
IN DEGREE PROJECT MATHEMATICS,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2017

Deep learning-based
forecasting of financial
assets

PHILIP WIDEGREN

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ENGINEERING SCIENCES

Deep learning-based
forecasting of financial
assets

PHILIP WIDEGREN

Degree Projects in Financial Mathematics (30 ECTS credits)
Degree Programme in Applied and Computational Mathematics
KTH Royal Institute of Technology year 2017
Supervisors at Lynx Asset Management: Tobias Rydén and Martin Rehn
Supervisor at KTH: Jimmy Olsson
Examiner at KTH: Jimmy Olsson

TRITA-MAT-E 2017:27
ISRN-KTH/MAT/E--17/27--SE

Royal Institute of Technology
School of Engineering Sciences
KTH SCI
SE-100 44 Stockholm, Sweden
URL: www.kth.se/sci

Prediktering av finansiella tillgångar med hjälp av djupa
neuronnät

Sammanfattning

Djupa neuronnät har under det senaste årtiondet blivit ett väldigt användarbart verktyg
för att lösa komplexa problem, tack vare förbättringar i träningsalgoritmer. Två områden
där djupinlärning visat sig väldigt användbart är inom taligenkänning och maskinöver-
sättning. Det finns relativt få artiklar där djupinlärning används inom finans men i de
få som existerar finns det tydliga tecken på att djupinlärning skulle kunna appliceras
framgångsrikt på finansiella problem.

Denna uppsats studerar prediktering av finansiella prisrörelser med framåtkopplade nät-
verk och rekurrenta nätverk. För de framåtkopplade nätverken kommer vi använda oss av
djupa nätverk med färre neuroner per lager och mindre djupa nätverk med fler neuroner
per lager. Förutom en jämförelse mellan framåtkopplade nätverk och rekurrenta nätverk
kommer även en jämförelse mellan de djupa och mindre djupa framåtkopplade nätverken
att göras. De rekurrenta nätverket består av ett rekurrent lager som sedan projicerar på
ett framåtkopplande lager följt av ett outputlager. Nätverken är tränade med två olika
uppsättningar av insignaler, ett mindre komplext och ett mer komplext.

Resultaten för jämförelsen mellan de olika framåtkopplade nätverken indikerar att det
inte med säkerhet går att säga om man vill använda sig av ett djupare nätverk eller
inte, då det beror på många olika faktorer som tex. variabeluppsättning. Resultaten för
jämförelsen mellan de rekurrent nätverken och framåtkopplade nätverken indikerar att
rekurrenta nätverk nödvändigtvis inte presterar bättre än framåtkopplade nätverk trots
att finansiell data vanligtvis är tidsberoende. Det finns signifikanta resultat där den mer
komplexa variabeluppsättningen presterar bättre än den mindre komplexa. Den högsta
träffsäkerheten för att prediktera rätt tecken på nästkommande prisrörelse är 52.82%
vilket är signifikant bättre än ett enkelt benchmark.

Deep learning-based forecasting of financial assets

Abstract

Deep learning and neural networks has recently become a powerful tool to solve complex
problem due to improvements in training algorithms. Examples of successful application
can be found in speech recognition and machine translation. There exist relative few
finance articles were deep learning have been applied, but existing articles indicate that
deep learning can be successfully applied to problems in finance.

This thesis studies forecasting of financial price movements using two types of neural
networks, namely; feedforward and recurrent networks. For the feedforward neural net-
works we considered non-deep networks with more neurons and deep networks with fewer
neurons. In addition to the comparison between feedforward and recurrent networks, a
comparison between deep and non-deep networks will be made. The recurrent architec-
ture consists of a recurrent layer mapping into a feedforward layer followed by an output
layer. The networks are trained with two different feature setups, one less complex and
one more complex.

The findings for non-deep vs. deep feedforward neural networks imply that there does
not exist any general pattern whether deep or non-deep networks are preferable. The
findings for recurrent neural networks vs. feedforward neural networks imply that re-
current neural networks do not necessarily outperform feedforward neural networks even
though financial data in general are time-dependent. In some cases, adding batch nor-
malization can improve the accuracy for the feedforward neural networks. This can be
preferable instead of using more complex models, such as a recurrent neural networks.
Moreover, there are significant differences in accuracies between using the two different
feature setups. The highest accuracy for all networks are 52.82%, which is significantly
better than the simple benchmark.

Acknowledgements

First of all I would like to thank my supervisors at Lynx Asset Management, Tobias
Rydén and Martin Rehn, for their feedback, comments, and interest in the project. I
would also like to express my gratitude to Lynx Asset Management for giving me the
opportunity to write my thesis for them as well as providing me with the necessary
data.

Moreover, I would like to show appreciation to my supervisor at KTH Royal Institute
of Technology, Jimmy Olsson, for his invaluable comments and guidance in this the-
sis.

I would also like to thank all friends I have come to know during my five years of studies
and for all interesting discussions we have had both in and outside the university.

Lastly, I would like to express my greatest gratitude to my girlfriend, Rebecka Tallberg,
for all support she has given me during my studies, especially for her ability to light up
the most challenging days.

Stockholm, May 2017

Philip Widegren

ix

Contents

1 Introduction 1

1.1 Research questions . 1
1.2 Related work . 2
1.3 Scope and Limitations . 3
1.4 Outline . 3

2 Financial background 4

2.1 Long and short positions . 4
2.2 Futures contracts . 4
2.3 EMH . 5

2.3.1 Weak-form efficiency . 5
2.3.2 Semi-strong-form . 6
2.3.3 Strong-form efficiency . 6

2.4 Sharpe ratio . 6

3 Neural networks 7

3.1 Feedforward neural networks . 7
3.2 Recurrent neural networks . 8
3.3 Activation functions . 9
3.4 Cost/loss function . 10
3.5 Training neural networks . 11

3.5.1 Batch and minibatch . 11
3.5.2 Gradient descent . 11
3.5.3 Momentum . 13
3.5.4 Nesterov momentum . 13
3.5.5 RMSProp . 14

3.6 Regularization . 14
3.6.1 Early stopping . 14
3.6.2 Dropout . 15
3.6.3 Batch normalization . 16
3.6.4 Gradient constraint . 16
3.6.5 Ensemble methods . 17

4 Methodology 18

4.1 Data processing . 18
4.2 Filters . 18

4.2.1 SMA . 19
4.2.2 EMA . 19

4.3 Volatility estimators . 19

x

4.3.1 Garman-Klass . 20
4.3.2 Garman-Klass Yang-Zhang extension 20

4.4 Features . 20
4.4.1 Momentum . 21
4.4.2 Rising . 21
4.4.3 Return vs Risk . 21
4.4.4 Stochastic K% . 21
4.4.5 Stochastic D% . 22
4.4.6 Stochastic slow D% . 22
4.4.7 Smoothed changes . 22
4.4.8 Percentage price oscillator . 22
4.4.9 Relative strength index . 22
4.4.10 Williams R% . 23
4.4.11 Commodity channel index . 23

4.5 Scaling features . 23
4.6 Feature setup . 24

4.6.1 Less complex . 24
4.6.2 More complex . 24

4.7 Architectures . 25
4.8 Ensemble . 26
4.9 Prediction setup . 26
4.10 Comparing with benchmark . 27

4.10.1 Combining p-values . 27
4.11 Implementation . 27

5 Results 29

5.1 Parameters . 29
5.2 Benchmark . 30
5.3 Less complex features . 30

5.3.1 Feedforward neural network . 30
5.3.1.1 Without batch normalization 30
5.3.1.2 With batch normalization 32

5.3.2 Recurrent neural network . 34
5.4 More complex features . 36

5.4.1 Feedforward NN . 36
5.4.1.1 Without batch normalization 36
5.4.1.2 With batch normalization 37

5.4.2 Recurrent NN . 39
5.5 Summary . 41

6 Discussion 43

6.1 Deep vs. non-deep networks . 43
6.1.1 Less complex features without batch normalization 43
6.1.2 Less complex features with batch normalization 44
6.1.3 More complex features without batch normalization 44
6.1.4 More complex features with batch normalization 45
6.1.5 Summary . 45

6.2 RNN vs. FNN . 45
6.2.1 Less complex features . 45
6.2.2 More complex features . 46

xi

6.2.3 Summary . 46
6.3 Feature setup . 46
6.4 Sharpe ratio . 47

7 Conclusion 48

7.1 Future work . 48
7.1.1 Different assets and asset classes 48
7.1.2 Loss function with respect to return 49
7.1.3 Stacked recurrent networks . 49
7.1.4 Long Short-Term Memory . 49
7.1.5 Feature importance . 49

xii

List of Figures

3.1 A fully connected feedforward network with an input layer consisting of
4 inputs, three hidden layers consisting of 5 neurons each, and an output
layer consisting of 1 neuron. 8

3.2 Recurrent neural network with sequence input to sequence output, input
vector x, weight matrices W

x

,W
h

, and W
y

. 9
3.3 A feedforward neural network with two input vectors, one hidden layer

consisting two neurons and one output neuron then the full model can be
represented by the figure below. 15

3.4 Possible sub-models after applying dropout to the model considered in
figure 3.3. 16

xiii

List of Tables

4.1 Assets used in this thesis . 18

5.1 1 hidden layer networks with less complex feature setup and without batch
normalization . 31

5.2 4 hidden layer networks with less complex feature setup and without batch
normalization . 32

5.3 1 hidden layer networks with less complex feature setup and with batch
normalization . 33

5.4 4 hidden layer networks with less complex feature setup and with batch
normalization . 34

5.5 Recurrent architecture with less complex feature setup 35
5.6 1 hidden layer networks with complex feature setup and without batch

normalization . 36
5.7 4 hidden layers networks with more complex feature setup and without

batch normalization . 37
5.8 1 hidden layer networks with more complex feature setup and with batch

normalization . 38
5.9 4 hidden layers networks with more complex feature setup and with batch

normalization . 39
5.10 Recurrent architecture with more complex feature setup 40
5.11 Summary of results for the feedforward networks. The first 12 rows corre-

spond to feedforward networks trained without batch normalization and
the 12 rows below correspond to feedforward networks trained with batch
normalization. 41

5.12 Summary of results for the recurrent architecture. 42

xiv

Chapter 1

Introduction

Prediction of returns on financial assets is one of the most frequently discussed topics
in finance. In practice it is almost impossible to predict the correct return and most
research considers the case of predicting whether the market will go up or down during the
following period. Moreover, prediction of the market is of great interest in order both to
speculate about potential returns and to understand which factors that drive the market.
According to the efficient-market hypothesis, prices on financial assets reflect all available
information and therefore implies that it is impossible to consistently outperform the
market [1].

To try to model the future returns one has to have an idea about which data and economic
variables that influence the future prices. The research about which data and economic
variables that influence the future returns is a research area in itself and there does not
exist any theory specifying relevant parameters [2] [3]. Moreover, there exists evidence
that future returns can be represented by historical returns [4].

Most financial data can be considered as time series, i.e. it has a time dependency.
Therefore, methods where the time series structure is preserved is to prefer. The re-
lationship between the data is very complex. Thus, machine learning algorithms have
been of interest since the data have complex relationships and the amount of data has
increased.

Assets across different markets can be considered to be correlated [4]. Therefore, specific
markets tend to follow each other and a multivariate model can be preferable to capture
those kind of scenarios.

A natural question as the interest in deep learning has grown in the last decade, due
to some improvements in training, is if deep learning can be successfully applied to the
prediction of returns on financial assets.

1.1 Research questions

In this section the related research questions will be introduced. The results will be
presented in Chapter 5 and a deeper discussion will be presented in Chapter 6.

1. Is it possible that a deep feedforward neural network with fewer neurons in each
hidden layer can outperform a non-deep neural network with many neurons in each
hidden layer?

1

1.2. RELATED WORK CHAPTER 1. INTRODUCTION

2. Is it possible that a recurrent neural network can outperform a feedforward neural
network with the same feature setup?

1.2 Related work

There exists an extensive literature regarding prediction of price movements using ma-
chine learning. Methods like support vector machines [5] [6], hidden Markov models [7],
and neural networks [8] [9] have been used.

An interesting survey that discusses different works in deep learning is “Deep Learning
in Finance” by J. B. Heaton, N. G. Polson and J. H. Witte [10]. The article explores
how deep learning has been used for problems in financial prediction and classification
and suggests different ways to improve the methods. Moreover, the authors give an
introduction to Long Short-Term Memory, recurrent neural networks, and suggest that
the model can be used as a volatility model. The authors conclude that deep learning
has the ability to detect patterns in the financial data that is invisible to the existing
financial economic theory.

Another interesting article is “Using machine learning for medium frequency derivative
portfolio trading” by A. Sharang and C. Rao. They use different machine learning meth-
ods, logistic regression, support vector machines, and feedforward neural networks, to
construct a portfolio consisting of 5 year and 10 year US Treasury note futures. The
mathematical formulation consists in predicting the weekly direction of the price move-
ments using feature extraction from a deep belief network which is trained on technical
indicators. Their result shows that it is possible to make profitable trades.

Moreover, Long Short-Term Memory neural network has been used in “Deep Learning
Stock Volatility with Google Domestic Trends” by R. Xiong, E. P. Nichols and Y. Shen
[11]. They model the volatility of S&P 500, using Google domestic trends as indicators
of macroeconomic factors and the public atmosphere. Their Long Short-Term memory
model outperformed methods like linear regression and GARCH benchmarks. As a con-
sequence of their results, there exist strong evidence for increased prediction accuracy for
predicting stock market behaviour using deep learning and neural network models.

Furthermore, Gilberto Batres-Estrada has applied deep learning in his master thesis
“Deep Learning for Multivariate Financial Time Series” at KTH [8]. Estrada used deep
learning to construct a portfolio of some given stocks. His deep learning model con-
sists of a deep belief network mapping into a feedforward neural network. Moreover,
he concluded that deep learning methods in finance are reliable and have good perfor-
mance.

Also, there exist projects at the course Convolutional Neural Networks for Visual Recog-
nition at Stanford considering different deep learning methods for stock trading. One
interesting project is “Convolutional Networks for Stock Trading” by A. Siripurapu [12].
Siripurapu uses convolutional neural networks to predict the price movements for stock
prices. In order to use the convolutional neural network he maps price information on 1
2D array that can be analysed with image recognition methods.

However, there does not exist any significant paper related to recurrent neural networks
applied to financial forecasting of price movements. Recurrent neural networks have
shown to be very powerful tools for speech recognition [13] and machine translation [14]
where sequential data is considered. Therefore, it would be interesting to use recurrent

2

1.3. SCOPE AND LIMITATIONS CHAPTER 1. INTRODUCTION

neural networks for predicting price movements to investigate if the recurrent neural
network is more powerful than the more classical feedforward neural network. In other
words, can a recurrent neural network use the information in the sequence in a proper way
to get use of the time-series that the usually feedforward neural networks not necessarily
captures.

1.3 Scope and Limitations

This thesis focuses on comparing different neural network architectures and two different
feature setups. The networks are trained with respect to the accuracy of predicting
correct sign on the following price movement. The return of the model will not be
considered as a qualitative variable to compare the models, just a measure if the model is
tradable or not. The aim of the thesis is not to optimize the neural networks with respect
to validation accuracy since training neural networks is very computationally expensive.
Namely, the setup consists of many hyperparameters and therefore the networks will not
be optimized with respect to validation accuracy since the problem is to computationally
expensive and it is hard to construct a rigorous grid-search in larger dimensions.

1.4 Outline

This thesis has the following structure. Chapter 2 describes the necessary financial
background needed to understand the difficulties behind forecasting the direction of price
movements. Chapter 3 describes the mathematics behind neural networks, especially
feedforward and recurrent neural networks, and different methods to train and regularize
neural networks. In Chapter 4 the methodology is presented, namely different types of
setups that will be considered in this thesis. In Chapter 5 the results will be introduced,
with short comments. The results will be discussed in Chapter 6 followed up with
conclusions and suggestions about future work in Chapter 7.

3

Chapter 2

Financial background

This chapter gives a short review of financial terminology and theory. It begins with
describing what a short or long position means. Then, it follows up with a brief in-
troduction to futures contracts and how they can be used, a description of the efficient
market hypothesis and how it relates to this thesis, and lastly, a measure called Sharpe
ratio is introduced in order to be able to compare different returns.

2.1 Long and short positions

A position is called long if we have a positive amount in the asset and a position is called
short if we have a negative amount in the asset.

In theory it is often possible to be either long or short but in reality it can sometimes
be hard to be short in certain kinds of assets, e.g. shares of small companies, since
we then need to find an owner of the asset and borrow it from him to be able to go
short in the asset. However, in this report we are only considering futures contracts and
by construction one party has to be short and one has to be long, so this will not be a
problem. Moreover, in this thesis we will always be either long or short in an asset.

2.2 Futures contracts

A futures contract is a standardized contract between between two parties to either buy
or sell an asset at a certain date and predetermined price, thus the contract has one
buying part and one selling part. The buying part is obligated to buy an asset at a
certain time and the predetermined price while the selling part are obligated to sell this
agreed asset at the given time and for the predetermined price. One important part of
these contracts are that they are standardized thus they are traded on an exchange and
the two parties must not necessarily know each other. Another important part of the
contract is that it can have either physical or cash settlement, but the more technical
parts will be described later. [15]

Futures contracts can be traded on various type of underlying assets, e.g. commodities
such as gold, aluminum, wool, sugar and pork, and financial assets such as stock indices
and currencies.

4

2.3. EMH CHAPTER 2. FINANCIAL BACKGROUND

Moreover, there do also exist so called margins to decrease the counterparty and liquidity
risks [15]. When entering a futures contract the buyer and the seller must deposit funds
into a margin account. The specific amount that is needed when entering the contract
is called initial margin, which is much smaller than the price of the total contract. Then
after each trading day the margin account is adjusted to reflect the investor’s gain or
loss. If the deposits on the margin account decreases under a certain level then the
holder gets a margin call. The margin call tells the investor that he needs to enter more
deposits into the margin account or otherwise lose the contract. The futures contracts
are suited to either hedge or speculate with since the required amount of funds needed
to enter futures contracts is rather small compared to being long/short in the underlying
asset. Also, it is common to standardize the returns of futures contracts by some type
of value due to the leverage possibilities and since we actually do not buy/sell the asset
when we entering the contract. In this report we are going to divide the return between
two dates by a volatility measure based on historical data.

Furthermore, due to the fact that futures contracts are expiring on certain dates it is
important to have some type of rolling scheme, i.e. when we should change our investment
from a contract close to expiry to another contract not so close to expiry. The rolling
scheme can be based on different interesting aspects but typically based on; the number
of days to maturity or before first notice day and if the volume in the new contract is
larger then the existing contract.

When trading futures contracts it is important to be aware of the fact that the returns of
the futures contracts is not necessarily equal to the return of the underlying asset.

2.3 EMH

The efficient-market hypothesis (EMH) states that it is impossible to consistently beat
the market since the prices reflect all relevant available information [16]. A consequence
of EMH is that it is impossible to have a trading strategy that consistently outperforms
the market over time [17]. There exist different types of efficiency, namely; weak, semi-
strong-form, and strong efficiency.

2.3.1 Weak-form efficiency

The weak-form efficiency states that future prices cannot be predicted using historical
prices [15]. An investment strategy or model cannot beat the market in the long term.
Moreover, it will not help to use technical analysis to try to outperform the market
but some fundamental analysis can be used. Furthermore, an implication of weak-form
efficiency is that share prices do not have any serial dependencies or equivalently there
does not exist any pattern in the asset prices. This implies that future stock prices are
driven by information that cannot be extracted from the historical stock prices. Thus,
since there does not exist any pattern in asset prices and future prices are not driven by
historical prices we must have that asset prices follow a random walk.

This efficiency has been questioned and many studies have shown that the stock market
is trending over some time periods, e.g. weeks or longer [18].

Moreover, there exist studies that indicate that future returns are reflected by the mo-
mentum, i.e. assets that have performed well over a given period in the past will continue

5

2.4. SHARPE RATIO CHAPTER 2. FINANCIAL BACKGROUND

to perform in the future well while assets that have performed poorly over a certain pe-
riod in the past will continue to perform poorly in the future [19] [20].

2.3.2 Semi-strong-form

The semi-strong-form efficiency states that asset prices adjust to new publicly available
information very fast such that it is not possible to get any returns by trading on that
information. A consequence of semi-strong-form efficiency is that neither technical nor
fundamental analysis can be used to beat the market in the long term run.

2.3.3 Strong-form efficiency

The strong-form efficiency states that asset prices reflect all available information, both
public and private, and nobody can consistently beat the market in the long term by
using an investment strategy or trading on information.

2.4 Sharpe ratio

Sharpe ratio is a measure that standardizes the returns of an asset compared to a bench-
mark in terms of their risks [15]. An advantage of this is that we can compare different
returns even though they have different risks. Sharpe ratio is introduced as a measure
to determine the trade-off between return and risks. The benchmark is often a more safe
investment, for instance the risk-free rate or when investing in stocks on the U.S. equity
market then the benchmark can be S&P500.

The formula for Sharpe ratio is given by

Sh =
E[R

a

�R
b

]p
Var[R

a

�R
b

]
,

where R
a

is the return of the asset and R
b

is the return of the benchmark asset.

In this thesis we will not have any benchmark asset, thus we will neglect R
b

in the
formula. The measure when neglecting the benchmark term is also called risk-adjusted
return but in this thesis we will refer to it as Sharpe ratio since this is the most frequently
used term for these kind of applications.

6

Chapter 3

Neural networks

This chapter is aimed to give the relevant information for the reader about neural net-
works. The neural networks considered in this report are feedforward neural networks
and recurrent neural networks.

The chapter begins with describing the architecture of feedforward neural networks and
recurrent neural networks. Then, it follows up with theory of the used loss function,
different types of training methods and algorithms, and lastly, regularization meth-
ods.

3.1 Feedforward neural networks

Feedforward neural networks (FNN) are inspired by the neurons in the human brain,
where the feedfoward neural networks connect a large number of computational units,
called neurons, to solve a specific task [21]. The neurons are often divided into several
layers and a neural network with many hidden layers is called a deep neural network.
The architecture of a neural network is an input layer and an output layer where the
connection between the input layer and output layer is given by an arbitrary amount
of hidden layers. The output of each layer in the neural network is determined by an
activation function f and the connections between each layer and the neurons in those
layers are given by a weight matrix W .

For a neural network with two hidden layers, one output layer, input vector x 2 Rm0

and output vector y 2 Rm3 denoted (2,#neurons), the output of the network is given
by

h

(1) = f (1)(W (1)T
x+ b

(1))

h

(2) = f (2)(W (2)T
h

(1) + b

(2))

y = f (3)(W (3)T
h

(2) + b

(3))

where h

(i) 2 Rmi denotes the output of the hidden layer i, f (i) denotes the activation
function of layer i, b(i) 2 Rmi denotes the bias term in layer i and W (i) 2 Rmi�1⇥mi

is the the weight matrix in layer i. Notice that a neural network is a composition of
functions.

Moreover, the universal approximation theorem [22] [23] states that a feedforward neural
network with at least one hidden layer and linear output activation and any “squashing”

7

3.2. RECURRENT NEURAL NETWORKS CHAPTER 3. NEURAL NETWORKS

activation, e.g. tanh or sigmoid, can approximate any function, provided that the net-
work is given enough hidden units. Thus, neural networks are a very powerful tool in
describing complex functions.

In figure 3.1 below we have a neural network with one input layer consisting of four inputs,
three hidden layers where each layer consists of five hidden neurons and an output layer
consisting of one neuron.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Input
layer

Output
layer

Figure 3.1: A fully connected feedforward network with an input layer consisting of 4
inputs, three hidden layers consisting of 5 neurons each, and an output layer consisting
of 1 neuron.

3.2 Recurrent neural networks

A recurrent neural network (RNN) is a class of neural networks for processing sequential
data [24]. They have been particularly successful applied to machine translation [14]
and speech recognition [13]. The structure of the network is similar to the feedforward
network but it allows connections between the hidden nodes with a time delay. Through
these connections the network can learn from earlier events that are far away from each
other in the data.

There exist different type of architectures of recurrent neural networks depending on the
goal of using the network. The first architecture consists of non-sequence input and a
sequence output, e.g. a picture as input and a description of the picture as output. The
second architecture consists of a sequence input and non-sequence output, e.g. classifi-
cation if a sentence is on English or not. The third architecture consists of a sequence
input and a sequence output. This architecture can be divided into two parts where one
consists of continuous prediction and the other consists of encoding/decoding.

Given an input sequence (x1, ...,xT

) 2 Rm0⇥T , the recurrent network takes a sequence
of (h1, ...,hT

) 2 Rm1⇥T hidden states, which are computed at time step t from the
equation

h

t

= tanh(W
h

h

t�1 +W
x

x

t

)

where tanh is the recurrent activation function, W
h

2 Rm1⇥m1 is the recurrent weight
matrix, and W

x

2 Rm1⇥m0 is the input-to-hidden weight matrix.

8

3.3. ACTIVATION FUNCTIONS CHAPTER 3. NEURAL NETWORKS

For a sequence input to a sequence output (y1, ...,yT

) 2 Rm2⇥T the output from the
network is given by

y

t

= f (1)(W
y

h

t

+ b)

where f (1) is the output activation function, W
y

2 Rm2⇥m1 is the output weight matrix.
Moreover, for a sequence input to a non-sequence output the output from the network
is given by

y

T

= f (1)(W
y

h

T

+ b)

where f (1) is the output activation function, W
y

2 Rm2⇥m1 is the output weight ma-
trix.

In the figure below we have an illustration of a recurrent neural network with sequence
input and sequence output.

x
t�1 x

t

x
t+1

h
t�1 h

t

h
t+1h

...

h
...

y
t�1 y

t

y
t+1

W
x

W
y

W
x

W
y

W
x

W
y

W
h

W
h

W
h

W
h

Figure 3.2: Recurrent neural network with sequence input to sequence output, input
vector x, weight matrices W

x

,W
h

, and W
y

.

3.3 Activation functions

The most popular activation function in research about neural networks is the function
called rectifier, also known as rectified linear unit (ReLU) [25]. The rectifier is defined
by

f(x) = max(0, x).

One disadvantage of using the rectified linear unit is that if any features are negative
then their corresponding weights may not be updated at all.

Another popular activation function is the leaky rectified linear unit (LReLU) [26]. The
leaky rectified linear unit is defined by

f(x) = max(0.01x, x).

This leaky rectified linear unit take care of the problem of not training weights with
negative inputs since the function will give small linear output if the input is negative,
i.e. 0.01x, while it gives a larger output if the input is positive, i.e. x.

Another popular activation function is the scaled-tanh function [25]. The scaled tanh is
defined by

f(x) = � tanh(↵x).

9

3.4. COST/LOSS FUNCTION CHAPTER 3. NEURAL NETWORKS

One advantage of using the scaled-tanh function is that it has smooth derivative and is
relative easy to calculate. One disadvantage of using the scaled-tanh function is that if
we have large negative inputs then we will only get �� as output while if we have large
positive inputs then we will only get � as output.

Another popular activation function is the sigmoid function [25]. The sigmoid is defined
by

f(x) =
1

1 + e�x

.

One advantage of using the sigmoid function is that it has a smooth derivative and
are relative easy to calculate. One disadvantage for using the sigmoid is similar to the
disadvantage for the tanh function. Another potential weakness of the sigmoid function
is that it maps only on the interval [0, 1] and this might introduce a potential bias in the
network.

3.4 Cost/loss function

In machine learning we are often interested in a performance measure P, typically accu-
racy. To optimize the network with respect to this P we introduce a cost function J(✓)
which is related to the performance measure in such a way that a decrease in the cost
corresponds to an increase in the performance measure. Typically, when one can derive
a Likelihood function it is often appropriate to use the negative log-likelihood as this
cost function. [25]

Consider the binary classification problem where we have two different classes, i.e. y
i

=
{0, 1} where 0 corresponds to the outcome of negative price movement and 1 corresponds
to the outcome of positive or unchanged price movement. Then, the likelihood can be
written as

L(✓;x, y) =
nY

i=1

P(y
i

= 1|✓, x
i

)yiP(y
i

= 0|✓, x
i

)(1�yi),

where n is the number of samples. Therefore, the log-likelihood is given by

l =
nX

i=1

[y
i

logP(y
i

= 1|✓, x
i

) + (1� y
i

) logP(y
i

= 0|✓, x
i

)] . (3.1)

The log-likelihood in equation (3.1) may be appropriate for a setup consisting of predict-
ing one market. A generalization of predicting multiple markets at the same time, i.e.
multivariate predictions, is given below.

Consider the problem where we have m different markets and each market has two
different classes each time step, i.e. y

i,j

= {0, 1}. Then, the cost function is given
by

J(✓) = � 1

nm

nX

i=1

mX

j=1

[y
i,j

logP(y
i,j

= 1|✓, x
i,j

) + (1� y
i,j

) logP(y
i,j

= 0|✓, x
i,j

)] ,

where n is the number of observations. Notice that y
i,j

corresponds to the direction of
the market on day i and market j.

10

3.5. TRAINING NEURAL NETWORKS CHAPTER 3. NEURAL NETWORKS

The interpretation of this cost function in the multivariate case is that we are predicting a
matrix instead of a vector, i.e. returns for multiple assets on multiple days. Therefore, a
possible scalar cost function is to take the mean over each element in this matrix instead
of the mean over each element in a vector, which would be the case in the univariate
case. An average over each element corresponds to having equal weights of importance
for classifying the m different markets.

A possible disadvantage of using a cost function that only maximizes the accuracy is that
it does not necessarily mean that we maximize the return even though high accuracy is
correlated with high returns.

3.5 Training neural networks

3.5.1 Batch and minibatch

For most optimization algorithms we need to calculate the gradient of the cost function
with respect to the given parameters in order to know how we should update our param-
eters. This can be very expansive since it requires to evaluate the model on every data
point in the entire dataset. Thus, it is common to divide the training data into several
parts where each part is called a mini-batch. The main advantage of using mini-batches
over using the entire dataset is that the calculation of the gradients will be more efficient
since we have smaller datasets.

The size of the mini-batch has the following relationships [25];

• The relationship between the size of the mini-batches and accuracy of the gradient
estimate is typically non-linear.

• The time to estimate the gradient may have a lower bound. Thus, using mini-
batches smaller than a certain size might be unnecessary since we know that in-
creases in the size of the mini-batches will increase the accuracy of the estimate.

• Using small sizes of the mini-batches can give a regularizing effect since the mini-
batches add some type of noise to the learning process [27].

3.5.2 Gradient descent

There exists a multitude of different Gradient Descent algorithms where the aim is to
minimize the cost function J(✓). The most used gradient descent algorithms are batch
gradient descent, stochastic gradient descent and mini-batch gradient descent and all
these three gradient descent algorithms are similar and only differ in how the training
data are used [25].

In the batch gradient descent algorithm the gradient is calculated with respect to the
parameter ✓ for the entire dataset. The updates in the gradient descent algorithm are
done according to the following equation

✓
l+1 = ✓

l

� ⌘rJ(✓
l

),

where ⌘ is the learning rate. This method is often very slow since it requires calculations
of the gradients for the entire dataset in every update.

11

3.5. TRAINING NEURAL NETWORKS CHAPTER 3. NEURAL NETWORKS

In the stochastic gradient descent algorithm the gradient is calculated with respect to
the parameter ✓ for only one datapoint in the dataset, i.e. x

i

and y
i

, and then this is
repeated for all training points. The updates in the gradient descent algorithm are done
according to the following equation

✓
l+1 = ✓

l

� ⌘rJ(✓
l

;x
i

; y
i

),

where ⌘ is the learning rate. Moreover, the stochastic gradient descent algorithm does
just perform one update at a time while the batch gradient descent requires much more
computations since it recomputes all the gradients for similar examples before updating
each parameter. Thus, in general, the stochastic gradient descent algorithm is much
faster. One disadvantage of the stochastic gradient descent is that the updates have
higher variance since we only update with one training point at each time.

Moreover, the batch gradient descent does always converge to the closest minimum to
the given parameter setup while the stochastic gradient descent may allow you to find
a potentially better local minimum due to the variance. This may cause the stochastic
gradient descent algorithm to have problems to converge to the exact minimum. However,
it has been shown that when decreasing the learning rate, ⌘, in stochastic gradient
descent then this algorithm can achieve the same properties as using the batch gradient
descent.

In the mini-batch gradient descent algorithm the gradient is calculated with respect to
the parameter ✓ for a mini-batch. Assume that each mini-batch consists of n datapoints.
Then, the updates in the mini-batch descent algorithm is done according to the following
equation

✓
l+1 = ✓

l

� ⌘rJ(✓
l+1;xi:i+n

; y
i:i+n

),

where ⌘ is the learning rate. Moreover, the mini-batch gradient descent algorithm is
more time efficient than the batch gradient descent and not necessarily much less time
efficient than the stochastic gradient descent algorithm due to the computational lower
bound. The mini-batch gradient descent algorithm provides a more accurate estimation
of the gradient than the stochastic gradient descent and a less time consuming estimation
of the gradient than the batch gradient descent. The mini-batch descent algorithm is
the most frequently used algorithm when training a neural network.

As mentioned earlier it is appropriate to decrease to the learning rate over time when
using stochastic gradient descent and mini-batch gradient descent due to the introduced
noise in the estimation of the gradients. Two sufficient conditions in order to have
convergence in the algorithms are

1X

k=1

⌘
k

=1, and

1X

k=1

⌘2
k

<1,

i.e. divergent first order sum of coefficient but finite second order sum of coefficient,
where ⌘

k

the denotes the learning rate at iteration k [25].

One common used way to decrease the learning rate is

⌘
k+1 = ⌘

k

· ↵,

12

3.5. TRAINING NEURAL NETWORKS CHAPTER 3. NEURAL NETWORKS

where ↵ corresponds to the decay factor. Another common used way to decrease the
learning rate is to decay the learning until a iteration ⌧ according to the following for-
mula

⌘
k

= (1� ↵)⌘0 + ↵⌘
⌧

,

where ↵ = k/⌧ and keep the learning rate constant after ⌧ iterations. Notice that the
exponential decaying above does not fulfill the two sufficient conditions above but it is
a common way for decaying the learning rate. [25]

3.5.3 Momentum

The learning with a descent gradient method can sometimes be very slow [25]. Thus, a
natural idea is to add a momentum method since the method of momentum is constructed
to speedup the learning process, and especially for high curvatures, or noisy gradients
[28]. The momentum term consists of past gradients that have been accumulated with
an exponentially decaying moving average.

The momentum is updated according to the following formula

v
l+1 = ↵v

l

� ⌘rJ(✓
l

),

✓
l+1 = ✓

l

+ v
l+1,

where v is often called the velocity vector and ↵ 2 [0, 1) is the hyperparameter deter-
mining how quickly past gradients decay. Notice that if ↵ = 0 then the momentum
term-vanishes and we are back to the original optimization algorithm without momen-
tum.

3.5.4 Nesterov momentum

The Nesterov momentum is a momentum algorithm inspired by Nesterov’s accelerated
gradient method [29] [30]. The momentum is updated according to the following for-
mula

v
l+1 = ↵v

l

� ⌘rJ(✓
l

+ ↵v
l

),

✓
l+1 = ✓

l

+ v
l+1,

where v is often called the velocity vector and ↵ 2 [0, 1) is the hyperparameter deter-
mining how quickly past gradients decay.

The main difference of Nesterov momentum and the ordinary momentum described ear-
lier is when the gradients are calculated. For the ordinary momentum the gradients are
calculated before the velocity has been applied while for the Nesterov momentum the
gradients are calculated after the velocity has been applied. Thus, a natural interpreta-
tion of the Nesterov momentum is that we want to find an appropriate direction after we
have calculated our momentum since we then will be closer to our local optimum.

Moreover, there exists a simplified version of the Nesterov momentum based on the
ordinary momentum described above [31]. Assume that ⇥ = ✓ + ↵v

t�1. Then, the
simplified Nesterov momentum is given by

v
t+1 = ↵v

t

� ⌘rJ(⇥
t

),

⇥
t+1 = ⇥

t

+ ↵2v
t

� (1 + ↵)⌘rJ(⇥
t

).

13

3.6. REGULARIZATION CHAPTER 3. NEURAL NETWORKS

Assuming that the initial velocity v1 = 0 and the velocity at convergence v
T

⇡ 0, yields
that the parameters ⇥ are equivalent to ✓.

Notice that this Nesterov momentum is more similar to the ordinary momentum de-
scribed earlier since it has just only a different linear combination of ordinary momentum
described above.

Moreover, the implementation of Nesterov momentum to recurrent neural networks have
increased their performance significantly [13].

3.5.5 RMSProp

The RMSProp is an unpublished optimization algorithm introduced by Geoffrey Hinton
in his Coursera Class [32]. It is an algorithm with adaptive learning rate and is inspired
by another algorithm called AdaGrad.

The main idea of RMSProp is to adapt the learning rate with respect to past gradients.
The past gradients are accumulated with an exponentially weighted moving average
instead of an ordinary sum as in the case of AdaGrad. Thus, it prevents the algorithm
to have a too small learning before arriving to a local minima.

The RMSProp is updated according to the following formula

r
l

= ⇢r
l�1 + (1� ⇢)rJ(✓

l

)�rJ(✓
l

),

✓
l+1 = ✓

l

� ⌘p
r
l

+ ✏
rJ(✓

l

),

where � denotes element-wise multiplication, ✏ is a small number to prevent numerical
errors, and ⇢ is the hyperparameter determining how quickly past gradients decay. Notice
that both r and rJ(✓) are vector valued and therefore the division is done element-
wise.

3.6 Regularization

A well known problem in machine learning is how to develop a model that performs
well on the test data and not only on the training data. A strategy that is explicitly
used to reduce the test error are known as a regularization strategy. Developing effective
regularization strategies have been one of the major research in deep learning during the
last decade. [25]

3.6.1 Early stopping

A neural network does in general contain a lot of parameters, hence a natural problem
to deal with is overfiting. The main idea behind early stopping is to stop the learning
process when the validation loss increases while the training loss decreases. Alternatively,
stop when validation accuracy decreases while the training accuracy increases.

Therefore, if we stop learning when the validation loss increases then our idea is that
the test set has the same properties as the validation test. A consequence is that a
model with early stopping has a better validation set error than a model without early
stopping.

14

3.6. REGULARIZATION CHAPTER 3. NEURAL NETWORKS

There exist different types of early stopping, namely;

• Learn until the validation loss increases, or alternatively for a classification prob-
lem, learn until the validation accuracy decreases.

• Learn until the validation loss has increased during the last n epochs, or alterna-
tively for a classification problem, learn until the validation accuracy have decreased
during the last n epochs.

• Learn for a fixed number of epochs.

A consequence of the simplicity and effectiveness of using early stopping have made it
one of the most used regularization techniques in deep learning [25].

3.6.2 Dropout

A common technique to prevent the model from overfitting is called dropout [33]. The
main idea behind dropout is to randomly drop units between different layers and thus
consider a smaller sub-model instead. The dropout rate is commonly denoted p and is
the probability of dropping the unit, i.e. a p close to 1 corresponds to it being likely to
drop a unit while a p close to 0 corresponds to it being unlikely to drop a unit.

A consequence of using dropout is that with dropout we train the ensemble consisting
of all subnetworks that can be formed of a neural network by removing units from the
base network. An example is given below.

Consider a feedforward neural network with two input vectors, one hidden layer consist-
ing two neurons and one output neuron then the full model can be represented by the
figure below.

y

h1 h2

x1 x2

Figure 3.3: A feedforward neural network with two input vectors, one hidden layer
consisting two neurons and one output neuron then the full model can be represented
by the figure below.

Assuming that we have a dropout rate p larger than 0, then three possible sub-models
consists of the three different sub-figures below where in the first model x1 has been
dropped, in the second model x2 has been dropped and in the third the hidden neuron
h1 have been dropped. This illustration are given in Figure 3.4.

15

3.6. REGULARIZATION CHAPTER 3. NEURAL NETWORKS

y

h1 h2

x2

y

h1 h2

x1

y

h2

x1 x2

Figure 3.4: Possible sub-models after applying dropout to the model considered in figure
3.3.

3.6.3 Batch normalization

Batch normalization was introduced to speed up the training for neural networks [34],
and especially for deep neural networks, since normalization before a layer speeds up the
convergence even when features are not decorrelated [35].

The output for a network using batch normalization is given by

ŝ1 = BatchNorm
�,�

(W (1)T
x+ b

(1))

h

(1) = f (1)(ŝ1)

ŝ2 = BatchNorm
�,�

(W (2)T
h

(1) + b

(2))

h

(2) = f (2)(ŝ2)

y = f (3)(W (3)T
h

(2) + b

(3))

where BatchNorm is the function that is the affine transformation of a vector to a
vector with zero mean and unit variance, i.e. given the mini-batch (x1, ..., xm) then the
normalization is given by

µ
B

=
1

m

mX

i=1

x
i

,

�2
B

=
1

m

mX

i=1

(x
i

� µ
B

)2,

x̂
i

= �
x
i

� µ
Bq

�2
B

+ ✏
+ �

during the training where � and � are parameters to learn. During training the mean
and standard deviation are saved by an exponential moving average of each layer for the
forward pass, i.e.

µ
av

= ↵µ
av

+ (1� ↵)µ
B

�2
av

= ↵�2
av

+ (1� ↵)�2
B

.

Moreover, notice that the network bias term vanishes when batch normalization is used
but the term � acts like a bias term.

3.6.4 Gradient constraint

A general problem for recurrent neural networks are exploding or vanishing gradients
and one common way to handle the exploding gradients is to using gradient clipping

16

3.6. REGULARIZATION CHAPTER 3. NEURAL NETWORKS

[36]. Gradient clipping can be considered to be a regularization method since when we
exceed a certain threshold, then, the gradient will be re-scaled and we will not move
optimally in the given direction.

The equation for gradient clipping is described by

G =

(
c

||rJ(✓)||rJ(✓) if ||rJ(✓)|| � c

rJ(✓) otherwise

where G is the scaled gradient used for updating ✓, and c is the given threshold.

3.6.5 Ensemble methods

This is a technique used for reducing the generalization error [37]. The main idea is to
train k different models separately and then let each model contribute with a prediction,
e.g. if each model predicts probabilities then averaging these over all k different models is
how ensemble will be used in this thesis. Another type of ensemble is to use the majority
vote of each model, i.e. for the binary classification; if 5 of 9 models predict the class
1 then the majority vote would be to predict the class 1 instead of 0. Using multiple
of models to predict an outcome will decrease the importance of good initializations for
all the weight matrices since a single model not necessarily select the prediction of the
ensemble.

Methods like this is called model averaging in machine learning and techniques like this
are known as ensemble methods [25].

17

Chapter 4

Methodology

4.1 Data processing

Data from 03-06-1993 to 17-02-2017 was used to predict 12 different futures contracts,
or markets. I am going to take the intersection of dates between the 12 markets since
they can be closed on different days. The 12 markets are given in the table below.

Name Short Name Asset Class Data Type

Brent Commodity Futures
Gold Commodity Futures
Soybeans Commodity Futures
EUR FX Futures
GBP FX Futures
JPY FX Futures
10ynote Rates Futures
Tbond Rates Futures
Bund Short Rate Futures
Short Sterling Short Rate Futures
FTSE 100 Stock indices Futures
OMXS 30 Stock indices Futures
S&P 500 Stock indices Futures

Table 4.1: Assets used in this thesis

The used data in this report consists of High, Low, Open and Close, denoted H
t

, L
t

, O
t

,
and C

t

respectively at time t, prices for a certain time horizon. The data was provided
by Lynx Asset Management.

4.2 Filters

We are now going to introduce two different type of filters, namely; simple moving
average and exponential moving average. In this report we are mainly going to use the
exponential moving average due to its properties of fast changes and smooth changes in
time.

18

4.3. VOLATILITY ESTIMATORS CHAPTER 4. METHODOLOGY

4.2.1 SMA

Simple moving average with period m, denoted SMA(X,m), is an average over the last
m data points of the time series X

t

[38]. The formula for calculating the simple moving
average is given by

SMA(X
t

,m) =
1

m

m�1X

i=0

X
t�i

.

Note that we need m data points in order to calculate the first value in the time series
X

t

. Moreover, when the first value have been calculated then we can update the time
series according to the following formula

SMA(X
t

,m) = SMA(X
t�1,m) +

X
t

m
� X

t�m

m
.

4.2.2 EMA

Exponential moving average with parameter ↵, denoted EMA(↵), is an infinitely long
SMA of the time series X

t

with exponential decay [38]. The formula for calculating the
↵ exponential moving average is given by

EMA(X
t

,↵) =
1X

i=0

↵(1� ↵)iX
t�i

.

Similarly as for the simple moving average we can calculate the exponential moving
average recursively. The recursively formula is given by

EMA(X1,↵) = X1

EMA(X
t

,↵) = ↵X
t

+ (1� ↵)EMA(X
t�1,↵), for t > 1.

Moreover, it may be convenient to talk about the exponential moving average as a
function of days instead of ↵. Thus, we can talk about the m day exponential moving
average by using the relationship

↵ =
2

1 +m
.

4.3 Volatility estimators

In order have an appropriate volatility estimator to normalize time series we are going
to introduce the Garman-Klass and Garman-Klass Yang-Zhang Extension volatility esti-
mators. These methods are estimating the different volatility of the market with respect
to more parameters than just the close prices.

19

4.4. FEATURES CHAPTER 4. METHODOLOGY

4.3.1 Garman-Klass

The Garman-Klass volatility estimator was created in late 1980 [39]. It is an extension of
an volatility estimator created by Parkinson in 1980 which was one of the first advanced
volatility estimators based on high and low prices instead of closing prices. The Garman-
Klass volatility estimator ignore overnight jumps but is based on high, low, close and
opening prices. Consider the time series X

t

given by

X
t

=
1

2

✓
ln

✓
H

t

L
t

◆◆2

� (2 ln(2)� 1)

✓
ln

✓
C
t

O
t

◆◆2

then the SMA version is given by

Z
t

=
p
F
p

SMA(X
t

,m)

and the EMA version is given by

Z
t

=
p
F

s

EMA

✓
X

t

,
2

1 +m

◆
.

4.3.2 Garman-Klass Yang-Zhang extension

The Garman-Klass Yang-Zhang Extension is a volatilty estimator created by Yang-Zhang
and is adjusted for the jumps in the specific time series [39]. The Garman-Klass Yang-
Zhang Extension exists in two different versions namely one SMA version and one EMA
version. Consider the time series X

t

given by

X
t

=

✓
ln

✓
O

t

C
t�1

◆◆2

+
1

2

✓
ln

✓
H

t

L
t

◆◆2

� (2 ln(2)� 1)

✓
ln

✓
C
t

O
t

◆◆2

then the SMA version is given by

Z
t

=
p
F
p

SMA(X
t

,m)

and the EMA version is given by

Z
t

=
p
F

s

EMA

✓
X

t

,
2

1 +m

◆
.

4.4 Features

In this section we are going to introduce features that have been found in earlier articles
considering prediction of the stock markets.

20

4.4. FEATURES CHAPTER 4. METHODOLOGY

4.4.1 Momentum

The momentum feature is a simple feature that calculates the price difference between
two different points. Moreover, the d day momentum is sometimes called lag-d differ-
encing operator in time series analysis due to its property of decompose time series into
one trend and one noise component [38]. The momentum is given by

Momentum(m) = X
t

�X
t�m

where m is the length of the momentum.

4.4.2 Rising

The aim of the rising feature is to capture either a positive or negative trend. Let X
t

be equal to 1 if the closing price at time t was larger than the closing price at time t� 1.
Then the rising feature is given by

Rising(m) = m · SMA(X
t

,m).

The main idea of the rising feature is that, if the last couple of days have closed in the
same direction then the rising feature should be high while if the market behaves more
like a random walk then the rising feature should be low.

4.4.3 Return vs Risk

The aim of the Return vs Risk (RvR) feature is to consider the trade-off between risk
and returns of a specific asset. The idea of considering the trade-off between risk and
returns was introduced by H. Markowitz in a 1952 essay [40] where he discuss the idea of
finding a portfolio with lowest possible risk given a specific return. Moreover, in finance
the returns are usually very small on a daily-basis and therefore we can estimate the
variance by only the second order moment and neglect the mean. Thus, the feature is
given by

V̂
t

(m) = EMA

✓
(C

t

� C
t�1)

2,
2

1 +m

◆
,

RvR(m) =
C
t

� C
t�1q

V̂
t�1(m)

.

4.4.4 Stochastic K%

The aim of the stochastic K% feature is to get an indication about the current price
relative to the highest and lowest prices during the last m days [41]. The stochastic K%
is a feature to identify bearish or bullish markets, i.e. decreasing or increasing markets.
The feature is given by

StochK(m)
t

=
C
t

�min{L
t

, ..., L
t�m

}
max{H

t

, ..., H
t�m

}�min{L
t

, ..., L
t�m

} · 100

where C
t

is the closing price at day t, L
t

is the lowest price at day t and H
t

is the highest
price at day t. A common value for m is 14.

21

4.4. FEATURES CHAPTER 4. METHODOLOGY

4.4.5 Stochastic D%

Stochastic D% is a feature of smoothing the stochastic K% [41]. The m1 day stochastic
D% is given by

StochD(m1,m2)t = SMA(StochK(m2),m1),

where StochK(m2) is the stochastic K% with period m2. A common parameter setup
for (m1,m2) is (3, 14)

4.4.6 Stochastic slow D%

Stochastic slow D% is a feature of smoothing the stochastic D% [41]. The m1 day
stochastic slow D% is given by

StochD(m1,m2,m3)t = SMA(StochD(m2,m3),m1)

where StochD(m2,m3) is the stochastic D% feature with parameter (m2,m3). A common
parameter setup for (m1,m2,m3) is (3, 3, 14).

4.4.7 Smoothed changes

The aim of the smoothed changes is to get a direction whether the current price is low
or high relative to the last m days. The m day smoothed changes is given by

SC(m) =

✓
C
t

� SMA(C
t

,m)

SMA(C
t

,m)

◆
· 100.

4.4.8 Percentage price oscillator

The aim of the percentage price oscillator is to measure the difference between two
moving averages. The percentage price oscillator measures the relative difference instead
of the absolute difference [42]. The percentage price oscillator is given by

PPO(m1,m2) =

✓
SMA(X

t

,m1)� SMA(X
t

,m2)

SMA(X
t

,m2)

◆
· 100,

where m1 and m2 determine the lengths of the simple moving averages, and m1 < m2

to have a short minus a long.

4.4.9 Relative strength index

The aim of the relative strength index (RSI) is to measure the speed and change of price
movements. The RSI is bounded between 0 and 100. Moreover, RSI is a very popular
momentum indicator due to its strength of indicating whether an asset is overbought,
oversold, and have a general trend [43]. RSI is considered to be overbought when it is
above 70 and oversold when it is less than 30.

22

4.5. SCALING FEATURES CHAPTER 4. METHODOLOGY

Let �
t

, U
t

and D
t

be equal to C
t

� C
t�1, �t

1(�
t

> 0) and �
t

1(�
t

< 0) respectively.
Then, the m day RSI is given by

RS =
SMA(U,m)

SMA(D,m)

RSI(m) = 100� 100

1 + RS
.

4.4.10 Williams R%

The aim of Williams %R is to get an intuition about how the current price relates to
previous prices. The Williams %R is bounded between -100 and 0 where values between
0 and -20 indicate that the asset is overbought while values between -80 and -100 indicate
that the asset is oversold [44]. The feature is given by

WilliamsR(m)
t

= � max{H
t

, ..., H
t�m

}� C
t

max{H
t

, ..., H
t�m

}�min{L
t

, ..., L
t�m

} · 100

where C
t

is the closing price at day t, L
t

is the lowest price at day t and H
n

is the highest
price at day t. A common parameter for m is 14. Williams R% is a mirrored version of
the Stochastic K% along the 0%-line, i.e. StochK(m)

t

�WilliamsR(m)
t

= 1.

4.4.11 Commodity channel index

The aim of the commodity channel index is to warn for extreme conditions or identify
trends. The commodity channel index was in the beginning developed for identifying
cyclic behaviour in the commodity market but can be successfully applied to other secu-
rities [45]. The commodity channel index measures the current price relative to historical
average prices. The commodity channel index can identify when the asset is overbought
or oversold. The feature is given by

X
t

=
C
t

+H
t

+ L
t

3
,

CCI(m) =
X

t

� SMA(X
t

,m)

0.015 · SMA(|X
t

� SMA(X
t

,m)|,m)
,

where X
t

is the typical price at day t, and |X
t

| is the absolute value of the typical price
at time t. Moreover, the term in the denominator is often called constant times the mean
deviation.

4.5 Scaling features

An important property in machine learning to speed up the learning is to scale the
training features by making them 0 mean and unit variance. This can only be done for
the training data and then the features in the validation and training set are scaled with
the same constants. This is described in the algorithm below.

23

4.6. FEATURE SETUP CHAPTER 4. METHODOLOGY

Algorithm 4.1 Scaling training, validation, and test features
for all the features do

x̂train, µxtrain ,�xtrain xtrain
x̂val xval, µxtrain ,�xtrain
x̂test xtest, µxtrain ,�xtrain

end for

4.6 Feature setup

In this section we are going to describe which features that were used when we are going
to talk about a neural networks with less complex and more complex features. Moreover,
all time series were risk-adjusted by the volatility estimator Garman-Klass Yang-Zhang
Extension with

p
F = 1.

4.6.1 Less complex

For the less complex features we consider 9 different features for each market, namely;

• Close price minus a 10 day exponential moving average of close prices.

• Close price minus a 20 day exponential moving average of close prices.

• Close price minus a 60 day exponential moving average of close prices.

• 5 day exponential moving average for 10 day momentum of close prices.

• 5 day exponential moving average for 20 day momentum of close prices.

• 5 day exponential moving average for 60 day momentum of close prices.

• 5 day exponential moving average of close prices minus a 60 day exponential moving
average of close prices.

• 20 day exponential moving average of close prices minus a 60 day exponential
moving average of close prices.

• 40 day exponential moving average of close prices minus a 60 day exponential
moving average of close prices.

4.6.2 More complex

For the more complex features we are consider 14 different features for each market,
namely;

• 1 day momentum of close prices.

• 10 day momentum of close prices.

• 6 day exponential moving average of close prices minus 12 days exponential moving
average.

• Rising with the parameter 10.

• Rising with the parameter 20.

24

4.7. ARCHITECTURES CHAPTER 4. METHODOLOGY

• 20 day return vs risk.

• Stochastic K with the parameter 14.

• Stochastic D with the parameters 3 and 14.

• Stochastic D slow with the parameters 3, 3 and 14

• Relative strength index with the parameter 14.

• Williams R% with the parameter 14.

• Commodity channel index with the parameter 20.

• Percentage Price Oscillator with the parameters 5 and 10.

• Smoothed changes with the parameter 6.

4.7 Architectures

In this thesis we will consider two main architectures. The first architecture is a vanilla
feedforward neural network as described in the previous chapter. The second architecture
consists of a recurrent layer mapping into a feedforward neural network, this network
will be referred to as recurrent neural network. All the networks will be constructed
without a bias term since finance data is generally very noisy and a possible consequence
of noisy data together with a bias term in a network will be that the network trains to
either predict up or down during the whole period, i.e. the bias term dominating the
prediction.

For the feedforward neural network we will consider different type of setups, namely;
non-deep networks with many neurons vs. deep networks with less neurons, networks
with batch normalization vs. networks without batch normalization, and networks with
simple features vs. networks with complex features. The activation functions through all
hidden layers in the feedforward network are scaled-tanh with � = 1.7159 and ↵ = 2/3,
similar as used by Estrada [8].

The non-deep networks consist of 1 hidden layer with either 100, 200, or 400 neurons.
The deep networks consist of 4 hidden layer with either 25, 50, or 100 neurons. The
number of neurons will be kept constant through the hidden layers.

For the recurrent architecture we will consider one recurrent layer of the type sequence
input and non-sequence output and then mapping into a feedforward neural network
before the output layer. The recurrent layer will have either 5, 10, 20, 40, or 80 neurons.
The feedforward network will consist of 1 hidden layer with 100 neurons. The activation
functions for the hidden layers in the feedforward network are scaled-tanh with � =
1.7159 and ↵ = 2/3, similar as used by Estrada [8].

The network built on a recurrent layer will have two type of setups, namely; network
with simple features vs. network with complex features.

The output layer in these two networks consists of 12 neurons with a sigmoid activation
function. One reason why the scaled-tanh is used is because symmetric functions tends
to speed up the learning process for a neural network [25]. Another reason why scaled-
tanh was used instead of the more classical ReLU is because of zero inputs in the network
may give a zero gradient through all training and a bias is introduced for positive inputs.

25

4.8. ENSEMBLE CHAPTER 4. METHODOLOGY

Moreover, another advantage of using scaled-tanh is due to the universal approximation
theorem, which says that any function can be approximated if the hidden layers consists
of “squashing” functions and enough of hidden layers.

4.8 Ensemble

In this thesis we will consider one type of ensemble. The ensemble computes the average
output of k different models. For the feedforward neural networks the ensemble is done by
16 different models while for the recurrent architecture the ensemble is done by 8 different
models. One reason why we have more models in our ensemble for the feedforward neural
networks is due to computational efficiency since the recurrent neural network requires
much more computations.

4.9 Prediction setup

The data is divided into three different parts, namely; training-, validation- and test set.
The test set consists of 1500 values made on 5 different parts, namely; each model has a
training set, validation set, and training set consisting of 3400, 300, and 300 data points
respectively. Then training is done by rolling these data sets forward, e.g. the first model
predicts the data points from 1 � 300, the second model predicts the data points from
301� 600, and so fourth. Thus, the predictions of the 1500 are done in 5 different steps
and the union of the predicted days corresponds to predicting 1500 consecutive days.
Moreover, it is important to be careful when selecting the training, validation and test
sets since we have time series. For instance, it is important that the training set consists
of the first 3400 consecutive data points, then the validation set of the following 300
consecutive data points and lastly the test set of the last 300 consecutive data points to
not introduce some type of knowledge about the future. A more brief description about
the training of the model is given in the algorithm below.

Algorithm 4.2 Predict 1500 consecutive values with 5 different periods
for steps = 1 to 5 do

Training data X300·(steps�1)+1, ..., X300·(steps�1)+3400

Validation data X300·(steps�1)+3401, ..., X300·(steps�1)+3700

Test data X300·(steps�1)+3701, ..., X300·(steps�1)+4000

Initialize a new model
Train the new model on the training data
Predict the test data with the trained model

end for

The response variable is given by the relationship below

y
t,j

= 1 (O
t+2,j �O

t+1,j � 0)

where O
t,j

corresponds to the opening price at time t for market j. The reason why
O

t+2�Ot+1 is considered instead of the more classical setup C
t+1�Ct

is because we have
a multivariate setup and do not want to introduce some type of biased look-forward in
our features, e.g. Asian markets closes before American markets and therefore American
close prices should not help to predict Asian close prices.

26

4.10. COMPARING WITH BENCHMARK CHAPTER 4. METHODOLOGY

4.10 Comparing with benchmark

The benchmark in this thesis will be the prediction Y
t+1 = Y

t

, i.e. take the same position
as the label of the previous day. To determine if the corresponding network is better
than this benchmark I will do a comparison with Accuracy and p-value.

The p-value will be constructed in the following way. From previous studies we know
that returns between different days are nearly uncorrelated, but returns between different
markets on the same day are correlated [4]. On each day we predict the label of 12
different markets. Thus, construct a vector with a 1 at place i if the network predicted
more correct labels on day i than the benchmark, a 0 if the network predicted less correct
labels on day i than the benchmark and remove the data point from the observation if
the network and benchmark predicted correctly on the same number of markets at day
i. Therefore, at each position in the vector we will have a Bernoulli distributed random
variable and a sum of Bernoulli random variables are binomial distributed. However,
we are interested in determine whethering it is more likely that our networks predict
more correctly than the benchmark thus we want to show that p > 0.5. Therefore, the
following test statistic can be constructed

T =

P
n

i=1Xi

� np
p
npq

,

where n is the length of the vector and p = q = 0.5.

4.10.1 Combining p-values

To determine whether a specific model is good or not we have to combine multiple of
p-values since each ensemble has 1 p-value. In order to combine different p-values we
used Fisher’s method [46] [47]. The Fisher’s method uses the formula

T = �2
nX

i=1

log(p
i

) ⇠ �2(2n)

where p
i

is the p-value for test i, since under the null hypothesis p
i

⇠ Unif(0, 1). For
small p-values T tends to be large which suggests that the null hypothesis are not true
for all tests.

4.11 Implementation

The results in this report have been produced by Python, Theano, and Lasagne. Theano
is a library in Python developed for using deep learning [48]. The calculations in Theano
are done on either CPU or GPU, depending on the user setup. Lasagne is an open-source
package built on Theano to simplify for the user, e.g. different type of architectures have
been implemented in Lasagne with Theano code such as recurrent layers and batch
normalization.

There exist many other packages for implementing neural networks, e.g. Caffe , Keras,
and TensorFlow, but the results in this report will not depend on which package that was
used. Caffe and TensorFlow are similar to Theano and Keras is similar to Lasagne.

27

4.11. IMPLEMENTATION CHAPTER 4. METHODOLOGY

Moreover, I have parallelized each training model in the ensemble since each model in
the ensemble can be trained independently of each other. The Python package multi-
processing was used for parallelization.

28

Chapter 5

Results

5.1 Parameters

After some trial and error the feedforward neural networks are trained with RMSProp,
Nesterov-momentum, dropout, and lastly with and without batch normalization. The
parameters are given in the table below.

Method Parameter Value
RMSProp ⌘ 1 · 10�3

RMSProp ⇢ 0.95
Momentum ↵ 0.8
Dropout p 0.5
Batch norm. ↵ 0.9
Ensemble k 16
Epochs 40
Early Stopping No

After some trial and error the recurrent neural networks are trained with RMSProp,
Nesterov-momentum, dropout, exponential decaying the learning rate, gradient clipping,
and early stopping with respect to validation accuracy. The parameters are given in the
table below.

Method Parameter Value
RMSProp ⌘ 1 · 10�3

RMSProp ⇢ 0.95
Momentum ↵ 0.95
Decaying ⌘ ⌘

⌧

1 · 10�5

Decaying ⌘ ⌧ 10
Gradient clipping c 1 · 10�2

Dropout p 0.5
Ensemble k 8
Epochs 10
Early Stopping Yes
Sequence length T 300

29

5.2. BENCHMARK CHAPTER 5. RESULTS

5.2 Benchmark

The used benchmark corresponds to taking the same position at last day, i.e. if the label
of yesterday was 0 then the label of today is 0 and if the label of yesterday was 1 then
the label of today is 1. However, implementing this yields an accuracy of 49.50%. This
benchmark will be used to compare the performance of the models.

Model Accuracy Sh
Benchmark 49.50% �1.2394

5.3 Less complex features

In this section we will consider the less complex feature setup introduced in Section 4.6.1.
The model architectures are feedforward network, either non-deep with many units or
deep with less units, and a type of recurrent neural network with either 5, 10, 20, 40,
or 80 hidden nodes and then connected to a feedforward network with 1 hidden layer
and 100 units. Also, for the feedforward neural network we will consider a case of either
using batch normalization or not.

For the feedforward neural network the tables will be organized as follows following;
Each row in the table, except the last row, corresponds to the result of the ensemble
with 16 different models with different initialization. The last row corresponds to an
average model of the 5 rows above. Accuracy corresponds to the given test accuracy for
the ensemble, Mean corresponds to the average test accuracy for these 16 models, Std
corresponds to the average standard deviation of test accuracy within all the 16 models,
p-value corresponds to the p-value of that the model predicts better than the benchmark,
Reject corresponds to the p-value being less than or greater than 5%, and Sh corresponds
to the Sharpe ratio of the ensemble.

For the recurrent architecture the table will be organized in the same way except that
we instead use an ensemble of 8 different models with different initializations.

5.3.1 Feedforward neural network

5.3.1.1 Without batch normalization

In the Table 5.1 below we present the results for the non-deep feedforward networks
without batch normalization.

30

5.3. LESS COMPLEX FEATURES CHAPTER 5. RESULTS

Accuracy Mean Std p-value Reject Sh
50.78% 50.53% 6.39 · 10�3 1.240 · 10�1 No 0.4066
50.46% 50.44% 6.70 · 10�3 1.398 · 10�1 No �0.0022
50.75% 50.51% 6.43 · 10�3 1.607 · 10�1 No 0.3524
50.60% 50.43% 5.85 · 10�3 1.179 · 10�1 No 0.0735
50.66% 50.52% 6.72 · 10�3 1.534 · 10�1 No 0.4938

50.65% 50.49% 6.42 · 10�3 3.129 · 10�2 Yes 0.2648

(a) (1,100)
Accuracy Mean Std p-value Reject Sh
50.58% 50.29% 4.87 · 10�3 1.071 · 10�1 No 0.2477
50.59% 50.26% 7.02 · 10�3 1.063 · 10�1 No 0.3675
50.43% 50.33% 5.67 · 10�3 2.031 · 10�1 No 0.1581
50.39% 50.33% 7.47 · 10�3 2.271 · 10�1 No 0.0637
50.49% 50.38% 6.62 · 10�3 1.728 · 10�1 No 0.2543

50.50% 50.32% 6.33 · 10�3 4.543 · 10�2 Yes 0.2183

(b) (1,200)
Accuracy Mean Std p-value Reject Sh
50.16% 50.27% 6.42 · 10�3 3.004 · 10�1 No 0.0027
50.27% 50.35% 6.67 · 10�3 1.603 · 10�1 No 0.1046
50.20% 50.21% 6.37 · 10�3 1.226 · 10�1 No 0.0554
49.93% 50.17% 6.73 · 10�3 3.506 · 10�1 No �0.1118
50.39% 50.28% 5.91 · 10�3 8.765 · 10�2 No 0.0307

50.19% 50.26% 6.42 · 10�3 6.944 · 10�2 No 0.0163

(c) (1,400)

Table 5.1: 1 hidden layer networks with less complex feature setup and without batch
normalization

We observe that no individual model has a p-value less than 5%. However, we can see that
the networks with 1 hidden layer and either 100 and 200 neurons have a combined p-value
less than 5%. Another interesting property is that models with higher p-values seem to
have lower accuracies. Moreover, the Sharpe ratios for the networks with less neurons
seem to be higher, but the Sharpe ratio oscillating depending one the initialization.

In Table 5.2 we present the results for the deep feedforward networks without batch
normalization.

31

5.3. LESS COMPLEX FEATURES CHAPTER 5. RESULTS

Accuracy Mean Std p-value Reject Sh
50.78% 50.52% 7.99 · 10�3 1.796 · 10�1 No 0.6890
50.37% 50.34% 7.27 · 10�3 1.228 · 10�1 No 0.2741
50.61% 50.93% 8.25 · 10�3 9.172 · 10�2 No 0.4512
50.59% 50.41% 6.10 · 10�3 3.290 · 10�1 No 0.3916
50.48% 50.54% 6.12 · 10�3 7.056 · 10�2 No 0.4497

50.56% 50.44% 7.15 · 10�3 2.990 · 10�2 Yes 0.4511

(a) (4,25)
Accuracy Mean Std p-value Reject Sh
50.84% 50.55% 7.46 · 10�3 8.044 · 10�1 No 0.5523
51.02% 50.71% 9.30 · 10�3 3.873 · 10�2 Yes 0.4043
50.62% 50.43% 8.06 · 10�3 1.977 · 10�1 No 0.4164
51.09% 50.77% 9.79 · 10�3 9.494 · 10�3 Yes 0.9568
50.60% 50.48% 9.05 · 10�3 1.799 · 10�1 No 0.4469

50.83% 50.59% 8.73 · 10�3 1.103 · 10�2 Yes 0.5553

(b) (4,50)
Accuracy Mean Std p-value Reject Sh
51.36% 50.59% 8.04 · 10�3 2.906 · 10�2 Yes 0.6931
50.57% 50.49% 9.42 · 10�3 2.349 · 10�1 No 0.0492
50.59% 50.51% 1.05 · 10�2 7.509 · 10�2 No 0.1499
51.06% 50.65% 9.69 · 10�3 9.272 · 10�2 No 0.4674
50.95% 50.68% 8.72 · 10�3 7.071 · 10�2 No 0.1328

50.91% 50.58% 9.28 · 10�3 4.967 · 10�3 Yes 0.2985

(c) (4,100)

Table 5.2: 4 hidden layer networks with less complex feature setup and without batch
normalization

We observe that it is not likely that individual models have p-values less than 5%.
However, we can see that all the networks with 4 hidden layer have a combined p-value
of less than 5%. Moreover, the Sharpe ratios for the networks with less neurons seem to
be higher, but the Sharpe ratios oscillating depending on the initialization.

5.3.1.2 With batch normalization

In Table 5.3 we present the results for the non-deep feedforward networks with batch
normalization.

32

5.3. LESS COMPLEX FEATURES CHAPTER 5. RESULTS

Accuracy Mean Std p-value Reject Sh
51.15% 51.27% 4.04 · 10�3 6.147 · 10�2 No 0.7486
51.32% 51.28% 4.49 · 10�3 3.073 · 10�2 Yes 0.8844
51.18% 51.22% 4.37 · 10�3 3.485 · 10�2 Yes 0.9419
51.37% 51.25% 4.19 · 10�3 2.719 · 10�2 Yes 0.9942
51.36% 51.30% 4.03 · 10�3 1.468 · 10�2 Yes 0.8567

51.28% 51.26% 4.22 · 10�3 1.294 · 10�4 Yes 0.8852

(a) (1,100)
Accuracy Mean Std p-value Reject Sh
51.29% 51.21% 4.23 · 10�3 4.152 · 10�2 Yes 1.0287
51.26% 51.09% 3.70 · 10�3 1.019 · 10�1 No 0.9453
51.20% 51.21% 4.89 · 10�3 2.401 · 10�2 Yes 0.9325
51.14% 51.18% 3.68 · 10�3 1.029 · 10�1 No 0.8129
51.40% 51.20% 4.76 · 10�3 2.556 · 10�2 Yes 0.9357

51.26% 51.18% 4.25 · 10�3 7.735 · 10�4 Yes 0.9310

(b) (1,200)
Accuracy Mean Std p-value Reject Sh
50.82% 50.77% 4.91 · 10�3 2.521 · 10�2 Yes 0.7608
50.79% 50.70% 4.94 · 10�3 3.122 · 10�2 Yes 0.6945
50.89% 50.82% 4.65 · 10�3 4.408 · 10�2 Yes 0.7558
50.86% 50.77% 5.50 · 10�3 2.756 · 10�2 Yes 0.6994
50.96% 50.90% 4.84 · 10�3 5.827 · 10�2 No 0.8952

50.86% 50.79% 4.97 · 10�3 2.327 · 10�4 Yes 0.7611

(c) (1,400)

Table 5.3: 1 hidden layer networks with less complex feature setup and with batch
normalization

We can observe that 10 out of 15 the individual models have a p-value less than 5%.
However, we can see that all the networks with 1 hidden layer have a combined p-value
of less than 5%. Another interesting property is that networks with less neurons seem
to have higher accuracies. Moreover, the Sharpe ratios for all the networks seem to be
more stable now than before.

In Table 5.4 we present the results for the deep feedforward networks with batch nor-
malization.

33

5.3. LESS COMPLEX FEATURES CHAPTER 5. RESULTS

Accuracy Mean Std p-value Reject Sh
50.87% 50.83% 4.70 · 10�3 4.776 · 10�2 Yes 0.9383
51.02% 50.76% 4.30 · 10�3 1.437 · 10�2 Yes 0.9932
50.74% 50.67% 4.00 · 10�3 2.719 · 10�2 Yes 0.7218
51.02% 50.90% 3.86 · 10�3 2.564 · 10�2 Yes 1.0569
50.87% 50.79% 4.13 · 10�3 2.426 · 10�2 Yes 0.8158

50.90% 50.79% 4.20 · 10�3 6.787 · 10�5 Yes 0.9052

(a) (4,25)
Accuracy Mean Std p-value Reject Sh
50.87% 50.83% 4.70 · 10�3 4.776 · 10�2 Yes 0.9383
51.02% 50.76% 4.30 · 10�3 1.437 · 10�2 Yes 0.9932
50.74% 50.67% 4.00 · 10�3 2.719 · 10�2 Yes 0.7218
51.02% 50.90% 3.86 · 10�3 2.564 · 10�2 Yes 1.0569
50.87% 50.79% 4.13 · 10�3 2.426 · 10�2 Yes 0.8158

50.90% 50.79% 4.20 · 10�3 6.787 · 10�5 Yes 0.9052

(b) (4,50)
Accuracy Mean Std p-value Reject Sh
50.95% 50.89% 4.61 · 10�3 6.875 · 10�2 No 0.7412
51.01% 50.98% 4.48 · 10�3 5.574 · 10�2 No 0.7565
51.03% 50.96% 4.08 · 10�3 4.256 · 10�2 Yes 1.0311
50.98% 50.97% 3.95 · 10�3 5.009 · 10�2 No 0.7852
50.81% 50.92% 3.94 · 10�3 7.038 · 10�2 No 0.7582

50.96% 50.95% 4.21 · 10�3 1.374 · 10�3 Yes 0.8144

(c) (4,100)

Table 5.4: 4 hidden layer networks with less complex feature setup and with batch
normalization

We can observe that 11 out of the 15 individual models have a p-value less than 5%.
However, we can see that the networks with 1 hidden layer have a combined p-value of
less than 5%. Another interesting property is that networks with less neurons seem to
have higher accuracies. Moreover, the Sharpe ratios for all the networks seem to be more
stable now than before.

5.3.2 Recurrent neural network

In Table 5.5 we present the results for the recurrent network architectures.

34

5.3. LESS COMPLEX FEATURES CHAPTER 5. RESULTS

Accuracy Mean Std p-value Reject Sh
50.23% 50.41% 8.59 · 10�3 3.481 · 10�1 No 0.3481
50.43% 50.35% 9.00 · 10�3 2.121 · 10�1 No �0.3986
50.86% 50.57% 9.41 · 10�3 9.037 · 10�2 No �0.5188
51.30% 50.66% 1.15 · 10�2 3.727 · 10�2 Yes 0.5175
50.76% 50.31% 1.03 · 10�2 8.243 · 10�2 No �0.1810
50.72% 50.46% 9.76 · 10�3 1.730 · 10�2 Yes �0.0587

(a) (5,1,100)
Accuracy Mean Std p-value Reject Sh
51.37% 50.77% 7.52 · 10�3 1.488 · 10�2 Yes 0.3625
51.13% 50.59% 9.22 · 10�3 4.779 · 10�2 Yes 0.3142
51.08% 50.66% 7.52 · 10�3 6.912 · 10�3 Yes 0.1509
50.48% 50.33% 9.47 · 10�3 2.626 · 10�1 No �0.6880
50.13% 50.20% 1.00 · 10�2 1.318 · 10�1 No �0.7787
50.84% 50.51% 8.75 · 10�3 5.491 · 10�4 Yes �0.1278

(b) (10,1,100)
Accuracy Mean Std p-value Reject Sh
51.02% 50.50% 8.87 · 10�3 5.876 · 10�3 Yes 0.3778
50.76% 50.48% 9.53 · 10�3 7.692 · 10�3 Yes �0.1623
50.94% 50.47% 9.42 · 10�3 6.412 · 10�3 Yes 0.1929
50.63% 50.45% 6.77 · 10�3 8.145 · 10�2 No �0.0521
50.72% 50.33% 6.99 · 10�3 7.446 · 10�2 No 0.1679

50.81% 50.45% 8.32 · 10�3 1.489 · 10�5 Yes 0.1048

(c) (20,1,100)
Accuracy Mean Std p-value Reject Sh
50.31% 50.53% 7.43 · 10�3 1.338 · 10�1 No �0.0722
51.21% 50.53% 8.86 · 10�3 1.174 · 10�2 Yes �0.1976
50.48% 50.62% 6.66 · 10�3 1.801 · 10�1 No �0.4989
50.43% 50.49% 8.41 · 10�3 9.927 · 10�2 No �0.4768
50.54% 50.50% 8.09 · 10�3 3.381 · 10�1 No �0.2052
50.60% 50.53% 7.89 · 10�3 1.028 · 10�2 Yes �0.2489

(d) (40,1,100)
Accuracy Mean Std p-value Reject Sh
51.06% 50.74% 8.22 · 10�3 4.035 · 10�2 Yes 0.1092
50.58% 50.38% 6.56 · 10�3 2.692 · 10�2 Yes �0.1617
50.44% 50.38% 7.78 · 10�3 1.377 · 10�1 No �0.1111
51.12% 50.55% 8.04 · 10�3 2.883 · 10�3 Yes 0.2007
51.22% 50.53% 7.61 · 10�3 5.674 · 10�2 No 0.2430

50.89% 50.52% 7.64 · 10�3 1.224 · 10�4 Yes 0.0560

(e) (80,1,100)

Table 5.5: Recurrent architecture with less complex feature setup

We can observe that the p-values are oscillating depending on model structure. Another
interesting property is that models that have a p-value less than 5% seem to have a
higher Sharpe ratio. Moreover, we can observe that increases in accuracy do not in
general result in increases in Sharpe ratio.

35

5.4. MORE COMPLEX FEATURES CHAPTER 5. RESULTS

5.4 More complex features

In this section we will consider the more complex feature setup introduced in Section
4.6.2. The model architectures are feedforward network, either non-deep with many units
or deep with less units. For the feedforward neural network we will consider a case of
either using batch normalization or not.

The tables are organized similarly as in Section 5.3.

5.4.1 Feedforward NN

5.4.1.1 Without batch normalization

In Table 5.6 we present the results for the non-deep feedforward networks without batch
normalization.

Accuracy Mean Std p-value Reject Sh
52.50% 52.15% 4.75 · 10�3 3.247 · 10�4 Yes 0.3365
52.18% 52.02% 4.84 · 10�3 9.310 · 10�5 Yes 0.0799
52.44% 52.17% 4.71 · 10�3 3.186 · 10�5 Yes 0.4077
52.33% 52.18% 5.01 · 10�3 6.790 · 10�5 Yes 0.2626
52.42% 52.11% 4.55 · 10�3 5.485 · 10�5 Yes 0.1754

52.37% 52.13% 4.77 · 10�3 7.772 · 10�16 Yes 0.2524

(a) (1,100)
Accuracy Mean Std p-value Reject Sh
52.25% 52.10% 5.38 · 10�3 9.100 · 10�5 Yes 0.6077
52.22% 51.95% 5.19 · 10�3 5.110 · 10�5 Yes 0.4529
51.97% 51.92% 4.43 · 10�3 3.368 · 10�4 Yes 0.1976
51.99% 51.90% 5.58 · 10�3 1.854 · 10�4 Yes 0.1782
52.07% 52.00% 4.75 · 10�3 1.231 · 10�4 Yes 0.2431

52.10% 51.98% 5.07 · 10�3 6.550 · 10�15 Yes 0.3359

(b) (1,200)
Accuracy Mean Std p-value Reject Sh
52.07% 51.95% 5.20 · 10�3 1.184 · 10�4 Yes 0.3015
52.00% 51.88% 5.50 · 10�3 1.304 · 10�3 Yes 0.1137
51.78% 51.96% 5.36 · 10�3 4.658 · 10�4 Yes 0.2316
51.99% 51.91% 4.98 · 10�3 9.310 · 10�5 Yes 0.1703
51.99% 51.95% 5.52 · 10�3 2.620 · 10�4 Yes �0.0259
51.97% 51.93% 5.31 · 10�3 2.257 · 10�13 Yes 0.1582

(c) (1,400)

Table 5.6: 1 hidden layer networks with complex feature setup and without batch nor-
malization

We can observe that all the individual models have p-values less than 5%. Therefore,
their combined p-values are less than 5%. Moreover, the accuracy is significantly higher
than for the case with less complex features. We can also observe that the Sharpe ratio
tends to be positive, but oscillating.

36

5.4. MORE COMPLEX FEATURES CHAPTER 5. RESULTS

In Table 5.7 we present the results for the deep feedforward networks without batch
normalization.

Accuracy Mean Std p-value Reject Sh
52.29% 52.37% 3.92 · 10�3 2.853 · 10�5 Yes �0.1323
52.44% 52.29% 4.38 · 10�3 3.026 · 10�5 Yes 0.1490
52.52% 52.46% 4.14 · 10�3 3.146 · 10�5 Yes 0.0435
52.54% 52.42% 4.24 · 10�3 1.092 · 10�5 Yes 0.1544
52.33% 52.39% 3.84 · 10�3 9.082 · 10�5 Yes 0.1782

52.42% 52.39% 4.10 · 10�3 0 Yes 0.0786

(a) (4,25)
Accuracy Mean Std p-value Reject Sh
52.41% 52.28% 5.18 · 10�3 4.760 · 10�5 Yes 0.0542
52.42% 52.32% 4.25 · 10�3 2.966 · 10�5 Yes 0.1571
52.34% 52.23% 5.71 · 10�3 6.459 · 10�6 Yes 0.1021
52.27% 52.16% 4.80 · 10�3 4.169 · 10�5 Yes �0.0389
52.37% 52.35% 5.16 · 10�3 2.780 · 10�5 Yes 0.1755

52.36% 52.27% 5.02 · 10�3 0 Yes 0.0900

(b) (4,50)
Accuracy Mean Std p-value Reject Sh
52.02% 51.95% 5.82 · 10�3 1.071 · 10�4 Yes �0.1601
52.04% 52.05% 5.09 · 10�3 6.552 · 10�5 Yes �0.0551
51.90% 51.98% 4.75 · 10�3 1.171 · 10�4 Yes �0.2027
52.10% 51.94% 5.30 · 10�3 1.014 · 10�5 Yes �0.0500
52.08% 52.08% 5.09 · 10�3 1.242 · 10�4 Yes 0.0086

52.03% 52.00% 5.21 · 10�3 2.220 · 10�16 Yes �0.0917
(c) (4,100)

Table 5.7: 4 hidden layers networks with more complex feature setup and without batch
normalization

We observe that all the individual models have p-values less than 5%. Therefore, their
combined p-values are less than 5%. Moreover, the accuracy is significantly higher than
for the case with less complex features. The accuracy seems to be higher for networks
with less neurons. Also, the accuracy within a certain type of model structure seems to
be stable. We can also observe that the Sharpe ratios tend to be positive, but oscillat-
ing.

5.4.1.2 With batch normalization

In Table 5.8 we present the results for the non-deep feedforward networks with batch
normalization.

37

5.4. MORE COMPLEX FEATURES CHAPTER 5. RESULTS

Accuracy Mean Std p-value Reject Sh
51.18% 51.05% 4.17 · 10�3 3.195 · 10�1 No 0.6915
51.13% 51.11% 3.78 · 10�3 3.491 · 10�1 No 0.8585
51.12% 51.13% 4.50 · 10�3 3.699 · 10�1 No 0.7930
51.02% 51.04% 3.93 · 10�3 2.887 · 10�1 No 0.7469
51.02% 51.10% 4.12 · 10�3 3.490 · 10�1 No 0.7539

51.09% 51.09% 4.10 · 10�3 3.602 · 10�1 No 0.7688

(a) (1,100)
Accuracy Mean Std p-value Reject Sh
51.02% 51.01% 4.70 · 10�3 3.188 · 10�1 No 0.7922
51.07% 50.98% 4.07 · 10�3 2.609 · 10�1 No 0.8710
50.97% 50.95% 4.08 · 10�3 4.123 · 10�1 No 0.8706
50.97% 51.15% 3.92 · 10�3 3.393 · 10�1 No 0.8845
50.73% 51.00% 4.41 · 10�3 3.808 · 10�1 No 0.5346

50.95% 50.99% 4.23 · 10�3 3.703 · 10�1 No 0.7906

(b) (1,200)
Accuracy Mean Std p-value Reject Sh
51.11% 51.04% 4.73 · 10�3 1.024 · 10�1 No 0.7405
51.34% 50.98% 5.63 · 10�3 9.289 · 10�2 No 0.8546
50.87% 50.78% 4.59 · 10�3 4.129 · 10�1 No 0.6194
50.98% 50.08% 4.47 · 10�3 1.084 · 10�1 No 0.4521
51.13% 50.86% 4.73 · 10�3 2.448 · 10�1 No 0.5787

51.09% 50.89% 4.83 · 10�3 4.952 · 10�2 Yes 0.6491

(c) (1,400)

Table 5.8: 1 hidden layer networks with more complex feature setup and with batch
normalization

We observe that all the individual models has p-values larger than 5%. The combined
p-values are less than 5% for only the network with 400 neurons. Moreover, we can
observe that the p-values are rather high which is not the case for the more complex
feature setup without batch normalization. We can also observe that the Sharpe ratios
tend to be higher than without batch normalization and tend to be stable.

In Table 5.9 we present the results for the deep feedforward networks with batch nor-
malization.

38

5.4. MORE COMPLEX FEATURES CHAPTER 5. RESULTS

Accuracy Mean Std p-value Reject Sh
51.12% 50.94% 5.60 · 10�3 3.952 · 10�2 Yes 0.7787
50.88% 50.95% 3.77 · 10�3 5.868 · 10�2 No 0.7315
50.84% 51.05% 5.39 · 10�3 4.639 · 10�2 Yes 0.5977
50.89% 50.86% 5.11 · 10�3 6.800 · 10�2 No 0.7877
51.02% 50.96% 5.86 · 10�3 5.951 · 10�2 No 0.6003

50.95% 50.95% 5.15 · 10�3 1.116 · 10�3 Yes 0.6992

(a) (4,25)
Accuracy Mean Std p-value Reject Sh
50.98% 51.04% 4.92 · 10�3 1.411 · 10�1 No 0.7448
51.08% 51.08% 5.23 · 10�3 1.224 · 10�1 No 0.9619
51.11% 51.03% 4.39 · 10�3 1.480 · 10�1 No 0.8287
51.07% 51.06% 4.58 · 10�3 8.438 · 10�2 No 0.7520
51.04% 51.03% 4.49 · 10�3 1.545 · 10�1 No 0.6505

51.05% 51.05% 4.72 · 10�3 2.392 · 10�2 Yes 0.7876

(b) (4,50)
Accuracy Mean Std p-value Reject Sh
51.04% 51.03% 4.56 · 10�3 1.818 · 10�1 No 0.6899
51.20% 51.09% 3.80 · 10�3 2.386 · 10�1 No 0.8430
51.09% 51.12% 4.28 · 10�3 1.683 · 10�1 No 0.5987
51.04% 51.02% 3.85 · 10�3 2.135 · 10�1 No 0.8532
51.26% 51.22% 4.45 · 10�3 3.404 · 10�1 No 0.8396

51.14% 51.09% 4.19 · 10�3 1.291 · 10�1 No 0.7649

(c) (4,100)

Table 5.9: 4 hidden layers networks with more complex feature setup and with batch
normalization

We observe that 13 out of 15 models have p-values larger than 5%. The combined p-
values are less than 5% for the networks with 25 and 50 neurons. Moreover, we observe
that the p-values are rather high which is not the case for the more complex feature setup
without batch normalization, but the p-values tend to be smaller for the deep network
relative to the non-deep. We can also observe that the Sharpe ratios tend to be higher
than without batch normalization and tends to be stable.

5.4.2 Recurrent NN

In Table 5.10 we present the results for the recurrent network architectures.

39

5.4. MORE COMPLEX FEATURES CHAPTER 5. RESULTS

Accuracy Mean Std p-value Reject Sh
52.81% 52.48% 3.93 · 10�3 4.094 · 10�6 Yes 0.1476
52.82% 52.64% 4.71 · 10�3 2.427 · 10�6 Yes 0.3592
52.51% 52.31% 3.77 · 10�3 1.752 · 10�5 Yes �0.0271
52.68% 52.40% 7.63 · 10�3 1.080 · 10�4 Yes 0.2335
52.28% 52.40% 4.75 · 10�3 1.226 · 10�5 Yes 0.1555

52.62% 52.45% 4.96 · 10�3 0 Yes 0.1737

(a) (5,1,100)
Accuracy Mean Std p-value Reject Sh
52.69% 52.45% 5.88 · 10�3 5.081 · 10�7 Yes 0.5285
52.42% 52.49% 5.16 · 10�3 9.446 · 10�6 Yes 0.4368
52.57% 52.48% 3.88 · 10�3 5.552 · 10�5 Yes 0.2901
52.56% 52.35% 6.23 · 10�3 3.685 · 10�6 Yes 0.1880
52.52% 52.40% 4.76 · 10�3 6.443 · 10�6 Yes 0.1962

52.55% 52.44% 5.18 · 10�3 0 Yes 0.3279

(b) (10,1,100)
Accuracy Mean Std p-value Reject Sh
52.42% 52.38% 3.58 · 10�3 1.192 · 10�5 Yes 0.0653
52.72% 52.45% 4.44 · 10�3 9.532 · 10�7 Yes 0.4078
52.59% 52.37% 4.06 · 10�3 4.160 · 10�6 Yes 0.3185
52.82% 52.24% 7.37 · 10�3 1.095 · 10�7 Yes 0.2556
52.50% 52.21% 5.37 · 10�3 8.694 · 10�7 Yes 0.2641

52.61% 52.33% 4.96 · 10�3 0 Yes 0.2623

(c) (20,1,100)
Accuracy Mean Std p-value Reject Sh
52.57% 52.41% 5.02 · 10�3 5.168 · 10�7 Yes 0.3730
52.63% 52.03% 6.75 · 10�3 2.557 · 10�7 Yes 0.4308
52.64% 52.28% 6.01 · 10�3 1.437 · 10�5 Yes 0.2429
52.62% 52.33% 5.32 · 10�3 1.344 · 10�6 Yes 0.2642
52.27% 52.16% 7.05 · 10�3 9.703 · 10�7 Yes 0.3386

52.55% 52.24% 6.03 · 10�3 0 Yes 0.3299

(d) (40,1,100)
Accuracy Mean Std p-value Reject Sh
52.35% 52.14% 5.96 · 10�3 1.458 · 10�5 Yes 0.0646
52.47% 52.05% 9.41 · 10�3 3.467 · 10�5 Yes 0.0935
52.76% 52.20% 4.72 · 10�3 1.728 · 10�5 Yes 0.0610
52.67% 52.04% 6.12 · 10�3 3.537 · 10�5 Yes 0.1209
52.29% 52.02% 5.73 · 10�3 1.789 · 10�4 Yes �0.1761
52.51% 52.09% 6.39 · 10�3 0 Yes 0.0328

(e) (80,1,100)

Table 5.10: Recurrent architecture with more complex feature setup

We observe that all models has p-values larger than 5%, and in fact the p-values tend
to be really small. Therefore, the combined p-values are less than 5% for all networks.
Moreover, we can also observe that the Sharpe ratios tend to be positive even though
they are not either large or stable.

40

5.5. SUMMARY CHAPTER 5. RESULTS

5.5 Summary

We have a summary of the feedforward network in Table 5.11. The first 12 rows cor-
respond to feedforward networks trained without batch normalization and the 12 rows
below correspond to feedforward networks trained with batch normalization.

Feature Network Accuracy Mean Std p-value Reject Sh
Simple (1,100) 50.65% 50.49% 6.42 · 10�3 3.129 · 10�2 Yes 0.2648
Simple (1,200) 50.50% 50.32% 6.33 · 10�3 4.543 · 10�2 Yes 0.2183
Simple (1,400) 50.19% 50.26% 6.42 · 10�3 6.944 · 10�2 No 0.0163
Simple (4,25) 50.56% 50.44% 7.15 · 10�3 2.990 · 10�2 Yes 0.4511
Simple (4,50) 50.83% 50.59% 8.73 · 10�3 1.103 · 10�2 Yes 0.5553
Simple (4,100) 50.91% 50.58% 9.28 · 10�3 4.967 · 10�3 Yes 0.2985

Complex (1,100) 52.37% 52.13% 4.77 · 10�3 7.772 · 10�16 Yes 0.2524
Complex (1,200) 52.10% 51.98% 5.07 · 10�3 6.550 · 10�15 Yes 0.3359
Complex (1,400) 51.97% 51.93% 5.31 · 10�3 2.257 · 10�13 Yes 0.1582
Complex (4,25) 52.42% 52.39% 4.10 · 10�3 0 Yes 0.0786
Complex (4,50) 52.36% 52.27% 5.02 · 10�3 0 Yes 0.0900
Complex (4,100) 52.03% 52.00% 5.21 · 10�3 2.220 · 10�16 Yes �0.0917
Simple (1,100) 51.28% 51.26% 4.22 · 10�3 1.294 · 10�4 Yes 0.8852
Simple (1,200) 51.26% 51.18% 4.25 · 10�3 7.735 · 10�4 Yes 0.9310
Simple (1,400) 50.86% 50.79% 4.97 · 10�3 2.327 · 10�4 Yes 0.7611
Simple (4,25) 50.84% 50.81% 4.95 · 10�3 1.182 · 10�4 Yes 0.8068
Simple (4,50) 50.90% 50.79% 4.20 · 10�3 6.787 · 10�5 Yes 0.9052
Simple (4,100) 50.96% 50.95% 4.21 · 10�3 1.374 · 10�3 Yes 0.8144

Complex (1,100) 51.09% 51.09% 4.10 · 10�3 3.602 · 10�1 No 0.7688
Complex (1,200) 50.95% 50.99% 4.23 · 10�3 3.703 · 10�1 No 0.7906
Complex (1,400) 51.09% 50.89% 4.83 · 10�3 4.952 · 10�2 Yes 0.6491
Complex (4,25) 50.95% 50.95% 5.15 · 10�3 1.116 · 10�3 Yes 0.6992
Complex (4,50) 51.05% 51.05% 4.72 · 10�3 2.392 · 10�2 Yes 0.7876
Complex (4,100) 51.14% 51.09% 4.19 · 10�3 1.291 · 10�1 No 0.7649

Benchmark 49.50% �1.2394

Table 5.11: Summary of results for the feedforward networks. The first 12 rows cor-
respond to feedforward networks trained without batch normalization and the 12 rows
below correspond to feedforward networks trained with batch normalization.

We observe that the accuracies for the models with more complex feature setup are
higher than for the models with less complex feature setup. Moreover, the Sharpe ratios
seem to be higher for models with batch normalization. Also, notice that for the less
complex feature setup the accuracies seem to increase when adding batch normalization
while for the more complex feature setup the accuracies seem to decrease when adding
batch normalization.

We have a summary of the recurrent architecture in Table 5.12.

41

5.5. SUMMARY CHAPTER 5. RESULTS

Feature Network Accuracy Mean Std p-value Reject Sh
Simple (5,1,100) 50.72% 50.46% 9.76 · 10�3 1.730 · 10�2 Yes �0.0587
Simple (10,1,100) 50.84% 50.51% 8.75 · 10�3 5.491 · 10�4 Yes �0.1278
Simple (20,1,100) 50.81% 50.45% 8.32 · 10�3 1.489 · 10�5 Yes 0.1048
Simple (40,1,100) 50.60% 50.53% 7.89 · 10�3 1.028 · 10�2 Yes �0.2489
Simple (80,1,100) 50.89% 50.52% 7.64 · 10�3 1.224 · 10�4 Yes 0.0560

Complex (5,1,100) 52.62% 52.45% 4.96 · 10�3 0 Yes 0.1737
Complex (10,1,100) 52.55% 52.44% 5.18 · 10�3 0 Yes 0.3279
Complex (20,1,100) 52.61% 52.33% 4.96 · 10�3 0 Yes 0.2623
Complex (40,1,100) 52.55% 52.24% 6.03 · 10�3 0 Yes 0.3299
Complex (80,1,100) 52.51% 52.09% 6.39 · 10�3 0 Yes 0.0328

Benchmark 49.50% �1.2394

Table 5.12: Summary of results for the recurrent architecture.

We observe that the accuracies for the models with more complex feature setup are
higher than for the models with less complex feature setup. Moreover, the Sharpe ratios
seem to be higher for models with more complex features than models with less complex
features. Also, notice that for the more complex feature setup the accuracies seem to
be higher than for the feedforward neural networks with more complex features, and the
accuracies for the less complex feature seem to be higher than for the feedforward neural
networks without batch normalization, but not higher than for the feedforward neural
networks with batch normalization.

42

Chapter 6

Discussion

In this section the results from Chapter 5 will be discussed. The discussion consider
the following cases; deep vs. non-deep networks, recurrent vs. feedforward networks,
difference between the less complex and more complex feature setup and relationship
between accuracy and Sharpe ratio.

6.1 Deep vs. non-deep networks

We will start to investigate Table 5.11 to answer the question if it is preferable to use
a deep network with fewer neurons compared to a non-deep network with more neurons
or the other way around. The answer can be divided into the four following cases; less
complex features without batch normalization, less complex features with batch normal-
ization, more complex features without batch normalization, more complex features with
batch normalization. To get more detailed answers we investigate the underlying models
in Table 5.1 to 5.4 and 5.6 to 5.9.

6.1.1 Less complex features without batch normalization

For the less complex features without batch normalization we observe that the two best
accuracies correspond to deep networks. The combined p-values are less than 5% for all
deep networks and for 2 out of 3 models for non-deep networks. Therefore, we need to
study Table 5.1 and 5.2 to investigate this further.

In Table 5.1 we observe that increases of neurons yield decreases in accuracy and in Table
5.2 increases of neurons yields increases in accuracy. Comparing networks with equally
many neurons in Table 5.1 and 5.2 implies that (4,50) and (4,100) dominate (1,200) and
(1,400) respectively. Moreover, we observe that (1,100) has a higher combined accuracy
than (4,25), but when we observe at individual level we can not see any significant results
that suggests that (1,100) outperforms (4,25). Thus, for this setup deep networks seems
to slightly outperform non-deep networks.

If we instead focus on the p-values in Table 5.11, then we observe that deep networks
tends to have smaller p-values. However, from Table 5.1 and 5.2 we observe that only
1 out of 15 models has a p-value under 10% for the non-deep networks and 8 out of

43

6.1. DEEP VS. NON-DEEP NETWORKS CHAPTER 6. DISCUSSION

15 models for the deep networks. Thus, deep networks seem to outperform non-deep
networks.

The deep network seem to slightly outperform the non-deep networks when taking both
accuracies and p-values into consideration.

6.1.2 Less complex features with batch normalization

For the less complex features with batch normalization we observe that the two best
accuracies correspond to non-deep networks. The combined p-value are less than 5%
for all networks. Therefore, we need to study Table 5.3 and 5.4 to investigate this
further.

In Table 5.3 we can see that increases of neurons give decreases in accuracy for non-deep
networks and in Table 5.4 increases of neurons do not seem to affect the accuracies. In
Table 5.3 we observe that 10 out of 15 networks have accuracies over 51% while only 6 out
of 15 networks have accuracies over 51% in Table 5.4. Comparing networks with equally
many neurons in table 5.3 and 5.4 shows that (1, 100) and (1, 200) dominate (4, 25) and
(4, 50) respectively. Moreover, we observe that (4, 100) have a higher combined accuracy
than (1, 400). Furthermore, we observe that deep and non-deep networks have accuracies
larger than 50.90% in 4 out of 5 and 1 out of 5 networks respectively. Therefore, for
smaller number of neurons for non-deep networks seem to outperform deep networks, but
with larger number of neurons deeper networks seem to outperform non-deep networks.
Thus, there does not exist a general pattern whether deep networks outperforms non-
deep networks or the other way around.

If we instead focus on the p-values in Table 5.3 and 5.4, then both non-deep and deep
networks have 11 out of 15 networks with p-values less than 5%. We observe that all
networks for the two smallest deep networks have p-values less than 5% and the largest
has only p-values less than 5% for 1 out of 5 networks. For the non-deep networks the
p-values are less than 5% for either 3 or 4 out of 5 networks. However, comparing the
different p-values does not give any significant answer whether to use deep or non-deep
networks.

None of the networks seems to outperform the other when taking both accuracies and
p-values into consideration.

6.1.3 More complex features without batch normalization

For the more complex features without batch normalization we observe that both the
best and worst accuracies correspond to non-deep networks. The combined p-values are
really small for both non-deep and deep networks. Moreover, we need to study Table
5.6 and 5.7 to investigate this further.

In Table 5.6 we observe that 10 out of 15 networks have an accuracy above 52% and in
Table 5.7 we observe that 14 out of 15 networks have accuracies over 52%. Comparing
these two tables we observe that the deep networks seem to slightly outperform the
non-deep networks with respect to accuracy.

If we instead focus on the p-values in Table 5.6 and 5.7, then we observe that all models
have small p-values but deep networks seem to have smaller p-values than non-deep

44

6.2. RNN VS. FNN CHAPTER 6. DISCUSSION

networks. Thus, deep networks seem to slightly outperform non-deep networks with
respect to p-values.

Deep networks seems to slightly outperform non-deep networks when taking both accu-
racies and p-values into consideration.

6.1.4 More complex features with batch normalization

For the more complex features with batch normalization we observe that both the best
and worse accuracies correspond to deep networks. The combined p-values are less than
5% for 1 out of 3 non-deep networks and for 2 out of 3 deep networks. Therefore, we
need to study Table 5.8 and 5.9 to investigate this further.

In Table 5.8 we observe that 10 out of 15 networks have higher accuracies than 51% and
11 out of 15 networks for the networks in Table 5.9. Comparing networks with equally
many neurons does not give any significant results whether to use deep or non-deep
networks. Therefore, none of the networks seem to outperform the other.

If we instead look at the p-values then we observe that none of non-deep networks and
only 2 out of 15 of deep networks have a p-value less than 5%. The deep networks have
in general smaller p-values than non-deep networks even though most of the p-values are
larger than 5%. Thus, none of the networks seem to outperforms the other.

None of the networks seem to outperform the other when taking both accuracies and
p-values into consideration.

6.1.5 Summary

Summarizing these four cases gives us that the deep networks seem to slightly outperform
the non-deep networks in two cases and in the two other cases we cannot conclude if
one of the networks outperforms the other. Therefore, the conclusion is that usage of
deep or non-deep networks depends on the problem setup, e.g. features and network
architecture.

6.2 RNN vs. FNN

We start to compare Table 5.11 and 5.12 to answer the question if recurrent neural
network can learn more from the features due to its time-dependency. To answer this
question we will start by comparing the two following cases; less complex features and
more complex features. Moreover, investigation about the influence of batch normaliza-
tion is also necessary.

6.2.1 Less complex features

For the less complex features a comparison between Table 5.11 and 5.12 suggests that
recurrent neural networks have similar results as feedforward neural networks without
batch normalization, and the feedforward neural networks with batch normalization seem
to outperforms recurrent neural networks. However, to study this further we need to
investigate the results in Table 5.1 to 5.5.

45

6.3. FEATURE SETUP CHAPTER 6. DISCUSSION

Comparing Table 5.1 and 5.2 with Table 5.3 and 5.4 we observe that batch normaliza-
tion increases the accuracy significantly. Moreover, the networks seem to be stable and
robust with respect to accuracies. In Table 5.5 we observe that the accuracies are not
stable and robust with respect to accuracies. The greatest accuracies and many of the
worst accuracies correspond to recurrent neural networks. Therefore, we cannot conclude
whether feedforward neural networks or recurrent neural networks are preferable in this
setup, but we can conclude that adding batch normalization increases the accuracies for
the feedforward neural networks.

6.2.2 More complex features

For the more complex features a comparison between Table 5.11 and 5.12 suggests that
recurrent neural networks achieve slightly better results than all the feedforward neural
networks. However, to study this further we need to investigate the results in Table 5.6
to 5.10.

Comparing Table 5.6 and 5.7 with Table 5.8 and 5.9 we observe that batch normal-
ization decreases the accuracy significantly. For both recurrent neural networks and
feedforward neural networks the accuracies seem to be stable and robust with respect to
the accuracies. The greatest accuracies correspond to recurrent neural networks and the
worst accuracies to feedforward neural networks. For instance, it is rarely that feedfor-
ward neural networks achieve accuracies over 52.5%, 3 out of 30, but likely for recurrent
neural networks, 18 out of 25. Therefore, we conclude that recurrent neural networks
for the more complex feature setup seem to slightly outperform the feedforward neural
networks.

6.2.3 Summary

Summarizing these two cases gives us that introducing recurrent neural networks does
not necessarily increase the accuracy significantly.

For the less complex feature setup recurrent neural networks have an oscillating effect
on the accuracy while the feedforward networks seem to be more stable and robust.
Moreover, increases in accuracies can be done by adding batch normalization to the
feedforward neural networks instead of using recurrent neural networks.

For the more complex feature setup both recurrent neural networks and feedforward
neural networks are stable and robust with respect to accuracies. The recurrent neural
networks seem to slightly improve the accuracy compared to the feedforward neural
networks. Moreover, adding batch normalization to the feedforward neural networks
decreases the accuracies significantly instead of increasing as the case for less complex
features.

6.3 Feature setup

We start to compare Table 5.11 and 5.12 to answer the question if some feature setup
seems to outperform another. In both Table 5.11 and 5.12 we observe that the more
complex feature setup seems to outperform the less complex feature setup for all networks
except for feedforward neural networks with batch normalization. For feedforward neural

46

6.4. SHARPE RATIO CHAPTER 6. DISCUSSION

networks with batch normalization we cannot see any pattern whether the more complex
feature setup are better than the less complex feature setup and vice versa. Therefore,
in general it might be appropriate to select reasonable feature setups since features seem
to increase the accuracies even though in some cases increases in accuracies can be done
by training with another method, e.g. batch normalization.

The reason why the less complex feature setup improves the accuracies relative to the
more complex feature setup for the feedforward neural network with batch normaliza-
tion is because of large decreses in accuracies for the more complex features and small
increases for the less complex features. One potential reason why batch normalization
decreases the accuracies for the more complex feature setup can be that the more com-
plex feature setup describes the output relative well and normalizing the input before
each activation function may destroy the financial signals, e.g. destroy the intuition
when an asset is overbought/oversold.

6.4 Sharpe ratio

We start to compare Table 5.11 and 5.12 to answer the question if high accuracies are
strongly correlated with high Sharpe ratios. From Table 5.11 we observe that the net-
works with highest accuracies, more complex feature setup without batch normalization,
do not have high or highest Sharpe ratios and not even necessarily positive Sharpe ratios
even though the accuracies are above 52%. Similar results can be found in Table 5.12
where we have recurrent neural networks. To get more detailed answers we investigate
the underlying models given in Table 5.1 to 5.10.

In Table 5.1 to 5.2, 5.5 to 5.7 and 5.10 we observe that the Sharpe ratios are very
oscillating, for instance it can be both negative and positive for similar setups. In Table
5.3 to 5.4 and 5.8 to 5.9 we observe that the Sharpe ratios do not oscillate very much
and seem to be more stable. Therefore, we conclude that for all networks without batch
normalization the accuracies seems to not have any strong influence on the Sharpe ratio
but when batch normalization are used then, the networks seem to have high and stable
Sharpe ratio.

47

Chapter 7

Conclusion

In general deep networks do not outperform non-deep networks and vice versa. Deep
networks can be preferable depending on feature setup and network architecture, e.g.
feedforward networks without batch normalization. The non-deep networks do not sig-
nificantly outperform the deep networks in any scenario but are equally good in some
cases.

Recurrent neural networks do not necessarily outperform feedforward neural networks
and batch normalization can improve feedforward neural networks. For the less complex
feature setup it can be appropriate to keep the feedforward neural network and adding
batch normalization instead of adding more complexity to the model, i.e. introducing
recurrent neural networks. For the more complex feature setup it can be appropriate
to introduce a more complex model such as recurrent neural networks to achieve more
signals from the time-dependent data. Moreover, for the more complex feature setup
batch normalization decreased the accuracies.

In general the more complex feature setup increased the accuracy significantly compared
to the less complex feature setup. Introducing batch normalization to the feedforward
neural networks have a positive effect on the less complex feature setup but negative for
the more complex feature setup.

The Sharpe ratios seem to not be strongly correlated with high accuracies. For all
networks without batch normalization, the Sharpe ratios oscillated and could be both
negative and positive even for networks with accuracies above 52%. For all networks
with batch normalization the Sharpe ratios became more stable and positive.

7.1 Future work

This thesis has given an introduction on how recurrent neural networks can be used to
forecast price movements of futures contracts. There exist different interesting results to
investigate further and I am going to introduce some of them here.

7.1.1 Different assets and asset classes

This thesis focuses on forecasting price movements of futures contracts. To generalize
these results in financial forecasting it would be interesting to investigate if the networks

48

7.1. FUTURE WORK CHAPTER 7. CONCLUSION

perform similarly on different asset classes, e.g. stocks and bonds. The networks use
features from all markets in this thesis and it would be interesting to introduce more
assets to see if the networks can learn more from the correlation between markets.

7.1.2 Loss function with respect to return

This thesis focuses on optimizing the accuracy of forecasting price movements of futures
contracts. In the discussion we observed that high accuracies does not imply good
Sharpe ratios. In practice Sharpe ratio is of greater importance than accuracy since we
want a model to be able to gain profits. Therefore, it would be interesting to introduce
another type of cost function that takes the return into consideration when optimizing the
networks, e.g. weighted cross-entropy loss where the weights depend on returns.

7.1.3 Stacked recurrent networks

This thesis focuses on introducing the recurrent neural network in forecasting price move-
ments of futures contracts. Therefore, the recurrent part in the recurrent neural network
consists of only 1 hidden recurrent layer. Then, a natural question is whether stacked
recurrent layers can improve the results or is the data so noisy that financial time series
cannot be considered as typical sequential data and the complexity of recurrent layers
can be neglected.

7.1.4 Long Short-Term Memory

This thesis focuses on introducing the recurrent neural network in forecasting price move-
ments of futures contracts. Therefore, the recurrent layer consists of the most vanilla
recurrent layer. Long Short-Term Memory (LSTM) networks was introduced since vanilla
recurrent layers can be difficult to train. Thus, can LSTM improve the results of vanilla
recurrent neural networks given in this report.

7.1.5 Feature importance

In this thesis we consider two different feature setups, namely; the less complex and more
complex feature setup. In the discussion we observed that the more complex feature setup
seem to outperform the less complex feature setup. Therefore, it would be interesting
to determine which of the more complex features improves the accuracy most, can the
feature parameters be optimized to get a better result, and does it exist other complex
features that can boost the accuracy.

49

Bibliography

[1] B. Malkiel, A Random Walk Down Wall Street: Including a Life-cycle Guide to
Personal Investing. Norton, 1999.

[2] E. F. Fama, “Stock returns, real activity, inflation and money,” American Economic
Review, vol. 71, pp. 545–565, 1981.

[3] E. F. Fama, “Stock returns, expected returns, and real activity,” Journal of Finance,
vol. 45, pp. 1575–1617, 1990.

[4] H. Hult, F. Lindskog, O. Hammarlind, and C. J. Rehn, Risk and Portfolio Analysis.
Springer New York, 2012.

[5] L. Yu, H. Chen, S. Wang, and K. K. Lai, “Evolving least squares support vec-
tor machines for stock market trend mining,” IEEE Transactions on Evolutionary
Computation, vol. 13, pp. 87–102, Feb 2009.

[6] T. V. Gestel, J. A. K. Suykens, D. emma Baestaens, A. Lambrechts, G. Lanckriet,
B. Vandaele, B. D. Moor, and J. Vandewalle, “Financial time series prediction using
least squares support vector machines within the evidence framework.”

[7] A. Gupta and B. Dhingra, “Stock market prediction using hidden markov models,”
in 2012 Students Conference on Engineering and Systems, pp. 1–4, March 2012.

[8] G. Batres-Estrada, “Deep learning for multivariate financial time series,” Master’s
thesis, KTH Royal Institute of Technology, June 2015.

[9] Y. Li and W. Ma, “Applications of artificial neural networks in financial economics:
A survey,” in Proceedings of the 2010 International Symposium on Computational
Intelligence and Design - Volume 01, ISCID ’10, (Washington, DC, USA), pp. 211–
214, IEEE Computer Society, 2010.

[10] J. B. Heaton, N. G. Polson, and J. H. Witte, “Deep learning in finance,” CoRR,
vol. abs/1602.06561, 2016.

[11] R. Xiong, E. P. Nichols, and Y. Shen, “Deep learning stock volatility with google
domestic trends.” https://arxiv.org/abs/1512.04916.

[12] A. Siripurapu, “Convolutional networks for stock trading.” http://cs231n.

stanford.edu/reports/2015/pdfs/ashwin_final_paper.pdf.

[13] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with deep recurrent
neural networks,” CoRR, vol. abs/1303.5778, 2013.

[14] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using RNN encoder-decoder for statistical machine
translation,” CoRR, vol. abs/1406.1078, 2014.

50

https://arxiv.org/abs/1512.04916
http://cs231n.stanford.edu/reports/2015/pdfs/ashwin_final_paper.pdf
http://cs231n.stanford.edu/reports/2015/pdfs/ashwin_final_paper.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[15] J. C. Hull, Options, Futures, And Other Derivatives. Pearson Education, 8 ed.,
2011.

[16] E. F. Fama, “Efficient capital markets: A review of theory and empirical work,”
Journal of Finance, vol. 25, p. 383–417, 1970.

[17] B. G. Malkiel, “Reflections on the efficient market hypothesis: 30 years later,” The
Financial Review, vol. 40, no. 1, pp. 1–9, 2005.

[18] E. W. Saad, D. V. Prokhorov, and D. C. Wunsch, “Comparative study of stock trend
prediction using time delay, recurrent and probabilistic neural networks,” IEEE
Transactions on Neural Networks, vol. 9, pp. 1456–1470, Nov 1998.

[19] N. Jegadeesh and S. Titman, “Returns to buying winners and selling losers: Impli-
cations for stock market efficiency,” Journal of Finance, vol. 48, no. 1, pp. 65–91,
1993.

[20] N. Jegadeesh and S. Titman, “Profitability of momentum strategies: An evaluation
of alternative explanations,” Working Paper 7159, National Bureau of Economic
Research, June 1999.

[21] M. Wahde, Biologically Inspired Optimization Methods: An Introduction. WIT
Press, 2008.

[22] G. Cybenko, “Approximations by superpositions of sigmoidal functions,” Mathemat-
ics of Control, Signals, and Systems, vol. 2, 1989.

[23] G. Cybenko, “Approximation capabilities of multilayer feedforward networks,” Neu-
ral Networks, vol. 4, p. 251–257, 1991.

[24] H. G. Rumelhart, D. and R. Williams, “Learning representations byback-
propagating errors.,” Nature, vol. 323, p. 533–536, 1986.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[26] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. ICML, vol. 30, 2013.

[27] D. Wilson and T. R. Martinez, “The general inefficiency of batch training for gradient
descent learning,” Neural Networks, vol. 16, no. 10, pp. 1429 – 1451, 2003.

[28] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,”
USSR Computational Mathematics and Mathematical Physics, vol. 4, pp. 1–17, 1964.

[29] B. T. Polyak, “A method for unconstrained convex minimization problem with the
rate of convergence o(1/k2),” Doklady ANSSSR (translated as Soviet.Math.Docl.),
vol. 269, pp. 543–547, 1983.

[30] I. Sutskever, Training Recurrent Neural Networks. PhD thesis, University of
Toronto, 2013.

[31] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in optimizing
recurrent networks,” CoRR, vol. abs/1212.0901, 2012.

[32] G. Hinton, “Neural networks for machine learning. lecture 6e..”

51

http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY BIBLIOGRAPHY

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[34] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015.

[35] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Effiicient backprop,” in Neural
Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop,
(London, UK, UK), pp. 9–50, Springer-Verlag, 1998.

[36] R. Pascanu, T. Mikolov, and Y. Bengio, “Understanding the exploding gradient
problem,” CoRR, vol. abs/1211.5063, 2012.

[37] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, pp. 123–140, Aug.
1996.

[38] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting.
Springer-Verlag New York, 2002.

[39] C. Bennett and M. A. Gil, “Measuring historical volatility.”

[40] H. Markowitz, “Portfolio selection,” Journal of Finance, vol. 7, no. 1, pp. 77–91,
1952.

[41] “Stochastic oscillator.” http://stockcharts.com/school/doku.php?id=chart_

school:technical_indicators:stochastic_oscillator_fast_slow_and_full.
Accessed: 2017-02-01.

[42] “Percentage price oscillator.” http://stockcharts.com/school/doku.php?id=

chart_school:technical_indicators:price_oscillators_ppo. Accessed: 2017-
02-01.

[43] J. Wilder, New Concepts in Technical Trading Systems. Trend Research, 1978.

[44] “Williams %r.” http://stockcharts.com/school/doku.php?id=chart_school:

technical_indicators:williams_r. Accessed: 2017-02-01.

[45] “Commodity channel index (cci).” http://stockcharts.com/school/doku.php?

id=chart_school:technical_indicators:commodity_channel_index_cci. Ac-
cessed: 2017-02-01.

[46] R. Fisher, Statistical methods for research workers. Edinburgh Oliver & Boyd, 1925.

[47] F. Mosteller and R. A. Fisher, “Questions and answers,” The American Statistician,
vol. 2, no. 5, pp. 30–31, 1948.

[48] “Theano framework.” http://deeplearning.net/software/theano/. Accessed:
2017-02-01.

[49] C. W. J. Granger and O. Morgenstern, “Spectral analysis of new york stock market
prices1,” Kyklos, vol. 16, no. 1, pp. 1–27, 1963.

52

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:stochastic_oscillator_fast_slow_and_full
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:stochastic_oscillator_fast_slow_and_full
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:price_oscillators_ppo
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:price_oscillators_ppo
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:williams_r
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:williams_r
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:commodity_channel_index_cci
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:commodity_channel_index_cci
http://deeplearning.net/software/theano/

TRITA -MAT-E 2017:27
ISRN -KTH/MAT/E--17/27--SE

www.kth.se

	omslag Widegren
	Inlägg framsida Widegren
	Inlägg backsida Widegren
	PW-final
	Introduction
	Research questions
	Related work
	Scope and Limitations
	Outline

	Financial background
	Long and short positions
	Futures contracts
	EMH
	Weak-form efficiency
	Semi-strong-form
	Strong-form efficiency

	Sharpe ratio

	Neural networks
	Feedforward neural networks
	Recurrent neural networks
	Activation functions
	Cost/loss function
	Training neural networks
	Batch and minibatch
	Gradient descent
	Momentum
	Nesterov momentum
	RMSProp

	Regularization
	Early stopping
	Dropout
	Batch normalization
	Gradient constraint
	Ensemble methods

	Methodology
	Data processing
	Filters
	SMA
	EMA

	Volatility estimators
	Garman-Klass
	Garman-Klass Yang-Zhang extension

	Features
	Momentum
	Rising
	Return vs Risk
	Stochastic K%
	Stochastic D%
	Stochastic slow D%
	Smoothed changes
	Percentage price oscillator
	Relative strength index
	Williams R%
	Commodity channel index

	Scaling features
	Feature setup
	Less complex
	More complex

	Architectures
	Ensemble
	Prediction setup
	Comparing with benchmark
	Combining p-values

	Implementation

	Results
	Parameters
	Benchmark
	Less complex features
	Feedforward neural network
	Without batch normalization
	With batch normalization

	Recurrent neural network

	More complex features
	Feedforward NN
	Without batch normalization
	With batch normalization

	Recurrent NN

	Summary

	Discussion
	Deep vs. non-deep networks
	Less complex features without batch normalization
	Less complex features with batch normalization
	More complex features without batch normalization
	More complex features with batch normalization
	Summary

	RNN vs. FNN
	Less complex features
	More complex features
	Summary

	Feature setup
	Sharpe ratio

	Conclusion
	Future work
	Different assets and asset classes
	Loss function with respect to return
	Stacked recurrent networks
	Long Short-Term Memory
	Feature importance

	omslag Widegren
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

