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Contents

1 Introduction 4
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Population dynamics 6
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Model of populations . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Model of intrinsic demographic processes . . . . . . . . . . . . . . 9

2.3.1 Model of non-intrinsic part of intrinsic demographic pro-
cesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Model of birth . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Model of immigration . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Parameter estimation 12
3.1 Stationary model . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Tree based hierarchical Beta-Binomial model . . . . . . . . . . . 13

3.2.1 Haldane’s prior and adaptive stable time periods . . . . . 14
3.2.2 The cohort partition problem . . . . . . . . . . . . . . . . 16

3.3 Poisson regression model for immigration . . . . . . . . . . . . . 16
3.3.1 Linear regression function . . . . . . . . . . . . . . . . . . 18
3.3.2 Priors and posteriors . . . . . . . . . . . . . . . . . . . . . 19

3.4 Inference through Metropolis-Hastings algorithm . . . . . . . . . 21
3.4.1 Empirical distribution approximation . . . . . . . . . . . 23

3.5 Dirichlet-multinomial hierachical model . . . . . . . . . . . . . . 23
3.5.1 The location partition problem . . . . . . . . . . . . . . . 24

3.6 Graphical model overview . . . . . . . . . . . . . . . . . . . . . . 25

4 Application 27
4.1 Forecast generation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Validation procedure . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 Regression diagnostics . . . . . . . . . . . . . . . . . . . . 34
4.4.2 Accuracy metrics . . . . . . . . . . . . . . . . . . . . . . . 34

5 Results 35
5.1 Intrinsic demographic variable forecasts . . . . . . . . . . . . . . 35
5.2 Immigration forecasts . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Diagnosis of Metropolis-Hasting algorithm . . . . . . . . . 38
5.2.3 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Discussion 41

Appendices 44

A Further plots and results 45

1



Abstract

A set of distributional assumptions regarding the demographic processes of
birth, death, emigration and immigration have been assembled to form a proba-
bilistic model framework of population dynamics. This framework was summa-
rized as an Bayesian network and Bayesian inference techniques are exploited
to infer the posterior distributions of the model parameters from observed data.
The birth, death and emigration processes are modelled using a hierarchical
beta-binomial model from which the inference of the posterior parameter dis-
tribution was analytically tractable. The immigration process was modelled
with a Poisson type regression model where posterior distribution of the pa-
rameters have to be estimated numerically. This thesis suggests an implemen-
tation of the Metropolis-Hasting algorithm for this task. Classification of in-
comings into subpopulations of age and gender is subsequently made using an
Dirichlet-multinomial hierarchic model, for which parameter inference is ana-
lytically tractable. This model framework is used to generate forecasts of de-
mographic data, which can be validated using the observed outcomes. A key
component of the Bayesian model framework used is that is estimates the full
posterior distributions of demographic data, which can take into account the
full amount of uncertainty when forecasting population growths.
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Befolkningsprognoser för sm̊a kohorter genom Bayesiansk
inlärning

Sammanfattning

Genom att använda en mängd av distributionella antaganden om de demografiska
processerna födsel, dödsfall, utflyttning och inflyttning har vi byggt ett stokastiskt
ramverk för att modellera befolkningsförändringar. Ramverket är kan samman-
fattas som ett Bayesianskt nätverk och för detta nätverk introduceras tekniker
för att skatta parametrar i denna uppsats. Födsel, dödsfall och utflyttning mod-
elleras av en hierarkisk beta-binomialmodell där parametrarnas posteriorifördel-
ning kan skattas analytiskt fr̊an data. För inflyttning används en Poissontyp
regressionsmodell där parametervärdenas posteriorifördelning m̊aste skattas nu-
meriskt. Vi föresl̊ar en implementation av Metropolis-Hastings algoritmen för
detta. Klassificering av subpopulationer hos de inflyttande sker via en hierarkisk
Dirichlet-multinomialmodell där parameterskattning sker analytiskt. Ramver-
ket användes för att göra prognoser för tidigare demografisk data, vilka valid-
erades med de faktiska utfallen. En av modellens huvudsakliga styrkor är att
kunna skatta en prediktiv fördelning för demografisk data, vilket ger en mer
nyanserad pronos än en enkel maximum-likelihood-skattning.
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1 Introduction

1.1 Background

Since the 17th century when John Graunt pioneered the field of demography
with life tables [1], population forecasting has been one of its core problems. The
ability to make accurate predictions of future populations is paramount for soci-
etal planning. Several Swedish municipal governments have faced difficulties in
making accurate predictions, in large part due to difficulty to model the complex
dynamics of population levels. The current procedures used by the municipal
governments are mostly point estimations of future population, with occasional
scenario testing based on heuristic methods [25]. Advances in computational
power has made many statistical learning methods feasible to a larger range
of problems in the last few decades, and the purpose of this study is to apply
these techniques to create a model that accurately predicts future population
and their uncertainties. This thesis is a part of a joint project between business
intelligence consultant firm BizOne, the three municipalities Värmdö, Täby and
Haninge kommun of Stockholm county and we hope that this project will result
in a tool that can be used by Swedish municipal governments that will facilitate
parts of their planning operations. The goal is to develop a general framework
that can be applied to predict future probability distribution of a wide ranges
of populations going down to specific age groups in small districts, as long as
appropriate demographic data is available.

1.2 Previous work

A common method in population forecasting is the cohort component model
[21]. A cohort is in general defined as a subset of a population that share a set
of common traits. Gender, age and place of residence are common traits that
is used to partition a population into cohorts. The cohort component model
makes cohort-specific point estimates of the rates of the demographic processes,
which are birth, death and migration. The main issue is to estimate these rates
and to project their future values. Assuming that the rates will remain at the
same level as previous few years yields somewhat accurate predictions of fertility
rates and mortality rates. It has been proven to be a too blunt tool to accu-
rately model migration on local levels since these processes vary from year to
year, as is shown in figure 1. Another limitation is that it does not contain any
information about uncertainties of the estimates, which is argued to essential
for population forecasts by [12].

Time series analysis have been used to model long term large scale population
dynamics. One of the more prominent examples of this is the non-parametric
Lee-Carter model for national mortality rates in the U.S., which is an ARIMA-
model of historic rates with age specific impact factors [7]. This model has been
extended into the Bayesian realm by some authors [15][24]. These authors [20]
have used a Bayesian framework for estimating population levels based on demo-
graphic data in an approach similar to this thesis. They use the framework for
modelling between-census populations, and they discuss the possibilities of ex-
tending their framework into predictive estimations as well. These authors have
all developed models have been readily applied to large scale population pre-
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dictions, i.e. on national level or national subdivisions with large populations.
However this study focuses on local prediction with mainly small population.
Many assumptions of these models become hard to justify, such as using the
Poisson distribution as a limiting case of the Binomial distribution for mod-
elling individual probabilities of giving birth, dying etc. They however provide
a strong foundation for demographic modelling and this study will largely build
upon modified versions of the work of these authors.

Figure 1: Very unstable migration rate is a typical situation on local level, this
example comes from Värmdö municipality outside of Stockholm

1.3 Thesis overview

A general framework for population prediction has been developed based on
the cohort component method fortified with Bayesian statistical methods. The
populations, number of births, deaths and number of migrations for each cohort
are modelled as random variables whereas their values in past time are seen
as realizations of these random variables. Bayesian inference is then used to
estimate posterior distributions of these random variables given some suitably
chosen prior distributions and the expected value of the posterior distribution is
taken as the forecast of that cohort-component. Information about uncertainties
are captures by confidence intervals which can be generated from the posterior
distributions. The population prediction framework developed in this study
has been applied on historic data from three Swedish Municipalities in order to
make projections for cohort specific population levels. These cohorts span from
having having population levels of zero to 2.5 million individual. Hence, the
model has been evaluated on a varied range of populations. The projections has
been evaluated in discrete time, where one sample point is the last of December
of each year.

In the section population dynamics, we present the key definitions regarding de-
mography that is used in this thesis. We also present the mathematical relation
between these definitions, and define the stochastic processes and distributional
assumptions for the demographic entities. In the section parameter estimation
we present the how the key parameters that govern the demographic entities
are estimated using historic data and theoretically justify the methods used for
statistical inference. In the section applications, we show the model framework
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used on real demographic data for population levels of different subpopulations
of Stockholm county. We also compare the forecasts made by the model to
actual outcomes of population levels to asses the accuracy of the assumptions
made. In the section discussion, we discuss the results and possible improve-
ments of the framework. Finally in the appendix section, we summarize the
definitions, notation and introduce and prove concepts that would otherwise
disrupt the flow of the thesis.

2 Population dynamics

2.1 Definitions

A cohort is defined as a set of individuals that share a set of common traits.1 A
population, is defined as a non-negative integer representing the cardinality of
the cohort, ie the number of individuals that make up the cohort. Populations
vary through time and can be seen as functions from continuous time to the
natural numbers N. Let N denote a set of populations in some future time with
unknown values and n denote a set of populations in past or present times with
known values. N can hence be regarded as a multivariate random variable and
n is a realization of a multivariate random variable. The goal of the project is to
model the probability of future populations given past populations, i.e. p(N|n).

A demographic process D is defined as the factors that causes changes in popu-
lations and they occur at specific points in continuous time. The demographic
processes considered in this study are aging, birth denoted F , death denoted
M , immigration denoted P and emigration denoted Q.2. The population at
risk of a demographic process is defined as the set of individuals with a non-
zero probability of going through the demographic process. The population at
risk are different for various demographic processes. Using the standard female
dominant model of birth [10], the population at risk for the birth process is the
set of females of fertile age, which in this study is regarded as 14-49 years of
age. Births outside of this range do occur but are rare enough to be neglected
without significantly affecting the accuracy of the model.

Each demographic process has a different effect on populations. Aging transfers
individuals to populations consisting of people one year older. Migration trans-
fers people to populations at new locations. Birth creates new individuals to
the population consisting of people of age zero having the same location as the
mother (usually) and death will decrease the population. Aging is a determin-
istic process that occurs to every member of a population. The other processes
are however modelled as stochastic processes.

Note that within the scope of this project, immigration and emigration is de-
fined as people moving from one location to another, independently of how the
geographic location at interest is defined. This definition will coincide with the

1Examples of traits includes being of a set of ages, living in some location, having completed
some level of education etc.

2This is not an exhaustive list of all possible demographic processes since they depend on
the conditions used to define a population. For example, if we consider the population of
married people, divorce is demographic process that decreases its population count.
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common definition of emigration and immigration where people move in and
out of different countries, if the populations at interest are the population of
countries, but this is not necessarily the case and will not be the case in the
application of the model framework presented in section 4.

Depending on which conditions are used to define a population, different de-
mographic processes will affect the dynamics of the population. To mention a
few examples of this, a population covering all ages will not change over time
due to aging, a population covering all geographic locations will not change over
time due to immigration or emigration and populations that exclusively consist
of ages larger than zero will not be affected by birth.

A demographic variable is a positive integer that for each cohort indicates the
number of occurrences of the corresponding demographic process between two
points in time, such that the effect of the demographic process has changed the
population of a cohort.3 The sampling times for demographic variables and
population counts is conveniently set to once per year, which will have the ad-
vantage that for each step in the process, every individual have aged exactly
one year. This is also the sampling rate of the demographic data that the ap-
plication of this framework is used on. In this study, I will use integers t as an
index to denote time, where . The different demographic variables and their
interpretations are:

• Birth counts: Denotes the number of new born individuals that between
times t−1 and t where registered in the location of the cohort at the time
of birth. This is regardless of whether they still live there at sampling
time t.

• Death counts: Denotes the number of reported deaths of individuals be-
tween times t − 1 and t that would have reached the age of the cohort
at time t if they would not have died and who at the time of death were
registered in the location of the cohort.

• Immigration counts: Denotes the number of occasions where individuals
have registered to live at a new address within the location of the cohort
at any point between times t − 1 and t. This includes individuals who
move between locations within the cohort.

• Emigration counts: Denotes the number of occasions where individuals
who are registered on an address within the location of the cohort register
at any other address at any point between times t−1 and t. This includes
individuals who move between locations within the cohort.

The reason that migration within cohorts is included in the immigration and
emigration counts is to obtain the property that the sum of any demographic
variables of a set of mutually disjoint cohorts will equal the value of the demo-
graphic variable for another cohort, defined as the union of the original cohorts,
which is mathematically expressed as (6) in the next section. This is also how
the demographic data used in this study was collected. The consequence of this
is that if an individual moves between two locations within the cohort, it will

3Note that this definition differs from the definition used by [24]
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add one to the emigration count and one to the immigration count.

In analogy with the notation for population counts, let D denote a set of demo-
graphic variables in time periods containing future time with unknown values
and d denote a set of demographic variables in past time periods with known
values. Ones again, D can be regarded as a multivariate random variable and
d can be regarded as a realization of a multivariate random variable. The pur-
pose of introducing demographic variables is to be able to work with the joint
probability of future population counts and demographic variables given old re-
alizations, i.e. p(N,D|n,d) which can be marginalized to obtain p(N|n). As
will become clear in the subsequent sections of this paper, the joint probability
p(N,D|n,d) is more intuitive to model compared to modelling p(N|n) directly.

2.2 Model of populations

In this study, the qualifying variables used to define cohorts are age (denoted by
j ∈ ℘(0, 1, ...,J ) where ℘(∗) denotes the power set of a set ∗, each integer de-
note the maximum age achieved during the given time period and J denotes the
cap age category that includes people older than or equal to J years old), gen-
der (denoted by k ∈ {0, 1, {0, 1}}, where 1 indicate male, 0 indicates female and
{0, 1} indicate both genders are included in the cohort) and geographic location
(denoted by l ∈ ℘(L), where L denote some set of non-overlapping locations).
Let Njklt denote the population count of a cohort consisting of people of ages j,
genders k living in locations l at time t and let Djklt ∈ {Fklt,Mjklt, Pjklt, Qjklt}
denote a demographic variable for cohort jklt, where where Fklt denotes the
number of people being born, Mjklt denotes the number of people dying, Pjklt
denotes the number of people moving into an area and Qjklt denotes the num-
ber of people moving out between time periods t and t− 1 in cohort jklt. The
missing age index from Fklt corresponds to every one being born is of age zero.
In later parts of the thesis, I will sometimes denote birth counts with an age
index as Fjklt. In those cases, the age index j denotes the age of the mother
and the interpretation is the number of babies of gender k born in location l
between times t− 1 and t by a mother of age k. It hence follows that for all j,
j and t, we have

∑49
j=14 Fjklt = Fklt

If we consider population counts recorded at regular one year intervals between
time points, the relation between cohort population counts between two adja-
cent points in time is, for j = 1, ...,J − 1.

Njklt = N(j−1)klt−1 −Mjklt + Pjklt −Qjklt (1)

N(j−i)klt−1 corresponds to the initial population of the cohort and the j − 1
accounts for the fact that each member of the cohort was one year younger at
the last time point. This decomposition is presented in [24]. For j = 0, we have
no initial population. Hence:

N0klt = Fklt −M0klt + P0klt −Q0klt (2)

For members of the cap age category, the existing members must also be included
since it covers people of age J and above. Hence, for j = J :
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NJ klt = N(J−1)klt−1 +NJ klt−1 −MJ klt + PJ klt −QJ klt (3)

To generalize these notions, we will introduce the notion of source cohort of a
cohort γ, which denotes the cohort consisting of the same individuals as γ at
time t− 1 if no demographic process except aging would have occurred. Let γ∗

denote the source cohort of γ. If age is not a cohort defining factor, we simply
have γ = γ∗, otherwise if γ = {jkl} then γ∗ = {(j − 1)kl} for j = 1, ...,J − 1,
γ∗ = ∅ for j = 0 and γ∗ = {jkl}∪{(j−1)kl} for j = J . By using this notation,
(1), (2) and (3) can be compactly expressed as:

Nγt = Nγ∗t−1 + Fγt −Mγt + Pγt −Qγt (4)

It follows that Fγt = 0 for any cohort not containing newborns and Nγ∗t−1 = 0
for cohorts that exclusively contains newborns.

Let γ be a cohort and γi i = 1, .., I be a disjoint partition of γ. Then, for
population counts Nγ , Nγi i = 1, ..., I and for any demographic variable Dγ ,
Dγi i = 1, ..., I, we have for all t:

Nγt =

I∑
i=1

Nγit (5)

Dγt =

I∑
i=1

Dγit (6)

Using (4), (5) (6), we can create networks representing the relations between
arbitrary populations in a series of adjacent time steps.

2.3 Model of intrinsic demographic processes

In this thesis, I will use the term intrinsic to describe the demographic processes
of birth, death and emigration. This is because the populations at risks for
them are mainly the source cohorts and they will be modelled similarly. The
demographic variables Dγt of intrinsic demographic processes can be split into
an intrinsic component D∗γt for which the population at risk is the source cohort
and an external component Dext

γt for which the population at risk is individuals
outside of the source cohort:

Dγt = D∗γt +Dext
γt (7)

The intrinsic component D∗γt of a demographic variable is modelled by individ-
ual probabilities of undergoing a demographic processes. For any cohort γ, each
member of its source cohort γ∗ is assumed to have some individual probability
µDt of going through an intrinsic demographic processes D between time points
t − 1 and t. The individual probability µDt is hereby denoted the demographic
rate. Hence each individual can be regarded as a Bernoulli trial for each demo-
graphic, where the demographic rate is the probability of success.

This Bernoulli trial model of the demographic processes is a somewhat over-
simplified representation of reality, since it assumes that for a given individual,
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the demographic processes occur independently of each other, which is clearly
not the case. The possibility for an individual to undergo multiple demographic
processes within the time frame t − 1 to t depend on the exact times that the
processes occured. If an individual dies, no subsequent demographic process can
occur and if an individual emigrates, any subsequent demographic process will
not enter the demographic count for that cohort. The solution to this problem is
to define the demographic rates as the probability for each demographic process
to occur before the individual either dies or moves out.

The Bernoulli trial model also implies that an individual cannot undergo a
given demographic process more than once per year. This assumption is clearly
valid for death and emigration. For births, the assumption valid to a large
degree since non-twin births rarely occur more than once per mother within
a year and twin births only occur between 9 and 16 times per 1000 births in
western Europe according to [17]. The few occurences of multiple births within
a year for one woman will create a small bias to the structural interpretation
of the individual annual probability of birth µFt , since the model will slightly
overestimate the true probability. This will however not affect the predictive
power of the model, since the structural interpretation of parameters is irrevant
for that purpose.

Let γ denote a cohort that containins individuals that between times t and
t − 1 are modelled to share the demographic rate µDt for some intrinsic demo-
graphic variable D ∈ {F,M,Q}. Such cohort is hereby denoted a homogeneous
population or a homogeneous cohort with respect to D and their common de-
mographic rate is denoted µDγt. Under these assumptions, the intrinsic part of
the demographic variable D∗γt is binomially distributed with Nγ∗t−1 number of
trials and with µγt probability of success, since the sum of any independent
Bernoulli trials with a common probability of success is binomially distributed
with equivalent parameters [11].

D∗γt ∈ Bin(Nγ∗t−1, µ
D
γt) (8)

This general model is also applicable to cohorts consisting of single individu-
als, since Bin(1, µD) will simply be Bernoulli distributed with probability µD.
Trivially, every cohort consisting of single individuals are homogeneous cohort.

2.3.1 Model of non-intrinsic part of intrinsic demographic processes

In this project, the external parts of the death process Mext
γt and emigration

process Qextγt are considered neglectable and are hence set to zero for every co-
hort. This is motivated by exploratory analysis showing that age groups that are
likely to die are unlikely to immigrate and by the authors subjective judgement
that it is rare for an individual to move more than twice per year. Non-intrinsic
death and emigration is probably occurring in some degree, and a slight bias
is hence introduced in the structural interpretations of these parameters where
the individual probability of death and emigration is slightly underestimated by
the parameter. The external component for birth is however not neglected in
this project, which will be further developed in the subsequent section.
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2.3.2 Model of birth

The non-intrinsic part of birth counts from parents in cohort γ, F extγt can be
modelled using the same individual based approach as for the intrinsic part with
the source cohort replaced with the cohort consisting of every individual in γ
that does not belong to the source cohort γ∗. The two demographic processes
that adds individuals to a cohort except for ageing are birth and immigration.
Since new born children are not a population at risk for birth, the immigration
count Pγit will by itself make up the population at risk for non-intrinsic birth
counts. If γi i = 1, ..., I are homogeneous populations that form a partition of
γ, then by making use of (5), (6) and (8), we get:

F extγt =

I∑
i=1

F extγit (9)

Where:

F extγit ∈ Bin(Pγit, µ
F ext

γit ) (10)

Where µF
ext

γit is the demographic rate of this process, which further on will be

assumed to be equal to the birth rate of the source cohort µF
∗

γit. Now, demo-
graphic data seldom comes partitioned into external and internal components.
A child is assigned to a cohort regardless of whether or not the parents of the
child just moved in. And children that are born to parents that later move into
a cohort will not be included in the data. The solution is to include the zero
year old people moving into an area into the birth count. By doing that, birth
counts of children from parents that are member of a cohort γ, can be modelled
as:

Fγt + Pγ,j=0,t ∈ Bin(Nγ∗t−1 + Pγt, µ
F
γt) (11)

Where Fγt denotes the number of registered births in the location of cohort γ
between times t− 1 and t.

2.4 Model of immigration

The population at risk for immigration to a cohort γ consist of every individual
in a location within and outside of the source cohort having the same gender and
age minus one. Immigration counts can be decomposed into different component
based on place origin, a practice which may be usefull if the underlying processes
of immigraion from different origins are fundamentally different.4 The structure
of the place of origin will generally determine the appropriate model. If the place
of origin is large enough, the immigration rate can be thought of as independent
of the number of people living there. This model is used by [1] and [24]. Then
the immigration counts P δγt for a homogeneous population γ and a place of

origin δ can be assumed to be Poisson distributed with rate λδγt:

P δγt ∈ Po(λδγt) (12)

4For example, in the wake of the European 2015 migration crisis, teenagers have been
overrepresented in international immigraion compared to national immigration [25].
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The parameter is denoted λδγδt instead of µP
δ
γδt to avoid confusion in structural

interpretation. It is argued in [24] that the Poisson distribution is useful for this
kind of purpose. If the cohort of origin is too small for the Poisson-limit to be
applicable, it is recommended to use (8) where the number of trials is replaces
with the source population of the place of origin. Authors such as [20] fixes
the Poisson parameters to be proportional to the population of the destination
cohort, citing good empirical results using this practice despite lacking a priori
motivation for this. This will however severely limit the usefulness of the model
framework in cohorts where the majority of influx of people will be driven by
new housing development, and author like [24] simply uses an equivalent to (12)
to model immigration. An a priori explanation of the correlation between pop-
ulation and immigration counts is that they both correlate with the number of
available homes in the area, a factor which clearly can be considered to have
an a priori affect on immigration counts. The demographic data used to con-
struct this model framework does not contain information about the number
of available homes, and the solution is to use regression models to represent
the relationship between the immigration rate and factors that correlate with
the number of homes, such as emigration counts, death counts and populations.
Emigration counts for each are in the same manner dependent on the number
of available homes in the destination cohort. This number can be considered
constant for large enough destination cohorts.

Instances of migration cannot be considered independent on one another in the
sense that instances of birth and death are. It is assumed that the a posteriori
birth rate or death rate of an individual will not change if we include knowledge
of outcomes demographic processes for other individuals. They may very well
be dependent of demographic rates of other individuals, but the outcome of the
demographic processes given the rates contain no information for the birth and
death process, as opposed to the migration. For example, the probability of an
individual moving into a location will increase for every person actually moving
out of that location, since the process creates available housing.

3 Parameter estimation

The model of population dynamics given a set of parameters have been described
up till this point. In this section, we are going to explain how the parameters are
estimated using historic data. In particular, we will use the Bayesian approach
to model the posterior probability of the parameter values given demographic
data p(µ|n,d), where µ denotes a set of parameters. From this, we can derive
the probability of future populations and demographic variables given historic
data by integrating over the parameters:

p(N ,D|n,d) =

∫
p(N ,D|µ,n,d)p(µ|n,d)dµ (13)

Where the fist factor of the integrand is given by equations (4)-(12) and the
second factor of the integrand is obtained by the Bayesian inference describes
in this section. Neither the inference of the parameters and the forecasting
procedure will be analytically tractable and different numerical Monte Carlo
simulations will be utilized to perform the calculations. In particular, we will
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resort to the Metropolis-Hastings algorithm first proposed by [3] and generalized
by [6].

Consider the demographic rate µDt of some individual. To infer their probabil-
ity distribution from historic data, we will resort to two main approaches: Tree
based inference and regression. In the tree based inference, a larger population
is for each intrinsic demographic variable partitioned into homogeneous cohorts,
where each branch having one parameter to fit. The other approach is to use
some regression model for the demographic rates µDt = g(γ, t,w(t)), where g(∗)
denotes some function, w(t) denotes the state of environmental factors at time
t that is modelled to affect the demographic rates.

3.1 Stationary model

A stable time period τ of a parameter is defined as a set of neighbouring time
points t where:

• In the tree based model, the demographic rate is considered constant for
each point in the time period.

• In the regression model, the regression parameter are considered valid for
the entire time period.

For such time period, µDt is written µDτ in the tree based model and we have
g(γ, t,w(t)) = gτ (γ,w(t)), where the only time dependence within the stable
time period comes from fluctuation in the environmental factors. In the sta-
tionary model, the forecasting time frame is considered to lay within a stable
time period where historic data {n,d} exist and probability distributions future
parameter values are either the same as when they governed the historic data
for the tree based model or deducible through probability distributions of fu-
ture values of environmental factors for the regression model. The assumption
of stable time periods is what makes inference of the future possible and the
length of what could be considered a stable time period will vary depending
on the model used. Including environmental factors and trend components will
generally extend what could be considered a stable time period.

3.2 Tree based hierarchical Beta-Binomial model

For the intrinsic demographic processes, we will consider the tree based hierar-
chical Beta-Binomial model for inference of the parameters and the specifica-
tions of the model will be given in this section. We assume a priori independence
between the parameters, meaning that p(µ) =

∏
s p(µs) where µs denotes each

element of any parameter vector µ. Using this assumption, we can estimate the
posterior distributions of the demographic rates given historic data element-wise
for each homogeneous population γ using Bayes theorem [14]:

p(µDγτ |Nγ∗τ∗ , Dγτ ) ∝ p(µDγτ )p(Dγτ |µDγτ , Nγ∗τ∗) (14)

In (14), Nγ∗τ∗ =
∑
t∈τ Nγ∗t−1, representing every person year lived in a homo-

geneous cohort during a stable time period. We also have Dγτ =
∑
t∈τ Dγt,

corresponding to every occurrence of the demographic period during these per-
son years. As explained in section 2.3.2, we need to include immigration of

13



new born babies to our demographic variable and the immigration count of po-
tential parents to the source cohort. Hence, when modelling birth we define
Nγ∗τ∗ =

∑
t∈τ Nγ∗t−1 +Pγt and Fγτ =

∑
t∈τ Fγt+Pj=0,γt. The expected value

of the likelihood function will correspond to the number of person years times
the demographic rates. By solving for the cohort specific demographic rate dur-
ing a stable time period, the interpretation naturally becomes the percentage of
a cohort per year that experience a demographic process:

E[Dγτ |µDγτ , Nγ∗τ∗ ]

Nγ∗τ∗
= µDγτ (15)

The second factor of the right hand side of 12 represent the likelihood func-
tion of the demographic variable given source population and demograpic rate
p(Dγτ |µDγτ , Nγ∗τ∗). By the model presented in section 2, this is a binomially
distributed random variable. When estimating the posterior probabilities of the
parameter, we consider the likelihoodfunction for observed historic data that is
assumed to lie in the stable time period τ . The first factor of the right hand
side of 12 denotes the prior distribution of the parameters. Picking the prior
distribution of the demographic rate from the Beta-family will create a closed
form expression for the posterior, since it comes from the conjugate family of
the likelihood function [11]. We hence pick the following prior:

µDγiτ ∈ Beta(αDγiτ , β
D
γiτ ) (16)

In (16), αDγτ and βDγτ corresponds to the shape parameters of the Beta distri-
bution and are considered hyperparameters. This is what is referred to as a
hierarchical model in for example [11]. The subscript and superscript of the
shape parameters indicate that they may be unique for each homogeneous co-
hort, for each demographic variable and for each stable time period. They will
henceforth however be dropped for convenience. An illustration of the beta
random variable can be found in figure 2. The posterior distribution becomes:

µDγiτ |Nγ∗
i τ

∗ , Dγiτ ∈ Beta(α+Dγiτ , β +Nγ∗
i τ

∗ −Dγiτ ) (17)

The proof of this is presented in Appendix A. Using this procedure, closed form
posterior distributions of all parameter can be obtained following this pattern.
A strength of this approach is that the variance of the posterior distribution
will decrease with the number of observation, as the variance of a beta dis-
tributed random variable decreases as its parameter values increases, which is
clear in figure 2. The beta distribution plotted in the upper right and the
two bottom graphs have the same expected value. But as the shape parame-
ter value increases, the variance decreases. This corresponds to the fact that
more observations leads to more and more certain assessment of the underlying
demographic rate.

3.2.1 Haldane’s prior and adaptive stable time periods

Due to the vast number of different parameters in this study that will be es-
timated on a large set of different populations, I have chosen to work with
noninformative priors for the tree based hierarchical model. A noninformative
prior as described in [14] is a prior distribution that represent no a priori knowl-
edge of the probability distribution of the parameter. An uninformative prior
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Figure 2: The probability density function of the beta distribtution with four
different sets of shape parameters.

proposed by J. B. S. Haldane for the beta-binomial model is to set α = β = 0
[2]. The beta distribution only allows for strictly positive shape parameters and
Haldane’s prior can be seen as the limiting case of letting both parameters go to
zero. This is an improper prior since the prior distribution itself does not con-
stitute a probability distribution whose probability density function integrates
to one. This is however no problem as long as the posterior distribution is well
defined [19]. For (17) to be a well defined posterior distribution for α = β = 0
if there is at least one observed occurrence of the demographic processes and at
least one member of the source cohort that did not go through the demographic
process. In this approach, the posterior probability completely data-driven and
it is equivalent to the likelihood function. Further discussion of appropriate
prior distribution for beta-binomial model can be found in [19].

Some rare demographic events will have few observed occurrences, such as births
by teenagers and deaths of young children. Hence, these events may have no
observed occurrence rendering the Haldane’s prior infeasible. Even if occur-
rences is observed, they may be very few, and single occurrences will have a
huge impact on the parameter estimated. To avoid this, we will use adaptive
stable time period assumptions. If a demographic process have few occurrences
for a certain homogeneous cohort, we will include additional years of historic
data in the stable time period in hope for finding more observations. In this
study, we use a lower limit of four observations of a demographic process for a
homogeneous cohort until we stop including more data in the inference process.
If no more data is available and there are still fewer than four observations, we
use the data we have. If there are no observations after extending the stable
time period assumption, we simply assume that the demographic process will
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not occur with regard to the stable cohort γ, hence deterministically setting
µDγτ = 0. Conversely, if there are only successful trials, we set µDγτ = 1 deter-
ministically. This will only occur occasionally for small homogeneous cohort
and is probably a sign that the homogeneous cohort partition is too fine.

3.2.2 The cohort partition problem

A central issue with the tree based approach is which set of individuals that
can be considered a homogeneous cohort. In principle, the population of inter-
est for the forecast itself could be considered a homogeneous cohort, and the
estimation of the demographic rates for this particular group will accurately
reflect the probability of uniformly picking an individual that has gone though
a demographic process in a population. This will however completely neglect
the differences of demographic rates within the cohort. As the population com-
position changes with time the demographic rates are likely to shift, making the
parameter estimations unstable.

A different approach at the other end of the spectrum is to partition the feature
space of individuals such that every individual within the homogeneous cohorts
have the same attributes. This is possible for the qualifying variables defined
on finite spaces, such as age which is defined as 101 different classes, and gender
which are two classes. The location variable and environmental factors are of
course difficult to partition in this manner, but one could pick the smallest avail-
able unit in the data upon which the parameters are estimated. Demographic
data often comes in the form of tables where each cell corresponds to the num-
ber of individuals fulfilling conditions specified in the rows and columns, so the
feature space is usually already partitioned into some finite set. This lead to a
large number of parameter that has to be estimated using few observations, and
the model may hence sensitive to overfitting and too strong influence of prior
distributions.

The optimal cohort partition clearly is somewhere in between these two ex-
tremes. In the population forecasts that is currently conducted by the munici-
palities of Sweden, each age and gender is considered a homogeneous groups per
municipality. Data inspection does in fact reveal that the demographic rates
varies significantly between ages, genders and locations, see figure 9.

3.3 Poisson regression model for immigration

The cohort specific immigration counts P γt = [P δ1γt , P
δ2
γt , ...] was in the pop-

ulation dynamics sections modelled as a Poison distributed random variable
with immigration rate λγt = [λδ1γt, λ

δ2
γt, ...] for large cohorts of origin δ1, δ2, ....

We will assume that immigration rates are independent of immigration rates
of other locations, meaning that p(λl1 ,λl2 ...) =

∏
i p(λli), where li denotes dif-

ferent non-overlapping cohorts partitioned only on location. This is however
not true for the immigration rates for subpopulations within an area. The as-
sumed strong correlation between total migration into an area and the number
of available housing there is the reason that each instance immigration can be a
priori assumed to decrease the probability of other instances. This is an a priori
assumption that may or may not be true for empirical data. But it is enough
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to argue that immigration rates within an area should be modelled to have the
ability to be dependent on one another. Immigation counts from different source
locations to a given cohort can also be considered dependent for the same reason
as for subcohorts within a location is dependent, which is motivation for using
multivariate models rater than separate univariate models for this.

Figure 3: A plot of net migration and number of newly built apartments for
1418 different areas within Stockholm county. The the existence of a correlation
is clear

Consider the case where the cohort of interest is simply defined by a location.
We will also for simplicity only consider total immigration counts regardless
of location of origin. The model could be extended to a multivariate model
that capture different behaviours of different location of origins. We wish to
estimate the probability distribution of the immigration rate based on the states
of environmental factors of the area. Let the vector X lt = [X1

lt, X
2
lt, ..., X

K
lt ]

denote the state a set of K environmental factors, or covariates, for location l
at time t. The standard Poisson linear regression model is usually used for this
kind of situation, as stated in [16]:

λlt = exp(β0τ +

K∑
k=1

βkτX
k
lt) (18)

In the model above, βkτ , k = 0, 1, ...,K are regression parameters and by us-
ing a Bayesian framework, they will be equipped with prior distributions. The
subscript τ indicates that the Beta-parameters are assumed to be valid for de-
mographic data from the stable time period τ . The expected value and variance
of immigration counts are under this model:

E[Plt] = V ar[Plt] = exp(β0τ +

K∑
k=1

βkτX
k
lt) (19)

This model is too strict for our problem due to a number of built in assumptions.
The expected immigration counts does not necessarily have a log-linear relation-
ship between the covariates. There is an a priori expected linear relationship
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between covariates that contribute to increasing the number of available hous-
ing, such as death counts, emigration counts and the number of apartments
built.5 Another limitation is the constraint that the variance is proportional to
the expected value. This takes the built in randomness of the Poisson process
into account, but neglects randomness of the parameter itself that may arise
from unobserved heterogeneity or from intrinsic randomness. The solution is to
use a model family called negative binomial models. In particular, the model
referred to as the negbin-II model in [16] is particularly handy due to its con-
venient closed form analytical expression. The negbin-II model assumes that
the probability distribution of the immigration rate given covariates is gamma
distributed.

λlt ∈ Γ(στ ,
στ

gτ (X lt)
) (20)

Where gτ (∗) is some general positive real-valued regression function that cap-
tures the relation between covariates and the immigration rate and σ is a real
positive. The subscript indicates that the model parameters are assumed to
be valid for the entire stable time period τ . This subscript may be dropped
henceforth due to convenience of notation. Central properties is that we have
E[λlt|X lt, σ] = g(X lt) and V ar[λlt|X lt, σ] = g(X lt)

2/σ. The structural inter-
pretation of the regression function and the parameter σ becomes clear. Using
the law of double expectation [11], we get E[Plt|X lt, σ] = g(X lt) and using the
law of double variance [11], we get:

V ar(Plt|X lt, σ) = E[V ar(Plt|λlt,X lt, σ)] + V ar(E[Plt|λlt,X lt, σ])

= E[λlt|X lt, σ] + V ar(λlt|X lt, σ) = g(X lt) +
g(X lt)

2

σ
(21)

The regression function g(∗) can be defined in various ways, as will be presented
in the subsequent sections.

3.3.1 Linear regression function

Exploratory data analysis has shown that for subareas of Stockholm county,
the number of individuals moving into the area has a strong linear relationship
with number of individuals moving out, the number of individuals dying and the
number of newly built housing. A crude example of this can be found in figure 3,
where the linear trend between new housing development and net migrations is
strong. Modelling the relationship between the dependent variable (immigration
counts) and these as log-linear would likely create a specification error. Hence,
we resort to using a linear regression function. Let H lt = [H1

lt, H
2
lt, ...,H

KH
lt , ]

denote a vector representing the number of newly built units of housing of
types kH = 1, 2, ...,KH between times t − 1 and t. Then, the linear model of
environmental variables X lt = [Nlt−1,Mlt, Qlt,H lt] becomes:

g(X lt) = β0τ +

K∑
k=1

βkτX
k
lt (22)

5This is as long as the demand for housing somewhat matches the supply, but information
regarding this is not present in the value of the variables.
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Where βkτ , k = 1, ...K are parameters and K = 3 + KH . The partition of
the number of new houses into different categories is used to be able to model
different effects of different types of housing. One room studio apartments will
probably have a different effect on the population than houses.

The regression function must be positive valued and this fact will impose restric-
tions on the covariates and the parameters. All the covariates are in the form
of positive integers representing count data. Hence, restricting the parameters
to non-negative real numbers will be a sufficient condition to assure that the
immigration rate λlt is non-negative. This may sound to restrictive, but there is
a priori reasons to allow for this, since all covariates represent processes creat-
ing available housing that makes immigration possible. It is hence unreasonable
to expect negative parameter values. This restriction can be built in to the
prior distributions of βkτ , k = 1, ...,K by setting the prior probability to zero
for negative values. Consider a rather common situation in demographic data,
where all covariate values are zero. In this situation, we have λlt = β0τ and this
will be the structural interpretation of the intercept β0τ . That is, the expected
number of immigrant for an area without current population and without new
housing development.

3.3.2 Priors and posteriors

Let βτ = [β1τ , β2τ , ..., βKτ ] denote the set of regression parameters. The purpose
of the parameter estimation is to calculate the posterior parameter distribution
function f(βτ , σ|Xτ ,P τ ) , where Xτ are historic values of the covariates and
P τ are historic immigration counts for the stable time period τ . This is through
Bayes theorem proportional to:

f(βτ , σ|Xτ ,P τ ) ∝ f(P τ |βτ , σ,Xτ )f(βτ , σ,Xτ ) (23)

The first factor to the right hand side of (23) represents the likelihood function
of the data given the parameters. Let λτ denote a set of Poisson parameters
from the stable time period τ , where the elements of λ matches the elements
of P τ in terms of the cohorts and times they represent. Now, the law of total
probability with regards to the immigration rates can be used to rewrite the
likelihood factor:

f(P τ |βτ , σ,Xτ ) =

∫
f(P τ |λτ ,βτ , σ,Xτ )f(λτ |βτ , σ,Xτ )dλτ (24)

Immigration counts P τ are conditionally independent of the parameters βτ and
σ given the immigration rates λτ . The probability distribution of immigration
counts given immigration rates are independent for each cohort included in the
demographic data. The immigration rates given the covariates and parameters
are also independent between cohorts. This simplifies the expression to:

f(P τ |βτ , σ,Xτ ) =
∏
l,t

∫
f(Plt|λlt)f(λlt|βτ , σ,X lt)dλlt (25)

Each factor of (25) are known from the model and the probability density
function of the likelihood function can be calculated with ease. Let ŷlt =
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β0τ +
∑K
k=1 βkτX

k
lt and let Γ(z) denote the gamma function defined by Γ(z) ,∫∞

0
tz−1e−tdt. We then have:

f(P τ |βτ , σ,Xτ ) =
∏
l,t

∫ ∞
0

λPltlt e
−λlt

Plt!

( σ
ŷlt

)σ
Γ(σ)

λσ−1lt exp

(
− σλlt

ŷlt

)
dλlt (26)

Rearranging and using the identity Plt! = Γ(Plt + 1) = PltΓ(Plt) yields:

f(P τ |βτ , σ,Xτ ) =
∏
l,t

σσ

PltΓ(Plt)Γ(σ)ŷσlt

∫ ∞
0

λPlt+σ−1lt e−λlt(1+σ/ŷlt)dλlt (27)

Now, consider a gamma distributed random variable with shape parameters
Plt + σ and 1 + σ/ŷlt. The probability density function of that random variable
will integrate to one, hence:(

1 +
σ

ŷlt

)Plt+σ
Γ(Plt + σ)

∫ ∞
0

λPlt+σ−1lt e−λlt(1+σ/ŷlt)dλlt = 1 (28)

From the equation above, we can simplify the integral expression of (27), in
that: ∫ ∞

0

λPlt+σ−1lt e−λlt(1+σ/ŷlt)dλlt =
Γ(Plt + σ)(

1 +
σ

ŷlt

)Plt+σ (29)

This yields:

f(P τ |βτ , σ,Xτ ) =
∏
l,t

σσΓ(Plt + σ)

PltΓ(Plt)Γ(σ)ŷσlt(1 + σ/ŷlt)Plt+σ
(30)

Rearranging and using the relation between the gamma function and the beta-
function, where Γ(σ + Plt)/(Γ(σ)Γ(Plt)) = Beta(σ, Plt) we get:

f(P τ |βτ , σ,Xτ ) =
∏
l,t

1

PltBeta(σ, Plt)

(
σ

σ + ŷlt

)σ(
ŷlt

σ + ŷlt

)Plt
(31)

We will make use of improper prior distributions of the parameters, but imposing
the restriction that only non-negative values are allowed. That is:

f(βτ , σ) ∝ 1 ∀βτ , σ ≥ 0 (32)

We can now express the posterior probability distribution of the parameters as,
for all non-negative parameter values, we have:

f(βτ , σ|Xτ ,P τ ) ∝
∏
l,t

1

Beta(σ, Plt)

(
σ

σ + ŷlt

)σ(
ŷlt

σ + ŷlt

)Plt
(33)

The omission of 1/Plt for the equation above is because this is simply a mul-
tiplicative constant when only considering the parameters, which is the only
feature of interest of this procedure.
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3.4 Inference through Metropolis-Hastings algorithm

As opposed to the Beta-binomial model used for birth, death and emigration,
there are no prior distribution family for the parameters βτ and σ that will
yield a closed form posterior distribution of the parameters given the historic
data. We must hence resort to approximate the distribution through numerical
methods and in particular, we will use the Metropolis-Hastings algorithm for
sampling from the joint posterior distribution. The Metropolis-Hastings algo-
rithm is a Markov chain Monte Carlo method which can be used to draw samples
from any target distribution for which we know the probability density function
up to a constant [6]. The concept of the algorithm is that you start with some
initial sample x0, draw a proposed sample x∗ from some proposal distribution
that depends on x0 denoted r(x∗|x0). Now, we calculate the likelihood ratio of
the two samples and if the proposed sample is more likely than the old sample
x0, we set x1 = x∗. If the old sample is more probable, we still set x1 = x∗ with
a probability proportional to the likelihood ratio, hence creating a small proba-
bility of accepting less likely states. If the proposed sample is not accepted, we
set x1 = x0. We then keep generating new proposed samples from the proposal
distribution, but given the last accepted sample [6] for each step. This is a
Markov chain method since the probability of the next state is only dependent
on the current state. One can show that the Markov chain constructed through
this algorithm will have a stationary distribution that coincides with normalized
version of the probability distribution we wish to draw from. Each sample is
however highly dependent on the previous samples and in order to downplay the
role of the arbitrarily picked initial value x0, one usually discards a number of
samples drawn in the beginning. These discarded samples are usually denoted
the burn in.

Let X be a random variable, x ∈ Ω denote an element of the sample space
Ω and f(x) denote the probability density function of the target distribution
we wish to draw samples from. The random variable X may or may not be
multivariate. Now define z(x) = f(x)/C for any positive real constant C. The
Metropolis Hastings algorithm for drawing samples from is [6]:

Set x0 to some initial value;
Set n as the number of sample we wish to draw;
Set m as the number of samples to be discarded as burn-in;
for i← 1 to m+ n do

Draw x∗ ∈ r(x∗|xi−1);

Set α =
z(x∗)r(xi−1|x∗)
z(xi−1)r(x∗|xi−1)

;

if α ≥ 1 then
Set xi = x∗;

else
Set xi = x∗ with probability α and xi = xi−1 otherwise;

end

end
Result: Samples xi for i = m+ 1, ...,m+ n can be regarded as n

samples from f(x)

As the stationary distribution of the Markov-chain coincides with the target
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distribution, we know that samples from the Metropolis Hastings algorithm
asymptotically approaches samples drawn from the target distribution. This
convergence may however be computationally too slow, and the rate of con-
vergence is highly dependent on the structure proposal distribution. Hence,
choosing an appropriate proposal distribution is crucial for practical usefulness
of the algorithm. A common diagnostics tool of the algorithm is the sample
autocorrelation function ρ̂(h) of the samples [8] which is defined as:

ρ̂(h) =
1

(n− h)σ̂2

n−h∑
i=1

(xi − µ̂)(xi+h − µ̂) (34)

Where µ̂ is an estimator of the mean and σ̂2 is an estimator of the variance. If
the autocorrelation function rapidly goes to zero as h grows, the samples can
be considered fairly independent on one another. This situation is called fast
mixing, as opposed to slow mixing where the autocorrelation function does not
decrease as fast. Fast mixing indicates that the Markov chain quickly reaches
all feasible states of the feature space Ω which decreases the necessary number
of samples needed to accurately represent the target distribution [8]. Another
diagnostic tool is the acceptance rate, which is the share of iteration where the
algorithm accepts the proposal density. A commonly used heuristics for this is
that an acceptance rate of around 23% is good [9]. These factors can be tuned
by picking an appropriate proposal distribution.

A common class of proposal distributions are the symmetric proposal distri-
butions [13], where r(x∗|xi−1) = r(xi−1|x∗). Using this reduces the acceptance
probability to α = z(x∗)/z(xi−1) which is computationally convenient. One
symmetric proposal distribution which is used in this study is the random walk
proposal, where x∗ = xi−1 + ε for ε drawn from some symmetric zero mean ran-
dom variable. We will use ε ∈ N (0,Σ) where N (0,Σ) denotes the multivariate
Gaussian distribution with mean vector 0 and covariance matrix Σ. The tuning
parameter of the algorithm is the covariance matrix Σ, which simply reduces to
a single variance parameter for single dimensional feature spaces. If the differ-
ent variables of the multivariate feature space are somewhat independent, there
should be no problems picking Σ = Is, where I denotes the identity matrix
and s denotes some vectors of component-wise variances. If the dependence is
so strong that we are unable to obtain fast mixing, we need to consider some
covariance matrix Σ having non-zero off-diagonal elements. More on picking
proposal distributions can be read in [13].

Consider each element sk of s that govern how far away the proposed sam-
ple typically gets from the last sample. A too small value will make the samples
highly dependent of one another. A too large value will often push the pro-
posed sample into improbably values, causing the acceptance rate to drop. This
causes many samples to assume identical values, which creates large correlation
between sample and slow mixing. There is hence some optimal variance for the
proposal distributions of each component, and it is up to the parameter selec-
tion procedure to tune them into their optimal value.

A good sanity check for the Metropolis Hastings algorithm is to test different
starting samples x0 and to make sure that the algorithm converges to producing
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samples in the same part of the feature space [8]. The algorithms does indeed
theoretically converge after infinitely many sample, but if different values of x0
produce vastly different results, there is reason to believe that the Markov chain
has not converged to its stationary distribution yet, meaning that either more
samples are needed or that the proposal distribution needs to be tweaked in
order to produce better mixing.

3.4.1 Empirical distribution approximation

For every parameter that needs to be inferred through the Metropolis Hastings
algorithm, the posterior distribution can only be represented as a large set of
samples generated through the algorithm. These samples can be used to define
the empirical distribution, whose cumulative distribution function F̂n(x) for n
number of samples can be defined as:

F̂n(x) =
1

n

n∑
i=1

1{Xi < x} (35)

Where Xi, i = 1, ..., n are the samples drawn from the target distribution and
1{Xi < x} denotes the indicator function that assumes value 1 if Xi < x and 0
otherwise. The Glivenko-Cantelli theorem states that the empirical distribution
converges almost surely to the target distribution as the number of samples goes
to infinity [4]:

sup
x∈R
|F̂n(x)− F (x)| a.s−−→ 0 (36)

Future sampling from the posterior distribution of these parameters will be
approximated by sampling from its empirical distribution based on the samples
of the algorithm, which is justified by the theorem above.

3.5 Dirichlet-multinomial hierachical model

In the previous section, we defined a procedure for the location specific immigra-
tion counts, where the rates could be assumed to be a priori independent of the
rates of other locations. Given a location l and a location specific immigration
count Plt, we wish to make a model of immigration to the populations of any
partition of l into I subcohorts, denoted lγi , i = 1, ..., I. In this thesis, the
sub-cohorts considered are the genders and ages of the immigrants to a location
l. The model used is a multinomial model with Plt number of trials that will
fall into any of the categories lγi , i = 1, ..., I, where Plγi t, i = 1, ..., I denotes
the number of trials falling into lγi . The parameters of the multinomial model,
except for the number of trials Plt, are the individual probabilities of each sub-
cohort πlγiτ , which are assumed to be valid for the stable time period τ . The
probability parameters for each subcohort must obey the following constraint:

I∑
i=1

πlγiτ = 1 (37)

Define πlτ = [πlγ1τ , πlγ2τ , ..., πlγI τ ] and P lt = [Plγ1 t, Plγ2 t, ..., PlγI t]. The pur-
pose of the inference is to find the posterior probability of the parameters given
historic accounts, which according to Bayes’ theorem can be expressed as:
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p(πlτ |Plt,P lt) ∝ p(P lt|πlτ , Plt)p(πlτ ) (38)

Where p(πlτ ) denotes the prior probabilities of subcohort probability param-
eters, and p(P lt|πlτ , Plt) denotes the likelihood of the subcohort specific im-
migration counts given total location immigration counts and the probability
parameters. The multinomial model states that the likelihood function is ex-
pressed as [14]:

p(P lt|πlτ , Plt) = Plt!

I∏
i=1

π
Plγi t

lγiτ

Plγi t!
(39)

For the prior probability, we will resort to the Dirichlet family. Having pa-

rameters αlτ = [α
(1)
lτ , α

(2)
lτ , ..., α

(I)
lτ ], we say that a random variable is Dirichlet

distributed, that is πlτ |αlτ ∈ Dir(αlτ ), if the probability density function is:

p(πlτ |αlτ ) = Γ

( I∑
i=1

α
(i)
lτ

) I∏
i=1

π
α

(i)
lτ −1

lγiτ

Γ(α
(i)
lτ )

(40)

It can be shown that given this prior probability, we will have [14]:

πlτ |Plt,P lt ∈ Dir(α̂lτ ) (41)

α̂lτ = {α(i)
lτ + Plγi t}

I
i=1

We will choose a noninformative prior pobability in the same manner as for the

beta-binomial model presented in section 3.2. We hence set α
(i)
lτ = 0.1,∀i, hence

assigning a small probability for subcohorts without observations to make the
model feasible.

3.5.1 The location partition problem

Equivalent to the cohort partition problem presented in the hierarchical beta-
binomial model section for intrinsic demographic processes, there is an equiv-
alent problem regarding finding a set of locations such that their subcohort
probability parameters can be regarded as the same. Looking only at the loca-
tion of interest if the simple answer, however there may be very few observations
in such area and the prior probability may play a way to strong role. The prior
probability is not completely uninformative. A typical example that is often
considered is to predict age specific immigration counts. There are J + 1 = 101
age categories, corresponding to I = 101 subcohorts for any given location. The
area is is newly built, and did not have any population nor immigration prior
to now. Only using local information when inferring the distribution of the
probability parameters for each age group will, without any observation, just
yield a copy of the prior probability. In such cases, one may use observations
of age distributions of other locations that can be thought of to be of the same
type. This classification of locations into clusters of similar type can be done by
expert knowledge, just as in the case of Beta-binomial model. Environmental
factors such as the type of housing, distance to city center, income level of the
area can be used to categorize the areas that make up the demographic data.
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3.6 Graphical model overview

In the recent sections, we have specified a cascade of different demographic
variables and their interdependence. To get an overview of the model structure,
we will represent the conditional probability distributions with a Bayesian net-
work. A Bayesian network is simply a decomposition of the joint probability
distribution into conditional distributions, such that a large number of condi-
tional independence assumption is used to simplify the expression [14][23]. A
simple example of a graphical representation of four random variables, a, b, c
and d. Now, consider the joint distribution decomposed into component in the
following way:

p(a, b, c, d) = p(a|b, c, d)p(b|c, d)p(c|d)p(d) (42)

Now, say that we happen to know that a is conditionally independent of c given
b, that b is conditionally independent of d given c and that c is independent of
d. Then, the expression simplifies to:

p(a, b, c, d) = p(a|b, d)p(b|c)p(c)p(d) (43)

A graphical representation of this would correspond to figure 4. Each random
variable is represented by a node and a directed edge is going from the random
variables which the first random variable is conditioned on in (43) to itself.

c

b

a d

Figure 4: Graphical representation of the random variables decomposed in (43)

Let N t denote a set of populations, F t denote a set of birth counts, M t denote
a set of death counts, Qt denote a set of emigration counts, M j=0,t and Qj=0,t

denote corresponding sets for cohorts consisting exclusively of zero year olds,

P
(l)
t denote a set of location specific immigration counts, P t denote a set of im-

migration counts partitioned on any set of variables, Ht denote a set of variables
indicating the number of new housing development and λt denote a set of im-
migration rates for some time point t within the stable period τ . Furthermore,
let µDτ , D ∈ {F,M,Q} denote sets of demographic rates for each demographic
variable, βτ denote a set of regression parameters for the immigration rates, στ
denote a set of parameters corresponding to σ in equation (20) and ατ denote a
set of Dirichlet parameters governing the subcohort distribution of immigration
counts for the stable time period τ . Using this kind of decomposition, we can
represent our model with figure 5, which neatly and compactly summarizes the
structure of the model. We have indicated the entities given in the historic data
by green and the latent parameter which are to be estimated by white. Hyper-
parameters are for simplicity not included in figure 5. The death and emigration
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counts for cohorts consisting of zero year olds has has the number of new births
as source populations (the number of trials in the binomial model) in contrast
to the population of last year which is the case of these demographic variables
for other age groups. This is why they are separated in the graphical model.

N t−1

M t Qt Ht

µMτ µQτ

βτ ,στ

λt

P
(l)
t

P t ατ

F t

M j=0,t µMj=0,τQj=0,tµQj=0,τ

µFτN t

Figure 5: The graphical representation of the model framework represented in
this study.

The graphical model of figure 5 can be considered a causal Bayesian network (as
described in [23]) since each arrow is pointing from a node that can be considered
to cause the other. Emigrations and death counts are caused by there being
a population there to begin with, immigration counts are (generally) caused
by available housing through either new developments or existing inhabitants
either moving out or dying. Birth is in turn caused by the people living there
or moving in there. And the emigration and death counts of new born children
are caused by them being born. The populations of next year is caused by
last years populations and the demographic processes that affects them. The
interpretability of these causal relations are one of the main strength with the
graphic representation of the model framework.
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4 Application

4.1 Forecast generation

After having estimated all the parameters for the cohorts of interest, we will now
lay out the procedures for generating forecasts. We will assume that the time
frame in which we wish to establish the forecast lie within the stable time period
that the parameters have been estimated within. By making that assumption,
we can now consider the posterior probability distributions of the parameters as
given. Let T denote the latest time in which we have access to demographic data
and we now wish to make forecasts of times T +1, T +2, ..., T +H for some time
horizon H years into the future. These forecast will consist of predictive dis-
tributions of future population levels given current populaions and the historic
data used to infer the posterior probability distributions of the parameters, or
p(NT+1,NT+2, ...,NT+H |NT , [historic data]). The forecasts are iteratively
generated one year at the time using the procedures summarized in figure 5.
Now that the posterior distributions of the parameters are given, the forecast
generating process simplifies to a top-down simulation of each process, starting
from the current population counts N t. Since there is no hope of finding closed
for expression for the predictive distributions, we will generate a large amount of
parallel samples for each process in figure X. Each sample from a parent enters
the child generating process as a parameter. To illustrate the procedure, take
some population such that the source cohort has a population of Nγ∗T = 54.
The emigration rate for the source cohort has been infered to be Beta(13, 140).
We now sample a large number of realisations from the emigration rate dis-
tribution, for example µQγt = 0.1316, 0.1169, 0.0707, 0.09118, .... When drawing

emigration count samples from Bin(Nγ∗T , µ
Q
γT+1), use each sampled value for

µQγt for one emigration count sample.

QγT+1 ∈ Bin(54, 0.1316), Bin(54, 0.1169), Bin(54, 0.0707), Bin(54, 0.09118), ...

Sampling from this yields QγT+1 = 4, 4, 8, 4, ..., where each sample represent
some possible future outcome. In the next step, we draw the same number of
samples from the other parentless nodes in figure 5 and keep on going until we
reach the end of the graph, where we will end up with a nuber of samples from
NγT+1 which is the target of the forecast. The Glivenko-Cantelli theorem stated
in (36) ensures that the empirical distribution of NγT+1 will approach the true
distribution for a large number of samples. The law of large number ensures
that the sample mean approaches the true expected value E[NγT+1].

As the forecasts consist of predictive distributions, it is fairly easy to infer
credible intervals of the approximations. The notion of credible intervals was
introduced by Ward Edwards in [5] and it is defined for credible level α ∈ (0, 1)
by an interval I = (Iinf , Isup) such that a share α of the density function of
the random variable lies within the interval. That is, for the random variable
of population NγT+1, we have for credible level α:

p(NγT+1 ∈ I) = α (44)

Multiple credible intervals that fulfills (44) exist for each credible level. In this
study, we focus on central credible intervals, or intervals defined such that:
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FNγT+1
(Iinf ) =

1

2
− α

2
, FNγT+1

(Isup) =
1

2
+
α

2
(45)

Where FNγT+1
denotes the cumulative distribution function of NγT+1. The

credible intervals of the true posterior distribution of population levels will be
approximated by the credible intervals of the empirical distribution.

Forecasting NT+2 involves an analogous procedure, where the starting pop-
ulation now is represented by the empirical distribution of NT+1 instead of
NT . This iterative process is continued for as long as one wish, and more ran-
domness is introduced in each time step. This leads to forecasts with larger
variance for long time frames, which is a reasonable expectation. Note that
the environmental variables used in determining the immigration rates are not
forecast along with the demographic variables and the populations, and future
values of these must be determined separately. This procedure can be done
through expert estimations where each environmental variable is assigned some
probability distribution for future times. We can also use some simple time
series model (for example, ARIMA-models, see [22]) to estimate the typical
volatility of the environmental variables. Note that in the application of the
model framework used in this study, we will not make multiple year forecasts.

4.2 Data

The model specified in earlier sections was used to predict populations of differ-
ent cohorts in Stockholm county, Sweden. The cohorts of interest were generated
by dividing the population of Stockholm county into different partitions based
on age groups and locations. We consider two different level of location par-
titions. One of the levels is corresponding to each municipality in Stockholm
county. A map of this location partition is provided in figure 6. The units of the
second level of location are called base areas, which are defined by Tillväxt- och
regionplaneförvaltningen, which is the regional planning authority in Stockholm
county. The base areas consists of areas of about one thousand inhabitants6 and
they are designed to represent as homogeneous populations as possible. Stock-
holm county consists of 26 municipalities and 1418 base areas. In figure 7, we
show how Täby municipality has been divided into base area as an example of
this.
The base areas used in this study are the ones defined in 2010. This is the finest
partition of location available in our demographic data. The demographic data
consists of population counts and demographic variables for each combination of
age, gender and base area and for each year between 2000 and 2016. The demo-
graphic data has been collected from Swedish population registers by Statistiska
centralbyr̊an (SCB) or Statistics Sweden, which is the governmental agency of
statistics in Sweden. The population counts of each year denotes the population
counts as of December 31:st of that year, and the demographic variables for each
year denotes the number of events of that demographic process that occurred
during the year. The effect of incorrectly registered and unregistered individuals
will not be taken into account in this study. The forecast will hence denote the
number of people registered as part of a given cohort, which may differ from

6The larges base area has a little less than ten thousand inhabitants and there are several
base area with no population whatsoever.
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Figure 6: Partition of Stockholm county into municipalities.

the de-facto population of the cohort. Unregistered international immigrants
are assumed to account for the largest portion of unaccounted individuals. This
will not pose a problem since the purpose of this study is to develop a tool for
societal planing of areas such as schooling and taxation, which are generally
based on the registered populations and not de-facto populations.
The historic data of new housing development has also been collected by SCB
based on reports from the Municipalities. However, municipal authorities have
flagged for discrepancy between the dates that the new housing is reported to
have been completed and the actual date when people are moving in. This
warning was confirmed by inspecting the data. Figure 8 shows two cases where
spikes in housing development causes immigration counts to rise. In the right
case, there is an almost perfect correlation with the number of new housing
units and the immigration counts within the area. In the left case however, the
spikes in new housing units lags behind the spike of immigration counts of 2010.
This phenomenon of new housing units being delayed was found in multiple
cases. This discrepancy can be taken into account by expanding the regression
function to take future values of new housing units into account. To reduce
the number of parameters for factors that are likely to have a small effect, we
collapse all lagged parameters into one that takes the total number of housing

units into account, regardless of type. Letting H
(tot)
lt denote the total number

of newly built housing unit in area l at time t, the modified version of (22)
becomes:

gτ (X lt) = β0τ +

K∑
k=1

βkτX
k
lt + β(lag)

τ H
(tot)
lt+1 (46)
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Figure 7: The partition of Täby municipality into base areas. The
numbers denote their respective reference code. Maps are available on
http://rufs.se/kartor/omradesdata/basomradeskartor-2010/

4.3 Model training

The model framework described in the previous sections has been used to make
forecasts of different populations of Stockholm county. We have made forecasts
for the total population of Stockholm county (denoted Partition A), for each
age group in Stockholm county (denoted Partition B), for the total popula-
tion of each municipality (denoted Partition C ), for the population of each age
group in each county (denoted Partition D), for total population each base area
(denoted Partition E ) and for the populations of each age group in each base
area (denoted Partition F ). There are 1 population in partition A, 101 popu-
lations in partition B (using the cap-age of 100 years old), 26 populations in
partition C, 2626 populations in partition D, 1418 populations in partition E
and a staggering 143218 cohorts in partition F that can be trained for each year.

The posterior distribution of demographic rates and other parameters were es-
timated using the procedures described in section 3. They were estimated using
different training schemes and tested on historic data left out of the training part
to analyze which specific model in the model framework that produces the best
results with regard to different populations and demographic variables. For the
intrinsic demographic variables, we used two homogeneous cohort assumptions
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Figure 8: Area specific immigration counts and new housing units plotted along-
side each other for two base areas. Note that the axes differ in value for each
variable.

in the preliminary test rounds. We partitioned our cohorts on age and gender
(denoted Partition B* ) and on age, gender and municipality (denoted Partition
D* ). For the birth rates however, we will not train the parameters on gender
of the children. This is due to the fact that we often lack data for the gender
of new born children. We will instead only estimate µFjlτ for each age of mother
j = 14, ..., 49 and location in the stable time period. We will then simulate
the gender of the child assume using the well established 51.4% probability of
a new-born baby being a boy in Sweden. Furthermore, due to the lack of data
regarding the age of the mothers of zero year olds that is moving into an area,
we will not use the approximation of total birth counts stated in (11). Since
the location cohorts used to estimate the birth parameters are large enough and
not mainly made up by new housing development, this negligence of immigrant
births should not affect the predictive power of the birth rate estimates. In
other words, we will simply be using (8) to model birth in this application of
the model framework.

For the estimation of within location subcohort immigration estimation given
total immigration to the area described in section 3.5, we define the entire
Stockholm county (Partition A) as an homogeneous area in one model and each
municipality (Partition C) as a homogeneous area in another model. Hence, for
each intrinsic demographic variable and the subcohort immigration probabili-
ties, we will fit models on a finer and a coarser homogeneous cohort assumption.
The finer models (partitions D* and C) will in general have fewer observations
to base its inference on compared to the coarser models (partitions B* and A).
This will lead to parameter estimates with higher variance and broader credible
intervals, which is demonstrated in figure 2. The strength of using a cohort
partition finer than the population at interest for training the parameters is
that if the populations consists of several homogeneous cohorts and the the
proportions of these homogeneous cohorts shift, the finer model will capture
this whereas the coarser model will not. There may be motivation to use a
homogeneous cohort assumptions that is coarser than the population of inter-
est if there are too few historic observations of a certain demographic process
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within the cohort of interest. In such situation, the parameter estimations will
be very sensitive to single observations and may overfit the data. It may also
be motivated by missing data, which is the case for partition F in this study.
We simply don’t have any available data of demographic variables in partition
F. We do however have populations, which is why forecasts will be tested on
these to see how good the coarser model will perform on such small populations.

For the location specific immigration model, we will try two different regres-
sion models. Recall the regression function of the negbin-II-model described in
section 2.4 (stable time period index is dropped for convenience):

g(X lt) = β0 + βQtQlt + βMtMlt +

KH∑
k=1

βHkH
k
lt + β

(lag)
H H

(tot)
lt+1 (47)

The current population of the location Nlt−1 was dropped out of the model due
to preliminary model analysis showed that including it did not significantly affect
the results if the other variable were included. Hk

lt, k = 1, ...,KH denotes the
values of the KH different number of variable related to new housing. The dif-
ference in the two models is which housing categories that the newly developed
housing in an area is divided into. The new housing variables are either parti-
tioned into components representing the number of new built apartments (ap),
terraced houses (th) and detached houses (dh) H lt = [Hap

lt , H
th
lt , H

dh
lt ] (hereby

denoted model 1 ) or partitioned after type and number of rooms (kitchens ex-
cluded) for apartments H lt = [Hap1

lt , Hap2
lt , ...,Hap5

lt , Hth
lt , H

dh
lt ] (hereby denoted

Model 2 ). Note that the Hap5-variable captures newly built housing with five
or more rooms. Apartments reported as having zero rooms generally denotes
student housing with shared kitchens. The location specific immigration model
will for each housing parameter schema be trained using data points generated
by location partition partition E (resulting in 1418 data points for each year)
to obtain posterior distributions of parameters.
A few exploratory results on the estimated demographic rates of historic data
are presented in figure 9. The ”high” lines represent the upper bounds of the
90 percent credible intervals and the ”low” lines represent the lower bounds of
the 90 percent credible intervals for each demographic rate presented. These
graphs show that demographic rates may significantly differ for certain genders,
age groups and areas which is motivating the partition of homogeneous cohorts.
The graph on the left show some slight trends and random variance between
years which may question the validity of the stable time period assumptions.

4.4 Validation procedure

Any selection we can make in the model (such as altering the homogeneous
cohort partition assumption, or choosing different variables to include in our
immigration negbin-II-model) will hereby be referred to as a training schema.
After the parameters have been trained using the schemas presented in the last
section, we wish to establish the schema that systematically produce the best
results for each demographic variable and for each cohort of interest. We will
use the historic data of demographic variables to make one year forecasts of each
demographic variable for each year. We will for each (feasible) year train a set
of model on historic data up till the year before. Using the demographic states

32



2000 2005 2010 2015

0.
00

0.
05

0.
10

0.
15

Age specific birth rates

For Stockholm county
Year

R
at

e

33 y/o high

33 y/o low

28 y/o high

28 y/o low

22 y/o high

22 y/o low

15 20 25 30 35 40 45 50

0.
00

0.
05

0.
10

0.
15

0.
20

Municipality specific birth rates

As of 2008
Age

R
at

e

Stockholm county expected value

Huddinge kommun high

Huddinge kommun low

Solna kommun high

Solna kommun low

2000 2005 2010 2015

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Gender specific death rates

For 79 year olds in Stockholm county
Year

R
at

e

Male high

Male low

Female high

Female low

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

Gender specific death rates in 2008

For Stockholm county in 2008
Age

R
at

e

Male high

Male low

Female high

Female low

2000 2005 2010 2015

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Age specific emigration rates

For females in Stockholm county
Year

R
at

e

24 y/o high

24 y/o low

50 y/o high

50 y/o low

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

Gender specific emigration rates

For Stockholm county in 2008
Age

R
at

e

Female high

Female low

Male high

Male low

Figure 9: 90% credible intervals of the posterior distribution of the intrinsic
demographic rates, plotted against time and different age group for a selection
of cases.

of the year before, we will make forecasts of demographic variables of that year.
We can then compare the forecasts with the true values in order to determine
which schema is best suited for a particular situation. This kind of rolling leave
one out validation approach of time series data has been suggested in [18].

For the tree-based parameters, the cohort partition used for the training may
either be finer, identical, coarser or non-overlapping with the cohort partition
that the forecasts are made of. Coarser partitions will in general produce tighter
confidence bounds than finer approaches due to a higher number of observa-
tions per parameter. If the training partition is partitioned coarser than the
cohorts we are forecasting and the homogeneous cohort assumption erroneous,
we should expect erroneous forecasts as well. Another hypothesis to be tested
is that partitions finer than the population of interest should be able to make
better forecasts, as they capture the structural difference of the demographic
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tendencies of the individuals within the cohort of interest and as the population
composition changes in an area, the stable time assumption will no longer hold.

4.4.1 Regression diagnostics

The regression model of the immigration counts stated in (12), (20) and (22)
are base on a number of distributional assumptions. In (21), we get the variance
of the immigration counts given the covariates. Since the variance is invariant
to a change in location parameter, we also have:

V ar(Plt − g(X lt)) = g(X lt) +
g(X lt)

2

σ
(48)

The conditioning on the covariates and σ is omitted for convenience. Now
consider the expected value of the residual squared:

V ar(g(X lt)− Plt) = E[(g(X lt)− Plt)2]− E[g(X lt)− Plt]2

= E[(g(X lt)− Plt)2]− (E[g(X lt)]−E[Plt])
2 = E[(g(X lt)− Plt)2]− (Plt − Plt)2

= E[(g(X lt)− Plt)2] (49)

Hence, from (48) and (49) we get :

E[(g(X lt)− Plt)2] = g(X lt) +
g(X lt)

2

σ
(50)

This is the expected distribution of the residuals squared as a function of their
expected value g(X lt). As a diagnostics tool, we will plot the residuals squared
as a function of the predicted value for the immigration counts and graphically
inspect weather the residuals squared value can reasonably have been generated
from a random variable with the expected value given by (49). Another assump-
tion is that the expected value of the residuals should be zero, independently
on the predicted value g(X lt). Hence, plotting the residuals as a function of
predicted value will be helpful tools to investigate weather the regression model
is misspecified or not.

4.4.2 Accuracy metrics

A few accuracy metrics will be used to evaluate the performance of the model,
of which one is the distribution of error terms as a function of various variable.
This is to investigate weather the model framework systematically over-or un-
derestimates the populations for some specific groups. We will in particular look
at the distribution of error terms for different ages and different cohort sizes to
uncover any bias that the models create. We will also look at the distributional
assumptions for the predictive distributions. For any credible level α, we should
expect around that share of observation lying within the corresponding credible
interval. If too few observations fall within the interval, the model is overconfi-
dent in its distributional assumptions, and if too many observations fall within
the credible interval, the model does not produce forecasts that are confident
enough. This metric will also be applied to different age groups and cohort
sizes in order to evaluate if the distributional assumptions of the models hold
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particularly well for some specific populations. The mean sum of squared error
is used to compare different models of the same population and is not meant to
be used as a tool to compare model strength for different populations.

5 Results

In this section, we will summarize the performances of the models we have tested
according to the procedures specified in the previous section. To summarize the
results, there was almost always at least one training schema for each demo-
graphic variable and for each type of target population that performed what
could be considered well. A well performing model is unbiased, ie the residuals
of the test data points seems to be generated from a zero mean random variable.
A well performing model is also a model that correctly estimates the built in
uncertainties of the demographic processes. Hence, around 90 percent of the
observed outcomes should fall within the 90 percent credible interval that is
given for each forecast. The model framework tend to perform worse on cohorts
not divided into age categories, where the typical problem is that the predictive
distribution of the demographic variables in these cases have lower variance than
the true distributions. This means that the built in beta binomial variance does
not fully explain the variances of demographic variables in these populations.
We also notice a general tendency of the model framework to overestimate the
number of deaths, especially for large cohorts.

5.1 Intrinsic demographic variable forecasts

We applied the algorithm to make next-year forecast simulations using data up
to time t for each past time data available. The results are summarized in table
1, where the model was tested for each homogeneous cohort assumption schema
on all cohorts in the partition presented in the column ”Cohorts”. The MSE-
column denotes the mean squared residual of the predicted demographic variable
compared to the true outcome. The in cred.int. column denotes the share of
observed demographic variables that fall within the 90 percent credible rate of
the predictive distribution in each case. Figures 14 to 43 of Appendix B shows
the residual and the average share of observations within the 90 percent credible
rate for the predictive distribution plotted against cohort size and age (in the
cases where cohorts are partition on age) for each row in table 1, which serves
to further illustrate the goodness of each schema. In figures 10 to 12, we have
plotted the total demographic counts in Stockholm county for each demographic
variable with the one year forecasts for each year, credible intervals included.
These graphs clearly illustrate the over confidence of the model framework for
cohort A, and by observing figures 38 to 43 depicting the performance of the
model framework for cohort C disaggregated by cohort sizes, we see that this
overestimation of certainty tend to affect larger cohorts.

Using the populations at interest as the homogeneous cohort assumptions worked
well in the cases where they could be tested. With the exception for an unusually
bad ability to accurately estimate the variance of emigration counts of people
around 80 years of age for partition D (see figure 36), the demographic variables
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Process Cohorts Homogeneous Cohorts MSE In cred.int.
Birth A B* 512449 0.500
Birth A D* 545089 0.500
Death A B* 154396 0.500
Death A D* 2045300 0
Emigration A B* 19177152 0
Emigration A D* 15488950 0.200
Birth B B* 2431 0.825
Birth B D* 2450 0.817
Death B B* 298 0.898
Death B D* 532 0.654
Emigration B B* 8190 0.738
Emigration B D* 9576 0.515
Birth C B* 18983 0.577
Birth C D* 6431 0.842
Death C B* 2131 0.627
Death C D* 5196 0.434
Emigration C B* 2648899 0.196
Emigration C D* 200188 0.480
Birth D B* 298 0.780
Birth D D* 67 0.923
Death D B* 6.69 0.959
Death D D* 10.1 0.946
Emigration D B* 1478 0.745
Emigration D D* 161 0.869

Table 1: Summary of results

for all cohorts that were trained using identical homogeneous cohort assump-
tions yielded unbiased results and correctly estimated the uncertainty of the
forecast. Using a finer homogeneous cohort assumption than the cohorts of in-
terest yielded equivalent results in the case of birth counts, but biased results for
the other demographic variables. This was clearly evident for deaths and also
in the case of partition A, where using an even finer partition (D*) gave more
biased results than using a coarser (B*). This is probably due to the already
present general bias to the death variable which is exaggerated when using finer
partitions. The adaptive stable time period algorithm which was described in
section 3.2.1 have also contributed to the bias, since it actively searches for rare
instances of a demographic event. Looking at figures 21 and 35, we see that
it is the small cohorts for which the events are rare that the forecasting algo-
rithm overestimates the occurrences systematically. This attempt to mimic the
heuristics of the forecasting procedures used for rare-event forecasting clearly
must be redefined for future studies of the subject.
Using a coarser homogeneous cohort assumption than the cohorts of interest
have yielded mixed results. Applying the B* schema for cohorts partitioned by
D gave comparable results with D* for the death process, but yielded overcon-
fident forecasts for emigration and extremely bad forecasts for births. The bias
of these demographic variables seem to grow with cohort size (see fig 27 and

36



2006 2008 2010 2012 2014

27
00

0
27

50
0

28
00

0
28

50
0

29
00

0
29

50
0

Births

times

2006 2008 2010 2012 2014

27
00

0
27

50
0

28
00

0
28

50
0

29
00

0
29

50
0

Births

times

Figure 10: Predicted total birth counts in Stockholm county versus the outcome.
The left figure depicts forecasts with parameters from training schema B* and
the right figure depicts forecasts with parameters from training schema D*.
The circles are the true outcomes, the black line denotes the expected value of
the predictive distribution, the yellow line denotes the mode of the predictive
distribution, the blue line denotes the lower bound and the red line denotes the
upper bound of the 90% credible interval

35). In the case of cohort partition C where one training schema is strictly finer
(partition D*) and one is finer in one dimension and coarser in another (parti-
tion B* is finer in age and coarser in location), the different training schemas
performed differently well on different demographic variables. For emigration,
the B*-schema was biased and the D*-schema, even though the forecasts were
overconfident, they lacked bias. Hence, the D*-schema is the preferred one for
emigration and partition C. Regarding deaths, the bias was conversely present
in the D*-schema but not int the B*-schema.

5.2 Immigration forecasts

5.2.1 Outliers

Before we trained the Metropolis-Hastings algorithm, we performed prelimi-
nary linear regressions with the sole purpose of identifying high leverage points
in the model using cooks distance. We found two particular base areas whose
data points were putting extraordinary leverage on the model. Both cases were
characterized by times of extraordinary large net migration without any con-
tributing factors present. Looking closer into these cases, we find that the areas
are the base areas with reference numbers 2242310 and 2230460, roughly cov-
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Figure 11: Predicted total death counts in Stockholm county versus the out-
come. The left figure depicts forecasts with parameters from training schema
B* and the right figure depicts forecasts with parameters from training schema
D*. The circles are the true outcomes, the black line denotes the expected value
of the predictive distribution, the yellow line denotes the mode of the predictive
distribution, the blue line denotes the lower bound and the red line denotes
the upper bound of the 90% credible interval. Note that the predictions are
not even present on the right graph, since they all fall outside the scope of the
y-axis. The predictions are above the actual values for each time in the right
graph.

ering the areas of Kista centrum and R̊acksta. In the Kista case, a large chunk
of student housing was built in 2002 and the subsequent immigration came in
subsequent years. Hence, we would need to specify further lag-components to
account for this effect. In the R̊acksta case, a large former office building (Vat-
tenfallshuset) were converted into housing. This was however not reported as
newly built housing in our data, and there were hence available housing lacking.
We removed all data points associated with these areas from the model.

5.2.2 Diagnosis of Metropolis-Hasting algorithm

The Metropolis Hastings algorithm was trained on location specific immigration
counts for both models with the parameters specified in table is summarized in
tables 2 for model 1 and in 3 for model 2. The columns x0 represent the
initial value of the Markov chain for each parameter. As stated in section 3.4,
the symmetric random walk proposal kernel was used with x∗ = xi−1 + ε for
generating proposals x∗ (where x is a vector consisting of each parameter to

be estimated [β0, βM , ..., β
(dh)
H , σ]) and where ε ∈ N (0,Σ) for some covariance
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Figure 12: Predicted total emigration counts in Stockholm county versus the
outcome. The left figure depicts forecasts with parameters from training schema
B* and the right figure depicts forecasts with parameters from training schema
D*. The circles are the true outcomes, the black line denotes the expected value
of the predictive distribution, the yellow line denotes the mode of the predictive
distribution, the blue line denotes the lower bound and the red line denotes the
upper bound of the 90% credible interval

matrix Σ. Fast mixing was obtained using a diagonal covariance matrix Σ = Is
where I denotes the identity matrix and s = [s1, s2, ..., sK ] is a vector containing
component-wise variances for each parameter. These component-wise variances
sk had to be tuned in to obtain fast mixing and the column sk shows the proposal
density variance used in the algorithm used to generate the empirical posterior
distribution. The column a.r. denotes the acceptance rate for each parameter
that was obtained when training the model on data between 2005 and 2010. The
column p.v. denotes the sample mean of the posterior empirical distribution and
the column s.d. denotes the standard deviation when training the data between.
In appendix B, there are plots, histograms and autocorrelation functions for the
Markov chain Monte Carlo samples for each parameter and model, trained on
data from between 2005 and 2010.

We found a negative correlation in both models between the parameter for
emigration counts and the parameter for death counts in both model 1 and
model 2. This is probably due to the fact that they are correlated in the data
and show a similar effect on immigration counts. A full presentation of the the
sample correlation between the posterior parameters distributions for model 1
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Parameter x0 sk a.r. p.v s.d.
β0 1 0.15 0.2440 0.9402 0.03033
βM 1 0.19 0.2478 0.9658 0.04620
βQ 1 0.016 0.2382 0.9616 0.004139

β
(ap)
H 1.5 0.25 0.2342 1.464 0.04801

β
(th)
H 1.8 1.3 0.2758 1.758 0.2903

β
(dh)
H 2.7 0.5 0.2344 2.482 0.0.1040

β
(lag)
H 0.3 0.1 0.2286 0.2820 0.02008
σ 18.5 3 0.1980 18.23 0.4842

Table 2: Table of cohort partitions used for training and forecasting.

respectively 2 when trained on data from between 2005 and 2010 can be found
in table 4 in Appendix B. The emigration count parameter and the death count
parameter all have an expected value close to one. This indicates that for each
person dying or moving out of an area, we can expect one person moving in.
For the new housing developments, we have for model 1, about 1.5 expected
immigrant per newly built apartment, 1.8 expected immigrant per terraced
housing unit and 2.7 expected immigrant per detached home. The model was
trained for each year between 2006 and 2014 and the left side of figure X shows
the expected value of each parameter plotted against the year after the last year
that the data was trained on. For each year, we trained the data on immigration
data from six years back. For model 2, we observed some interesting behaviour
in the results, which are summarized in table 3. The posterior distribution of
the intercept, death parameter, emigration parameter, terraced homes, detached
homes, lag and sigma parameters were strikingly similar between the models.
The expected value of 1.75 immigrants per newly built apartment in model 1
was replaced by an array of expected parameter values for model 2. Interesting
results were that the expected number of people moving in per newly build two
room apartment were smaller than the expected number of people moving in
per newly built one room apartment. We also found that we can expect fewer
people to move in per newly built 5 room or more apartment than per newly
built four or three room apartment. A large part of this can be explained by
lacking variation in the data (i.e multicollinearity). The number of three room
apartments built in a base area during a year can be predicted by the number of
two room apartments built using linear regression with an adjusted R-squared
value of 0.7221, meaning that there are few cases where the effect of each variable
can be tested individually. This is also evident in the strong negative correlation
of -0.69 between the posterior distribution of these parameter, as presented in
table 4. This may be problematic if such cases were to appear in the future,
and a recommended respecification of the model would be to aggregate the
variables for two room apartments and three room apartments into one variable
representing the total counts.

In figure 13 to the left, we have plotted the (training) residuals Plt − g(X lt)
against the predicted value g(X lt) and it is clear that the model does not have
a systematic off prediction based on predicted size. In figure 13 to the middle is a
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Parameter x0 sk a.r. p.v s.d.
β0 1 0.16 0.2276 0.9413 0.03014
βM 1 0.18 0.2432 0.9708 0.04543
βQ 1 0.02 0.1924 0.9613 0.004001

β
(ap0)
H 0.6 0.5 0.2790 0.5921 0.1194

β
(ap1)
H 0.9 1.8 0.2434 0.7525 0.4182

β
(ap2)
H 0.6 0.75 0.2094 0.6001 0.2254

β
(ap3)
H 2 0.9 0.2060 2.280 0.295

β
(ap4)
H 2 1 0.2838 2.380 0.3004

β
(ap5)
H 1.5 2.5 0.3040 1.180 0.8323

β
(th)
H 1.8 1.3 0.2754 1.810 0.3144

β
(dh)
H 2.5 0.5 0.2252 2.462 0.09661

β
(lag)
H 0.4 0.1 0.2368 0.2764 0.01888
σ 19 2 0.2866 18.51 0.4769

Table 3: Table of cohort partitions used for training and forecasting.

histogram of the residual. The residuals are close to zero mean and have slightly
heavier tails that a normal distributed random variables sharing the first two
moments. In figure 13 to the right, we have plotted the residual squared against
the predicted values g(X lt). The expected value of these points as a function of
X lt and σ is given by (50) and we have plotted this function for the expected
value of the sigma fitted in model 1 in green and the expected value of the sigma
fitted in model 2 in red. For data points having high predicted immigration,
the distribution of points follow the expected value line rather poorly. This
might be an indication of model misspecification. We will in this study however
focus on the predictive power of the model. In general, the models performed
similarly on training data. The mean of the absolute value of the residuals were
21.42 for model 1 and 21.25 for model 2.

5.2.3 Predictions

Due to time constraints, the immigration model have not been systematically
tested on immigration counts in the same manner as the intrinsic demographic
variables have. The regression model works well on training data and assuming
that it has not overfitted the training data, it should be expected to work on
test data as well.

6 Discussion

The model was successfully applied to one year forecasts of demographic vari-
ables, and tested on a large set of points. The hierarchic beta-binomial approach
seems to be able to produce unbiased forecasts of all demographic variables for
the entire range of populations consistently for the time period of 2006 to 2015
on which the framework was tested, given that the correct homogeneous cohort
assumptions are made. These seem to differ between the demographic variables
and the size of the populations which we are trying to predict, but a general
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Figure 13: Residual diagnostics of both models on training data

pattern that emerged was that for births and emigration, we need to specify the
age and gender specific demographic rates separately for each municipality. For
deaths however, the rates obtained from Stockholm county produced accurate
predictive distributions of deaths counts, meaning that the death rates can be
concluded to be the same between municipalities. Not choosing an excessively
fine homogeneous cohort assumption is helpful when considering the computa-
tional feasibility of implementing these models. Multiple year ancestral simula-
tions is going to involve a huge network of entangled probability distribution of
various demographic variables and population counts and as the homogeneous
cohort assumptions becomes finer, the computational requirements increases.

The tendency of the models to overestimate death counts may be attributed
to the general trend of declining death rates for all age groups [25]. The time
dependent one year estimations of death rates from Figure 9 shows a slightly
declining trend for the age group that was sampled and the long term decline of
death rates is a well established fact [7]. This demonstrate the need to include
trends in the model when making long term forecasts. By observing long term
time series data of the demographic rates, one can identify the historic variation
by fitting an ARIMA-model to the expected demographic rates. Even if there
is no clear trend, one can still estimate the variation of the demographic rates
from time to time, and the additional uncertainty of future demographic rates
can be included. This is exactly what [7] does with mortality rates, and [24]
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expands this framework to all demographic processes.

The model of immigration counts produced unbiased estimates on the train-
ing data. Plotting the residuals squared against the predicted values in figure
13 did however reveal a possibility of misspecification, as the squared residu-
als did not seem to have the predicted expected value specified in (50). The
actual residuals seemed to be smaller than expected for large predicted immigra-
tion counts and slightly higher for smaller predicted immigration counts. This
could take the effect of skewing the predictive distributions to have too high
variance for high predicted immigration counts (leading to an predictive distri-
bution with unnecessarily wide credible bounds) and too confident estimations
for cases with low predicted immigration counts. In further studies, one could
consider the generalization of the negbin-II-model, which is the negbin-X-model
as described in [16]. In this model family, the residual dependence of the right
term in (50) is no longer limited to a quadratic relation but can be have any
positive real number X as exponent. This extra degree of freedom will make it
easier for the red line in the rightmost graphs of figure 13 to follow the actual
data. Another interesting part of the immigration count model is the notion
of ”null-area”, i.e. areas where the value of all covariates are zero. The most
commonly estimated value of the intercept is around one, and hence, an area
without existing emigration, deaths and newly built housing should expect one
person moving in. Observing the actual outcomes of immigration counts in
these null-areas reveals that the vast majority of these areas indeed have no im-
migration, and the model hence does a poor job of estimating the immigration
counts of null areas in its current form. We hence recommend further studies
to utilize a Zero-inflated model, more on which can be read in [16].
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Appendices

A Further plots and results

In this section, we have appended the plots that does not fit in the results-section
but is however an important part of the results. Figure 14 to 43 depicts the test
residuals of single year intrinsic demographic variable forecasts and the share
of observations falling within the 90 percent credible interval. The red line on
the right diagrams of each figure represents the average number of observations
for the value of the variable specified in the x-axis lable. The points in the left
figure simply plots the residuals. Table 4 shows the correlations of the joint
posterior distribution of the parameters. Figure 44 to 54 depicts the Markov-
chain stages for each parameter as well as the sample autocorrelation function
and a histogram of the posterior distribution.
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Figure 14: Births, Partition B, Schema B*: Residuals as function of age to the
left, the share of observations that fall within 90% credible interval as function
of age to the right
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Figure 15: Births, Partition B, Schema B*: Residuals as function of number
of births in cohort to the left, the share of observations that fall within 90%
credible interval as function of number of births in cohort to the right
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Figure 16: Births, Partition B, Schema D*: Residuals as function of age to the
left, the share of observations that fall within 90% credible interval as function
of age to the right
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Figure 17: Births, Partition B, Schema B*: Residuals as function of number
of births in cohort to the left, the share of observations that fall within 90%
credible interval as function of number of births in cohort to the right
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Figure 18: Deaths, Partition B, Schema B*: Residuals as function of age to the
left, the share of observations that fall within 90% credible interval as function
of age to the right
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Figure 19: Deaths, Partition B, Schema B*: Residuals as function of number
of deaths in cohort to the left, the share of observations that fall within 90%
credible interval as function of number of births in cohort to the right
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Figure 20: Deaths, Partition B, Schema D*: Residuals as function of age to the
left, the share of observations that fall within 90% credible interval as function
of age to the right
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Figure 21: Deaths, Partition B, Schema D*: Residuals as function of number
of deaths in cohort to the left, the share of observations that fall within 90%
credible interval as function of number of births in cohort to the right
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Figure 22: Emigrations, Partition B, Schema B*: Residuals as function of age
to the left, the share of observations that fall within 90% credible interval as
function of age to the right
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Figure 23: Emigrations, Partition B, Schema B*: Residuals as function of num-
ber of emigrations in cohort to the left, the share of observations that fall within
90% credible interval as function of number of births in cohort to the right
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Figure 24: Emigrations, Partition B, Schema D*: Residuals as function of age
to the left, the share of observations that fall within 90% credible interval as
function of age to the right
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Figure 25: Emigrations, Partition B, Schema D*: Residuals as function of num-
ber of emigrations in cohort to the left, the share of observations that fall within
90% credible interval as function of number of births in cohort to the right
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Figure 26: Births, Partition D, Schema B*: Residuals as function of age to the
left, the share of observations that fall within 90% credible interval as function
of age to the right
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Figure 27: Births, Partition D, Schema B*: Residuals as function of number
of births in cohort to the left, the share of observations that fall within 90%
credible interval as function of number of births in cohort to the right
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Figure 28: Births, Partition D, Schema D*: Residuals as function of age to the
left, the share of observations that fall within 90% credible interval as function
of age to the right
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Figure 29: Births, Partition D, Schema D*:Residuals as function of number
of births in cohort to the left, the share of observations that fall within 90%
credible interval as function of number of births in cohort to the right
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Figure 30: Deaths, Partition D, Schema B*: Residuals as function of age to the
left, the share of observations that fall within 90% credible interval as function
of age to the right
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Figure 31: Deaths, Partition D, Schema B*: Residuals as function of number
of deaths in cohort to the left, the share of observations that fall within 90%
credible interval as function of number of births in cohort to the right
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Figure 32: Deaths, Partition D, Schema D*: Residuals as function of age to the
left, the share of observations that fall within 90% credible interval as function
of age to the right
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Figure 33: Deaths, Partition D, Schema D*: Residuals as function of number
of deaths in cohort to the left, the share of observations that fall within 90%
credible interval as function of number of births in cohort to the right
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Figure 34: Emigrations, Partition D, Schema B*: Residuals as function of age
to the left, the share of observations that fall within 90% credible interval as
function of age to the right
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Figure 35: Emigrations, Partition D, Schema B*: Residuals as function of num-
ber of emigrations in cohort to the left, the share of observations that fall within
90% credible interval as function of number of births in cohort to the right
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Figure 36: Emigrations, Partition D, Schema D*: Residuals as function of age
to the left, the share of observations that fall within 90% credible interval as
function of age to the right
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Figure 37: Emigrations, Partition D, Schema D*: Residuals as function of
number of emigrations in cohort to the left, the share of observations that fall
within 90% credible interval as function of number of births in cohort to the
right
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Figure 38: Births, Partition C, Schema B*: Residuals as function of number
of births in cohort to the left, the share of observations that fall within 90%
credible interval as function of number of births in cohort to the right
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Figure 39: Births, Partition C, Schema D*: Residuals as function of number
of births in cohort to the left, the share of observations that fall within 90%
credible interval as function of number of births in cohort to the right
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Figure 40: Deaths, Partition C, Schema B*: Residuals as function of number
of deaths in cohort to the left, the share of observations that fall within 90%
credible interval as function of number of births in cohort to the right
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Figure 41: Deaths, Partition C, Schema D*: Residuals as function of number
of deaths in cohort to the left, the share of observations that fall within 90%
credible interval as function of number of births in cohort to the right
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Figure 42: Emigration, Partition C, Schema B*: Residuals as function of num-
ber of emigrations in cohort to the left, the share of observations that fall within
90% credible interval as function of number of births in cohort to the right
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Figure 43: Emigration, Partition C, Schema D*: Residuals as function of num-
ber of emigrations in cohort to the left, the share of observations that fall within
90% credible interval as function of number of births in cohort to the right
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Figure 44: Left - Plot of MCMC-samples, Middle - Autocorrelation function,
Right - Histogram of marginal empirical distribution, Upper - β0 for Model 1,
Lower - βM for Model 1
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β0 βM βQ β
(ap)
H β

(th)
H β

(dh)
H β

(lag)
H σ

β0 1 −0.022 −0.093 0.0095 0.037 −0.0073 −0.034 −0.011
βM 0.032 1 -0.55 0.0050 0.030 −0.017 −0.0097 −0.0075
βQ -0.11 -0.53 1 -0.11 0.0088 -0.16 −0.086 −0.053

β
(ap)
H 1 0.0076 0.028 -0.13 0.017

β
(th)
H 0.0030 0.049 −0.043 1 −0.065 −0.060 −0.033

β
(dh)
H −0.025 0.014 -0.15 -0.10 1 -0.14 0.029

β
(lag)
H 0.044 0.0088 -0.13 −0.025 -0.12 1 0.013
σ 0.0054 0.021 −0.050 −0.021 −0.010 0.029 1

β
(ap0)
H −0.023 −0.036 −0.0086 −0.021 −0.0066 −0.0040 0.013

β
(ap1)
H 0.015 0.047 −0.050 −0.021 0.039 −0.049 −0.016

β
(ap2)
H 0.0058 −0.019 0.026 0.030 0.034 −0.016 0.0041

β
(ap3)
H 0.013 0.017 −0.042 −0.024 −0.058 −0.033 0.023

β
(ap4)
H −0.065 −0.052 0.024 0.0060 0.014 −0.049 −0.025

β
(ap5)
H −0.0032 0.053 −0.050 0.023 −0.0074 0.042 0.023

β
(ap0)
H β

(ap1)
H β

(ap2)
H β

(ap3)
H β

(ap4)
H β

(ap5)
H

β
(ap0)
H 1

β
(ap1)
H −0.0081 1

β
(ap2)
H −0.066 0.010 1

β
(ap3)
H 0.032 -0.28 -0.69 1

β
(ap4)
H −0.010 0.036 −0.019 -0.40 1

β
(ap5)
H 0.016 −0.0039 −0.012 −0.061 -0.26 1

Table 4: Correlations between marginal posterior distribution for each parame-
ter. The upper-right side of the diagonal are the correlations of model 1 and the
lower-left side of the diagonal are the correlations of model 2. Both are trained
on data from 2005 to 2010. The correlations smaller than -0.1 have been bolded.
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Figure 45: Left - Plot of MCMC-samples, Middle - Autocorrelation function,
Right - Histogram of marginal empirical distribution, Upper - βQ for Model 1,
Lower - βapH for Model 1
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Figure 46: Left - Plot of MCMC-samples, Middle - Autocorrelation function,
Right - Histogram of marginal empirical distribution, Upper - βthH for Model 1,
Lower - βdhH for Model 1
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Figure 47: Left - Plot of MCMC-samples, Middle - Autocorrelation function,
Right - Histogram of marginal empirical distribution, Upper - βlagH for Model 1,
Lower - σ for Model 1
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Figure 48: Left - Plot of MCMC-samples, Middle - Autocorrelation function,
Right - Histogram of marginal empirical distribution, Upper - β0 for Model 2,
Lower - βM for Model 2
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Figure 49: Left - Plot of MCMC-samples, Middle - Autocorrelation function,
Right - Histogram of marginal empirical distribution, Upper - βQ for Model 2,

Lower - βap0H for Model 2
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Figure 50: Left - Plot of MCMC-samples, Middle - Autocorrelation function,
Right - Histogram of marginal empirical distribution, Upper - βap1H for Model

2, Lower - βap2H for Model 2
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Figure 51: Left - Plot of MCMC-samples, Middle - Autocorrelation function,
Right - Histogram of marginal empirical distribution, Upper - βap3H for Model

2, Lower - βap4H for Model 2
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Figure 52: Left - Plot of MCMC-samples, Middle - Autocorrelation function,
Right - Histogram of marginal empirical distribution, Upper - βap5H for Model
2, Lower - βthH for Model 2
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Figure 53: Left - Plot of MCMC-samples, Middle - Autocorrelation function,
Right - Histogram of marginal empirical distribution, Upper - βdhH for Model 2,

Lower - βlagH for Model 2
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Figure 54: Left - Plot of MCMC-samples, Middle - Autocorrelation function,
Right - Histogram of marginal empirical distribution, σ for Model 2
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