

 Simplicity 

The model should be possible to be implement in a realistic way. If it is too simple it might not be 

usable because of bad performance, but if it is too complex it will not be used either.  
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4. New Models 

As a contribution to the research on NMDs this section presents three new models for the deposit rates of 

NMDs. The purpose is to find a model that fulfills the criterions stated in Section 3.2. In Section 4.1, a 

motivation for the models and some mathematical preliminaries are given. Thereafter, the three models are 

described in detail. 

4.1 Motivation and Mathematical Preliminaries 

In recent years, market rates have been at a historically low level. Although market rates have been negative, 

the extremely low rates have not been passed on to the customers. Instead the deposit rates have been floored 

at zero. Therefore, the new models will assume that deposit rates will not be lower than zero. This will 

simply be done using a maximum function 

    𝑑𝑡 = max(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑡  , 0). 
 

(33) 

Since deposit rates have been floored at zero despite the fluctuations of the negative market rates, it is not 

possible to draw any conclusions regarding the behavior of the deposit rates in a positive interest 

environment from just looking at them during a negative interest environment. Therefore, the periods where 

the deposit rates are zero are excluded from the historical sample. 

In the model the deposit rate is driven by a short market rate. This is due to the observation that deposit rates 

follow the movement of short-rates rather well. However, since deposit rates are usually much less volatile 

than market rates, the model will use moving averages, 𝑚𝑎𝑡, of the short market rate, 

    

𝑚𝑎𝑡 =
1

𝑁
∑ 𝑟𝑡−𝑗

𝑁−1

𝑗=0

 

 

(34) 

where N is the number of days for the moving average. The length of the moving average will be 

approximately one month, or more precisely 21 trading days. This will reduce some of the spikes that occur 

in the short-rates that are not passed on to the deposit rates. 

4.2 First Model 

In the first and simplest new model the deposit rate is assumed to follow a linear function of the moving 

average of the short market rate. The deposit rate is not allowed by the model to be negative. This gives the 

model for the deposit rate 

    𝑑𝑡 = max(𝛽0 + 𝑚𝑎𝑡 , 0) 
 

(35) 

where 𝛽0 is a parameter that should be estimated. The parameter calibration is made during the part of the 

historical sample where the deposit rate is larger than zero. The model implies that the bank wants to have 

a constant margin 𝛽0 compared to the reference rate, which is the moving average of the short market rate, 

but the bank refuses to impose negative deposit rates. 
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4.3 Second Model 

The second model takes into consideration the discretized nature of deposit rates and the asymmetric 

adjustment speed. To discretize the deposit rate process, the model makes the estimated deposit rate change 

in steps instead of in a continuous manner. The asymmetric adjustment speed is taken into account by using 

different jump sizes for when interest rates increase and when they decrease. Small jump sizes implies a 

faster adjustment than large jump sizes. When the deposit rate does jump it is set to the same value as in the 

first model. The model is specified by 

    
𝑑𝑡 = {

max(𝛽0 + 𝑚𝑎𝑡 , 0)        
𝑑𝑡−1                                  

𝑖𝑓 𝑚𝑎𝑡 − 𝑑𝑡−1 > 𝛽0 + 𝜃𝑢𝑝   𝑜𝑟   𝑚𝑎𝑡 − 𝑑𝑡−1 < 𝛽0 − 𝜃𝑑𝑜𝑤𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                          
 

 

(36) 

where 𝜃𝑢𝑝 is the median jump size when interest rates increase and 𝜃𝑑𝑜𝑤𝑛 is the median jump size when 

interest rates decrease. Both are taken from a historical sample. The median is used instead of the mean to 

stop extreme events from having a too large impact on the model. 

This is not a jump process, but rather a discretization of a continuous process. This means that the model is 

not expected to have a better fit than the first model. However, this model is supposed to move in a similar 

manner to the deposit rate 

4.3 Third Model 

The third model is similar to the first model, but the moving average term is now multiplied by a factor, 𝛽1. 

The motivation for this is that the spread between the deposit rate and the reference rate is assumed to be 

bigger when the rates are higher, which would be true if 𝛽1 is between zero and one. The model becomes 

    𝑑𝑡 = max(𝛽0 + 𝛽1𝑚𝑎𝑡 , 0) 
 

(37) 

where 𝛽0 and 𝛽1 are parameters that should be estimated. 
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5. Methodology 

In this chapter the methodology used in the study is presented. Firstly in Section 5.1, a description of the 

data is given. Secondly in Section 5.2, a description of the method to compare different models is presented. 

Finally in Section 5.3, there is a summary of the different models that will be compared. The full model 

specifications are given in Chapter 3 and Chapter 4. 

5.1 Description of the Data 

Most of the data that is being used has been provided by Handelsbanken. The data consists of 1 week, 1 

month, 3 month, 6 month, 1 year, 2 year, 3 year, 4 year and 5 year swap rates and deposit rates from 10 

different NMD types. Three of the accounts are divided into three categories depending on the amount of 

money the customer has in the deposit. The data consists of daily rates from 06-29-2007 to 03-31-2016. The 

historical deposit rates for the different account types are shown in Figure 1. The account types are described 

below. 

Daily interest rates of the Stockholm Interbank Offer Rate (STIBOR) and the Swedish Repo rate is retrieved 

from Sweden’s central bank (Riksbanken). STIBOR rates are overnight, 1 week, 1 month, 2 month, 3 month 

and 6 month rates. 

Figure 1. Historical deposit rates 

 

The figure shows the historical deposit rates of the different account types at Handelsbanken. 

Allkonto – This is an account with the purpose of being a transactional account with a low deposit rate for 

retail customers. This account type is divided into three different categories depending on the volume (less 

than 100 kSEK, between 100 kSEK and 250 kSEK and more than 250 kSEK). Historically, the more that is 

in the deposit, the higher the deposit rate is. However, since the financial crisis in the year 2008 the deposit 
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rates have been floored at zero for all the categories. The three categories have recently been merged into 

one. 

Allkortskonto – This account is connected to the Allkort, which is a credit card that allows for 45 days free 

credits and bonuses on purchases. For volumes below 100 000 SEK the account has a deposit rate that 

usually is higher than for the Allkonto, although it currently is zero. For the part of the volume that is above 

100 000 SEK the deposit rate is zero. 

Sparkonto – This is a savings account for retail customers with a deposit rate that is usually higher than for 

the Allkonto. This account type also has the three categories, with the same limits, as the Allkonto. 

Affärskonto – This is a transactional account for businesses. It has historically provided the lowest deposit 

rate of the ones presented here, however, since the financial crisis in the year 2008 the deposit rates have 

been floored at zero. This account type also has three categories just as the two previous account types, but 

with other limits (less than 50 kSEK, between 50 kSEK and 250 kSEK and more than 250 kSEK). Just as 

for the Allkonto, the three categories have recently been merged into one. 

E-kapitalkonto – This account type is similar to the Sparkonto. Historically the E-kapitalkonto has had a 

somewhat higher deposit rate than the Sparkonto, though they currently both have a deposit rate at zero. 

The deposit rate is only paid if the E-kapitalkonto has a volume of at least 100 000 SEK. 

PM-konto – This is a money market account that is used by businesses, especially large businesses, for 

transactional or investment purposes. The deposit rate is set in relation to the STIBOR T/N (overnight) rate. 

However, the deposit rate has remained at zero even though STIBOR T/N has been negative, as seen in 

Figure 2. This is evidence that Handelsbanken is reluctant to use negative deposit rates. 

Figure 2. Deposit rate of the PM-konto and STIBOR T/N 

 

The figure shows the historical deposit rate of the PM-konto together with STIBOR T/N, which is the reference rate of this account. 

Especially interesting is the right part of the graph, where the reference rate is negative, but the deposit rate is floored at zero. 

Source: Sweden’s Central Bank (2017). 
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Privatkonto – This account is used by retail customers both for savings and transactions. The deposit rates 

are set individually for each customer. In this thesis, aggregated data is used for these accounts. 

Checkkonto – This account is similar to the Privatkonto, but for businesses. The deposit rates are set 

individually. In this thesis aggregated data is used. 

Skogskonto – This account type has the purpose to smooth out incomes from foresting. The reason to have 

this type of account is to avoid large taxes the year that the timber is sold. The account has a rather high 

deposit rate compared to the other account types. 

5.2 Evaluation Methods 

To evaluate the different models, the four different aspects described in Section 3.2 are considered. These 

are goodness of fit, stability, negative interest rate environment and simplicity. 

5.2.1 Goodness of Fit 
The goodness of fit will be measured with the coefficient of determination, R2. The definition of R2 is 

    
𝑅2 = 1 −

𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 

 

(38) 

where the total sum of squares, 𝑆𝑆𝑡𝑜𝑡, is defined as 

    

𝑆𝑆𝑡𝑜𝑡 = ∑(𝑑𝑡 − 𝑑̅)
2

𝑇

𝑡=0

 

 

(39) 

    

𝑑̅ =
1

𝑇
∑𝑑𝑡

𝑇

𝑡=0

 

 

(40) 

and the residual sum of squares, 𝑆𝑆𝑟𝑒𝑠, is defined as 

    

𝑆𝑆𝑟𝑒𝑠 = ∑(𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑡 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑡)
2

𝑇

𝑡=0

 

 

(41) 

A high R2 means a good fit. For a perfect fit R2 is equal to 1. 

5.2.2 Stability 
The model should be stable with regards to assumptions and which historical sample is being used. To test 

the stability of the models, an out-of-sample analysis will be conducted. That means that parameters will be 

estimated in one time period and evaluated in another. Also, different input assumptions will be tested for 

the models where that is applicable. 

5.2.3 Negative Interest Rate Environment 
Most models do not pay any attention to negative interest rates. This is probably a consequence of the fact 

that most literature on the subject is at least a few years old, while negative interest rates are a rather new 
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phenomena. The handling of a negative interest rate environment will be evaluated by looking at the errors 

when the short market rate is negative in the historical sample. 

5.2.4 Simplicity 
To evaluate the simplicity of a model is a somewhat subjective task. Therefore, it is inevitable that the 

opinion of the author will be reflected in this evaluation. The simplicity will be evaluated by looking at how 

easy the model is to implement, how intuitive the outlines of the model are, how it converges (if applicable) 

and the time it takes to calibrate the parameters. 

5.3 Choice of Models 

The following models will be evaluated: 

A. Linear models 

1. 𝑑𝑡 = 𝛽1𝑟𝑡 , as suggested by Nyström (2008) 

2. 𝑑𝑡 = 𝛽0 + 𝛽1𝑟𝑡, as suggested by Elkenbracht and Nauta (2006) 

3. 𝑑𝑡 = 𝛽0 + 𝛽1 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 1 𝑀 𝑠𝑤𝑎𝑝 𝑟𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 6 𝑚𝑜𝑛𝑡ℎ𝑠 + 𝛽2 ∗
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 5𝑌 𝑠𝑤𝑎𝑝 𝑟𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 6 𝑚𝑜𝑛𝑡ℎ𝑠 , as suggested by Bardenhewer 

(2007) 

4. 𝑑𝑡 = 𝛽0 + 𝛽1 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 1 𝑀 𝑠𝑤𝑎𝑝 𝑟𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 1 𝑚𝑜𝑛𝑡ℎ + 𝛽2 ∗

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 5𝑌 𝑠𝑤𝑎𝑝 𝑟𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 1 𝑚𝑜𝑛𝑡ℎ, (almost) as suggested by 

Bardenhewer (2007) 

B. Jarrow and van Deventer (1998): 

1. 𝑑𝑡 = 𝑑0 + 𝛽0𝑡 + 𝛽1 ∑ 𝑟𝑡−𝑗
𝑡−1
𝑗=0 + 𝛽2(𝑟𝑡 − 𝑟0)  

C. Asymmetric partial adjustment models as suggested by O’Brien (2000): 

1. Δ𝑑𝑡 = (𝜆+𝟏{𝑑𝑡
𝑒>𝑑𝑡−1} + 𝜆−𝟏{𝑑𝑡

𝑒<𝑑𝑡−1})(𝑑𝑡
𝑒 − 𝑑𝑡−1) + 𝑒𝑡  

D. Static replicating portfolio 

1. Model suggested by Maes and Timmermans (2005): 

𝑀𝑖𝑛 𝑠𝑡𝑑(𝑟𝑡
𝑝

− 𝑑𝑡)  

𝑠. 𝑡.  

                     (𝑖)                              𝑟𝑡
𝑝

= ∑𝜔𝑖𝑟𝑖,𝑡

𝑛

𝑖=1

  , 𝑓𝑜𝑟  𝑡 = 1,… , 𝑇 

(𝑖𝑖)                             ∑𝜔𝑖 = 1

𝑛

𝑖=1

                      

(𝑖𝑖𝑖)                           𝜔𝑖 ≥ 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖          
2. Model suggested by Maes and Timmermans (2005), but with moving averages of the 

market rates: 
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𝑀𝑖𝑛 𝑠𝑡𝑑(𝑟𝑡
𝑝

− 𝑑𝑡)  

𝑠. 𝑡.  

                                 (𝑖)                             ∑𝜔𝑖𝑚𝑎𝑖,𝑡 = 𝑟𝑡
𝑝
, 𝑓𝑜𝑟  𝑡 = 1,… , 𝑇

𝑛

𝑖=1

       

(𝑖𝑖)                             ∑𝜔𝑖 = 1

𝑛

𝑖=1

                  

(𝑖𝑖𝑖)                            𝜔𝑖 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖        

(𝑖𝑣)                          𝑚𝑎𝑖,𝑡 =
1

𝑁𝑖
∑ 𝑟𝑖,𝑡−𝑗 

𝑁𝑖−1

𝑗=0

 

E. Ordinal response model as suggested by Blöchlinger (2015): 

𝑑𝑡 = 𝑑𝑡−1 + ∑ Δk𝟏{𝜃𝑘−1<𝑋𝑡
𝑇𝛽+𝜉𝑡≤𝜃𝑘}

𝐾

𝑘=1

 

1. 𝑋𝑡 = [𝑑𝑡−1, 𝐿3,𝑡, 𝐶60,𝑡, 𝟏{𝑑𝑡−1<0.005}, |𝐿3,𝑡 − 𝐿3,𝑡−1|]
𝑇

 

2. 𝑋𝑡 = [𝑑𝑡−1, 𝑟𝑡 , 𝟏{𝑑𝑡−1<0.005}]
𝑇
 

F. New models: 

1. 𝑑𝑡 = max(𝛽0 + 𝑚𝑎𝑡 , 0) 

2. 𝑑𝑡 = {
max(𝛽0 + 𝑚𝑎𝑡 , 0)      
𝑑𝑡−1                                

𝑖𝑓 𝑚𝑎𝑡 − 𝑑𝑡−1 > 𝛽0 + 𝜃𝑢𝑝   𝑜𝑟   𝑚𝑎𝑡 − 𝑑𝑡−1 < 𝛽0 − 𝜃𝑑𝑜𝑤𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                          
 

3. 𝑑𝑡 = max(𝛽0 + 𝛽1𝑚𝑎𝑡 , 0) 

See Chapter 3 and Chapter 4 for detailed model specifications. From here on the models will be denoted 

with the letter and number they are given above, for instance B1 for the Jarrow and van Deventer model. 

5.4 Valuation 

To go one step further in the study of NMDs, a simple valuation of the NMDs will be conducted. For this a 

simplified version of the framework suggested by Jarrow and van Deventer (1998) will be used (see Section 

3.1.2). The simplification is to assume that the volumes of the NMDs are constant. The valuation then simply 

becomes 

    

Ψ0 = 𝐸0
𝑄

[∑
𝑉𝑡 ∗ (𝑟𝑡 − 𝑑𝑡)

𝐵𝑡+1
 

𝜏−1

𝑡=0

] = 𝐸0
𝑄

[∑
(𝑟𝑡 − 𝑑𝑡)

𝐵𝑡+1
 

𝜏−1

𝑡=0

] ∗ 𝑉 

 

(42) 

where 𝑉 is the constant volume. In this valuation, the end date, 𝜏, will be in 10 years and 50 years, 

respectively. After the end date the volumes of the NMDs is assumed to be zero. The term structure will be 

modeled by the Vasicek model (see Appendix 1). 

One reason to value NMDs could be to determine whether or not a certain deposit rate strategy is good or 

bad for the bank. If the valuation is low, the bank may want to consider another strategy for the deposit rate.   
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6. Results 

In this chapter the findings from the study is presented. First of all the goodness of fit of the different models 

and for the different accounts is shown. Then results from each model is presented. For convenience, plots 

will only display the results when using the Sparkonto >250. Lastly, the result from a simple valuation of 

the NMDs is presented for some of the models. 

6.1 Goodness of Fit 

In this section two tables of the goodness of fit measured in R2 of the different models and for the different 

account types are presented.  

Table 3 shows the goodness of fit when the whole historical sample is used. Table 4 shows an out-of-sample 

analysis, where the parameters are estimated using the historical sample from 07-01-2007 to 06-30-2011, 

while R2 is measured for the historical sample from 07-01-2011 to 06-30-2015. These results for each model 

are described further in the respective sections below. 

Table 3. Goodness of fit 

R-squared A1 A2 A3 A4 B1 C1 D1 D2 E1 E2 F1 F2 F3 

Allkonto <100 0.633 0.701 0.593 0.691 0.860 0.702 -580 -290 - - -4.15 -0.182 0.874 

Allkonto 100-250 0.677 0.754 0.655 0.748 0.765 0.755 -1.38 -0.357 - 0.665 0.987 0.974 0.987 

Allkonto >250 0.685 0.760 0.665 0.755 0.789 0.761 -0.122 0.299 - 0.560 0.986 0.976 0.987 

Allkortskonto 0.920 0.932 0.864 0.933 0.923 0.939 0.868 0.911 0.824 0.772 0.973 0.969 0.982 

Sparkonto <100 0.860 0.893 0.780 0.876 0.956 0.894 -0.269 0.296 - - 0.602 0.592 0.962 

Sparkonto 100-250 0.889 0.913 0.812 0.903 0.835 0.914 0.633 0.775 - 0.448 0.893 0.902 0.980 

Sparkonto >250 0.860 0.893 0.780 0.876 0.958 0.948 0.907 0.931 0.592 0.661 0.982 0.976 0.986 

Affärskonto <50 0.551 0.618 0.503 0.591 0.318 0.621 -237 -118 - - -0.496 -0.550 -0.060 

Affärskonto 50-250 0.631 0.703 0.585 0.673 0.749 0.703 -49.9 -24.4 - - 0.320 0.261 0.893 

Affärskonto >250 0.670 0.742 0.638 0.719 0.860 0.742 -7.98 -3.71 - - 0.782 0.750 0.935 

E-kapitalkonto 0.965 0.966 0.884 0.968 0.964 0.970 0.919 0.949 0.929 0.910 0.977 0.974 0.985 

PM-konto 0.983 0.983 0.878 0.971 0.986 0.985 0.973 0.974 - - 0.988 0.988 0.988 

Privatkonto 0.910 0.940 0.922 0.980 0.953 0.962 0.824 0.886 0.950 0.925 0.889 0.893 0.963 

Checkkonto 0.901 0.932 0.921 0.972 0.949 0.959 0.699 0.829 0.919 0.855 0.782 0.788 0.957 

Skogskonto 0.505 0.923 0.823 0.955 0.965 0.927 0.824 0.847 0.580 0.873 0.834 0.859 0.925 

The table shows the goodness of fit measured in R2 for the different models when applied to different NMDs. The historical sample 

used is from 06-29-2007 to 03-31-2016. Values are missing where the model did not converge. 
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Table 4. Goodness of fit, out-of-sample analysis 

R-squared A1 A2 A3 A4 B1 C1 D1 D2 E1 E2 F1 F2 F3 

Allkonto <100 - - - - - - - - - - - - - 

Allkonto 100-250 - - - - - - - - - - - - - 

Allkonto >250 - - - - - - - - - - - - - 

Allkortskonto 0.739 0.781 0.857 0.895 0.065 0.520 0.405 0.652 0.616 0.280 0.817 0.591 0.751 

Sparkonto <100 0.792 0.817 0.821 0.871 -1.00 -0.618 -7.71 -1.69 - - -0.007 0.065 0.755 

Sparkonto 100-250 0.792 0.824 0.855 0.892 -1.38 0.031 -1.34 -0.116 - 0.091 0.668 0.572 0.893 

Sparkonto >250 0.807 0.832 0.886 0.915 0.080 0.624 0.551 0.696 0.375 -1.11 0.824 0.522 0.829 

Affärskonto <50 - - - - - - - - - - - - - 

Affärskonto 50-250 - - - - - - - - - - - - - 

Affärskonto >250 - - - - - - - - - - - - - 

E-kapitalkonto 0.877 0.888 0.939 0.949 0.851 0.869 0.799 0.891 -2.52 0.197 0.958 0.884 0.898 

PM-konto 0.980 0.981 0.949 0.972 0.843 0.960 0.957 0.966 - 0.056 0.986 0.986 0.989 

Privatkonto 0.813 0.937 0.969 0.966 0.368 0.791 0.847 0.925 0.861 0.561 0.385 0.658 0.716 

Checkkonto 0.880 0.929 0.951 0.956 0.820 0.820 0.809 0.935 0.725 0.726 0.391 0.487 0.822 

Skogskonto 0.268 0.945 0.969 0.969 0.725 0.499 0.938 0.931 0.674 0.770 0.033 0.423 0.485 

The table shows the goodness of fit measured in R2 in an out-of-sample analysis for the different models when applied to different 

NMDs. The parameters are estimated using the historical sample from 07-01-2007 to 06-30-2011, while R2 is measured for the 

historical sample from 07-01-2011 to 06-30-2015. Noteworthy is that the later historical samples used here are more flat than the 

earlier ones. This lowers the values of R2. When switching the time periods, the value of R2 generally becomes larger. Some of the 

NMDs are not possible to do this analysis on, since the deposit rate has been zero during the whole period from 07-01-2011 to 06-

30-2015. For those NMDs, values are missing. Values are also missing when the model did not converge. 
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6.2 Linear Models 

The linear models are very simple to implement and they give a rather good fit. Figure 3 shows the curve 

fitted with the historical sample of the Sparkonto >250. It shows that the linear model with two parameters 

(A2) somewhat better matches the deposit rate curve than the one parameter model (A1). This is, of course, 

no surprise. For some account types the A2 model has a much better fit than the A1 model. The model that 

was suggested by Bardenhewer (A3) has a rather poor fit. It seems that when using a six month moving 

average the model reacts too slowly to new events. The observation that the six month moving average is 

too slow raises the question of how a shorter moving average would work. It is shown that the one month 

moving average model (A4) has a better fit than the six month moving average model (A3) for almost every 

account type. For some of the account types the model A4 has a better fit than the model A2, but overall 

they perform similarly. 

Although the models work well in a non-negative interest rate environment, they have a poor fit in a negative 

interest rate environment. The models blindly follow the reference rate, although the deposit rate is floored 

at zero. The out-of-sample analysis shows that the linear models are quite stable for different historical 

samples. The improved Bardenhewer model (A4) is the best model of them all in the out-of-sample analysis. 

Figure 3. Linear models 

 

The figure shows the short market rate and the deposit rate of the Sparkonto >250 together with the fitted linear models. 
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6.3 Jarrow and van Deventer 

The deposit rate model suggested by Jarrow and van Deventer (1998) is rather simple to implement and 

judging from the performance in the test of goodness of fit it is among the best models in this study. 

However, the model has the same problem as the linear models when it comes to handling negative interest 

rate environments. When the deposit rate is floored the model may still predict a negative deposit rate. 

The out-of-sample analysis shows the weakness of the model. The model performs quite well a few times. 

Sometimes, however, it falls far from the real deposit rate. This is something that especially happens when 

interest rates are low and the deposit rate is zero over a long time period. This issue occurs because an error 

in the beginning of the prediction period has consequences for the whole prediction. This sensitivity makes 

the model quite unstable. 

Figure 4. The Jarrow and van Deventer model 

 

The figure shows the short market rate and the deposit rate of the Sparkonto >250 together with the fitted Jarrow and van Deventer 

model. 
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6.4 Asymmetric Partial Adjustment Model 

In Figure 5 the fitted curve of the asymmetric partial adjustment model is shown. The curve moves similarly 

to the A2 model. The difference is that the asymmetric partial adjustment model moves more smoothly. 

Although this model is a bit more complex than the linear models, it is still quite simple to implement. The 

model has the same issues with a negative interest rate environment as the linear models and the Jarrow and 

van Deventer model. The asymmetric partial adjustment model has a mediocre performance in the test of 

goodness of fit and in the out-of-sample analysis. 

Figure 5. The asymmetric partial adjustment model 

 

The figure shows the short market rate and the deposit rate of the Sparkonto >250 together with the fitted asymmetric partial 

adjustment model. 

6.5 Static Replicating Portfolio 

The static replicating portfolio has a good fit for a few of the account types. These account types are the 

ones with a deposit rate that moves quite a lot. For the account types that have a more flat deposit rate the 

model works very bad. The model has even bigger problems with a negative interest rate environment than 

the other models. When interest rates are floored at zero the model fails to replicate the deposit rate. 

The model is sensitive to the choice of historical sample. This becomes apparent when looking at the 

duration for the replicating portfolio when calibrating the portfolio weights for different time periods. For 

instance, the duration of the D1 model for the Skogskonto calibrated over a five year period varies between 

0.70 and 12.66 months depending on which time period is chosen. The D2 model is somewhat more stable 

in regards to which historical sample is used. The duration of the two models and the different account types 

are shown in Table 5.  
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Table 5. Durations according to the static replicating portfolio 

Duration (months) Duration D1 Duration D2 

Allkonto <100 46.99 60.00 

Allkonto 100-250 33.66 44.54 

Allkonto >250 28.50 36.90 

Allkortskonto 11.86 16.38 

Sparkonto <100 28.27 38.08 

Sparkonto 100-250 21.96 27.48 

Sparkonto >250 10.60 12.71 

Affärskonto <50 46.62 60.00 

Affärskonto 50-250 45.84 60.00 

Affärskonto >250 42.40 59.66 

E-kapitalkonto 9.80 13.36 

PM-konto 1.09 3.62 

Privatkonto 6.78 16.44 

Checkkonto 14.48 22.81 

Skogskonto 3.32 13.10 
The table shows the calculated durations of the NMDs using the two different replicating portfolios, D1 and D2. 

Figure 6. Static replicating portfolio 

 

The figure shows the short market rate and the deposit rate of the Sparkonto >250 together with the return of the static replicating 

portfolio with and without moving averages. 
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6.6 Ordinal Response Model 

The ordinal response model suggested by Blöchlinger (2015) almost never converges when using daily data, 

therefore monthly data is used for this model. The reason that the model does not converge for daily data is 

probably because there are too many days without jumps in the deposit rate. When using monthly data there 

is a higher proportion of jumps. For the same reason, the model does not converge for the account types that 

have been floored at zero for a long time. 

To be able to compare the results from other models, deposit rates are simulated over the historical sample 

period. The mean of the simulations at each point in time are then used to calculate R2. The results from one 

simulation and the mean of 10 000 simulations are shown in Figure 7. 

The model is difficult to implement. Fisher’s scoring algorithm, that is explained in Appendix 2 and Section 

3.1.5 is a complex method and it is very sensitive to the start values that are used and the model does not 

converge for every account type. In most cases this is due to the fact that there are too few jumps in the 

historical sample. To get the model to converge, a large sample is needed and when there are few jumps an 

even larger sample is needed. The instability of the model is also seen in the bad performance in the out-of-

sample analysis. 

Figure 7. The ordinal response model 

 

The figure shows the short market rate and the deposit rate of the Sparkonto >250 together with the mean of 10 000 simulations 

from two versions of the ordinal response model (E1 and E2) and one simulation from the model E1. 
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6.7 New Models 

The new suggested models for the deposit rate have good performances for most account types. The test for 

goodness-of-fit shows that the first and the second new models work very well for some of the account 

types, but work quite poorly for a few of the account types. The third new model, on the other hand, performs 

among the best for almost every account type. The reason for this is the fact that spreads are different when 

interest rates are higher. 

The out-of-sample analysis shows similar results. It shows that the third new model is quite stable with 

regards to which historical sample is used for estimating the parameters. The models are rather simple to 

implement and have an intuitive interpretation. The strength of the models, at least in the used historical 

sample, is the handling of a negative interest rate environment. 

Figure 8. The new models 

 

The figure shows the short market rate and the deposit rate of the Sparkonto >250 together with the fitted new models. 
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6.8 Valuation 

The three models A2, B1 and F3 are chosen to test the valuation described in Section 5.4. The models A2 

and F3 are chosen because of their good performance and B1 is chosen because the valuation formula, just 

as the model, is taken from Jarrow and van Deventer (1998). The valuation assumes that volumes will be 

constant over time and that all the money will be withdrawn from the NMDs after 10 and 50 years 

respectively. The value is taken as the mean of 10 000 simulations of the dynamics of the short rate. The 

short rate is simulated with a one factor Vasicek model, where the parameters have been estimated using 

the historical sample and the method described in Appendix A. However, the long term short rate is set to 

2 % instead of the estimated long term short rate, since this particular historical sample would give an 

unrealistically low estimation of the long term short rate. The results from the valuation is presented in Table 

6. 

Table 6. Valuation 

Value 

(as % of volume) 
A2  

(10 years) 

A2 

(50 years) 

B1 

(10 years) 

B1 

(50 years) 

F3 

(10 years) 

F3 

(50 years) 

Allkonto <100 0.866 38.848 -0.637 26.569 0.761 39.752 

Allkonto 100-250 2.735 35.036 -2.276 -16.371 0.645 38.837 

Allkonto >250 3.382 33.986 -10.606 -178.401 0.732 39.199 

Allkortskonto 1.995 16.173 -3.375 -40.598 -1.629 7.452 

Sparkonto <100 2.133 29.432 -16.182 -220.372 0.760 39.366 

Sparkonto 100-250 2.357 23.330 -9.637 -133.047 -0.809 16.477 

Sparkonto >250 1.842 13.864 -7.784 -71.169 -2.02 4.624 

Affärskonto <50 0.825 38.570 2.381 48.474 0.602 39.553 

Affärskonto 50-250 1.264 38.422 -0.811 17.925 0.747 39.573 

Affärskonto >250 1.923 36.337 -13.811 -241.140 0.739 38.839 

E-kapitalkonto 0.568 8.636 -3.357 -26.092 -2.840 -0.427 

PM-konto -0.109 2.202 -6.563 -36.042 -3.692 -7.784 

Privatkonto -2.599 -1.823 2.527 22.882 -4.439 -7.004 

Checkkonto -2.284 2.767 7.341 54.475 -3.819 -2.420 

Skogskonto -10.470 -35.290 -9.936 -79.887 -10.744 -36.522 
The table shows the valuation of the different account types and three different models for the deposit rate. In the valuation the 

volume is assumed to be constant over time and the result presented in the table is the simulated value as percentage of this volume. 

The valuation is the mean from 10 000 simulations and all the money is assumed to be withdrawn after 10 and 50 years respectively.  
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7. Discussion 

In this chapter the results presented in the previous chapter is discussed. The discussion is based on the four 

aspects described in Section 3.2; goodness of fit, stability, negative interest rate environment and simplicity. 

Further, the valuation technique suggested by Jarrow and van Deventer (1998) and the duration calculation 

of the static replicating portfolio is discussed. The discussion is ended with a link to Chapter 2 and some 

comments on the characteristics of NMDs that are described there. 

7.1 Goodness of Fit 

The goodness of fit varies a lot over the different models and the different account types. The account types 

with the most flat deposit rates have the lowest R2. This is since R2 measures how good a model fits compared 

to a horizontal line and a horizontal line has a good fit if the deposit rate is very flat. 

The linear models have a rather good and stable goodness of fit for the different account types both for the 

whole historical sample and in the out-of-sample-analysis. The Jarrow and van Deventer model and the 

asymmetric partial adjustment model perform similarly to the linear models when the whole sample is used, 

but show a bad performance for some of the account types in the out-of-sample analysis. The static 

replicating portfolio has a very bad performance for the account types with a flat deposit rate. This is due to 

the fact that the portfolio weights have to sum up to one and there are no market rates that have been that 

flat in the historical sample, even when using moving averages. The static replicating portfolio where 

moving averages is used is generally slightly better than the one without. The ordinal response model does 

not converge for every account type, but when it does it performs similarly or worse than the other models. 

The new models generally have a good performance in the test of goodness of fit. The third new model 

performs a lot better than the first and the second new model. This shows that it takes more than just the 

short market rate and a constant margin to explain the dynamics of the deposit rate. The first new model 

performs better than the second new model. This is not surprising, since the second model does not add 

anything that would improve the goodness of fit compared to the first new model. The third new model has 

the best performance of all models when testing for the goodness of fit over the whole historical sample. 

7.2 Stability 

The out-of-sample analysis shows how stable the different models are with regards to which historical 

sample is used to calibrate the parameters. In the test it can be seen that the linear models, the static 

replicating portfolio and the third new model perform similarly in the out-of-sample analysis as in the test 

for the whole historical sample. Therefore, these models are considered to be stable with regards to which 

historical sample is used to calibrate the parameters. The other models perform significantly worse in the 

out-of-sample analysis than when the whole sample is used and are therefore considered to be more unstable. 

The static replicating portfolio is quite unstable with regards to different assumptions and inputs. This is 

described further in Section 7.6. When the parameters in the ordinal response model are calibrated, start 

values are required as an input. The output of the model depends on which start values are used and the 

convergence of the model is very unstable for different start values. The model is also highly dependent on 

what jump sizes are used and which covariates are chosen, which can be seen in the difference between the 

outputs of the two model specifications presented in this thesis. 
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7.3 Negative Interest Rate Environment 

It is clear that the models for the deposit rate suggested in the literature are constructed in a non-negative 

interest rate environment. They work well when market rates are positive and the deposit rates actually 

move, but when market rates are negative and deposit rates are floored at zero, the models fail. The last few 

years, interest rates have been extraordinarily low. This has led to a need for new models for deposit rates, 

which can handle this type of interest rate environment. The new models suggested in this thesis tackle this 

issue and they have proven to do it quite well. However, they are based on the rather crude assumption that 

banks will not pass on the negative interest rates to their customers. Only time will tell if this assumption 

will hold true over a prolonged time period. Figure 1 and Figure 2 show that at least Handelsbanken is very 

reluctant to have negative deposit rates. 

7.4 Simplicity 

Most of the models are quite simple both when it comes to interpretation and implementation. The linear 

models are the most simple as they just follow the short market rate or a combination of the short and long 

market rate. A moving average of the market rates can be used to smooth out the daily fluctuations that are 

not passed on to customers. The moving average is shown to be a good tool for the purpose of smoothing 

out the fluctuations, but when using too long moving averages the models react too slowly to changes in the 

reference rates. 

The new models suggested in this thesis are just variations of the linear models. They also follow a moving 

average of the short market rate, but are modified in such a way that they do not allow negative deposit 

rates. This is an intuitive improvement of the linear models. The second new model is a discretization of the 

first new model. It does not add anything to improve the goodness of fit, stability or the handling of a 

negative interest rate environment, it is even a bit more complex. The only advantage of the second new 

model over the first new model is that the trajectories created by the second new model look more like the 

trajectory of a real deposit rate. The third new model adds a factor in front of the reference rate compared 

to the first new model. This can be motivated with an assumption that the spread between the reference rate 

and the deposit rate is larger when interest rates are higher. The good performance of the third new model 

shows that this is a reasonable assumption. 

The static replicating portfolio is also similar to the linear models. The difference is that the static replicating 

portfolio comes from an investment strategy that is supposed to mimic the NMD. The fact that it comes 

from an investment strategy restricts the model from having negative portfolio weights (no short sales are 

allowed) and that the portfolio weights have to sum to one. These restrictions are intuitive for the investment 

strategy, but reduce the models ability to explain the deposit rate dynamic. 

The asymmetric partial adjustment model suggested by O’Brien (2000) takes a linear model and makes the 

deposit rate move slower. The model also has different adjustment speeds for when interest rates rise and 

when interest rates fall. This makes the modeling a bit more complex, but not enough to become a big issue. 

The model suggested by Jarrow and van Deventer (1998) is somewhat different from the other models, since 

it has a linear trend term depending on time and it takes into account the evolution of the reference rate. 

There is no clear intuition in modeling the deposit rate like that and it also turns out that the model performs 

quite poorly. 

The most complex model studied in this thesis is the ordinal response model suggested by Blöchlinger 

(2015). It takes into consideration the discretized nature of deposit rates and it is flexible enough to involve 

any parameters that might be relevant for a certain NMD. The difficulty of the model is in the 
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implementation of it. The calibration of the parameters takes a rather long time and requires good start 

values. 

7.5 Valuation 

The results from the valuation of the NMDs differ a lot for the different account types and the different 

deposit rate models. This fact clearly shows that the value produced by the formula is unreliable. However, 

the valuation shows an interesting comparison between the account types. For instance, when comparing 

the different categories of the different categories of the Sparkonto using the linear model and the new model 

it can be seen that the Sparkonto >250 has the smallest value, which is what is expected, since this category 

pays the highest deposit rate. The Jarrow and van Deventer model shows a result that is inconsistent with 

the other models for many of the account types. This may be explained by the bad performance of the model 

in the out-of-sample-analysis, which makes the model unreliable in the valuation process. 

The Skogskonto has the lowest valuation, which is because the valuation compares the deposit rate with a 

short market rate and since the Skogskonto pays the highest deposit rate it gets the lowest valuation. The 

problem with this valuation is that the Skogskonto is used as a more long term investment and should 

probably be compared to a longer market rate. The same problem as for the Skogskonto could to some extent 

apply to all accounts, since the valuation does not consider the stability of the deposits, but instead compares 

them to the shortest possible market rate regardless of their expected maturity. Also, the simplification in 

this thesis does not consider the dynamics of the deposit volume, which is an important aspect in valuing 

NMDs. 

There are two reasons why the valuations over ten years are so low. Firstly, there are a lot fewer years to 

add to the value when using ten years compared to fifty years. Secondly, the valuation begins in an extremely 

low interest rate environment, which means that the simulated short rate process needs some time before 

the short rate is positive. This leads to a negative cash flow in the first years of the valuation. 

By looking at the valuations it may be possible to determine which accounts are better or worse for the bank, 

a high valuation implying that the account is good for the bank. However, such an assessment could only 

be done for the NMDs standalone. For instance, the value could be completely different if considering how 

the NMDs affect the customer´s behavior when it comes to the use of other banking services. Such an 

analysis would be very complex. 

7.6 Duration of the Static Replicating Portfolio 

To calculate the duration of NMDs, many banks use a static replicating portfolio. (Maes and Timmermans 

(2005)) It is a simple way to get an estimate of the duration and that is probably why it is so popular. The 

question is how reliable this estimation is. It seems that the method ranks the duration of the different NMDs 

in a good way. The NMDs that are held for transactional purposes are assumed to have longer durations, 

which is something that the model shows. However, there are some aspects that would suggest that this 

method of calculating the duration is not reliable. 

One of these aspects has been discussed earlier and is the bad fit of the model for the account types with an 

almost flat deposit rate. This shows that the duration that the model produces for these account types is very 

unlikely to be the actual duration. Another aspect associated with the same account types is that some of 

them get the maximum duration allowed by the model. That means that if bonds with longer time to maturity 

where used by the model the duration would probably be even longer. 
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The strongest argument against the use of this approach is the effect different assumptions have on the result. 

One assumption is the use of moving averages, which improves the goodness of fit. The use of moving 

averages also makes the estimated duration longer. Even Maes and Timmermans (2005) show that different 

assumptions give quite different durations. 

Although the method of using a static replicating portfolio for estimating the duration of NMDs seems to 

rank the duration of the NMDs in a good way, it is unlikely that the method estimates the true durations.  

7.7 Comments on the Characteristics of NMDs 

The discussion is ended by reconnecting to Chapter 2 and the characteristics of NMDs that are described 

there. There is seemingly no reason not to agree with the common opinion that the most prominent 

characteristics that define NMDs are the customers’ right to withdraw money and the banks’ right to change 

the deposit rate. 

A common conclusion is that there is an asymmetric adjustment speed of deposit rates when interest rates 

go up and down, respectively. With the limited historical sample that is used in this study, this conclusion 

cannot be verified. Although deposit rates fall faster on average than they rise on average, the market rates 

also often falls faster than they rise. This can be seen in Figure 9. This means that just looking at deposit 

rates, there may be an asymmetric adjustment speed, but in a context where interest rates drive deposit rates 

there may not be such an asymmetry. With this said, this thesis provides no proof of the hypothesis. 

Most of the NMDs observed in this study have a deposit rate which moves in a discretized way. Most models 

do not take this discretized nature into consideration and there is seemingly no relevant reason to do that, at 

least if the purpose of the model is to value the NMD. One characteristic that is highly relevant for the 

modeling is the informal floor on deposit rates set at zero. However, no cap on deposit rates have been 

observed in this study. 

Figure 9. STIBOR 1 week 

 

The figure shows the dynamics of the STIBOR 1 week rate since 1994. Source: Sweden’s Central Bank (2017).  
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8. Conclusion and Further Research 

8.1 Conclusion 

The modeling of NMDs is a highly important topic for most banks, since they are to a large extent funded 

by NMDs. An NMD may seem to be a trivial financial product, but certain characteristics make them rather 

complex to model. An integral part of modeling NMDs is to model the deposit rate. This thesis has 

contributed to the research on modeling deposit rates of NMDs by comparing different models and 

evaluating their performances when applied to data from Handelsbanken. This thesis also suggests three 

new models for the deposit rate of NMDs, one of which shows a very good performance. 

The evaluation of the models has been done on the basis of four aspects; goodness of fit, stability, negative 

interest rate environment and simplicity. What may be surprising, is that simplicity does not automatically 

mean a compromise of the performance of the model. On the contrary, the simplest models often have the 

best performances. 

The model that has the best overall performance is the third new model that has been suggested in this thesis. 

One reason for this is that the new suggested models have a way of handling a negative interest rate 

environment while the other models, which are suggested in the literature, were created at least a few years 

ago when negative market rates were not an issue. The older models, therefore, do not handle this problem. 

The good handling of the negative interest rate environment gives the third new model a good fit to the 

historical sample. The model is also intuitive and simple. One drawback of the new models is that they are 

all based on the assumption that banks will not make the deposit rates negative. 

8.2 Further Research 

The modeling of NMDs is a comprehensive subject and there is much to be done with it. For instance, this 

thesis has briefly touched upon the valuation of NMDs. Regulations focus mainly on modeling the 

proportion of core deposits in NMDs and the average maturity of the core deposits. Therefore, it is 

reasonable that researchers should focus on the modeling of core deposits. 

This thesis has focused on modeling deposit rates of NMDs. The models for the deposit rates could be a 

part of a bigger framework for modeling NMDs or they could be used as standalone models for predicting 

the future deposit rates or to understand the behavior of banks. Future research should put the models into 

a bigger context. One of the contributions of this thesis is the new models that are suggested. These need to 

be further evaluated and only time will tell if the assumption of non-negative deposit rates will hold.  
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Appendix 1 – Interest Rate Models 

This appendix is mainly based on Björk (2009). 

A1.1 Forward Rates 

An interest rate model is a model that describes the future evolution of interest rates. This can be done by 

describing the dynamics of the (continuously compounded and annualized) short rate, 𝑟𝑡. Under the risk-

neutral measure 𝑄 and with {𝐹𝑡}𝑡≥0 being the natural filtration for the process, the price of a zero-coupon 

bond, 𝑃(𝑡, 𝑇), at time t maturing at time T with payoff 1 is given by 

    𝑃(𝑡, 𝑇) = 𝐸𝑄 [𝑒−∫ 𝑟𝑠𝑑𝑠
𝑇

𝑡 |𝐹𝑡]. 

 

(43) 

The instantaneous forward rates, 𝑓(𝑡, 𝑇), are given by 

    
𝑓(𝑡, 𝑇) = −

𝜕

𝜕𝑇
ln(𝑃(𝑡, 𝑇)). 

 

(44) 

Thus with a no-arbitrage argument and some technical conditions, a model for the short rate is also a model 

for forward rates. 

A1.2 Interest Rate Models 

Below, some models for the short interest rate is presented. They are all driven by Wiener processes, denoted 

𝑊𝑡. 

Some of the most used one-factor models are: 

 The Ho-Lee model:   𝜕𝑟𝑡 = 𝜃𝑡𝜕𝑡 + 𝜎𝜕𝑊𝑡 

 The Vasicek model:   𝜕𝑟𝑡 = 𝑘(𝜃 − 𝑟𝑡)𝜕𝑡 + 𝜎𝜕𝑊𝑡 

 The extended Vasicek model:  𝜕𝑟𝑡 = 𝑘𝑡(𝜃𝑡 − 𝑟𝑡)𝜕𝑡 + 𝜎𝑡𝜕𝑊𝑡 

 The CIR model:   𝜕𝑟𝑡 = 𝑎(𝑏 − 𝑟𝑡)𝜕𝑡 + √𝑟𝑡𝜎𝜕𝑊𝑡 

 The extended CIR model:  𝜕𝑟𝑡 = (𝜃𝑡 − 𝛼𝑡𝑟𝑡)𝜕𝑡 + 𝜎𝑡√𝑟𝑡𝜕𝑊𝑡 

 The Dothan model:   𝜕𝑟𝑡 = 𝑎𝑟𝑡𝜕𝑡 + 𝜎𝑟𝑡𝜕𝑊𝑡 

 Black-Derman-Toy:   𝜕𝑟𝑡 = 𝜃𝑡𝑟𝑡𝜕𝑡 + 𝜎𝑡𝑟𝑡𝜕𝑊𝑡 

The one factor models can be extended to two factor models. For instance, a two-factor Vasicek model is 

defined as 

    𝑟𝑡 = 𝛽0 + 𝛽1𝜂1,𝑡 + 𝛽2𝜂2,𝑡 

 
(45) 

where 

    𝜕𝜂𝑖,𝑡 = 𝑘(𝜃 − 𝑟𝑡)𝜕𝑡 + 𝜎𝜕𝑊𝑡 ,     𝑓𝑜𝑟   𝑖 = 1, 2. (46) 
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An alternative approach is to directly model the dynamics of instantaneous forward-rates. This can be done 

with the Heath-Jarrow-Morton (HJM) framework, which assumes that the forward rate can be found by 

solving the stochastic differential equation 

    𝜕𝑓(𝑡, 𝑇) = 𝛼(𝑡, 𝑇)𝑑𝑡 + 𝜎(𝑡, 𝑇)𝜕𝑊𝑡 

𝑓(0, 𝑇) = 𝑓∗(0, 𝑇) 
(47) 

where 𝑓∗(0, 𝑇) is the observed forward rate curve at time 0. 

The short rate is then given by 

    𝑟𝑡 = 𝑓(𝑡, 𝑡). 
 

(48) 

Kalkbrener and Willing (2004) use a non-parametric version of the HJM-framework where the drift, 𝛼(𝑡, 𝑇), 

is defined as 

    

𝛼(𝑡, 𝑇) = ∑𝜎(𝑡, 𝑇)

2

𝑖=1

(∫𝜎𝑖(𝑡, 𝑦)𝜕𝑦 − 𝜆𝑖

𝑇

𝑡

) 

 

(49) 

where 𝜆𝑖 are constants. Now it is enough to specify the volatility functions, 𝜎𝑖(𝑡, 𝑦), which Kalkbrener and 

Willing define with piecewise constant functions.  

A1.3 Calibration of the One-Factor Vasicek Model 

The parameters in the one-factor Vasicek model can be estimated using the maximum likelihood method. 

The log-likelihood of the one-factor Vasicek model is  

    
𝑙(𝑘, 𝛽, 𝜃) = −

𝑛

2
ln(2𝜋) − 𝑛 ln𝜎 −

1

2𝜎2
∑(𝑟𝑖 − 𝑟𝑖−1 ∗ 𝑒−𝑘 − 𝜃(1 − 𝑒−𝑘))

2
𝑛

𝑖=1

 

 

(50) 

where n is the number of observation days. The parameters is estimated as 

    𝑘, 𝛽, 𝜃 = argmax
𝑘,𝛽,𝜃

𝑙(𝑘, 𝛽, 𝜃). 

 

(51) 

In the model, 𝜃 can be interpreted as the long-term mean short-rate that the model will evolve around, 𝑘 is 

the speed of reversion towards 𝜃 and 𝜎 is the instantaneous volatility.  
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Appendix 2 – Fisher’s Scoring Algorithm 

This appendix is based on Givens and Hoeting (2013). 

A2.1 Maximum Likelihood Estimation 

The idea behind maximum likelihood estimation is to find the parameters that maximize the probability of 

a particular outcome. Given the outcome 𝑥1, … , 𝑥𝑝 of the independent and identically distributed stochastic 

variables 𝑋1, … , 𝑋𝑝 with density function 𝑓(𝑥|𝜽) the parameters 𝜽 can be estimated with the maximum 

likelihood estimator (MLE) of 𝜽. The MLE is the parameters that maximizes the likelihood function 

    

𝐿(𝜽) = ∏𝑓(𝑥𝑖|𝜽)

𝑝

𝑖=1

 

 

(52) 

It is often more convenient to use the log-likelihood function 

    𝑙(𝜽) = ln 𝐿(𝜽) 
 

(53) 

Finding the MLE of 𝜃 is equivalent to solving 

    𝑙′(𝜽) = 𝟎 
 

(54) 

where 

    
𝑙′(𝜽) = (

𝑑𝑙(𝜽)

𝑑𝜃1
, … ,

𝑑𝑙(𝜽)

𝑑𝜃𝑘
) 

 

(55) 

is called the score function and has the property 

    𝐸[𝑙′(𝜽)] = 𝟎  
 

(56) 

A2.2 Newton-Raphson Iterations 

A common numerical approach to finding roots is through Newton-Raphson iterations. The method is based 

on linear Taylor expansion: 

    𝑓(𝑥) ≈ 𝑓′(𝑥0)(𝑥 − 𝑥0) + 𝑓(𝑥0). 
 

(57) 

This is a tangent to the function f(x) that has a root at 

    
𝑥 = 𝑥0 −

𝑓(𝑥0)

𝑓′(𝑥0)
. 

 

(58) 

This leads to the iteration 
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𝑥𝑛+1 = 𝑥𝑛 −

𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
. 

 

(59) 

The multivariate equivalence is 

    𝒙𝑛+1 = 𝒙𝑛 − 𝐽−1(𝒙𝑛)𝑓(𝒙𝑛) 
 

(60) 

where 𝐽(𝒙𝑛) is the Jacobian of 𝑓(𝒙𝑛) 

    

𝐽(𝒙𝑛) =

[
 
 
 
 
 
𝜕𝑓1

𝜕𝑥𝑛
1 ⋯

𝜕𝑓1

𝜕𝑥𝑛
𝑝

⋮ ⋱ ⋮
𝜕𝑓𝑝

𝜕𝑥𝑛
1 ⋯

𝜕𝑓𝑝

𝜕𝑥𝑛
𝑝
]
 
 
 
 
 

. 

 

(61) 

A2.3 Fisher’s Scoring Algorithm 

Fisher’s scoring algorithm can be used to estimate MLE parameters. Fisher’s scoring algorithm is given by 

replacing the Jacobian in Newton-Raphson iterations by the Fisher information matrix 

    𝐼(𝜽) = 𝐸[𝑙′(𝜽)𝑙′(𝜽)𝑇] = −𝐸[𝑙′′(𝜽)] 
 

(62) 

where 

    

𝑙′′(𝜽) =

[
 
 
 
 
 
𝜕2𝑙(𝜽)

𝜕𝜃1
2 ⋯

𝜕2𝑙(𝜽)

𝜕𝜃𝑝𝜕𝜃1

⋮ ⋱ ⋮
𝜕2𝑙(𝜽)

𝜕𝜃1𝜕𝜃𝑝
⋯

𝜕2𝑙(𝜽)

𝜕𝜃𝑝
2

]
 
 
 
 
 

. 

 

 

(63) 

The iteration is then 

    𝜽𝑛+1 = 𝜽𝑛 + 𝐼−1(𝜽𝑛)𝑙′(𝜽𝑛). 
 

(64) 

The standard errors of the estimates is the square root of the diagonal elements of the inverted Fisher 

information matrix at the maximum likelihood estimates. 
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