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Abstract

The expected lifetime is steadily increasing in Sweden
and the World. As the increase will eventually level out the
question is: at what level will the expected lifetime be then?
The outlook for or searching after factors and assumptions
that can influence mortality in life insurance, are princi-
pally missing. This despite the awareness that lifestyle and
sickness greatly a�ects the lifespan. There were two aims
for this thesis. The first aim was to look into the hypothe-
sis that there were more parameters than just gender and
age that could be important to consider when doing mor-
tality studies. The second goal was to analyse the spread
of mortality to get a better understanding within a group
how the mortality behaves and how low it could get. For
realize these goals I’ve analysed the deaths within a certain
population during three year, 2010-2012, depending on an
income parameter. The least square approach was used to
calculate estimated parameters of the Makeham mortality
model. The non-parametric bootstrap model was then fur-
ther used to estimate the accuracy. The results show that
with a confidence level of 1 %, there is a lower expected
lifetime at the age of 30 for the first income quantile than
the fourth.
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Premiepåverkande faktorer inom livförsäkring

Den förväntade livslängden ökar ständigt i Sverige och
även i Världen. Då ökningen någon gång kommer att plana
ut är frågan: när och på vilken nivå kommer medellivs-
längden att ligga på då? Inom livförsäkring saknas hu-
vudsakligen någon utblick över eller sökande efter andra
faktorer och antaganden som kan påverka dödlighetsan-
tagandet. Detta trots att medvetenheten om att livsstil
och sjuklighet påverkar dödligheten är hög. Det fanns två
syften med denna uppsats. Det första syftet var att under-
söka hypotesen att det fanns fler parametrar än bara kön
och ålder som är viktiga att ta hänsyn till när man gör en
dödlighetsundersökning. Det andra målet var att analysera
spridningen i dödlighet inom en grupp för att få en bättre
förståelse för hur dödligheten beter sig och hur låg död-
ligheten skulle kunna bli. För att komma underfund med
detta har jag analyserat dödsfall inom ett bestånd under tre
år 2010-2012, med hänsyn taget till en inkomstparameter.
Minsta kvadratmetoden användes för att beräkna uppskat-
tade parametrar till Makehams dödlighetsmodell. Därefter
användes den icke parametriserade Bootstrap modellen för
att bestämma noggrannheten i skattningen. Resultaten
visar att med en konfidensnivå på 1 % så är det en län-
gre förväntad medellivslängd vid 30 års ålder för den första
inkomstkvantilen än för den fjärde.
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Chapter 1

Introduction

1.1 Background
Even though legislation and European directives often prevents the use of di�erent
mortality assumptions for men and women at the determination of premiums, these
are still used in life insurance for determining reserves. In this area there exist a
relatively large certainty in the models and the parameters that are used. In non-life
insurance, there exits an innovation mentality which takes its appearance through
the searching for and utilizing of new parameters as well as inventing new work
procedures. In life insurance however, as opposed of non-life insurance, the outlook
for or searching after other factors and assumptions that can influence the mortality
assumptions are principally missing. This despite the awareness that lifestyle and
sickness greatly a�ects the lifespan. It has been shown in several reports, for instance
[2] and [4], that there are significant lifespan di�erences between geographical areas,
civil status, living and education. These reports however have been written from
an demographical point of view and not an insurance related angle.

1.2 Aim of thesis
The aim with this study is to look into the hypothesis that there are more parame-
ters than just the gender that could be important to consider when doing mortality
studies. As there are some or large correlation between income and education or
living, this parameter have been chosen for further study in this analysis. Further-
more the prognoses that are used to determine the future mortality parameters are
based on historical statistics, which gives an uncertainty, as the factors that a�ected
an improved life span historically not necessarily needs to a�ect the improved life
span in the future. The longer average life expectancy of today and the nearby fu-
ture derives from people living longer after retirement. At the same time evidence
suggest that at the latest stages of life, the mortality remains the same as before.
By analysing the spread that exist within a certain group, it would be possible to
see how low the mortality curve could get, with the medicine and health care that
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CHAPTER 1. INTRODUCTION

exist today.

1.3 Earlier research
There are several studies both in Sweden and internationally that illustrate that
there are more parameters then just sex that a�ects the life span, for example [2] and
[4] mentioned earlier. But these have been done from a population demographical
approach and have not studied how this could a�ect an insured population and the
parameters and models that an insurance company are using.

1.4 Definitions
1.4.1 Base amount
Price base amount

The price base amount is based on the consumer index price. It has several uses,
which all work to ensure that a value do not decline because of an increase of the
inflation. This amount is adjusted after the general price development in society.
The Swedish government decides the amount one year at a time. The price base
amount is used within the social insurance and tax systems, for example to decide
the guaranteed minimum retirement pension and ensuring that sickness benefits
and study support do not decline. The price base amount was 44,400 in 2014 [16]
[17] [18].

Increased price base amount

The increased price base amount, like the price base amount above, evolves with the
inflation and is settled by the Swedish government It is used for calculating pension
points for supplementary pensions for those receiving a pension based on the older
regulations. The increased price base amount was 45,300 in 2014. [17].

Income price base amount

Some functions previously served by the price base amount have now been trans-
ferred to the income index and the income price base amount. The Swedish govern-
ment determines the income price base amount based on the salary development of
the society, which is governed by the income index. So as to ensure that pension
balances and pension rights earned follow general income development instead of
the inflation development, pensions are adjusted upward each year by the annual
change in the income index. This amount is more precisely used to calculate the
income roof for retirement pension. It is generally also used to decide the size of
defined-benefit pension in occupational pension. Furthermore it is used to decide
the premium the employer shall pay in a defined-contribution pension plan. Ad-
ditionally it is used to compute the maximum pensionable income. The present
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1.4. DEFINITIONS

ceiling is set to 7.5 income base amounts. The increase base amount was 56,900 in
2014 [16] [17] [18].

1.4.2 Yearly average point
The yearly average point is used in this research as an income parameter. A yearly
point is calculated each calender year, that consists of the ratio between the employ-
ees pensionable salary and the income base amount the corresponding year. The
yearly average point is defined according to [6]. It is determined from the employees
yearly points during the seven calendar years that closest precede the actual calen-
dar year the calculation occurs. The yearly average point constitute of the average
of the five highest yearly points. If the yearly points cannot be calculated for all the
above-mentioned seven years the yearly average point shall be calculated according
to the following rules:

1. If the pension plan hasn’t applied to the employee during an entire calender
year, that year will disregarded.
2. If at least four of the above-mentioned seven yearly points exists, the two lowest
will be disregarded.
3. If two or three of the above-mentioned seven yearly points exist, the lowest will
be disregarded.
4. If there is only one of the above-mentioned seven yearly points, then it will con-
stitute the yearly average point.
5. If the pension plan has not applied during any entire year of the above-mentioned
seven yearly points, the yearly average point is determined from the pre-settled
yearly salary of the employment, including addition of annual leave.

1.4.3 Normal amount
The normal amount is an income parameter used before 1985 for pension calcula-
tions, and is calculated as

normal amount = yearly salary · time factor · 0.65

and is recalculated to yearly average points using the price base amount of the
retirement year of the individual.

3





Chapter 2

Theory

2.1 Stochastic model
Let us consider a population with individuals aged x years. We denote the future
lifetime of a randomly chosen individual by T (x), implicating that the age at death
of the individual will be T + x years. Let the future lifetime T be a non-negative
continuous stochastic variable with the probability distribution function

F

x

(t) = P (T
x

Æ t), t Ø 0.

The function F

x

(t) is thus the probability that an individual will die within t years.
The probability density function f is defined by

f

x

(t) = F

Õ
x

(t), t Ø 0. (2.1)

We also introduce the survival function

l

x

(t) = 1 ≠ F

x

(t) = P (T
x

> t), t Ø 0. (2.2)

l

x

is the probability that a x year old individual survives for at least t more years.
Furthermore

l

x

(t) = l0(x + t)
l0(x) , t Ø 0. (2.3)

(2.3) shows the important connection between the survival function of an individual
aged x years and the survival function of a newborn. Note that from now on, the
denotations T0, F0(t), f0(t) and l0(t) will be written as T , F (t), f(t) and l(t). The
relation between the probability density function and the survival function can be
shown using (2.1) and (2.2) as

5



CHAPTER 2. THEORY

l

Õ(t) = d(1 ≠ F (t)
dt

= ≠f(t). (2.4)

Now regard the age interval (x, x + dx). The probability to pass away during this
interval, given that the individual lives at the age x and that dx is small, is approx-
imately equal to µ

x

dx. We denote µ

x

as the mortality intensity and define it as

µ

x

= f(x)
1 ≠ F (x) .

Using (2.2) and (2.4) the equation above can also be written as

µ

x

= ≠ l

Õ(x)
l(x) = ≠d(ln l(x))

dx

.

Now applying that l(0) = 1 this can be reordered and written as

l(x) = e≠
s

x

0 µ

s

ds

.

Let us now define the expected remaining lifetime e

x

as

e

x

= E(T
x

).

By using the definition of expectation we get

e

x

= E(T
x

) =
⁄ Œ

0
(1 ≠ F

x

(t)) dt =
⁄ Œ

0

l(x + t)
l(x) dt. (2.5)

A fair approximation of the expected remaining lifetime of the equation (2.5) can
be calculated using the trapezoidal rule. The trapezoidal rule states that

s
b

a

f(t) dt

can be approximately calculated as

⁄
b

a

f(t) dt ¥ h

2 ·
n≠1ÿ

i=0
(f

i

+ f

i+1). (2.6)

Using equation (2.6), letting h be equal to 1 and n æ Œ, the equation (2.5) can be
calculated as

e

x

¥ h

2 ·
Œÿ

i=0

3
l(x + i)

l(x) + l(x + i + 1)
l(x)

4
=

C Œÿ

i=0

l(x + i)
l(x)

D

≠ 1
2 , x = 0, 1, 2...,

as l(Œ) = 0. It is possible to use the Euler-Maclaurin summation formula to attain
an even better accuracy in the calculations above. The Euler-Maclaurin summation

6



2.2. LIFE EXPECTANCY MODELS

formula is as follows

h

2 ·
n≠1ÿ

i=0
(f

i

+ f

i+1) =
⁄

b

a

f(t) dt + h

2

12(f Õ(b) ≠ f

Õ(a)) + R(h),

where R(h) is a remainder term that contains terms of the fourth order of h and
higher. Using that f(t) = l(x + t)/l(x) we have

df(t)
dt

= d[l(x + t)/l(x)]
dt

= ≠l(x + t) · µ

x+t

l(x) .

Using that the upper integration limit b æ Œ the term f

Õ(b) equals 0. We can now
calculate e

x

as

e

x

¥
C Œÿ

i=0

l(x + i)
l(x)

D

≠ 1
2 ≠ 1

12 · µ

x

, x = 0, 1, 2... (2.7)

2.2 Life expectancy models
There are several well-known mathematicians who have presented important break-
throughs to establish lifespan tables in life insurance, among others deMoivre (1729),
Gompertz (1825), Makeham (1860), Sang(1868), Weibull (1939) and Lee-Carter
(1992). One of the prominently individuals in Sweden was Pehr Wargentin (1717-
1783), whose work laid the foundation to the Swedish statistical government agency,
Statistiska centralbyrån. In this chapter some of the historically most commonly
used mortality functions will be presented, along with their respective flaws and
strengths. Alongside these mortality functions, some of the historically important
mortality intensity parameter sets that have been used the last one hundred years
in Sweden will be introduced.

2.2.1 Gompertz mortality function
Benjamin Gompertz presented 1825 his law of mortality in his article [20], where
he assumed that the mortality intensity was exponentially age dependent according
to the following equation

µ(x) = — · e(“·x
i

)
, x Ø 0, (2.8)

with — > 0 and “ > 0. This equation were used in several countries and with
relatively good results. The problem was that this model didn’t catch the infant
mortality, the fatalities at younger ages nor the mortality for the very old, where

7



CHAPTER 2. THEORY

the phenomenon of late-life mortality deceleration occurs, where the death rates
increase at a decreasing rate than this model predicts.

2.2.2 Makeham law of mortality
The life model that have been, and still is in use in large parts of Scandinavia and
particularly in Sweden is called the Makeham law of mortality or the Makeham dis-
tribution. The model was first presented 1860 by William Makeham, in his article
"On the Law of Mortality and the Construction of Annuity Tables" [21]. The model
builds upon three parameters instead of Gompertz two, where Makeham uses an age
independent constant together with Gompertz age dependent ones. The Makeham
formula for the mortality intensity looks like

µ(x) = – + — · e(“·x)
, x Ø 0 (2.9)

where µ(x) is the mortality intensity for an individual at the age of x and – > 0,
— > 0 and “ > 0. It better takes into account the risk to die because of an accident
or of other causes that are not age dependent, such as infant mortality and men in
their twenties. Today the Makeham model is often used in combination with other
models to even better catch di�erent aspects, like an improvement factor catching
trends in mortality or a generation model, where di�erent generations receive vari-
ous Makeham parameters. Another improvement for the Makeham model is to use
a linear function for very old individuals over a certain age, normally somewhere
between 95 and 100 years old, that is

µ(x) =
I

– + — · e(“·x)
, for 0 Æ x Æ w

µ(w) + k(x ≠ w) for x > w.

E.g. the Swedish Pension Agency uses an age parameter w of 97 when deter-
mining the linear trend, according to [23].

2.2.3 Lee-Carter model
The Lee-Carter model was presented by Ronald D Lee and Lawrence Carter in 1992
and is a numerical algorithm that is used in mortality and life expectancy forecast-
ing. The idea with the model is to find a univariate time series vector Ÿ

t

which
might capture up to 80-90 % of the mortality trend. The model uses singular value
decomposition to achieve this. Let m(x, t) be the central death rate for the age x

in the year t. The matrix of death rates are fitted by the model according to

8



2.2. LIFE EXPECTANCY MODELS

ln(m(x, t)) = a

x

+ b

x

k

t

+ ‘

x,t

,

or

m(x, t) = exp (a
x

+ b

x

k

t

+ ‘

x,t

),

for appropriately chosen sets of a

x

, b

x

and k

x,t

. Here the ‘-term is an error term
with mean 0 and variance ‡

2
‘

.

2.2.4 Sum at risk and economical mortality
Sum at risk is defined as the reserve just after a death minus the reserve just after
according to the equation 2.10

RS = S ≠ V (2.10)

where S = just after the death and V = the reserve just before. When doing
an economical mortality the weights and the stochastic variables in subchapter
"Estimation of Makeham parameters" the estimations are based on the sum at risk
instead of the amount of individuals.

2.2.5 Historical distributions used in Sweden
Sweden was the first country publishing a national lifespan table, as far back as
1755. Other countries followed, for example Netherlands (1816), France (1817),
Norway (1821), England (1843), Germany (1871), Switzerland (1876) and USA
(1900), though many of these countries had produced regional tables for a long
time. Because the population longevity is constantly increasing, the parameters
have been changing with time. Some of the most important sets of parameters that
have been used in Sweden are:

1. L39
2. L55
3. G64
4. M64
5. M90
6. DUS06
7. DUS14

9



CHAPTER 2. THEORY

The first sets of parameters 1-5 have used the Makeham model presented in 2.2.2.
During the years 1989 and 1990 the Swedish committee, Grundkommittén, was
working with the mortality among the insured population of Sweden. They pub-
lished the set of Makeham parameters labelled M90, which are still in use in some
companies today. M90 use the base 10 instead of e as well as using four parameters
–, —, “ and f according to

µ(x) = – + — · 10“·(x≠f)
, x Ø 0,

where – = 0.001, — = 0.000012, “ = 0.44 and

f =
I

0, for men
6 for women.

Here the f is used as an age dislocation parameter. Insurance Sweden, Svensk
försäkring, have then used the Lee-Carter model presented in 2.2.3 in both their
studies DUS06 [2] and DUS14 [3].

2.3 Estimation of the Makeham parameters
Observe a randomly chosen individual from a population of n individuals. Let L

i

be the remaining lifetime of the individual i. Look at the age interval (x, x + h).
Defining the stochastic variables R

i

and D

i

as

R

i

= min (L
i

, h)

and

D

i

=
I

1 L

i

Æ h

0 L

i

> h

for i = 1, 2, ..., n. R

i

denotes the risk time in the time interval (x, x + h) and
D

i

denotes whether the individual i passes away in that interval. Calculates the

10
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observed mortality intensity as

µ̂(t) = D

i

R

i

. (2.11)

The distribution of µ̂ is very complex. According to Beyer, Keiding, Simonsen [5]
the estimated µ̂ is asymptotically normal distributed with mean µ and variance ‡

2,
that is

Ô
n(µ̂ ≠ µ) ≥ asN(0, ‡

2)

Regard an individual at the age of x at the observation time t. Defining N

x

(t) as
the number of people living at the end of calender year t and that turns x years old
during calender year t. Similarly defining D

x

(t) as the number of individuals that
passes away during calender year t and turned or would turn x years old during
calender year t. Finally the exposure E

x

(t) is defined as the fraction of days that
the passed away individual lived during the calender year t and turned or would
turn x years old during the calender year t.

In this survey, the observed mortality intensity has been calculated as

µ̂(t) = D

x

(t)
N

x

(t) + D

x

(t) · E

x

(t) , (2.12)

Want to use the Makeham model from chapter 2.2.2, that is

µ(x) = – + — · e(“·x)
, x Ø 0 (2.13)

where – + — > 0, — > 0 and “ Ø 0. As a further condition – is set to 0 when it
became negative. The opposite might have given negative mortality probabilities
at lower ages. Using the least squares method to calculate a fitted curve for our
observed µ̂ values. The least squares is a standard approach to the approximate
solution of sets of equations in which there are more equations than unknowns. The
method means that the overall solution minimizes the sum of the squares of the
errors made in the results of every single equation. That is solving

min Q = min
nÿ

i=1
r

2
i

,

where r

i

is equal to the di�erence between our observed µ̂ from equation (2.12)
and the µ we want to fit to the Makeham model in equation (2.13). But as our
observed mortality intensities have di�erent uncertainties, a weighted least squares
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method must be used. Observations with a higher precision, that is a lower vari-
ance, will thus have a higher e�ciency than observations with a lower precision.
Given the above we want to minimize

Q =
nÿ

i=1
w

x

i

· (µ̂
x

i

≠ (– + — · e“·x
i))2 (2.14)

where w

x

i

is an appropriate weight. The weights are chosen as 1/‡

2(µ̂
x

i

), as we
want observations with higher precision, that is a lower variance, to have a larger
weight in the calculations. According to [1], for large n µ̂

x

i

has an expected value
of µ

x

i

and a variance of µ

2
x

i

/D

x

i

. Given this, we can use (2.11) and that according
[1] R

x

i

¥ N

x

i

to get

w

x

i

= D

x

i

µ̂

2
x

i

= R

x

i

µ̂

x

i

¥ N

x

i

µ̂

x

i

. (2.15)

Fixating c as a constant and solving the equation system

ˆQ

ˆ–

= 0 (2.16)

ˆQ

ˆ—

= 0 (2.17)

Beginning with (2.16)

ˆQ

ˆ–

= 2 ·
nÿ

i=1
w

x

i

· (µ̂
x

i

≠ (– + — · e(“·x
i

))) · (≠1)

=
nÿ

i=1
w

x

i

· µ̂

x

i

≠ – ·
nÿ

i=1
w

x

i

≠ — ·
nÿ

i=1
w

x

i

· e(“·x
i

)
.

Which, by reordering the equation give – as

– =
q

n

i=1 w

x

i

· µ̂

x

i

≠ — ·
q

n

i=1 w

x

i

· e(“·x
i

)
q

n

i=1 w

x

i

(2.18)
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Continuing with (2.17)

ˆQ

ˆ—

= 2 ·
nÿ

i=1
w

x

i

· (µ̂
x

i

≠ (– + — · e(“·x
i

)) · e(“·x
i

)) · (≠1)

=
nÿ

i=1
w

x

i

· µ̂

x

i

· e(“·x
i

) ≠ – ·
nÿ

i=1
w

x

i

· e(“·x
i

) ≠ — ·
nÿ

i=1
w

x

i

· e(2·“·x
i

)
. (2.19)

Inserting equation (2.18) into (2.19) and solving (2.19) for — gives

— =
q

n

i=1 w

x

i

· µ̂

x

i

· e(“·x
i

) ·
q

n

i=1 w

x

i

≠
q

n

i=1 w

x

i

· µ̂

x

i

·
q

n

i=1 w

x

i

· e(“·x
i

)
q

n

i=1 w

x

i

· e(2·“·x
i

) ·
q

n

i=1 w

x

i

≠ (
q

n

i=1 w

x

i

· e(“·x
i

))2

With

w =
nÿ

i=1
w

x

i

,

m11 =
nÿ

i=1
w

x

i

· µ̂

x

i

· e(“·x
i

)
,

m01 =
nÿ

i=1
w

x

i

· µ̂

x

i

,

m20 =
nÿ

i=1
w

x

i

· e(2·“·x
i

)
,

m10 =
nÿ

i=1
w

x

i

· e(“·x
i

)
,

– can be written as

– = m01 ≠ — · m10
w

(2.20)
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and — can be written as

— = w · m11 ≠ m10 · m01
w · m20 ≠ m

2
10

. (2.21)

Now we can use (2.15), (2.20) and (2.21) in (2.14) and minimizing Q with a
varying “ to get the fitted three Makeham parameters for the observed data.

2.4 Regression analysis
2.4.1 Simple Linear Regression
The core of regression analysis is to explain every observation of the dependent vari-
able y with two parts; a systematic component and a random component. A simple
linear regression model is thus a mathematical relationship between two variables
and can be written as

y = —1 + —2x + ‘. (2.22)

The systematic component of y is its conditional mean, E(y|x) = —1 + —2x.
The random component is the di�erence between y and its conditional mean and
is called the random error term and denoted by ‘. The expected value of the error
term given x is

E(‘|x) = E(y|x) ≠ —1 ≠ —2x = 0. (2.23)

As the dependent variable y and its random error term ‘ di�er only by a con-
stant term, their variance must be homoscedastic with an identical and equal to a
finite ‡

2, that is

var(‘) = ‡

2 = var(y). (2.24)

This means that the probability density functions of y and ‘ have the same
shape, even though their locations di�er. (2.22), (2.23) and (2.24) are known as the
first, second and third assumption of the simple linear regression model. The fourth
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assumption states that the covariance between any pair of random errors ‘

i

and ‘

j

is

cov(‘
i

, ‘

j

) = cov(y
i

, y

j

) = 0.

The fifth assumption states that the variable x is not random and must take at
least two di�erent values. There exist a sixth optional assumption stating that the
values of ‘ are normally distributed with

‘ ≥ N(0, ‡

2)

if the values of y are normally distributed, and vice versa.

Estimating the Regression Parameters

The observations are denoted by y

i

and we assume they follow a simple linear re-
gression

y

i

= —1 + —2x

i

+ ‘

i

where the errors ‘

i

are independent and identically distributed with zero mean and
variance ‡

2. The parameters —1 and —2 of the true regression line will be estimated
by use of the least squares principle. To fit a line to the data values y

i

we want to
minimize the sum of the squares of the vertical distances from each point to the line.
The estimated intercept —̂1 and slope —̂2 of the line are the least squares estimates
of —1 and —2. The fitted line has the shape

ŷ

i

= —̂1 + —̂2x

i

.

The di�erences between the observed and predicted values of y are called the least
squares residuals and are given by

‘̂

i

= y

i

≠ ŷ

i

= y

i

≠ (—̂1 + —̂2x

i

). (2.25)

Calculating

Q = min

nÿ

i=1
‘̂

i

2
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gives the least squares estimators as

—̂1 = y ≠ —̂2x

—̂2 =
q

(x
i

≠ x)(y
i

≠ y)
q

(x
i

≠ x)2

where y =
q

y

i

/n and x =
q

x

i

/n.

Estimation of the Error

If the model assumptions hold, the expected value of —̂1 is —1 and of —̂2 equal to —2.
The variances and covariance of —̂1 and —̂2 are calculated as

var(—̂1) = ‡

2
q

x

2
i

n

q
(x

i

≠ x)2

var(—̂2) = ‡

2
q

(x
i

≠ x)2

cov(—̂1, —̂2) = ‡

2 ≠x

n

q
(x

i

≠ x)2 .

Now we only have to estimate the variance of the random error term, ‡

2. The
variance is

var(‘
i

) = ‡

2 = E[‘2
i

] ≠ E[‘
i

]2 = E[‘2
i

]

as E[‘
i

] = 0. We will estimate this, by using the average of squared errors.
Instead of using the random errors ‘

i

, whom are unobservable, we will use the least
squares residuals ‘̂

i

, recall (2.25). Thus the variance can be calculated as

‡̂

2 =
q

n

i=1 ‘̂

i

n ≠ 2 .

To make the estimator ‡̂

2 unbiased, the number "2" is subtracted in the denom-
inator. This is the number of regression parameters, our —1 and —2.

16



2.5. THE NON-PARAMETRIC BOOTSTRAP

2.5 The Non-Parametric Bootstrap
Bootstrapping is a method to estimate and to measure accuracy of sample esti-
mates, such as a confidence interval. The idea is to create new samples from the
original set and to then calculate approximative measures of accuracy. The most
common reason to apply the Bootstrap model is when the form of the underly-
ing distribution from which a sample is taken is unknown. Suppose we have the
observations x1, ..., x

n

of independent and identically distributed random variables
X1, ..., X

n

and that we have an unknown distribution F of the X

k

s. Bootstrapping
allow the possibility to gather alternative versions from the observed data sample.
This is done by assuming that the random sample data set from a population has
the characteristics that roughly match that of the source population. By repeatedly
re-sampling the observed sample itself, bootstrapping enables estimates that are
distribution independent. We can still use the sample mean x as a point estimate
for µ. The bootstrap method is roughly based on the law of large numbers. The
re-sampling is done by randomly selecting the same number n as in the original
observation, but with replacement, with many of the original sample repeated while
others would be excluded. The probability that none of the x

k

s are drawn twice
among n tries is n!/n

n, thus that X

ú
k

”= X

ú
j

for all j ”= k is very small for a larger
n. By doing this several times, we create a large number N of data sets that we
might have seen. This will produce a new sample X

ú(j)
1 , ..., X

ú(j)
n

that is uniformly
distributed on the set of the original observations x1, ..., x

k

, with j in the set 1, ..., N .
The empirical distribution of X

ú(j)
1 , ..., X

ú(j)
n

is written as F

ú(j)
n

. The bootstrap prin-
ciple states that F

ú(j)
n

¥ F

n

. Even though X

ú(j)
1 , ..., X

ú(j)
n

are not samples from F ,
they will have most of the characteristics of the real sample, as long as n and N are
su�ciently large. It is now possible to use the probability distribution ◊̂

ú to form
an approximate confidence interval. Calculating the estimated probability function
as

◊̂

ú
j

= ◊(F ú(j)
n

)

and the residuals as

R

ú
j

= ◊̂

obs

≠ ◊̂

ú
j

.

We can now use this to form the approximated confidence interval

I

◊,q

= (◊̂
obs

+ R

ú
[N(1+q)/2]+1,N

, ◊̂

obs

+ R

ú
[N(1≠q)/2]+1,N

).
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Chapter 3

Data

The study in this report have covered the years 2010, 2011 and 2012. To get a better
statistical foundation the three years are calculated together, under the assumption
that there are no changes in the mortality during the three years. A restriction is
that those that passed away during the year must have been policy holders the year
before. Furthermore the income is fetched from the previous year, as the deceased
does not have any income registered the year of death. To make it statistically
accurate both the living and the deceased must have been alive and assured the
year before. That is, the income data is fetched from between 2009 to 2011.

The individuals that are examined are between 30 and 100 years old. As the
underlying data comes from working individuals, there are very few individuals
under the age of 20. Furthermore people under the age of 30 have little importance
in life insurance as most doesn’t contribute with premiums until late twenties, and
usually with only small amounts. At the same time there are very few deaths at
lower ages, which makes the data rather poor for lower ages. To get a satisfactory
amount of statistical data, the lowest age included in this rapport will be of 30 year
old. At the same time, the Makeham model is badly correlated with observed data
past the age of 100. Moreover the data input is too fragile to make a statistical
analysis for this group. [1]

Some of the data have not been used, as those with an income of 0 have not been
included in this research. These consists part of individuals that did not actually
have an income the targeted year. The larger group however includes people where
it was not possible to fetch income information. Some groups with older collective
agreements used instead of ÅMP another type of income parameter to calculate
their benefits. Other groups, for example retired, simple misses this information.
In these cases the information was as much as possible fetched and complemented
from other data systems and older files.

The underlying material for this thesis comes from individuals that are or have
been working for the municipalities and counties of Sweden. These municipalities
and counties are indebted to these individuals, and are being helped by KPA to
continuously calculate their debt. There are information of about 3 000 000 dis-
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tinct assurances and about 2 000 000 distinct individuals in the database. The
individuals that are included are composed only of assured with current assurance.
This data have later been completed with other income data from older files, among
other things the normal amount for individuals retiring before 1985.

In order to get one distinct income to each individual, the data was cleared of
doublets in the order as follows:

1. When a policy holder have had several entries with di�erent incomes in
the data, the post using the latest date have been used. 2. If the policy holder
have had both premium paying and non-premium paying (paid-up or paid-out) life-
insurances, then premium paying entries have been used before the paid up but
after the paid out entries. 3. In cases when the individual have been working in
several municipalities or counties, have several pension types or retired at di�erent
times, the entry with the highest income have been used.

The total exposed population is displayed in Figure 3.1. There are 4 042 286
women and 1 360 985 men that are exposed during the three years. As can be seen
in the diagram, there are about 110 000 to 120 000 individuals per year up to the
age of about 65 years of age, when the numbers begins to decline, leaving a very
small population over the age of 95. Another remark is that there are 74.8 % women
in the sample population. Furthermore this percentage increases with the ageing
population.

Figure 3.1. The exposed population in the study, divided in women, men and
the total amount.

If we instead look at the deceased part of the sample population, see Figure
3.2, the numbers range between 37 that passed away at the age of 30. After 30 the
number of deceased raises up until the age of 87, where 1 497 individuals passed
away. After this point, the number of deaths dwindle to 57 at the age of 100.
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Figure 3.2. The number of deceased individuals in the study, divided in
women, men and the total amount.
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Chapter 4

Methods and results

In this chapter the methods that have been used will be presented, as well as the
findings of the results. Excel and VBA coding have been used as the main tool of
calculations and graphics.

4.1 Estimation of the Makeham parameters
We start by looking at the entire sample of the population frpm 2010 to 2012. We
can calculate the observed and fitted µ as described in 2.3. The fitted parameters
–, — and “ are given as in Table 4.1.

The resulting graphs of the fitted Makeham curves together with the observed
data are given in the figure 4.1.

The y-axes are log normally scaled, giving the observed and fitted Makeham
functions an almost linear shape. As can be seen, the functions fit the observed
values rather well, even though there are some small volatility at the lower ages,
which of course is explained by fewer deaths in these ages. In the figure 4.2 can be
shown how Q is minimized by varying the “ with di�erent values, in this case with
a step of 0.00005, with Q being calculated from function (2.14). In this case, it is
the minimized Q for the women in our sample.

– — “ Q
women 0.000237 2.50 · 10≠6 0.1198 292.03
men 0.000439 6.00 · 10≠6 0.1136 85.93
total 0.000303 3.53 · 10≠6 0.1166 313.10

Table 4.1. Makeham parameters for women, men and of the total sample
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Figure 4.1. The observed and the fitted µ calculated for the women, men and
the entire sample
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Figure 4.2. Calculating di�erent Q’s by varying “ resulting in an equation of
the second degree.

4.1.1 The Makeham distribution with an income parameter

Considering that the population will be divided into four di�erent income groups.
The exposed population will have about 30 000 individuals in each age group and
quantile, with about 22 500 women and 7 500 men. This could of course a�ect the
results, as the calculations will be much more accurate for the women. That there
are three times more women than men might play a role in how large the variance
will be, as every death will have a larger impact for the men then the women.
The calculations have been done with regards to sex, which is standard in similar
mortality studies. But they have also been done on the total sample populous, as
insurance companies often have to use sex independent premiums by law. Another
reason is to be able to compare an income parameter to a sex parameter.

Quantiles have then been used to divide the population into four di�erent groups
of equal size. A quantile is the value of a variable under which a certain 25-
percentage of the observations of the variable occur. That is, the third income
quantile is the income value where 75 % of the population have their incomes. For
a 60 year old individual the quantiles looked like in Table 4.2, based on incomes
from 2009 to 2011. As the incomes are based on yearly average points that are to
be multiplied with the income base amount, see 1.4.1 and 1.4.2. In the table 4.2,
the income base amount from 2017 have been used.

The first quantile for the sample population has an upper yearly income of 242
000, and thus includes everyone with a yearly incomes between 0 and 242 000.

Next the passed away was similarly examined how many had died in each age,
sex and income quantile group, where the quantiles were determined by the living
individuals, as well as their respective exposure as defined in 2.3.

By using smaller groups, as quantiles, the variability of the deaths increases. To
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Women Men Total

lower upper lower upper lower upper
Quantile 1 0 235 000 0 270 000 0 242 000
Quantile 2 235 000 310 000 270 000 359 000 242 000 322 000
Quantile 3 310 000 390 000 359 000 478 000 322 000 413 000
Quantile 4 390 000 Œ 478 000 Œ 413 000 Œ

Table 4.2. Yearly income (in SEK) for respective quantile group for men,
women and entire sample, based on income data from 2009 to 2011

somewhat counter this e�ect when calculating the adjusted Makeham parameters,
the mortality intensity used in the calculation of the weight is the fitted mortality
intensity parameter of the entire sample population, thereby somewhat decreasing
the e�ects of variances in the data, with the weight being calculated as in equation
(2.15). “ was now being varied, to find a minimum of Q, according to equation
(2.14). This then gave di�erent sets of parameters of –, — and “ for each sex and
quantile. “ was varied with a step of 0.0001.

The resulting Makeham parameters are given as in the tables 4.3, 4.4 and 4.5.
As can be seen in the tables, the first and second quantiles are very similar, a part
from their –-parameters. The third and fourth quantiles have lower —- and higher
“-parameters then the first two in all three sets of tables, giving them a lower but
steeper shape of the curve.

Women – — “ Q
Quantile 1 0.000334 4.24 · 10≠6 0.1139 158.65
Quantile 2 0.000156 4.30 · 10≠6 0.1139 145.51
Quantile 3 0.000270 2.29 · 10≠6 0.1214 83.58
Quantile 4 0.000245 7.26 · 10≠7 0.1332 84.25

Table 4.3. Makeham parameters for womens quantiles

Men – — “ Q
Quantile 1 0.000309 1.70 · 10≠5 0.1032 98.75
Quantile 2 0.000576 1.16 · 10≠5 0.1065 103.80
Quantile 3 0.000461 2.94 · 10≠6 0.1212 54.63
Quantile 4 0.000354 9.36 · 10≠7 0.1333 46.13

Table 4.4. Makeham parameters for mens quantiles
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Entire sample – — “ Q
Quantile 1 0.000391 7.61 · 10≠6 0.1069 221.71
Quantile 2 0.000251 6.66 · 10≠6 0.1090 194.00
Quantile 3 0.000268 2.97 · 10≠6 0.1194 68.57
Quantile 4 0.000246 9.91 · 10≠7 0.1314 74.34

Table 4.5. Makeham parameters for the entire samples quantiles

Figure 4.3. Fitted mortality intensities for di�erent quantiles for women
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Figure 4.4. Fitted mortality intensities for di�erent quantiles for men

Figure 4.5. Fitted mortality intensities for di�erent quantiles for the total
population
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What we previously discussed and concluded from the tables of the Makeham
parameters of the four quantiles for the di�erent sets, we can also see in the graphs
shown in figures 4.3 to 4.5. For the women, the first and second quantile are wide
apart, showing how much the –-parameter matter in low ages. In all three sets,
both the third and fourth quantile have deeper and steeper shapes of the curves,
especially the fourth. For women the curves intersect around the age of 92. For
men, the e�ect is even more obvious, and the intersection point is not until the age
if 96. This is because of the smaller —-parameter and the higher “-parameter of the
higher quantiles.

In the figures 4.6 to 4.8, the observed mortality intensities are plotted against
the fitted Makeham curves of the mortality intensities for the four quantiles. There
are some volatility in the lower ages in all twelve graphs, and especially in the fourth
quantiles, indicating few deaths below 40. In some of the curves we notice notches,
representing an age group of a quantile lacking any deceased. Remember that we
are using log-scale and that it doesn’t allow for an outcome of zero.

Figure 4.6. Fitted against observed mortality intensities for di�erent quantiles
for women
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Figure 4.7. Fitted against observed mortality intensities for di�erent quantiles
for men

Figure 4.8. Fitted against observed mortality intensities for di�erent quantiles
for the total sample

Another way to interpret the Makeham parameters are to use them for calcu-
lating the expected remaining lifetime at di�erent ages. Here the approximative
formula of e

x

is used, using equation (2.7). The result is shown in the figure 4.9.
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The lowest curve show the remaining expected lifetime at birth, and the other three
curves show the expected lifetime conditioned on being alive at a certain age, that
is

e

ú
x

= E[T
x

|x] + x

As can be seen in the three di�erent sets, there is a rather large gap between the
fourth quantile and the other three. The gap is very distinct looking at the expected
remaining lifetime at birth, but becomes less apparent as we begin conditioning
on older ages. For women, the fourth quantile have more than two and a half
year longer expected lifetime at birth than the lowest quantile and for men the
di�erence is almost six years. Another remark is that the first and second quantile
for women show 0.75 years di�erence in remaining expected lifetime at birth, but
less than a half year later at the ages 30, 50 and 65, indicating how the –-parameter
mostly makes an impact at younger years. We can also remark that the older the
conditioning age, the greater the e�ect of the “-parameter becomes clear.

Figure 4.9. Expected remaining lifetime for di�erent quantiles and ages for
women
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Figure 4.10. Expected remaining lifetime for di�erent quantiles and ages for
men

Figure 4.11. Expected remaining lifetime for di�erent quantiles and ages for
women
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4.2 Non-parametric bootstrapping
To estimate the accuracy of the remaining life expectancy as well as the Makeham
parameters in the tables 4.3, 4.4 and 4.5, we use the non-parametric bootstrap
method explained in chapter 2.5. Bootstrapping is a practice used to measure and
determine the properties of a set when sampling from an approximating distribu-
tion. For this we divide the population into groups by age, gender and quantile.
We put the original number of survivors and deceased of each of these groups in
di�erent boxes. We then draw with replacement the sum of survivors and deceased
for each group a thousand times, thus giving us 1000 new data samples for each
quantile and gender. These samples can further be used to calculate new sets of
Makeham parameters. For each set of parameters, estimated remaining lifetime can
then be calculated. The –, — and “ parameters for the di�erent sets are given in
the figures 4.12 to 4.20. We’ll talk to each group of parameters below.

4.2.1 Bootstrapped Makeham parameters
The alpha parameter

First of all, we will consider the –-parameter. Remember that the –-parameter is
age independent and gives the mortality at age 0. It has a large importance to the
mortality at younger ages, but will play an insignificant role at older ages. There
are a few things to be said. First of all, we only see some less than obvious tenden-
cies that the di�erent quantiles display a similar behavior for the three populations.
The fourth quantiles generally have a lower value. Secondly, for the men in the first
quantile, some simulations have a negative –-value. To make things a bit easier
while doing the bootstrap method, the condition that the –-parameter had to be
greater than 0 was removed. As we looked at a least squares approximation that
ranged from the age of 30 to 100, it’s is not a strange thing, even though impossible
in real life. All the parameters have an expectancy lower than that of M90.
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Figure 4.12. The Makeham –-parameters after Bootstrapping the original
sample 1000 times

Figure 4.13. The Makeham –-parameters after Bootstrapping the womens
sample 1000 times

34



4.2. NON-PARAMETRIC BOOTSTRAPPING

Figure 4.14. The Makeham –-parameters after Bootstrapping the mens sample
1000 times

µ ‡

Total Quantile 1 0.000385 5.02 · 10≠5

Quantile 2 0.000247 4.49 · 10≠5

Quantile 3 0.000266 3.55 · 10≠5

Quantile 4 0.000243 2.94 · 10≠5

Women Quantile 1 0.000328 4.88 · 10≠5

Quantile 2 0.000156 4.48 · 10≠5

Quantile 3 0.000270 4.12 · 10≠5

Quantile 4 0.000243 3.15 · 10≠5

Men Quantile 1 0.000297 1.23 · 10≠4

Quantile 2 0.000564 1.18 · 10≠4

Quantile 3 0.000453 9.65 · 10≠5

Quantile 4 0.000350 6.70 · 10≠5

Table 4.6. The expected value and standard deviation of the –-parameters

35



CHAPTER 4. METHODS AND RESULTS

The beta parameter

Secondly, let us examine the —-parameter. Here we see a trend in all three popula-
tions, where the lower quantiles experience a much higher —. For men, the expected
value of the parameter for the first quantile is more than ten times as high as the
fourth. We can also observe that the lower quantiles have a larger spread, at the
same time as the fourth quantile show comparably a very small variance.

Figure 4.15. The Makeham —-parameters after Bootstrapping the original
sample 1000 times

Figure 4.16. The Makeham —-parameters after Bootstrapping the womens
sample 1000 times
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Figure 4.17. The Makeham —-parameters after Bootstrapping the mens sample
1000 times

µ ‡

Total Quantile 1 7.73 · 10≠6 7.86 · 10≠7

Quantile 2 6.77 · 10≠6 6.72 · 10≠7

Quantile 3 3.00 · 10≠6 2.55 · 10≠7

Quantile 4 1.01 · 10≠6 9.69 · 10≠8

Women Quantile 1 4.33 · 10≠6 5.09 · 10≠7

Quantile 2 4.36 · 10≠6 4.92 · 10≠7

Quantile 3 2.32 · 10≠6 2.59 · 10≠7

Quantile 4 7.45 · 10≠7 9.46 · 10≠8

Men Quantile 1 1.75 · 10≠5 2.75 · 10≠6

Quantile 2 1.20 · 10≠5 2.14 · 10≠6

Quantile 3 3.10 · 10≠6 6.12 · 10≠7

Quantile 4 9.68 · 10≠7 1.93 · 10≠7

Table 4.7. The expected value and standard deviation of the —-parameters
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The gamma parameter

For the last Makehamparameter, “, we can further see as clear trend as for the
—-parameter, though introverted.

Figure 4.18. The Makeham “-parameter after Bootstrapping the original sam-
ple 1000 times

Figure 4.19. The Makeham “-parameter after Bootstrapping the original sam-
ple 1000 times
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Figure 4.20. The Makeham “-parameter after Bootstrapping the original sam-
ple 1000 times

µ ‡

Total Quantile 1 0.1068 0.001278
Quantile 2 0.1088 0.001251
Quantile 3 0.1193 0.001063
Quantile 4 0.1313 0.001183

Women Quantile 1 0.1137 0.001464
Quantile 2 0.1138 0.001401
Quantile 3 0.1213 0.001385
Quantile 4 0.1330 0.001550

Men Quantile 1 0.1029 0.002029
Quantile 2 0.1062 0.002308
Quantile 3 0.1207 0.002516
Quantile 4 0.1331 0.002537

Table 4.8. The expected value and standard deviation of the “-parameters
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4.2.2 Scatter plot of the Makeham parameters
An interesting thing to consider would be how the three Makeham parameters
interact with one another. In the figures 4.21, 4.22 and 4.23 we can see scatter plots
for –/—, –/“ and —/“ interact respectively. These scatter plots are done on the
di�erent quantiles of the total sample, but the scatter plots for the men and women
looks very similar in shape, if not in numbers. As can be observed, there are some
shapes and trends to consider. First thing we can examine is the very defined —/“

trend in figure 4.23. As we have remarked before, the —- and “-parameters have a
negative correlation, which becomes very obvious in the figure. The correlation of
nearly negative one is shown in table 4.9. It is not however a surprising finding,
given how the parameters interact. In the scatter plots 4.22 and 4.23 we can also
see the interval of 0.0005 when fixating “ when minimizing Q. Furthermore, there
is also a negative correlation between – and —. Seeing how it is mainly these two
parameters that coexist in explaining the deaths of younger and middle age groups,
this comes as no big revelation. Trivially we have a positive correlation between the
last two parameters – and “, which can be deducted from above.

Figure 4.21. Scatter plot of the —- and –-parameters after Bootstrapping the
quantiles of the total sample 1000 times
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Figure 4.22. Scatter plot of the “- and –-parameters after Bootstrapping the
quantiles of the total sample 1000 times

Figure 4.23. Scatter plot of the “- and —-parameters after Bootstrapping the
quantiles of the total sample 1000 times
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Correlation –/— –/“ —/“

Quantile 1 -0.6368 0.6188 -0.9913
Quantile 2 -0.6299 0.6130 -0.9912
Quantile 3 -0.6046 0.5825 -0.9908
Quantile 4 -0.4964 0.4812 -0.9909

Table 4.9. The correlation between the Makeham parameters
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4.2.3 Remaining life expectancy
As we have stated above, we can calculate remaining life expectancy from the 12
000 sets of Makeham parameters that we have been looking at. We are going to
review the remaining life expectancy at birth, conditioned you have achieved the
age of 30 and the age of 65.

The outcome is shown in tables 4.10 to 4.12 as well as the figures 4.24 to 4.32.

Total At birth At age 30 At age 65
µ ‡ µ ‡ µ ‡

1 82.56 0.1535 83.45 0.0958 86.02 0.0868
2 82.84 0.1379 83.44 0.0923 85.78 0.0841
3 83.01 0.1211 83.61 0.0857 85.54 0.0752
4 84.46 0.1160 85.00 0.0883 86.40 0.0797

Table 4.10. The expected remaining life and standard deviation of the 1000
scenarios for the total sample

Women At birth At age 30 At age 65
µ ‡ µ ‡ µ ‡

1 83.27 0.1577 84.01 0.1072 86.16 0.0949
2 83.77 0.1486 84.16 0.1022 86.10 0.0905
3 83.85 0.1387 84.45 0.0979 86.22 0.0876
4 85.73 0.1308 86.26 0.0995 87.51 0.0903

Table 4.11. The expected remaining life and standard deviation of the 1000
scenarios for the womens sample

43



CHAPTER 4. METHODS AND RESULTS

Men At birth At age 30 At age 65
µ ‡ µ ‡ µ ‡

1 77.88 0.2912 78.65 0.1701 82.21 0.1431
2 78.43 0.3136 79.66 0.1808 83.07 0.1573
3 81.36 0.2934 82.32 0.1826 84.57 0.1668
4 83.44 0.2592 84.18 0.1918 85.75 0.1806

Table 4.12. The expected remaining life and standard deviation of the 1000
scenarios for the mens sample

At birth

The remaining life expectancy at birth di�ers a lot between the quantiles for all
the populations and especially for the men. For the women, there is at birth a 2.5
years di�erence between the highest and the lowest income quantile. For men, the
di�erence is a stunning 5.5 years. For the three populations, the lowest two or three
income quantiles remain close to each other and it is with one exception only the
fourth quantiles that is sticking out. For the men however, there is also the third
quantile that is significantly higher than the lower two. What can also be said is
that the di�erent scenarios seems to have inherited the properties of the original
sample. Furthermore, there is also quite little variation in the di�erent samples.

Figure 4.24. Remaining life expectancy at birth after Bootstrapping the quan-
tiles of the total sample 1000 times
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Figure 4.25. Remaining life expectancy at birth after Bootstrapping the quan-
tiles of the womens sample 1000 times

Figure 4.26. Remaining life expectancy at birth after Bootstrapping the quan-
tiles of the mens sample 1000 times
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At the age of 30

There is no discernible change between birth and the age of 30.

Figure 4.27. Remaining life expectancy at age 30 after Bootstrapping the
quantiles of the total sample 1000 times

Figure 4.28. Remaining life expectancy at age 30 after Bootstrapping the
quantiles of the womens sample 1000 times
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Figure 4.29. Remaining life expectancy at age 30 after Bootstrapping the
quantiles of the mens sample 1000 times

At the age of 65

At the age of 65 we start seeing some change. The remaining expected lifetime has
obviously increased with between two to three years, given the fact that we condition
on everyone living at the age of 65. Additionally the di�erence in remaining expected
lifetime between the quantiles have been reduced. For men you can still observe
a distinct di�erence between all three income quantiles. For women however, the
change is small di�erence between the three lower income groups is all but gone.
The fourth quantile is still discernible though. For the total sample, there have
been some change in between the quantiles, with the third quantile having the
lowest remaining life expectancy.
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Figure 4.30. Remaining life expectancy at age 65 after Bootstrapping the
quantiles of the total sample 1000 times

Figure 4.31. Remaining life expectancy at age 65 after Bootstrapping the
quantiles of the womens sample 1000 times
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Figure 4.32. Remaining life expectancy at age 65 after Bootstrapping the
quantiles of the mens sample 1000 times

4.3 Confidence intervals and histograms
So what does all this tell us about our hypothesis, that there are more parameters
than just the gender that could be important to consider when doing mortality
studies? As we chose to study an income parameter in this work, the hypothesis is
thus that there is a significant di�erence in mortality between higher income groups
and lower. The figure 4.33 shows the histogram of the di�erence between the normal
distribution using the estimated mean and standard deviation calculated shown in
table 4.10 above against the calculated results of the bootstrap samples for the
expected remaining for the total sample.
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Figure 4.33. Histogram showing the di�erence between the normal distribution
using the estimated mean and standard deviation against the calculated results
of the bootstrap samples for the expected remaining for the total sample

Looking at the histograms, we seem to have a rather good fit with our normal
distributions. We can then use the normal distributions to calculate confidence
intervals for our quantiles, thus testing our hypothesis. Confidence intervals can be
used to express the degree of uncertainty associated with a sample statistic. It is
a an interval estimate and consist of a range of values that act as good estimates
of the unknown parameter. In this case the mortality of the di�erent quantiles of
income groups in our set of populations. It should be remembered that the true
value of the parameter is not necessarily in the computed interval of a particular
sample. Considering that we are using a non parametric bootstrap on observed data
that are random samples of the true population, this signifies that the confidence
interval must also be random. A hypothesis test is performed with a certain level of
significance, which corresponds to the confidence level. In our case, the confidence
level of 0.01. To calculate the upper and lower bound of our data, we use the formula

x̄ ± 2.576 · ‡Ô
n

(4.1)

where 2.576 is the z-value of the normal distribution at 0.99.
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Total Quantile Lower limit Mean Upper limit

e

x,0 Quantile 1 82.16 82.56 82.95
Quantile 2 82.48 82.84 83.20
Quantile 3 82.70 83.01 83.32
Quantile 4 84.17 84.46 84.76

e

x,30 Quantile 1 83.20 83.45 83.70
Quantile 2 83.20 83.44 83.68
Quantile 3 83.39 83.61 83.83
Quantile 4 84.77 85.00 85.22

e

x,65 Quantile 1 85.80 86.02 86.24
Quantile 2 85.56 85.78 86.00
Quantile 3 85.35 85.54 86.20
Quantile 4 86.20 86.40 86.61

Table 4.13. The confidence intervals for the expected lifetimes at birth, the
age of 30 and age of 65 for the total sample

Women Quantile Lower limit Mean Upper limit

e

x,0 Quantile 1 82.86 83.27 83.68
Quantile 2 83.39 83.77 84.16
Quantile 3 83.49 83.85 84.20
Quantile 4 85.39 85.73 86.06

e

x,30 Quantile 1 83.74 84.01 84.29
Quantile 2 83.90 84.16 84.43
Quantile 3 84.20 84.45 84.70
Quantile 4 86.00 86.26 86.52

e

x,65 Quantile 1 85.92 86.16 86.40
Quantile 2 85.87 86.10 86.34
Quantile 3 85.99 86.22 86.44
Quantile 4 86.28 87.51 87.74

Table 4.14. The confidence intervals for the expected lifetimes at birth, the
age of 30 and age of 65 for the womens sample
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Men Quantile Lower limit Mean Upper limit

e

x,0 Quantile 1 77.13 77.88 78.63
Quantile 2 77.62 78.43 79.24
Quantile 3 80.60 81.36 82.11
Quantile 4 82.77 83.44 84.11

e

x,30 Quantile 1 78.21 78.65 79.08
Quantile 2 79.20 79.66 80.13
Quantile 3 81.85 82.32 82.79
Quantile 4 83.69 84.18 84.68

e

x,65 Quantile 1 81.84 82.21 82.58
Quantile 2 82.66 83.07 83.47
Quantile 3 84.14 84.57 85.00
Quantile 4 85.28 85.75 86.21

Table 4.15. The confidence intervals for the expected lifetimes at birth, the
age of 30 and age of 65 for the mens sample
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From the tables 4.13, 4.14 and 4.15 we can determine that the remaining ex-
pected lifetime at birth for all the three populations is lower for first than the fourth
quantile, with a confidence level of 1 %. The same is true when we condition the
remaining expected lifetime on the age of 30. For the condition of the age of 65,
we can say that the is a statistical di�erence between the means, even though the
confidence intervals overlap. We can see an example of this looking at figure 4.34

Figure 4.34. Confidence intervals for the four income quantiles of the total
sample conditioned on the age of 65
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Chapter 5

Conclusion and discussion

5.1 Conclusion
Starting this project, there was one main aim to answer, to look into the assumption
that more parameters than just gender and age are important when doing mortality
studies. I set up a hypothesis that having a higher income would a�ect your expected
life span positively, which would have an e�ect for life insurance companies. Based
on the results from the previous chapter, we can establish that there is a statistically
significant di�erence in mortality between the population having an income in the
lowest 25 % versus the population having an income in the top 25 %. For men at
birth, the di�erence is almost six years, while for women the same number is 2.5
years. The relative di�erences lessens with rising age. Though still by the retirement
age, the means of the highest quantile are still significantly higher.

5.2 Discussion
We have previously discussed how lifestyle and sickness have implication on the
mortality. In this study we looked at an income parameter to see how it a�ects
the lifespan. From the results, we now know that there is a significant discrepancy
between higher and lower income groups. Higher income gives the possibility of
private health insurance and stable living. Income correlates with a variety of de-
mographical data, among others education, living and employment. The answer to
why higher income leads to lower mortality probably lies within these subcategories.
So how does this a�ect insurance companies? First of all, insurance companies uses
economical mortality, which takes into account the sum at risk when weighting the
Makeham parameters and calculating the commutation numbers. The sum at risk
is based on the benefit owed by the company, which in turn is based on the income.
The mortality assumptions is thus based on the economic risk for insurance com-
panies. The consequence is that the weights used are based heavily on the richest,
which overall increases the life span of the economic population. Consecutively the
insurance companies doesn’t stand much risk because of the lower mortality for the
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richest. However the people with the lowest income will have their pension paid out
during a longer period, lowering their pension as to what could have been.

The second aim of the thesis was to analyse the spread that exist within a cer-
tain group and to understand how low the mortality could actually get within a
population. Here we can examine table 5.1 to see that the di�erence for men is
actually higher than that between the genders. The di�erence for the women is
lower, but not notwithstanding. The longer average life expectancy of today and
the nearby future derives from people living longer after retirement. At the same
time evidence suggest that at the latest stages of life, the mortality remains the
same as before. By analysing the spread that exist within a certain group, it would
be possible to see how low the mortality curve could get, with the medicine and
health care that exist today.

Di�erence men Di�erence women Di�erence gender

e

x,0 5.6 2.5 3.9
e

x,30 5.5 2.2 3.5
e

x,65 3.5 1.3 2.6

Table 5.1. The di�erence in expected lifetime between the highest and lowest
quantiles for men and for women and the di�erence between the genders
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One thing to consider is the e�ect of using three years of data and the assump-
tion that they are independent from each other. We know that the income will
vary from year to year, which foremost should a�ect the salary of the deceased,
as a deceased in 2009 had a lower salary than a deceased 2011. This e�ect should
be little, as the yearly based amount have been used, which takes into account the
average increased income in Sweden. As long as this population has an income
increase according to the rest of the population, this varying income from year to
year should be considered a minor issue. Another thing to notice in the results is
that the three lower quantiles often coincided. One reason for this could be that
the incomes between the di�erent quantiles didn’t really di�er much. Remember
table 4.2. For women, there is only 75 000 SEK between the upper limit of the first
quantile and the lower limit of the third quantile. One way to have done it would
be to divide the income in quantiles, and looking at the mortality in each of these
quantiles instead. The problem here would be how to divide the income, and that
there would probably be very little data in the later quantiles, as there would be
a much lower populations as well as fewer deaths within this population. In the
results there were a much larger gap in remaining estimated lifetime for men than
women. We know for a fact that the data available for men is much lower than
that of women, with less than a third of the population of women. This of course
give a larger uncertainty in the results. But assuming the data is correct, it could
have consequences. This was not really seen in the results, with the sigma for men
only being slightly higher then that of women. The use of the bootstrap model on
every age in the quantile groups might be a reason for this, as for every makeham
parameter set, we use the bootstrap 71 times, limiting the variability.

One discussion that was going on early in the process was whether to use the
Makeham model or the Lee Carter model in this thesis. It was decided to use the
Makeham model for two reasons. The first reason was that neither Folksam nor
KPA was using the Lee Carter model at the time, nor most other insurance com-
panies. The second was that the Lee Carter model is based on many years of data
to be able to do the trend analysis. As the data gathering for the years earlier than
2009 was di�cult for di�erent reasons, it would have been di�cult to use the Lee
Carter model.
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