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Sammanfattning

GARCH-copula modellen för att uppskatta tidsbetingat beroende
vid riskhanteringen av eletricitetsderivat

Vid riskhantering av elektrictitetsderivat kan, tid till leverans delas upp I
ett rutnät med antagandet att volatiliteten kan anses konstant för varje ruta
i nätet. Detta upplägg tar emellertid inte hänsyn till beroende mellan de
olika rutorna i rutnätet.
Detta examensarbeta försöker att utveckla en metod för att uppskatta detta
beroende för eletricitetsderivat som befinner sig i på olika platser i rutnä-
tet och som har olika leveransperioder. Mer specifikt är målet att uppskatta
kvoten mellan kvantilen av summerade prisförändringar mot summan av de
marginella kvantilerna hos prisförändringar.
Angreppsättet är en kombination av så kallade Generelised Autoregressive
Conditional Heteroscedasticity (GARCH) och så kallade copulas. GARCH
processen används för att filtrera ut heteroskedicitet i prisdatan. Copulas
passas till den filtrerade via pseduo maximum likelihood och ett test av an-
passningens kvalitet tillämpas.
GARCH processer allena visar sig vara otillräckliga för att fånga dynamiken
i prisdatan. Det visar sig att en kombination av GARCH och autoregressive
moving avergae (ARMA) processer ger en bättre anpassning till data. Det
resulterande beroendet visar sig fångas bäst av elliptiska copulas.
Den skattade kvoten visar sig vara rätt liten i de studerade fallen. Använding-
en av ARMA-GARCH visar sig också ge en bättre anpassning till copulas
när de används till finansiell data. En tidsbetingning i beroendet kan också
observeras.





Abstract

The GARCH-copula model for gaugeing time conditional de-
pendence in the risk management of electricity derivatives

In the risk management of electricity derivatives, time to delivery can be
divided into a time grid, with the assumption that within each cell of the
grid, volatility is more or less constant. This setup however does not take in
to account dependence between the different cells in the time grid.

This thesis tries to develop a way to gauge the dependence between elec-
tricity derivatives at the different places in the time grid and different de-
livery periods. More specifically, the aim is to estimate the size of the ratio
of the quantile of the sum of price changes against the sum of the marginal
quantiles of the price changes.

The approach used is a combination of Generalised Autoregressive Con-
ditional Heteroscedasticity (GARCH) processes and copulas. The GARCH
process is used to filter out heteroscedasticity in the price data. Copulas are
fitted to the filtered data using pseudo maximum likelihood and the fitted
copulas are evaluated using a goodness of fit test.

GARCH processes alone are found to be insufficient to capture the dy-
namics of the price data. It is found that combining GARCH with Au-
toregressive Moving Average processes provides better fit to the data. The
resulting dependence is the found to be best captured by elliptical copulas.
The estimated ratio is found to be quite small in the cases studied. The use
of the ARMA-GARCH filtering gives in general a better fit for copulas when
applied to financial data. A time dependency in the dependence can also be
observed.
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Chapter 1

Introduction

The aim of this thesis is to investigate the dependency between price changes
of derivatives written on electricity with different time to delivery from a
risk management perspective. The goal in mind is to investigate the ratio
between the quantile of the sum of price changes versus the the quantile of
the marginal price changes. To be mathematically specific, this thesis will
try to estimate the ratio

F−1
X+Y

F−1
X + F−1

Y

(1.1)

where X and Y are stochastic variables that are not necessarily independent
nor necessarily identically distributed. F−1

X is here the quantile function for
the random variable X The stochastic variables X and Y will in this thesis
be possible price changes of a financial contract from one day t to another
t− 1 e.g.

X = Pt − Pt−1

for some financial contract with the time dependent price Pt.
This problem in itself is in not new. The problem was first formulated by
Kolmogorov and a theoretical solution for an upper bound was provided by
[13] and [7] expanded upon the solution. However, their methods result in
a complex problem to solve for arbitrary marginals and high dimensions, so
their approach will not be used. Instead, the approach will be a combination
of GARCH models and copulas, with the dynamics of the log returns of
the contracts being modelled by GARCH and dependency through a copula.
The disposition of the thesis will be the following. First, the problem will be
presented, with a brief background, assumptions made and a presentation of
the data used. In the subsequent chapter, the theory of GARCH models and
copulas will be briefly discussed, together with a multiplier based goodness
of fit test for copulas and further mathematical formulations that will be
of aid in the solution of the problem. The third chapter will be devoted to
an explanation of the selected model and assumptions made. In the fourth
chapter a selection of results will be presented. As the reader will soon be
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made aware, the problem is quite comprehensive and therefore no complete
exposé of the results can be made in finite time (or page numbers). At the
end there will be a chapter with a discussion of the results and a reference
list.

1.1 The electricity derivative market

Nasdaq Clearing AB is a clearing house and provides clearing for a wide
range of electricity derivatives, among them futures, forwards, options and
electricity price area differentials (EPADS). Nasdaq Clearing acts as a Cen-
tral Counter Party (CCP) for these contracts. This means that the clearing
house (Nasdaq Clearing) acts as the counter party for both sides. That
means that regardless if an investor has a long (has bought the contract)
or short position (has sold the contracts) in a contract, Nasdaq Clearing
is the contractual counter party. The reason for this is to minimize the
consequences of a default, failure to meet the contractual obligations, of a
participant. Should a participant default, Nasdaq Clearing ensures that the
contract is honoured. Thus removing a sizeable portion of the credit risk for
the participants.
We shall in this thesis, focus on forwards and futures on electricity, since
these are the one highest in both open interest and trading volume.
A derivative is a standardized contract (written on an underlying) between
two parties with a pay off function. Since this thesis will focus on futures
and forwards, let us briefly discuss these contracts. When two parties enter
into a future or forward contract, they agree on a price today for delivery
of an underlying (eg. stocks, oil, seafood, electricity) on a later date, the
delivery date. Such a contract may be traded on an exchange, and it is
always possible to exit the contract (by for example, entering a contract in
the opposite direction). As the contract can be traded on an exchange, there
is a possibility of a gain/loss for the participants. For a futures contract,
the losses and gains are settled on a daily basis and for a forward contract
losses/gains are settled on delivery. This implies that forwards have a market
value while futures do not.
In order to participate in the market, a participant, regardless whatever the
participant is long or short, has to post collateral, henceforth called margin.
The purpose of the margin is to ensure that the participants can handle
sudden price changes in their positions. Should the amount of collateral
deposited be insufficient due to market movements, a so called margin call
is issued, and the participant has a set amount of time to either post more
collateral or close positions so the amount of margin is sufficient. The mar-
gin is often in the form of cash, but can also be in the form of bonds, stocks
etcetera.
For derivatives on electricity, the quoted price on the exchange is for one
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1MVh1. Different contracts have different volumes. There are contracts
available for the delivery of electricity for all days of a certain week, month,
quarter and year. The contracts can also specify when during the day the
electricity should be delivered. This can for example be during peak load
(office hours) or during base load (all hours of the day).
At first, it might seem strange that one would want to trade with deriva-
tives on electricity, since electricity can not (in a reasonable way) be stored.
However, electricity is in fact a great candidate as underlying for a derivative
due to the fact that quality is not an issue, it is power in the electricity grid,
regardless of who produced it or how. To make this matter clearer we give
the following example, from the perspective of an electricity producer taken
from [2].
Consider a producer of electricity with a power plant. The producer has the
choice to sell the electricity on the so called spot market or on the forwards
market. For simplicity, assume that the power plant can produce 1 MW at
all times. On September 1st there is a forward contract available for de-
livery of electricity for all hours of the month of April the following year.
The price of the contract is 40 e/MWh. The producer chooses to enter this
contract, as the price is what the producer would like to sell for. At the
last day of March, the price of the contract has risen to 45 e/MWh, so the
producer have lost 5 e/MWh. Say, again for simplicity, that the spot price
for electricity is constant at 30 e/MWh for all hours in April. Then, since
the producer lost 5 e/MWh on the forward contract, and the spot price re-
mains constant, the total price in the end is 45-5+30-30=40 e/MWh. Which
was what the producer aimed for in the beginning. If the producer instead
exits the contract right before settlement, then the producer still have to
pay 5 e/MWh as loss on the forward and will have to sell the electricity on
the spot market. The gain is now 30-5=25 e/MWh. It is of course, a bit
unrealistic that the producer would sell the entire production capability on
the derivatives market and that spot price for electricity would be constant
during an entire month. The idea with the above example is to show the
usefulness of electricity derivatives as hedging instruments for producers and
consumers of electricity. This is by no means a complete covering of different
derivatives. For the reader interested to know more, a good introduction to
the subject is given in [11].

1.2 Margin and Time Buckets

Currently Nasdaq Clearing employs the Nordic SPAN model for the calcu-
lation of margin. A key feature of the SPAN model is the so called time
buckets, or time grid. The volatility of commodity futures and forwards has
been found empirically to be dependent on time to delivery. As a contract

1Mega Watt hour
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moves closer to delivery, the volatility of the contract increases. Volatility is
simply a contract’s ability to change in price. Volatility is, by its nature, an
unobserved quantity. There are several ways to measure volatility. One way
the volatility could be measured is by using the relative price increments

Pt − Pt−1

Pt

To make use of the fact that the volatility increases as the contract moves
closer to delivery when calculating the margin, time to delivery is divided
into a grid, where every cell is called a time bucket. The assumption is then
that within each time bucket, volatility can be seen as more or less constant.
The time buckets are constructed so that the beginning of the time bucket
is included while the end is not. In a more mathematically formulated way,
this means that if the time bucket begins when the time left to delivery is
t1 and ends when the time left to delivery is t2, then the time bucket can be
written as the interval

[t1, t2)

where t1 < t2. Figure 1.1 shows a time series of prices for a contract that
has been divided into time buckets.

Figure 1.1: An example of how a contract can be divided into time buckets
beginning when the contract starts being traded until the contract goes into
delivery. The y − axis is the price and the x − axis is remaining days to
delivery. Each colour corresponds to a time bucket.

This construction can be used for risk management in the following way.
Let us say that on a market for a certain commodity there are several fu-
tures/forwards being traded. Let us say that there are several time buckets
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that cover the entire interval of delivery times for all contracts being traded.
Then each day, we can observe absolute relative price changes∣∣∣∣Pt − Pt−1

Pt

∣∣∣∣
for each time bucket. If a time bucket contains several contracts, then for
each day one takes the relative price change that is the highest in absolute
value. Now one can for example use the empirical quantile F̂−1(p) (or some
more elegant method, such as Extreme Value Theory) to calculate margin
M at level p for a contract belonging to time bucket k by using for example
the formula

M = F̂−1
k (p)PtV T

Here V is the volume of the contract, which, for a base load contract, is
one MWh for 24 hours2, and T is the duration of the contract which can be
either one day, one week, one month, one quarter or one year, and finally Pt
is the current price of the contract. An obvious problem with this approach
is that the method is blind to the specific kind of contract. For example, one
might calculate a margin for a yearly contract by using data belonging to a
monthly contract.

Since the clearing house is the financial counter party for both the seller
and the buyer of the contract, only the magnitude of the price change is of
interest, not the direction. Then when observations have been collected for
several days, a volatility curve is created by taking the 99 % quantile of the
absolute relative price changes. The number of days for which observations
have been collected is referred to as the look back period. This is typically
a year.
The Figure 1.2 is an example of a volatility curve

This is by no means a complete explanation of time buckets and how they
are used for risk management in the SPAN model. The reader interested in
a full description of the SPAN model is directed to [1]

1.3 Some small illuminating examples

To get a more clear understanding of what it is we want to achieve, its
potential role in risk management, and to explain why it is achieved by not
by to just taking the well known linear correlation coefficient of two samples
to model dependence and to provide an analytical expression for the ratio

F−1
X+Y (p)

F−1
X (p) + F−1

Y (p)

2Contracts can also be, for example, specified for "peak load", i.e. office hours
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Figure 1.2: An example of a volatility curve, with days to delivery on the
x-axis,s each number represents a time bucket

consider the following examples. On a market there are two different con-
tracts available, A and B. In order to participate in the market, the clearing
house requires that a participant can cover its losses from day to day in 99%
of the cases. In order to guarantee this, the clearing house demands that
collateral, margin, is deposited. Let us say, to make it a bit easier for us,
that the profit or loss from each contract is given by normally distributed
random variables X and Y. The clearing house has complete knowledge of
the distribution of the gains and losses and thus requires that the amount
of margin to be posted should equal the 99% quantile of the profits and
losses multiplied by the size of the position. Let us first consider what would
happen in two extreme cases, comonotonicity and countermonotonicity. We
quickly remind our selves what we mean by this. We say that two random
variables X,Y are comonotone if X = F−1

X (U) and Y = F−1
Y (U). Where

U ∼ U(0, 1) and F−1
X and F−1

Y are the quantiles of X and Y .
If X and Y are counter monotone then X = F−1

X (U) and Y = F−1
Y (1− U),

with the same definitions as above. For X ∼ N(µ, σ2) and Y ∼ N(µ, σ2),
X = Y in the case of comonotonicity and X = −Y in the case of counter
monotonicity. Comonotonicity is "the highest" correlation possible. Note
that this does not mean that the linear correlation coefficient, ρ, is neces-
sarily 1 or −1 in these two cases. A simple example is when X ∼ LN(0, 1)
and Y ∼ LN(µ, σ2). That is, X = eZ1 and Y = eZ2 for Z1 ∼ N(0, 1) and
Z2 ∼ N(µ, σ2). If one calculates the linear coefficient ρ

ρ =
E[(X − E[X])(Y − E[Y ])]√

E[(X − E[X])2]
√
E[(Y − E[Y ])2]

(1.2)
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for the random variables X and Y then one finds that for the case of mono-
tonicity and counter monotonicity respectively,

ρmax =
eσ − 1

√
e− 1

√
eσ2 − 1

and ρmin =
e−σ − 1

√
e− 1

√
eσ2 − 1

(1.3)

As can be readily seen, as σ → ∞, limσ→∞ ρmin = limσ→∞ ρmax = 0.
Even though, the pair X,Y are perfectly correlated. For a further discussion
about this, see [17]. In these two (extreme) cases, either none, or a complete
discount in margin could be offered, since for in the case of comonticity
the two contracts move in the same direction or in the case of counter co
monotonicity the contracts will move in opposite directions, so a loss in one
contracts will always be countered by a gain of the same magnitude in the
other.

Say that margin M is calculated as the quantile of the price change
Pt − Pt−1 between one day t − 1 and another t multiplied by the size of
the position, that is M = πF−1

Pt−Pt−1
(p), where π is the size of the position

and F−1
Pt−Pt−1

(p) is the quantile for the distribution of returns. Assume, a
bit unrealistic, that the price change X1, X2 of two contracts are given by
two normal distributions X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2), with linear

correlation coefficient ρ: −1 ≤ ρ ≤ 1. We may write for a bivariate normal
distribution (

X1

X2

)
=

(
µ1

µ2

)
+

(
σ1 0

ρσ2 σ2

√
1− ρ2

)(
Z1

Z2

)
Where Z1, Z2 I.I.D. N(0, 1). For the sum Y = αX1 + βX2 it holds that

Y =
(
α β

)(X1

X2

)
So that Y is N(αµ1 + βµ2, α

2σ2
1 + β2σ2 + 2αβρσ1σ2)

distributed see [9]. Then the quantile of Y , F−1
Y (p) is given by

F−1
Y (p) = αµ1 + βµ2 +

√
α2σ2

1 + β2σ2 + 2αβρσ1σ2Φ−1(p) (1.4)

Where Φ−1(p) is the standard quantile function for the N(0, 1) distribution.
So, in this scenario, the ratio in Equation 1.1 would be given by

αµ1 + βµ2 +
√
α2σ2

1 + β2σ2
2 + 2αβρσ1σ2Φ−1(p)

|α|(µ1 + σ1Φ−1(p)) + |β|(µ2 + σ2Φ−1(p))
(1.5)

Let us now return to margin. Say that the clearing house would like to offer
a discount on margin in cases where it can be clearly established that there
is a dependence in price movements between two contracts. If we continue
to assume that the distribution of the price changes X1, X2 for the two
contracts is normal, X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2) , we get that total
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margin for two contracts can be calculated (for a position of size α and β in
the two contracts) as either

M = |α|
(
µ1 + σ2Φ−1(p)

)
+ |β|

(
µ1 + σ2Φ−1(p)

)
(1.6)

or by using Equation 1.4. Now, a discount in margin γ that acknowledges
eventual dependence between contracts can be defined as

γ = 1−
F−1
αX1+βX2

(p)

|α|F−1
X1

(p) + |β|F−1
X2

(p)
(1.7)

If we use Equation 1.4 and Equation 1.6 the discount becomes

γ =

(
1− αµ1 + βµ2 +

√
α2σ2

1 + β2σ2
2 + 2αβρσ1σ2Φ−1(p)

|α|(µ1 + σ1Φ−1(p)) + |β|(µ2 + σ2Φ−1(p))

)
(1.8)

If we assume zero mean (for illustrative purposes) of the return, then this
expression reduces to

γ =

(
1−

√
α2σ2

1 + β2σ2
2 + 2αβρσ1σ2

|α|σ1 + |β|σ2

)
(1.9)

Notice that the discount is non-zero even if X1 and X2 are uncorrelated or
have a linear correlation coefficient ρ that is ρ = 1 or ρ = −13. If we further
assume that σ1 = σ2 and α = β then γ in (1.9) further reduces to

γ = 1−
√

2α2σ2 + 2ρα2σ2

2|α|σ
(1.10)

So that in the case ρ = 0 (independence), γ =
√

2−1√
2
, and further the case

ρ = −1 (countermonotonicity) γ = 1 and finally for the case ρ = 1 (comono-
tonicity) gives that γ = 0. Showing that a none or a complete reduction in
margin is possible.

1.4 The data

In order to solve the problem, the following data is available.
The data set contains 59121 observations, of both futures and forwards. A
typical data entry have the following fields given in Table 1.1.

Most entries are self explanatory. The entries that are of most interest
is the relative increments and TIERS. The entry that needs explanation the

3Which, for the bivariate normal distribution implies comonotonicity and counter
monotonicity, respectively. Moreover, ρ = 0 implies independence for the bivariate normal
distribution.
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Tier Date 0 Date 1
DEXBQ003 2011-05-23 2011-05-24

Series P0 P1

EDEBLQ4-11 65.15 65.2
Increment Relative increment Date of delivery start

0.05 0.0007674597 2011-10-01
Date of delivery stop Days to delivery start Days to delivery stop

2011-12-31 130 221

Table 1.1: Table of the different fields in a data point with illustrating values

most is the TIER. The tiers are keeping record on the sequence of delivery for
a contract of a specific type. In the sample data given in Table 1.1, the tier is
DEXBQ003. This is to be read as German electricity (DEX), base load (B),
quarterly (Q) contract that has one quarterly contract being traded before
it comes into delivery (003) (the contract that is in delivery has index 001).
It follows this pattern for all the contract, with the obvious interpretation;
DEXBY004, is a yearly contract with two yearly contracts that will go into
delivery before it. The entry series follows a similar pattern. EDEBLQ4-11
is shorthand for Electricity in Germany (Deustchland EDE)) Base Load (all
hours of the day, BL) for a quarter (Q), the forth of the year 2011.
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Chapter 2

Mathematical background

The approach to capture the dependence will be based on the use of a com-
bination of GARCH (Generalised Autoregressive Conditional Heteroskedas-
ticity) processes and copulas.

2.1 GARCH processes

The ARCH (Autoregressive Conditional Heteroskedasticity) was first pro-
posed by Engle in 1981 in [5]. The ARCH process is defined for the univariate
case by

Definition 2.1 A process {Xt} is said to be an ARCH(p) process if it for
every t ∈ Z satisfies

Xt =
√
htZt

ht =ω +

p∑
i=1

αiX
2
t−i

ω > 0, αj ≥ 0

where Zt ∼WN(0, 1) and ht is a strictly positive process.

Here, WN(0, 1) is a white noise process (see Definition 2.5) with zero mean
and variance/standard deviation one.
A generalisation of the above and one of the main focuses of this thesis, is
the so called GARCH-process (Generalised Autoregressive conditional Het-
eroscedasticity), first proposed by Bollarslev in 1986 in [3]. It is for the
univariate case defined as

Definition 2.2 A process {Xt} is said to be a GARCH(p, q) process if it

13



for every t ∈ Z satisfies

Xt =
√
htZt (2.1)

ht =ω +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjht−j (2.2)

ω > 0, βj , αj ≥ 0 (2.3)
(2.4)

where Zt ∼WN(0, 1) and ht is a strictly positive process.

The ARCH/GARCH model allows us to capture a few stylised facts about
financial returns. Most prominently, volatility clustering. That is, the well
known fact that changes in volatility tend to come in clusters. T As can
be easily seen, the ARCH(p) process is a special case of the GARCH(p, q)
process with q = 0.

2.1.1 Properties of GARCH processes

Before we start to work with the GARCH process, we need to establish some
facts regarding the process. We first need to establish under which conditions
the process is stationary.

2.1.1.1 Stationarity of GARCH processes

Generally for stochastic processes there are two kinds of stationarity, first
order, and second order stationarity. We first give a quick definition of the
two kinds of stationarity.

Definition 2.3 A stochastic process {Xt} is said to be strictly (first order)
stationary if {Xt1 , . . . .Xtn} and {Xt1+h , . . . , Xtn+h} have the same probability
distribution for all t1, . . . , tn and h > 0.

Definition 2.4 A stochastic process {Xt} is said to be weakly (second or-
der) stationary stationary if Cov(Xs, Xs+t) is independent of s and thus a
function of t and E [Xs] and E

[
X2
s

]
are independent of s.

With these definitions in mind, we can define a white noise.

Definition 2.5 We say that a stochastic process {Xt} is white noiseWN(0, σ2)
with centred mean 0 and variance σ2 if it is weakly stationary (second order)
and

ρ(h) = Cov(Xt, Xt+h) =


1 h = 0

0 h 6= 0
(2.5)

Moreover, we say that ρ(h) is the autocorrelation function for the process
{Xt}.
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What now follows might seem like a abundance of definitions and the-
orems. But we will need them to establish the conditions for two kinds of
stationarity of the GARCH and to show that the GARCH process can be
seen as a white noise.
We begin by writing a general squared GARCH(p, q) process in vector form
as

x̄t = bt +Atx̄t−1 (2.6)

Where A is the following (p+ q, p+ q) matrix.

At =



α1Z
2
t · · · αqZ

2
t β1Z

2
t · · · βpZ

2
t

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

. . . . . .
...

...
. . . . . .

...
0 · · · 1 0 0 · · · 0 0
α1 · · · αq β1 · · · βp
0 · · · 0 1 0 · · · 0
0 · · · 0 0 1 · · · 0
...

. . . . . .
...

...
. . . . . . 0

...
0 · · · 0 0 0 · · · 1 0


(2.7)

and

b̄t =



ωZ2
t

0
...
ω
0
...
0


∈ Rp+q x̄t =



X2
t
...

X2
t−p+1

ht
...

ht−q+1


∈ Rp+q (2.8)

We call this the Markovian representation of the GARCH process. It is
indeed a Markov process as the future value is dependent on the past value
of xt−1 only. As an example, we can see that the GARCH(1, 1) process can
in this representation be written as

x̄t = b̄t +Atx̄t

=

(
ωZ2

t

ω

)
+

(
α1Z

2
t β1Z

2
t

α β

)(
X2
t−1

ht−1

)
=

(
(ω + α1X

2
t−1 + β1ht−1)Z2

t

ω + αX2
t−1 + β1ht−1

)
=

(
htZ

2
t

ht

)
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We can by iterating (2.7), get that

x̄t = bt +
∞∑
k=1

AtAt−1At−k+1bt−k (2.9)

The idea now is to find conditions for the existence of this sum.
To continue, let us define a useful relation for the spectral radius ρ of matri-
ces.

lim
t→∞

1

t
log ||At|| = log(ρ(A)) (2.10)

Here, the specific matrix norm is unimportant. It can be shown that the
spectral radius is invariant with respect to the choice of norm. This result
has the following extension to random matrices.

γ = lim
t→∞

a.s
1

t
log ||AtAt1 . . . A1|| (2.11)

Here, a.s. stands for almost surely.
With this, we have the following theorem

Theorem 2.6 A necessary and sufficient condition for the existence of a
strictly stationary solution to the GARCH(p, q) model is that

γ < 0 (2.12)

for the matrix A in Equation (2.7) and γ as defined in Equation (2.11)
When the strictly stationary solution exists, it is unique, nonanticipative
and ergodic.

A proof of the theorem can be found in [6].
We get the conditions for second order stationarity with the following theo-
rem.

Theorem 2.7 If there exists a GARCH(p,q) process, in the sense of Defini-
tion 2.2 which is second-order stationary and nonanticipative, and if ω > 0,
then

q∑
i=1

αi +

p∑
j=1

βj < 1 (2.13)

Conversely, if condition (2.13) holds, the unique strictly stationary solution
of the model in Definition 2.2 is a weak white noise (and thus is second-
order stationary). In addition, there exists no other second-order stationary
solution.

In the GARCH(1, 1) case, the criterion for strict stationarity becomes
simpler, by the following theorem.
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Theorem 2.8 If

−∞ < γ := E
[
log(αZ2

t + β)
]
< 0 (2.14)

then the infinite sum

ht =

{
1 +

∞∑
i=1

Γ(Zt−1) . . .Γ(Zt−i)

}
ω (2.15)

where Γ(y) = αy2 + β, converges almost surely (a.s.) and the process Xt

defined by Xt =
√
htZt is the unique strictly stationary solution of the model

in Definition 2.2. This solution is nonanticipative and ergodic. If γ ≥ 0 and
ω > 0, there exists no strictly stationary solution.

We also have an easy condition for second order stationarity for theGARCH(1, 1)
with the following theorem.

Theorem 2.9 Let ω > 0 . If α+β ≥ 1, a nonanticipative and second-order
stationary solution to the GARCH(1, 1) model does not exist. If α+ β < 1,
the process Xt defined by 2.2 is second-order stationary. More precisely, Xt is
a weak white noise. Moreover, there exists no other second-order stationary
and nonanticipative solution.

2.1.2 ARMA-GARCH

As a further extension of theGARCH(p, q) model, there is theARMA(r, s)−
GARCH(p, q) model. The ARMA(r, s)−GARCH(p, q) model is simply a
regular ARMA model with GARCH errors.
An ARMA(r, s) process is given by the definition below.

Definition 2.10 The process {Xt = 0,±1,±2, . . . } is said to be an ARMA(r, s)
process if {Xt} is stationary and if for every t,

Xt − φ1Xt−1 − · · · − φrXt−r = Zt + θ1Zt−1 + · · ·+ θsZt−s

where {Zt} ∼WN(0, σ2).
We say that {Xt} is an ARMA(r, s) process with mean µ if {Xt − µ} is an
ARMA(r, s) process.

Furthermore, in order to guarantee that an ARMA(r, s) is invertible and
casual, we require that the polynomials

1− φ1z − · · · − φrzr (2.16)
1 + θ1z + · · ·+ θsz

s (2.17)

have no common roots and that the roots lie outside the unit circle. For the
reader inclined to know more about ARMA processes and to find proof of
the above, a good source is [18].
We combine Definition 2.10 above with Definition (2.2) to get theARMA(r, s)−
GARCH(p, q) process with mean µ
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Definition 2.11 We say that a process is an ARMA(r, s)−GARCH(p, q)
process if it satisfies

Xt =µ+
√
htZt (2.18)

µt =µ+

r∑
i=1

φi(Xt−i − µ) +

s∑
j=1

θj(Xt−j − µ) (2.19)

ht =ω +

p∑
i=1

αi(Xt−i − µt−i)2 +

p∑
j=1

βjht−j (2.20)

Zt ∼WN(0, 1) (2.21)

Where

ω > 0

p∑
i=1

αi +

q∑
j=1

βj < 1 and αi, βj ≥ 0

Using the ARMA(r, s)−GARCH(p, q) autoregressive and moving average
effects in the data can be remedied.
By Theorem 2.8 for the GARCH(1, 1) case and by Theorem 2.7 for the
general case we have the necessary conditions for a GARCH(p, q)-process to
be a (weak) white noise.

2.1.3 Estimating the GARCH process

The GARCH process can be estimated using Maximum Likelihood Esti-
mation. Maximum likelihood for the GARCH case means maximizing the
expression

L(θ, x1, . . . , x) =
n∏
t=1

1√
ht
f

(
xt√
ht

)
ht = ω +

p∑
i=1

αix
2
t−i +

q∑
j=1

βjh
2
t−j

(2.22)
where f

(
xt
ht

)
is the density of the innovations (the white noise) and x1, . . . , xn

are the observations. Here θ is a vector with the parameters we want to esti-
mate θ = (α1, . . . , αp, β1, . . . , βq, ω, γ1, . . . , γn)T . α1, . . . , αp, β1, . . . , βq, ω are
from definition 2.2 and γ1, . . . , γn are parameters belonging to the distribu-
tion of innovations, e.g. the degree of freedom ν for a Student’s t distribu-
tion.
When estimating, we look for parameters θ that maximize the likelihood.
That is we search for

arg max
θ
L(x1, . . . , xn, θ)

This is often done by instead using the log-likelihood, that is maximizing

log(L(x1, . . . , ω)) =
n∑
t=1

log

(
1√
ht
f

(
Xt√
ht

))
(2.23)
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The main difficulty in estimating the GARCH process, is how to make a
good starting guess for ht, since ht is not directly observed. A common way
to get a starting guess for h1, . . . , hq is to use the standard deviation for the
entire sample, and then hq+1, . . . , hn are determined by the recursion.
The parameters are preferably found using numerical optimization tech-
niques. To estimate the ARMA(r, s) − GARCH(p, q) the maximum likeli-
hood is again a viable approach. In this case, the expression to be maximized
is

L(x1, . . . , xn, θ, ) =

n∏
t=1

1√
ht
f

(
Xt − µ√

ht

)
(2.24)

Or the equivalent log likelihood version. Xt and ht is in the above the same as
in Definition 2.11 and f is the density of the innovations (the white noise). θ
and x1, . . . , xn have here the same meaning as in Equation (2.22). Of course,
in this case we also look for the parameters θ rather than the numerical value
of objective function/likelihood.

2.2 Copulas

The dependence between the innovations Zt of the GARCH for different con-
tracts will be modelled using copulas. We will first given a formal definition
of a copula and some useful properties.

2.2.1 Definition and properties

We begin by formally defining a two dimensional copula

Definition 2.12 A two dimensional copula is a function C from [0, 1]2 to
[0, 1] with the properties

• for every u, v in [0, 1]:

– C(0, v) = C(u, 0) = 0

– C(u, 1) = u, C(1, v) = v

• For every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2

C(u1, v1) + C(u2, v2)− C(u1, v2)− C(u2, v1) ≥ 0

Copulas for dimensions higher than two can also be defined. However, this
definition becomes very technical. Higher dimensional copulas are defined
below. However, the definition of grounded and n-increasing are intentionally
left out as to not make the text unnecessary technical. The interested reader
is advised to consult [14]. Nevertheless, an n-dimensional copula can be
defined as in 2.13
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Definition 2.13 An n-dimensional copula C is a function C with domain
[0, 1]n such that

1. C is grounded and n-increasing

2. C has margins Ck k = 1, . . . , n which satisfy Ck(u) = u for all u in
[0, 1]

The usefulness of copulas stems from Sklar’s theorem.

Theorem 2.14 Sklar’s theorem
Let H be an n-dimensional distribution function with marginal distributions
F1, . . . , Fn. Then there exists an n-copula C such that for all x in Rn

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (2.25)

If F1, . . . , Fn are continuous, then C is unique. The converse is also true. A
copula C with distributions F1, . . . , Fn is a distribution function H.

Sklar’s theorem makes it possible for us to regard the marginals and the
dependency structure separate from one another.
There is also another important theorem that tells us that transformed ran-
dom variables have the same copula after transformation for a rather broad
class of transformations.

Theorem 2.15 Let (X1, . . . , Xn)T have copula C. If α1, . . . , αn are strictly
increasing on RanX1, . . . , RanXn, respectively,then (α1(X1), . . . , αn(Xn))T

has copula C.

A proof can be found in [14]

2.2.2 Some copulas

We will investigate if the dependence between the innovations can be mod-
elled using five popular copulas; three archimedian copulas and two elliptical
copulas.

Archimedian copulas

Archimedian copulas are defined by their generator, through the following
theorem.

Theorem 2.16 Let ϕ be a continuous strictly decreasing function from [0, 1]
to [0,∞), such that ϕ(1) = 0 and let ϕ[−1] be the pseudo inverse of ϕ given
by

ϕ[−1](t) =

{
ϕ−1(t) 0 ≤ t < ϕ(0)

0 ϕ(0) ≤ t ≤ ∞
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Then the function C from [0, 1]2 to [0, 1] given by

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v))

is a copula if and only if ϕ is convex.

Using this theorem we can construct the following three popular archimedian
copulas. The Clayton, Gumbel and Frank copulas.
The Clayton copula has generator

ϕ(t) =
(t−θ − 1)

θ
(2.26)

which gives the Clayton copula

CClaytonθ (u1, u2) = max[(u−θ1 + u−θ2 − 1)−
1
θ , 0] (2.27)

The Gumbel copula has generator

ϕ(t) = (− ln(t))θ

which gives the Gumbel copula.

CGumbelθ (u, v) = e−[(ln(u))θ+(− ln(v))θ]
1
θ

Finally, the Frank copula has generator

ϕ(t) = − ln

(
e−θt − 1

e−θ − 1

)
θ ∈ R\{0}

Which gives the Frank copula

CFrankθ (u, v) =
1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1

e−θ − 1

)
(2.28)

In order to construct archimedian copulas of dimension greater than two,
we will use the following theorem.

Theorem 2.17 Let ϕ be a continuous strictly decreasing function from [0, 1]
to [0,∞] such that ϕ(0) = ∞ and ϕ(1) = 0 and let ϕ−1 denote the inverse
of ϕ. Then, Cd, a function from [0, 1]d to [0, 1], given by

Cd(u1, . . . , ud) = ϕ[−1](ϕ(u1) + · · ·+ ϕ(ud)) (2.29)

is a copula for all d ≥ 2 if and only if ϕ−1 is completely monotonic on [0,∞).

The condition of a completely monotonic inverse of the generator holds for
the three archimedian copulas presented above. For these copulas it is thus
possible to construct multivariate copulas using Theorem 2.17. For details
see [14], The drawback of this approach however is that the dependency
structure is controlled by just one parameter for all variables, which leads to
inflexible models.
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Elliptical copulas

It is possible to construct copulas using the well known elliptical distribu-
tions. This gives rise to so called elliptical copulas.
The bivariate Gaussian copula is given by

CNρ (u, v) =

∫ Φ−1(u)

∞

∫ Φ−1(v)

∞

1

2π
√

1− ρ
e
− s

2−2ρst+t2

2(1−ρ2) dsdt. (2.30)

The bivariate t-copula is given by

Ctν,ρ(u, v) =
1

2π
√

1− ρ2

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

(
1 +

s2 − 2ρst+ t2

ν(1− ρ2)

)− v+2
2

dsdt.

(2.31)
The parameters for the elliptical copulas (normal and Student’s t) are for
us familiar, they are simply the linear correlation coefficient and the degree
of freedom. We will later see the importance of the degrees of freedom, the
extra parameter for the Student’s t copula.
The elliptical copulas can easily be extended to several variables. In fact, we
have that the n-dimensional normal copula is given by

CNP (u1, . . . , un) = Φn
P(Φ−1(u1), . . . ,Φ−1(un)) (2.32)

Where Φn
P is the multivariate normal distribution function with correlation

matrix P, zero mean and unit variance, and Φ−1 is the quantile for the
univariate standard normal distribution.
Likewise, the n-dimensional Student’s t copula is given by

CtP,ν(u1, . . . , un) = tnρ,ν(t−1
ν (u1), . . . , t−1

ν (un)) (2.33)

where tnP,ν is the multivariate t distribution function with correlation matrix
P and ν degrees of freedom and t−1

ν is the quantile for the univariate t
distribution with ν degrees of freedom.

2.2.3 Estimation of copulas

Copulas, like the GARCH/GARCH-ARMA parameters, will be estimated
using maximum likelihood. To be more specific, the copulas are estimated
using pseudo maximum likelihood. The method gets its name from the fact
that we use a pseudo uniform sample for the marginal distributions. We get
pseudo uniform observations from a multivariate sample of size n by using a
modified version of the empirical distribution function

Fj,n(x) =
1

n+ 1

n∑
i=1

1(Xi,j < x) j = 1, . . . , d (2.34)
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for a multivariate sample of a random vector (X1, . . . , Xj , . . . , Xn)T of size n.
Here 1 is the indicator function and 1

n+1 , instead of the usual 1
n , is to ensure

that pseudo observations remain in the interior of [0, 1]d. This modification
is done so that the the likelihood of the copula can be evaluated in each
point.
Let the the copula have parameters given by the vector θ, then given Ui in
[0, 1] the log likelihood of the copula is given by

lnL(θ, Û1, . . . , Ûn) =

n∑
i=1

ln cθ(Ûi) (2.35)

where cθ is the density of the copula, θ is a vector of the parameters of
the copula and and Ûi refers to the pseudo uniform sample obtained using
equation (2.34).
Then one seeks the parameters θ that maximizes Equation 2.35, i.e. one
seeks

arg max
θ

lnL(θ, Û1, . . . , Ûn)

this can be found by using numerical optimization techniques.

As in the GARCH case, the log likelihood is also a viable approach.
To provide some examples of the objective function under consideration in
the optimization the log likelihood for the normal copula and t copula is
provided.
To estimate the parameters of the normal copula, we look for

arg max
P

n∑
i=1

ln fP(Φ−1(Û1,i), . . . ,Φ
−1(Ûd,i))−

n∑
i=1

d∑
j=1

ln(φ(Φ(Ûi,j))) (2.36)

Where fP is the density of the multivariate normal distribution with corre-
lation matrix P, unit variances and zero mean. Likewise, to estimate the
parameters of the t copula, we look for

arg max
ν,P

=
n∑
i=1

ln fν,P(t−1
ν (Ûi,1), . . . , t−1

ν (Ûi,d))−
n∑
i=1

d∑
j=1

ln fν(t−1
ν (Ûi,j))

(2.37)
Where fν,P is the density function for the multivariate student’s t-distribution
with correlation matrix P and ν degrees of freedom and zero mean. Lastly
fν is the density of the univariate t-distribution with zero mean and unit
variance and t−1

ν is the corresponding quantile.

2.2.4 Goodness of fit for copulas

We want to test the hypothesis H0 : C ∈ C0, that our estimated copula
belongs to a specific family of copulas. A review of goodness of fit tests
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for copulas is given in [4]. The test that is to be presented relies on the
copula, so we will use the pseudo observations. This means that the narrower
hypothesis if the marginal distributions are also correctly specified is not
covered under the test.
In this thesis, focus will be on a test that is based around the so called
von-Mises statistic

Sn =

∫
[0,1]d

n{Cn(u)− Cθn(u)}2dCn(u) (2.38)

where Cn is the so called empirical copula

Cn(u) =
1

n

n∑
i=1

1(U1 ≤ u1, . . . , Ud ≤ ud) (2.39)

Here u is a random number in [0, 1]d and Cθn is the pseudo maximum likeli-
hood estimate of the copula, estimated from a sample of size n. The standard
method to obtain a p-value for this statistic when testing copulas is to use
bootstrap. That is, draw with replacement from the sample and estimate
the copula for the new (bootstrapped) sample and do this a large number
of times. Bootstrapping is however a very computer intensive method, and
the computational time for even a moderate sample can be hours, as the
copula i re-estimated in every step. However an alternative to the bootstrap
is outlined in [12], and is based on multipliers.
According to [12], the estimator is found to give satisfactory results for low
sample sizes (around a 100 or so), and reduces the needed computational
time to seconds.
The idea with the multiplier method introduced in [12] is to use an asymp-
totic representation of the pseudo maximum likelihood estimator as follows.
Let Ûi be the pseudo [0, 1]d distributed numbers given by Equation (2.34),
the von Mises statistic in Equation (2.38) can be approximated by

S(k)
n =

∫
[0,1]d
{C(k)

n (u)− ĊTθn(u)Θ̂(k)
n }2dCn(u) = (2.40)

=
1

n

n∑
i=1

{C(k)
n (Ûi)− ĊTθn(Ûi)Θ̂

(k)
n }2 (2.41)

Here we have

C(k)
n (u) = α(k)

n (u)−
d∑
j=1

∂Cθ
∂uk

α(k)
n (1, . . . , 1, uj , 1, . . . , 1) (2.42)

α(k)
n (u) =

1√
n

n∑
i=1

Z
(k)
i {1(Ûi ≤ u)− Cn(u)} (2.43)

Θ̂(k)
n =

1√
n

n∑
i=1

Z
(k)
i Ĵθn(Ûi) (2.44)
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where Z(k)
i are random numbers with zero mean and unit variance. Moreover

Ĵθn(Ûi) = Σ−1
n

 ċθn(Ûi)

cθn(Ûi)
− 1

n

d∑
j=1

n∑
k=1

1(Ûi,j < Ûk,j)
c

(j)
θn

(Ûk)

cθn(Ûk)

ċθn(Ûk)

cθn(Ûk)


(2.45)

Here Σn is the covariance matrix for

ċθn(Û1)

cθn(Û1)
, . . . ,

ċθn(Ûn)

cθn(Ûn)

and

Ċθ =

(
∂Cθ(u)

∂θ1
, . . . ,

∂Cθ(u)

∂θq

)T
u ∈ [0, 1]d (2.46)

and finally

ċθ =

(
∂cθ(u)

∂θ1
, . . . ,

∂cθ(u)

∂θq

)T
u ∈ [0, 1]d (2.47)

where cθ(u) is the density of the copula, assuming it exists.
An approximate p-value for the test can then be obtained by following the
steps below

1. Estimate the Cramer von Mises statistic

Sn =

∫
[0,1]d

n{Cn(u)− Cθn(u)}2dCn(u) = (2.48)

=
n∑
i=1

(
Cn(Ûi)− Cθn(Ûi)

)2
(2.49)

2. For some large integer N do for k ∈ {1, 2 . . . , N}

(a) Generate n random variables Z(k)
j , j = 1, . . . , n with E

[
Z

(k)
j

]
= 0

and
E

[(
Z

(k)
j

)2
]

= 1

(b) Form an approximate realization of Sn, S
(k)
n using (2.41).

3. An approximate p-value is now given by

1

N

N∑
k=1

1(S(k)
n ≥ Sn) (2.50)

The test does not take into account the specified margins, but tests the
dependence structure, provided by the copula, only.
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2.2.5 Tail dependence

The copulas differ in what is known as tail dependence. For two U(0, 1)
distributed random variables U, V with copula C, upper and lower tail de-
pendence λU and λL is given by

λU = lim
z→1

2P (U > z|V = z) (2.51)

λL = lim
z→0

2P (U ≤ z|V = z) (2.52)

In words, tail dependence measures in a sense, the probability that an ex-
treme event in one variable, will be followed by an extreme event in the other
variable. We may also refer to this as asymptotic dependence or asymptotic
independence in the upper or lower tail. Strictly speaking, Equation (2.51)
and (2.52) is only valid for exchangeable copulas. Copulas for which

C(u, v) = C(v, u).

All copulas we have presented have this property.
For the Gaussian copula given by Equation (2.30) we have that

λU = lim
z→1

2P (U > z|V = z) = 2 lim
x→∞

P (Φ−1(U)|Φ−1(V ) = x) = P (X > x|Y = x)

We know that for (X,Y ) from a bivariate normal distribution with linear
correlation coefficient ρ, X|Y = x ∼ N(ρx, 1− ρ2). So that we get

2 lim
x→∞

P (X > x|Y = x) = 2 lim
x→∞

Φ̄

(
x− ρx√

1− ρ2

)
= 2 lim

x→∞
Φ̄

(
x

√
1− ρ
1 + ρ

)
= 0

(2.53)
where Φ̄(x) = 1− Φ(x) and Φ(x) is the normal distribution function. Since
the normal copula is symmetric, the lower tail dependence λL is zero as well.
For the t-copula similar calculations give that the tail dependence is given
by

λU = 2t̄ν+1

(√
(ν + 1)(1− ρ)

1 + ρ

)
(2.54)

where t̄ν+1(x) = 1 − tν+1(x) and tν+1 is the distribution function for the
Student’s t distribution with ν degrees of freedom. As can be seen, the
coefficient of tail dependence is decreasing in ν. and increasing in ρ. The
asymptotic limit of the t copula as ν → ∞ is the normal copula, so the
fact that the tail dependence is zero as ν → ∞ is expected. Since the t-
copula is symmetric the upper tail dependence is the same as the lower tail
dependence. For the tree Archimidean copulas under study, we find that, for
an archimedian copula, the tail dependence is given by the following theorem
from [16]. We start with a definition.
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Definition 2.18 We say that the generator ϕ of an archimedian copula is
strict if ϕ(0) =∞.

With this technicality out of the way, we move on to the theorem.

Theorem 2.19 Let ϕ be a strict generator such that ϕ−1 belongs to the
class of Laplace transforms of strictly positive random variables. If ϕ−1′(0)
is finite, then

C(u, v) = ϕ−1(ϕ(u) + ϕ(v))

does not have upper tail dependence. If the copula has upper tail dependence,
then ϕ−1′(0) = −∞ and the coefficient of upper tail dependence is given by

λU = 2− 2 lim
s→0

[
ϕ−1′(2s)

ϕ−1′(s)
].

The coefficient of lower tail dependence is given by

λL = 2 lim
s→∞

[
ϕ−1′(2s)

ϕ−1′(s)
],

without the criteria of ϕ−1′(0).

Using this theorem, we can see that for the Clayton copula

ϕ(s)−1′ =
1

θ
(1 + θs)

1
θ
−1

so that the Clayton copula does not have upper tail dependence. The lower
tail dependence is however given by

lim
s→∞

1 + θ2s−
1
θ
−1

1 + θs−
1
θ
−1

= 2−
1
θ .

For the Frank copula, tedious calculations give that

ϕ−1′ = −e
θ − 1

θ

which is finite, so the Frank copula does not have upper tail dependence.
Moreover, since the Frank copula is symmetric, it does not have lower tail
dependence either.
For the Gumbel copula we have that

ϕ(s)−1′ = −s1

θ
s−

1
θ e−s

1
θ ,

so that the Gumbel copula has upper tail dependence, which is given by

2− 2 lim
s→0

ϕ(2s)−1′

ϕ(s)−1′
= 2− 2

1
θ

and the lower lower tail dependence is zero.
Tail dependency allows us to model the fact that heavy losses in one contract
are likely to come with a large loss in another contract.
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2.2.6 Simulating from a Copula

Using a method for simulating from an elliptical distribution, simulating
from the elliptical copulas can be achieved in the same way with a small
modification. The steps for simulating from the elliptical copulas under
consideration, with correlation matrix P and degree of freedom ν (in the
case of the t copula) are given below.

• Simulate a random vector X = (x1, . . . , xd)
T with d independent stan-

dard normal or student’s t with ν degree of freedom random numbers.

• Multiply X with the Cholesky decomposition of the correlation matrix
P, denoted by A to obtain (z1, . . . , zd)

T = Z = AX.

• Set U = (u1, . . . ud)
T =

(
F−1(z1), . . . , F−1(zd)

)T where F−1 is the
quantile of the univariate normal/Student’s t distribution with ν de-
grees of freedom.

• U can now be seen as a sample from the normal or student’s t copula.

For the archimedian copulas there is a theorem that allows for simulation.
However, this theorem is very technical and involves many definitions. For
brevity reasons, we content ourselves with knowing that it exists and the
knowledge that simulating from archimedian copulas is possible. For the
theorem, please see [16].

2.3 Other considerations

2.3.1 Fat tails

Another stylized fact about the distribution of financial returns is that it
usually demonstrates what is known as fat tails. Here, a small introduction
to the concept will be provided
There is no absolute definition of a fat tails. A common [9] definition is to
consider a left or right tail fat if

lim
x→−∞

F (x)

e−λ(−x)
=∞ lim

x→∞

1− F (x)

e−λx
=∞ for all λ > 0

for the left and right tail, respectively. Another way to view this is that the
decay is slower than any exponential.
We investigate this by investigating how the left tail of the normal distribu-
tion behaves as x→ −∞. We begin by investigating the limit of

lim
x→−∞

Φ
(x−µ

σ

)
φ
(x−µ

σ

)
σ/(−x)

.
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An application of l’Hospital’s rule gives that

dΦ
(x−µ

σ

)
dx

=
1

σ
φ

(
x− µ
σ

)
d

dx

σφ
(x−µ

σ

)
(−x)

=
σ

x2
φ

(
x− µ
σ

)
+

1

(−x)
φ′
(
x− µ
σ

)
=

=
1

σ
φ

(
x− µ
σ

)(
1 +

µ

(−x)
+
σ2

x2

)
So that

lim
x→−∞

Φ
(x−µ

σ

)
φ
(x−µ

σ

)
σ/(−x)

= 1

By that we can conclude that the rate of decay of the normal distribution
left tail is slower than any exponential. That is, we have that

lim
x→−∞

Fµ,σ(x)

e−λ(−x)
= 0 for all λ > 0

and that the left tail of the normal distribution is not heavy tailed. With
similar calculations we can also show that the Student’s t distribution is
heavy tailed in this sense, i.e.,

lim
x→−∞

Fν,µ,σ(x)

e−λ(−x)
=∞ for all λ > 0.

The calculations are excluded for brevity.
Both the normal and Student’s t distribution is symmetrical. This gives us
that the right tail of the normal distribution is not heavy tailed and that
the right tail of the Student’s t distribution is heavy tailed. We can detect
fat tails by using a QQ-plot. A QQ-plot (Quantile Quantile plot) is the
empirical quantile (the ordered sample) plotted against the quantile of a
reference distribution. The points of the reference distribution is usually
chosen to be those of the empirical distribution function. If the sample have
heavier tails than the reference distribution, the plot will resemble the letter
s, as shown in Figure 2.1 where 500 simulated Student’s t distributed random
numbers with 3 degrees of freedom are plotted against the standard normal
distribution as the reference distribution.

2.3.2 Kendall’s tau

The parameters of the different copulas can be related to each other through
the use of Kendall’s tau (τ). Kendall’s τ is given by the following definition

Definition 2.20 Kendall’s tau τ(X,Y ) for a random vector (X,Y ) is given
by

τ(X,Y ) = P
(

(X − X̂)− (Y − Ŷ ) > 0
)
− P

(
(X − X̂)− (Y − Ŷ ) < 0

)
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Figure 2.1: Example of QQ-plot with 500 simulated random numbers with
a Student’s t distribution with 3 degrees of freedom (x − axis) against a
standard normal distribution (y − axis)

where (X̂, Ŷ ) is an independent copy of (X,Y ).

In words, Kendall’s τ is the probability of concordance minus the probability
of disconcordance. For copulas, we have a theorem that allows us to calculate
Kendall’s τ for two random variables with copula C.

Theorem 2.21 Let X and Y be random variables with an Archimedian cop-
ula C generated by ϕ. Then Kendall’s τ for X and Y is given by

τ = 1 + 4

∫ 1

0

ϕ(u)

ϕ′(u)
du

A proof of this theorem can be found in [16]. A table of Kendall’s τ as a
function of of the copula parameter θ is given in Table 2.1 1

Copula Kendall’s tau
Gumbel 1− 1

θ

Clayton θ
θ+2

Frank 1− 4 (1−D1(θ))
θ

Table 2.1: Kendall’s τ as function of the copula parameter θ for the three
arcimedian copulas Gumbel, Clayton and Frank copulas.

1Dk(θ) is the Debye function Dk(θ) = k
θk

∫ θ
0

xk

ex−1
dx
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We also have that for two random variables with an elliptical copula Kendall’s
τ is given by

τ(X,Y ) =
2

π
arcsin(ρX,Y )

Where ρX,Y is the usual linear correlation coefficient between X and Y .
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Chapter 3

Method

In order not to make the problem too large, we will focus only on yearly
and quarterly forward contracts. Even with that restriction, all possible
combinations will not be presented. The theory and considerations we have
presented is combined into the following model. The corner stone of the
method will be the so called tiers. The tiers will be in essence a bookkeeping
tool for keeping track of how many contracts of the same kind that are being
traded that goes in to delivery before it. For example, the tier DEXBQ003
refers to a quarterly contract, that has one quarterly contract that will go
into delivery before this contract goes into delivery. Say for example that
today is in the first quarter of the year. Then DEXBQ003 would correspond
to the contracts that starts delivery in the third quarter of the year. The
dividing into tiers enables us to have a consistent, or consistent enough, time
series of prices or returns. The data divided into tiers do not have gaps in the
price time series. By the absence of gaps, we mean that each business day
will have recorded price data. This is important, as for the yearly contracts,
there might be as long as a year between a yearly contract leaving a time
bucket until a yearly contract returns to the bucket. The time series for
the prices Pt is divided by Pt−1 i.e. taking Yt = Pt

Pt−1
. We then take the

logarithm of Yt to create
Xt = log(Yt) (3.1)

We refer to Xt in Equation (3.1) as the log returns. The two figures below
(Figure 3.1 and Figure 3.2) shows the time series of returns for a tier with a
time bucket colour marked.

What we try to achieve is that we want to find the nature of the depen-
dence between (in this example) the blue and orange regions in the figures
above, assuming it exists. We will try to do this with a combined GARCH
and copula approach.

A key assumption made when estimating copulas is that the multivariate
sample should be independent and identically distributed. Thus, if the sam-
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Figure 3.1: Times series of the log returns with the time bucket [225, 337)
marked in blue

Figure 3.2: Times series of the log returns with the time bucket [393, 540)
marked in orange

ple shows heteroskedecedicity then a direct approach using copulas on the
data will fail, as the sample will have time dependent standard deviation.
By filtering out the variance, using the estimated GARCH process we hope
to achieve better estimation of the copulas.

The hypothesis is that the log returns can be modelled as some GARCH(p,q)
or ARMA(r,s)-GARCH(p,q) process and then we can use the maximum like-
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lihood estimator provided in the previous chapter to accurately get an esti-
mation of the parameters of the innovations process Zt, Zt = Xt

ht
from (2.2)

or (2.11). From this estimation we are primarily interested in the innovations

Zt =
Xt

ht
.

From the estimated innovations Zt from the GARCH process fitted to the
time series of log returns on the tiers, we can estimate copulas with the meth-
ods presented in the previous chapter. We can then apply the test outlined
in 2.2.4 to asses if we should reject some family of copulas at some confidence
level α.
Using the copula(s) we could not reject, we simulate a large number of new
random variables. These new random variables, in [0, 1]d are then trans-
formed using the quantile transform to the distribution of the innovations
Zt of the proposed GARCH process.
Using the simulated innovations with hypothetically the same dependence
structure as the original sample, the process is simulated one step into the
future. We use these simulated random variables to form an estimate of

F−1∑d
i=1Xi

(p)

F−1
X1

(p) + · · ·+ F−1
Xd

(p)

Since what we really are interested in is the price increments Pt+1 − Pt, not
the return Pt+1

Pt
, the results will have to be transformed. The simulated log

return data Xt can be transformed into price increments by the following
transformation

Pt−1

(
eXt − 1

)
= Pt−1

(
Pt
Pt−1

− 1

)
= Pt−1

(
Pt − Pt−1

Pt−1

)
= Pt − Pt−1 (3.2)

This is a strictly monotone transformation. By Theorem 2.15 the price
increments will have the same copula and by that, the same dependence
structure, as the log returns. A problem with the implementation of the
copula goodness of fit test is that there is no algorithm, to the knowledge
of the author, for the calculation of the distribution for the multivariate t-
distribution with non integer degrees of freedom ν. So, as to overcome this
numerical problem when testing the null hypothesis of a t-copula the degrees
of freedom is rounded to the nearest integer that is highest in likelihood. This
has the consequence that the degree of freedom ν is not a parameter under
the test.

In short, we want to investigate whether the GARCH or ARMA −
GARCH are a suitable models for the dynamics of the price differences. We
also want to, using the copula, investigate the dependence between the time
buckets to get an estimate of the ratio given in (1.1).
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Chapter 4

Results

We will present results of the model for a few illustrative cases. First, we will
look at a simple example consisting of two contracts (one time bucket each)
and examine the dependence for an arbitrarily chosen time bucket. We will
then examine how the ratio behaves when two contracts are far from each
other in delivery and when they are close to each other in delivery. Lastly,
we will investigate how the model behaves for two contracts belonging to
time buckets far from each other.

4.1 A first example

As starting point, the tiers DEXBQ004 and DEXBY003 are chosen. With
DEXBQ04 belonging to the time bucket [225, 337) and DEXBY003 belong-
ing to the time bucket [393,540). The reason for this rather arbitrary choice
is that the large amount of observations available for these two contracts in
the two time buckets. We are looking at a quarterly contract, that is the
third in line to go into delivery and a yearly contract with one yearly con-
tract which will go into delivery before it. The time series of the log returns
for the two tiers DEXBY003 and DEXBQ003 are given in Figure 4.1.

A scatter plot for the data that belong to the time bucket [225, 339) for
the tier DEXBQ004 and time bucket [393, 540) for tier DEXY003 is given in
Figure 4.2

In total, we have 2189 observations for both the tiers DEXBQ004 and
DEXBY003. The subset of the samples for which the tier DEXBY003 be-
longs to the time bucket [393, 540) and DEXBQ004 belongs to the time
bucket [225, 337) simultaneously consists of 532 observations. It it is this
subset that will later be used to fit the copula. Plots of the estimated au-
tocorrelation function for the observations and the squared observations is
given in Figure 4.3 and 4.4
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Figure 4.1: Time series of the log returns for the tier DEXBY003 (top) and
DEXBQ004 (bottom).
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Figure 4.2: Top: Scatter plot for the data. The data belonging to the tier
DEXBQ004 on the y − axis and data belonging to the tier DEXBY003 on
the x−axis. On the axes there is also a histogram. Bottom: Same as above
with only the data that belong to time bucket [225, 337) and time bucket
[393, 540) (minus the histograms)
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Figure 4.3: Plot of the estimated auto correlation function for the obser-
vations Xt for the tier DEXBQ004 (top) and DEXBY003 (bottom). The
banded blue line is a 95% confidence interval.
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Figure 4.4: Plot of the estimated auto correlation function for the squared
observations X2

t for the tier DEXBQ004 (top) and DEXBY003 (bottom).
The banded blue line is a 95% confidence interval.
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4.1.1 GARCH(1,1) with normally distributed innovations

The first approach is to use the normal distribution for the innovations of
the GARCH process. Fitting a GARCH(1,1) with normal distributed in-
novations process using maximum likelihood gives the parameters given in
Table 4.1

Tier DEXBQ005 DEXBY004
µ -5.396·10−4 -5.249·10−4

ω 2.137·10−6 2.0259·10−6

α1 1.250·10−1 1.688·10−1

β1 8.7340·10−1 8.211·10−1

Table 4.1: Parameters for the GARCH(1,1) series with normal distributed
innovations fitted to the tiers DEXBQ004 and DEXBY003

Using this fitted model, we can extract the estimated time conditional
standard deviation given in Figure 4.5. The autocorrelation function for the
estimated innovations Zt are given in Figure 4.1.1-

The squared innovations have the estimated autocorrelation functions
given in Figure 4.7.

QQ-plots of the proposed normal distribution against the sample is given
in Figure 4.8
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Figure 4.5: Estimated conditional standard deviation for the tier DEXBQ004
(top) DEXBY003 (bottom) with normally distributed innovations
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Figure 4.6: Plot of the estimated auto correlation function for the innovations
Zt from the estimated GARCH(1, 1) process with normal innovation for the
tier DEXBQ004 (top) and DEXBY003 (bottom). The banded blue line is a
95% confidence interval.
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Figure 4.7: Plot of the estimated auto correlation function for the squared
innovations Z2

t from the estimated GARCH(1, 1) process with normal inno-
vation for the tier DEXBQ004 (top) and DEXBY003 (bottom). The banded
blue line is a 95% confidence interval.
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Figure 4.8: QQ plots of the sample quantile (x − axis) against the theo-
rized normal distribution (y − axis) for DEXBQ004 (top) and DEXBY003
(bottom)
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4.1.2 ARMA(1,1)-GARCH(1,1) with Student’s t distributed
innovation

As the GARCH(1,1) model with normally distributed innovations doesn’t
seem to capture the heavy tails of the sample, and since there still seems
to be some autocorrelation in the estimated innovations of the sample we
instead try an ARMA(1,1)-GARCH(1,1) model with Student’s t distributed
innovations. The parameters are for the fitted ARMA(1,1)-GARCH(1,1)
with Student’s t distributed innovations using maximum likelihood are given
in Table 4.2.

Tier DEXBY003 DEXBQ004
µ -5.863·10−4 -5.221·10−4

φ1 -3.900·10−4 -2.989·10−4

θ1 4.437·10−1 3.259·10−1

ω 1.470·10−6 2.324·10−6

α1 1.403·10−1 1.439·10−1

β1 8.524·10−1 8.477·10−1

ν 6.921 4.822

Table 4.2: Coefficients for the ARMA(1, 1)−GARCH(1, 1) with Student’s
t distributed innovations fitted to tiers at the top

From the fitted ARMA(1,1)-GARCH(1,1) we get the estimated condi-
tional standard deviations in Figure 4.9.

The estimated autocorrelation function for the estimated innovations Zt
are given in Figure 4.10.

Plots of the estimated autocorrelation function of the squared innovations
Z2
t is given in Figure 4.11.
QQ-plots for the proposed Student’s t distributions against the sample

is given in Figure 4.12.
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Figure 4.9: Estimated conditional standard deviation for the tier DEXBQ004
(top) and DEXBY003 (top).
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Figure 4.10: Plot of the estimated auto correlation function for the in-
novations Zt from the estimated ARMA(1, 1) − GARCH(1, 1) process
with Student’s t distributed innovations for the tier DEXBQ004 (top) and
DEXBY003 (bottom). The banded blue line is a 95% confidence interval.

49



Figure 4.11: Plot of the estimated auto correlation function for the squared
innovations Z2

t from the estimated ARMA(1, 1) − GARCH(1, 1) process
with Student’s t distributed innovations for the tier DEXBQ004 (top) and
DEXBY003 (bottom). The banded blue line is a 95% confidence interval.
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Figure 4.12: QQ plots of the sample quantile (x−axis) against the theorized
Student’s t distribution (y− axis) with degrees of freedom as given in Table
4.2 for DEXBQ004 (top) and DEXBY003 (bottom)
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4.1.3 Fitting copulas to the innovations

The results obtained using a ARMA(1, 1)−GARCH(1, 1) and Student’s t
distributed are considered sufficient for continuing to fitting copulas. We fit
the copula to data given in the scatter plot in Figure 4.13. The data corre-
sponds to the pair of innovations Zt belonging to the time bucket [225, 339)
and [393, 540).

Figure 4.13: A scatter plot of the innovations Zt from the tiers DEXBQ003
and DEXBY004 belonging to time bucket [225, 339) and [393, 540).

Five different copulas are fitted using maximum pseudo likelihood, the
five copula that was introduced in chapter 3. The resulting estimated pa-
rameters together with result from the goodness of fit test from Chapter
2.2.4 and AIC values are given in Table 4.3.

Copula Parameter(s) p-value AIC
Normal ρ = 0.7974 0.0524 -527.0017
t ρ = 0.8073 ν = 6.2551 0.1723 -549.5125
Clayton θ = 1.848 0.0004995 -405.4068
Frank θ = 8.137 0.003497 -526.4015
Gumbel θ = 1.848 0.0004995 -518.2817

Table 4.3: Parameters for the five different copulas fitted to innovations from
the ARMA(1, 1) − GARCH(1, 1) from section 4.1.2. The p-value refers to
the p-value obtained from the goodness of fit test presented in chapter 2 and
AIC is Aikake’s Information Criterion

By the rule we established earlier, that we should use a 5 % confidence,
we can reject the hypothesis that the dependence is captured by the Clayton,
Frank or Gumbel copula. We fail to reject the hypothesis that the copula is
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Normal or Student’s t copula. A plot of the copula density, with the pseudo
observations superimposed is given in Figure 4.14.

Figure 4.14: Copula densities for the estimated copulas that could not be
rejected at the 5% level with parameters from Table 4.3 with the pseudo
observations superimposed (in red). Left: Normal copula, right t copula
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4.1.4 Estimating the ratio

With the established dynamics of the log returns and dependence from above,
we can move on to the main question, the ratio

FX+Y (p)

FX(p) + FY (p)

Figure 4.15 show the quantile for F−1
X+Y (p) and the sum of the two quantiles

F−1
X (p) + F−1

Y (p) with the dependence according to the normal copula and
t copula.

Figure 4.15: Plot of the quantile F−1
X+Y (p) (black) and the sum of the two

quantiles F−1
X (p) +F−1

Y (p) (red) with p ∈ [0.9, 1) on the x− axis for depen-
dence given by the normal copula (top) and the t-copula (bottom).

In Figure 4.16 the ratio FX+Y (p)
FX(p)+FY (p) is given as a function of p for the

normal and t copula.

54



Figure 4.16: The ratio
F−1
X+Y (p)

F−1
X +F−1

Y

as function of p ∈ [0.9, 1) (on the x− axis)
with the dependence structure given by the normal copula (top) and t copula
(bottom)

Table 4.4 gives a summary of the result at the 99% level.

Copula
F−1
X+Y (0.99)

F−1
X (0.99)+F−1

Y (0.99)
F−1
X+Y (0.99) F−1

X (0.99) + F−1
Y (0.99)

Normal 0.961 2.390 2.488
t 0.968 2.407 2.488

Table 4.4: A summary of the different quantiles at the 99% level for the
different copulas that could not be rejected.
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4.2 Time buckets far from each other

Let us again look at quarterly and yearly contracts. This time, let the yearly
contract belong to the time bucket [729, 1095) and the quarterly contracts
belong to the time bucket [57, 85). The time series of the log returns is given
in Figure 4.17.

Figure 4.17: Time series of the log returns for the tier DEXBY004 (top) and
DEXBQ002 (bottom)

The tier DEXBQ002 and DEXBQ004 contains 866 combined observa-
tions of which 273 belongs to the time bucket t [57, 85) for the tier DEXBQ002
and time bucket [729, 1095) for tier DEBXY004 simultaneously. A scatter
plot of the data that belong to the tier DEXBQ002 and tier DEXBY004 as
well as a scatter plot for the data that belong to time bucket [57, 85) for the
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tier DEXBQ002 and time bucket [729, 1095) for tier DEBXY004 is given in
Figure 4.18.

Figure 4.18: Top: Scatter plot for the data. The data belonging to the
tier DEXBQ002 on the y − axis and data belonging to the tier DEXBY003
on the x − axis. On the axes there is also a histogram. Bottom: Same as
above with only the data that belong to time bucket [57, 85) and time bucket
[729, 1095) (minus the histograms)

Assuming the same ARMA(1,1)-GARCH(1,1) with Student’s t distributed
innovations as in Section 4.1 we get the parameters given in Table 4.5 as es-
timated by the maximum likelihood method.

From the estimated process, we can produce the plots of the time condi-
tional standard deviation given in Figure 4.19.

That the ARMA(1,1)-GARCH(1,1) with Student’s t distibuted innova-
tions is a suitable choice of model is supported by the below plots of the
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TIER DEXBY004 DEXBQ002
µ −5.786 · 10−4 −8.679 · 10−4

φ −3.174 · 10−1 3.399 · 10−2

θ 3.445 · 10−1 5.586 · 10−2

ω 3.330 · 10−6 3.380 · 10−6

α1 2.107 · 10−1 1.093 · 10−1

β1 7.776 · 10−1 8.731 · 10−1

ν 4.045 4.807

Table 4.5: Parameters for the ARMA(1,1)-GARCH(1,1) processes fitted to
the tiers DEXBY004 and DEXBQ002 with Student’s t distributed innova-
tions.

autocorrelation function for the observations (Figure 4.20), squared obser-
vations (Figure 4.21), (estimated) innovations (Figure 4.22) and squared
(estimated) innovations (Figure 4.23) and QQ-plots (Figure 4.24).
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Figure 4.19: Conditional standard deviation for the tier DEXBY004 (top)
and DEXBQ002 (bottom)
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Figure 4.20: Autocorrelation function of the observations for the tier
DEXBY004 (top) DEXBQ002 (bottom).
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Figure 4.21: Autocorrelation function of the squared observations for the
tier DEXBY004 (top) DEXBQ002 (bottom).
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Figure 4.22: Autocorrelation function of the (estimated) Zt innovations for
the tier DEXBY004 (top) and DEXBQ002 (bottom).
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Figure 4.23: Autocorrelation function of the (estimated) squared innovations
Z2
t for the tier DEXBY004 (top) and DEXBQ002 (bottom).
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Figure 4.24: QQ plots of the sample quantile (x−axis) against the theorized
Student’s t distribution (y−axis) with degrees of freedom as given in Table
4.5 for DEXBY004 (top) and DEXBQ002 (bottom)
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4.2.1 Fitting copulas to the innovations

As the ARMA(1,1)-GARCH(1,1) with Student’s t distributed innovations
again performs satisfactory we fit copulas to the innovations Zt that be-
longs to the time bucket [57, 85) for the tier DEXBQ002 and time bucket
[729, 1095) for the DEXBY004 and perform the goodness of fit test from
2.2.4. The results are given in Table 4.6. A scatter plot of the innovations
Zt belonging to the time buckets is given in Figure 4.25.

Figure 4.25: A scatter plot of the innovations Zt from the tiers DEXBQ002
and DEXBY004 belonging to time bucket [57, 85) and [729, 1095).

Copula Parameter(s) p-value AIC
Normal ρ = 0.700 0.103 -175.3028
t ρ = 0.706 ν = 9.081 0.157 -177.3911
Clayton θ = 1.184 0.0004995004995005 -120.612218234378
Frank θ = 5.800 0.0436 -171.834
Gumbel θ = 1.928 0.265 -176.744686740601

Table 4.6: Parameters, p-value and AIC value for five different copulas for the
innovations of yearly contracts in the time bucket [729, 1095) and quarterly
contracts in the time bucket [57, 85).

A plot of the copulas we cannot reject at the 0.05 level given the results
in 4.6 is given in Figure 4.26
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Figure 4.26: Plots of the copula densities with parameters from Table 4.6
with the pseudo observations superimposed (in red). Upper left if the normal
copula, upper right is the Student’s t copula and bottom is the Gumbel
copula
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4.2.2 Estimating the ratio

With the estimated copulas we can now estimate the ratio

F−1
X+Y (p)

F−1
X (p) + F−1

Y (p)

for this particular combination of time buckets. Figure 4.27 show the quan-
tiles on the interval [0.9, 1) when the dependence structure is given by the
copulas that could not be rejected at the 5% level. In Figure 4.28 the ratio
as a function of p is plotted. In Table 4.7 there is a summary of the results
at the 99% level.

Copula
F−1
X+Y (0.99)

F−1
X (0.99)+F−1

Y (0.99)
F−1
X+Y (0.99) F−1

X (0.99) + F−1
Y (0.99)

Normal 0.931 2.575 2.766
t 0.916 2.534 2.766

Gumbel 0.944 2.612 2.766

Table 4.7: A summary of the different quantiles at the 99% level for the
different copulas that could not be rejected.
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Figure 4.27: Plot of the quantile F−1
X+Y (p) (black) and the sum of the two

quantiles F−1
X (p) + F−1

Y (p) (red) with p ∈ [0.9, 1) on the x − axis for de-
pendence given by the normal copula (top), t copula (middle) and Gumbel
copula (bottom)
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Figure 4.28: The ratio
F−1
X+Y (p)

F−1
X (p)+F−1

Y (p)
as a function of p for p ∈ [0.9, 1) when

dependence structure is given by the Normal copula (top), t copula (middle)
and Gumbel copula (bottom).

69



4.3 Time buckets close to each other

As a last example, let us again look at the tier DEXBQ002 but this time in
combination with the tier DEXBY002. Let us in this example look at the
time bucket [57, 85) for the tier DEXBQ002 and the time bucket [225, 337)
for the tier DEXBY002. In total, we have 2138 observations for both the
tiers DEXBQ002 and DEXBY002. The subset of the samples for which the
tier DEXBQ002 belongs to the time bucket [57, 85) and DEXBY002 belongs
to the time bucket [225, 337) simultaneously consists of 193 observations. It
it is this subset that will later be used to fit the copula. A scatter plot of
the data that belong to the tier DEXBQ002 and tier DEXBY002 as well as
a scatter plot for the data that belong to time bucket [57, 85) for the tier
DEXBQ004 and time bucket [225, 337) for tier DEBXY004 is given in Figure
4.29.

Again, we will use a ARMA(1,1)-GARCH(1,1) process with Student’s
t distributed innovations for the log returns. We have already presented
the tier DEXBQ002 and made a good fit with ARMA(1,1)-GARCH(1,1)
with Student’s t distributed innovations for that tier. For that reason we
omit to present that tier again. The time series of the log returns and the
estimated auto correlation function for the observations Xt and the squared
observations X2

t is given in Figure 4.30, 4.31 and 4.32 respectively for the
tier DEXBY002.

Given the previous success for the ARMA(1,1)-GARCH(1,1) specification
with Student’s t distributed innovations we again try this approach. Since
we have already estimated the parameters of the ARMA(1,1)-GARCH(1,1)
for the tier DEXBQ002 (Table 4.5), we will below only give the parameters
for DEXBY002 (Table 4.8) fitted using maximum likelihood.

Tier DEXBY002
µ −4.867 · 10−4

φ1 −4.869 · 10−1

θ1 5.395 · 10−1

ω 7.002 · 10−7

α1 9.768 · 10−2

β1 9.002 · 10−1

ν 8.600

Table 4.8: Parameters for the ARMA(1,1)-GARCH(1,1) process with Stu-
dent’s t distributed innovations for log returns for the tier DEXBY002

For the same reason as stated above, below in Figure 4.33 and Figure
4.34 are plots of the estimated autocorrelation function for the estimated
innovations Zt and squared innovations Zt for the tier DEXBY002.

In Figure 4.35 is a QQ-plot of the theorized Student’s innovations distri-
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bution against the sample.
We can from the fitted model extract the conditional standard deviation

for the tier DEXBY002. It is given as a time series in Figure 4.36
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Figure 4.29: Top: Scatter plot for the data. The data belonging to the
tier DEXBQ002 on the y − axis and data belonging to the tier DEXBY002
on the x − axis. On the axes there is also a histogram. Bottom: Same as
above with only the data that belong to time bucket [57, 85) and time bucket
[225, 337) (minus the histograms)
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Figure 4.30: Time series of the log returns for the tier DEXBY002

Figure 4.31: Estimated autocorrelation function for the observations Xt for
the tier DEXBY002. The banded blue line is a 95% confidence interval.
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Figure 4.32: Estimated autocorrelation function for the squared observations
X2
t for the tier DEXBY002. The banded blue line is a 95% confidence

interval.

Figure 4.33: Autocorrelation function of the (estimated) innovations Zt for
the tier DEXBY002. The banded blue line is a 95% confidence interval.
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Figure 4.34: Autocorrelation function of the (estimated) squared innova-
tions Z2

t for the tier DEXBY002. The banded blue line is a 95% confidence
interval.

Figure 4.35: QQ plot of the sample quantile (x−axis) against the theorized
Student’s t distribution (y− axis) with degrees of freedom as given in Table
4.8 for DEXBY002
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Figure 4.36: Estimated conditional standard deviation for the tier
DEXBY002
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4.3.1 Fitting copulas to the innovations

Copulas are fitted to the pseudo observations to the innovations of the data
given in the scatter plot in Figure 4.37.

Figure 4.37: Scatterplot of the estimated innovations for quarterly contracts
belonging to time bucket [57, 85) (y − axis) and yearly contracts belonging
to time bucket [225, 337) (x− axis).

Which gives the coefficients for the different copulas together with the
p-values from the goodness of fitness test and AIC-values in Table 4.9.

Copula Parameter(s) p-value AIC
Normal ρ = 0.830 0.506 216.563

t ρ = 0.830 ν = 14.125 0.580 215.462
Clayton θ = 0.961 0.001 158.525
Frank θ = 8.211 0.011 194.22828043
Gumbel θ = 2.550 0.509 214.149584

Table 4.9: Parameters, p-values and and AIC-values for five different copulas
fitted to the innovations to quarterly and yearly contracts belonging to the
time buckets [57, 85) and [225, 337)

The copulas that can not be rejected at the 5% level have the densities
given in Figure 4.38
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Figure 4.38: Densities for the copulas fitted to the quarterly contracts in time
bucket [57, 85) and the yearly contracts in time bucket [225, 337). The order
is clockwise, Normal copula, t copula and Gumbel copula. Superimposed in
red is the pseudo observations.
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4.3.2 Estimating the ratio

We can just as before by simulation estimate the ratio for this choice of time
buckets.

F−1
X+Y (p)

F−1
X (p) + F−1

Y (p)

Figure 4.39 show the quantiles on the interval [0.9, 1) when the dependence
structure is given by the copulas that could not be rejected at the 5% level.

In Figure 4.40 we have plots of the ratio as a function of p
In Table 4.10 there is a summary of the results at the 99% level.

Copula
F−1
X+Y (0.99)

F−1
X (0.99)+F−1

Y (0.99)
F−1
X+Y (0.99) F−1

X (0.99) + F−1
Y (0.99)

Normal 0.968 3.146 3.250
t 0.972 3.159 3.250

Gumbel 0.985 3.199 3.250

Table 4.10: A summary of the different quantiles at the 99% level for the
different copulas that could not be rejected.
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Figure 4.39: Quantiles F−1
X+Y (p) (black line)F−1

X (p) + F−1
Y (p) (red line) for

p ∈ [0.9, 0.99) when the dependence structure is given by the normal copula
(top), t copula (middle) and Gumbel copula (bottom).
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Figure 4.40: The ratio
F−1
X+Y (p)

F−1
X (p)+F−1

Y (p)
as a function of p for p ∈ [0.9, 1) when

dependence structure is given by the Normal copula (top), t copula (middle)
and Gumbel copula (bottom).
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Chapter 5

Analysis and conclusion

5.1 Analysis

The ARMA-GARCH process shows promise to model the dependency be-
tween returns for electricity derivatives. The main advantage of this model is
the possibility to take care of heteroscedeicity in the return data. However,
this comes with some notable limitations.

5.1.1 The role of time buckets

A question that still is not answered is what role the time buckets play
relative to the tiers. If we return to the two tiers DEXBQ004 and DEXBY003
and this time instead fit a copula to all the pairs of innovations from the
fitted ARMA(1,1)-GARCH(1,1) processes (from Table 4.2) that belongs to
that particular choice of tiers, we get a somewhat different result. Table 5.1
shows the result of fitting copulas to the entire sample. In leftmost column
of the table, the parameters haven been transformed into Kendall’s τ using
the formulas from Section 2.3.2. For ease of comparison, the result from
Section 4.1.3 are included in table 5.2. In that table the parameters have
been transformed into Kendall’s τ as well using the formulas from Section
2.3.2.

Copula Parameter(s) Kendall’s τ
Normal ρ = 0.821 0.6129036
t ρ = 0.835ν = 5.149 0.6295034
Clayton θ = 2.036 0.5044616
Frank θ = 9.007 0.6369347
Gumbel θ = 2.573 0.6113263

Table 5.1: Parameters for the five different copulas fitted to innovations from
the ARMA(1, 1) − GARCH(1, 1) from Section 4.1.2 for all observed pairs
belonging to the tiers DEXBQ004 and DEXBY003

83



Copula Parameter(s) Kendall’s τ
Normal ρ = 0.7974 0.5875605
t ρ = 0.8073 ν = 6.2551 0.5981841
Clayton θ = 1.848 0.4801768
Frank θ = 8.137 0.6076125
Gumbel θ = 1.848 0.5745010

Table 5.2: Parameters for the five different copulas fitted to innovations
from the ARMA(1, 1) − GARCH(1, 1) from Section 4.1.2 for observations
belonging to the tiers DEXBQ004 and DEXBY003 and the time buckets
[225, 337) and [393, 540)

We can from Table 5.2 and Table 5.1 see that there is difference between
the time bucket sample and the full sample.

The book Nonparametric statistical methods[10] provides a method for
constructing a two sided confidence interval for Kendall’s tau. We find that
when using the entire data set a two sided confidence interval for Kendall’s
tau is given by (0.620, 0.655) at the 95% level. In comparison, for the sub
sample in time buckets [225, 337) and [393, 540) we find that a two sided
confidence interval at the 95% level is given by (0.570, 0.645). There is an
overlap between these two confidence intervals with the confidence interval
for the full sample and the confidence interval for the sub setted sample. The
confidence interval for the full sample is smaller and numerically larger than
the confidence interval for the subsetted sample. This may imply that the
true dependence is best captured using the whole sample, rather than the
subsetted sample with time buckets. We also find that for the whole sample,
Kendall’s tau as given by the copula parameters is higher, implying a greater
level of concordance (in this case, prices moving in the same direction).
We also find, since the tail dependence is an increasing function1 of the
parameters, that this implies a higher level of tail dependence as shown in
Table 5.3

We conclude from this small analysis that the time buckets, in the sense of
looking for dependence between contracts, could be ignored for this example
and that it is better in a sense to use the tiers only. We do not however
reject the idea of there being a dependence conditional on time between the
contacts, only that it is hard to statistically observe using the time buckets.

5.1.2 The use of GARCH processes

Another question is if there is any need to use the ARMA-GARCH process.
To answer that, let us try a naive approach. Let us once again return to the
first case we studied, the case with the tiers DEXQ004 and DEXBY003 If we

1except for the t copula, where it is increasing in ρ and decreasing in ν
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Subsetted sample Normal t Clayton Frank Gumbel
Lower 0 0.4068396 0.7114549 0 0.0000000
Upper 0 0.4068396 0.0000000 0 0.6908107
Whole sample Normal t Clayton Frank Gumbel
Lower 0 0.4850863 0.6871595 0 0.0000000
Upper 0 0.4850863 0.0000000 0 0.6569631

Table 5.3: The implied lower and upper tail dependence for the different cop-
ulas fitted to the pair of observations from DEXBQ004 and DEXBY003 for
the subsetted sample belonging to the time buckets [225, 337) and [393, 540)
(first three rows) and the whole sample (last three rows).

try to fit a copula to the "raw" data, the log returns, we get different results
from when using the ARMA-GARCH approach. Since we use a semipara-
metric method, there is no need for us to first specify a distribution for the
returns, and we can fit copulas directly on the pseudo observations. Doing
so to unfiltered observations results in the copulas given in table 5.4

Copula Parameter(s)
Normal ρ = 0.81878054

t ρ = 0.8321460ν = 2.3988

Clayton θ = 2.414

Frank θ = 8.796

Gumbel θ = 2.595

Table 5.4: Parameters for copulas fitted to quarterly and yearly contracts
belonging to the time buckets [225, 337) and [393, 540) without filtering the
observations by means of a ARMA-(1,1)-GARCH(1,1)

The difference is small, but noticeable especially in the case of the de-
grees of freedom for the t-copula. Without GARCH filtering, the degrees of
freedom ν is estimated to be 2.3998 compared to 6.2551 (Table 5.2) for the
case with GARCH filtering. This has, as mentioned above an effect on the
tail dependence, which is 0.6115 for the upper and lower tail dependence in
the unfiltered case compared to 0.407 (Table 5.3) for upper and lower tail
dependence for the filtered case. This is effect suspected to be caused by
the use of the semi parametric pseudo log likelihood method. The assumed
reason is that for the unfiltered case, large values in absolute value for the
log returns may be from periods of high volatility without necessarily corre-
sponding to high or low value of the quantile of the innovations. With this
small analysis we draw the conclusion that filtering using a GARCH process
has the effect of providing better estimates for the copulas. This is though
hardly surprising. One of the core assumptions when fitting copulas is that
the sample is to be independently identically distributed. Which, in the
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presence of heteroskedasticity and/or autoregressive/moving average effects,
it is not. The effect of the GARCH filtering is that we get more "I.I.D like"
observations.

5.1.3 The nature of the dependence

We can from the results see that the dependence between yearly and quar-
terly contracts change as the contacts move closer to delivery. Not only does
the specifics of the dependence change (change in parameters) but we can
also see that as the contracts move closer to delivery, the nature of depen-
dence changes as well. We have looked at a total of three different scenarios.
If we from each scenario take the copula that has the lowest AIC from those
that could not be rejected using the goodness of fit test, we arrive at Table
5.5

Time bucket Copula lowest in AIC Paramters(s)
225, 337, Q t ρ = 0.807
393, 540 Y ν = 6.255

57,85, Q t ρ = 0.705
729, 1095 Y ν = 9.081

57, 85 Q Normal ρ = 0.830225, 337 Y

Table 5.5: The copula and the corresponding parameter(s) that is lowest in
AIC that could not be rejected at the 95% level for the different scenarios
investigated. The letter to the right in the Time bucket column refers to
Quarterly contracts (Q) and Yearly contracts (Y).

As can be seen in Table 5.5, the dependence structure between the con-
tracts is dependent on the time to delivery. It can be seen that not only does
the dependence change in correlation, it also changes in nature. It should be
noted here again, that as ν → ∞ the t copula becomes the normal copula.
For the last case, when the normal copula was lowest in AIC, the degrees
of freedom ν for the estimated t copula was quite high. It was in that case
estimated to ν ≈ 14 (Table 4.9).
We have seen that in general, with the exception of the Gumbel copula,
the archimedian copulas could be rejected at the 95% confidence level. The
dependence is, according to the copulas studied, best described by the ellip-
tical copulas, with the t-copula being the probable choice. Most likely for
its symmetrical tail dependence property.
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5.2 Conclusions

A clear result is that the use of copulas, despite the higher computational
effort to estimate them, provide a better understanding of the dependence,
than say elliptical distributions. In this work the time buckets have been
taken as a given fact. However, as we saw in Section 5.1.1, the time buck-
ets may not contain the whole truth from a dependence point of view. We
can however see that the dependence is conditional on time, that is, the
dependence between the contracts is dependent on time to delivery. A shift
of focus from the time buckets to tiers only would dramatically lower the
amount of effort needed to get a more complete picture of the dependence
and how it evolves through time. For example. If the quarterly contracts
passes through 21 time bucket before they begin delivery and the yearly
contracts passes through 24, that means that there are 504 different com-
binations of time buckets, only for this particular choice of contract types.
If a quarterly contract can be traded three years before delivery and if the
yearly contract can be traded five years before delivery that means there are
only 72 different combinations, with a two dimensional approach. As these
numbers show, getting the fuller picture is a no small task, and that is why
so few examples are provided.
One big unaddressed problem of the approach used is that we do not know
how the sought ratio (Equation (1.1)) depends on volatility (conditional
standard deviation). As this approach used an ARMA-GARCH model to
filter away the heteroscedacity of the data and could find the sought ratio
it only did so at a particular date (the end of the time series) and thus at
a particular volatility level. A question that arises then is how the ratio
behaves when two contracts in different time buckets behave when they are
at different volatility levels. This question remains unanswered.
The model has also not been tested in higher dimensions. While there is no
theoretical obstacle for increasing the number of time buckets under inves-
tigation, this will probably result in a poor fit. As we have seen, the most
probable candidate to best capture the dependence is the t-copula. But,
the tail dependence for the t copula is determined by two variables. One
is the linear correlation coefficient that can be determined for two random
variables independent of the choice of dimension. The other variable, the
degree of freedom ν is fixed for every pair of random variables. This leads to
a somewhat inflexible model, that may fail to describe the tails properly in
higher dimensions. While we have shown in Theorem 2.17 that multivariate
archimedian copulas are also possible, they are determined by one parameter
only, regardless of dimension. This leads to very inflexible models and would
probably fail to properly describe the higher dimensional dependence.
The model also does not take into account a stressed market. Conventional
wisdom say that during a stressed market, dependence takes a different form.
Another issue not addressed in this thesis is that results obtained were not
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back tested. That is, if there was a breach in margin in one or two contracts,
was the combined price movement less than the summed price movements
multiplied by the ratio and how often was it not. However performing such
a test in a realistic way would be time and computational power consuming
and would require many decisions and assumptions regarding how often the
ratio is calculated, how often should the GARCH processes estimated, can
we assume we have all the data, should margin be determined by the current
margin model and so on.

5.3 Further Work

In order to get a full understanding of the problem, the questions raised in
5.2 and other questions need to be addressed.

A first approach for the problem of finding the ratio (1.1) at different
volatility levels that perhaps would work from a risk management perspective
is to look at the ratio for the date when the squared sum of the volatility is
the largest, ie. when √

σ2
1 + σ2

2

is largest or corresponds to some chosen quantile. This would have the
advantage of creating a bound for the ratio.
Given sufficient computing power, one could perhaps look at the ratio as not
only as a function of p but also of the different volatility levels, i.e. look at
the ratio

F−1
X+Y (p, σx, σY )

F−1
X (p, σX) + F−1

Y (p, σY )
(5.1)

for some fixed value of p, and create a surface plot of the ratio. This approach
would have to find some way to take into account the dependence between
σX and σY given by the copula and the ARMA-GARCH processes.
Another issue is to found out when do the dependence structure change?
That is, at which point in the time before delivery can we find statistically
significant changes in the dependence, and is this change in the form of
different parameters, or in a completely different copula? This could perhaps
be achieved using a Hidden Markov Model (HMM). Then the hidden states
of the model would be certain dependence structure specified by some copula.
Perhaps it is possible to achieve this in some sort of Bayesian framework. The
models performance in higher dimensions would also need to be investigated.
Is there a possibility to use Pair Copula Construction, ("vines") to describe
the dependence in higher dimensions? As was mentioned in Section 5.2,
stressed markets was not taken into account. If we can identify stressed
markets in the data, does the dependence stay the same as in normal market
conditions, or would we need to use so called extreme value copulas in that
case?
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