
Evaluation of Massively Scalable
Gaussian Processes

HANNA HULTIN

Master in Applied and Computational Mathematics
Date: June 13, 2017
Supervisor at Department of Mathematics: Henrik Hult
Supervisor at Robotics, Perception and Learning: Hedvig Kjellström
Supervisor at SICS: Theodoros Vasiloudis
Examiner: Boualem Djehiche
Swedish title: Evaluering av massivt skalbara Gaussiska processer
School of Engineering Sciences

i

Abstract

Gaussian process methods are flexible non-parametric Bayesian methods used for regres-
sion and classification. They allow for explicit handling of uncertainty and are able to
learn complex structures in the data. Their main limitation is their scaling characteristics:
for n training points the complexity is O(n3) for training and O(n2) for prediction per
test data point. This makes full Gaussian process methods prohibitive to use on training
sets larger than a few thousand data points.

There has been recent research on approximation methods to make Gaussian pro-
cesses scalable without severely affecting the performance. Some of these new approxi-
mation techniques are still not fully investigated and in a practical situation it is hard to
know which method to choose. This thesis examines and evaluates scalable GP methods,
especially focusing on the framework Massively Scalable Gaussian Processes introduced
by Wilson et al. in 2016, which reduces the training complexity to nearly O(n) and the
prediction complexity to O(1). The framework involves inducing point methods, local
covariance function interpolation, exploitations of structured matrices and projections to
low-dimensional spaces. The properties of the different approximations are studied and
the possibilities of making improvements are discussed.

ii

Sammanfattning

Gaussiska processmetoder är flexibla icke-parametriska Bayesianska metoder som an-
vänds för regression och klassificering. De tillåter explicit hantering av osäkerhet och kan
lära sig komplexa strukturer i data. Den största begränsningen är deras skalningsegen-
skaper: för n träningspunkter är komplexiteten O(n3) för träning och O(n2) för predik-
tion per ny datapunkt. Detta gör att kompletta Gaussiska processer är för krävande för
att använda på träningsdata större än några tusen datapunkter.

Det har nyligen forskats på approximationsmetoder för att göra Gaussiska processer
skalbara utan att påverka prestandan allvarligt. Några av dessa nya approximationsstek-
niker är fortfarande inte fullkomligt undersökta och i en praktisk situation är det svårt
att veta vilken metod man ska använda. Denna uppsats undersöker och utvärderar skal-
bara GP-metoder, särskilt med fokus på ramverket Massivt Skalbara Gaussiska Proces-
ser introducerat av Wilson et al. 2016, vilket minskar träningskomplexiteten till O(n) och
prediktionskomplexiteten till O(1). Ramverket innehåller inducerande punkt-metoder,
lokal kärninterpolering, utnyttjande av strukturerade matriser och projiceringar till lågdi-
mensionella rum. Egenskaperna hos de olika approximationerna studeras och möjlighe-
terna att göra förbättringar diskuteras.

Contents

Contents iii

1 Introduction 1
1.1 Outline . 2

2 Gaussian Processes for Regression 3
2.1 Gaussian Processes from a Mathematical Perspective 3

2.1.1 Gaussian Random Variables . 3
2.1.2 Gaussian Processes . 4

2.2 Gaussian Processes from a Machine Learning Perspective 6
2.2.1 Supervised Learning . 6
2.2.2 GP Regression . 6
2.2.3 GP Classification and Non-Gaussian Likelihoods 8
2.2.4 Covariance Function . 10
2.2.5 Learning: Choice of Covariance Function and Hyperparameters . . . 11

2.3 Scalable Gaussian Processes . 12
2.3.1 Iterative Solution of Linear Systems . 12
2.3.2 Sparse Approximations . 12
2.3.3 Bayesian Committee Machine . 18

3 Massively Scalable Gaussian Processes 19
3.1 Structure Exploitation . 19

3.1.1 Kronecker Structure . 19
3.1.2 Toeplitz Structure . 21

3.2 KISS-GP . 22
3.2.1 Structured Kernel Interpolation . 22
3.2.2 Combining Kernel Interpolation and Structure Exploitation 23

3.3 Fast Test Predictions . 24
3.4 Circulant Approximation . 25

3.4.1 Extension to Multivariate Data . 26
3.5 Projections . 26

4 Experiments 27
4.1 Datasets . 27
4.2 Performance Criteria . 28
4.3 Choice of Inducing Points . 29
4.4 Interpolation Method . 30

iii

iv CONTENTS

4.5 Structure Optimizations . 40
4.5.1 Kronecker Structure . 40
4.5.2 Toeplitz Structure . 44

4.6 Comparison of MSGP to Other GP Methods 50
4.6.1 Abalone . 51
4.6.2 KIN40K . 52
4.6.3 SARCOS . 52

5 Discussion 54
5.1 Pros and Cons of MSGP . 54
5.2 When Should MSGP Be Used? . 54
5.3 Future Work . 55

Bibliography 57

Chapter 1

Introduction

Gaussian processes (GPs) are stochastic processes that have been studied and used by
mathematicians for centuries [1]. Today they are well established models for spatial and
temporal problems. Examples of commonly used GPs are Brownian motion, Langevin
processes and Wiener processes. Kalman filters, often used to model speech waveforms,
are also GP models [2].

For predictions, GPs were first used in the 1940’s for time series predictions and since
the 1970’s they have been widely used for geostatistical and meteorological predictions.
GP models were then eventually used for the general multivariate input regression prob-
lem as well [1].

GPs can be interpreted as distributions over functions where the distribution is fully
specified by the mean and covariance functions of the process. With this interpretation,
they can be used in Bayesian non-parametric models for regression, classification and
other machine learning tasks. GP models are Bayesian probabilistic models and as such
they allow for explicit handling of the uncertainty present in all real-world scenarios and
give full probabilistic predictions. With GP regression there is no need to choose basis
functions as is usually the case for parametric approaches, instead the complexity of the
model grows automatically with larger datasets which is the typical behaviour of non-
parametric models.

The main limitation of using GPs for regression is their scaling characteristics. With n

training points the computational complexity is O(n3) for inference and learning and the
memory complexity is O(n2). The computational bottleneck for inference is the inversion
of the n × n covariance function and for learning the logarithm of the determinant of
the same matrix has to be computed as well. These computations are usually made by
doing a Cholesky decomposition which has the computational complexity O(n3). Further
more, the computational complexity for making predictions is O(n2) per prediction point.
These high complexities rule out the possibility to use full GPs in scenarios with more
than a few thousand data points.

A large body of research has been dedicated to making GPs scalable, with inducing
point methods [3], which approximate the true covariance matrix with a lower rank ma-
trix, being the most popular. Typically these methods attain O(m2n) computational com-
plexity and O(mn) space complexity for m inducing points, where m � n. These meth-
ods are usually designed to work with any covariance function and any training data,
but they trade accuracy for computational complexity. Alternative approaches have been
developed that focus on exploiting structured matrices, which allow for faster exact infer-

1

2 CHAPTER 1. INTRODUCTION

ence at the cost of limited flexibility for the training points and the covariance function
[4].

This thesis evaluates a new framework for scalable GP regression, Massively Scalable
Gaussian Processes (MSGP) introduced by Wilson et al. in 2016 [5]. This framework uses
a combination of inducing points, local interpolation and structured GP approaches to
achieve highly scalable, but also flexible learning of GPs.

The main idea of MSGP is to place the inducing points on a regular grid and approx-
imate the covariance matrix of the training points by using local interpolation on the co-
variance function of the inducing points. The covariance function is usually a smooth
well-behaved function, which often results in the local interpolation having a high ac-
curacy. Since the inducing points are placed on a regular grid, the covariance matrix of
the inducing points is a structured matrix which can exploit faster matrix operations.
Therefore, the number of inducing points are no longer restricted to be much less than
the number of training points, as in the other inducing points method, which allows for
near-exact accuracy and expressive covariance function learning.

1.1 Outline

Chapter 2 gives an overview of GPs and how they can be used for regression and classi-
fication as well as a review of methods for making GPs scalable. Thereafter the frame-
work MSGP is presented and explained in more detail in Chapter 3. In the following
chapter the experiments with the aim of evaluating the different parts of the framework
are presented and the results are commented. Lastly there is a discussion in Chapter 5.

Chapter 2

Gaussian Processes for Regression

2.1 Gaussian Processes from a Mathematical Perspective

Three main references have been used for the mathematical background on GPs: Gaus-
sian Hilbert Spaces by Svante Janson [6], Random Fields and Geometry by Robert J. Adler
and Jonathan E. Taylor [7] and The Geometry of Random Fields by Robert J. Adler [8].

2.1.1 Gaussian Random Variables

A real-valued random variable X is called Gaussian if it has the probability density func-
tion:

ϕ(x) =
1√

2πσ2
exp

(
−(x−m)2

2σ2

)
, x ∈ R (2.1)

for some m ∈ R and σ > 0. The random variable X is then a Gaussian random variable
with mean m and standard deviation σ. This is abbreviated as X ∼ N (m,σ2). If m = 0

and σ = 1 the random variable has a standard normal distribution and in general if m =

0 and σ > 0 the random variable is called centered [7].
For the multivariate case, an RD-valued random vector X is a multivariate Gaussian

random variable if any linear combination of its elements
∑D

i=1 aiXi, a ∈ RD is a Gaus-
sian random variable too. Then there is a mean vector m ∈ RD such that mi = E[Xi]

and a symmetric positive semi-definite covariance matrix K ∈ RD×D with elements
Kij = Cov(Xi, Xj) = E[(Xi − mi)(Xj − mj)]. The probability density function of the
multivariate Gaussian X is then given by:

ϕ(x) = (2π)−D/2|K|−1/2 exp

(
−1

2
(x−m)>K−1(x−m)

)
, x ∈ RD (2.2)

This is written as X ∼ N (m,K) or X ∼ ND(m,K) with the dimension explicitly written.
If is easily shown using simple algebra and the probability density function of a Gaus-

sian random variable X ∼ ND(m,K) that the distribution of AX is also a Gaussian dis-
tribution for any matrix A ∈ Rd×D. Specifically AX ∼ Nd(Am, AKA>).

This can be used to compute the conditional distributions by making special choices

3

4 CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION

of A. Consider the partitions:

X =

(
X1

X2

)
=

(
(X1, ..., Xd)

>

(Xd+1, ..., XD)>

)
(2.3)

m =

(
m1

m2

)
=

(
(m1, ...,md)

>

(md+1, ...,mD)>

)
(2.4)

K =

(
K11 K12

K21 K22

)
(2.5)

where K11 ∈ Rd×d. Then Xi is N (mi,Kii) for i = 1, 2 and the conditional distribution of
Xi given Xj is N (mi|j ,Ki|j) where:

mi|j = mi +KijK
−1
jj (Xj −mj) (2.6)

Ki|j = Kii −KijK
−1
jj Kji (2.7)

2.1.2 Gaussian Processes

Given a probability space (Ω,A, P) and an arbitrary index set T , a real stochastic process
indexed by T can be defined in several ways [6]:

1. A collection {Xt}t∈T of random variables on (Ω,A, P)

2. A random function X(·) ∈ RT

3. A function X(t, ω) on T × Ω such that X(t, ·) is measurable for each t ∈ T

Using the first definition for stochastic processes, Gaussian processes (GPs) can be
defined as follows. For any set T , a Gaussian process indexed by T is defined to be a
collection {Xt}t∈T of jointly Gaussian random variables on (Ω,A, P). That the random
variables are jointly Gaussian means that any finite vector consisting of random variables
from {Xt}t∈T is a multivariate Gaussian random variable.

The function m(t) = E[Xt], t ∈ T is called the mean function and the Gaussian process
is called centered if m(t) = E[Xt] = 0, ∀t ∈ T [7].

The covariance function k(s, t) of the Gaussian process is defined by k(s, t) = Cov(Xs, Xt)

for (s, t) ∈ T × T . The covariance function of a Gaussian process is symmetric and posi-
tive semi-definite [6].

Conversely, given any set T , a function m(·) ∈ RT and a symmetric positive semi-
definite function k(·, ·) ∈ RT×T there exists a Gaussian process with mean function m(·)
and covariance function k(·, ·) [7].

Stationary Stochastic Processes

A stochastic process X(t) with T = RD is called strictly stationary or strictly homoge-
neous if its finite dimensional distributions are invariant under translations in the pa-
rameter t. This means that for any set of points τ, t1, ..., tj in RD the joint distribution of
X(t1), X(t2), ..., X(tj) is the same as the joint distribution of X(t1 +τ), X(t2 +τ), ..., X(tj +

τ) [8].

CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION 5

Often it is enough to consider weakly stationary processes which satisfy that their
mean function m(t) is a constant function and the covariance function k(s, t) is a func-
tion of s − t only. A strictly stationary stochastic process is clearly also weakly stationary,
but the reverse is generally not true. However, for real Gaussian processes any weakly
stationary GP is also a strictly stationary GP.

Continuity and Differentiability of Stochastic Processes

There are various types of continuity and differentiability for stochastic processes, since
we are not studying a regular deterministic function but rather the convergence of a se-
quence of random variables. One type of stochastic convergence is mean square conver-
gence and this is often used for stochastic processes since it has a natural connection to
the covariance function [8].

A stochastic process X(t) is said to be continuous in mean square at t∗ ∈ RD if for
a sequence of points t1, t2, ... such that |tj − t∗| → 0 as j → ∞, it holds that E[|X(tj) −
X(t∗)|2] → 0 as j →∞. If this is true for all t∗ ∈ A ⊂ RD, then X(t) is said to be continu-
ous in mean square (MS) over A.

Using the covariance function, MS continuity can also be studied by using that X(t)

is continuous in mean square at t∗ ∈ RD if and only if its covariance function k(s, t) is
continuous at the point t = s = t∗. However, MS continuity does not imply that X(t)

is almost surely continuous, also called sample function continuity, which is a stronger
condition given by:

P (ω : |X(tj , ω)−X(t∗, ω)| → 0 as j →∞) = 1 (2.8)

where as above the sequence of points t1, t2, ... is such that |tj − t∗| → 0 as j →∞.
We can also consider differentiability in mean square for a real stochastic process X .

If the derivative ∂2k(s,t)
∂si∂ti

exists and is finite at the point (t, t) ∈ RD × RD then the limit:

Xi(t) = lim
h→0

X(t+ hei)−X(t)

h
(2.9)

exists (in MS) and is called the MS derivative of X(t) at t. Here ei is the unit vector in
direction i. The stochastic process is said to be possess a MS derivative if Xi(t) exists for
each t ∈ RD. The covariance function of Xi(t) is then given by ∂2k(s,t)

∂si∂ti
. This can then be

extended to higher order derivatives as well.
For a stationary stochastic process the conditions for MS continuity and differentia-

bility are simplified. It is enough to check if the covariance function is continuous at one
single point where s − t = 0 to see if the stochastic process is MS continuous. For dif-
ferentiability we note that if all the 2k:th order partial derivatives of the covariance func-
tion exist and are finite at the origin, then all the k:th order MS partial derivatives of the
stochastic process exist as well.

Degenerate Covariance Functions

Suppose that we have a covariance function k(x,x′) on RD×RD. We consider the integral
equation: ∫

k(x,x′)φ(x)dµ(x) = λφ(x′), for x′ ∈ RD (2.10)

6 CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION

A function which satisfies both this equation for some λ 6= 0 and
∫
|φ(x)|2dx < ∞ is

called an eigenfunction of the covariance function with respect to the measure µ and the
corresponding λ is called an eigenvalue. In general there are an infinite number of eigen-
values λ1, λ2, ... and corresponding eigenfunctions φ1, φ2, The eigenvalues can be cho-
sen so that the eigenvalue sequence is non-increasing and that the eigenfunctions form
an orthonormal sequence, hence

∫
φi(x)φj(x)dµ(x) = δij . Then Mercer’s theorem tells

us that the covariance function can be expanded as k(x,x′) =
∑∞

j=1 λjφj(x)φj(x
′) and∑∞

j=1 λ
2
j <∞ [9].

A covariance function is called degenerate if it has only a finite number of non-zero
eigenvalues. If a covariance function is not degenerate it is called non-degenerate.

2.2 Gaussian Processes from a Machine Learning Perspective

The main reference for Gaussian Processes from a Machine Learning perspective has
been the book Gaussian Processes for Machine Learning by Carl Edward Rasmussen and
Christopher K. I. Williams [9].

2.2.1 Supervised Learning

The problem we consider is the one of supervised learning, which means that we want
to learn input-output mappings from a training data set. If the output data are continu-
ous this is called regression and if they are discrete the problem is called classification.

Following the notation of Rasmussen and Williams we have a training data set D
which consists of n observation pairs of inputs and outputs: D = {(xi, yi) | i = 1, ..., n}.
Here x is an input vector of dimension D and y is the scalar output, also called target.
Using all our input vectors and outputs we can construct the design matrix X and the
target vector y as follows:

X =
(

x1 x2 · · · xn
)

(2.11)

y =
(
y1 y2 · · · yn

)> (2.12)

The training data set can then be written as D = (X,y). The goal of supervised learning
is to make inferences about the general relationship between inputs and targets using the
labelled training data.

2.2.2 GP Regression

When using GPs for regression and classification the interpretation of a GP is a distri-
bution over functions, where this distribution is specified by the mean and covariance
functions of the GP.

Using the notation of Rasmussen and Williams [9] we write a GP as:

f(x) ∼ GP(m(x), k(x,x′)) (2.13)

where m(x) is the mean function and k(x,x′) is the covariance function as in Section
2.1.2. This uses the second definition of GPs in Section 2.1.2, but the random function
X(·) is here denoted f(·). The index set T is in this case the set of possible inputs de-
noted X and we will usually use X = RD, where D ∈ N+. We will also write fi = f(xi)

CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION 7

and denote the matrix of covariances evaluated at all pairs of points in two data sets X1

and X2 by K(X1, X2) or KX1,X2 where K(X1, X2)ij = k(x1
i ,x

2
j). For notational simplic-

ity the mean function will usually be assumed to be zero.
To be able to use the GP for regression or classification, we need to assume a model

which connects the output y(x) to our GP f(x). Usually f(x) can be seen as a latent
function, which is used to infer the predictive distribution of y(x∗) at a test input x∗
given the data set D by first inferring a posterior distribution over f(x∗).

Usually the output values are not the actual function values of f , but noisy observa-
tions of them. This is often modelled by additive independent identically distribution
Gaussian noise, hence y(x) = f(x) + ε where ε ∼ N (0, σ2

n).

Predictive distribution

The covariance between the outputs when using the model described above is given by:

Cov(yp, yq) = k(xp,xq) + σ2
nδpq (2.14)

Cov(y) = K(X,X) + σ2
nI (2.15)

The joint distribution of the observed output values y and the function values at the test
input points f∗ is in this case given by:(

y

f∗

)
∼ N

(
0,

(
K(X,X) + σ2

nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

))
(2.16)

The distribution of the function values at the test input point conditioned on the training
data set is then as follows:

f∗|X∗, X,y ∼ N (E[f∗|X∗, X,y],Cov(f∗|X∗, X,y)) (2.17)

E[f∗|X∗, X, f] = K(X∗, X)[K(X,X) + σ2
nI]−1y, (2.18)

Cov(f∗|X∗, X,y) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗)) (2.19)

This is then called the predictive distribution for the Gaussian process regression. The
predictive distribution of the corresponding test targets can then be computed by adding
σ2
nI to the expression for Cov(f∗|X∗, X, f):

y∗|X∗, X,y ∼ N (E[y∗|X∗, X,y],Cov(y∗|X∗, X,y)) (2.20)

E[y∗|X∗, X, f] = K(X∗, X)[K(X,X) + σ2
nI]−1y, (2.21)

Cov(y∗|X∗, X, f) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗)) + σ2

nI (2.22)

Marginal likelihood

The log marginal likelihood of the observed output values can be found by noting that
the distribution is y ∼ N (0,K(X,X) + σ2

nI), hence:

log p(y|X) = −1

2
y>[K(X,X) + σ2

nI]−1y − 1

2
log |K(X,X) + σ2

nI| −
n

2
log 2π (2.23)

∝ −1

2

(
y>[K(X,X) + σ2

nI]−1y + log |K(X,X) + σ2
nI|
)

(2.24)

8 CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION

Deterministic function as mean function

If the mean function would be a deterministic function m(x) instead of the zero function,
the zero mean GP can simply be applied to the difference between the observations and
the fixed mean. Then the variance remains unchanged and the predictive mean becomes:

E[f∗|X∗, X, f] = m(X∗) +K(X∗, X)[K(X,X) + σ2
nI]−1(y −m(X)) (2.25)

Bayesian linear model as a GP

A Bayesian linear regression model can be written as f(x) = φ(x)>w where φ(·) is a de-
terministic function which maps a D-dimensional vector into an N dimensional feature
space and w are the weights with prior w ∼ N (0,Σp). We then have that f(x) and f(x′)

are jointly Gaussian with zero mean and covariance φ(x)>Σpφ(x′), so f(·) is a GP with
mean function zero and covariance k(x,x′) = φ(x)>Σpφ(x′).

Illustration of GP regression

In Figure 2.1 an example of the prior and the predictive distributions of a GP is illus-
trated. For this example the squared exponential covariance function was used (see 2.2.4)
with parameters l =

√
2 and σf = 1. In Figure 2.1a a plot of the prior mean as well as

95 % confidence intervals are shown and in Figure 2.1b samples from this GP is shown.
After observing 5 training data points the posterior is computed and its mean and 95 %
confidence intervals are shown in Figure 2.1c. In Figure 2.1d samples of the posterior GP
is plotted. It can be noted that at the exact location of the training points the posterior
variance is 0 and all the samples have to pass through the training data points, while far
away from the observed data points the uncertainty increases.

2.2.3 GP Classification and Non-Gaussian Likelihoods

In general we will consider GP regression with Gaussian likelihood, but also regression
with non-Gaussian likelihoods as well as classification can be solved with a GP, which is
briefly explained in this section.

For classification we need a different model than for regression since in this case the
outputs are discrete. Considering binary classification, we assume that we have the two
possible labels such that y ∈ {−1, 1}. The prediction using GP is then usually done
by "squashing" our latent random function f(x) through the logistic function σ(z) =

1/(1 + exp(−z)) and setting p(y(x) = 1|f(x)) = σ(f(x)). Other sigmoid functions than
the logistic function could also be used for the "squashing", for example the cumulative
distribution function of the standard Gaussian distribution.

As for the regression case, we want to infer the predictive distribution of y(x∗) at a
test input x∗ given the data set D by first inferring a posterior distribution over f(x), but
in this case the posterior distribution of f∗ given by:

p(f∗|X,y,x∗) =

∫
p(f∗|X,y,x∗, f)p(f |X,y)df (2.26)

can not be analytically found since p(f |X,y) = p(y|f)p(f |X)/p(y|X) involves the non-
Gaussian likelihood p(y|f).

CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION 9

(a) Prior GP (b) Samples prior GP

(c) Posterior GP (d) Samples posterior GP

Figure 2.1: Illustration of inference with a GP. a) Mean in red and 95 % confidence intervals in
blue of the prior GP. b) Samples from the prior GP. c) Mean in red and 95 % confidence intervals in
blue of the posterior GP with training data points marked with yellow circles. d) Samples from the
posterior GP with training data points marked with yellow circles.

10 CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION

Also the posterior distribution over y∗ uses an analytically intractable integral:

p(y∗ = 1|X,y,x∗) =

∫
σ(f∗)p(f∗|X,y,x∗)df∗ (2.27)

Instead of analytical expressions, approximations of some sort are needed. The likeli-
hood p(f |X,y) can either be approximated as a Gaussian, using for example the Laplace
approximation or expectation propagation (EP), or analytical approximations of integrals
based on Monte Carlo sampling can be used. These methods can more generally be used
as soon as the likelihood is not Gaussian for any reason.

This binary classification can be generalized to multi class classification, for example
by using the softmax functions so that the probability of the training point i belonging to
class c is given by:

p(yci |fi) =
exp(f ci)∑
c′ exp(f c

′
i)

(2.28)

where f ci is the latent function value at training point i for class c and the latent GPs for
different classes are assumed to be uncorrelated.

2.2.4 Covariance Function

The choice of covariance function for the GP predictor is of most importance, since the
covariance function encodes our beliefs and assumptions about the underlying function
that we want to learn. It is the covariance function that defines nearness or similarity
between points for our GP.

For example, a basic assumption is that points with inputs which are close to each
other have a high probability to have similar target values, and therefore training points
close to a test point should be important for the prediction of that test point. This means
that the covariance function should have high values for points close to each other.

From Section 2.1.2 it is clear that we can choose any symmetric positive semi-definite
function to be the covariance function. Given a set of input points {xi|i = 1, ..., n} the
Gram matrix or covariance matrix K is given by Kij = k(xi,xj). Since the covariance
function is a positive semi-definite function, the covariance matrix must be a positive
semi-definite matrix and in fact a function is positive semi-definite if all possible Gram
matrices for any choice of n ∈ N and {xi|i = 1, ..., n} are positive semi-definite.

There are some basic terms related to covariance functions. A stationary covariance
function is a function of x − x′ while an isotropic covariance function is a function only
of |x − x′|. This means that a stationary covariance function is invariant to translations
in the input space and an isotropic covariance function is invariant to all rigid motions.
We also have dot product covariance functions which are functions of x · x′. These are
invariant to a rotation of the coordinates about the origin, but not to translations.

Squared Exponential Covariance Function

The squared exponential (SE) covariance function is according to Rasmussen and Williams
probably the most widely-used within the covariance function machines field. It has the
form:

kSE(x,x′) = σf exp

(
−r

2(x,x′)

2l2

)
(2.29)

CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION 11

where r(x,x′) = |x− x′|, the parameter σf determines the overall variance of the process,
the parameter l is the characteristic length-scale which determines how far apart points
must be to become practically uncorrelated. Since it is only a function of |x − x′| it is an
isotropic covariance function. The SE covariance function has mean square derivatives of
all orders and is therefore very smooth, which may be unrealistic for a lot of models.

An anisotropic version of the SE covariance function can be created by setting r2(x,x′) =

(x−x′)>M(x−x′) for some positive semi-definite matrix M . If M is diagonal we get dif-
ferent length-scales for different dimensions and such a covariance function implements
automatic relevance determination (ARD) since the inverse of the length-scale determine
the relevance of the input in that dimension.

The Matérn Class of Covariance Functions

The Matérn class of covariance functions has the form:

kMatern(x,x′) = σf
21−ν

Γ(ν)

(√
2νr(x,x′)

l

)ν
Kν

(√
2νr(x,x′)

l

)
(2.30)

where ν > 0, l > 0 and σf > 0 are hyperparameters, Kν is a modified Bessel function and
Γ(·) is the Gamma function. The Matérn covariance is isotropic and the hyperparameter
l is again the length-scale, while ν determines how smooth the covariance is and as ν →
∞ we obtain the SE covariance function.

2.2.5 Learning: Choice of Covariance Function and Hyperparameters

As already mentioned in Section 2.2.4 the choice of covariance function is very important
for the performance of the GP regression. Except the functional form of the covariance
function, the covariance function k(·, ·) usually also has some free parameters called hy-
perparameters, for example the length-scale in the SE function. The model selection or
training of a GP includes both choosing the functional form and the values of the hyper-
parameters for the covariance function.

Usually, the functional form of the covariance function is already chosen (for exam-
ple based on reasoning about the underlying model and the training data) and only the
values of the hyperparameters θ are left to be determined. According to the Bayesian
model selection, we would like to marginalise over the hyperparameters. However, these
computations are usually not analytically tractable. Approximations of the marginalisa-
tion can be made by using MCMC, but more frequently used is type II maximum likeli-
hood where the hyperparameters are determined by maximizing the marginal likelihood
p(y|X,θ). This can be done by using a gradient based optimizer, but there is no guaran-
tee that we will not end up in only a local maximum.

A problem when using maximum likelihood methods is the risk of overfitting. How-
ever, typical covariance functions usually have just a small number of hyperparameters
and we are not maximizing the likelihood directly but the marginal likelihood which has
an automatic trade-off between data-fit and model complexity. The marginal likelihood
conditioned on the hyperparameters is given by:

log p(y|X,θ) ∝ −1

2

(
y>[K(X,X) + σ2

nI]−1y + log |K(X,X) + σ2
nI|
)

(2.31)

12 CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION

Here the first term is the one involving the fit of the data while the second term is the
automatic complexity penalty which only depends on the covariance function and not
the observed targets.

Another possibility for model selection is cross-validation.

2.3 Scalable Gaussian Processes

A problem with the original GPs is the computational cost. For the inference (K(X,X) +

σ2
nI)−1y must be computed and for the hyperparameter learning also the log determi-

nant log |K(X,X) + σ2
nI| must be computed. The inversion of the covariance matrix as

well as the log determinant have a computational cost of O(n3) when using the regular
Cholesky decomposition. After this is done the predictions have a computational cost of
O(n) for the predictive mean and O(n2) for the predictive variance. This means that for
large data sets the original GPs are not reasonable to use.

Rasmussen and Williams review a number of fast approximations for large data sets
in their book [9], which are summarized below. However, scalable GPs are an active area
of research and several additional scalable GP methods have been proposed since their
review. The rest of the methods for scalable GPs are taken from various articles, see the
references for each method.

2.3.1 Iterative Solution of Linear Systems

The linear system (K + σ2
nI)v = y used in GP regression can be solved by an itera-

tive method. One iterative method that can be used is linear conjugate gradients (LCG),
which gives an exact solution after n iterations, but it can be used to give an approxi-
mate solution by earlier termination after k iterations. Then the time complexity is O(kn2).
The conjugate gradients method could also be sped up by using approximate matrix-
vector multiplication.

2.3.2 Sparse Approximations

The complexity of inference using a full GP is O(n3) due to the inversion of the matrix
K + σ2

nI . If the matrix K has rank m < n it can be represented by K = QQ> where Q is
an n ×m matrix. Then the matrix inversion can be sped up by using (QQ> + σ2

nIn)−1 =

σ−2
n In − σ−2

n Q(σ2
nIq + Q>Q)−1Q> where the inversion is of a m × m matrix instead and

the complexity is reduced to O(nm2).
If K is not of rank m < n we can still consider reduced-rank approximations of the

matrix. This is equivalent to approximating the full non-degenerate GP with a finite m-
dimensional degenerate linear model, which is a good approximation if the eigenvalue
spectrum of the covariance function decays fairly rapidly and this is the case for typical
covariance functions, e.g. the SE covariance function [1].

However, computing the m leading eigenvalues by doing an eigendecomposition is
in general of complexity O(n3) so this does not decrease the complexity. Instead one can
use a subset of input points as a basis for low rank construction. These points are often
called inducing points or pseudo-inputs and generally they do not have to be original
training points. The different methods for scalable GPs based on low rank approxima-
tions are usually called sparse approximations even though the matrices used are not

CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION 13

sparse, this name instead refers to the fact that the number of points used in the methods
are sparse.

Subset of Data Points

For the subset of data points (SD) method, we use the original GP predictor, but only
use a smaller subset of size m of the data. For this approximation the main question is
how to choose the subset of data points before using the GP. One alternative is to choose
the next point to include by maximizing the differential entropy score given by ∆j =

H[p(fj)] − H[pnew(fj)] where H[p(fj)] is the entropy of the Gaussian at point j before
including a new point and H[pnew(fj)] is the entropy of the Gaussian at point j after in-
cluding point j. This leads to an overall complexity of O(m2n). When using this selec-
tion criterium, the method is called informative vector machine (IVM). Another alterna-
tive is to use the information gain KL(pnew(fj)||p(fj))) as criterion for the selection of the
next point.

Subset of Regressors

It can be shown that the mean GP predictor can be found by considering a finite-dimensional
generalized regression model:

f(x∗) =
n∑
i=1

αik(x∗,xi) (2.32)

where the prior over the parameters α = (α1, α2, · · · , αn) is given by α ∼ N (0,K−1). The
predictive mean of this model will be the same as for the GP regression, but the predic-
tive variance will differ.

As an approximation to the model f we can consider only a subset of the regressors
(SR), giving the approximate model:

fSR(x∗) =

m∑
i=1

αik(x∗,xi) (2.33)

where α = (α1, α2, · · · , αm) ∼ N (0,K−1
mm). This approximate model has the predictive

mean and variance given by:

E[fSR(x∗)] = km(x∗)
>(KmnKnm + σ2

nKmm)−1Kmny (2.34)

V[fSR(x∗)] = σ2
nkm(x∗)

>(KmnKnm + σ2
nKmm)−1km(x∗) (2.35)

The cost required for the needed matrix computations is O(m2n) instead of the origi-
nal O(n3). Thereafter, predicting the mean for a new test point is O(m) and the variance
O(m2).

The subset of points used for the approximate method can be chosen in multiple
ways. It could simply be chosen randomly from X or it could be the cluster centres ob-
tained from clustering X . A third alternative is to use a greedy forward selection algo-
rithm, for example choosing the next points by minimizing the residual sum of squares
or maximizing the marginal likelihood log pSR(y|X).

14 CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION

Projected Process Approximation

The projected process (PP) approximation uses only m values of f(·) but makes use of all
n data points in the likelihood by projecting the m latent points to n dimensions.

First we need to split the original f into fm and fn−m. We will use the notation Kmm

for the covariance matrix of the m inducing points, Knn for the original covariance ma-
trix KX,X of all the n training points, K(n−m)m for the covariance matrix between the
n − m training points which are not inducing points and the m inducing points and so
on.

We then have a conditional distribution p(fn−m|fm) with mean E[fn−m|fm] = K(n−m)mK
−1
mmfm

and replace the true likelihood term for the (n −m) points by N (yn−m|E[fn−m|fm], σ2
nI).

We then get the approximate likelihood by:

q(y|fm) = N (y|KnmK
−1
mmfm, σ

2
nI) (2.36)

Using this likelihood and the prior of p(fm) leads to the predictive mean and variance:

E[f(x∗)] = km(x∗)
>(KmnKnm + σ2

nKmm)−1Kmny (2.37)

V[f(x∗)] = k(x∗,x∗)− km(x∗)
>K−1

mmkm(x∗) + σ2
nkm(x∗)

>(KmnKnm + σ2
nKmm)−1km(x∗)

(2.38)

This is the same predictive mean as for the SR model, but a different predictive vari-
ance. The marginal likelihood of the PP approximation will also be the same as for the
SR model. The matrix computations needed take O(m2n) and prediction of a new test
point then takes O(m) for the mean and O(m2) for the variance.

For this model as well the question of how to choose the m points arises. One method
is to use a point if the novelty is large enough, where the novelty of an input x is given
by k(x,x)− km(x)>K−1

mmk(x).

Sparse Pseudo-input Gaussian Process

The sparse pseudo-input GP (SPGP) was introduced in 2006 by Snelson and Ghahramani
[10]. This methods replaces the real training data set D = (X,y) by a pseudo data set
D̄ = (X̄, f̄) of size m < n which are seen as parameters of the model. The GP predictive
distribution from this pseudo data set is then used as a parametrised model likelihood.
This leads to the following likelihood for a single point:

p(y|x, X̄, f̄) ∼ N (KxmK
−1
m f̄ , kxx −KxmK

−1
m Kmx + σ2

n) (2.39)

where Kxm is the covariance matrix between the input x and all the pseudo-inputs X̄
and Km is the covariance of the pseudo-inputs. Assuming that the output data are gener-
ated i.i.d. given the inputs leads to the complete training data likelihood:

p(y|̄f) =

n∏
i=1

p(yi |̄f) ∼ N (KnmK
−1
m f̄ ,diag(Kn −Qn) + σ2

nIn) (2.40)

where the explicit conditioning on the inputs is dropped and the low rank covariance
matrix Qn = KnmK

−1
m Kmn is used.

CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION 15

To find an appropriate pseudo-data set that explains the real data well, a Gaussian
prior is placed on the pseudo outputs to be able to integrate these out and then maxi-
mum likelihood is used to find the pseudo-inputs. The prior is given by:

p(f̄) ∼ N (0,Km) (2.41)

This leads to the SPGP marginal likelihood:

p(y) =

∫
p(y|̄f)p(f̄) ∼ N (0, Qn + diag(Kn −Qn) + σ2

nIn) (2.42)

The SPGP predictive distribution for a point (x∗, y∗) is then obtained by first finding the
joint distribution p(y∗,y) and then conditioning on y, which leads to:

p(y∗|y) ∼ N (µ∗, σ
2
∗) (2.43)

µ∗ = Q∗n[Qn + diag(Kn −Qn) + σ2
nIn]−1y (2.44)

σ∗ = k∗∗ −Q∗n[Qn + diag(Kn −Qn) + σ2
nIn]−1Qn∗ + σ2

n (2.45)

Using the matrix inversion lemma the computational cost of the SPGP is O(m2n). The
prediction of a new test point then takes O(m) for the mean and O(m2) for the variance.

The pseudo-inputs can be considered as extra hyperparameters and can be found at
the same time as the regular hyperparameters by maximizing the marginal likelihood
with respect to both the pseudo-inputs and the hyperparameters by gradient ascent. The
derivatives with respect to all the pseudo-inputs can be computed in O(nm2 + nmD)

time.

Variational Lower Bound

Titsias [11] introduced a variational formulation for sparse approximations in 2009 which
infers the inducing points and covariance hyperparameters by maximizing a lower bound
of the exact marginal likelihood of the full GP. This method is also called the Variational
Free Energy (VFE) approximation [12].

As for the SPGP, a pseudo data set D̄ = (X̄, f̄) of size m < n is used to obtain this
approximation.

The posterior distribution for the full GP on a set of function points z is given by:

p(z|y) =

∫
p(z|f)p(f |y)df =

∫
p(z|̄f , f)p(f |̄f ,y)p(f̄ |y)dfdf̄ (2.46)

Suppose that it would hold that p(z|̄f , f) = p(z|̄f) then we could write the posterior
as:

q(z) =

∫
p(z|̄f)p(f |̄f)φ(f̄)dfdf̄ =

∫
p(z|̄f)φ(f̄)df̄ (2.47)

where q(z) = p(z|y) and φ(f̄) = p(f̄ |y). However, in general it is not true that p(z|̄f , f) =

p(z|̄f) and therefore we expect q(z) to be only an approximation of p(z|y). We can then
choose φ(f̄) to be a free variational Gaussian distribution N (µ, A) where in general φ(f̄) 6=
p(f̄ |y). The mean and covariance functions of the approximate GP posterior are then
given by:

mq
y(x) = KxmK

−1
mmµ (2.48)

kqy(x,x′) = k(x,x′)−KxmK
−1
mmKmx′ +KxmBKmx′ (2.49)

16 CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION

where B = K−1
mmAK

−1
mm. As with the other sparse approximations this has complexity

O(nm2).
Treating X̄ as a variational parameter, (X̄, φ) can be determined by minimizing the

KL divergence KL(q(f , f̄)||p(f , f̄ |y)), which also can be expressed a maximizing the fol-
lowing variational lower bound of the true log marginal likelihood:

FV (X̄, φ) =

∫
p(f |̄f)φ(f̄) log

p(y|f)p(f̄)

φ(f̄)
dfdf̄ (2.50)

The optimal choice of the variational distribution φ can be found analytically, leading to
the bound:

FV (X̄) = log[N (y|0, σ2
nIn +Qnn)]− 1

2σ2
Tr(K̃) (2.51)

where Qn = KnmK
−1
mmKmn and K̃ = Cov(f |̄f) = Knn −KnmK

−1
mmKmn. The trace term can

be seen as a regularization term. The optimal φ∗ is given by µ = σ−2
n KmmΣKmny, A =

KmmΣKmm and Σ = (Kmm + σ−2
n KmnKnm)−1. The approximate predictive distribution

is then exactly the one used by PP, but the variational method differs in how to select
the inducing points as well as the hyperparameters. For the variational method, these are
found by maximizing the bound FV which has a different form than the log likelihoods
used in PP and SPGP due to the regularization term.

A Unifying View

Quiñonero-Candela and Rasmussen provided a unifying view of the existing sparse ap-
proximations in 2005 [3]. The available algorithms had been introduced with widely
different motivations, which made it hard to understand how they relate to each other.
Therefore, the unifying view was introduced which interprets all algorithms as exact in-
ference with an approximated prior.

The exact joint GP prior is given by:

p(f , f∗) ∼ N
(

0,

(
KX,X KX,X∗

KX∗,X KX∗,X∗

))
(2.52)

Using m inducing variables f̄ corresponding to the input locations X̄ this prior can be
rewritten as:

p(f , f∗) =

∫
p(f , f∗, f̄)df̄ =

∫
p(f , f∗ |̄f)p(f̄)df̄ , where p(f̄) ∼ N (0,KX̄,X̄) (2.53)

Next the joint prior is approximated by assuming that f∗ and f are conditionally inde-
pendent given f̄ , giving:

p(f , f∗) ≈ q(f , f∗) =

∫
q(f∗ |̄f)q(f |̄f)p(f̄)df̄ (2.54)

The SR, PP and SPGP methods all correspond to different additional assumptions
about q(f∗ |̄f) and q(f |̄f). The exact expressions are given by:

p(f |̄f) ∼ N (KX,X̄K
−1
X̄,X̄

f̄ ,KX,X −QX,X) (2.55)

p(f∗ |̄f) ∼ N (KX∗,X̄K
−1
X̄,X̄

f̄ ,KX∗,X∗ −QX∗,X∗) (2.56)

CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION 17

where QA,B = KA,X̄K
−1
X̄,X̄

KX̄,B .
For SR the approximate conditional distributions are deterministic and are given by:

qSR(f |̄f) ∼ N (KX,X̄K
−1
X̄,X̄

f̄ , 0) (2.57)

qSR(f∗ |̄f) ∼ N (KX∗,X̄K
−1
X̄,X̄

f̄ , 0) (2.58)

Then the effective joint prior is given by:

qSR(f , f∗) ∼ N
(

0,

(
QX,X QX,X∗
QX∗,X QX∗,X∗

))
(2.59)

Based on this, Quiñonero-Candela and Rasmussen suggest calling the method the De-
terministic Inducing Conditional (DIC) approximation instead. It can be noted that the
SR approximation is equivalent to exact inference in the degenerate GP with covariance
function kSR(x,x′) = KxmK

−1
mmKmx′ which has rank at most m.

The PP method uses a deterministic training conditional approximation but keeps the
test conditional exact:

qPP (f |̄f) ∼ N (KX,X̄K
−1
X̄,X̄

f̄ , 0) (2.60)

qPP (f∗ |̄f) = p(f∗ |̄f) (2.61)

The effective joint prior is for PP given by:

qPP (f , f∗) ∼ N
(

0,

(
QX,X QX,X∗
QX∗,X KX∗,X∗

))
(2.62)

Since the covariances for training and test cases are treated differently, the PP method
does not correspond exactly to a GP. The name of the method in the unifying framework
is the deterministic training conditional (DTC) approximation.

The SPGP method approximates the training conditional distribution by assuming
conditional independence. The name of the method in the unifying framework is the
fully independent training conditional (FITC) approximation:

qFITC(f |̄f) =
n∏
i=1

p(fi |̄f) ∼ N (KX,X̄K
−1
X̄,X̄

f̄ ,diag[KX,X −QX,X]) (2.63)

qFITC(f∗ |̄f) = p(f∗ |̄f) (2.64)

The effective joint prior is for this approximation given by:

qFITC(f , f∗) ∼ N
(

0,

(
QX,X − diag[QX,X −KX,X] QX,X∗

QX∗,X KX∗,X∗

))
(2.65)

If also the test outputs are assumed to be conditionally independent then the method
is called the fully independent conditional (FIC) approximation, which has the effective
prior:

qFIC(f , f∗) ∼ N
(

0,

(
QX,X − diag[QX,X −KX,X] QX,X∗

QX∗,X QX∗,X∗ − diag[QX∗,X∗ −KX∗,X∗]

))
(2.66)

This method has exactly the same marginal predictive variances at FITC, but the FIC cor-
responds to exact inference in a non-degenerate GP with covariance function kFIC(x,x′) =

kSR(x,x′) + δx,x′ [k(x,x′)− kSR(x,x′)]

18 CHAPTER 2. GAUSSIAN PROCESSES FOR REGRESSION

Comparison of the Sparse Approximations

Snelson compares the sparse approximations SR, PP and FITC in his PhD thesis [1]. He
suggests using the FITC approximation over PP and SR in all cases since SR gives rise
to too small predictive variances far away from the inducing points, PP has low noise
problems and FITC can be seen as a closer approximation to the full GP in the unifying
view. He also shows experimentally that SPGP achieves high accuracy.

In 2016 Bauer et al. compared the popular FITC and VFE approximations [12]. They
show that the FITC can overestimate the marginal likelihood, severely underestimate
the noise parameter σn and not recover the true posterior. The VFE is in contrast a true
bound to the exact marginal likelihood and behaves as expected. In practice, FITC often
performs surprisingly well due to local optima while VFE’s objective is harder to opti-
mise. Bauer et al. conclude that their recommendation is using VFE, but performing the
optimization carefully.

2.3.3 Bayesian Committee Machine

The Bayesian Committee Machine (BCM) was introduced by Tresp [13] and is a trans-
ductive approach which uses a model dependent on the test set input locations [9]. For
BCM the training data set D is split into p parts D1,D2, ...,Dp and approximated by:

p(y1, ...,yp|f∗, X) ≈
p∏
i=1

p(yi|f∗, Xi) (2.67)

The predictive distribution for test points then becomes:

q(f∗|D1, ...,Dp) ∝ p(f∗)
p∏
i=1

p(yi|f∗, Xi) ∝
∏p
i=1 p(f∗|Di)
pp−1(f∗)

(2.68)

This is a Gaussian distribution with predictive mean and covariance:

Eq[f∗|D] = [Covq(f∗|D)]

p∑
i=1

[Covq(f∗|Di)]−1E[f∗|Di] (2.69)

[Covq(f∗|Di)]−1 = −(p− 1)K−1
∗∗ +

p∑
i=1

[Covq(f∗|Di)]−1 (2.70)

where K∗∗ is the covariance matrix evaluated at the test points.
A question is how to choose the partitions of the dataset. One possibility is to make

random partitions of equal size, another one is to cluster the data to obtain the partitions.
In case all partitions have size m and we make predictions for m test points the com-

putational complexity is O(m2n) for predicting the m test points.

Chapter 3

Massively Scalable Gaussian Processes

Our focus for the review of scalable GPs has been on the so called Massively Scalable
Gaussian Processes (MSGP) framework since this is what the Master’s thesis will evalu-
ate. This framework was introduced by Wilson et al. in 2016 [5].

3.1 Structure Exploitation

For the special cases when the input points are either on a rectilinear grid and the covari-
ance function is a product kernel or the points are on a one-dimensional equidistant grid
and the covariance function is stationary, the covariance matrix K has structures which
can be exploited for faster computations.

3.1.1 Kronecker Structure

For the case when the input points are multidimensional and on a rectilinear grid, x ∈
X1×· · ·×XD and the covariance function can be written as a product of functions for each
dimensions k(x,x′) =

∏D
d=1 kd(xd, x

′
d), then the covariance matrix K can be written as a

Kronecker product K = K1 ⊗ · · · ⊗KD. The eigendecomposition of K = QV Q> can then
be computed by separately computing the eigendecompositions of the smaller matrices
K1, ...,KD. The matrices Q and V are given by the Kronecker products Q = Q1⊗· · ·⊗QD
and V = V1 ⊗ · · · ⊗ VD where Kd = QdVdQ

>
d , d = 1, ..., D, are the eigendecompo-

sitions of each Kd. Given the eigendecomposition of K we can use (K + σ2
nI)−1y =

(QV Q> + σ2
nI)−1y = Q(V + σ2

nI)−1Q>y and log |K + σ2
nI| =

∑
i log(Vii + σ2

n). Since V is
a diagonal matrix of the eigenvalues, the computation of (V + σ2

nI)−1 is trivial and Q is
an orthogonal matrix of eigenvectors that also can be decomposed as a Kronecker prod-
uct, which makes fast matrix vector multiplications (MVMs) possible. Overall, for m grid
points the training cost is O(Dm1+ 1

D) and the storage requirements are O(Dm2/D). How-
ever, note that these computations are only possible for multidimensional inputs and not
for D = 1 when no decompositions are possible.

Matrix Vector Multiplication using Kronecker Structure

Kronecker products can be exploited to obtain fast MVMs by using the Kronecker prop-
erty (B ⊗ C)vec(X) = vec(CXB>). From Appendix D in Wilson [14] an MVM can be
computed as follows.

19

20 CHAPTER 3. MASSIVELY SCALABLE GAUSSIAN PROCESSES

The wanted MVM is given by Ku =
(⊗P

p=1Kp

)
u where u ∈ Rm, Kp ∈ Rnp×np ,

K ∈ Rm×m and m =
∏P
p=1 np. Using (B ⊗ C)vec(X) = vec(CXB>) we get:

Ku =

 P⊗
p=1

Kp

u = vec

KPU

P−1⊗
p=1

Kp

>
 (3.1)

where U = reshape(u, nP ,m/nP). Using the identity (A>)> = A this can be rewritten as:

Ku = vec


P−1⊗

p=1

Kp

 (KPU)>

>
 (3.2)

We now use the fact that:P−1⊗
p=1

Kp

 (KPU)> = reshape

vec

P−1⊗
p=1

Kp

 (KPU)>

 ,m/nP , nP

 (3.3)

For the inner component we can use (B ⊗C)vec(X) = vec(CXB>) again, but backwards:

vec

P−1⊗
p=1

Kp

 (KPU)>

 = vec

P−1⊗
p=1

Kp

 (KPU)>InP

 (3.4)

=

InP ⊗

P−1⊗
p=1

Kp

vec
(

(KPU)>
)

(3.5)

The MVM can now be written as:

Ku = vec


reshape

InP ⊗

P−1⊗
p=1

Kp

vec
(

(KPU)>
)
,m/nP , nP

>
 (3.6)

Repeating this procedure for the MVM
(
InP ⊗

(⊗P−1
p=1 Kp

))
vec

(
(KPU)>

)
leads toInP ⊗

P−1⊗
p=1

Kp

vec
(

(KPU)>
)

(3.7)

= vec


reshape

InP−1 ⊗ InP ⊗

P−2⊗
p=1

Kp

vec
(

(KP−1U2)>
)
,m/nP−1, nP−1

>


(3.8)

where U2 = reshape
(

(KPU)> ,m/nP−1, nP−1

)
. By keeping repeating this procedure for

all P components and noting that
(⊗P

p=1 Inp

)
x = x for any x ∈ Rm, the MVM Ku can

be computed by Algorithm 1.
For the special case when np = m1/P for all p = 1, ..., P the computational complexity

is given by O(Pm
P+1
P).

CHAPTER 3. MASSIVELY SCALABLE GAUSSIAN PROCESSES 21

Algorithm 1 MVMs for Kronecker product

Input: K, list of matrices Kp ∈ Rnp×np for p = 1, ..., P , m =
∏P
p=1 np and u ∈ Rn

Output: b ∈ Rm where b =
(⊗P

p=1Kp

)
u

1: for p = P to 1 do
2: U = reshape(u, np,m/np)

3: u = vec((KpU)>)

4: end for
return u

3.1.2 Toeplitz Structure

Given a stationary covariance function, the covariance matrix for a one-dimensional equidis-
tant spaced grid is a Toeplitz matrix, which means that all the diagonals are constant.

There is no particularly efficient way to obtain a full eigendecomposition of a Toeplitz
matrix, but fast operations can be obtained through the relationship with circulant matri-
ces.

An a × a symmetric circulant matrix C is a symmetric Toeplitz matrix where the first
column is given by a circulant vector c = [c1, c2, c3, · · · , c3, c2]> and each subsequent col-
umn is shifted one position from the next, i.e. Ci,j = c|j−i| mod a. The eigendecomposi-
tion of a circulant matrix is given by C = F−1diag(Fc)F where F is the discrete Fourier
transform (DFT), Fjk = exp(−2jkπi/a). The log determinant of C can be computed from
a single fast Fourier transform (FFT) which has a computational cost of O(a log a) and a
memory demand of O(a). Fast MVMs with C can be computed at the same asymptotic
cost using two FFTs, one inverse FFT (IFFT) and one inner product.

Fast MVMs with symmetric Toeplitz matrices can be achieved by embedding an m ×
m symmetric Toeplitz matrix K into a (2m − 1) × (2m − 1) circulant matrix C with first
column

c = [k1, k2, · · · km−1, km, km−1, · · · , k2]> so that K = C1:m,1:m and

Ky =

(
C

[
y

0m×1

])
i=1:m

(3.9)

The complete procedure for fast MVMs with Toeplitz matrices is shown in Algorithm 2
adapted from Tang et al [15].

Solving K−1y can be achieved by an iterative procedure using only MVMs which has
an asymptotic cost of O(m logm). The log determinant and predictive variance require
O(m2) computations.

22 CHAPTER 3. MASSIVELY SCALABLE GAUSSIAN PROCESSES

Algorithm 2 MVMs for Toeplitz matrices

Input: k ∈ Rm, first row of a symmetric Toeplitz matrix, and y ∈ Rm
Output: b ∈ Rm where b = toep(k)y

1: c = [k1, k2, · · · km−1, km, km−1, · · · , k2]>

2: u =

[
y

0m×1

]
3: f = FFT(u)

4: g = FFT(c)

5: h = f . ∗ g

6: x = IFFT(h)

return z[1 : m]

3.2 KISS-GP

The MSGP builds on the KISS-GP framework introduced by Wilson and Nickish in 2015
[16]. This method performs local kernel interpolation in combination with inducing point
approximations and structure exploiting algebra. Using local kernel interpolation and
inducing points, structured matrices can be used without requiring any structure in the
input points.

3.2.1 Structured Kernel Interpolation

Given a set of m inducing points U the covariance matrix KX,U is approximated as K̃X,U =

WXKU,U where WX is an n × m matrix of interpolation weights. Given this approxima-
tion, any covariance matrix KX,Z can be approximated by KX,Z ≈ K̃X,UW

>
Z . This struc-

tured kernel interpolation (SKI) method leads to the fast approximate covariance:

kSKI(x, z) = wxKU,Uwz
> (3.10)

The training covariance matrix has the approximation KX,X ≈WXKU,UW
>
X = K̃X,X .

By performing local kernel interpolation, the interpolation matrices become extremely
sparse. The inducing points can be chosen so that KU,U has either Toeplitz or Kronecker
structure. This leads to close to linear scaling with the number of inducing points m for
training the GP.

Several different local interpolation techniques can be used for one-dimensional in-
puts. Wilson and Nickish [16] tested local linear and local cubic interpolation for equidis-
tant grids as well as linear inverse distance weighting for grids without equidistant spac-
ing which can be combined with a k-means strategy for choosing the inducing points.

For a point u located between xi and xi+1 the interpolation coefficients for piecewise
linear interpolation are given by:

cj =


|xj+1−u|
|xj+1−xj | , j = i
|xj−1−u|
|xj−xj−1| , j = i+ 1

0, j 6= i, i+ 1

(3.11)

This interpolation can be used both for non-equidistant and equidistant grids.

CHAPTER 3. MASSIVELY SCALABLE GAUSSIAN PROCESSES 23

The local cubic interpolation used for equidistant grids is given by [17]:

cj =


3
2 |xj − u|

3 − 5
2 |xj − u|

2 + 1 0 < |xj − u| < 1

−1
2 |xj − u|

3 + 5
2 |xj − u|

2 − 4|xj − u|+ 2, 1 < |xj − u| < 2

0, |xj − u| > 2

(3.12)

In their experiments Wilson and Nickish find that SKI with cubic interpolation is
more accurate for any given runtime than SKI with linear interpolation, FITC and SoR.
They also conclude that cubic interpolation generally outperforms inverse distance weight-
ing with k-means except for a small number of inducing points m.

In multiple dimensions, interpolation gets more complicated. For the product kernel
case, the interpolation can be done separately for each dimension and then combined
into one matrix. If the covariance between an input point x and an inducing point uj is
given by k(x,uj) =

∏D
d=1 kd(xd, u

j
d) and each one-dimensional function is approximated

by kd(xd, u
j
d) ≈

∑m
i=1w

i
dkd(u

i
d, u

j
d) where wid are the corresponding interpolation weights,

then the whole covariance is approximated by:

k(x,uj) =
D∏
d=1

kd(xd, u
j
d) ≈

D∏
d=1

m∑
i=1

widkd(u
i
d, u

j
d) (3.13)

3.2.2 Combining Kernel Interpolation and Structure Exploitation

As noted in the previous section, the inducing points can be chosen so that KU,U has
Toeplitz or Kronecker structure. However, the structure exploitations described in Sec-
tion 3.1 cannot be used directly since K is approximated by KX,X ≈ WXKU,UW

>
X , hence

the structure is not in the whole matrix as before, but only in the factor KU,U . Therefore,
the structure exploitations must be adapted to this new case.

Matrix Vector Multiplications

Fast MVMs with K̃X,X = WXKU,UW
>
X can be obtained by first computing y′ = W>Xy

and exploiting the sparseness of WX , then computing y′′ = KU,Uy′ by using Kronecker
and/or Toeplitz structure and finally computing y′′′ = WXy′′ by again using the sparse-
ness of WX . According to Wilson et al. MVMs with sparse W cost O(n) and MVMs with
KU,U exploiting Kronecker or Toeplitz structure are roughly linear in m.

Approximating Eigenvalues using Kronecker structure

There is no specially efficient way to compute the exact eigendecomposition of K̃X,X =

WXKU,UW
>
X . However, the eigenvalues of KU,U can still be used to approximate the

eigenvalues of KX,X by considering the eigenfunctions of the covariance function.
The eigenfunctions φ(x) of the covariance function k(x,x′) with respect to the mea-

sure µ were introduced in Section 2.1.2 and satisfies the following integral equation:

∫
k(x,x′)φ(x)dµ(x) = λφ(x′), for x′ ∈ RD (3.14)

24 CHAPTER 3. MASSIVELY SCALABLE GAUSSIAN PROCESSES

The measure µ corresponds to the probability density of the input points p(x), which
we can write as: ∫

k(x,x′)p(x)φ(x)dx = λφ(x′), for x′ ∈ RD (3.15)

Williams and Seeger [18] observed that:∫
k(x,x′)p(x)φ(x)dx ≈ 1

n

n∑
i=1

k(xi,x
′)φ(x′), for x′ ∈ RD (3.16)

when each xi is a sample from p(x). This suggests that if λX1 , λ
X
2 , ..., λ

X
n is the eigenvalue

spectrum of the covariance matrix K for the samples x1,x2, ...,xn, then 1/n times the
spectrum is an estimator of the n largest eigenvalues of the continuous covariance func-
tion. Indeed theory of numerical solutions of eigenvalue problems shows that 1

nλ
X
i → λi

for i = 1, 2, 3.... as n→∞.
If we assume that the m inducing points are samples from p(x) as well, the eigenval-

ues λUi of KU,U can also be used to estimate the m largest eigenvalues of the continuous
problem by using 1/m times the eigenvalues spectrum of KU,U . We can then use the ap-
proximation:

λXi ≈
n

m
λUi (3.17)

for i = 1, ...,min(n,m) if both n and m are reasonably large and the assumption that the
inducing points are samples from p(x) is not too out of place.

To compute log |KX,X + σ2
nI| we can then use:

log |KX,X + σ2
nI| ≈

min(n,m)∑
i

log
(n
m
λUi + σ2

n

)
(3.18)

Note that this approximation has nothing to do with the choice of interpolation, but
only with the choice of inducing points.

3.3 Fast Test Predictions

The predictive mean is approximated by E[f∗] ≈ KX∗,Xα̃ where α̃ = (K̃X,X + σ2
nI)−1y

which is computed already during the training. Furthermore, structured kernel interpola-
tion can be applied to KX∗,X to give:

E[f∗] ≈ E[f̃∗] = K̃X∗,Xα̃ = WX∗KU,UW
>
X α̃ (3.19)

Since KU,UW
>
X α̃ is computed during training, the only computation needed at test time

is the multiplication with sparse WX∗ which leads to O(1) operations per test point.
The predictive variance of the GP is given by:

v∗ = diag[Cov(f∗)] = diag(KX∗,X∗)− ν∗ (3.20)

where ν∗ = diag(KX∗,X [KX,X +σ2
nI]−1KX,X∗) can be approximated by local interpolation:

ν∗ ≈W∗ν̃U , where ν̃U = diag(K̃U,XA
−1K̃X,U) and A = K̃X,X + σ2

nI (3.21)

CHAPTER 3. MASSIVELY SCALABLE GAUSSIAN PROCESSES 25

As for the mean, once ν̃U is precomputed, the only computation needed is the multi-
plication with sparse W∗ which leads to O(1) operations per test point. To efficiently
compute ν̃U a stochastic estimator explained in [19] can be used since ν̃U is the vari-
ance of K̃U,Xr where r ∼ N (0, A−1). The stochastic estimator is computed by sam-
pling ns samples gmi ∼ Nm(0, I) and gni ∼ Nn(0, I) for i = 1, ..., ns and then solving
Ari = WXV

√
EV >gmi + σng

n
i for ri using LCG. The eigendecomposition KU,U = V EV >

is computed efficiently by exploiting structure in the matrix. The estimate is finally com-
puted by:

v∗ ≈ v̂∗ = max

[
0,k∗ −W∗

(
1

ns

ns∑
i=1

(K̃U,Xri)
2

)]
(3.22)

where the square is taken element-wise. The relative error is according to Papandreou
and Yuille [19] given by r =

√
2/ns which gives a relative error of approximately 32% for

ns = 20.

3.4 Circulant Approximation

If U is a regularly spaced multidimensional grid and a stationary product covariance
function is used, then the covariance matrix KU,U can be decomposed as a Kronecker
product of Toeplitz matrices KU,U = T1 ⊗ · · · ⊗ TD.

As mentioned in Section 3.1.2, there is no particularly efficient way to obtain a full
eigendecomposition of a Toeplitz matrix, but fast operations can be obtained through the
relationship with circulant matrices.

LCG for solving linear Toeplitz systems can be sped up by using circulant pre-conditioners
which act as approximate inverses. To get a good approximation the distance between
the pre-conditioner C and the Toeplitz matrix K should be minimized. Three classical
pre-conditioners are CStrang = arg minC ||I − C−1K||1, CT.Chan = arg minC ||C −K||F and
CTyrtyshnikov = arg minC ||I − C−1K||F . Another alternative is to use the Whittle approxi-
mation circWhittle(k):

[circWhittle(k)]i =
w∑

j=−w
ki+jm (3.23)

c(t) =

w∑
j=−w

k(t+ jm∆u) (3.24)

In [5] the log determinant is then approximated by:

log |toep(k) + σ2
nI| ≈ 1> log(Fc + σ2

n1) (3.25)

where c = FH max(F circ(k),0), FH is the conjugate transpose of the Fourier transform
matrix and circ(k) is one of the proposed circulant approximations. The choice of circu-
lant approximation can have a large effect on the performance and Wilson and Nickish
verified in an empirical comparison that the Whittle approximation yields consistently
accurate approximation results.

However, to be able to combine the circulant approximation with the eigenvalue spec-
trum approximation and the Kronecker structure in the multidimensional case, we can
instead use the eigenvalues of the circulant approximation given by F circ(k) directly to

26 CHAPTER 3. MASSIVELY SCALABLE GAUSSIAN PROCESSES

compute the approximate eigenvalues of the complete covariance matrix. To make sure
the approximation is still positive definite max[Re(F circ(k)),0] can be used as approxi-
mate eigenvalues.

3.4.1 Extension to Multivariate Data

The circulant approximation can be extended to multivariate data. When using a trans-
lation invariant covariance function on input points on a regular grid of size n1 × n2 ×
· · · × nD the covariance matrix is a symmetric block-Toeplitz matrix with Toeplitz blocks
(BTTB). Using a dimension-wise circulant embedding of size (2n1 − 1)× (2n2 − 1)× · · · ×
(2nD − 1), fast MVMs can be achieved using the multi-dimensional Fourier transform
F = F1 ⊗ F2 ⊗ · · · ⊗ FD by applying Fourier transforms Fd along each dimension. The
Whittle approximation can also be generalised by summing over (2w + 1)D terms which
leads to CU,U being a block-circulant matrix with circulant blocks (BCCB). Such a matrix
has eigendecomposition CU,U = FH(Fc)F , where c ∈ Rn is the Whittle approximation to
k ∈ Rn, n = n1 · n2 · ... · nD. Hence, exploiting the BTTB structure allows for efficiently
dealing with multivariate data without requiring a factorizing covariance function.

3.5 Projections

Placing the inducing points onto a multidimensional Cartesian product grid so that the
covariance matrix has Kronecker structure leads to the total number of inducing points
m growing exponentially with the number of grid dimensions. To still be able to use the
approach for high dimensional data input projections can be used.

Here we assume that the inducing points live in a lower d < D dimensional space
and are related to the input points by u = h(x,ω) where the parameters of the mapping
ω can be determined by maximizing the marginal likelihood of the GP. In the case of lin-
ear projections we get Px = u where P ∈ Rd×D. The covariance functions effectively
become k(x,x′) → kd(Px, Px′), k(x,u′) → kd(Px,u′) and k(u,u′) → kd(Pu, Pu′) where
kd(·, ·) is the covariance function in the d dimensional space.

The entries of P are treated as hyperparameters of the marginal likelihood and can be
learned through marginal likelihood maximization. To avoid optimization issues caused
by degeneracies between P and the other hyperparameters, P can be constrained to be
orthonormal or have unit scaling.

Chapter 4

Experiments

The purpose of the experiments is to evaluate MSGP, and to this aim different parts of
the framework are tested independently and then the complete framework is compared
to other GP methods.

MSGP was implemented in Python using the libraries TensorFlow [20] and GPflow
[21]. TensorFlow is an open source software library for numerical computation using
data flow graphs which was originally developed by the Google Brain Team and GPflow
is a package for building GP models in Python using TensorFlow. MSGP was imple-
mented as a new GP model in GPflow which is trained by using the optimization in
GPflow. This optimization maximizes the marginal likelihood with respect to the hyper-
parameters by using either a SciPy [22] or a TensorFlow optimizer. The gradients of the
objective function are computed by TensorFlow.

4.1 Datasets

For the tests of the different parts of MSGP synthesized generated data are used since
this provides more flexibility in the choice of data. The data is generated by first sam-
pling the input data X from the uniform distribution U(−10, 10) and then the output
data y is determined by transforming the input data using an analytical function and
adding Gaussian noise. The function was chosen to be:

f(x) = 4

(
D∑
d=1

w1,d sin(4w2,dxd)

)
exp

(
−||x||2/(50D)

)
(4.1)

where x ∈ RD and wi,j ∼ U(−1, 1) for i = 1, 2 and j = 1, ..., D. To get the targets y(x)

independent Gaussian noise was added giving y(x) = f(x) + ex where ex ∼ N (0, 0.012).
This non-linear function was chosen to be similar to the one-dimensional function used
by Wilson et al. [5], f(x) = sin(x) exp

(
−x2
2×52

)
, for D = 1 but is also generalizable to the

multidimensional case D > 1. In Figure 4.1 examples of the function f(x) are shown in
one and two dimensions.

For the comparison with other GP models real datasets will be used. The chosen real
datasets are SARCOS, KIN40K and Abalone which all have been used in the literature
of GP methods. The properties of the datasets are summarized in Table 4.1 adapted from
[1].

27

28 CHAPTER 4. EXPERIMENTS

(a) Plot of f(x) in one dimension (b) Plot of f(x) in two dimensions

Figure 4.1: Plots of the function used to generate data

Dataset SARCOS KIN40K Abalone

Input dimension (D) 21 8 8

Training set size (n) 44 484 10 000 3 133

Test set size (n∗) 4 449 30 000 1 044

Table 4.1: Input dimension, training set size and test set size for the real datasets

SARCOS is a dataset that represents the inverse dynamics of a robot arm. It has 21
input dimensions and is a highly non-linear regression problem. This dataset has been
used by Rasmussen and Williams [9], Snelson [1] as well as Titsias [11].

KIN40K is another highly non-linear dataset where the object is to predict the dis-
tance of a robot arm head from a target given 8 input dimensions. This dataset has been
used by Schwaighofer and Tresp [23], Seeger et al. [24], Snelson [1] and Titsias [11].

Abalone is a smaller dataset with the object to predict the age of abalone given 8
physical measurements. This dataset has been used by Willams and Seeger [25], Snelson
[1] and Titsias [11].

4.2 Performance Criteria

To evaluate the performance of the predictions made by the models, three different per-
formance metrics are used: the standardized mean squared error (SMSE) [9], the stan-
dardized mean absolute error (SMAE) [5] and the mean standardized log loss (MSLL) [9].
MSLL is also called the standardized negative log probability density (SNLP) [11].

SMSE is given by:

SMSE =
1

n∗

||y∗ − f̄∗||2

Var(y∗)
(4.2)

where n∗ is the number of test points, f̄∗ are the mean predictions at the test points and
y∗ are the true targets at the test points.

SMAE is computed by:

SMAE =

∑n∗
i=1 |yi∗ − f̄ i∗|∑n∗

i=1 |yi∗ −
1
n∗

∑n∗
j=1 y

i
∗|

(4.3)

CHAPTER 4. EXPERIMENTS 29

Both SMSE and SMAE are approximately 1 for the trivial method of always guessing the
mean of the training points and below 1 for better methods but never less than zero.

MSLL is obtained by considering the negative log probability of the targets given the
model:

− log p(y∗|D,x∗) =
1

2
log(2πσ2

∗) +
(y∗ − f̄(x∗))

2

2σ2
∗

(4.4)

where σ2
∗ is the predictive variance of the model. This loss is standardized by subtracting

the negative log probability of the target under the trivial model which predicts using a
Gaussian distribution with mean and variance of the training data. MSLL is computed
by taking the mean value of the negative standardized log likelihood for all test points.
This means that MSLL is approximately zero for simple methods and negative for better
methods.

4.3 Choice of Inducing Points

In MSGP, the locations of the inducing points are not optimized, as they are in for exam-
ple FITC or VFE. Therefore, the choice of the locations of the inducing points has to be
made carefully. In the experiments the grid was created so that the end points cover all
the training points with some marginal. The intermediate grid points were either placed
equidistantly or by using k-means over the location of the training points in that dimen-
sion depending on if the interpolation method requires an equidistant grid or not. In
the case that the number of inducing points per dimension is larger than the number of
training points, the k-means method was replaced since it does not make sense to use k-
means with more cluster centres than points. Instead grid points were placed exactly on
all the training points and the number of inducing points per dimension was reduced to
the number of training points since more inducing points seem unnecessary.

Examples of created grids in two dimensions are shown in Figure 4.2. In Figure 4.2a
an equidistant grid with 15 grid points per dimension is created for 15 training points,
while in Figure 4.2b an non-equidistant grid with 15 grid points per dimension is created
for 15 training points so that every training point lies exactly on some grid point. In Fig-
ure 4.2c an equidistant grid with 15 grid points per dimension is created for 50 training
points, while in Figure 4.2d an non-equidistant grid with 15 grid points per dimension is
created for 50 training points using k-means.

30 CHAPTER 4. EXPERIMENTS

(a) Equidistant grid for 15 training points
(b) Non-equidistant grid for 15 training
points

(c) Equidistant grid for 50 training points
(d) Non-equidistant grid for 50 training
points

Figure 4.2: Plots of created equidistant and non-equidistant grids in two dimensions when
using n = 15 or n = 50 training points and 15 grid points in each dimension.

4.4 Interpolation Method

For all experiments evaluating the interpolation methods, MSGP is used with the three
different kinds of interpolation described in Section 3.2.1: piecewise linear interpola-
tion for non-equidistant grids where the grid points are chosen with k-means, piece-
wise linear interpolation for equidistant grids and piecewise cubic interpolation for non-
equidistant grids. The performances of these versions of MSGP are compared to the per-
formance of a regular full GP.

Three kinds of experiments were performed for the interpolation methods: observ-
ing the behaviour when changing the number of inducing points m, observing the be-
haviour when changing the number of training points n and observing the behaviour
when changing the input dimension D.

For all the interpolation experiments with input dimension D = 1, the covariance
function used was an SE covariance function with length-scale l set to 1 for the regular
GP and to max of 1 and the maximum grid space for MSGP. The variance of the covari-
ance function was set to σf = 1 and the variance of the noise was set to σn = 0.001.

CHAPTER 4. EXPERIMENTS 31

Toeplitz MVMs and the Whittle circulant approximation with truncation w = 3 were used
for the computations as well as the eigenvalue spectrum approximation.

For the experiments where the input dimension was not always one, the covariance
function used was an ARD SE covariance function, which can be seen as a generalization
of the one-dimensional SE covariance function and can be used with MSGP since it is
a stationary product covariance function. The length-scale for each dimension was set
to 1 for the regular GP and for the MSGP it was set to max of 1 and the maximum grid
space in the corresponding dimension. The variance of the covariance function was set to
σf = 1 for each dimension and the variance of the noise was set to σn = 0.001. Kronecker
MVMs and the eigenvalue spectrum approximation was used for computations.

Number of inducing points

The first part of the experiments for the number of inducing points is smaller problems
where it is possible to compute the approximated covariance matrix KSKI = WKU,UW

>

without running out of memory. This was done first for one dimensional input data, D =

1, with the number of training points set to n = 1000 and the number of test points set to
n∗ = 100. The number of inducing points was increased from 10 to 1000 with a step size
of 10.

In Figure 4.3 results are shown for this experiment. From these plots we can see that
the non-equidistant linear interpolation with k-means performs better than equidistant
linear and cubic interpolation for a very small number of inducing points, since then the
covariance matrix is better approximated and the relative error of the SMSE for the test
points compared to the regular GP is lower, see Figures 4.3b and 4.3a. However, the per-
formances of all interpolation techniques are very bad compared to the regular GP when
using few inducing points. With an increasing number of inducing points, equidistant
cubic interpolation approximates the covariance matrix even better than non-equidistant
linear interpolation.

The computed log likelihood shown in Figure 4.3d is severely underestimated for all
the interpolation methods when the number of inducing points is much smaller than the
number of training points even though the approximation of the covariance matrix is
good as seen in Figure 4.3b. The error in the log likelihood estimation does not have to
do with the interpolation, but rather with the eigenvalue spectrum approximation which
performs badly for few inducing points. The eigenvalue spectrum approximation is ex-
amined in more detail in Section 4.5.

A similar experiment was performed for input points in two dimensions. Again the
number of training points was set to n = 1000 and the number of test points set to n∗ =

100. The number of inducing points was increased from 10 to 100 per dimension with a
step size of 10. This means that the total number of inducing points was increased from
m = 102 = 100 to m = 1002 = 10 000.

In Figure 4.4 results of this experiment are shown. From the plots of the relative er-
ror of the SMSE of the test points and the SMSE of the approximated covariance matrix
in Figures 4.4a and 4.4b, we see a similar behaviour to the earlier experiment for D = 1.
Again the non-equidistant linear interpolation performs better for few inducing points,
but the performance is still bad when using few inducing points compared to the regu-
lar GP. For a larger number of inducing points, we see again that the cubic interpolation
approximates the covariance matrix better than non-equidistant linear interpolation.

32 CHAPTER 4. EXPERIMENTS

(a) Plot of relative error of the SMSE for test
points compared to regular GP

(b) Plot of SMSE for the approximated co-
variance matrix

(c) Plot of time for computing the likelihood (d) Plot of computed log likelihood

Figure 4.3: Plots of the results using the different interpolation methods when changing the
number of inducing points. Here the input dimension was D = 1, the number of training
points n = 1000 and the number of test points n∗ = 100.

For the computed log likelihood in Figure 4.4d we have the same behaviour as for
the previous experiment. The log likelihood is again severely underestimated for all the
interpolation methods when the total number of inducing points is much smaller than
the number of training points due to the eigenvalue spectrum approximation.

From these smaller experiments, we see that the number of inducing points should
be large to get good approximations. The next set of experiments is intended to show the
behaviour of the approximations for larger number of inducing points to be able to see
how large a number of inducing points is "large enough" to get good performance.

The first results in Figure 4.5 are for D = 1, n = 1000, n∗ = 100 and m increasing from
100 to 4000. We can from the figures see that when m ≥ n the non-equidistant linear
interpolation performs basically as good as the regular GP for SMSE (4.5a) and MSLL
(4.5b) as well as the computed log likelihood (4.5d). This is due to the fact that then all
the training points are placed exactly at one of the inducing grid points. This is not the
case for the equidistant interpolations, but the cubic interpolation still performs very well
and considerably better than the linear equidistant interpolation for SMSE and MSLL.

For the computed log likelihood the relative errors for the linear and cubic inter-

CHAPTER 4. EXPERIMENTS 33

(a) Plot of relative error of the SMSE for test
points compared to regular GP

(b) Plot of SMSE for the approximated co-
variance matrix

(c) Plot of time for computing the likelihood (d) Plot of the computed log likelihood

Figure 4.4: Plots of the results using the different interpolation methods when changing the
number of inducing points. Here the input dimension was D = 2, the number of training
points n = 1000 and the number of test points n∗ = 100.

polations are indistinguishable. From Figure 4.5c we see that the time for computing
the likelihood is similar for all interpolation methods, and does not increase much with
an increasing number of inducing points. The computational time for the regular GP is
much lower than for the interpolation methods in this case, but it should be noted that
n = 1000 is not very large and for this number of training points the regular GP is still
reasonable to use.

The last interpolation experiment with a changing number of inducing points is for
D = 2 input dimensions, the number of training points was set to n = 1000 and the num-
ber of test points was n∗ = 100. The number of inducing points was increased from 500

to 4 000 points per dimension with a step size of 500. This means that the total number
of inducing points was increased from m = 5002 = 25 000 to m = 4 0002 = 16 000 000.

In Figure 4.6 results are shown. In Figures 4.6a and 4.6b the relative errors of the
SMSE and MSLL for the MSGP compared to the SMSE and MSLL of the regular GP are
shown. We see that the accuracy of the predictions does not depend notably on the num-
ber of inducing points m for the cubic equidistant interpolation method. The errors for
the linear equidistant interpolation method keeps decreasing with more inducing points,

34 CHAPTER 4. EXPERIMENTS

(a) Plot of relative error of the SMSE for test
points compared to regular GP

(b) Plot of relative error of the MSLL for the
test points

(c) Plot of time for computing the likelihood
(d) Plot of relative error of the computed log
likelihood

Figure 4.5: Plots of the results using the different interpolation methods when changing the
number of inducing points. Here the input dimension was D = 1, the number of training
points n = 1000 and the number of test points n∗ = 100.

but the linear equidistant interpolation is almost always worse than the cubic interpo-
lation, especially for the MSLL. The linear non-equidistant interpolation covers all the
training points exactly when we have 1000 inducing points per dimension, and the per-
formance does not get any better than that.

In Figure 4.6c the time for computing the likelihood is shown in a loglog-scale. As ex-
pected we can see that the regular GP is close to constant since it does not use the induc-
ing points. The two equidistant interpolations, both linear and cubic, have very similar
computational times, while the linear non-equidistant interpolation should be constant
for more than 1000 inducing points per dimension, but for some reason, probably con-
nected to the performance of the machine the experiment was run at, two values do not
follow this.

The values of the computed log likelihood is shown in Figure 4.6d. The plot for the
linear equidistant interpolation is hard to distinguish from the cubic interpolation since
the error of the likelihood in a large part comes from the error of the eigenspectrum ap-
proximation which is exactly the same for the two equidistant grids. We see that all the

CHAPTER 4. EXPERIMENTS 35

interpolation methods underestimates the log likelihood, this underestimation is due to
the fact that the number of training points is always 1000 which is too low to get a better
eigenspectrum approximation independent of the number of inducing points.

(a) Plot of relative error of the SMSE for test
points compared to regular GP

(b) Plot of relative error of the MSLL for the
test points compared to regular GP

(c) Plot of time for computing the likelihood (d) Plot of the computed log likelihood

Figure 4.6: Plots of the results using the different interpolation methods when changing the
number of inducing points. Here the input dimension was D = 2, the number of training
points n = 1000 and the number of test points n∗ = 100.

Number of training points

From the previous experiments we have seen that all the interpolation methods seem to
give decent results as long as the number of inducing points m is large enough. In this
part we now want to see how the performance depends on the number of training points
n.

The first experiment is for D = 1 input dimension. The number of inducing points
was set to m = 10000 and the number of test points was n∗ = 100. The number of train-
ing points was increased from 100 to 10 000 with a step size of 100. This means that each
training point is always located exactly at a grid point for the non-equidistant grid used
in MSGP.

In Figure 4.7 results are shown. In Figure 4.7a and 4.7b the relative error of the SMSE

36 CHAPTER 4. EXPERIMENTS

and MSLL for the MSGP compared to the SMSE and MSLL of the regular GP is shown.
We can see that the performance does not depend notably on the number of training
points for the equidistant interpolations, but for the non-equidistant linear interpolation
the relative error of the MSLL actually gets a bit worse with increasing number of train-
ing points.

In Figure 4.7c the time for computing the likelihood is shown in a loglog-scale. We
can see that the regular GP as well as the MSGP with non-equidistant grid, have a much
larger computational complexity than the equidistant grids. This is as expected since
only the equidistant grids can exploit Toeplitz structure optimizations.

The relative errors of the computed log likelihood for the MSGP compared to the
computed log likelihood of the regular GP are shown in Figure 4.7d. As for the previous
experiments, the plot for the cubic interpolation is hard to distinguish since the error of
the likelihood in a large part comes from the error of the eigenspectrum approximation
which is exactly the same for the two equidistant grids. We see that the log likelihood
approximation slowly gets better with the number of training points for the equidistant
grids.

(a) Plot of relative error of SMSE for test
points

(b) Plot of relative error MSLL for the test
points

(c) Plot of time for computing the likelihood
(d) Plot of relative error of computed log
likelihood

Figure 4.7: Plots of the results using the different interpolation methods when changing the
number of training points. Here the input dimension was D = 1, the number of inducing
points m = 10000 and the number of test points n∗ = 100.

CHAPTER 4. EXPERIMENTS 37

The second interpolation experiment with a changing number of training points is for
D = 2 input dimensions. The number of inducing points was set to 1000 per dimension,
so in total m = 1 000 000 and the number of test points was n∗ = 100. The number of
training points was increased from 100 to 14 600 with a step size of 500.

In Figure 4.8 results are shown. In Figures 4.8a and 4.8b the relative errors of the
SMSE and MSLL for the MSGP compared to the SMSE and MSLL of the regular GP are
shown. We can see that the accuracy of the predictions does not depend particularly
on the number of training points n for either of the interpolation methods as long as
n > 1000. For both the SMSE and the MSLL cubic equidistant interpolation performs
considerably better than the two linear interpolations.

The time for computing the likelihood is shown in a loglog-scale in Figure 4.8c. As
expected we can see that the regular GP, which can not use Kronecker structure opti-
mizations, has a much larger computational complexity than the interpolation methods
which all exploit Kronecker structure optimizations. The two linear interpolations, both
equidistant and non-equidistant, have very similar computational times, while the cubic
interpolation is a bit slower, due to the fact that the sparse interpolation matrix has more
non-zero entries which leads to slower MVMs.

In Figure 4.8d we see the relative error of the computed log likelihood for the MSGP
compared to the computed log likelihood of the regular GP in a loglog-scale. As before,
the plot for the linear equidistant interpolation is hard to distinguish since the error of
the likelihood in a large part comes from the error of the eigenspectrum approximation
which is exactly the same for the two equidistant grids. We see that the relative error of
the log likelihood approximation decreases with the number of training points for all the
interpolation methods, which is due to the fact that the eigenspectrum approximation
gets better with more training points.

Input dimension

The last interpolation experiment is for changing the input dimension D. The number
of training points was set to 500, the number of inducing points was set to 50 per di-
mension, so in total m = 50D and the number of test points was n∗ = 100. The reason
so few inducing points per dimension and training points were used, is that the mem-
ory requirements are linear in the number of inducing points and the number of train-
ing points for MSGP. This means that for D = 5 input dimensions we get m = 50D =

3.125 · 108 which is already a large number and for more inducing points per dimension
this quickly gets too large for our machine.

In Figure 4.9 results are shown. In Figures 4.9a and 4.9b the relative errors of the
SMSE and MSLL for the MSGP compared to the SMSE and MSLL of the regular GP are
shown. We can see that the accuracy of the predictions gets better when the dimension
increases. With a higher dimension more inducing points are used to approximate each
training point, 2D inducing points are used for the linear interpolations and 4D points
for the cubic interpolation. For both the SMSE and the MSLL cubic equidistant interpo-
lation performs considerably better than the two linear interpolations for all dimensions
and the linear equidistant interpolation performs better than the non-equidistant one for
D > 2.

The time for computing the likelihood is shown in Figure 4.9c. As expected we can
see that the regular GP is close to constant with the number of input dimensions since

38 CHAPTER 4. EXPERIMENTS

(a) Plot of relative error of SMSE for test
points

(b) Plot of relative error MSLL for the test
points

(c) Plot of time for computing the likelihood
(d) Plot of relative error of computed log
likelihood

Figure 4.8: Plots of the results using the different interpolation methods when changing the
number of training points. Here the input dimension was D = 2, the number of inducing
points was 1000 per dimension, so in total m = 1 000 000 and the number of test points
n∗ = 100.

the computational complexity does not depend on the input dimension D for the regular
GP. The different interpolation methods all exhibit similar behaviours for the computa-
tional time, however it is not possible to draw any conclusions about the exact computa-
tional complexity from this experiment.

In Figure 4.9d we see the computed log likelihood. The plot for the linear equidis-
tant interpolation is hard to distinguish from the cubic interpolation since the error of
the likelihood approximation in a large part comes from the error of the eigenspectrum
approximation which is exactly the same for the two equidistant grids. We see that the
log likelihood approximation is underestimated for few dimensions, but for higher di-
mensions the number of inducing points increases, since m = 50D, so that m � n and
the likelihood approximation is instead overestimated. The linear non-equidistant in-
terpolation performs much better on the likelihood approximation for D > 1 than the
equidistant interpolation methods in this case for only 500 training points and 50 induc-
ing points per dimension.

CHAPTER 4. EXPERIMENTS 39

(a) Plot of relative error of SMSE for test
points

(b) Plot of relative error MSLL for the test
points

(c) Plot of time for computing the likelihood (d) Plot of computed log likelihood

Figure 4.9: Plots of the results using the different interpolation methods when changing
the input dimension D. Here the number of training points was n = 500, the number of
inducing points was 50 per dimension, so in total m = 50D and the number of test points
n∗ = 100.

Conclusion

It is clear that to get good performance both for the predictions and the computed log
likelihood using any of the interpolation methods, a large number of inducing points is
needed, preferably at least as many as the number of training points. However, the num-
ber of training points should also be quite large, at least n� 1000, to get a close approxi-
mation of the log determinant.

From the interpolation experiments we see that when using a large number of train-
ing points and inducing points, cubic interpolation with equidistant grids achieves the
best performance. Equidistant grids also have the advantage of being compatible with
Toeplitz methods unlike non-equidistant grids. Therefore, for the rest of the experiment
cubic interpolation with equidistant grids will be used for MSGP.

40 CHAPTER 4. EXPERIMENTS

4.5 Structure Optimizations

For the different structure exploitations, we want to find out how much the training is
sped up and in case of approximations we want to find out how accurate they are.

4.5.1 Kronecker Structure

For the Kronecker structure we have two parts: the fast exact MVMs and the approxima-
tion of the eigenvalue spectrum. Since the Kronecker MVMs are exact they should not
influence the accuracy of the model but only the runtime, while for the eigenvalue spec-
trum approximation the accuracy can also be affected.

For the experiments evaluating the Kronecker structure methods, MSGP is used with
different kinds of Kronecker optimizations: no structure at all, fast MVMs, eigenspec-
trum approximation but without using Kronecker product and finally both fast MVMs
and eigenspectrum approximation with Kronecker product. The performances of these
versions of MSGP are compared to the performance of a regular full GP.

Two kinds of experiments were performed for the Kronecker optimizations: observ-
ing the behaviour when changing the number of inducing points m and observing the
behaviour when changing the number of training points n.

For all of the Kronecker experiments, the covariance function used was the same as
for the interpolation experiments with D > 1. This was an ARD SE covariance function,
which can be seen as a generalization of the one-dimensional SE covariance function and
can be used with MSGP since it is a stationary product kernel. The length-scale for each
dimension was set to max of 1 and the maximum grid space in the corresponding di-
mension in case of an inducing points grid. The variance of the covariance function was
set to σf = 1 for each dimension and the variance of the noise was set to σn = 0.001. The
local interpolation used equidistant grids and cubic interpolation.

Number of inducing points

The first part of the experiments for the number of inducing points is smaller problems
where it is possible to use local kernel interpolation without structure optimizations. If
eigenspectrum approximation and Kronecker MVMs are not used, the whole covariance
matrix for the inducing points KU,U has to be computed explicitly for either the MVMs
or the log determinant which quickly causes memory problems since KU,U ∈ Rm×m gets
very large for multidimensional grids.

The first experiment is for two dimensional input data, D = 2, with the number of
training points set to n = 1000 and the number of test points set to n∗ = 100. The number
of inducing points was increased from 10 to 100 per dimension with a step size of 10.
This means that the total number of inducing points was increased from m = 102 = 100

to m = 1002 = 10 000.
In Figure 4.10 results are shown for this experiment. In Figures 4.10a and 4.10b we

can see that all the different Kronecker optimizations have indistinguishable results for
SMSE and MSLL. This is as expected since for the predictions we do not use the eigen-
spectrum approximation and the fast MVMs should not affect the accuracy.

The relative error of the computed log likelihood is shown in a loglog-scale in Fig-
ure 4.10d. In this plot the version using only fast MVMs and the one using no Kronecker
structure are hard to distinguish from each other and similarly the version using only the

CHAPTER 4. EXPERIMENTS 41

eigenspectrum approximation and the one using both the eigenspectrum approximation
and the fast MVMs are hard to distinguish from each other. The versions without the
eigenspectrum approximation perform better on the log likelihood since the approxima-
tion is only asymptotically exact.

In Figure 4.10c the time for computing the likelihood is shown in a loglog-scale. From
this plot it is clear the that versions which use fast MVMs have a much slower increase
of the computational time. The affect of using the eigenspectrum approximation is not as
clear from this experiment, but here the versions of MSGP which do not use the eigen-
spectrum approximation compute the log determinant of KSKI = WKU,UW

> ∈ Rn×n and
since n = 1000 is quite small, this is still fast to compute.

(a) Plot of relative error of the SMSE for test
points compared to regular GP

(b) Plot of relative error of the MSLL for the
test points compared to regular GP

(c) Plot of time for computing the likelihood
(d) Plot of relative error of the computed log
likelihood

Figure 4.10: Plots of the results using the different Kronecker structure optimizations when
changing the number of inducing points. Here the input dimension was D = 2, the number
of training points n = 1000 and the number of test points n∗ = 100.

A similar experiment was done for three dimensional input data, D = 3. Again the
number of training points was set to n = 1000 and the number of test points was set to
n∗ = 100. The number of inducing points was increased from 10 to 25 per dimension
with a step size of 5. This means that the total number of inducing points was increased
from m = 103 = 1000 to m = 253 = 15 625.

42 CHAPTER 4. EXPERIMENTS

In Figure 4.11 results are shown for this experiment. From these plots we can see that
the results are very similar to the ones for D = 2 in Figure 4.10. Again we see that all the
different Kronecker optimizations have indistinguishable results for SMSE and MSLL in
Figures 4.11a and 4.11b.

The relative error of the computed log likelihood is shown in a loglog-scale in Figure
4.11d. As for the previous experiment, the version using only fast MVMs and the one
using no Kronecker structure are hard to distinguish from each other and similarly the
different versions using eigenspectrum approximation are hard to distinguish from each
other. Again the versions without the eigenspectrum approximation perform a bit better
on the log likelihood, but for few inducing points per dimension the computed value of
the log likelihood is far from the real value for all MSGP versions.

In Figure 4.11c the time for computing the likelihood is shown in a loglog-scale. As
for D = 2, the MSGP versions which use fast MVMs have a slower increase of the com-
putational time. The affect of using the eigenspectrum approximation is not clear from
this experiment either, since we also here use n = 1000.

(a) Plot of relative error of the SMSE for test
points compared to regular GP

(b) Plot of relative error of the MSLL for the
test points compared to regular GP

(c) Plot of time for computing the likelihood
(d) Plot of the relative error of the computed
log likelihood

Figure 4.11: Plots of the results using the different Kronecker structure optimizations when
changing the number of inducing points. Here the input dimension was D = 3, the number
of training points n = 1000 and the number of test points n∗ = 100.

CHAPTER 4. EXPERIMENTS 43

Number of training points

As for the Kronecker experiments when changing the number of inducing points, the
first part of the experiments for the number of training points is smaller problems where
it is possible to use local kernel interpolation without structure optimizations. As noted
earlier, if eigenspectrum approximation and Kronecker MVMs are not used, the whole
covariance matrix for the inducing points KU,U has to be computed explicitly for either
the MVMs or the log determinant which quickly causes memory problems since KU,U ∈
Rm×m gets very large for multidimensional grids.

The first experiment for changing the number of inducing points was done for two
dimensional input data, D = 2, and the number of training points n was increased from
1000 to 10 000. The number of inducing points was set to 100 per dimension so that the
total number of inducing points was m = 1002 = 10 000. No predictions were computed
since we have seen that all versions perform equally well on the predictions in the earlier
experiments.

In Figure 4.12 results are shown for this experiment. The relative error of the com-
puted log likelihood is shown in a loglog-scale in Figure 4.12b. As for the other Kro-
necker experiments, the version using only fast MVMs and the one using no Kronecker
structure are hard to distinguish from each other and similarly the versions using the
eigenspectrum approximation are hard to distinguish from each other. Again we see that
the versions without the eigenspectrum approximation perform better on the log likeli-
hood. However, note that the two curves have very similar shapes, even though the val-
ues differ with several magnitudes. The eigenvalue approximation should get better with
an increasing number of training points n, but another big reason for the decrease of the
relative error of the log likelihood with an increasing number of training points n is that
the absolute value of the log likelihood increases. In Figure 4.12a the time for computing
the likelihood is shown in a loglog-scale.

(a) Plot of time for computing the likelihood
(b) Plot of the relative error of the computed
log likelihood

Figure 4.12: Plots of the results using the different Kronecker structure optimizations when
changing the number of inducing points. Here the input dimension was D = 2, the num-
ber of inducing points per dimension 100 so that the total number of inducing points was
m = 100D = 10 000 points.

The last experiment for changing the number of inducing points used two dimen-

44 CHAPTER 4. EXPERIMENTS

sional input data, D = 2, as the previous experiment, but now the number of train-
ing points n was increased from 100 to 200 000. The number of inducing points was set
to 1500 per dimension so that the total number of inducing points was m = 15002 =

2 250 000. No predictions were computed. For this experiment we can not use regular GP
which runs into memory problems for n > 20000 or the MSGP versions without both
Kronecker MVMs and eigenspectrum approximation using the Kronecker product.

In Figure 4.13 results are shown for this experiment. The computed log likelihood is
shown in Figure 4.13b. The log likelihood increases with the number of training points,
which seems reasonable since it is the same behaviour as we have seen in earlier experi-
ments.

The time for computing the likelihood is shown in a loglog-scale in Figure 4.12a. The
curve is close to linear with a slope near 1, which consists with the theoretical result that
MSGP which uses all Kronecker optimizations should have the computational complexity
O(n).

(a) Plot of time for computing the likelihood (b) Plot of the computed log likelihood

Figure 4.13: Plots of the results using the different Kronecker structure optimizations when
changing the number of inducing points. Here the input dimension was D = 2, the num-
ber of inducing points per dimension 1500 so that the total number of inducing points was
m = 1500D = 2 250 000 points.

4.5.2 Toeplitz Structure

As for the Kronecker structure we have two parts of the Toeplitz structure: the fast exact
MVMs and the circulant approximation. Again the MVMs are exact so they should not
influence the accuracy of the model but only the runtime, while for the circulant approxi-
mation the accuracy can also be affected.

For the experiments evaluating the Toeplitz structure methods, MSGP is used with
different kinds of Toeplitz optimizations: no structure at all, fast MVMs, eigenspectrum
approximation without circulant approximation, eigenspectrum approximation with cir-
culant approximation and finally both fast MVMs and eigenspectrum approximation
with circulant approximation. The performances of these versions of MSGP are compared
to the performance of a regular full GP.

Two kinds of experiments were performed for the Toeplitz optimizations: observing
the behaviour when changing the number of inducing points m and observing the be-

CHAPTER 4. EXPERIMENTS 45

haviour when changing the number of training points n. All the experiments had one-
dimensional inputs, D = 1, since then all Toeplitz optimizations can be used.

For all the Toeplitz experiments, the covariance function used was the same as for the
interpolation experiments with D = 1, that is an SE covariance function with length-scale
l set to max of 1 and the maximum grid space in case of an inducing points grid. The
variance of the covariance function was set to σf = 1 and the variance of the noise was
set to σn = 0.001. The local interpolation used equidistant grids and cubic interpolation.

Number of inducing points

For the first experiment the number of training points was set to n = 5000 and the num-
ber of test points was set to n∗ = 100. The number of inducing points was increased from
m = 50 to m = 1000 with a step size of 50.

In Figure 4.14 results are shown for this experiment. From these plots we can see that
all the different Toeplitz optimizations have almost indistinguishable results for SMSE
and MSLL in Figures 4.14a and 4.14b until the relative errors get very small. This is as
expected as for the predictions we do not use the eigenspectrum approximation and the
fast MVMs should not affect the accuracy more than numerical errors.

The computed log likelihood is shown in Figure 4.14d. In this plot the version using
only fast MVMs, the one using no MVM optimization and the regular GP are hard to
distinguish from each other and similarly the versions of MSGP that use the eigenspec-
trum approximations are hard to distinguish from each other. The versions without the
eigenspectrum approximation perform better on the log likelihood since the approxima-
tion is only asymptotically exact and for this experiment we always have m� n.

In Figure 4.14c the time for computing the likelihood is shown. From this plot it is
not obvious how the computational time for the different structure optimizations scales
with the number of inducing points, but in the next experiments a larger number of in-
ducing points and training points will be used to try to make this more clear.

For the next experiment the number of training points was again set to n = 5000 and
the number of test points was set to n∗ = 100. This time the number of inducing points
was increased from m = 500 to m = 8000 with a step size of 500.

In Figure 4.15 results are shown for this experiment. From these plots we can see that
all the different Toeplitz optimizations have comparable results for SMSE and MSLL in
Figures 4.15a and 4.15b. Again, this is as expected since the performance of the different
MSGP versions should only differ due to numerical errors.

The computed log likelihood is shown in Figure 4.15d. As for the previous experi-
ment, the regular GP and the MSGP versions that do not use the eigenspectrum approx-
imation are hard to distinguish from each other and similarly the versions of MSGP that
use the eigenspectrum approximations are hard to distinguish from each other. Again we
see that the versions without the eigenspectrum approximation perform much better on
the log likelihood until the number of inducing points m is at least as big as the number
of training points n, but for m > n all approximation methods perform reasonably well.

In Figure 4.15c the time for computing the likelihood is shown. From this plot we can
see that the computational time increases most using the eigenspectrum approximation
without the circulant approximation, which is due to the fact that then the eigendecom-
position is performed on the whole matrix KU,U ∈ Rm×m which is of complexity O(m3).
We see that all the other methods have better performance, and in particular when the

46 CHAPTER 4. EXPERIMENTS

(a) Plot of relative error of the SMSE for test
points compared to regular GP

(b) Plot of relative error of the MSLL for the
test points compared to regular GP

(c) Plot of time for computing the likelihood (d) Plot of the computed log likelihood

Figure 4.14: Plots of the results using the different Toeplitz structure optimizations when
changing the number of inducing points. Here the input dimension was D = 1, the number
of training points n = 5000 and the number of test points n∗ = 100.

circulant approximation is used as well, the computational complexity gets better.
In the last experiment for the number of inducing points we want to see more clearly

how the computational complexity scales with the number of inducing points. Therefore,
the number of inducing points was increased from m = 10 to m = 105. However, the
only version of MSGP which is able to use m = 105 inducing points is the one using fast
MVMs and eigenspectrum approximation with circulant approximation since otherwise
we have to use the whole matrix KU,U ∈ Rm×m explicitly, which introduces memory
problems. The number of training points was set to n = 15 000 and no predictions were
made.

In Figure 4.16 results are shown for this experiment. The relative error of the com-
puted log likelihood is shown in Figure 4.16b. We see that the relative error decreases
until m ≥ n and for m > n the relative error stays low. In Figure 4.16a the time for com-
puting the likelihood is shown. From this plot we can see that the computational time
for the MSGP increases but the graph is not linear at all so the exact computational com-
plexity is not obvious.

CHAPTER 4. EXPERIMENTS 47

(a) Plot of relative error of the SMSE for test
points compared to regular GP

(b) Plot of relative error of the MSLL for the
test points compared to regular GP

(c) Plot of time for computing the likelihood (d) Plot of the computed log likelihood

Figure 4.15: Plots of the results using the different Toeplitz structure optimizations when
changing the number of inducing points. Here the input dimension was D = 1, the number
of training points n = 5000 and the number of test points n∗ = 100.

Number of training points

For the first experiment the number of inducing points was set to m = 1000 and the
number of test points was set to n∗ = 100. The number of training points was increased
from n = 1000 to n = 5000 with a step size of 1000.

In Figure 4.17 results are shown for this experiment. In Figures 4.17a and 4.17b we
see that all the different Toeplitz optimizations have comparable results for SMSE and
MSLL. Again, this is as expected since for the predictions we do not use the eigenspec-
trum approximation and the fast MVMs should not affect the accuracy more than numer-
ical errors.

The computed log likelihood is shown in Figure 4.17d. As before, the MSGP versions
without the eigenspectrum approximation and the regular GP are hard to distinguish
from each other and similarly the versions of MSGP that use the eigenspectrum approxi-
mations behave similarly. As seen in earlier experiments, the versions without the eigen-
spectrum approximation perform better on the log likelihood, especially for n � m since
the approximation is only asymptotically exact.

48 CHAPTER 4. EXPERIMENTS

(a) Plot of time for computing the likelihood
(b) Plot of the relative error of the computed
log likelihood

Figure 4.16: Plots of the results using the different Toeplitz structure optimizations when
changing the number of inducing points. Here the input dimension was D = 1 and the
number of training points n = 15000.

In Figure 4.17c the time for computing the likelihood is shown. From this plot it is
not obvious how the computational time for the different structure optimizations scales
with the number of training points, but in the next experiments a larger number of in-
ducing points and training points will be used to try to make this more clear.

For the next experiment the number of inducing points was set to m = 15 000 and no
predictions were made. The number of training points was increased from n = 1000 to
n = 22 000 with a step size of 3000.

In Figure 4.18 results are shown for this experiment. The relative error of the com-
puted log likelihood is shown in a loglog-scale in Figure 4.18b. The versions with the
eigenspectrum approximation performs well on the log likelihood, until n > m when the
error starts increasing.

In Figure 4.18a the time for computing the likelihood is shown in a loglog-scale. Here
we see that using interpolation without any structure optimizations, has at least the same
computational time as using a regular GP. We also see that the computational time for
using the eigenspectrum approximation without the circulant approximation is quite
large, but does not depend very much on the number of training points. We can also
see that for this experiment the fast MVMs are not faster than regular MVMs but actu-
ally a bit slower. The fast MVMs should become faster for a larger number of inducing
points, since they theoretically have a better computational complexity than the regular
MVMs. However, it should be noted that the runtime is not the only important part and
another advantage of the Toeplitz MVMs is that they have much lower memory require-
ments than regular MVMs since for Toeplitz MVMs only one column of the matrix has to
be stored.

The aim of the last experiment for the Toeplitz optimizations is to see more clearly
the computational complexity for the log likelihood. To achieve this the number of in-
ducing points was set to m = 100 000 and no predictions were made. The number of
training points was increased from n = 100 to n = 200 000. The only version of MSGP
that can be used for this experiment is the one using both Toeplitz MVMs and the eigen-
spectrum approximation with the circulant approximation, due to the large number of

CHAPTER 4. EXPERIMENTS 49

(a) Plot of relative error of the SMSE for test
points compared to regular GP

(b) Plot of relative error of the MSLL for the
test points compared to regular GP

(c) Plot of time for computing the likelihood (d) Plot of the computed log likelihood

Figure 4.17: Plots of the results using the different Toeplitz structure optimizations when
changing the number of training points. Here the input dimension was D = 1, the number
of inducing points m = 1000 and the number of test points n∗ = 100.

inducing points and training points. The regular GP can not be used for this experiment.
In Figure 4.19 the time for computing the likelihood is shown in a loglog-scale. As in

the similar experiment for the Kronecker optimizations, we see that the curve is close to
linear with a slope near 1, which consists with the theoretical result that MSGP should
have the computational complexity O(n) for one-dimensional input data when using
both Toeplitz MVMs and the eigenspectrum approximation with the circulant approxi-
mation.

50 CHAPTER 4. EXPERIMENTS

(a) Plot of time for computing the likelihood (b) Plot of the computed log likelihood

Figure 4.18: Plots of the results using the different Toeplitz structure optimizations when
changing the number of training points. Here the input dimension was D = 1 and the
number of inducing points m = 15000.

Figure 4.19: Plots of the results using Toeplitz structure optimizations when changing the
number of training points. Here the input dimension was D = 1 and the number of induc-
ing points m = 100 000.

4.6 Comparison of MSGP to Other GP Methods

For the last part of the experiments, the MSGP framework using local kernel interpo-
lation, Kronecker and Toeplitz optimizations, projections and fast predictions is tested
against other GP methods on the real datasets. The regular GP is used when possible,
and the other scalable GP methods MSGP is compared to are FITC and VFE, which both
already have existing implementations in GPflow.

For all of the datasets, the input points were normalized to have zero mean and unit

CHAPTER 4. EXPERIMENTS 51

variance on the training points and the outputs were centered to have zero mean on the
training data.

For MSGP the input points were projected to a two dimensional space since all of
the datasets have higher input dimensions than what is reasonable to use with MSGP
directly. The values of the elements of the projection matrix as well as the other hyperpa-
rameters were determined by optimization of the log likelihood. However, the projection
matrix was constrained to have unit scaling. The grid was equidistant and cubic inter-
polation was used. All of the Kronecker optimizations were used as well as the Whittle
circulant approximation with truncation w = 3.

For all datasets, MSGP used a two dimensional inducing points grid with 200 points
per dimension, which means that the total number of inducing points was m = 2002 =

40 000.
For both FITC and VFE inducing points are used as well. For the Abalone and KIN40K

datasets m = 2000 inducing points were used, while for the SARCOS dataset m = 500

inducing points were used to avoid memory problems. The inducing points were initial-
ized to the first m training points for both FITC and VFE. The locations of the inducing
points were jointly maximized over together with the hyperparameters of the covariance
function. For the regular GP, only the hyperparameters of the covariance function are op-
timized over.

The covariance function used was always an ARD SE covariance function. The length-
scale for each dimension was initialized to 3 and was constrained to be in the interval
[0.1, 10] for all GP methods except MSGP where the lower limit was the grid space in
that dimension. The variance of the covariance function was initialized to σf = 1 for
each dimension. The variance of the noise was set to σn = 3 and constrained to lie in
the interval [0.1, 10] for the Abalone dataset and in the interval [10−3, 10] for the other
two datasets. For all methods except MSGP a White kernel with the fixed variance was
added to the covariance as well. This kernel is simply a diagonal matrix added to avoid
unsuccessful Cholesky decompositions. The variance of the White kernel was 10−2 for
the Abalone dataset and 10−3 for the other two datasets.

To evaluate the performances on the test points SMSE, SMAE and MSLL were com-
puted. Further more, the number of optimizations evaluations performed during the
training and the value of the maximized log likelihood are presented to indicate how
successful the training was. We also measured the time for computing the log likelihood
once, the total training time and the time to predict the mean and variance for all the test
points. For MSGP the time for computing 1

ns

∑ns
i=1(K̃U,Xri)

2 needed for the fast predic-
tions (see Section 3.3) was included in the prediction time.

4.6.1 Abalone

For the Abalone dataset, it is possible to use the regular GP as well since the dataset is
small enough.

The results for all the GP methods are shown in Table 4.2. All methods have compa-
rable results for the values of SMSE, SMAE and MSLL as well as the maximized log like-
lihood, but we can note that FITC has even "better" results than the regular GP on the
MSLL and the maximized likelihood. Since the regular GP is the true one this indicates
that FITC suffers from overfitting.

For the likelihood and prediction times, we see that FITC and VFE have very similar

52 CHAPTER 4. EXPERIMENTS

performance, but for this small dataset the regular GP is actually fastest. MSGP on the
other hand performs much worse, but this is likely due to the implementation not being
optimized enough. We can also note that even though FITC computes each log likeli-
hood faster than MSGP, it has the highest training time since the optimization evaluates
the objective function so many times.

Table 4.2: Results on the Abalone dataset for the different scalable GP methods.

MSGP FITC VFE Regular GP
SMSE 0.4290 0.4428 0.4248 0.4235

SMAE 0.6467 0.6537 0.6445 0.6438

MSLL −0.4250 −0.4846 −0.4356 −0.4375

Maximized log likelihood −6898.6 −6064.9 −6812.9 −6806.7

Optimization evaluations 81 741 49 59

Likelihood time (s) 28.62 1.92 1.60 1.45

Prediction time (s) 6.26 2.26 2.15 1.91

Training time (s) 175.5 1479.4 79.6 161.9

4.6.2 KIN40K

The results for the KIN40K dataset are shown in Table 4.3. FITC and VFE have simi-
lar performances on SMSE, SMAE and MSLL, but FITC finds a much higher value of
the log likelihood than VFE. MSGP performs considerably worse than the other meth-
ods for all the metrics and also take much longer both for the predictions and the like-
lihood computations. We can also note that MSGP does not do as many evaluations for
the optimizations as the other methods and the maximized log likelihood is considerably
smaller, which could indicate that it did not find a good optimum for the log likelihood
and therefore does not achieve as good results as the other methods on the performance
metrics.

Table 4.3: Results on the KIN40K dataset for the different scalable GP methods.

MSGP FITC VFE
SMSE 0.3874 0.0351 0.0221

SMAE 0.6041 0.1252 0.1274

MSLL −0.4597 −2.2691 −1.8904

Maximized log likelihood −9775.6 6240.8 1208.3

Optimization evaluations 71 179 317

Likelihood time (s) 96.80 1.50 1.60

Prediction time (s) 111.91 2.22 2.10

Training time (s) 1143.3 294.5 532.0

4.6.3 SARCOS

In Table 4.4 the results are shown for the SARCOS dataset. All GP methods achieve low
values for the performance metrics, even though MSGP performs a bit worse than FITC
and VFE. For the likelihood and prediction times, we see as for the other datasets that
FITC and VFE have very similar performance while MSGP performs much worse.

CHAPTER 4. EXPERIMENTS 53

As for the KIN40K dataset the training for MSGP does not perform as many evalu-
ations of the objective function as the other two methods, which could indicate that the
optimum found for MSGP is not the best one.

Table 4.4: Results on the SARCOS dataset for the different scalable GP methods.

MSGP FITC VFE
SMSE 0.0596 0.0108 0.0159

SMAE 0.2318 0.1195 0.1171

MSLL −1.207 −2.258 −2.017

Maximized log likelihood −142490.5 −100695.2 −112790.8

Optimization evaluations 105 244 410

Likelihood time (s) 401.45 2.59 2.43

Prediction time (s) 608.9 3.34 3.29

Training time (s) 5854.0 151.5 248.9

Chapter 5

Discussion

5.1 Pros and Cons of MSGP

Compared to the regular GP the main advantage of MSGP is the improved computa-
tional complexity and memory requirements. In our experiments, we have found that the
memory requirements for the regular GP are that first makes an approximation method
needed.

However, for D > 3 it is instead MSGP that runs into memory problems faster, since
the number of points in a regular grid grows exponentially with the dimension. This
means that MSGP suffers from the curse of dimensionality, which is not an apparent
problem for the regular GP. MSGP can still be used for D > 3, as long as it is combined
with projections.

Compared to the other two popular approximation methods FITC and VFE, MSGP
has better computational complexity and memory requirements with regard to the num-
ber of inducing points m. This means that MSGP can use many more inducing points
and thereby capture more of the behaviour of the covariance function.

The main disadvantage of MSGP compared to FITC and VFE is that using MSGP
comes with a lot of decision making. First of all Toeplitz and/or Kronecker methods
have to work with the covariance function and the decision of which structure exploita-
tions to use has to be made. Then the locations of the inducing points have to be cho-
sen, which is not the case for FITC and VFE where the locations usually are chosen by
optimization. It must also be decided if projections should be used, and if so in which
dimension, and how many samples should be used for the fast predictions.

As seen from the experiments, the implementation of MSGP in TensorFlow is quite
slow compared to the other GP methods. This is probably due to the fact that the other
GP methods use Cholesky decompositions for the heavy computations which TensorFlow
provides a function for. Since the Cholesky decomposition is commonly used, this func-
tion is likely to be highly optimized. For MSGP the computations are more complicated
with several different parts and it is more challenging to achieve an optimized imple-
mentation using TensorFlow in Python.

5.2 When Should MSGP Be Used?

If the training points are few enough to make full regular GP regression possible, the
regular GP is the easiest and most accurate method to use. The limit for using the reg-

54

CHAPTER 5. DISCUSSION 55

ular GP is different for each machine, in our case it could be used with up to ∼ 20 000

training points for inference to be possible, but less if training of the hyperparameters is
to be performed as well.

For more training points, some scalable approximation method has to be used. In
general, FITC and VFE are easier to use for non-experienced users since not a lot of choices
has be made.

However, if the covariance function used has a more complex behaviour than the SE
covariance, it is probable that MSGP catches this behaviour better than FITC and VFE
since it can use a much larger number of inducing points. However, for the current ver-
sion of MSGP, it is only possible to use stationary covariance functions and for D > 2

dimensions they must also be product covariance functions if Kronecker structure is to
bwe used.

The general advice for using MSGP based on the experiments is to only use it for a
large number of training points, always use at least as many inducing points as training
points, that is m ≥ n, and use cubic interpolation and equidistant grids. If the input di-
mension is larger than 3, projections should be used together with MSGP to make the
dimension lower.

For D = 1 input dimension Toeplitz methods should be used, both the eigenspectrum
approximation with the circulant approximation and the fast MVMs to avoid memory
problems. For D > 1 input dimensions Kronecker methods should be used instead, again
both the eigenspectrum approximation and the fast MVMs to avoid memory problems. It
is also possible to combine Toeplitz and Kronecker methods, but this is only needed for
the case when the number of inducing points per dimension gets very large.

If optimization of the hyperparameters is performed, the length-scales of the covari-
ance function should be constrained to be at least as large as the grid space, since other-
wise the optimization can find bad solutions.

5.3 Future Work

There are still many aspects of MSGP that can be investigated further. As shown in the
experiments, the eigenspectrum approximation requires both a large number of training
points and a large number of inducing points to perform well. Other approximations of
the log determinant can be investigated as well, for example Han et al. have introduced
an approximation method for the log determinant using stochastic Chebyshev expansions
which relies on fast MVMs [26].

It should also be noted that we only studied the value of the computed log likelihood
and not the value of the gradient with respect to the hyperparameters, which would also
be interesting to examine further since the optimization is highly dependent on the gra-
dient.

Other interpolation methods could also be investigated, for example multidimen-
sional interpolation which do not treat each dimension separately. Multidimensional in-
terpolation could be combined with the multidimensional extension of Toeplitz methods
introduced in Section 3.4.1, which would make it possible to use MSGP for other covari-
ance functions than product functions as well. Furthermore, extrapolation could also be
investigated to avoid the problem of having training or test points located outside the
grid.

In this thesis the projection method has not been given a lot of attention, but it could

56 CHAPTER 5. DISCUSSION

be interesting to examine different projection methods. As noted, MSGP does not work
well in higher dimensions and therefore the projection method can be quite important for
high-dimensional data. We only used a single constant matrix for the projections in the
experiments, but for example additive linear projections or non-linear projections could
be used as well, which could lead to better results. For example, Wilson et al. have used
deep architectures as non-linear projections [27].

From our experiments the expected nearly-linear computational complexity of MSGP
was not always obvious. One reason could be that the LCG actually do not use j � n

iterations in case the matrix is badly conditioned. A solution for this could be to investi-
gate preconditioners for the LCG since this can speed up the convergence.

Bibliography

[1] E.L. Snelson. Flexible and efficient Gaussian process models for machine learning.
ACM SIGKDD Explorations Newsletter, 7(2001):1–135, 2007.

[2] David JC MacKay. Information theory, inference and learning algorithms. Cambridge
university press, 2003.

[3] Joaquin Quiñonero-Candela, Carl Edward Rasmussen, and Ralf Herbrich. A uni-
fying view of sparse approximate Gaussian process regression. Journal of Machine
Learning Research, 6:1935–1959, 2005. ISSN 1533-7928.

[4] Yunus Saatçi. Scalable inference for structured Gaussian process models. PhD thesis, Cite-
seer, 2012.

[5] Andrew Gordon Wilson, Christoph Dann, and Hannes Nickisch. Thoughts on Mas-
sively Scalable Gaussian Processes. EMNLP, pages 1–25, 2015.

[6] Svante Janson. Gaussian Hilbert Spaces, volume 129. Cambridge university press,
1997. ISBN 0521561280.

[7] Robert J. Adler and Jonathan E. Taylor. Random Fields and Geometry. Science, 17(3):
448, 2007. ISSN 1439-7382.

[8] Robert J Adler. The Geometry of Random Fields, volume 62. SIAM, 1981.

[9] Christopher KI Williams and Carl Edward Rasmussen. Gaussian Processes for Ma-
chine Learning. The MIT Press, 2(3):4, 2006.

[10] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian Processes using Pseudo-
inputs. Advances in Neural Information Processing Systems 18, pages 1257–1264, 2006.
ISSN 1049-5258.

[11] Michalis Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Pro-
cesses. AISTATS, 5:567–574, 2009. ISSN 15324435.

[12] Matthias Bauer, Mark van der Wilk, and Carl Edward Rasmussen. Understanding
Probabilistic Sparse Gaussian Process Approximations. In Advances in Neural Informa-
tion Processing Systems, pages 1525–1533, 2016.

[13] Volker Tresp. A Bayesian committee machine. Neural computation, 12(11):2719–2741,
2000.

[14] Andrew Gordon Wilson. Covariance kernels for fast automatic pattern discovery
and extrapolation with Gaussian processes. Dissertation, 2014.

57

58 BIBLIOGRAPHY

[15] Z Tang, R Duraiswami, and N A Gumerov. Fast algorithms to compute matrix-
vector products for Pascal matrices. 20742, 2004.

[16] Andrew Gordon Wilson and Hannes Nickisch. Kernel Interpolation for Scalable
Structured Gaussian Processes (KISS-GP). International Conference on Machine Learning,
37:1–19, 2015.

[17] Robert Keys. Cubic convolution interpolation for digital image processing. IEEE
transactions on acoustics, speech, and signal processing, 29(6):1153–1160, 1981.

[18] Christopher K. I. Williams and Matthias Seeger. The Effect of the Input Density Dis-
tribution on Kernel-based Classifiers. International Conference on Machine Learning,
pages 1159–1166, 2000.

[19] George Papandreou and Alan L Yuille. Efficient variational inference in large-scale
Bayesian compressed sensing. In Computer Vision Workshops (ICCV Workshops), 2011
IEEE International Conference on, pages 1332–1339. IEEE, 2011.

[20] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensor-
Flow: A system for large-scale machine learning. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI). Savannah, Georgia,
USA, 2016.

[21] Alexander G de G Matthews, Mark van der Wilk, Tom Nickson, Keisuke Fujii,
Alexis Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, and James Hens-
man. GPflow: A Gaussian process library using TensorFlow. arXiv preprint
arXiv:1610.08733, 2016.

[22] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools
for Python, 2001–. URL http://www.scipy.org/.

[23] Anton Schwaighofer and Volker Tresp. Transductive and inductive methods for ap-
proximate Gaussian process regression. Advances in Neural Information Processing Sys-
tems, pages 977–984, 2003.

[24] Matthias Seeger, Christopher Williams, and Neil Lawrence. Fast forward selection to
speed up sparse Gaussian process regression. In Artificial Intelligence and Statistics 9,
number EPFL-CONF-161318, 2003.

[25] Christopher KI Williams and Matthias Seeger. Using the Nyström method to speed
up kernel machines. In Proceedings of the 13th International Conference on Neural Infor-
mation Processing Systems, pages 661–667. MIT press, 2000.

[26] Insu Han, Dmitry Malioutov, and Jinwoo Shin. Large-scale log-determinant compu-
tation through stochastic Chebyshev expansions. In ICML, pages 908–917, 2015.

[27] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep
kernel learning. In Proceedings of the 19th International Conference on Artificial Intelli-
gence and Statistics, pages 370–378, 2016.

http://www.scipy.org/

	Contents
	Introduction
	Outline

	Gaussian Processes for Regression
	Gaussian Processes from a Mathematical Perspective
	Gaussian Random Variables
	Gaussian Processes

	Gaussian Processes from a Machine Learning Perspective
	Supervised Learning
	GP Regression
	GP Classification and Non-Gaussian Likelihoods
	Covariance Function
	Learning: Choice of Covariance Function and Hyperparameters

	Scalable Gaussian Processes
	Iterative Solution of Linear Systems
	Sparse Approximations
	Bayesian Committee Machine

	Massively Scalable Gaussian Processes
	Structure Exploitation
	Kronecker Structure
	Toeplitz Structure

	KISS-GP
	Structured Kernel Interpolation
	Combining Kernel Interpolation and Structure Exploitation

	Fast Test Predictions
	Circulant Approximation
	Extension to Multivariate Data

	Projections

	Experiments
	Datasets
	Performance Criteria
	Choice of Inducing Points
	Interpolation Method
	Structure Optimizations
	Kronecker Structure
	Toeplitz Structure

	Comparison of MSGP to Other GP Methods
	Abalone
	KIN40K
	SARCOS

	Discussion
	Pros and Cons of MSGP
	When Should MSGP Be Used?
	Future Work

	Bibliography

