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Abstract

The Basel Committee has proposed a new Pillar 2 regulatory framework for
evaluating the interest rate risk of a bank’s banking book appropriately called
Interest Rate Risk in the Banking Book. The framework requires a bank to
use and report two different interest rate risk measures: Economic Value of
Equity (EVE) risk and Net Interest Income (NII) risk. These risk measures
have previously been studied separately but few models have been proposed
to investigate the relationship between them. Based on previous research we
assume that parts of the banking book can be approximated using a portfo-
lio strategy of rolling bonds and propose a model for relating the connection
between the portfolio maturity structure, EVE risk and NII risk. By simulat-
ing from both single- and multi-factor Vasicek models and measuring risk as
Expected Shortfall we illustrate the resulting risk profiles. We also show how
altering certain theoretical assumptions seem to have little effect on these risk
profiles.



Ekonomiskt Värde av Eget Kapital-risk samt Räntenettorisk

och sambandet dem emellan

Sammanfattning

Baselkommittén har föreslagit ett nytt Pelare 2-regelverk för att utvärdera
ränterisken i en banks bankbok kallat Interest Rate Risk in the Banking Book.
Regelverket kräver att en bank beräknar och rapporterar tv̊a olika m̊att p̊a
ränterisk: Ekonomiskt Värde av Eget Kapital-risk (EVE-risk) samt Räntenettorisk
(NII-risk). Dessa tv̊a m̊att har tidigare studerats separat men f̊a modeller har
föreslagits för att studera relationen dem emellan. Baserat p̊a tidigare forsk-
ning s̊a antar vi att delar av bankboken kan approximeras som en rullan-
de obligationsportfölj och föresl̊ar en modell för att relatera sambandet mel-
lan portföljens löptidsstruktur, EVE-risk och NII-risk. Genom att simulera
korträntor fr̊an Vasicek-modeller med olika antal faktorer s̊a undersöker vi de
resulterande riskerna mätt som Expected Shortfall. Vi visar ocks̊a att vissa av
de teoretiska antagandena verkar ha liten p̊averkan p̊a riskprofilen.
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Chapter 1

Introduction

The banks’ risk appetite for Interest Rate Risk in the Banking Book
should be articulated in terms of the risk to both economic value and
earnings.

BCBS (2016b, p. 6, Principle 3)

In its traditional role the commercial bank acts as an intermediary between lender and
borrower. Since the demand and supply of funds from the bank’s customers can differ in
aspects such as maturity and credit quality there is an inherent risk associated with the
intermediary role. Even given the possibility to exactly match the asset and liability side
of the balance sheet, one could not assume with certainty that the bank would want to.
As the saying goes, traditionally the bank “borrows short and lends long”, which is in
reference to the shorter duration of the liability side of the balance sheet. In a somewhat
simplified setting we can assume that the bank faces a decision of how it is going to fund
every new retail or business loan it underwrites. The funding can be secured using either
existing funds, such as retained earnings and equity capital, or by using debt capital that
the bank borrows from creditors. Historically, interest rate curves have often been upward
sloping, but as can be seen in figure 1.1a, over a ten-year period the zero-coupon curve
will often exhibit a vast amount of different shapes. This is also illustrated in figure 1.1b
where the steepness2 of the same curve is plotted over time. By keeping the maturity
mismatch between assets and liabilities the bank has been able to increase its earnings
due to the lower interest paid on the shorter maturity liabilities. However, the mismatch
gives rise to two types of financial risks for the bank, interest rate risk (IRR) and liquidity
risk.

IRR for a bank is the current or potential risk to the bank’s capital and to its earnings
that arises from the impact of adverse movements in interest rates (BCBS, 2016b). Due
to the different perspective of focusing on either capital or earnings risk there exists two,
different but complementary, methods for measuring and assessing IRR. The first being
the present value sensitivity of an asset or a liability to changes in interest rates and the
second being the short-term expected earnings sensitivity to changes in interest rates.
Three subtypes of IRR, gap risk, basis risk and optionality risk, are the main drivers

2Measured as the difference between the 1 year and 20 year point on the curve.
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(b) Steepness of the zero-coupon curve

Figure 1.1: Evolution of the US zero curve between 2007 and 2017

of these two measurements. Mismatches in the timing of cash flows between assets and
liabilities, as in the ”borrow short, lend long” strategy mentioned above is an example
of gap risk. The risk that occurs when cash flows are sensitive to different interest rate
curves is a type of basis risk1 and optionality risk occurs when there are automatic or
behavioral optionality for the bank or its counterparties to alter the level or timing of cash
flows. Gap risk, basis risk and option risk can all cause changes to both the present value
of instruments and the expected earnings of those instruments. Contemporary examples
of crises that, at least partially, were results of banks’ exposure to IRR is the Secondary
Banking Crisis in the U.K. during the 1970s and the Savings and Loan crisis in the U.S.
during the 1980s (English, 2002).

While long-term assets financed with short-term liabilities can cause IRR it also gives rise
to liquidity risk when liabilities mature prior to the assets they finance. Unless a bank with
short-term liabilities has additional liquid funds, its survival is contingent on the bank’s
ability to refinance those liabilities. The global financial crisis of 2007-2008 was in part
a liquidity crisis where central banks had to provide liquidity support and showed how
costly mismanagement of risk in banking could be for society as a whole (Brunnermeier,
2009). Post crisis, several areas of the then-existing banking regulations were put under
review and with respect to IRR resulted in the so-called Interest rate risk in the banking
book (IRRBB) proposal from the Basel Committee. IRRBB introduces new proposals to
ensure that a bank has enough capital to cover the IRR arising in its banking book. The
framework requires the bank to understand, compute and report its IRR and requires it
to specify its IRR appetite. For that purpose two different IRR measures are computed,
Economic Value of Equity (EVE) and Net Interest Income (NII). In essence they are the
present value risk and short term earnings risk of IRR previously mentioned and will be
more thoroughly presented in section 2.1.

The Basel committee notes that commercial banks tend to focus on managing earnings
risk while regulators previously have focused on EVE risk (BCBS, 2016b). Each measure
has both advantages and disadvantages compared to the other and neither has yet to
prevail as the standard (Alessandri and Drehmann, 2010). The Basel committee further-
more acknowledges an important aspect of the two risk measures, which is that if a bank
minimizes its EVE risk it runs the risk of earnings volatility. Hence, the bank is facing a
trade-off problem when relating and valuing volatility in NII to EVE. This requires both
banks and regulators to gain an understanding of how different balance sheet compositions

1An example could be an asset that is sensitive to 3-month LIBOR that is funded with a liability
sensitive to 6-month LIBOR
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affect NII and EVE volatility.

Banks will – provided national regulators implement it – be required to compute sensi-
tivities of both measures under IRRBB. These new regulatory standards will also require
banks to determine and articulate risk limits in both EVE and NII, which combined with
current levels and exposures will be made public. There exists a vast amount of literature
investigating IRR in banking but to the best of the authors’ knowledge only three papers
have been written about the interaction between NII and EVE. One of these is Memmel
(2014) who using a strategy of rolling par-coupon bonds and historical simulations shows
how different interest rate changes affect both NII and EVE. A few methodological choices
leads to the proposed NII measurement being fairly different to how it will be measured
under IRRBB and the focus is not on risk. However, the conceptual framework of approx-
imating the bank as a rolling bond portfolio is helpful when wanting to analyze IRR in
isolation. It is also noteworthy that all of these papers measure NII and EVE in slightly
different ways.

The purpose of this thesis, commissioned by Svenska Handelsbanken AB, is to propose
a model that can be used to consistently study how varying the maturity structure of a
portfolio affects both NII and EVE risk. As in Memmel (2014) the basic building block
of the model is a rolling portfolio of non-defaultable coupon bonds. In order to study
the resulting risk profile we will also investigate how the risk profile changes with the
maturity of the portfolio and how combining different portfolios can change the attainable
combinations of NII and EVE risk.

The focus in this thesis will be on the relation between NII risk and EVE risk and we will
not try to say anything about the potential trade-off between risk and return. It has been
argued by Alessandri and Drehmann (2010) that IRR should be studied in tandem with
credit risk. However, in this thesis we will limit our study to IRR in isolation and not its
interaction with other types of risk. We will also limit our portfolio to contain only one
type of instrument, namely non-defaultable coupon bonds. This means that we will not
be able to capture some IRR effects that a bank faces, e.g. basis risk from instruments
being sensitive to different interest rate curves and optionality risk from instruments such
as demand deposits. The portfolio model should be viewed as an investment strategy
and not as a complete banking book. However, parts of the banking book could possibly
be approximated by our portfolio model. Memmel (2008) has investigated if German
banks’ net interest income can be approximated as a combination of several rolling coupon
bond portfolios with different maturities, we will not investigate how well this assumption
works for Swedish banks. Interest rates will be simulated from a short-rate model, for this
purpose parameters will need to be estimated. The estimation scheme will be described
but since the purpose of the thesis is not parameter estimation we will not evaluate how
well this model performs. We refer the reader who is interested in empirical studies of IRR
to the two comprehensive literary reviews written by Staikouras, see Staikouras (2003) and
Staikouras (2006).

The outline of this thesis is as follows. Chapter 2 introduces the reader to EVE, NII and
IRRBB. This is followed by chapter 3 where we present the mathematical background
and review previous research relating EVE and NII to each other. Chapter 4 discusses
the assumptions and simplifications of the model and shows its mathematical formulation.
Chapter 5 familiarizes the reader with the data we use to estimate the parameters for

3



the short-rate models and presents the simulation scheme used to compute IRR. These
simulations are then shown and discussed in chapter 6, where we also investigate the effects
of combining several portfolios. Lastly, chapter 7 contains our conclusions and suggestions
for further research.

4



Chapter 2

Preliminaries

This chapter serves as an introduction to the two main classes of IRR measures, NII and
EVE. In section 2.1 we will define the measures and by using an illustrative example2

we will show the somewhat different effects each measure captures. This is followed by
section 2.2 which contains a short review of IRRBB focusing on its definitions of NII and
EVE.

2.1 EVE and NII measures

Defining the measures

In the literature treating IRR it is a well-known fact that there does not exist a uni-
fied measure of IRR (Wolf (1969), Iwakuma and Hibiki (2015), Ozdemir and Sudarsana
(2016)). An interest rate sensitive instrument’s IRR could be viewed as the risk that the
instrument’s present value changes due to shifting interest rates. However, the owner of
the instrument could also be concerned about the effect that the same interest rates shifts
could have on the interest income or expense over a foreseeable short period, e.g. one
year. When translated into balance sheet measures of IRR these classes of measures are
called Economic Value (EV) measures and Earnings-based measures. The two groups of
measures can be used in tandem to reflect the different impacts a change in interest rates
can have on both the size and present value of future cash flows.

The EV class of measures can itself be divided into two different classes, Economic Value
of Equity (EVE) and earnings-adjusted EV (BCBS, 2016b). To understand the difference
we state the classic balance sheet equation that relates equity, assets and liabilities to each
other as

Assets = Equity + Liabilities.

EVE and earnings-adjusted EV differ in the treatment of equity. EVE measures risk
as the present value change of assets less the present value change of liabilities when

2We thank Magnus Hanson at Svenska Handelsbanken AB for this example.
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interest rates changes. This way of treating equity is similar to the way it is treated on
a company’s balance sheet. However, since the company finances its assets with both
non-equity liabilities and the equity liability we could assume that some assets are bought
to specifically hedge the equity liability. One could then argue that the equity liability
should be included so that the interest rate risk from that part of the asset portfolio is
cancelled, this is the earnings-adjusted EV (BCBS, 2016b).

A common earnings-based measure is Net Interest Income (NII), for which a decision
about how to treat equity has to be made as well. The NII measure excluding equity
(no servicing cost) is often referred to as Commercial NII (Bessis, 2011). In this thesis
equity is excluded from both the EV and NII measure, resulting in an EVE measure and
a commercial 1-year NII measure, hereafter simply referred to as NII. For NII, we also
have to decide if we should discount the cash flows taking the time value of money into
account or if this should be disregarded.

When the measures have been defined, a decision has to be made regarding the balance
sheet’s evolution over time. BCBS (2016b) lists the three possible choices as

(i) a run-off balance sheet where existing assets and liabilities are not replaced as they
mature, except to the extent necessary to fund the remaining balance sheet.

(ii) a static balance sheet where total balance sheet size and shape is maintained by
assuming like-for-like replacement of assets and liabilities as they run off.

(iii) a dynamic balance sheet where future business expectations are incorporated.

Note that since EVE is defined as the present value of assets less liabilities with no rate
or term applied to the equity itself, it is a run-off or gone concern perspective in the sense
that only existing assets and liabilities are considered. As was mentioned above, the NII
measure is generally focused on shorter time horizons, typically one to three years. Thus,
it can be viewed as the short to medium term vulnerability of the bank to IRR, assuming
the bank is able to continue operating during the measurement’s time horizon, a so-called
going concern viewpoint. In contrast to EVE, NII measures may assume any of the three
balance sheet types above (BCBS, 2016b).

A simple example

After this short review the reader might ask why different measures are used? To illustrate
this we show the problem a hypothetical bank faces when trying to manage NII and EVE
simultaneously by comparing two simple balance sheet compositions. We assume a setting
in which the hypothetical bank can choose between investing in two assets

(i) an overnight account (O/N), i.e. an account whose interest rate is repriced on a
daily basis. This account initially pays a 2% interest rate per annum.

(ii) a perpetual (infinite maturity) bond with a fixed coupon of 6% per annum. The
bond initially trades at par, i.e. the current price is equal to the bond’s face value.

On the liability side it is assumed that the bank has borrowed USD 80 at the O/N account
with an initial interest rate of 2% per annum and USD 20 by issuing equity (disregarded
in the EVE and NII calculation), with no possibility of changing this composition. The

6



goal of the balance sheet to the left in figure 2.1, balance sheet #1, is to choose an asset
structure that minimizes the volatility in NII. To do this we want all net cash flows to be
fixed during the first year, this is achieved by investing USD 80 in the O/N account and
the remaining USD 20 in the perpetual bond. The goal of the right balance sheet, balance
sheet #2, in figure 2.1 is to minimize EVE volatility. This is achieved by investing USD
100 in the O/N account since the present value of the O/N is very insensitive to interest
rate changes1.

Value = 80
Coupon = 2%

Value = 20
Coupon = 6%

Value = 80
Coupon = 2%

Value = 20
Equity

Assets Liabilities

Value = 100
Coupon = 2%

Value = 80
Coupon = 2%

Assets Liabilities

Value = 20
Equity

▪ O/N

▪ Perpetual

Interest Income/Expense:             2.8                            1.6

NII:                                                                  1.2

EVE:                                                                20

           2                               1.6

                           0.4

                            20

Balance sheet #1 Balance sheet #2

Figure 2.1: Two simple balance sheets for protecting NII & EVE respectively

To illustrate how the balance sheets’ NII and EVE are affected by an interest rate change
it is assumed that the interest rate curve is shifted +100bps for all maturities. After the
shift, all O/N balance sheet items interest rate are repriced, while the perpetual bond’s
coupon remains unchanged. Thus, balance sheet #1 is not affected in NII due to the
equal amount of assets and liabilities that reprice. However, the remaining perpetual
bond’s discounted value does change leading to a change in EVE2. Hence, balance sheet
#1 is sensitive in EVE but not in NII. A similar argument holds for balance sheet #2
where USD 20 more assets than liabilities reprice, leading to a change in NII whereas EVE
remains unchanged after the interest rate shift. The balance sheets and risk measures after
the interest rate curve shift are shown in figure 2.2.

1If the bank can choose to withdraw the money each day we can view the O/N account as a bond with
a one day maturity, hence the discount factor will be ∼ 1 assuming reasonable interest rates

2The perpetual bond with a coupon yield of 6% and new discount rate of 7% has a present value of
PV =

∫∞
0
CFe−r×tdt =

∫∞
0

0.06e−0.07×tdt = 0.06
0.07

≈ 0.857
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Value = 80
Coupon = 3%

Value = 17.1
Coupon = 6%

Value = 80
Coupon = 3%

Value = 17.1
Equity

Assets Liabilities

Value = 100
Coupon = 3%

Value = 80
Coupon = 3%

Assets Liabilities

Value = 20
Equity

Interest Income/Expense:             3.6                            2.4

NII:                                                                   1.2

EVE:                                                                17.1

           3                               2.4

                           0.6

                            20

+100bps parallell shift

ΔNII:                                                                  0

ΔEVE:                                                               -2.9

                           0.2

                            0

Balance sheet #1 Balance sheet #2

▪ O/N

▪ Perpetual

Figure 2.2: Two simple balance sheets for protecting NII & EVE respectively after +100
bps interest rate curve shift

2.2 IRRBB

The Basel Committee for Banking Supervision (BCBS) is part of the Bank for Interna-
tional Settlements (BIS), an organization for central banks. The BCBS proposes standards
for the supervision of banks, which most national supervisors1 then adopt with some local
variations. The BCBS is most known for publishing the Basel Accords, which are conve-
niently named Basel I, II and III. Basel I was published in 1988, proposing a minimum
capital ratio for banks in the member countries and was later amended a couple of times
during the years following its introduction (BCBS, 2016a). Basel II was introduced in
2004 and contained the three so-called pillars, which can be summarized as

Pillar 1. Defining the minimum capital requirements for banks.

Pillar 2. Practices for how supervisors should review and evaluate banks’ compliance
with regulation, e.g. by setting standards for internal models.

Pillar 3. Disclosure practices that govern which risk metrics banks have to make publicly
available.

Following the financial crisis of 2007-2008 Basel III was introduced, with the first proposals
being published in 2010 (BCBS, 2016a). The current IRR standards is part of Basel II but
will soon be replaced by the Interest Rate Risk in the Banking Book (IRRBB). IRRBB
is expected to be implemented in 2018 and is a part of Basel III (BCBS, 2016b). Unless
otherwise mentioned, information in this section refers to the latest version of IRRBB,
see BCBS (2016b). Before being able to focus on the specifics of IRRBB it is necessary
to explain the concept of a banking book. The banking book and the trading book are
accounting definitions that are used to classify different assets and liabilities. Traditional
commercial banking products, e.g. deposits and retail loans, are usually classified as
belonging to the banking book whereas more actively traded assets and liabilities, e.g.

1In Sweden the national supervisor is Finansinspektionen.
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equities held for market making, belong to the trading book (Bessis, 2011). Assets and
liabilities in the banking book can be difficult to mark-to-market, are generally held to
maturity and therefore tend to be valued according to accounting principles or marked-
to-model.

The Basel II IRR standards, Principles for the management and supervision of interest
rate risk, belongs to Pillar 2 and requires banks to be capable of measuring IRR to parallel
interest rate shifts using both earnings and EV approaches. A risk threshold exists for EV
but not for NII. If a decline in EV from a prescribed interest rate shift of 200bps exceeds the
threshold, the national supervisor should take ”remedial actions”. In the original IRRBB
proposal the BCBS suggested changing IRRBB management to a Pillar 1 approach. Thus
requiring minimum capital to be held to cover IRR, which would have been computed using
a standardized approach. However, this approach was heavily criticized by the industry,
which emphasized the heterogeneous nature of banking book instruments, arguing that
these are not amenable to standardization1. The finalized proposal instead contains an
“enhanced” Pillar 2 approach (with some Pillar 3 elements) and a standardized Pillar 1
framework “which supervisors could mandate their banks to follow, or a bank could choose
to adopt” (BCBS, 2016b).

Out of interest for this thesis is the trade-off between EVE and NII. In the IRRBB con-
sultative document, the BCBS acknowledges the risk of unintended consequences if the
focus is solely on EVE, saying that “there is a trade-off between optimal duration of equity
and earnings stability” (BCBS, 2015). In addition to this the committee notes that most
commercial banks focus on earnings-based measures for IRRBB management, while reg-
ulators tend to focus on economic value measures. The IRRBB proposal outlines several
principles that banks should comply with. One principle of particular interest is

Principle 3: “The banks’ risk appetite for IRRBB should be articulated in
terms of the risk to both economic value and earnings. Banks must implement
policy limits that target maintaining IRRBB exposures consistent with their
risk appetite”.

As we will illustrate later in this thesis, the two measures are interconnected. Thus if a
bank chooses a policy limit for one of the two measures, this will imply the limits that are
possible for the other measure. Another interesting difference is an emphasis on a wider
range of interest rate scenarios than the current standards

Principle 4: “Measurement of IRRBB should be based on outcomes of both
economic value and earnings-based measures, arising from a wide and appro-
priate range of interest rate shock and stress scenarios”.

Even if the committee does not require the implementation of the standardized approach
it is of interest since the approach is an approved model for a bank to measure IRR and
several of its components have been mandated in the Pillar 2 part. Before proceeding with
a short description of the standardized approach we note that Principle 8 of the Pillar 2
part requires banks to

• Exclude equity from the computation.

• Compute EVE risk for a run-off balance sheet, assuming no new business.

1The various comments received by the committee can be found on the committee’s website.
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• Compute NII over a 1-year period assuming a constant balance sheet, where matur-
ing assets are rolled into equivalent new assets.

For the EVE part the banks are also allowed to discount cash flows using a risk-free zero-
coupon rate if commercial margins and other spreads are removed from cash flows. With
regards to the standardized approach, both the measurement of NII and EVE involves a
so-called gap-analysis for quantifying risks. This means that asset and liability cash flows
are slotted into time buckets based on the first date the instrument is rate sensitive to,
the repricing date. Given a decision regarding commercial margins and other spread com-
ponents, the EVE calculations, for an interest rate scenario i, are straightforward

EV Ej =

K∑
k=1

CFj(tk)e
−Rj(0,tk)tk =

K∑
k=1

CFj(tk)DFj(tk)

∆EV Ei =EV E0 − EV Ei.

(2.2.1)

Where j = 0 is the current interest rate term structure, CFj(tk) is the net cash flow of
instruments that reprice in the time bucket tk, Rj(0, tk) the interest rate between 0 and
tk, with both being computed under scenario j. There are six prescribed scenarios (the
actual sizes of which are dependent on the currency under consideration)

(i) parallel shock up,

(ii) parallel shock down,

(iii) steeper curve shock,

(iv) flatter curve shock,

(v) short rates up,

(vi) long rates down.

IRRBB’s NII measure is a present value measure of NII. Formulas for NII and NII risk for
the unknown NII (during the next year) of an asset that reprices at t1 is presented below,
the period of measurement is t0 to t2

NII(t0, t1, t2) = A[eR(t0,t1,t2)(t2−t1) − 1]

= A[eR(t0,t2)t2−R(t0,t1)t1 − 1]
(2.2.2)

PV (NII(t0, t1, t2)) = NII(t0, t1, t2)e−R(t0,t2)t2

= A[e−R(t0,t1)t1 − e−R(t0,t2)t2 ].
(2.2.3)

Where A is the cash flow repricing at t1 and R(t0, t1, t2) is the forward rate at t0 between
t1 and t2. When calculating NII after an interest rate shock, a parallel interest rate shock
of size ∆R is applied

PV (NII(t0, t1, t2))shocked = A[e−(R(t0,t1)+∆R)t1 − e−(R(t0,t2)+∆R)t2 ]. (2.2.4)
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NII at risk to a shock is expressed as

∆PV (NII(t0, t1, t2)) = PV (NII(t0, t1, t2))shocked − PV (NII(t0, t1, t2)). (2.2.5)

Two things are worth noting, firstly the asset has a known return until t1, and thus the for-
mulas above only account for the risk in the unknown, expected return and not the present
value change of known NII. Secondly, equation 2.2.2 is only correct if parallel interest rate
shocks are used and forward rates are assumed to be implied from the zero-coupon curve
since it does then not matter if the instrument is rolled over several times or only once to
t2. Whilst not described here, the framework also contains formulas for the computation
of IRR for non-standardized instruments such as non-maturing deposits.
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Chapter 3

Theory and Previous Research

This chapter introduces the mathematical theory and notation that will be used in the
following chapters. We end with section 3.6 in which we present previous research about
studying NII and EVE simultaneously. If nothing else is stated, we assume a bond market
free of arbitrage and the existence of a filtered probability space (Ω,F , {Ft}t≥0,Q), where
Q denotes the martingale measure. We will denote the physical measure as P, the measure
under which we observe the actual realization of bond prices. All interest rates are ex-
pressed as continuously compounded. For a more thorough description of continuous time
models in finance see Björk (2009) and specifically for their use in fixed income modeling
see Brigo and Mercurio (2007).

3.1 Interest rates and bonds

A non-defaultable zero-coupon bond (ZCB) with maturity at time T is a financial contract
that, with certainty, pays its owner 1 at time T . The price of the ZCB at time t < T is
denoted as p(t, T ) and obviously p(T, T ) = 1. We view the forward rate as the interest
rate that can be contracted for a future period today. Using the ZCB we define the
(continuously compounded) forward rate between t and T at s as

R(s, t, T ) = − log p(s, T )− log p(s, t)

T − t
. (3.1.1)

If t = s we call the forward rate the zero-coupon rate and denote it as R(t, T ). In this
thesis the zero-coupon curve at time t describes the mapping

T 7→ R(t, T ), t < T.

A continuous zero-coupon curve is a theoretical concept since there does not exist quoted
bonds for all maturities in the market. Instead it is approximated using available market
quotes of e.g. bonds and swaps. Figure 3.1 shows the US zero-coupon curve bootstrapped2

semi-annually between 2007-04-30 and 2017-04-28 using data from the U.S. Treasury. As

2More about this in chapter 5
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can be seen in the figure, the zero-coupon curve’s relative level, slope and curvature varies
over time.
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Figure 3.1: Semi-annual zero-coupon curve bootstrapped using data from the U.S. Trea-
sury between 2007-04-30 and 2017-04-28

A fixed-rate coupon bond is a bond that at predetermined points in time, (t1, t2, . . . , tn),
makes predetermined coupon payments, (c1, c2, . . . , cn). Its price, p̄c(t, T ), at time t ≤ ti
is simply a linear combination of ZCB prices and can be written as

p̄c(t, T ) = p(t, T ) +

n∑
i:ti≥t

cip(t, ti). (3.1.2)

Out of particular interest in this thesis is the theoretical construct of a bond paying a
continuous coupon. This can be thought of as a bond that pays c̄(s)ds over a small time
interval [s, s + ds]. Similarly to equation 3.1.2 we have that the price at t, pc(t, T ), of a
bond that pays the coupon c̄(s) at s ∈ [t, T ] is

pc(t, T ) = p(t, T ) +

∫ T

t
c̄(s)p(t, s)ds. (3.1.3)

If the coupon bond is currently trading at a price of 1 it is said to trade at par and we
call it a par-coupon bond. Assuming that c̄(s) is constant between t and T we can solve
for the constant par coupon, denoted c(t, T ), at t as

c(t, T ) =
1− p(t, T )∫ T
t p(t, s)ds

. (3.1.4)

Another concept utilized later on is the forward par coupon, c(u, t, T ), which we define as
the constant coupon we can, without initial cost, contract at u < t to receive between t
and T for a guaranteed cost of 1 at t. The coupon could easily be solved for by introducing
the t-forward measure but to avoid this we note that we can simply discount the cash flows
in equation 3.1.3 to u. Similarly to equation 3.1.4 we get that

c(u, t, T ) =
p(u, t)− p(u, T )∫ T

t p(u, s)ds
. (3.1.5)

Before proceeding we note that obviously c(t, t, T ) = c(t, T ) since p(t, t) = 1.
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3.2 Short-rate and ATS models

Having defined these simple concepts the natural follow-up question is how do we de-
termine the price of a bond? To do this we define the short rate. The short rate is a
theoretical rate which describes the annualized rate in a money account over an infinites-
imal period dt. Under the martingale measure Q the short rate, r(t), is modeled as the
solution to a stochastic differential equation (SDE) of the form

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dWQ(t), (3.2.1)

where µ(t, r(t)) and σ(t, r(t)) are functions for the drift and diffusion coefficients respec-
tively and W (t) is a Q-Wiener process. The price of a T -maturity ZCB at t is then given
by

p(t, T ) = EQ
[
e−

∫ T
t r(s)ds|Ft

]
. (3.2.2)

In this thesis we will use a special class of short rate models called affine term structure
(ATS) models. ATS models can be preferable to work with since they provide closed-form
expressions of bond prices, which is good from a computational point of view. A model is
said to have an affine term structure if ZCB prices are given by

p(t, T ) = F (t, r(t);T ),

where F can be written as
F (t, r;T ) = eA(t,T )−B(t,T )r. (3.2.3)

It turns out that the model admits an ATS solution if the drift and squared diffusion term
in equation 3.2.1 are affine functions that can be written as

µ(t, r) = α(t)r + β(t),

σ2(t, r) = γ(t)r + δ(t),
(3.2.4)

where α, β, γ and δ are deterministic functions. The deterministic functions A(t, T ) and
B(t, T ) can be found by solving the following system of equationsBt(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = −1,

B(T, T ) = 0,
(3.2.5)

At(t, T ) = β(t)B(t, T )− 1

2
δ(t)B2(t, T ),

A(T, T ) = 0,
(3.2.6)

where At(.) and Bt(.) denotes the derivatives with respect to t (Björk, 2009). The first
model we study is the single-factor Vasicek model, which under Q is specified as

dr(t) = κ(θ̄ − r(t)) + σdW (t). (3.2.7)

The SDE admits the solution1

r(t)|Fs ∼ N
(
θ̄(1− e−κ(t−s)) + e−κ(t−s)r(s),

σ2

2κ
(1− e−2κ(t−s))

)
, s < t, (3.2.8)

1Can be solved by using a ”trick” and first setting Y (t) = (κ(θ̄ − r(t)) and then using Itô’s lemma on
eκtY (t)
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where N (µ, σ2) denotes the Normal distribution with expected value µ and variance σ2.
We note that

lim
t→∞

r(t)|Fs ∼ N
(
θ̄,
σ2

2κ

)
,

and thus we can view θ̄ as a long-run mean and κ as a parameter that determines the
speed of convergence to the limiting distribution.

Using equations 3.2.5 and 3.2.6 together with equation 3.2.7 we find the explicit expression
for the T-ZCB price at t as

p(t, T ) = eA(t,T )−B(t,T )r(t),

B(t, T ) =
1

κ
(1− e−κ(T−t)),

A(t, T ) =
γ(B(t, T )− (T − t))

κ2
− σ2B(t, T )2

4κ
,

(3.2.9)

where γ = κ2θ̄−σ2/2. The Vasicek model has been criticized due to the fact that it allows
negative rates with a positive probability. In light of recent years unorthodox monetary
policies with market rates in many currencies at levels below zero, this is not necessarily
a drawback of the model. Nevertheless, the model has other drawbacks one being that
the model is not able to perfectly fit the current term structure, which can be critical if
the model is going to be used to price derivatives (Brigo and Mercurio, 2007). For the
purposes of this thesis this is of minor importance. However, what might be a more serious
disadvantage is the limited types of zero-coupon curve shifts that can be achieved using a
single-factor model. To see this we express equation 3.1.1 using equation 3.2.9 as

R(t, T ) = R(0, t, T ) =
B(t, T )r(t)−A(t, T )

T − t
.

We then have that for s < t < S < T

CovQ[R(t, T ), R(t, S)|Fs] = EQ[R(t, T )R(t, S)|Fs]− EQ[R(t, T )|Fs]EQ[R(t, S)|Fs]

=
B(t, T )B(t, S)

(T − t)(S − t)
(EQ[r2(t)|Fs]− EQ[r(t)|Fs]2)

=
B(t, T )B(t, S)

(T − t)(S − t)
V arQ(r(t)|Fs)

=
√
V arQ(R(t, T )|Fs)

√
V arQ(R(t, S)|Fs),

and thus the correlation between R(t, T ) and R(t, S) is equal to 1. By looking at figure
3.1 one could deduct that this does not seem to be true for the actual zero-coupon curve.
Brigo and Mercurio (2007) contends that single-factor models can still be useful for some
risk management purposes, examples being payoffs depending on rates that are highly
correlated, e.g. the 3-month and 6-month rate. To avoid perfect correlations between
different maturities one can use a multi-factor model. In multi-factor models the short
rate r is modeled as being driven by several sources of randomness, here called state
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variables. As in Bolder (2001) we denote these as y1, ..., yn, with the short rate r given
by

r(t) =
n∑
i=1

yi(t), (3.2.10)

where the SDEs governing the state variables are modeled as

dy1(t) = µ1(t, y1)dt+
n∑
i=1

ρ(y1, yi, t)dW
Q
1 (t),

...

dyn(t) = µn(t, yn)dt+
n∑
i=1

ρ(yn, yi, t)dW
Q
n (t).

(3.2.11)

where WQ
i (t) is a scalar Q-Weiner process and d〈Wi,Wj〉 = 0. This leads to two natural

questions, how many state variables should we use and how should we model µi(., .) and
ρ(., .)? Numerous studies have been done on this topic and a common result is that at least
three factors are needed (Van Deventer et al., 2013). Remember from section 2.2 that the
prescribed interest rate shifts for NII and EVE were different in IRRBB’s standardized
model. For NII only parallel shifts are used, whereas for EVE six scenarios corresponding
to three different types of shifts are used. Therefore, we limit our investigation to single-,
two- and three-factor models in this thesis.

3.3 The multi-factor Vasicek model

A natural extension of the single-factor Vasicek model defined in equation 3.2.7 is the
multi-factor Vasicek model. Using the notation from equation 3.2.11 we set

µi(t, yi) = κi(θ̄i − yi(t)),
ρ(yi, yj , t) = σij ,

(3.3.1)

where κi, θ̄i and σij are constants for all i and j in 1, . . . , n. Thus the n-factor Vasicek
model can be written as

r(t) =
n∑
i=1

yi(t),

dy1(t) = κ1(θ̄1 − y1(t))dt+
n∑
i=1

σ1idW
Q
1 (t),

...

dyn(t) = κn(θ̄n − yn(t))dt+
n∑
i=1

σnidW
Q
n (t).

(3.3.2)
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It can be shown, see e.g. Bolder (2001), that the n-factor Vasicek model is also an ATS
model with ZCB prices given by

p(t, T ; y1, . . . , yn) = eA(t,T )−
∑n
i=1Bi(t,T )yi ,

Bi(t, T ) =
1

κi
(1− e−κi(T−t)),

A(t, T ) =

n∑
i=1

γi
Bi(t, T )− (T − t)

κ2
i

− σ2
iB

2
i (t, T )

4κi

+
∑
i 6=j

σij
2κiκj

(
T − t−Bi(t, T )−Bj(t, T ) +

1

κi + κj
(1− e−(κi+κj)(T−t))

)
,

(3.3.3)

where γi = κ2
i θ̄i − σ2

i /2. As can be seen the solution is similar to the single-factor case
in equation 3.2.9, with the double sum in A(t, T ) resulting from the correlation between
state variables. By assuming non-zero correlation between state variables it is possible
to achieve more complicated volatility structures (Brigo and Mercurio, 2007). However,
the numerical optimization algorithm used to fit the model becomes more complex and
unstable (Bolder, 2001). Since no complex derivatives will be priced in this thesis we choose
to assume independence between state variables and thus set σij = 0 if i 6= j. Nevertheless,
having independent state variables does not mean that the correlation structure between
different points on the zero-coupon curve remains the same as in the single-factor case.
Similarly to the single-factor case we have that

R(t, T ) =
−A(t, T ) +

∑n
i=1Bi(t, T )yi(t)

T − t
,

and for s < t < S < T we get that

CovQ[R(t, T ), R(t, S)|Fs] = EQ[R(t, T )R(t, S)|Fs]− EQ[R(t, T )|Fs]EQ[R(t, S)|Fs]

=
n∑
i=1

Bi(t, T )Bi(t, S)

(T − t)(S − t)
V arQ(yi(t)|Fs),

using which we also have that

V arQ(R(t, T )|Fs) = CovQ[R(t, T ), R(t, T )|Fs]

=
n∑
i=1

B2
i (t, T )

(T − t)2
V arQ(yi(t)|Fs).

(3.3.4)

Thus, we can see that the correlation between two points on the zero-coupon curve need
not be equal to 1 as was the case with the single-factor model. Before proceeding we
note that in case of forced independence the state variables distribution will be similar to
equation 3.2.8 and we have that

yi(t)|Fs ∼ N
(
θ̄i(1− e−κi(t−s)) + e−κi(t−s)yi(s),

σ2
i

2κi
(1− e−2κi(t−s))

)
, s < t. (3.3.5)
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3.4 Model calibration

There exists several methods with which one could estimate the parameters for a given
short rate model. For a single-factor model one could assume that a point on the zero-
coupon curve approximates the short rate, e.g. the three-month zero-coupon rate. For a
multi-factor model this is not enough and one could assume that the other state variables
correspond to economically sound variables, e.g. a long-term rate or inflation. If the model
is going to be used for derivatives pricing one could use derivatives such as swaptions to
make sure that the model replicates the markets volatility structure (Brigo and Mercurio,
2007). In this thesis we will use an alternative method called a Kalman filter to fit our
models. The Kalman filter is useful in this setting since it does not force us to specify
what each state variable should correspond to. Instead we estimate the parameters by
assuming that we observe points on the zero-coupon curve over time and that these are
driven by unobservable state variables. If nothing else is mentioned, this section is based
on Bolder (2001) who provides a thorough description of the multi-factor Vasicek and CIR
model and how estimation can be done using a Kalman filter. Since the algorithm is the
same for a single-, two- and three-factor Vasicek model we only show the three factor setup
below.

To begin with we note that when observing the actual evolution of the zero-coupon curve
we are under the physical measure, P, and when we have specified a short-rate model
under Q we have specified the entire term structure Björk (2009). If we denote λi the
market risk premium for state variable i and define θi as

θi = θ̄i +
σiλi
κi

, i = 1, . . . n,

we have that under P state variable i is governed by the dynamics

dyi(t) = κi(θi − yi(t))dt+ σidW
P
i (t).

It is then easy to see that under P, yi will have the following distribution (compare with
equation 3.3.5)

yi(t)|Fs ∼ N
(
θi(1− e−κi(t−s)) + e−κi(t−s)yi(s),

σ2
i

2κi
(1− e−2κi(t−s))

)
, s < t. (3.4.1)

We now assume that we at regularly spaced points in time t1, . . . , tN , with tj+1− tj = ∆t,
have observed the vector R̄(ti) of points on the zero-coupon curve as

R̄(ti) = [R(ti, ti +M1), R(ti, ti +M2), . . . , R(ti, ti +Mp)]
T , ti ∈ {t1, . . . , tN}. (3.4.2)

To ease notation later on we note that the Bis and A in equation 3.3.3 are time invariant
and henceforth we write them as

Bi(ti, ti +Mj) = Bi(Mj),

A(ti, ti +Mj) = A(Mj).

The measurement system describes the relationship between the observed zero-coupon
rates and the state variables. Using equations 3.1.1 and 3.3.3 we can express equation
3.4.2 as
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R̄(ti) = −


A(M1)
M1
...

A(Mp)
Mp

+


B1(M1)
M1

B2(M1)
M1

B3(M1)
M1

...
...

...
B1(Mp)
Mp

B2(Mp)
Mp

B3(Mp)
Mp


y1(ti)
y2(ti)
y3(ti)

+

ν1(ti)
ν2(ti)
ν3(ti)


= −A+By(ti) + ν(ti),

(3.4.3)

where ν(ti) represents a noise term included in our observations and could be thought of
relating to e.g. bid-ask spreads or data-entry errors (Bolder, 2001). We assume that νi(tk)
has the following distribution

ν(ti) ∼ N




0
0
...
0

 ,

r 0 · · · 0
0 r · · · 0
...

...
. . .

...
0 0 · · · r


 = N (0, R). (3.4.4)

We now need to state the transition system that describes the distribution of the state vari-
ables under P between time points ti and ti+1. Utilizing equation 3.4.1 we have that

y1(ti+1)
y2(ti+1)
y3(ti+1)

 =

θ1(1− e−κ1∆t)
θ2(1− e−κ2∆t)
θ3(1− e−κ3∆t)

+

e−κ1∆t 0 0
0 e−κ2∆t 0
0 0 e−κ3∆t

y1(ti)
y2(ti)
y3(ti)

+

ε1(ti+1)
ε2(ti+1)
ε3(ti+1)


= C + Fy(ti) + ε(ti+1),

(3.4.5)

where

ε(ti+1)|Fti ∼ N


0

0
0

 ,

σ2
1

2κ1
(1− e−2κ1∆t) 0 0

0
σ2
2

2κ2
(1− e−2κ2∆t) 0

0 0
σ2
3

2κ3
(1− e−2κ3∆t)




∼ N (0, Q).

The Kalman filter works as a recursive algorithm where we make an a priori estimate of
the transition system. Once we observe the actual state of the measurement system we
update our estimate of the transition system. Using this updated estimate we can compute
the following a priori estimate of the transition system. The full algorithm is described
below.
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Step 0

At t0 we make an initial educated ”guess” of the transition system at t1. Since no previous
information is available we use the unconditional mean and variance of y(t1)

EP[y(t1)] = [θ1, θ2, θ3]T ,

V arP(y(t1)) =


σ2
1

2κ1
0 0

0
σ2
2

2κ2
0

0 0
σ2
3

2κ3

 . (3.4.6)

Step 1

Using the linearity of equation 3.4.3 we get that the conditional prediction of the mea-
surement system and the conditional variance of this prediction is

EP[R̄(ti)|Fti−1 ] = −A+BEP[y(ti)|Fti−1 ],

V arP(R̄(ti)|Fti−1) = BV arP(y(ti)|Fti−1)BT +R.
(3.4.7)

Step 2

We can now compute the measurement error of the conditional prediction as

v(ti) = R̄(ti)− EP[R̄(ti)|Fti−1 ]. (3.4.8)

We can also compute the so-called Kalman gain matrix

K(ti) = V arP(y(ti)|Fti−1)BTV arP(R̄(ti)|Fti−1)−1, (3.4.9)

which can be thought of as determining the relative importance of the measurement error
in equation 3.4.8 when updating our prediction of the transition system.

Step 3

The a posteriori estimate of the transition system and its variance is found, using equations
3.4.8 and 3.4.9, to be

EP[y(ti)|Fti ] = EP[y(ti)|Fti−1 ] +K(ti)v(ti),

V arP(y(ti)|Fti) = (I −K(ti)B)V arP(y(ti)|Fti−1),
(3.4.10)

where I is the identity matrix.
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Step 4

The final step is making an a priori estimate of the transition system and its variance
by

EP[y(ti+1)|Fti ] = C + FEP[y(ti)|Fti ],
V arP(y(ti+1)|Fti) = V arP(y(ti)|Fti−1)− FV arP(y(ti)|Fti)F T +Q.

(3.4.11)

Steps 1 to 4 are then repeated up to tN . Using the assumption that the prediction
errors of the measurement system are normally distributed a log-likelihood function can
be constructed as

log[L(Θ)] = −Np log[2π]

2
− 1

2

N∑
i=1

log[|V arP(R̄(ti)|Fti−1)|]

− 1

2

N∑
i=1

vT (ti)V ar
P(R̄(ti)|Fti−1)−1v(ti)) (3.4.12)

To find the (in the log-likelihood sense) optimal parameters we maximize equation 3.4.12
numerically in R, a programming package for statistical computing, using a non-linear
optimization package called nlminb. The implementation in R was built on Goh (2013).
Since the main purpose of this thesis is not the statistical estimation of parameters in the
Vasicek model we will not investigate how good our estimate is. The interested reader can
see e.g. Babbs and Ben Nowman (1999) for a discussion on this topic. However, similarly
to Bolder (2001) we investigate how well the numerical optimization works on simulated
data. We do this by simulating the evolution of the state variables over a ten-year period
and each month computing the zero-coupon curve at the time points 1 month, 3 months,
6 months, 1 year, 2 years, 3 years, 5 years, 7 years, 10 years, 20 years and 30 years. To
simulate the state variables we use equation 3.4.5 with ∆t = 1/122, i.e. we discretize
each month into 12 parts. To compute the simulated zero-coupon curve we use every 12th
simulation of the state variables and add a simulated measurement error with distribution
as in equation 3.4.4, setting r = 0.012. This scheme is repeated 200 times and for every
ten-year period the Kalman filter is applied on the simulated zero-coupon curves and the
resulting log-likelihood function is maximized. From the 200 estimates we then compute
means and standard deviations. The results for the 3-factor model can be seen in table
3.1. As can be seen, it works fairly well for some of the parameters but the θis estimates
are a bit off, which implies that more than 200 simulations would need to be done for
better convergence.

3.5 Expected shortfall

To define Expected Shortfall (ES) we first need to define Value-at-Risk (VaR). For a
portfolio with value V (t) at time t and V (0) today, the P&L over the period can be
written as X = V (t) − V (0). We set our risk horizon to t and let L denote the loss
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Table 3.1: Estimates from 200 simulations

Parameter Actual Value Mean Standard Deviation

θ1 0.0020 0.0083 0.0134
θ2 0.0200 0.0121 0.0202
θ3 0.0030 0.0124 0.0177
κ1 0.6000 0.6588 0.2006
κ2 0.0200 0.0201 0.0017
κ3 0.4000 0.3575 0.1142
σ1 0.0100 0.0124 0.0085
σ2 0.0200 0.0193 0.0034
σ3 0.0300 0.0271 0.0067
λ1 0.8000 0.6253 0.5029
λ2 -0.1400 -0.1497 0.1923
λ3 -0.7100 -0.6399 0.3597

distribution, i.e. L = −X. VaRα(X) is defined as the (1 − α)-quantile of L (Bessis,
2011). If the distribution function is strictly increasing and continuous this can be written
as

VaRα(X) = F−1
L (1− α), (3.5.1)

where F−1
L is just the regular inverse of L’s cumulative distribution function. According

to BCBS (2015), VaR for EVE and NII1 is the risk metric most commonly monitored by
regulators for IRR. However, several of VaR’s properties have been criticized. One example
being that it lacks the subadditivity property, which roughly means that diversification
need not always lower risk (Hult et al., 2012). ES is an extension of VaR, where ESα is
the average VaR below α. Formally, we define ESα as

ESα(X) =
1

α

∫ α

0
VaRs(X)ds, (3.5.2)

where typical levels of α are 1% and 5%. In an IRR setting, ES of EVE is currently moni-
tored by a few regulators (BCBS, 2015). ES is a coherent risk measure, which means that
it satisfies the subadditivity, monotonicity, translation invariance and positive homogene-
ity properties (Hult et al., 2012). This implies that ES is a convex risk measure, meaning
that for λ ∈ [0, 1] we have that

ES(λX1 + (1− λ)X2) ≤ λES(X1) + (1− λ)ES(X2). (3.5.3)

As was mentioned in section 2.2, IRRBB prescribes the usage of different deterministically
determined interest rate scenarios. Instead, to decide on a risk measure we take guidance
from FRTB, the corresponding BCBS framework for risk in the trading book. In the new
FRTB proposal BCBS has transitioned from VaR to ES and in light of this we choose to
use ES as our preferred risk measure as well.

Later on we will compute ES from a simulated samples and hence we need an expression
for an empirical estimate of it. If we denote the floor function b.c, Hult et al. (2012) shows

1Sometimes called Economic Value-at-Risk (EVaR) for EVE and Earnings-at-Risk (EaR) for NII.
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that if we have a sample of n losses of X and order them such that L1,n ≥ L2,n ≥ · · · ≥ Ln,n
an empirical estimator of ESα is

ÊSα(X) =
1

α

bnαc∑
i=1

Li,n
n

+

(
α− bnαc

n

)
Lbnαc+1,n

 . (3.5.4)

3.6 Models combining NII and EVE

As was mentioned in chapter 1 there does not exist a lot of research investigating the
relationship between NII and EVE. The model that is closest to ours is presented in Mem-
mel (2014) where NII and EVE, similarly to our model, is studied for a rolling portfolio
of coupon bonds. The validity of this approach is based on Memmel (2008), where the
NII sensitvity of German cooperative and savings banks is approximated as the interest
income generated from a portfolio of rolling par-coupon bonds. The used method requires
the following assumptions

• The portfolio’s maturity structure remains constant over time. This means that as
soon as a bond (bought or issued) matures the same amount is reinvested in a bond
with the same time to maturity as the maturing bond initially had.

• Both the replacement process and the coupon payments are continuous, with the
same fraction of the portfolio maturing at every point in time. Meaning that if
the portfolio invests in bonds with an initial time to maturity of M years, 1

M of
the portfolio matures every year. Alternatively expressed we reinvest 1

M dt of the
portfolio over a small period of time dt.

• All bonds are non-defaultable and issued at par.

In the empirical setting in Memmel (2008) this is approximated using a monthly discretiza-
tion. Each bank is then approximated as a weighted sum of several rolling portfolios with
different maturities. Of course, this is a simplification of a real bank’s asset and liability
structure, disregarding features such as defaults and the usage of derivatives. Nevertheless,
Memmel (2008) finds that the method works fairly well as an approximation of German
banks’ NII. In Memmel (2014) this model is expanded to also include an EVE measure. To
get analytically tractable expressions an additional assumption is made, the zero-coupon
curve is assumed to have been historically constant and thus all par-coupon bonds bought
before today, denoted as t = 0, have yielded the same coupon. Using the same notation
as equation 3.1.5 this means that

c(t, t+M) = c(0,M), ∀t ≤ 0.

We denote S(M) the strategy that consists of investing in a rolling portfolio of continuously
yielding, risk free, par-coupon bonds with maturity equal to M years. EVE is defined as
the present value of the run-off portfolio. To find an expression for EVE we notice that
during a small time period [t, t + dt] where t < M the portfolio strategy S(M) pays its
holder

(1− t/M)c(0,M)dt+ 1/Mdt. (3.6.1)
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The first part coming from the coupons paid by bonds that have yet to mature at t and the
second part coming from the bonds maturing at t1. EVE of the strategy S(M) can hence
be computed by discounting all cash flows from the portfolio and we have that

EVE(M) =

∫ M

0
[(1− t/M)c(0,M) + 1/M ] p(0, t)dt. (3.6.2)

Memmel (2014) defines the base case for NII as the coupon payments the portfolio would
have yielded during the first year provided the zero-coupon curve did not change during
the first year. Hence we have that

NII(M) =

∫ 1

0
c(0,M)dt = c(0,M). (3.6.3)

To investigate how NII and EVE of different portfolio strategies changes with different
zero-coupon curve shifts, Memmel (2014) assumes that the zero-coupon curve can be
modeled using the Nelson-Siegel model. This means that the continuously compounded
zero-coupon rate between 0 and t is written as

R(0, t) = β0 + β1
1− exp(−λt)

tλ
+ β2

(
1− exp(−λt)

tλ
− exp(−λt)

)
, (3.6.4)

and thus
p(0, t) = e−R(0,t)t. (3.6.5)

Assuming that λ is a constant, zero-coupon curve changes can be viewed as a function of
(β0, β1, β2) and we can proceed by deriving expressions for ∂EVE

∂βi
(M) and ∂NII

∂βi
(M). For

EVE the resulting derivatives are easily derived from equation 3.6.2 as

∂EVE

∂βi
(M) =

∫ M

0
[(1− t/M)c(0,M) + 1/M ]

∂p(0, t)

∂βi
dt. (3.6.6)

Since the only part that is sensitive to a change in βi is the ZCB price (in this setting it
can be thought of as a discount factor). For NII the assumption is made that after the
initial zero-coupon curve shift it remains constant until at least the end of year 1. We
note that the change in NII occurs due to the bonds that are renewed during year 1 and
thus

∂NII

∂βi
(M) =

{(∫M
0 t/Mdt+

∫ 1
M dt

)
∂cδ(0,M)
∂βi

, M ≤ 1∫ 1
0 t/Mdt∂cδ(0,M)

∂βi
, M > 1.

(3.6.7)

Where we have used δ to denote that the change in coupon only affects coupons paid
by bonds that have been bought after the zero-coupon curve has shifted. Notice that
integrands represent how much that has been rolled into bonds with the ”new” coupon.
Before proceeding it is worth emphasizing that NII is measured as realized NII and thus
not measured at the same point in time as EVE.

1Bonds that were bought at t−M
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Translating a zero-coupon curve shift into changes in (β0, β1, β2), we can together with
equations 3.6.6 and 3.6.7 compute the approximate effect on EVE and NII as

∆NII ≈
2∑
i=0

∂NII

∂βi
(M)∆βi, (3.6.8)

and

∆EV E ≈
2∑
i=0

∂EVE

∂βi
(M)∆βi. (3.6.9)

Memmel (2014) then uses a Principal Component Analysis of historical 12-month changes
of the zero-coupon curve to translate the three factors that explain most of the variation
into changes in (β0, β1, β2). Using a historical simulation approach the effects of changes in
the parameters are investigated and related according to changes in the βis. As expected, it
is also shown that portfolios with smaller Ms are more sensitive to changes in NII, whereas
the converse holds for EVE. In contrast to Memmel (2008) combinations of several rolling
portfolios is only illustrated briefly. The sole example being combinations of one long and
one short portfolio both having the same size, thus studying an aggregate portfolio of a
different notional value than a simple long portfolio.

Iwakuma and Hibiki (2015) sets out to study how two different measures of IRR interact,
which are defined as EVE and a three-year NII measure that also includes changes in
the market value of assets and liabilities. The authors utilize more advanced models of
assets and liabilities that include prepayments, credit risk, time-varying deposit volumes,
non-perfect correlation between the zero-coupon rate and e.g. the deposit rate. The
zero-coupon curve is modeled as a Nelson-Siegel model where the βis are assumed to
follow an AR(1) model. The effects of changes in the zero-coupon curve are studied for a
hypothetical balance sheet using Monte Carlo simulations. The authors argue that their
NII measure is superior to EVE due to it taking into account future transactions. However,
it should be added that the model is rather sensitive to parameter estimates and hence
one could question if it is possible to model future business reliably, especially for periods
up to three years. We also note that the model is specifically tailored for the Japanese
setting and thus has a few Japan-specific characteristics. Unfortunately we have not been
able to find the full report in English and the conference paper is not very detailed.

Whereas both Iwakuma and Hibiki (2015) and Memmel (2014) investigate two differ-
ent risk measures simultaneously they take no position on what an optimal portfolio is.
Ozdemir and Sudarsana (2016) proposes a framework to select the optimal duration of the
banking book given the objective being to optimize profit and certain constraints being
satisfied with respect to NII and EVE. The use of duration as the variable the bank can
change is based on a survey of large global banks1 showing that a majority had a target
duration of equity that was used for IRR management. Rather than focus on modeling
a bank the focus is on motivating and defining an optimization problem that the bank
should solve when managing IRR. The EVE and NII constraints are defined as VaR (or
ES) at a certain level being below a given threshold. The objective function that is to
be optimized is a type of risk-adjusted profit. Both EVE and NII are computed as the

1https://www.pwc.com/gx/en/banking-capital-markets/assets/balance-sheet-management-
benchmark-survey.pdf
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difference between the initial value and the value after a year. This is problematic for
EVE since the duration of a static portfolio will, ceteris paribus, decrease as we move
forward in time, meaning that the position becomes less risky. It is worth mentioning that
not a lot is said about how well defined the optimization problem is. For a banking book
with complex instruments it might be computationally hard or even infeasible to solve the
defined problem.

We end this section with noting that all of these studies use slightly different definitions
of NII and EVE and all of them differ from the IRRBB definitions.
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Chapter 4

Modeling

In this chapter we present the portfolios and the analytical expressions for EVE and
NII that are used to measure IRR. However, before this a discussion regarding our model
requirements is warranted. Thus we begin with a presentation of our modeling assumptions
and the simplifications that are made.

4.1 Portfolio composition

All companies are more or less sensitive to movements in interest rates due to the time
value of money. Nevertheless, regulators do not actively study IRR for most industries.
As was mentioned in 2.2, IRRBB requires banks to compute two IRR measures, EVE and
NII. A natural requirement is then that the studied portfolio should, at least partially,
react similarly as a banking book to zero-coupon curve shifts. A real bank’s banking
book is in general made up of a complex composition of financial instruments on both
the asset and liability side of the balance sheet. Examples of complex components on
the liability side are deposits with no contractual maturity and whose interest rates are
seldom perfectly correlated with any market rate. On the asset side examples are different
types of mortgages with included optionality. This optionality is sometimes exercised in
a non-rational manner, requiring behavioral models to value them. For both deposits and
mortgages the complexity is further increased by the fact that products often can have both
bank- and country-specific features. As an example, mortgages in Sweden can typically
only be prepaid if the borrower pays a break-fee, whereas in the U.S. fixed-rate mortgages
are typically prepaid without any fees. However, the fundamental relationships between
EVE, NII and the maturity of instruments should remain the same for most instruments.
Building on Memmel (2008) we make the assumption that parts of a commercial bank’s
banking book could roughly be approximated using a portfolio strategy that consists of
rolling over non-defaultable coupon bonds. The reader should note that we thus disregard
basis and optionality risk. But, we note that when Iwakuma and Hibiki (2015) tries to
take these effects into account they end up with a model that is sensitive to assumptions
and less useful for banks not based in Japan.

Another important decision that is implied by using a strategy of rolling over coupon bonds
is the distribution of maturing instruments on the time axis. For NII, positions repricing
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for the first time after the measurement period, set to be one (1) year in this thesis, are
viewed as non-risky. With regards to NII risk, this implies that we are indifferent between
a position that reprices in five years time and a position that reprices in ten years time.
While this effect is inherent to the NII measure and thus not necessarily problematic it
does not hold as we move forward in time. We illustrate this using a simple example
assuming a bank that starts its business on the 1st of January 2017 by

• buying a 10-year continuously paying coupon bond issued at par and,

• funding this by issuing a 5-year continuously paying coupon bond at par.

Assuming that NII does not take into account any discounting risk, the bank faces no NII
risk between the 1st of January 2017 and the 31st of December 2020. However, on the 1st of
January 2021 NII risk gradually increases until the 31st of December 2021 since the bank
has to refinance the liabilities the following year to a (possibly) new coupon. Following
the refinancing it sharply decreases to zero again on the 1st of January 2022 when the new
liability has been issued and remains there until the 1st of January 2026 when it increases
again assuming both the asset and liability side will be rolled over. This is illustrated in
figure 4.1 where, assuming that the face value of both the asset and liability side is 100,
we plot the notional amount (negative values for liabilities) that is exposed to NII risk
against time.

Figure 4.1: Notional exposed to NII risk.
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We see that if we construct a portfolio in this way we will not have NII sensitivity to points
on the interest rate curve further out than the measurement period and we have cliff effects
when moving forward in time. The problem is partially solved by using a roll-over strategy.
This allows the portfolio to be sensitive to points on the zero-coupon curve further out
than the measurement period, e.g. the portfolio could contain 10-year bonds that mature
during the first year. We should note that the assumption does not work well if the
maturity composition of the balance sheet is frequently altered. However, for a commercial
bank the assumption that the bank does not drastically change its exposure to different
parts of the zero-coupon curve is not that far-fetched. This can be seen in figures 4.2,
where the distribution of Svenska Handelsbanken AB’s interest rate adjustment periods
between 2013 and 2016 is shown. In figure 4.2a, interest rate sensitive asset notionals are
grouped by time to next rate repricing date. The amounts have been normalized by total
asset notionals for each respective year. Figure 4.2b shows the same information for the
liabilities. Off-balance sheet notionals have been included in assets.
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Figure 4.2: Interest rate adjustment periods for Svenska Handelsbanken AB, from Annual
reports 2013-2016

4.2 Run-off, static or dynamic portfolios

After having chosen a portfolio model we now have to decide if the risk should be measured
for a run-off, static or dynamic portfolio. Remember from section 2.1 that a run-off
portfolio is a portfolio where new and renewed business is ignored. A static portfolio
ignores new business and instead assumes that a maturing component in the portfolio is
rolled over into a component with the same maturity as the maturing component initially
had. Whereas a dynamic measure takes both new and renewed business into account,
making assumptions about factors such as how volumes vary depending on the zero-
coupon rate (Bessis, 2011). Typically EVE is measured on a run-off portfolio, whereas
NII models using all three types of portfolios are used in practice (BCBS, 2016b).

Using non-consistent portfolio types for each measure becomes problematic if we, simul-
taneously, want to say something about how a zero-coupon curve shift affects both risk
measures. Memmel (2008) measures EVE at t = 0 for a run-off portfolio. For NII, a
static portfolio is assumed with the additional assumption that the zero-coupon curve
remains the same for the first year following the initial shift. A zero-coupon curve where
the forward zero-coupon curve is equal to today’s zero-coupon curve is only true if the
zero-coupon curve is flat. Hence, if the zero-coupon curve is not assumed to be flat, risk is
not measured against the same curve for NII and EVE. We illustrate this using a simple
example. Assuming that today is t = 0 and that forward-starting zero-coupon bonds are
priced with the forward rate as defined in equation 3.1.1, the forward price for a 6-month
ZCB with maturity at t = 1 is p(0, 1)/p(0, 1/2). We can then compare the following
strategies

(i) Buy 1/p(0, 1/2) 6-month ZCBs, the price of which is 1 today.

(ii) Buy 1/p(0, 1/2) 6-month ZCBs today and enter into 1/p(0, 1) forward contracts for
6-month ZCBs maturing at t = 1. This gives us 1/p(0, 1) at t = 1, the price of which
is 1 today.

In EVE risk these two strategies are equivalent and (ii) is only introduced since we also
need to compute NII. We can view the interest income as the amount over 1 (the initial
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value of the portfolio) we get at t = 1/2 and t = 1. Thus the NII we could expect during
the first year is

NII =

(
1

p(0, 1/2)
− 1

)
+

(
1

p(0, 1)
− 1

)
.

Memmel (2008)’s assumption is that p(0, 1/2) = p(1/2, 1) with certainty. With a strategy
of buying 1/p(0, 1/2) 6-month ZCBs today and then rolling them into 6-month ZCBs in
6 months we get

NII =

(
1

p(0, 1/2)
− 1

)
+

(
1

p(0, 1/2)2
− 1

)
.

It is then easy to see that these two NIIs are the same if and only if p(0, 1/2)2 = p(0, 1)
or equivalently stated R(0, 1/2) = R(0, 1). If the initial zero-coupon curve is not parallel
(or if the curve is parallel but the shift non-parallel) the resulting risks are not consistent
with each other. This inconsistency is problematic if the purpose is to compare how EVE
and NII reacts to a zero-coupon curve shift at the same point in time.

To avoid this problem we choose to measure both EVE and NII at the same time. Where
NII is viewed as the expected NII the coming year and computed using the forward
rates implied by the zero-coupon curve. In line with IRRBB, we also choose to measure
discounted NII and use a static portfolio where it is assumed that assets can be reinvested
according to the forward rate. A consequence of this is that NII would converge to EVE
if the measurement period was extended toward infinity, which is also shown in appendix
C. This means that in contrast to IRRBB we also include the sensitivity of known cash
flows to present value changes in the NII measure. While not usually included in the NII
measure this highlights the fact that there is short-term present value risk in locked-in
cash flows.

To summarize the assumptions defining our model for measuring risk simultaneously in
NII and EVE are

• A static portfolio for NII.

• A run-off portfolio for EVE.

• A rolling investment strategy to keep the portfolio’s maturity composition constant
over time and reducing the ability to ”hide” NII risk in instruments maturing beyond
year 1.

• Letting NII be sensitive to forward rates, thus allowing us to measure NII and EVE
risk against the same zero-coupon curve when the zero-coupon curve is not flat.

• Discounting both known and expected cash flows for NII.

4.3 Mathematical formulation

The building block of the model is a non-defaultable bond paying a continuous coupon.
At time u, the forward-coupon for this type of M -year bond, paying its first coupon at
time t and with a forward price of 1 is as previously stated in equation 3.1.5 is

c(u, t, t+M) =
p(u, t)− p(u, t+M)∫ t+M

t p(u, s)ds
.
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Using these types of bonds we can construct the portfolio strategy that we will denote as
S(M). This strategy can be described as

• Buying M -year maturity continuously paying coupon bonds that are issued at par
and with face value equal to 1.

• Evenly distribute when bonds mature on the time axis. This means having a fraction
of 1/M of the portfolio expiring each year1.

Risk is computed as the 1-month change in EVE and NII and we denote EVE(t,M) as
EVE of the S(M) strategy at t and similarly for NII(t,M). The change in EVE and NII
during 1 month is calculated as

∆EVE(t,M) =
EVE(t+ 1

12 ,M)− EVE(t,M)

EVE(t,M)

∆NII(t,M) =
NII(t+ 1

12 ,M)−NII(t,M)

EVE(t,M)
,

(4.3.1)

where the changes have been normalized by EVE(t,M) to account for the fact that the
original portfolio’s value will vary between different S(M) and we want to compare initial
strategies of equal value.

Depending on the assumptions we make about the roll-over and the previous term structure
we end up with slightly different versions. These are described and formulated below. To
ease notation the discrete examples are only for M = k/12, k = 1, 2, . . . .

Discrete roll-over and actual historical coupons (D-H)

A natural starting point is making the assumption that bonds mature and are renewed
on a discrete basis, here chosen to be once a month. As mentioned in section 4.2, EVE
is computed for a run-off balance sheet. Hence we need to discount all the payments
the current bonds in our portfolio make up to their maturity. Assuming that the most
recent bond was bought just before t the payments can be divided into two parts, coupons
and face value payments from maturing bonds. The discounted value of the face value
payments is simply

12M∑
k=1

1

12M
p(t, t+ k/12), (4.3.2)

since an even fraction of the portfolio matures every month. The coupon payments are
slightly more complicated and can be expressed as

∫ M

0

(
1− b12sc

12M

)12M−1−b12sc∑
k=0

c(t− k
12 , t−

k
12 +M)

12M − b12sc


︸ ︷︷ ︸

c̄D1(s;t,M)

p(t, t+ s)ds. (4.3.3)

1Assuming that the portfolio has a face value of USD 1 this means that if M = 5 we have to reinvest
USD 0.2 during the first year and if M = 0.5 the whole portfolio will have been reinvested twice during
the first year.
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Remember that even though bonds are rolled over discretely coupons are paid continuously
and hence we have to integrate. The first term represents the fraction of bonds that have
not matured at s. The second term represents the size of the coupon that is paid during
that interval, which is just the average coupon of the bonds that have yet to mature.
Summing up equations 4.3.2 and 4.3.3 gives us EVE(t,M) as

EVE(t,M) =
12M∑
k=1

1

12M
p(t, t+

k

12
) +

∫ M

0
c̄D1(s; t,M)p(t, t+ s)ds. (4.3.4)

In section 4.2 we settled on using a static portfolio for NII and as per IRRBB measuring
the risk of the discounted cash flows. For NII, the expressions will depend on if M is less
than or greater than 1. The simplest part of NII is the part coming from coupons of bonds
bought up until t, the discounted value of which we have already expressed in equation
4.3.3. A slight alteration has to be made since we only measure NII up to t + 1, giving
us ∫ min(1,M)

0
c̄D1(s; t,M)p(t, t+ s)ds, (4.3.5)

where the upper limit is min(1,M) since if M < 1 all bonds bought up to t will have
matured at t + M . Secondly, we have the part of NII that stems from bonds not yet
bought but whose expected contribution to NII we measure as the coupons implied by the
forward curve. The contribution from this part is

∫ min(1,M)

0

b12sc
12M

b12sc∑
k=1

c(t, t+ k
12 , t+ k

12 +M)

b12sc


︸ ︷︷ ︸

c̄D2(s;t,M)

p(t, t+ s)ds. (4.3.6)

Similarly to equation 4.3.3 the first part is the fraction of the portfolio invested in bonds
bought after t at s and the second part is the average of these coupons. In the case of
M < 1 we have to add a term for coupons paid on [M, 1] when we only have bonds bought
after t, for which we get

∫ 1

M

 b12sc∑
k=b12sc−12M+1

c(t, t+ k
12 , t+ k

12 +M)

12M


︸ ︷︷ ︸

c̄D3(s;t,M)

p(t, t+ s)ds. (4.3.7)

Summing up equations 4.3.5, 4.3.6 and 4.3.7 gives us

NII(t,M) =

∫ min(1,M)

0
(c̄D1(s; t,M) + c̄D2(s; t,M)) p(t, t+ s)ds

+

∫ 1

min(1,M)
c̄D3(s; t,M)p(t, t+ s)ds. (4.3.8)
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Discrete roll-over and constant historical coupons (D-C)

When trying to study how EVE and NII relate to each other, using historical coupons
could introduce effects that we are not interested in studying. As an example we could
imagine that we compute ∆NII(t,M) and ∆EVE(t,M) using equations 4.3.4 and 4.3.8 for
M ∈ {1/12, 2/12} just after a large parallel shift in the zero-coupon curve. For M = 2/12,
EVE(t + 1

12 ,M) and NII(t + 1
12 ,M) would inherently drift up or down depending on if

the shift resulted in a gain or loss. However, for M = 1/12 there is no inherent effect
since all bonds have been bought after the shift. Memmel (2008) makes the assumption
that all bonds bought up to t yield the same coupon to make it easier to study the effects
that zero-coupon curve shifts have. We note that this approach is not perfect either since
results will be biased by the shape of the current zero-coupon curve. If we make the same
assumption we need to redefine the function c̄D1(s; t,M), which is used in equations 4.3.3
and 4.3.5, setting

c̄D1(s; t,M) = c(t, t+M),

i.e. the par-coupon at t. Note that besides this change the expressions for EVE and
NII remain the same. However, we measure EVE risk as the difference between EVE(t+
1/12,M) and EVE(t,M) and similarly for NII. We want to take into account the bonds
that are rolled over between t and t+ 1/12. Hence we have to make a slight alteration for
the function at t+ 1/12 to get

c̄D1(s; t+ 1/12,M) =

(
1− b12sc

12M

)12M−1−b12sc∑
k=0

c(t− k−1
12 , t−

k−1
12 +M)

12M − b12sc

 , (4.3.9)

c(t− k − 1

12
, t− k − 1

12
+M) = c(t, t+M), ∀k 6= 0. (4.3.10)

Continuous roll-over and historical coupons (C-H)

In section 4.1 we discussed the cliff effects that we would see if we did not use a roll-over
strategy. It is possible that some of these effects could still exist when bonds are replaced
discretely. To remove the possibility of this effect we could make the (slightly unrealistic)
assumption that bonds are replaced continuously, i.e. over a small interval [t, t + dt], a
fraction of dt/M matures and is replaced with new bonds. The expressions for EVE and
NII are derived in a similar manner to the discrete case. For the face value part of EVE
we have that ∫ M

0

1

M
p(t, t+ s)ds.

Before showing the coupon part we remark that we only need to redefine the functions
c̄D1, c̄D2 and c̄D3 in the continuous roll-over case to arrive at expressions for NII as well.
These can be written as

c̄C1(s; t,M) =
(

1− s

M

)∫ t

t+s−M

c(u, u+M)

M − s
du,

c̄C2(s; t,M) =
s

M

∫ t+s

t

c(t, u, u+M)

s
du,

c̄C3(s; t,M) =

∫ t+s

t+s−M

c(t, u, u+M)

M
du.

(4.3.11)
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Where the expressions before the integrals are the fractions that are invested in the bonds
and the integrals are the averages of the coupons these bonds are paying. Hence, we can
express NII and EVE as

EVE(t,M) =

∫ M

0

1

M
p(t, t+ s)ds+

∫ M

0
c̄C1(s; t,M)p(t, t+ s)ds, (4.3.12)

and

NII(t,M) =

∫ min(1,M)

0
(c̄C1(s; t,M) + c̄C2(s; t,M)) p(t, t+ s)ds

+

∫ 1

min(1,M)
c̄C3(s; t,M)p(t, t+ s)ds. (4.3.13)

Continuous roll-over and constant historical coupons (C-C)

Lastly, we could make both the assumption of continuous roll-overs and assuming that all
bonds bought up to t were done at the same coupon. Similarly to the discrete case the
only alteration that is needed is a change of c̄C1, which is then redefined as

c̄C1(s; t,M) = c(t, t+M).

As in the discrete case we note that at t+ 1/12 the function is different than at t. Hence,
we set

c̄C1(s; t+ 1/12,M) =
(

1− s

M

)∫ t+1/12

t+1/12+s−M

c(u, u+M)

M − s
du, (4.3.14)

c(u, u+M) = c(t, t+M), ∀u ≤ t. (4.3.15)

Notes on implementation

We end with some comments regarding the implementation of these in Matlab. It is
of course not possible to exactly compute c̄C1 in equation 4.3.11 since we do not have
continuous observations of the historical zero-coupon curve. Instead, we approximate the
historic coupons using equation 4.3.3. For both continuous models we have a similar prob-
lem for the coupons coming from bonds bought between t and t+ 1/12. We approximate
this by using a weekly discretization (4 obs). Most of these integrals are rather nasty and
are integrated numerically. It is also the case that ZCBs will be log-normally distributed
when using the Vasicek models presented in chapter 3. Unfortunately, the distribution
of a sum of log-normally distributed random variables is not known. This leads to us
not being able to derive analytical expressions for Expected Shortfall for EVE and NII.
Instead, we implement a (näıve) Monte Carlo simulation to estimate their values.
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Chapter 5

Data

This chapter presents the historical data that is used and the bootstrapping method that is
later utilized to transform this into observations of an approximated historical zero-coupon
curve. It ends with a description of the used simulation scheme.

5.1 Description of the data

As was mentioned in section 3.1 a continuous zero-coupon curve is a theoretical concept
in the sense that bonds of all maturities do not trade on the market. Another problem
is that it is far from given that a (risk-free) zero-coupon curve should be constructed
using government bonds, e.g. IRRBB suggests the usage of a secured interest rate swap
curve instead. However, in this thesis we choose to use a yield curve constructed by
the U.S. Treasury (UST) using UST issued bonds2. Daily, the UST uses a ”quasi-cubic
hermite spline function” to construct the Constant-Maturity Treasury (CMT) curve using
the yields of on-the-run Treasury securities (ODM, 2009). This means that the UST uses
close-of-business yields of ”the most recently auctioned 4-, 13-, 26-, and 52-week bills,
plus the most recently auctioned 2-, 3-, 5-, 7-, and 10-year notes and the most recently
auctioned 30-year bond, plus the composite rate in the 20-year maturity range.” (ODM,
2009). The yields are called CMT yields because even if there currently does not exist a
Treasury bond with an outstanding maturity of, say exactly 5 years, this yield is computed.
The CMTs published by the UST are the 1-, 3-, 6-month, 1-, 2-, 3-, 5-, 7-, 10-, 20- and
30-year yields. As in Bolder (2001) we use monthly data during a 10-year period, in our
case the last business day every month between April 2007 and April 2017. This gives
us a time series of 121 observations of each CMT rate, some of the data expressed in
percentages are shown in table 5.1.

5.2 Transformation of the data

Unfortunately the CMT yields are not expressed as continuously compounded zero-coupon
rates and thus must be transformed into such rates. To do this we use the algorithm from

2The data can be accessed here.
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Table 5.1: CMT yield data from the U.S. Department of Treasury (in %).

Date 1 Mo 3 Mo 6 Mo 1 Yr . . . 20 Yr 30 Yr

4/28/17 0.68 0.80 0.99 1.07 . . . 2.67 2.96
3/31/17 0.74 0.76 0.91 1.03 . . . 2.76 3.02
2/28/17 0.40 0.53 0.69 0.88 . . . 2.70 2.97

...
...

...
...

...
...

...
...

5/31/07 4.78 4.73 4.96 4.95 . . . 5.10 5.01
4/30/07 4.80 4.91 5.03 4.89 . . . 4.88 4.81

Whaley (2007) described below.

Step 1

The yields for maturities less than one year, i.e. the 1-, 3- and 6-month maturities,
correspond to securities with no coupons. For these the CMT yields are expressed as a
simple interest rate meaning that we can convert them to the continuously compounded
zero-coupon rate at t using the following formula

R(t, t+ ti) =
log(1 + Y (t, t+ ti)ti)

ti
, ti ∈ {1/12, 3/12, 6/12}, (5.2.1)

with Y (t, t+ ti) denoting the ti-CMT yield at t.

Step 2

For the other CMT yields the process is slightly more complex, this is due to the CMT
yields being expressed as the semi-annually compounded par coupon. Using equation 3.1.2
and the definition of the zero-coupon rate we can write this relation as

1 = p(t, t+ tj) +

2tj∑
k=1

Y (t, t+ tj)

2
p(t, t+ k/2)

= e−R(t,t+tj)tj +
Y (t, t+ tj)

2

2tj∑
k=1

e−R(t,t+k/2)k/2.

(5.2.2)

The problem when using this recursive algorithm is that we do not have CMT yields for
every 6 months between 1 and 30 years. As an example we have both the 1- and 2-year
CMT yield but not the 1.5-year yield. One could think of several methods for interpolating
between CMT yields, in this thesis we choose the simplest method and linearly interpolate.
This allows us to ”bootstrap” the zero-coupon curve using equation 5.2.2. An explicit
expression for the zero-coupon rate at ti is then

R(t, t+ tj) = − log

(
1− Y (t,t+tj)

2

∑2tj−1
k=1 e−R(t,t+k/2)k/2

1 +
Y (t,t+tj)

2

)
/tj , (5.2.3)
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which we can use to derive the zero-coupon curve up to the final CMT maturity (30 years).
Some of the bootstrapped zero coupon rates are shown, in percentage, in table 5.2.

Table 5.2: Zero-coupon rates bootstrapped from CMT yields (in %).

Date 1 Mo 3 Mo 6 Mo 1 Yr . . . 20 Yr 30 Yr

4/28/17 0.68 0.80 0.99 1.07 . . . 2.76 3.15
3/31/17 0.74 0.76 0.91 1.03 . . . 2.85 3.20
2/28/17 0.40 0.53 0.69 0.88 . . . 2.78 3.15

...
...

...
...

...
...

...
...

5/31/07 4.77 4.70 4.90 4.89 . . . 5.13 4.93
4/30/07 4.79 4.88 4.97 4.83 . . . 4.94 4.77

5.3 Simulations

As previously noted in 4.3 we are unable to derive analytic solutions for the risk in different
strategies S(M). Therefore, we choose to assess risk of portfolio strategies using Monte
Carlo simulation.

The models evaluated by this method are

• Model(C-C) with 1-factor Vasicek, 8000 scenarios

• Model(C-C) with 2-factor Vasicek, 8000 scenarios

• Model(C-C) with 3-factor Vasicek, 8000 scenarios

• Model(C-H) with 3-factor Vasicek, 2000 scenarios

• Model(D-C) with 3-factor Vasicek, 2000 scenarios

A smaller number of scenarios have been used for the discrete and historical models. This
is due to the computations becoming time-consuming for the discrete case. We have
estimated approximate confidence intervals for EVE and NII risk of each Monte Carlo
simulation. The 95%-confidence intervals for Model 3F-C-C with 8000 scenarios and Model
3F-D-C with 2000 scenarios can be found in Appendix D. The confidence intervals of all
models seem to suggest that for our purposes, the sample sizes chosen produce sufficient
approximations of EVE and NII risk in different S(M) strategies.

Simulation algorithm

The simulation algorithm has been implemented in the programming language Matlab1.
For reproducibility purposes Matlab’s random number generator is set to ’Mersenne-
Twister’ with seed 2 for all model simulations. A description in pseudo-code of the simu-
lation algorithm is provided below.

1Matlab code can be provided upon request
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Algorithm 1 EVE and NII risk simulation

Precondition: n scenarios, dt = 1
12 , step = dt

4 M ∈ {0.25, 0.5, . . . , 10} and parameters
for the short-rate model

1: function simulate 1-month EVE & NII outcomes
2: – Calculate historical zero-coupon rates and perform a least square estimate
3: of current zero-coupon rates(t = 0) to get yt state vector
4:

5: simulate paths for the short rate for each scenario
6: for i← 1 to n do
7: simulate paths for the short rate 1 month ahead by a 4 time step discretization
8: yi,1 ← yt + κ(θ − yt)step+ σ

√
stepN (0, 1)

9: yi,2 ← yi,1 + κ(θ − yi,1)step+ σ
√
stepN (0, 1)

10: yi,3 ← yi,2 + κ(θ − yi,2)step+ σ
√
stepN (0, 1)

11: yi,4 ← yi,3 + κ(θ − yi,3)step+ σ
√
stepN (0, 1)

12: for Mi ←Mi in M do
13: – Calculate the historical par-coupons for strategy Mi

14: – Calculate the NII(t,Mi) and EVE(t,Mi) of strategy S(Mi)
15: by calling one of the NII(t,Mi) and EVE(t,Mi) functions defined in section 4.3
16: and provide the historical par-coupons, yt state vector and Mi

17:

18: Now calculate the NII and EVE outcomes of strategy S(M)
19: after 1 month for each scenario
20: for i← 1 to n do
21: – Calculate the additional par-coupons from the simulated yis
22: and extend the historical par-coupon vector
23: – Calculate NII(t+ dt,Mi) and EVE(t+ dt,Mi) of strategy S(Mi)
24: by calling one of the NII and EVE functions defined in section 4.3
25: and provide the extended historical par-coupon vector,
26: yt, yi,4 state vectors and Mi

27: – Calculate the normalized differences
28: ∆EVE(t,Mi) = EVE(t+ dt,Mi)/EVE(t,Mi)− 1,
29: ∆NII(t,Mi) = (NII(t+ dt,Mi)−NII(t,Mi)) /EVE(t,Mi).

30: – Calculate ÊSα(∆EVE(t,Mi)) and ÊSα(∆NII(t,Mi))
31: using equation 3.5.4
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Chapter 6

Simulations and discussion

In this chapter we will present and discuss the results from the simulations of the models
presented in chapter 4. In chapter 4 we used a two letter code to categorize the model.
The first letter denotes if bonds were rolled over continuously and the second denotes if the
zero-coupon curve was assumed to have been constant up to t. In this chapter we expand
on this adding an XF before the two letters, with X ∈ {1, 2, 3}, representing the number
of factors used in the Vasicek model. As an example, 3F-C-H denotes the model where
the zero-coupon curve is simulated using a 3-Factor Vasicek model, with Continuous roll-
overs and assuming the use of non-constant Historical zero-coupon curves. The models
with their respective notation and assumptions are shown in table 6.1. To ease notation
we will drop the t from NII(t,M) and EVE(t,M) since we only measure risk at one point
in time. We also remark that M is measured in years, the present value, i.e. the initial
EVE, is normalized to $1 for all M and ES is measured with α = 0.05.

Model name Vasicek factors Continuous roll over Continuous coupons Historical
ZC

3F-D-C 3 No Yes No
3F-C-H 3 Yes Yes Yes
3F-C-C 3 Yes Yes No
2F-C-C 2 Yes Yes No
1F-C-C 1 Yes Yes No

Table 6.1: Model assumptions

6.1 Zero-coupon curve simulations

Before investigating the risk of the different portfolio strategies it is useful to observe
and discuss the underlying zero-coupon curve simulations. As was outlined in section
2.2, IRRBB prescribes using three types of shifts for EVE: parallel, change of steepness
and change of curvature. However, for NII only parallel shifts are prescribed. We relate
this to section 3.2 where we showed how a single-factor model will only generate parallel
shifts, something which is not the case for the multi-factor models. Roughly we can say
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that 2-factor models could change the level and steepness of the curve, whereas 3-factor
models could also change the curvature. To show that this holds when simulating we
estimate the parameters using the Kalman filter algorithm from section 3.4 and the data
described in section 5.1. Estimated parameters for the three models are shown in table
6.2, a sample of zero-coupon curve simulations from the three models are shown in figure
6.1 and some empirical statistics in table 6.3. As expected the range and types of shifts

Model Factors θi κi σi λi

1F Vasicek 1 0.01891 0.13379 0.00687 -0.65014
2F Vasicek 2 0.00947 0.26227 0.01629 0.11665

0.00401 0.01876 0.02043 -0.28524
3F Vasicek 3 0.00013 0.28288 0.02082 -0.50992

0.00016 0.71816 0.01721 0.79681
0.014374 0.03216 0.01326 -0.15369

Table 6.2: Estimated parameters

differ for the single-, 2- and 3-factor model. In figures 6.1 we plot every two-hundredth
simulated zero-coupon curve, with the red curve being the original one. In figure 6.1a we
notice that the single-factor model produces parallel shifts. The 2-factor model simulations
in 6.1b have the parallel shifts of the 1-factor model as well as shifts with changed slopes,
i.e. a steepening or flattening of the zero-coupon curve. For the 3-factor model, the
simulations in 6.1c shows that we can achieve the 2-factor model’s shifts as well as an
increased variation of slope for different maturities, i.e. we can achieve shifts in the zero-
coupon curve’s curvature. Notice that the range of zero-coupon curve shifts differs between
the three models. This might be due to the accuracy of our Kalman filter’s parameter
estimation as previously discussed in section 3.4. It is outside the scope of this thesis
to perform a robustness check of our estimated parameters and for our analysis we are
instead interested in investigating how increasing the number of types of shifts affects the
risk levels for EVE and NII.
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(b) 2-factor Vasicek
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(c) 3-factor Vasicek

Figure 6.1: Every two-hundredth simulated zero-coupon curve.
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Table 6.3: Empirical statistics for R(t + 1/12, t + 1/12 + M) under the different Vasicek
models, in %.

Vasicek 1F

M=3/12 M=5 M=10
5% Quantile 0.3593 1.6069 2.4676

Mean 0.6831 1.8469 2.6491
95% Quantile 1.0012 2.0828 2.8275

Vasicek 2F

M=3/12 M=5 M=10
5% Quantile -0.3078 0.6331 1.3916

Mean 0.9012 1.6514 2.3158
95% Quantile 2.113 2.6671 3.2291

Vasicek 3F

M=3/12 M=5 M=10
5% Quantile -0.5143 1.0167 1.7212

Mean 0.8552 1.8163 2.354
95% Quantile 2.2246 2.646 2.9997

6.2 Risk under the different Vasicek models

Having simulated the zero-coupon curves we can investigate if increasing the number of
factors also increases the range of ES0.05(NII(M)) and ES0.05(EVE(M)) for the XF-C-C
models. Remember that these models assumed continuous rolling over of bonds and a
constant historical zero-coupon curve. We begin with the 1F-C-C model, in figure 6.2a
we plot the estimated ES0.05(NII(M)) and ES0.05(EVE(M)) against M . As expected, a
strategy S(M) will have lower risk in NII than S(N) if M > N and conversely for EVE,
S(M) will be riskier than S(N). For NII this is understood by remembering that as M
increases a smaller fraction of the portfolio matures during the following year and in the
case of M ≥ 1, only 1/M matures and is reinvested. This effect could be partially offset
by the discounting risk of the first year’s fixed coupons, but we note that for large M this
effect is small. For EVE, risk increases with M , the intuitive explanation being that that
the sensitivity of cash flows to a zero-coupon curve shift increases with the cash flows time
to maturity and the strategy S(M)’s average cash flow maturity date is increasing in M .
This could not be said with certainty if the zero-coupon curve is downwards sloping but
as remarked previously the single-factor model will only produce parallel shifts and since
the original curve, as seen in figure 6.1a, is strictly increasing it holds. Figure 6.2b depicts
the same risks shown in figure 6.2a but for each S(M)’s risk pair

(ÊSα[NII(M)], ÊSα[EV E(M)]).

This relationship is of importance since it illustrates the trade-off in EVE and NII risk
that an investor will face when deciding on which strategy S(M) to pursue. An investor
unwilling to take on more than a certain amount of NII risk can see that this implies that
a certain amount of EVE risk will have to be accepted. More importantly, the investor
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with a pre-specified preference of EVE risk and NII risk can see if the combination is
attainable. Of course, the investor need not settle on a single S(M) but could instead
invest fractions summing to one in several strategies instead, which is a discussion we will
revisit in section 6.4. Before proceeding we remark that if we set the initial short rate to
θ̄+ 0.01 the zero-coupon curves will be downward sloping instead. Doing this and redoing
the simulations gives us roughly the same risks as in figure 6.2 but as expected decreases
the EVE risk for larger Ms. The resulting plots can be seen in Appendix A where we also
provide results for a simple stress test of the model’s parameters θ, κ, σ and λ.
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Figure 6.2: Expected Shortfall risk for different maturity strategies, model 1F-C-C, α =
0.05

Having investigated the single-factor model we proceed to the multi-factor cases. In figure
6.4 we compare the risks of all three models. EVE- and NII-risk for different S(M) can be
seen in figure 6.4a and their respective risk pairs in figure 6.4b. Irrespective of a single-,
2- or 3-factor Vasicek model EVE and NII risk for different S(M)-strategies and their risk
pairs have a similar shape. However the level of risk produced by the three short-rate
models differs significantly, with the single-factor model producing the lowest risk. The
2- and 3-factor models have similar risk levels in NII and EVE for S(M)-strategies with
shorter maturities M , while EVE risk for the 2-factor model exceeds the 3-factor model
for longer maturities. An explanation for this is our parameter estimates. Using equation
3.3.4 we can compute the theoretical one-month conditional variance for R(t, t + M) as
a function of M. This is shown in figure 6.3 where we can see that using our estimated
parameters the 3-factor model will produce a more volatile zero-coupon curve than the 2-
factor model for M less than roughly 1.5 years, whereas the converse holds for M roughly
greater than 1.5 years. We also note that this is in line with the estimates in table
6.3.

Regardless of the different risk levels it is encouraging that the shape of the three factor
models are similar since some results should hold independently of the factor model, e.g.
EVE risk should generally increase with M and the converse should generally hold for NII.
However, some additional comments are needed regarding how the correlation between
different portfolios changes with the number of factors used. This since it will effect
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Figure 6.4: Expected Shortfall risk 1-,2- and 3-factor Vasicek, α = 0.05

the possible EVE risk and NII risk combinations that are possible if we combine several
S(M)-strategies. As previously stated in equation 3.5.3, ES is a convex risk measure. In
other words, the risk of an investment in several S(M) strategies will have less or equal
risk than the sum of the S(M)-strategies’ individual risks. This diversification benefit is
likely to be smaller when S(M)-portfolios are highly correlated. In figure 6.5 estimated
correlations between the shortest S(M)-strategy, S(3/12), and longer S(M)-strategies
can be seen for EVE and NII risk. The single-factor and 2-factor models show very high
correlations while correlations for the 3-factor model are slightly lower. The results are
similar for other choices of S(M). Whilst high correlations for individual outcomes does
not necessarily imply high correlations for the worst outcomes (in our case beyond the 5%
quantile), the worst outcomes are still likely to be highly correlated. The correlation of
outcomes beyond the 5% quantile for an S(M) portfolio and the corresponding outcomes
of other S(M) portfolios can be found in Appendix E. These outcomes show slightly lower
correlation.
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Another interesting result for all three models is the strong negative correlation between
EVE and NII risk as seen in figure 6.6. Notice in figure 6.6a that the individual outcomes
of percentage changes in EVE tend to be negative when percentage changes in NII are
positive. Estimated EVE and NII correlations for different strategies S(M) are shown in
figure 6.6 for the three different factor models. The single-factor model has the highest
negative correlation, followed by the 2-factor model and 3-factor model. As can be seen
in figure 6.5a, estimated NII correlations are close to 1 between any S(M) for the single-
factor model. If a short portfolio was introduced we could find a very good hedge in NII
risk for a long strategy S(M) and short S(N) for any M,N we have considered, which in
a real world setting is less plausible.
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Figure 6.5: Correlations of different M -strategies’ simulated outcomes for NII and EVE
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Figure 6.6: Correlation between EVE and NII of different M -strategies’ simulated out-
comes

As previously mentioned, in IRRBB the Basel Committee suggests using shifts corre-
sponding to a single-factor model and 3-factor model for measuring NII sensitivity and
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EVE sensitivity respectively. In our setting it does not make any sense to use one model
for NII and another for EVE. However, the exercise above is done since it allows us to
essentially study how introducing one more type of shift affects the risk profile. An oth-
erwise complicated task since we lack closed-form expressions for the ES risks. In the
proceeding sections we will only use the 3-factor model since it covers the scenarios from
the single- and 2-factor model (albeit for our parameters estimates the 2-factor model
seems to produce more extreme values).

6.3 Altering assumptions

In this section we will investigate how altering the assumption of a constant historical zero-
coupon curve and the assumptions of being able to roll over bonds continuously affects
EVE and NII risk.

Non-constant historical zero-coupon curve

Remember that the simulations presented in the previous section were with the model
assumption that the historical par-coupon rate had been constant or equivalently stated
the zero-coupon curve had been constant. In section 4.3 we discussed the reasoning behind
making this assumption when comparing EVE risk and NII risk. However, in a real setting
this is of course not true and the use for our model would lessen if this had a huge impact
on the simulated risks. To study this we compare model 3F-C-H with model 3F-C-C, i.e.
the two portfolio models using continuous rolling of bonds, differing on the assumption
regarding the historical zero-coupon curve, and with zero-coupon curves simulated from
the 3-factor Vasicek model.

EVE and NII risk plots can be seen in figure 6.7. In figure 6.7a, for M greater than
approximately 5 years, NII risk is not evenly decreasing in M . This is easier to spot in the
left part of figure 6.7b where NII risk ”inconsistently” decreases for increasing EVE risk.
A possible explanation for this can be found if we study the historical evolution of zero-
coupon rates. In figure 6.8 we notice that from our historical zero-coupon 5- and 7-year
rates there was a sharp decline approximately 6 years ago. From the portfolio’s perspective,
when M increases past this point the portfolio will suddenly include coupon bonds with
much higher coupon rates that will affect the portfolio’s risk in the present.

45



0 1 2 3 4 5 6 7 8 9 10

M

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
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Figure 6.7: Expected Shortfall risk for different maturity strategies, α = 0.05, model
3F-C-H
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Discrete roll-over

The other unrealistic assumption that is made is that we can roll over bonds continuously.
To see if altering this assumption affects the simulated NII and EVE risk we compare the
3F-C-C model with the 3F-D-C model, i.e. comparing continuous roll-over with discrete
roll-over and in both cases assuming a constant historical zero-coupon curve. The resulting
risk pairs can be seen in figure 6.9.

A comparison between the three models we have discussed above, i.e. models 3F-C-C, 3F-
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Figure 6.9: Expected Shortfall risk for model 3F-D-C and different maturity strategies,
α = 0.05

C-H and 3F-D-C, can be seen in figure 6.10. There we can see that the risk relations and
risk levels are essentially equal for the discrete roll-over and continuous roll-over models.
It is barely noticeable but if we look closely we could see that the EVE risk is slightly
higher for 3F-D-C compared to 3F-C-C. The explanation for this is that the duration will
be slightly higher when using discrete roll-over since the average time to maturity will be
greater than when using continuous roll-over. However, the difference is negligible. The
reader interested in seeing the resulting risk profile for 3F-D-H can find it in appendix
B. To conclude the portfolio model comparison, we have seen that neither assumptions
regarding continuous investments nor assumptions regarding historical par-coupon bond
investments have had a large effect on the risk. To strip out the small effects that are
inherent to using discrete rolling and a non-constant historical zero-coupon curve we only
study the 3F-C-C model in the proceeding sections.
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(a) ÊSα for different maturities M

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Model 3F-C-H

Model 3F-D-C

Model 3F-C-C
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Figure 6.10: Expected Shortfall risk for models 3F-D-C, 3F-C-H and 3F-C-C, α = 0.05
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6.4 Long M-portfolio combinations

So far we have considered the investment strategy of investing in one rolling bond portfolio
P = S(U) with U ∈ {0.25, 0.5, . . . , 9.75, 10}. A natural extension is to investigate the risk
pairs that are possible if the investor has the possibility to divide his investment into mul-
tiple investment strategies of type S(M). We consider the portfolios (of portfolios)

P (λ,M,N) = λS(M) + (1− λ)S(N), (6.4.1)

where M,N ∈ {0.25, 0.5, . . . , 9.75, 10} and λ ∈ {0, 0.01, 0.02, . . . , 0.99, 1}. To ease notation
we denote P (λ,M,N)’s risk pair

(ÊSα[NII(P (λ,M,N))], ÊSα[EVE(P (λ,M,N)]) =

(ÊSα[λNII(S(M)) + (1− λ)NII(S(N))], (ÊSα[λEVE(S(M)) + (1− λ)EVE(S(N))])

(6.4.2)

In figure 6.11 two examples are given, figure 6.11a considers portfolio combinations where
M = 0.25 and N = 5. Figure 6.11b considers the portfolio combinations where M = 2
and N = 3. As can be seen, both combined portfolios’ risk pairs P (λ,M,N) are worse
or equal to, for all λ ∈ {0.01, 0.02, . . . , 0.99}, a risk pair achievable with a simple portfolio
P = S(U) for some U .
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Figure 6.11: Risk pairs (ÊSα[NII(P (λ,M,N))], ÊSα[EVE(P (λ,M,N)]) for two different
strategies. λ ∈ {0, 0.01, 0.02, . . . , 1}

Since risk is measured as the coherent risk measure Expected Shortfall, by the risk mea-
sure’s convexity property it holds that

ESα[NII(P (λ,M,N))] ≤ λESα[NII(M)] + (1− λ)ESα[NII(N)] (6.4.3)

and

ESα[EVE(P (λ,M,N))] ≤ λESα[EVE(M)] + (1− λ)ESα[EVE(N)]. (6.4.4)
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In words, risk of the portfolio will always be less or equal to the linear combination of the
two separate risk pairs S(M) and S(N). However, as seen in figure 6.5 EVE risk is highly
correlated between different S(M) and S(N) and albeit lower, the correlation is also high
for NII risk. This indicates that there will not be a large reduction in risk for a combined
portfolio such as P (λ,M,N) since the worst outcomes (losses beyond the 5% quantile) for
each investment are likely to occur from the same scenario.

In figure 6.12 risk pairs for all P (λ,M,N) are shown, with M,N ∈ {0.25, 0.5, . . . , 9.75, 10}
and λ ∈ {0, 0.1, 0.2, . . . , 0.9, 1}. We note that almost all our risk pairs from portfolios
P (λ,M,N) seem to be worse or equal compared to the risk pairs produced by a simple
portfolio, S(U). The simple S(U) portfolio looks like an attractive investment from a
combined EVE and NII risk perspective. The few portfolio combinations that are slightly
better than the simple portfolios are in the rightmost part of figure 6.12 and thus corre-
sponding to small Us. If we study this closer it can be seen that this only holds for U ≤ 1.
A graphical explanation for this is that the S(U) risk pair curve is approximately linear
for U ≤ 1 and thus the convexity of ES guarantees that combinations will be at least as
good as the risk pair curve.
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Figure 6.12: Risk pairs for all portfolios λS(M) + (1− λ)S(N), λ ∈ 0, 0.1, . . . , 1, M,N ∈
0.25, 0.5, . . . , 10

6.5 Long and short M-portfolio combinations

Up to this point we have considered the trade-off problem in EVE risk and NII risk an
investor faces when deciding how to invest his assets in various portfolio strategies S(M)
and combinations thereof. We will now introduce the possibility for the investor to borrow
money by short-selling one or combinations of portfolio strategies S(M). The investor will
thus have the following amounts to be considered for his investment strategy

• USD 1 investment

• USD 1 additional investment

• USD 1 borrowed
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We assume that the assets are invested in portfolio strategy P (λ,M,N)

2P (λ,M,N) = 2(λ1S(M) + (1− λ1)S(N)),

M,N ∈ {0.25, 0.5, . . . , 9.75, 10},
λ ∈ {0, 0.1, 0.2, . . . , 0.9, 1},

(6.5.1)

and that this is funded by short-selling USD 1 of another portfolio combination. Resulting
in aggregate portfolios of the type

2P (λasset,Masset, Nasset)− P (λliability,Mliability, Nliability). (6.5.2)

Below we will design three different strategies of this kind. Strategy 1 in figure 6.13 shows
the risk pairs for

Masset, Nasset ∈ {7.5, 7.75 . . . , 9.75, 10},

and
Mliability, Nliability ∈ {0.25, 0.5},

for all λasset, λliability ∈ {0, 0.1 . . . , 0.9, 1}. Strategy 1 is thus a strategy to borrow short
and invest long. As can be seen the risk pairs produced are greater than matching assets
and liabilities represented by simple portfolios S(U).
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Figure 6.13: Risk pairs for strategy 1

For strategy 2 we design a strategy with the objective of reducing NII risk. For the
long-short portfolio considered, low NII risk can be attained by multiple strategies. We
could as an example choose the longest investment horizon M = 10 for all long and short
investments, this would reduce our portfolio to a simple S(10) portfolio and as our results
have showed this portfolio yields the lowest NII risk of a single strategy S(M). However,
this leaves us exposed to the highest EVE risk of the simple portfolios. We would like
to choose another approach for our long short portfolio strategy. As previously noted in
section 6.2 there are high correlations in the worst NII outcomes between simple S(U)
portfolios. Utilizing this fact we would like to design a strategy where the long portfolio
2P (λ,M,N), which is twice the size of the short portfolio, is invested in S(M) and S(N)
portfolios of approximately half the NII risk as the short portfolio. With an aggregate
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risk in the long portfolios of approximately the same size as the short portfolio and high
correlation between the long and short portfolios’ worst outcomes a decent hedge in NII
risk should be achieved. Following this approach, Strategy 2 in figure 6.14a is a strategy
where both asset and liabilities are at short maturities with assets slightly longer at

Masset, Nasset ∈ {1, 1.25, 1.5},

and liabilities at
Mliability, Nliability ∈ {0.5, 0.75, 1}.

With Strategy 2 we notice that low NII risk corresponding to the risk of an S(U) investment
of U ≥ 1.5 can be achieved without any investment in S(U) of U ≥ 1.5, which implies
that we have diversification effects.

We could design a similar strategy with the goal of reducing EVE risk, namely our Strategy
3. By following the same argument as for strategy 2, we choose a long portfolio with
approximately half the EVE risk of our short portfolio.

Masset, Nasset ∈ {2, 2.25, 2.5, 2.75, 3},

and liabilities at
Mliability, Nliability ∈ {5.75, 6, 6.25}.

Risk pairs for Strategy 3 can be seen in figure 6.14b. Strategy 2 and 3 illustrate that less
risky risk pairs can be achieved than matching assets and liabilities to the largest extent
possible. With Strategy 2 producing low NII risk and Strategy 3 producing low EVE
risk.
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Figure 6.14: Risk pairs (ÊSα[NII(P )], ÊSα[EVE(P )]) for two different strategies

6.6 Banking book applicability

We have now considered the trade-off problem in EVE and NII risk an investor faces when
deciding how to invest his assets in various portfolio strategies S(M) and combinations
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thereof. We have also considered the trade-off problem when borrowing and investing
additional funds. Remember the balance sheet equation, assets are equal to equity plus
liabilities. The investment problem discussed in section 6.4 could be thought of as the
investment problem facing a stylized bank that has matched its liability portfolio with
a chunk of its asset portfolio and then has the possibility to freely invest the remaining
assets (corresponding to the equity liability). If we instead assume that the bank perfectly
matches most but not all of its liabilities with its assets, the investment decision could be
formulated as the investment problem discussed in 6.5, i.e. making a decision about

• USD 1 in assets corresponding to the equity liability,

• USD 1 in additional assets that were previously matched to a liability,

• USD 1 in liabilities that were previously matched to an asset.

This is illustrated in figure 6.15, where balance sheet #1 illustrates the previous case
when liabilities were perfectly matched with assets and balance sheet #2 illustrates the
new problem. For balance sheet #1, our results in 6.4 indicated that an investment in a
single strategy S(M) yields approximately equal or better risk pairs than a combination
of S(M) strategies.
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▪ Matched ▪ Investment choice

Balance sheet #1 Balance sheet #2

$2

$1
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Figure 6.15: Liabilities perfectly matched with assets and liabilities not perfectly matched
with assets.

For balance sheet #2 we notice that in our model less risky risk pairs can be achieved by
Strategy 2 and 3 from 6.5 than alternatively matching assets and liabilities to the largest
extent possible, i.e. balance sheet #1 in figure 6.15. Meanwhile, Strategy 1 in 6.5 produces
more risky risk pairs for balance sheet #2 than a balance sheet #1 strategy. Thus the
choice of strategy for balance sheet #2 will decide if the risk pairs achieved are better or
worse than balance sheet #1.
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Chapter 7

Conclusion

The purpose of this thesis was to propose a model that can be used to consistently study
how varying the maturity structure of a portfolio affects both NII and EVE risk. Only a
small amount of publicly available research exists in this area and due to various definitions
of NII risk there is no uniform method for measuring this risk. By taking into consideration
the upcoming regulatory framework IRRBB we have proposed a model of rolling invest-
ments in par-coupon bonds that we deem consistently captures how the maturity structure
affects NII and EVE risk. Since we are not able to derive analytical expressions of the
model’s risk we have employed a Monte Carlo simulation. With the simulation procedure,
risk of different maturity strategies is examined. The plausibility of some of the model’s
theoretical assumptions have also been investigated. The theoretical assumption of con-
tinuous par-coupon bond investments seems to be a good approximation of a discrete time
investment model. The theoretical assumption of a constant historical zero-coupon curve
is also found to be a good approximation of a model where actual historical zero-coupon
curves are included. We conclude that a constant historical zero-coupon curve is arguably
a more suitable choice for determining the risk trade-off in different strategies.

Simulations are performed with the Vasicek short-rate model. The number of state vari-
ables governing the short rate does not influence the risk relations of different strategies to
a large extent. However, the different Vasicek models employed gives rise to varying levels
of risk and by this we conclude that a lot of effort should be put into the short-rate model’s
parameter estimates. Different zero-coupon curve shapes seem to have a limited effect on
the risk trade-off when varying the maturity structure. We suggest using the 3-factor
Vasicek model to be more in line with the prescribed stress scenarios of IRRBB.

In regards to the risk trade-off problem with only an investment considered, the best strat-
egy is almost always found to be a single S(M) portfolio, regardless of the EVE and NII
risks preferred. This means that for investment strategies consisting of long investments
in two different S(M)-strategies, the achieved risk pairs are worse or approximately equal
to the risk pairs that are achieved with a single S(M) investment.

When the risk trade-off problem concerns borrowing and investing the additional funds, a
large range of risk pairs can be achieved. The risk pairs of a single investment in S(M) can
be achieved by matching the short portfolio S(M) with a corresponding long strategy. An
actively risk-taking strategy such as borrowing short and lending long will produce much
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greater risks than a strategy of matching borrowed and invested funds. We have also
shown that better risk pairs than a matched asset and liability strategy can be achieved
by taking into consideration the risk levels and correlations of different S(M).

We end by noting that, as the industry commented on the IRRBB proposal, banking books
contain many heterogeneous instruments, which are not easily modeled. Thus when trying
to study how a generic banking book reacts to certain effects simplifications have to be
made. In this thesis we chose to study IRR effects for a rather simple portfolio, which
enabled us to focus solely on the maturity structure. In section 6.6 we showed how one
could translate our portfolio approach to a banking book setting. However, it is reasonable
to assume that this approach does not fully capture effects that might exist when more
complicated instruments are included. This means that our simulation results should
not be interpreted as showing universally true results, but should instead be viewed as a
starting point for determining a desirable maturity structure in the banking book with
respect to NII and EVE risk.

7.1 Further research

We propose two different paths for further research into the relationship between NII and
EVE risk. The first being to further study the risk profile generated by the model studied
in this thesis and the second being to extend this model to more accurately describe a
complete banking book.

To further study our model we identify several options. Firstly, in this thesis short-rate
paths were simulated from the Vasicek model. The Vasicek model, belonging to the class
of ATS models, provided us with simpler expressions and made the computations more
tractable. The Vasicek model is arguably a simpler short-rate model and although multiple
types of zero-coupon curve shifts can be achieved with the 3-factor version it would be of
interest to see how the resulting risk profile changes using alternative models. Secondly, we
have evaluated risk over a period of one month and the effects of varying this assumption
could be investigated. For this problem a possible approach would be to see how national
regulators motivate the interest rates shifts that are to be used in their implementations
of IRRBB. Thirdly, a more thorough investigation of how combining different portfolio
strategies affect the risk profile could be conducted. In this thesis usage of a single rolling
portfolio is found to be a good approximation for efficient risk pairs if only long positions
are allowed. However, this is not the case when introducing the possibility to short sell
similar portfolio strategies. An optimization approach could be attempted to find the
most efficient risk pairs of long-short strategies. Furthermore, we limited ourselves in this
thesis to evaluating if combinations of portfolios could produce more, in the Pareto sense,
efficient risk profiles than in the single portfolio case. We did not try to say anything about
which of these efficient portfolios would be the most preferable. There are several ways of
tackling this problem, one could be to take into account the expected return of different
strategies, another could be to use utility functions to value EVE and NII risk.

Regarding possible extensions of the model, the two natural extensions would be to include
the two main types of IRR not studied in this thesis: basis risk and optionality risk. Basis
risk could be included in our model by assuming that asset and liability portfolios are
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sensitive to non-perfectly correlated interest rates of the same currency. This would lead
to two portfolio strategies with the same maturity structure not necessarily cancelling
each other out. The model could also be extended to include multiple currencies, which
introduces basis risk but unfortunately also foreign exchange risk. Another extension
could be to include items such as non-maturing deposits with optionality risk and which
limits banks’ possibility to freely choose a maturity structure. Our suggestion in this
area is to use the Pillar 1 approach from IRRBB or the resulting implementations from
national regulators due to the heterogeneity of instruments in the banking book and
BCBS’s movements towards the use of more standardized models. We end by noting
that Alessandri and Drehmann (2010) have argued that IRR should be studied in tandem
with credit risk. A final extension to our model could therefore be to incorporate credit
risk by including credit spreads and modeling default risk.
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Appendix A

Model sensitivity to parameter
estimates

In this appendix we illustrate how the resulting risk profile changes depending on if the zero-
coupon curve is upward or downward sloping. We will also show how the risk profile is affected
by upward and downward shocks of 20% to the parameters θ, κ, σ and λ.

If we in the single-factor Vasicek model set the initial short rate, r(t), to be greater than θ̄, the
resulting zero-coupon curves will be downward sloping. We set r(t) = θ̄+0.01 and simulate. The
resulting simulated zero-coupon curves and risks can be seen in figures A.1 and A.2, where we
compare them to the upward sloping risks. It should be noted that our altered initial short rate
is significantly higher than the original short rate which should impact the results as well.
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Figure A.1: Simulated downward sloping single-factor Vasicek zero-coupon curves

The single-factor model’s parameters are stressed by a 20% increase and decrease in each pa-
rameter. The results for θ and κ can be seen in figure A.3. The results for σ and λ can be seen
in figure A.4. We notice that the model’s risks are most sensitive to changes in σ and κ.
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Figure A.2: Expected Shortfall risk for upward and downward sloping zero-coupon curve in the
single-factor Vasicek model
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Figure A.3: ÊSα for different maturities M in the single-factor Vasicek model, 20% increase
and decrease of θ and κ
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Figure A.4: ÊSα for different maturities M in the single-factor Vasicek model, 20% increase
and decrease of σ and λ

60



Appendix B

3F-D-C and 3F-D-H comparison

In this appendix we compare the resulting risk-profiles from 3F-D-C and 3F-D-H, i.e. altering
the assumption regarding the historical zero-coupon curve when using discrete rolling and the
3-factor Vasicek model.
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Figure B.1: Expected Shortfall comparison between 3F-D-C and 3F-D-H
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Appendix C

NII with the measurement period
extended toward infinity

In this appendix we show that using our definitions of NII and EVE, NII converges to EVE if
the measurement period is extended toward∞. We will denote this NII measure as NII∞(t,M).
To find the expression for NII as the measurement period is extended toward ∞ we change the
limits of integration in equation 4.3.13 such that

NII∞(t,M) =

∫ M

0
(c̄C1(s; t,M) + c̄C2(s; t,M)) p(t, t+ s)ds

+

∫ ∞
M

c̄C3(s; t,M)p(t, t+ s)ds, (C.0.1)

with c̄C1, c̄C2 and c̄C3 defined as in equation 4.3.12. The first integral represents all coupon
payments we receive before all bonds bought before t mature. Hence, the second integral repre-
sents all the coupon payments received after these have matured. Without loss of generality we
set t = 0 to ease notation and see that

M(EVE(0,M)−NII∞(0,M)), (C.0.2)

can be written as∫ M

0
p(0, s)ds−

∫ M

0

∫ s

0
c(0, u, u+M)p(0, s)duds−

∫ ∞
M

∫ s

s−M
c(0, u, u+M)p(0, s)duds. (C.0.3)

We now try to rewrite p(0, s) to show that this expression is equal to zero. To do this we use
the definition of the forward par-coupon from equation 3.1.5 iteratively to show that

p(0, s) = p(0, s+M) +

∫ s+M

s
c(0, s, s+M)p(0, u)du

= p(0, s+ 2m) +

∫ s+M

s
c(0, s, s+M)p(0, u)du+

∫ s+2M

s+M
c(0, s+M, s+ 2M)p(0, u)du

= p(0, s+ nM) +

n∑
k=1

c(0, s+ (k − 1)M, s+ kM)

∫ s+kM

s+(k−1)M
p(0, u)du

(C.0.4)
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We now note that if we integrate one of the terms from the sum between 0 and M with respect
to s and set s̄ = s+M we get∫ M

0
c(0, s+(k−1)M, s+kM)

∫ s+kM

s+(k−1)M
p(0, u)duds =

∫ kM

(k−1)M
c(0, s̄, s̄+M)

∫ s̄+M

s̄
p(0, u)duds̄.

(C.0.5)
Thus if we integrate p(0, s) from 0 to M we can using equations C.0.4 and C.0.5 get∫ M

0
p(0, s)ds =

∫ nM

0

∫ s+M

s
c(0, s, s+M)p(0, u)duds+

∫ M

0
p(0, s+ nM)ds.

Given that the ZCB price goes toward zero as the maturity increases toward infinity we have
that∫ M

0
p(0, s)ds =

∫ ∞
0

∫ s+M

s
c(0, s, s+M)p(0, u)duds

=

∫ M

0

∫ u

0
c(0, s, s+M)p(0, u)dsdu+

∫ ∞
M

∫ u

u−M
c(0, s, s+M)p(0, u)dsdu,

(C.0.6)

where in the final step we have changed the order of integration. Now we see that by plugging
in this expression in equation C.0.3 we have shown that NII∞(t,M) = EVE(t,M).
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Appendix D

Confidence intervals using the
non-parametric bootstrap

In this appendix we construct confidence intervals for our ÊS estimates when our outcomes are of
unknown distribution F . A useful method for constructing approximate confidence intervals for
a risk measure such as ÊS is the non-parametric bootstrap method. The following methodology
is based on (Hult et al., 2012). For a discussion on the validity of this method, see (Hult et al.,
2012).

Consider the observed sample outcomes {x1, . . . , xn} with empirical distribution Fn. To estimate
the quantity θ(F ) we have our empirical estimate θ̂obs = θ(Fn). Since we only have one sample of
outcomes, a method for producing more samples is to draw with replacement from our original
sample {x1, . . . , xn}. By drawing with replacement n times from our original sample we can
construct a new sample {X∗1 , . . . , X∗n} with empirical distribution F ∗n and quantity θ estimate
θ̂∗. By repeating this procedure N times we can compute N estimates of θ̂∗, {θ̂∗1, . . . , θ̂∗N} and

N residuals R∗ = θ̂obs− θ̂∗, {R∗1, . . . , R∗N}. With our bootstrapped samples we can construct an
approximate confidence interval with confidence level q as

Iθ,q = (θ̂obs +R∗[N(1+q)/2]+1,N , θ̂obs +R∗[N(1−q)/2]+1,N ),

where R∗1,N ≥ R∗2,N ≥ · · · ≥ R∗N,N is our ordered sample of {R∗1, . . . , R∗N}.

We employ the above procedure for our models ÊS estimates. In figure D.1 the results can be
seen for model 3F-C-C with 8000 samples, confidence intervals for ÊSα[NII(M)] are found in

figure D.1a and ÊSα[EVE(M)] in figure D.1b. Figure D.2 shows the corresponding results for
model 3F-D-C with 2000 samples. The remaining model simulations yield similar results and
have been left out. ÊSα[NII(M)] and ÊSα[EVE(M)] have also been calculated for our samples
up until the sample sizes to show convergence. These results for our models 3F-C-C and with
8000 samples and 3F-D-C with 2000 samples can be seen in figures D.3 and D.4.
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(a) ÊSα[NII(M)] confidence intervals
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Figure D.1: ÊSα[NII(M)] and ÊSα[EVE(M)] confidence intervals for model 3F-C-C, n = 8000,
N = 10000, q = 0.95
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Figure D.2: ÊSα[NII(M)] and ÊSα[EVE(M)] confidence intervals for model 3F-D-C, n = 2000,
N = 10000, q = 0.95
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(a) ÊSα[NII(M)] convergence (b) ÊSα[EVE(M)] convergence

Figure D.3: ÊSα[NII(M)] and ÊSα[EVE(M)] convergence for model 3F-C-C, up until 8000
simulated samples, M ∈ {0.25, . . . , 10}

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Simulations

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

(a) ÊSα[NII(M)] convergence
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Figure D.4: ÊSα[NII(M)] and ÊSα[EVE(M)] convergence for model 3F-D-C, up until 2000
simulated samples, M ∈ {0.25, . . . , 10}
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Appendix E

Correlation of worst outcomes for
S(M)-portfolios

In this appendix we investigate the estimated correlations of S(N) outcomes with S(M) out-
comes conditional on the S(N) outcomes being beyond the 5%-quantile. In figure E.1a NII
correlations of the outcomes beyond the 5%-quantile for S(0.25) and corresponding outcomes of
other S(M) are shown, i.e.

ĉorr(∆NII(0.25),∆NII(M)|∆NII(0.25) ≥ VaRα(NII(0.25)))

together with the correlations of all outcomes. The corresponding correlations for EVE are
shown in figure E.1b. NII correlations for 0.25 ≤ N ≤ 5 and 5 ≤ N ≤ 10 are shown in figure
E.2 and the respective EVE correlations are shown in figure E.3

0 1 2 3 4 5 6 7 8 9 10

M

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) NII correlations

0 1 2 3 4 5 6 7 8 9 10

M

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) EVE correlations

Figure E.1: Correlations between worst outcomes of S(0.25) and corresponding outcomes of
S(M)
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Figure E.2: ĉorr(∆NII(N),∆NII(M)|∆NII(N) ≥ VaRα(NII(N)))
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Figure E.3: ĉorr(∆EVE(N),∆EVE(M)|∆EVE(N) ≥ VaRα(EVE(N)))
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