
 

 

 

 

 

 

 
 

 

 

 

 

 

Large claims in non-life insurance 

Oscar Hagsjö & Oscar Hermansson 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



 
2 

 

 

Acknowledgement 
 
We would like to give big thanks to Sascha Firle at Trygg--Hansa for this amazing opportunity 
and great learning experience, and especially Emma Södergren for her support throughout the 
thesis and her valuable ideas and feedback. 

We would also like to thank our mentor Boualem Djehiche for pointing us in the right direction 
when it was needed. 

 
  

 



 
3 

 

 

Abstract 
 

It is of outmost importance for an insurance company to apply a fair pricing policy. If the price is 
too  high,  valuable  customers  are  lost  to  other  insurance  companies  while  if  it’s  too  low  – it nets 
a negative profit. 

To achieve a good pricing policy, information regarding claim size history for a given type of 
customer is required. A problem arises as large extremal events occur and affects the claim size 
data. These extremal events take shape in individually large claim sizes that by themselves can 
alter the distribution for what certain groups of individuals are expected to cost. 

A remedy for this is to apply what is called a large claim limit. Any claim exceeding this limit is 
thought of as being outside the scope of what is captured by the original distribution of the 
claim size. These exceeding claims are treated separately and have their cost distributed across 
all insurance takers, rather than just the group they belong to. 

So, where exactly do you draw this limit? Do you treat the entire claim size this way (exclusion) 
or just the bit that is exceeding the threshold (truncation)? 

These  questions  are  treated  and  answered  in  this  master’s  thesis  for  Trygg-Hansa. 

For each product code, a limit was achieved in addition to which method for exceeding data 
that was best to use. 
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Storskador inom skadeförsäkring 

 
Sammanfattning 
 
Det är oerhört viktigt för ett försäkringsbolag att kunna tillämpa en god prissättning. Är priset 
för högt så förloras kunder till andra försäkringsbolag, och är den underprisad är det en 
förlustaffär. 

För att kunna sätta bra priser krävs information om vilka samt hur stora skador som kan tänkas 
inträffa för en given kundprofil. Ett problem uppstår när stora extremfall påverkar skadedatan. 
Dessa extremfall yttrar sig genom enskilda storskador som kan komma att påverka 
prissättningen för en hel grupp då distributionen för vad gruppen förväntas kosta kan ändras. 

Detta problem kan lösas genom att införa en storskadegräns till skadedatan. Skador över denna 
gräns räknas som extremfall och utanför ramen av vad den ursprungliga distributionen för 
skadorna beskriver. De hanteras separat och låter sin kostnad fördelas över samtliga 
försäkringstagare. 

Men vart dras denna gräns? Ska man behandla hela den överstigande kostnaden på detta sätt 
(exkludering) eller bara den biten av skadan som går över storskadegränsen (trunkering)? 

Dessa frågor behandlas och besvaras i denna masteruppsats i uppdrag åt Trygg-Hansa. 

För de olika produkttypkoderna beräknades varsin storskadegräns samt metod för 
överskridande data. 
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1 Introduction  
 

The  pricing  of  insurance  for  let’s  say  a  person  A,  is  based  on  historical  data  of  people  with  
similar attributes. Given a man of a certain age and location, his insurance premium depends on 
what people just like him are expected to cost for the insurer. A problem arises when an 
extreme value or an outlying data point greatly affects this historical data. 

For instance, if a person of the same measured attributes as person A has a very rare accident 
where the net cost is much larger than the average accident cost, this one incident will have 
significant effect on the premium for people who share the same attributes. Since this rare 
occasion probably could happen to anyone and should not necessarily be captured by the 
people of those attributes (which would result in their premiums being over-priced), the remedy 
is to remove this value from the data. 

However, you cannot just remove this data point and forget about it since the fact that this 
significant but rare event still occur and is a very real cost for the insurance company. Therefore, 
you take that extreme cost and split it up between all different groups so that one set of people 
with the same attributes does not take the entire blow. 

So, which data points are considered extreme enough to process this way? 

-  These points are referred to as Large claims and are defined by exceeding a certain threshold. 
The objective of this thesis is to find this limit and determine whether the large claims should be 
excluded or truncated as they are split across all insurance holders. 

A large data set of modified insurance claims is supplied by Trygg-Hansa and is the foundation of 
this thesis. The problem is broken down and treated in two separate steps. The first step is to 
find the actual large claim limit. This is done with various mathematical methods that identify 
and analyze extreme value data. Once a limit has been obtained, the second step is to 
determine whether truncation or exclusion is best for treatment of the large claims. 

The reader will first encounter a background which gives a brief introduction to non-life 
insurance as well as a necessary mathematical foundation of different expressions and methods 
used in the thesis. A description of the data set that was supplied can also be found in the 
background. Due to secrecy, the entirety of the data could not be included. 

With a solid understanding of the methods and how they work, the puzzle of putting it all 
together to obtain the desired results are provided in the third chapter, Execution & Result. The 
result is then found in sub section of that chapter, result. Due to the nature of the methods 
there are a lot of graphical results which are interpreted and analyzed in this section.  

Finally, the last chapter is the discussion chapter which contains thoughts about future work or 
what could be changed if this project was done again. 

 

 

 

 

 

 



 
8 

 

 

2 Background 
 
The background chapter of this thesis will give a basic explanation of how non-life insurance 
works as well as theoretical background to the mathematical tools that are used to analyse the 
given claim data with.  

Even though some of the background is about the behaviour of extremal events, the scope of 
this thesis is not to model actual extremal events but rather to find the limit for where the claim 
data can be considered too extreme to fit the distributions that model the regular claim data. 

 

2.1 Non-life insurance 
 
Non-life insurance is in essence the transfer of risk of certain unpredictable events that incur 
financial losses, from individuals to an insurance company. The freedom of risk for the individual 
is bought for a price, a premium that is paid regularly for as long as the risk belongs to the 
insurance company. 

The events are pre-specified and if they occur the insurance company covers most or all of the 
financial loss for the customer.  

To then set the premium for a specific individual, information about her is utilized to provide an 
as accurate approximation as possible for her expected cost. For example,  a  person’s  residence  
area and age are common factors of consideration. Having individual prices is essential since 
over- and underpricing the premium in relation to the true expected cost of the customer are 
both potential monetary losses for the insurance company. In the case of underpricing, the 
financial losses of the customers will be greater than the premium, and in the case of over-
pricing, there is an increased risk of customers changing to insurance companies with a cheaper 
premium. Thus, you want to obtain an as accurate premium as possible that still gives a net 
profit for the insurance company. 

However, when using the historical data to determine the premium price, one thing to watch 
out for is outliers. An outlier in this case could be a person who suffers a great financial loss due 
to  an  incredibly  rare  event  that  can  be  assumed  to  be  independent  of  that  specific  person’s  
attributes such as area and age.  

If this great financial loss, a large claim, would be treated as normal, and thus used to model the 
premium for all those of the same area and age, an unnecessarily large premium would be set for 
those customers. This would overprice the premium of people with that age or area since that 
rare event should rather be modelled as independent of that specific group of customers and 
instead be modelled as a financial loss of the entire custom field. The result of dealing with large 
claims in this matter is that the premium for everyone increases slightly rather than one group 
having to cover for all of it. 

 

2.2 General 
 
Amongst the most common models to analyze the insurance claim data are the lognormal and 
the Pareto distributions. But the two distributions cannot by themselves fit the entirety of the 
data. The lognormal distribution does not describe the right tail of the data well enough since it 
is often much more positively skewed, with very large claims appearing more often and with 
higher magnitude than the lognormal predicts. It does however fit well at the lower spectrum 
where there are many claims of low magnitude (Ananda & Cooray. 2007) 
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On the other hand, the Generalized Pareto distribution (GPD) captures the heavy-tailed 
behavior of the data with much better accuracy. However, this distribution lacks in its 
description of the right tail, as it does not provide nearly enough of the high frequency, low cost 
claims.  

These two distributions can, given a certain threshold that divides the data, complement each 
other to describe one part each. If a threshold is attained, so that the GPD has as good of a fit to 
the excess of it as possible, then the part below the threshold can better be modelled with log-
normal type distributions. The objective to find the large claim limit can then be simplified into 
finding the best fit for the GPD distribution, which includes the threshold limit. 

 

2.3 Generalized Pareto distribution 
 
When describing the outcome of an insurance portfolio, it is of great importance to include the 
occurrence of extremal events. These rare occasions can due to their mere size have a 
detrimental effect on the pricing for the insurance holders. Specifically, small groups can receive 
overpriced premiums if a large claim affects a person within it. 

One of the most useful methods of describing extremal events is fitting the data with a GPD, the 
Generalized Pareto Distribution to the upper tail. (which is defined as the data above a certain 
threshold). (Embrechts, et al. 2012) 

Here the thought is that for the threshold that the GPD distribution has its best fit, the data 
below the threshold is considered non-extreme and can thus be treated regularly. 
 
Let u denote the threshold and X be a random variable with distribution function F. The excess 
function over the threshold u is now given by 

                                             𝐹௨(𝑥) = 𝑃(𝑋 − 𝑢 ≤ 𝑥|𝑋 > 𝑢  ), 𝑥 > 0.                                        (2.1)          

And the generalized Pareto distribution is given by 

                                            𝐺క,ఙ(𝑥) = 1 − ቀ1 + క௫
ఙ
ቁ
ିభ഍ ,          𝜉, 𝜎, 𝑥 > 0.                                       (2.2)               

Where 𝜎 is the scale parameter and 𝜉 is the shape parameter (Hult, et al. 2012 and Davidsson & 
smith. 1990). 

 

2.4 Finding the threshold u 
 
Computing the threshold u is to balance bias and variance. From a high threshold follows a 
larger variance due to smaller sample size. However, it also makes the underlying GPD 
approximation more accurate since it scopes in more on the right tail, where the fit is at its best. 

 

2.4.1 Mean residual life plot 
 
Also called the mean excess function, this is a graphical method of determining the threshold 
limit u, that is based on the mean value of the GPD that is assumed above the threshold limit 
(Embrechts, et al. 2012). 
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First let 𝑋ଵ,…   ,   𝑋௡ be a series that describes the excess values of the threshold 𝑢଴. Based on the 
expected value of GPD  

                                    𝐸(𝑍) = ఙ
ଵିక

  ,      𝜉 < 1               

you get the following equation: 

                                          𝐸(𝑋 − 𝑢଴|𝑋 > 𝑢଴) =
𝜎௨଴
1 − 𝜉

. 

Here, 𝜉 still has to be less than 1 and   𝜎௨଴ is the GPD scale parameter. 𝑢଴ is the threshold. 

By the threshold stability property of the GPD, if the distribution is valid for exceedances over 
the threshold 𝑢଴, then it is also a valid model for the exceedances of all thresholds larger than 
𝑢଴. Thus, for 𝑢 > 𝑢଴: 

                                                𝐸(𝑋 − 𝑢|𝑋 > 𝑢) =
𝜎௨

1 − 𝜉
=
𝜎௨଴ + 𝜉 ∗ 𝑢

1 − 𝜉
 

 

The left-hand side of the equation above is the mean excess of the threshold. This can be 
estimated by the sample mean of the excesses over the thresholds 𝑢. This is done for different 
values of u, ranging from 𝑢଴  to just below the largest sample value (Embrechts, et al. 2012 and 
Coles. 2001). 

Expressed mathematically:  

                                                      ቐ(𝑢,
1
𝑛௨

෍(𝑥(௜) − 𝑢)); 𝑢 < 𝑥௠௔௫

௡ೠ

௜ୀଵ

ቑ 

Here, 𝑋ଵ,…  ,   𝑋௡  represents the exceeding observations. The result of this is a locus of points 
with the threshold as x-value and the mean exceedance as the y-value. These points constitute 
the mean residual life plot. In this plot, a value of u where linearity is attained after is looked for. 
(Embrechts, et al. 2012). 

 

By construction, toward the right side of the plot where the threshold gets very high, only a few 
observations will exceed u and thus create instability. This is something to consider when 
interpreting the plot. Worth mentioning is also the general downside of a graphical 
interpretation method, namely inaccuracy and subjectivity.  

 

2.4.2 Parameter Stability plot 
 
The parameter stability plot is another graphical method to determine the threshold 𝑢. Similarly 
to the mean residual life plot, the fact that if exceedances of 𝑢଴ is correctly described by a GPD, 
then exceedances over a threshold higher than 𝑢଴ also follow a GPD. In addition, information 
about the parameters is also kept. If the GPD over 𝑢 are 𝜉 and 𝜎௨଴, then for any threshold larger 
than 𝑢଴, the parameters are 𝜉௨ = 𝜉 and  

                                                              𝜎௨ = 𝜎௨଴ + 𝜉(𝑢 − 𝑢଴) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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Now, to remove the dependence of 𝑢  𝑙𝑒𝑡:  

                                                            𝜎∗ = 𝜎௨ − 𝜉௨ ∗ 𝑢 

Now 𝜎∗and 𝜉௨ are plotted against 𝑢. 𝑢଴ is the suitable threshold when 𝜎∗ and  𝜉௨ remains 
constant for all 𝑢 > 𝑢଴ (Coles. 2001). 

 

2.4.3 Rules of thumb 
 
Yet another method to determine u is via the rules of thumb. 

Suppose the data is an ordered sequence 𝑋ଵ,… , 𝑋௡. The threshold is basically the k:th upper 
order statistic 𝑋(௡ି௞ାଵ), also called the tail fraction. As n tends to infinity, so does k. To ensure 
tail convergence, 𝑘/𝑛   →   0 as 𝑘, 𝑛   →   ∞, i.e. k has to grow slower than n. This condition 
ensures that as the sample size grows, so does the quantile level but with a faster rate 
(Mcdonald & Scarrot 2012).  

With this condition satisfied, the following threshold methods have been derived (Loretan & 
Philips. 1994 and Ferreira, et al. 2003) 

                                  𝑘ଵ =   √𝑛 
  and  

                                            𝑘ଶ =
𝑛ଶ/ଷ

log  (log  (𝑛)
 

2.5 Model fit  
 
When fitting a GPD to the excess of a threshold, both the probability-probability and quantile-
quantile plots are good tools when evaluating the goodness of the fit. (Coles. 2001).  

The quantile-quantile (qq) plot is a graphical method that can be used to determine how well a 
data set belongs to a given probability distribution. It plots the quantiles of the data and the 
attempted fitted distribution against each other, and if the fit is good the graph will take shape 
of a straight line. 

Probability- probability plot is also a graphical method, but unlike the qq-plot, the cumulative 
distribution functions (cdf) are plotted against each other. A good result is here also indicated 
by straight line in the plot. 

 

2.6 Generalized Linear Model 
 
The generalized linear model (GLM) is generalization of linear models. Ordinary linear models 
compute the expected value of a given response variable as a linear combination of predictors. 
This means that that type of model is a linear-response model, i.e. a constant change in the 
predictor, X, gives a constant change in the response variable Y. 

One can intuitively see that this is an inappropriate quality for response variables without a 
normal distribution behavior. Instead, in a GLM, the response variable is assumed to come from 
a distribution in the exponential family. In addition, in contrast to a regular linear model, the 
response variable must not vary linearly but rather an arbitrary function of it. varies linearly. 
This function is called g, the link function.  

(2.8) 

(2.9) 

(2.10) 
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Expressed mathematically, the expected value of the response variable is as follows: 

                                                  𝐸(𝑌) = 𝑔ିଵ(𝑋𝛽) 
In this thesis it was suggested by Trygg-Hansa that the multiplicative version of the GLM was used. 
In that case, the response variable Y can be modeled as 

                                            𝑙𝑛(𝑢௜௝) =   𝑙𝑛(𝑦଴)   + 𝑙𝑛(𝑦ଵ௜) + 𝑙𝑛(𝑦ଶ௝) 

In the case of two tariff variables, where i and j are the i:th (and j:th) group of the 
tariff (predictor) variable. For example, if the first tariff variable is age then index 1i refers to the 
i:th age group, perhaps 25-45. As all of the parameters y are estimated, the regression can then 
predict values of 𝑦∗ with 

                            𝑦∗ = 𝑦଴  𝑦ଵ௜𝑦ଶ௝  

(Johansson & Ohlsson, 2010). 

 

2.6.1 Parameter estimation (MLE) 
 
The parameters of a GPD can be calculated in different ways, Maximum Likelihood is usually 
preferred. Let 𝑦ଵ, …  , 𝑦௡ be 𝑛 excesses over the threshold u.  By using that the likelihood 
function is  

                        𝐿(𝜉, 𝜎) =ෑ𝑔క,ఙ(𝑦௞)
௡

௞ୀଵ

 

Where 

                                  𝑔క,ఙ(𝑦௞) =
1
𝜎
(1 +

𝜉𝑦௞
𝜎
)ି

ଵ
కିଵ 

This gives 

                                      𝑙𝑜𝑔𝐿(𝜉, 𝜎) = −𝑛𝑙𝑛(𝜎) − (
1
𝜉
+ 1)෍ log  (1 +

𝜉
𝜎

௡

௞ୀଵ

𝑦௞) 

Which is called the log-likelihood function (Hult, et al. 2012). 

 

2.7  Champions’  model 
 
The  Champions’  model  is  a  graphical  method  used  to  compare  the  performance  of  two  models  
against a reference data set. The method was suggested from Trygg-Hansa. 

First, two samples are created from the original data set. One that will be used to obtain the 
model parameters for the models to be compared and the other as reference to compare to the 
models to. These two data sets are called the model set and reference set respectively. The 
model set will consist of approximately 80% of the original data while the reference set the 
remainder. 

The next step is to divide the model data into groups. For instance, let one group consist of data 
with a certain range of the prediction variables, let’s  say  ages between 25-30 and duration 
between 0-10 years. When the whole population is covered by non-overlapping groups, obtain 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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the value that you want to measure your model performance with trough GLM. These different 
groups will be the dummy variables in the GLM and the first group of each variable is set as the 
intercept. In this thesis the response variable in the GLM is the burning cost. This is the cost per 
exposure for Trygg-Hansa for given profile. Let that value be called 𝑌௜,௝ and the true burning cost 
from the reference data 𝑇௜ , where  

𝑖 = 1: 𝑛 
𝑗 = 1: 2 

𝑖, 𝑗the data is collected from, respectively.collected from, respectively. 

Compute the  𝑌௜,ଵ/𝑌௜,ଶ quotient across all groups (for every i). In addition, gather the reference 
value for the burning cost from the reference data set across all groups. The result from these 
processes can be gathered in a table as follows: 

 Group 1 Group 2 Group n 
Burning cost, model 1 𝑌ଵ,ଵ 𝑌ଶ,ଵ 𝑌௡,ଵ 
Burning cost, model 2 𝑌ଵ,ଶ 𝑌ଶ,ଶ 𝑌௡,ଶ 
True Burning cost 𝑇ଵ 𝑇ଶ 𝑇௡ 

Quotient 𝑌ଵ,ଵ/𝑌ଵ,ଶ 𝑌ଶ,ଵ/𝑌ଶ,ଶ 𝑌௡,ଵ/𝑌௡,ଶ 

Table 2: Table of the Burning cost and quotient 

The next step is to lump groups with similar quotients together, taking the mean of their values. 
The quotients are lumped together by taking for example the lowest 10% of all quotients in one 
point, and then the next to lowest 10% in the next. Finally, a plot is made where the horizontal 
axis is the lumped quotients and the vertical axis is the mean value of the different burning 
costs. This is computed cost for a group per year of exposure. The graphical interpretation takes 
place by finding out which model fits the true burning cost, the best. In order to make the 
interpretation easier, the models are scaled so that  

                                                                      ෍𝑌௜,ଵ

௡

௜ୀଵ

=෍𝑌௜,ଶ

௡

௜ୀଵ

=෍𝑇௜

௡

௜ୀଵ

.   

Now, the total claim size for the three plots are all equal and the interpretation of which model 
fits the true data the best can be done more easily. 

(2.17) 
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For every lumped quotient, the total amount observations (total exposure in the case of this 
thesis) in those groups are computed and added to the point. This is done to quickly 
determining the reliability of that specific point in the plot. In the plot above, these are the black 
dots. 

 

2.8 Data set 
 
The Data set that was used was manipulated data from Trygg-Hansa. Due to discretion it has 
been decided to not include the actual data in the thesis. A description of the data is as follows: 

The data consists of 20 columns and over 5 million rows. 
Each row in the data set can be seen as one insurance holder over a period of time where each 
row contains information about his/her profile. Observe that one insurance holder may appear 
on several rows depending on renewal of the insurance terms or the type and/or number of 
damages.  The columns that were used contained the following information about the insurance 
holder: 

Column name Description 
skar The year when the damage occurred. 
Produkttypkod This is referred to as the product code, 

i.e. what type of coverage the damage 
belongs to. See all three types of 
coverage below. 

Produkttypkod-RP This is extended traveling coverage, for 
instance if you need medical help 
abroad. 

Figure 1: Example plot of the Champions model 
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Produkttypkod-BY This is building coverage, for example 
the result of water leakage. 

Produkttypkod-PL This is base coverage, for instance 
furniture in the building. 

Aalde2 Age of the insurance holder 
Durat6 The duration insurance holder has been 

insured by the same company. 
Byald Age of the building. 
Boyta Size of the building. 
Antper Number of insured people. 
Bebygg The type of building. 
Riskar Amount of years that the risk belonged 

to the insurance company. This is the 
measurement of exposure. 

Ultimo The total cost of the damage. 
skadenr Damage ID. 

Table 1: Description of data 

 

The most important information in this table is the Product codes. The Product code denotes 
the type of coverage that the claim belongs to and thereby each code can have their own 
underlying distribution since different types of coverages have very different expected costs and 
variances. For example, given that a claim is of the BY coverage (building coverage) product 
code, the expected claim size can increase tenfold compared to that of a PL (base coverage) 
type product code. Because of this, the data is divided and analyzed for each product code 
separately, and a threshold limit is obtained for each one. 
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3 Execution & result 
 
In this chapter there are two sections. In the first section the methods used to obtain the results 
are provided. The second chapter is constituted by the results and their interpretation. 

 

3.1 Execution 
 
The process of treating the data set and implementing the methods on it is here described and 
can be divided into several steps. 

 

3.1.1 Modify data set 
 
The data set will be modified in the following two ways: 

 

3.1.1.1 Merge insurance claims 
 
In the data set received, each row does not necessarily capture the entirety of a specific damage 
for the insurance holder. One damage or insurance holder may appear on several rows in the 
set. 
For example, one insurance claim on 1 million kronor (a large claim) might be divided into four 
rows in the data set. Without modifying the data, it will appear as four independent smaller 
insurance claims together adding up to 1 million kronor. With the help of the damage ID, these 
different rows are added together so that the insurance claim is correctly counted as a large 
claim. 

 

3.1.1.2 Divide product code 
 
As earlier described the data set consist of three different product types (RP, BY and PL). 
As the value of these types of coverages can vary quite a bit the data is operated on these three 
types separately. This means that there will be one large claim limit for each product type. 

 

3.1.2 Large Claim threshold 
 
To find the large claim limit, the graphical methods that are the mean residual life plot and the 
parameter  stability  plot,  are  used.  “Rules  of  thumb”  is  also  used  to  find  the  large  claim  limit.  

With maximum likelihood estimation, a GPD is fitted to the data exceeding this limit and the 
goodness of this fit is analyzed and measured with the help of qq and pp-plots. The limit that 
gives the best fit of the GPD is considered to be the optimal large claim limit. 

 

3.1.3 Champion model 
 
Once estimations of the large claim limit have been obtained through the previous methods, the 
Champions’  model  is  utilized  to  determine  whether  truncation  or  exclusion  above  the  threshold  
limit should be used. 
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The steps to perform this method can now be divided into five steps. 

 

3.1.3.1 Sampling 
 
First, two samples are created, taking random chunks from the original data. One large sample 
of 80% and one smaller of the remaining 20%. The larger sample is the model data set and the 
other is called the reference data set. 

 

3.1.3.2 Finding suitable groups 
 
When choosing how to divide the data, one must make sure that the groups do not become too 
small in order to have reliable values of that group in the reference data set. Before the groups 
where chosen, plots of the different predictors were made against the burning cost, to find 
patterns of how the groups should be split to decrease the variance within them. The groups 
must not overlap since each data point should only occur once in the data set for the GLM to 
function properly. An example of a group on an analysis with three variables (age, duration, 
people) would be every data point in the set that meet the following conditions: Has age 16-26, 
duration below 5 years and up to three people on the insurance. One of these groups is defined 
as the intercept group for the GLM analysis. 

For different product codes, these variables, or predictors, affect the burning cost differently. 
Thus, one set of plots was done for each product code. 

For RP and BY plots of the burning cost were made against Age of insurer, duration of insurance, 
number of people on the insurance and finally building size. For RP, the travel insurance, 
predicting variables regarding building properties were excluded and thus the plots were only 
for the other three predictors named above. 

A plot of this type may look like this: 

 

 

 

 

 

 

 

 

 

 

 

Choosing groups with this plot in mind would mean trying to avoid a large gap in mean value 
within any given age group. For example, one could argue that there is a clear mean value 
difference between the ages of 20 and 40. Thus an age group of 20-40 should be avoided and 

Figure 2: Example plot 
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instead split into perhaps 18 -26 and 27-40. This should be done for all product types and each 
of their predicting variables. 

 

3.1.3.3 Obtain burning cost 
 
The estimated burning cost is computed for the truncation model and the exclusion model by 
estimating values for all different groups with the parameters achieved by the GLM. On the 
reference data set, the true burning cost is calculated raw. 

With a value obtained for both models for each group, the total burning cost for each model 
was multiplied with a factor to bring the net burning cost for each model to the same 
magnitude as the reference data. This makes the graphical interpretation easier. 

  

3.1.3.4 Plotting 
 
For each product code with its calculated threshold limit, the estimated burning cost of the two 
models  are  plotted  together  with  the  reference  data  set’s  true  value  of  the  burning  cost.   

 

3.1.3.5 Graphical interpretation 
 
In each plot, the performance is measured by comparing which of the models Truncation and 
Exclusion that are closest to the reference data burning cost. The closer to the true value, the 
better the model resembles reality. In points of very little exposure, any deduction is taken with 
a grain of salt since those numbers might be very unreliable. 

 

3.2 Result 
 
The final result of the thesis consists of two parts, one where the threshold limit is attained for 
each product type and the second part where it is determined whether truncation or exclusion 
above the threshold limit is optimal. Including in the result section however, are the sub results: 
What groups that were chosen for the GLM analysis and its estimated parameters. 

 

3.2.1 Large claim limit 
 
The graphical methods have their drawback of being subjective and not exact. However, if 
several graphical methods all point in the same direction, a rough estimation of the threshold 
can be obtained. 

In the mean residual life the threshold is chosen where the curve becomes linear and for the 
parameter stability plot it is chosen as the value where the plot is constant afterwards. The 
analysis is done on the data for each product code separately. 

From the graphically obtained limits, the two best candidates are used and a GPD is fitted to the 
exceeding data for each. 
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3.2.1.1 RP 
 
 For the product code RP, the following plots for the graphical methods were achieved: 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

These plots point at a limit of around 8 000. This value is taken from where the MRL-graph 
appears to become linear and where the parameter stability plot appears to become constant. 
Additionally, the rules of thumb method achieved the following two threshold limits: 

Method 𝑘ଵ 𝑘ଶ 
Value 24400 17040 

Table 3: Rules of thumb result 

For each limit, a GPD is fitted on the exceeding data. The following QQ-plots are, in rising order 
of the limit (8 000, 17 000 and 24 000 respectively) what determines the goodness of the fit. 

Figure 3: Graphical plots for the large claim limit for the product code RP 
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It is difficult to exclude any limit as they all look quite similar. Thus, to choose a limit, the PP-
plots are looked at. These are in the same order as above. 

Figure 4: QQ-plots for the fitted GPD:s 
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In the PP-plots the best fit seems to be by the last limit of 24 000.  

 

 

 

 

 

 

 

 

 

Figure 5: Probability plots for the fitted GPD:s 
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3.2.1.2 BY 
 
For the product code BY, the following plots for the graphical methods were achieved: 

 

 

 

 

 

 

 

 

 

 

 

 

 

As described in the method, the threshold limit is indicated at the point where the graphs 
become linear. In this case both the parameter stability plot and the mean residual life plot 
point in the same direction. 800 000 is taken as the threshold limit for this product code. 

In addition to the plots, rules of thumb achieved the following limits: 

Method 𝑘ଵ 𝑘ଶ 
Value 606 020 248 160 

Table 4: Rules of thumb result 

As the result vary, QQ- and PP-plots are used to further determine which of the obtained 
thresholds provide the best distribution fit to the upper spectrum of the data. Following are the 
QQ- and PP-plots with the computed threshold limits (in rising order): 

Figure 6: Graphical plots for the large claim limit for the product code BY 
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Above are the QQ-plots for the limits 248 000, 606000 and 800 000 respectively. The best 
candidates for the threshold limit are the two last plots, but further evaluation is needed to 
exclude either of them. 

  

Figure 7: QQ-plots for the fitted GPD:s 



 
24 

 

 

 

 

 

 

 

 

 

 

 

The pp-plots for the limits in same order as the QQ-plots. The best linearity is achieved in the 
last plot; thus the 600 000 limit is finally excluded and the threshold limit for the BY product 
code is chosen: 800 000. 

 

 

 

 

 

 

 

Figure 8: Probability plots for the fitted GPD:s 
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3.2.1.3 PL 
 
For the product code PL, the following plots for the graphical methods were achieved: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen, the threshold limit is very different to the one of BY. It is much lower and looks 
to be somewhere around 275 000. This is expected since the data set of PL contains much lower 
claims. 

The rules of thumb achieved the following threshold limits: 

Method 𝑘ଵ 𝑘ଶ 
Value 212 324 98 673 

Figure 9: Graphical plot for the large claim limit for product code PL 
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Table 5: Rules of thumb result 

Below are the QQ-plots for the achieved threshold limits of PL, in rising order. 

 

 

 

 

 

 

 

 

 

 

 

The QQ-plots hardly give any reason to exclude either of the limits. However, if you examine the 
PP-plots: 

 

 

 

 

Figure 10: QQ-plots for the fitted GPD:s 



 
27 

 

 

 

 

 

 

 

 

 

 

 

  

The last plot with the limit of 275 000 provides the best fit. Once again, the graphical methods 
have been superior to the rules of thumb. 

 

3.2.2 GLM analysis  
 
The groups of predicting variables that were used in the champion model had to be chosen 
wisely. On the one hand, they had to be large enough so that the reference data of that group 
would have reliable values. 

On the other hand, if the groups were too large, interesting connections between a varying 
predicting variable and the response variable could be missed. 

Three to four predictor variables were used at a time. To choose the groups for these variables, 
the response variable (burning cost) was plotted against the predict variables, one at a time and 
for each product code. 

The groups were chosen by visual inspection of this plot so that the gaps in the y-axis would not 
be too large.  Below are the plots that were used to choose the groups. For each product code 
there is also a table with full detail of the groups as well as the estimated parameters from the 

Figure 11: Probability plots for the fitted GPD:s 
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GLM analysis, one for exclusion and one for truncation. These values are later used in the 
Champions model to represent the two compared models. 

 

3.2.2.1 RP 

  

 

 

 

 

 

 

 

 

 

 

Here, the response variable (burning cost) was plotted against the age, insurance duration and 
number of people on the insurance (respectively).  For product code RP, information about the 
insurer’s  building is hardly relevant and was chosen to not be plotted. By visual inspection of the 
above graph, groups were chosen. The train of thought was to try and separate clear shifts in 
mean value into different groups. For instance, between the age of 30 and around 40 there is a 
clear increase of the burning cost. Two age groups to start with would then be 16-30 and 31-48. 
This train of thought was applied for all of the graphs. 

The result for RP was five age groups, four duration groups and three (amount of) people 
groups. The exact ranges in every group can be seen in the table below. The intercept in the 
GLM is the group you get if you take the first sub group from each category. The result for the 
GLM analysis for exclusion and truncation can also be seen in the table below: 

Figure 13:  Plots of burning cost against various predictor variables 
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 Tariff variable  1, Age Tariff variable  2, Duration Tariff variable  3, People 
Intercept Grouping Factor Grouping Factor Grouping Factor 
33.70506 16-30 1.000000     0-3 1.0000000    1 1.000000   

  31-48 1.247261 4-10 0.9852040 2-3 1.831768 
  49-59 1.277058 11-20 0.8307946 4-6 2.230428 
  60-73 1.741338 21-30 0.5659430     
  74-90 1.466582         

Table 6. Table of chosen groups and estimated GLM parameters for the truncated model data set. 

 Tariff variable  1, Age Tariff variable  2, Duration Tariff variable  3, People 
Intercept Grouping Factor Grouping Factor Grouping Factor 
40.96621 16-30 1.000000     0-3 1.0000000    1 1.000000  

  31-48 1.225353 4-10 0.9791169 2-3 1.698679 
  49-59 1.248824 11-20 0.8474670 4-6 2.041375 
  60-73 1.639699 21-30 0.5838483     
  74-90 1.384725         

Table 7. Table of chosen groups and estimated GLM parameters for the excluded model data set. 

These values are not surprising and some trends that were expected can be seen in the table. 
For example, for traveling insurance it is expected that the premium does increase for people as 
they retire at around 60 and starts to travel more (This is represented by the value 1.6 above), 
but then decreases again as they get older (1.4 for the oldest age group of ages 74-90). 

 

3.2.2.2 BY 
 
For BY, additional plots of the building predictors were included since they may affect claim 
cost. 

For these groups, it was decided to not include building age since the graph was very linear and 
didn’t  suggest  any  meaningful  trend, even though it intuitively might make sense that older 
buildings are more prone to damages. A reasonable explanation might be that increasing 
frequency of damage is countered by cheaper repairs. 
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The tariff variable for building size was divided into three pieces. It appears that this parameter 
has a clear increase in value that occurs somewhere after 150𝑚ଶ. The exact grouping can be 
seen below in addition to the factors obtained from the GLM analysis with these groups as 
dummy variables. 

 

 

 

 

 

 

 

Figure 14:  Plots of burning cost against various predictor variables 



 
31 

 

 

 Tariff variable  1, Age Tariff variable  2, Duration 

 Grouping Factor Grouping Factor 

 16-30 1.000000     0-3 1.0000000    

 31-48 0.7991677 4-10 0.9051077 
Intercept 49-59 0.7094386 11-20 0.9332761 
1671.44 60-73 0.6156057 21-30 0.8567604 
  74-90 0.5656867     
  Tariff variable  3, People Tariff variable  4, Living area 
  Grouping Factor Grouping Factor 
  1-2 1.000000   50-100 1.000000   

 3-4 0.9709593 101-150 1.033934 

 5-6 1.0943083 151-300 1.343955 

         

         
Table 8. Table of chosen groups and estimated GLM parameters for the truncated model data set. 

And for exlusion: 

 Tariff variable  1, Age Tariff variable  2, Duration 

 Grouping Factor Grouping Factor 

 16-30 1.000000     0-3 1.0000000    

 31-48 0.8123392 4-10 0.9157621 
Intercept 49-59 0.7436398 11-20 0.9277056 
1499.027 60-73 0.6770928 21-30 0.9051189 
  74-90 0.6127481     
  Tariff variable  3, People Tariff variable  4, Living area 
  Grouping Factor Grouping Factor 
  1-2 1.000000   50-100 1.000000   

 3-4 1.048029 101-150 1.095659 

 5-6 1.153999 151-300 1.339003 

         

         
Table 9. Table of chosen groups and estimated GLM parameters for the excluded model data set. 

The GLM result seems reasonable. The peak appears for the youngest age group and there is a 
trend of decreasing claim size with longer durations. More people on the insurance and larger 
buildings are both factors that increase the claim size, expectedly. 
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3.2.2.3 PL 
 

 

 

These plots were processed in the exact same fashion and lead to the following groups and GLM 
result: 

 

 

 

 

 

 

 

Figure 15:  Plots of burning cost against various predictor variables 
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 Tariff variable  1, Age Tariff variable  2, Duration 

 Grouping Factor Grouping Factor 

 16-30 1.000000     0-3 1.0000000    

 31-48 0.9805949 4-10 0.9644471 
Intercept 49-59 0.9922655 11-20 0.9454218 
544.0388 60-73 0.9135613 21-30 0.8740876 
  74-90 0.7097343     
  Tariff variable  3, People Tariff variable  4, Living area 
  Grouping Factor Grouping Factor 
  1-2 1.000000   50-100 1.000000   

 3-4 1.079227 101-150 1.036413 

 5-6 1.202845 150-300 1.228967 

         

         
Table 10. Table of chosen groups and estimated GLM parameters for the truncated model data set. 

And for exclusion: 

 Tariff variable  1, Age Tariff variable  2, Duration 

 Grouping Factor Grouping Factor 

 16-30 1.000000     0-3 1.0000000    

 31-48 0.9428087 4-10 0.9787339 
Intercept 49-59 0.9544365 11-20 0.9579379 
601.3397 60-73 0.8866662 21-30 0.9053018 
  74-90 0.6970814     
  Tariff variable  3, People Tariff variable  4, Living area 
  Grouping Factor Grouping Factor 
  1-2 1.000000   50-100 1.000000   

 3-4 1.089430 101-150 1.036974 

 5-6 1.200729 150-300 1.168011 

         

         
Table 11. Table of chosen groups and estimated GLM parameters for the excluded model data set. 

 

The trends of this table are all intuitive: Increased claim size with number of people on the 
insurance, increased claim size with larger buildings and a descending claim size for longer 
durations. Finding the peak of the burning cost in the youngest age group is also not surprising. 

 

3.2.3 Champion model 
 
The result of the champion model is presented by the burning cost of the model against the true 
value of the burning cost from the reference data. The model that describes the true burning 
cost with the most accuracy is chosen. In each product code, one comparisons between 
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truncation and exclusion are made, the threshold limit used is the one obtained from the 
previous results. 

The certainty of a given point in the graph below is given by the dot that represents the 
exposure. The points with very little exposure must be taken with a grain of salt since the error 
can be very large in those points. So, when determining which method that fits the best, more 
weight is put into the points with high exposure. 

Below are the graphs for each product code. 

 

3.2.3.1 RP 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
For the 24 000-threshold limit the Exclusion model fits the reference data with the most 
accuracy. Note that Quotient Ranking is not equivalent to the value of the quotient. Each point 
on the horizontal axis, say 0.1, represents 10% of the quotients (the lowest ones at 0.1, lumped 
together). 

 

 

 

 

 

 
 

Figure 16:  Champion model plot for product code RP 
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3.2.3.2 BY 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 800 000 plot suggests truncation being the better choice of how to treat the large claim 
limit. The model do have similar performance so either could probably be chosen without any 
trouble –  but still the truncation model comes out with a slight edge. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 17:  Champion model plot for product code BY 
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3.2.3.3 PL 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the 275 000 limit, truncation once again seems to come out on top. In the majority of the 
points where the models do not accurately describe the reference data, truncation is closer 
most of the time. In the other cases they appear to have similar performance. 

 

 

 

 

 

 

 
 
 

 

Figure 18:  Champion model plot for product code PL 
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4 Conclusion and Discussion 
  
The result with the modified data set for the problem can be summarized by the following table. 

Product code Large claim limit Truncation/exclusion 

RP 24 000 Exclusion 
BY 800 000 Truncation 
PL 275 000 Truncation 

Table 12. Summary of the result 

As seen in the table the large claim limit varies very much between the product codes. These 
differences do however make sense intuitively. You would expect the claim size of a building 
damage to be much greater than that of a personal property loss/damage. And with a much 
greater mean claim size, the limit that denotes a large claim will naturally increase with it. 

 

4.1 Mean residual life & Parameter stability 
 
In each individual plot it is difficult to find an exact interpretation for the threshold limit. 
However, by finding the limit that suits parameter stability and mean residual life plots at the 
same time, that interpretation is made easier. But keep in mind that you most certain could use 
a large claim limit that is a bit higher or a bit lower than the presented large claim limit and still 
get the same result. 

 

4.2 Champion model 
 
As in any regression, while making the groups for the GLM analysis the goal was to create as 
many groups as possible to not miss any relevant behavior of the predicting variables.  

A slight problem for the Champion model can also occur with small groups. GLM handles small 
groups quite well when predicting values. However, when comparing the estimated values of 
the GLM with the true value of small groups, there is very little to no data for some of the 
groups. For example, there is no exposure at all for the youngest age group with 20 years of 
insurance duration (naturally, since this combination should be impossible). This gives the 
reference data very inexact or missing values at some of the quotients in the result plots. 
However, there are fortunately plenty of groups with high exposure that the model 
performance can be compared more easily. 

Some prediction variables were not included at all in the champion model for certain product 
codes. For example, building age was not a part of the regression in RP. One could argue that 
information about the building could be relevant even in the case of travel insurance, but that 
was a nuance that was estimated to be small enough to be overlooked. 

 
4.3 Choosing Threshold  
 
The methods used to determine the threshold limit were mainly graphical. Naturally with 
graphical methods come subjectivity and inaccuracy. To counteract this one can increase the 
number of tests. This did take shape in the form of the rules of thumb. However, these methods 
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did have less theory behind them and consequently the qq and pp plots suggested the limits 
from the graphical methods as a better fit. 

 

4.4 Weighing Truncation against Exclusion 
 
The results regarding truncation vs exclusion on the exceedances over the threshold limit, does 
depend on product code. This is not surprising since the codes separate different kinds of 
damage which may have different underlying distributions. 

For BY and PL, truncation seemed to be the better fit, while for RP exclusion seemed to be 
better, however not by a longshot. In fact, in neither case, either method is clearly better or 
worse than the other.  

However, even though the favor of truncation given by the results in this thesis is only minor – 
intuitively it may also be a better option. A good example of why is that for exclusion, data 
points  just  above  a  threshold  limit,  let’s  say  801 000, would be totally excluded from the GLM 
analysis, while claims just below, say 799 000, would be included. Even though these two data 
points  has  practically  the  same  value,  one  makes  it  in  and  the  other  doesn’t.   

For a truncation type model, this problem  obviously  doesn’t  occur.   

 

4.4 Future work  
 
In many areas of this thesis we felt that the analysis could be improved if there was more data. 
Some of the final groups in the GLM analysis still has very little to no exposure so comparing the 
exclusion and truncation models with the true value ended up being nearly impossible due to 
some of the groups not having reliable or any data to compare to from the reference data set. 
One could argue though, that it is not important to be able to compare the model’s  
performance in those groups, for example 80-year-old people living 5 in the same house. In 
addition, truncation and exclusion did perform very similarly to each other. The true value might 
not be relevant for the scope of this thesis if one can already conclude that the method of 
choice above the threshold limit gives roughly the same results. 

In this thesis, the cost that exceeds the threshold limit is spread evenly over all of the insurance 
holders. This might be unfair since the cheapest and the most expensive insurance holder 
groups have the same value added to their insurance costs.  This could be a point worth 
investigating. One could compare the performance of the current praxis with a model that puts 
a larger part of the exceeding claims on the costs of the more expensive groups. 
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