
Statistical Machine Learning from Classification

Perspective:
Prediction of Household Ties for Economical Decision Making

Kristoffer Brodin

Supervisor at Handelsbanken: Jovan Zamac

Supervisor at KTH: Tatjana Pavlenko

Examiner: Tatjana Pavlenko

October 2017

Abstract

In modern society, many companies have large data records over their individ-
ual customers, containing information about attributes, such as name, gender,
marital status, address, etc. These attributes can be used to link costumers
together, depending on whether they share some sort of relationship with each
other or not. In this thesis the goal is to investigate and compare methods to
predict relationships between individuals in the terms of what we define as a
household relationship, i.e. we wish to identify which individuals are sharing
living expenses with one another. The objective is to explore the ability of
three supervised statistical machine learning methods, namely, logistic regres-
sion (LR), artificial neural networks (ANN) and the support vector machine
(SVM), to predict these household relationships and evaluate their predictive
performance for different settings on their corresponding tuning parameters.
Data over a limited population of individuals, containing information about
household affiliation and attributes, were available for this task. In order to
apply these methods, the problem had to be formulated on a form enabling
supervised learning, i.e. a target Y and input predictors X = (X1, ..., Xp),
based on the set of p attributes associated with each individual, had to be
derived. We have presented a technique which forms pairs of individuals un-
der the hypothesis H0, that they share a household relationship, and then a
test of significance is constructed. This technique transforms the problem into
a standard binary classification problem. A sample of observations could be
generated by randomly pair individuals and using the available data over each
individual to code the corresponding outcome on Y and X for each random
pair. For evaluation and tuning of the three supervised learning methods, the
sample was split into a training set, a validation set and a test set.

We have seen that the prediction error, in term of misclassification rate, is
very small for all three methods since the two classes, H0 is true, and H0 is
false, are far away from each other and well separable. The data have shown
pronounced linear separability, generally resulting in minor differences in mis-
classification rate as the tuning parameters are modified. However, some
variations in the prediction results due to tuning have been observed, and
if also considering computational time and requirements on computational
power, optimal settings on the tuning parameters could be determined for
each method. Comparing LR, ANN and SVM, using optimal tuning settings,
the results from testing have shown that there is no significant difference be-
tween the three methods performances and they all predict well. Nevertheless,
due to difference in complexity between the methods, we have concluded that
SVM is the least suitable method to use, whereas LR most suitable. However,
the ANN handles complex and non-linear data better than LR, therefore, for
future application of the model, where data might not have such a pronounced
linear separability, we find it suitable to consider ANN as well.

This thesis has been written at Svenska Handelsbanken, one of the large major
banks in Sweden, with offices all around the world. Their headquarters are
situated in Kungsträdg̊arden, Stockholm. Computations has been performed
using SAS software and data have been processed in SQL relational database
management system.

i

Statistisk maskin inlärning fr̊an

klassificeringsperspektiv:
prediktion av hush̊allsrelationer för ekonomiskt beslutsfattande

Sammanfattning

I det moderna samhället har m̊anga företag stora datasamlingar över sina
enskilda kunder, inneh̊allande information om attribut, s̊a som namn, kön,
civilstatus, adress etc. Dessa attribut kan användas för att länka samman
kunderna beroende p̊a om de delar n̊agon form av relation till varandra el-
ler ej. I denna avhandling är målet att undersöka och jämföra metoder för
att prediktera relationer mellan individer i termer av vad vi definierar som
en hush̊allsrelation, d.v.s. vi vill identifiera vilka individer som delar levnads-
kostnader med varandra. Målsättningen är att undersöka möjligheten för tre
övervakade statistiska maskininlärningsmetoder, nämligen, logistisk regression
(LR), artificiella neurala nätverk (ANN) och stödvektormaskinen (SVM), för
att prediktera dessa hush̊allsrelationer och utvärdera deras prediktiva prestan-
da för olika inställningar p̊a deras motsvarande inställningsparametrar. Data
över en begränsad mängd individer, inneh̊allande information om hush̊allsrela-
tion och attribut, var tillgänglig för denna uppgift. För att tillämpa dessa
metoder m̊aste problemet formuleras p̊a en form som möjliggör övervakat
lärande, d.v.s. en målvariabel Y och prediktorer X = (X1, ..., Xp), baserat p̊a
uppsättningen av p attribut associerade med varje individ, m̊aste härledas.
Vi har presenterat en teknik som utgörs av att skapa par av individer un-
der hypotesen H0, att de delar ett hush̊allsförh̊allande, och sedan konstrueras
ett signifikanstest. Denna teknik omvandlar problemet till ett standard binärt
klassificeringsproblem. Ett stickprov av observationer, för att träna metoder-
na, kunde genereras av att slumpmässigt para individer och använda informa-
tionen fr̊an datasamlingarna för att koda motsvarande utfall p̊a Y och X för
varje slumpmässigt par. För utvärdering och avstämning av de tre övervakade
inlärningsmetoderna delades provet in i ett träningsset, ett valideringsset och
ett testset.

Vi har sett att prediktionsfelet, i form av felklassificeringsfrekvens, är mycket
litet för alla metoder och de tv̊a klasserna, H0 är sann, och H0 är falsk, ligger
l̊angt ifr̊an varandra och väl separabla. Data har visat sig ha en uttalad linjär
separabilitet, vilket generellt resulterar i mycket sm̊a skillnader i felklassifice-
ringsfrekvens d̊a inställningsparametrarna modifieras. Dock har vissa variatio-
ner i prediktiv presentanda p.g.a. inställningskonfiguration änd̊a observerats,
och om hänsyn även tages till beräkningstid och beräkningsk-raft, har op-
timala inställningsparametrar änd̊a kunnat fastställas för respektive metod.
Jämförs därefter LR, ANN och SVM, med optimala parameterinställningar,
visar resultaten fr̊an testningen att det inte finns n̊agon signifikant skillnad

ii

mellan metodernas prestanda och de predikterar alla väl. P̊a grund av skill-
nad i komplexitet mellan metoderna, har det dock konstaterats att SVM är
den minst lämpliga metoden att använda medan LR är lämpligast. ANN han-
terar dock komplex och icke-linjära data bättre än LR, därför, för framtida
tillämpning av modellen, där data kanske inte uppvisar lika linjär separabili-
tet, tycker vi att det är lämpligt att även överväga ANN.

Denna uppsats har skrivits p̊a Svenska Handelsbanken, en av storbankerna
i Sverige, med kontor över hela världen. Huvudkontoret är beläget i Kungs-
trädg̊arden, Stockholm. Beräkningar har uförts i programvaran SAS och da-
tahantering i databashanteraren SQL.

iii

Acknowledgements

First I want to thank Jovan Zamac, my supervisor at Svenska Handelsbanken,
for the idea behind this thesis, his advice and guidance. I would also like to
thank Tatjana Pavlenko, my supervisor at KTH, for her input and help to
finish the thesis.

iv

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Motivation of Solution Approach . 2
1.3 Limitations and Prerequisites . 4
1.4 Thesis Structure . 4

2 Data preparation and Problem Setup 6
2.1 The Target Variable . 7
2.2 Sample Generation Procedure . 8

2.2.1 Sample Generation Algorithm 9
2.3 The Attributes . 10
2.4 Training, Validation and Testing . 13

2.4.1 Error Evaluation . 14

3 Mathematical Background 17
3.1 Logistic Regression . 17

3.1.1 Fitting the Logistic Regression Model 18
3.2 Artificial Neural Networks . 20

3.2.1 The Special Case of a Two-Categorical Target 22
3.2.2 Fitting Neural Networks . 23
3.2.3 The Back Propagation Algorithm 23
3.2.4 Training and Tuning Neural Networks 25

3.3 The Support Vector Machine . 28
3.3.1 Non-Linearity . 30
3.3.2 Fitting the Support Vector Machine 32
3.3.3 Tuning the Support Vector Machine 32

4 Results 34
4.1 Validation of Logistic Regression . 35
4.2 Validation of Artificial Neural Networks 36

4.2.1 Validation with the Full Sample 37
4.2.2 Validation with the Small Sample 41

4.3 Validation of the Support Vector Machine 45
4.4 Comparison of the Supervised Learning Methods 48

5 Discussion 50
5.1 Derivation of Target and Predictors 50
5.2 Performance of the Supervised Learning Methods 51
5.3 Suggestions For Future Research . 54

6 Conclusions 56

Appendices 58

v

Notations

Capital letters such as X and Y denote generic aspects of variables, whereas the
corresponding small letters x and y denote observations/outcomes of these variables.
X is used for predictor variables and Y for the corresponding target variable. Bold
letters indicate a vector e.g. X. For instance, we could have the p-vector of predictor
variables X = (X1, ..., Xp) as the input in a prediction model. The corresponding
sample of n observations on the predictors is then denoted by x1, ...,xn, where for
observation i, i = 1, ..., n, xi = (x1i,, xpi).

vi

1 Introduction

In modern society, information about people’s relationships, preferences, interests,
etc. is a valuable resource for many companies. Data containing information about
current and future customers is an important key for profitability, service and devel-
opment. Banks, social media companies, insurance companies, investors, etc. are
all examples of companies who have much to gain by collecting such data. It can for
example be used for financial and economic decision making, optimizing construc-
tion layouts and for the manufacturing and processing of goods and services. In
this thesis we look at a particular aspect of this area, namely, the ability to predict
relationships between individuals for economical decision making.

Many companies have large data records over their individual customers, containing
information about attributes, such as name, gender, marital status, address, etc.
However, these attributes only provide information about the customers indepen-
dently, where knowledge about their relationships and connection to each other is
often limited. For instance, marital status can tell us that an individual is married
to someone, but not to whom. The possibility of finding links between costumers
and making a connection between them may be very valuable since customers often
affect each other in their decisions. For instance, consider an individual looking at
making an investment and suppose he or she lives in a relationship with someone
else e.g. marriage. Then this partner will likely be a part of the decisions concerning
this investment since it affects both partners. However, the company providing the
investment opportunity will only see the individual making the investment but not
his or her partner. In the company perspective, if both individuals are costumers,
they should rather be seen as one unit making a joint investment and not as sepa-
rate individuals.

In this thesis the goal is to investigate and compare methods to predict relation-
ships between people in the terms of what we define as a household relationship,
i.e. we wish to identify individuals’ household affiliation by linking all individuals
who share a household relationship together.

Definition 1 (Household Relationship) A household relationship is defined to
be a group of one or several people who share living expenses.

People sharing living expenses also make joint economic decisions. In this thesis
we verify a household relationship by using a questionnaire given to customers at
Svenska Handelsbanken. In the questionnaire the customers are asked to provide
information about which other individuals he or she share a household relationship
with according to definition 1. A household relationship is thus self-defined by the
individuals and we do not to verify that they actually share living expenses in any
other way. A customer does not have to share a household relationship with any
other individual and thus the definition of a household relationship includes both
one single individual and many individuals. Definition 1 is what is referred to when
the terms ”household relationship”, ”household affiliation” or ”household link” are

1

used henceforth in this thesis.

Every individual possesses a number of attributes such as gender, marital status,
address etc. From these attributes our goal is to predict household links between
individuals. The questionnaire and data records over customers at Svenska Han-
delsbanken, provides the necessary data for this task.

1.1 Problem Statement

The objective of this thesis is to explore different models within statistical machine
learning for prediction of people’s household affiliation. For a population of 100000
individuals, their household relationship, see definition 1, should be identified by
linking the individuals together according to their household affiliation. A selected
few models within supervised learning, namely, logistic regression (LR), artificial
neural networks (ANN) and the support vector machine (SVM), are tested and
compared for this purpose.

The objective can be divided into two main parts. The first part is to formulate the
problem on a mathematical form making supervised learning models applicable, i.e.
derive a target variable Y , defining a household link, and derive a vector of p input
predictor variables X = (X1, ..., Xp) based on the set of p attributes registered on
each individual. Thereafter, from the derivation of target and predictors, using the
data over the individuals, a sample of n pairs of observations, (x1, y1), (x2, y2), ...,
(xn, yn), must be constructed. The second part, using this sample, is to estimate
the unknown function f(X), relating the attribute predictors X and the target
household relationship Y , i.e. we have Y = f(X) + ε, where ε is a random error,
independent of X and with mean zero. The main objective is to make a compar-
ison of the three supervised learning models ability to estimate f , minimize ε and
evaluate their predictive performance for different settings on corresponding tuning
parameters. We use the constructed sample to first train and tune the models,
thereafter to evaluate and compare how well they predict household relationships.

1.2 Motivation of Solution Approach

Initially the task of trying to find links between individuals in a large population,
tying them together according to their household affiliation, might seem very diffi-
cult. Supervised learning models are based on having a target variable Y , predictors
X = (X1, ..., Xp) and aims to find the function f relating Y with X. However, it is
far from obvious how to transform the problem of identifying household links into
the form of target and predictors and how to generate a sample to train the models.
Therefore, one could consider the unsupervised clustering approach instead. With
an unsupervised approach there exists no target variable. Instead the attributes
would be analyzed directly to sort out individuals’ household affiliation. The idea
is to cluster customers into groups based on their attributes and where each group
forms a unique household relationship. However, clustering data correctly into such

2

small groups is almost impossible. Clustering methods works well to sort data in
to larger pre-determined categories but are not suitable for prediction problems of
this kind.

Conclusively only supervised models are considered in this thesis and a target Y
must be defined. This is done in the classification setting where the goal is to
classify individuals into their household affiliation. However, it is not possible to
derive a target variable which has a classification category for every possible unique
household relationship or every individual in the data set. Generally, the number of
household relationships is unknown, and this knowledge cannot be required. Instead
a target must be derived in simpler way, with a small limited number of categories
and where no information of number of household relationships is required. Our
solution idea is to form pairs of individuals under the hypothesis that they share
a household relationship and then test if this hypothesis holds true or not. Each
individual is tested against a limited number of possible candidates which are be-
lieved to be a household partner. Thus, for individuals that are suspected to share
a household relationship, we perform a test of the hypothesis on the form

H0 : The individuals share a household relationship. (1)

and the target variable could then be coded binary as

Y =

{
1, if H0 is true,
0, if H0 is false.

(2)

The problem has thus been reduced to a binary classification problem. In the data
available there exist only two kinds of household relationships, single households
and households consisting of two individuals, and therefore only these two cases are
considered in this study. The idea could however be expanded to include households
of more than two individuals as well. A sample for training may be generated by
randomly pairing individuals two and two into fictive household relationships. Most
of these pairs will of course share no household relationship with each other, but
some will be paired into their household affiliation by random. The questionnaire,
where household affiliation is provided by the individuals, serves as an identifica-
tion key to identify for which random pairs H0 is true and for which H0 is false,
i.e. how the target y should be coded for each random pair. The sample would
thus not consist of single individuals, but of pairs of individuals. The attributes of
each individual in a pair forms the predictor variables x for that pair. The sample
can be used to train the prediction methods to distinguish between pairs of true
household relationships and pairs of false household relationships, i.e. outcome on
Y based on outcome on X. The hypothesis idea, the definition of a target variable
Y and predictor variables X and the generation of a sample of observations are
more thoroughly described in section 2.

The three models within supervised learning that have been chosen for the compari-
son study, logistic regression (LR), artificial neural networks (ANN) and the support

3

vector machine (SVM), are some of the more common and applicable methods for
both regression and classification. LR is perhaps the most widely used classification
model and could therefore work as a baseline to compare the other two models to-
wards. ANNs and the SVM are more refined models which can handle complex and
non-linear problems. ANN’s are not strictly restricted to only supervised learning,
however, unsupervised learning is an exemption that will not be included in this
thesis. For the LR-model there are no tuning parameters to set, whereas SVM’s
and in particular ANN’s have several tuning parameters to set, and we will evaluate
their predictive performance for different settings. Since the household prediction
problem is a relatively new and unusual kind of problem, where the exact complex-
ity of the solution is unknown, we expect the SVM and particularly ANN’s to have
the prospect of finding a solution to predicting these relationships where other more
conventional statistical methods perhaps cannot.

1.3 Limitations and Prerequisites

• The data used in this thesis have been collected from customers at Svenska
Handelsbanken, through a questionnaire and from other records over the cus-
tomers. However, it could equally be collected from authorities or similar
sources. It is important to note that choice of solution approach is based on
the form of available data.

• A household relationship is defined by individuals through a questionnaire,
hence, a household relationship is established at a fixed time point. However,
relationships change over time and thus it is possible that an individual’s
household affiliation may have changed since the questionnaire was filled in.
We do not consider this time aspect. Also, an individual is only allowed one
unique household affiliation. An individual may not provide information of
two separate household relationships with separate people.

• All data processing to form the sample of observations is done in SQL and
the fitting and tuning of the prediction methods is made in SAS. However,
some limitations in the fitting and tuning possibilities are induced by SAS
e.g. limitations in the choice of kernel for the SVM.

1.4 Thesis Structure

The remaining part of this thesis is organized as follows. In section 2 we give
the background of the dataset available, define the target variable y and the input
predictors x properly. Also in this section a thorough description of how data is
processed to from the sample of observations. In the final part of the section we
present and discuss how to fit and tune the models and how to evaluate their per-
formance. In section 3, mathematical background, the mathematical theory behind
logistic regression, artificial neural networks and the support vector machine is pre-
sented. Each of the three methods have their separate section, first the theory and
mathematical derivation of the method is presented, thereafter we describe how the

4

method is fitted and finally training and tuning aspects for respective method is
discussed. In practice, the training and tuning process have a significant impact on
how well the model predicts and therefore this part must be given proper consider-
ation. In section 4, the results for the three statistical methods are presented. We
give both results from the validation and the testing step and a comparison of the
three prediction methods is made. In section 5 a discussion of solution approach,
the obtained results and an attempt to explain our findings is made. The scope for
future research is presented as well. Section 6 provides final conclusions.

5

2 Data preparation and Problem Setup

The basis for the comparison study of the three statistical method’s ability to pre-
dict household links is the data over m = 100000 individuals, containing information
about their attributes and their household affiliation. In section 1.2 we briefly in-
troduced the solution idea on how to derive a target Y , predictors X and using
these definitions and the data available to form a sample of observations. In this
section we describe this idea more thoroughly.

The first step is to collect the information about the attributes and the household
affiliation from the data records and the questionnaire into one data set. Every indi-
vidual j is provided a unique personal ID in the form of a unique reference number
rj , j = 1, ...,m. This number defines an individual in the data set. Information
about household affiliation for each individual j is given by a numerical household
identification ID qj , j = 1, ...,m (not unique for every individual). This is our
solution key, all individuals sharing a household relationship have equal household
ID qj . To check whether two individuals share a household relationship we simply
check if their corresponding household identification ID match. The p attributes
of respective individual we denote by Z1, Z2, ..., Zp. Conclusively this information
can be collected into a table with m rows, one row for each individual j, matching
his/her reference number rj , household identification key qj and all the correspond-
ing attributes z1j , z2j , ..., zpj . This forms the basic data set to generate a sample of
observations. The structure of this table can be seen in table 1.

r q Z1 Z2 · · · Zp
r1 q1 z11 z21 · · · zp1
r1 q2 z12 z22 · · · zp2
...

...
...

...
...

...

Table 1: Table structure after the first step of collecting and ordering data. rj, qj,
z1j, ..., zpj, j = 1, ..., n are the reference numbers, household identification keys and
all the attributes. The vertical dots symbolize all the elements following.

As previously mentioned the household relationships are self-defined by the ques-
tionnaire. Therefore, there may be irregularities in the data and people may for
some reason have provided incorrect information. In some cases, an individual may
be associated with several separate household relationships i.e. having multiple
household ID’s. In this thesis only one unique household affiliation is allowed for
each individual and thus individuals violating this criterion must be removed from
the data set. If any information about household affiliation or attributes is miss-
ing without apparent reason, this individual will be removed from the data set as
well. In conclusion, only individuals with one single household ID qj and with all
necessary information about his/her attributes, remain in the data set.

6

2.1 The Target Variable

We seek a solution to the household linkage problem through supervised learning
methods in the classification setting. Thus, a target variable Y , mathematically
defining a household relationship by a limited number of categories, must be de-
rived. In section 1.2 the outline idea of how we do this was presented. Let us
now do this properly. Since in general the number of households is unknown, the
categories of the target Y cannot be defined requiring this knowledge. Letting each
household be its own category is thus impossible. If all kinds of household constel-
lations are considered, from single to including many individuals, the problem could
become very complex. In our dataset there exits however only two possible kind
of household constellations, namely single households and households consisting of
two individuals, and therefore only these two cases need to be considered in this
study, clearly simplifying the problem. In fact, if not considering children, which
seldom have an individual relationship with the bank, a household relationship is
seldom shared between more than two individuals. However, if one wish to predict
households of more than 2 individuals, the approach described in this section could
be extended to include more cases as well. This is discussed more further down and
in section 5.

We start by first consider only one possible case, namely, households consisting
of two individuals (no single) and the problem can be reformulated into the stan-
dard classification setting with a binary target Y . Suppose we pair two individuals
j and `, j = 1, ...m, ` = 1, ...m, j 6= `, under the hypothesis

H0 : Individuals j and ` share a household relationship. (3)

The goal is then to determine if this is true or false and a test of significance is
constructed by coding the target Y as

Y =

{
1, if H0 is true,
0, if H0 is false.

(4)

For an individual j whose household affiliation should be investigated, he/she is sim-
ply test paired with other individuals `, ` 6= j, suspected be a possible household
partner. Individuals form one or several pairs {j, `} under H0 and the problem has
been simplified to the binary classification problem of predicting the class of each
pair. If y{j,`} = 1 is predicted, H0 is considered to be true for that pair {j, `}. If
y{j,`} = 0 is predicted, H0 is considered to be false for that pair {j, `}. In the end,
if only considering households consisting of two individuals and with one unique
household affiliation, for each individual, H0 should be considered true for at most
one pair. For instance, if an individual has been paired with ten other individu-
als, forming ten pairs under H0, H0 should be true for at most one of these ten
pairs. Otherwise the individual has been predicted to share more than one unique
household relationship. However, it is possible that this condition fails. In that case
we may not sort out which pair has been predicted correctly and must investigate

7

these pairs further in another way. However, if using enough training data, con-
sidering multiple attributes as predictors and training the prediction methods well,
this scenario will probably only occur in a few cases and most individuals will be
classified correctly. In the case households consisting of more than two individuals
are considered as well, one would of course allow for more than one matching pair,
i.e. H0 can be true for multiple pairs. Although, it might be hard to determine if
multiple matches mean that several individuals share a household relationship or
if some of them have been falsely matched. This is discussed further in section 5.
For individuals who are not classified as y = 1 for any of his/her tested pairings,
i.e. where H0 is not considered true for any pair, when all reasonable possibilities
have been tested, we conclude that this individual lives by himself/herself in a sin-
gle household with high probability. Thus, with reasonable confidence, both single
households and households consisting of two individuals can be identified from this
pairing idea.

This idea of course assumes that there are a limited number of candidates each
individual of interest can be tested towards. Fortunately, this is often the case.
For instance, a good example on where we wish sort out household affiliation is to
consider a large building with several apartments and a large group of people living
there. Who is living in respective apartment is unknown and the problem is thus to
predict which individuals are living together in one apartment. Then, clearly, there
is a limited number of candidates to test. In the case when there are a very large
number of possible pairings, this pairing approach of course becomes more complex,
requiring longer computational time to test every possibility. However, as long as
a limited number of individuals that should be paired is set, the pairing approach
is always possible.

2.2 Sample Generation Procedure

From this pairing idea we may construct a sample to fit, tune and compare the
prediction methods. The data set in table 1 is used to do this in two steps. First
individuals are paired randomly into fictive households using random numbers from
U(0, 1). Individuals reference numbers form random pairs {rj , r`}, j = 1, ..,m,
` = 1, ...,m, with condition j 6= `. In those cases qj = q` for a pair {j, `}, we code
the corresponding observation on the target as y{j,`} = 1 and H0 is true for this
random pair. For the vast majority of pairs we would however have qj 6= q` with
observation y{j,`} = 0 on the target. This random pairing thus forms a sample of
pairs for which H0 is true for very few observations, i.e. with outcome y = 1. In
order to have a better mix of observations on the target, the second step is to form
a new smaller sample where individuals j = 1, ..,m, ` = 1, ...,m, j 6= `, are paired
such that qj = q`. This smaller sample thus only consist of pairs where H0 is true.
These two samples can then be mixed in to one final large sample of observed pairs,
with a proper distribution of both outcomes on the target Y . Conclusively, we
pair individuals both randomly and based on their household affiliation to generate
a sample with a sufficient mix of observations of pairs of individuals sharing a

8

ν r q Z1 Z2 · · · Zp
ν1 r1 q1 z11 z21 · · · zp1
ν2 r2 q2 z12 z22 · · · zp2
...

...
...

...
...

...
...

Table 2: Table structure after adding a random number pairing key. Note that the
table has been reorder by this key therefore the new r1, q1, z11, etc. may not be the
same as in previous tables. They just symbolize elements in the cells to clarify the
structure of the tables created.

r q Z1 Z2 · · · Zp rlag qlag Z1,lag Z2,lag · · · Zp,lag
r1 q1 z11 z21 · · · zp1 r2 q2 z12 z22 · · · zp2
r2 q2 z12 z22 · · · zp′2 r3 q3 z13 z23 · · · zp3
...

...
...

...
...

...
...

...
...

...
...

...

Table 3: Table structure after copying all columns and lagging all rows of the copy.
The lagged copy is joined to the right of the table and the random number µ is
removed from the table since it is of no use after the lagging procedure.

household relationship and individuals not sharing a household relationship. Here
is a more detailed description of how the paring process is done. This should not
be seen as an exact way of how it must be done but serve as an example of how it
can be done to generate the sample required.

2.2.1 Sample Generation Algorithm

1. For every unique reference number rj in table 1, generate a random number
νj from U(0, 1) and assign it to the corresponding rj in a new column. This
may be repeated several times to generate a sample of sufficient size. For the
m unique rj in table 1, we do three repetitions which will generate 3m random
numbers as pairing keys. The structure of the resulting table can be seen in
table 2.

2. Make a copy of the original table and lag the rows by one step, join this lagged
table onto the original one. Thus, there will be two version of every column
category, the original and the lagged. After the lagging procedure the random
number column can be removed. The structure of the resulting table can be
seen in table 3.

3. Merge all columns from the original table with the corresponding lagged dou-
ble into arrays.

4. Check the household ID qj column. If the two elements in an array are equal,
qj = qj+1, the hypothesis H0 is true for that pair. Thus, let y{j,j+1} = 1 in

9

r Y q Z1 Z2 · · · Zp
[r1, r2] y{1,2} [q1, q2] [z11, z21] [z21, z22] · · · [zp1, zp2]
[r2, r3] y{2,3} [q2, q3] [z12, z13] [z22, z23] · · · [zp2, zp3]
...

...
...

...
...

...
...

Table 4: Table structure after the merging process and coding of the target variable
Y .

this case and otherwise let y{j,j+1} = 0. The structure after the merging and
coding of the target can be seen in table 4.

5. Generate a new table from table 1 where all reference numbers rj and their
corresponding attributes are paired using qj as pairing key (group by q in
SQL-setting) i.e. pairs {rj , r`}, j = 1, ..,m, ` = 1, ...,m, j 6= ` with condition
qj = q`. Make sure there is only one unique qj in the q-column and add a new
column of y{j,`} = 1 for all the households in this table. The structure of the
resulting table is the same as table 4 apart from having only single elements
in the q-column.

6. Join the table of random pairs with the table of q-generated pairs.

7. Finally reorder the resulting table by once again generate random numbers
from U(0, 1) and order the rows by these random numbers. This ensures a
random order of observations. If one wish to extract a smaller subsample
or divide data into training, validation and testing it is important that this
extraction/division is random such that not only certain kinds of observations
are included, e.g. y = 0. By reshuffling the sample by random this is ensured.
The structure of the final table is as seen in table 4. Reference numbers rj and
household ID’s qj are of no interest in the sample for the prediction methods
and can thus be removed from the table. Conclusively the final table has
n = 4m = 400000 rows where each row corresponds to a pair i = {j, `},
i = 1, ..., n.

2.3 The Attributes

There are six kinds (categories) of attributes we consider for predicting household
relationships, namely; address, last name, gender, age, marital status and account
ownership at the bank. Apart from age, these kinds of attributes are all qualitative
and must be coded as categorical. Note also that the attributes z1j , ..., zp are
associated to a single individual j, but the sample constructed in section 2.2 consists
of pairs of individuals with pairs of attributes. Therefore, predictor variables should
be coded w.r.t. a pair and not an individual himself/herself. For all six kinds
of attributes the exact outcome is of minor interest for the household prediction
problem. That an individual is living at a precise address or have a certain last
name does not provide much information to predict his/her household relationship,

10

rather we are interested in whether the outcome is the same or not for individuals
that have been paired together. For instance, having the same last-name, address
or similar age will likely increase the probability of having a household relationship.
Therefore, for two individuals that have been paired, we would like to define the
attribute predictor variables X = (X1, ..., Xp) based on whether the two individuals
have an attribute in common, i.e. code them into binary variables telling us if
an attribute is equal or not between two paired individuals. In what follows, we
describe coding of predictor variables in detail for each of the six kinds of attributes.

Address

Address is a collective name for several attributes, where we look at city, postal
code, street name, street number, and country (almost all individual are from the
same country) as separately. Street name and street number are considered as both
separate attributes and together as one attribute i.e. street name + street number.
Apartment number, floor/stair or other extensions is also included in those cases
this information exists. Suppose two individuals live on the same street with the
same number but on different floors or with different apartment numbers, then the
probability of them sharing a household relationship is not very large even though
they live on the same street with the same number. Therefore, dividing address
into several separate attributes provides more information than just letting it be
one single attribute. Observe though that for most individuals, information about
apartment number or floor/stair is not available and these attribute categories in
many cases have missing values. Also, an individual may have multiple addresses
registered, therefore we must consider three variants, the official address registered
at the tax-authorities, a non-official address and the possibility for a costumer to
provide a third address for e.g. a summer house. For most of the individuals in the
data set these three kinds of addresses are the same though. Conclusively we have
10 kind of address attributes with 3 version of each, yielding a total of 30 address
attributes that should be coded into predictor variables. By the principle idea
described above, were our interest lies in whether city, street name etc.is the same or
not for two paired individuals, we code the predictor variables for address as follows.
For every pair i = {j, `}, i = 1, ...n consisting of two individuals j, j = 1, ...,m and
`, ` = 1, ...,m, j 6= `, with an address attribute zjk and z`k, k = 1, ..., 30 respectively,
we code the corresponding predictor variable xk, k = 1, ..., 30 for that attribute as

Xk =

{
1, if Zjk = Z`k,

−1, if Zjk 6= Z`k.
(5)

To clarify; if for example the two individuals in a pair have the same official street
name we get the outcome 1 on corresponding predictor variable for street name,
whereas if they for example have different street number we get the outcome −1 on
the predictor variable for street number. We do this coding for all 30 address at-
tributes resulting in 30 predictor variables. If information about apartment number
or floor/stair is missing, we just let the corresponding predictor variable be null.

11

Note that for the methods to be tested a [−1, 1] coding is preferable compared to
the standard binary coding [0, 1], see the coming section (3.2.4).

Last Name

Last name also has more than one variant. We have the standard official last
name but also the possibility for an individual to provide a self-chosen last name
to the bank. Obviously in almost all cases there is no difference between these
two variants. Thus, we have two attributes for last name and two corresponding
predictor variables. They are coded exactly as the described by (11), i.e. for a pair
of two individuals,

Xk =

{
1, if they have the same last name,
−1, otherwise,

(6)

for k = 31, 32.

Account Ownership

Account ownership is an attribute telling us the account each individual has at the
bank. We are interested in whether two individuals in a pair have any common
account ownership since this likely increase the probability of sharing a household
relationship as well. We thus code the corresponding predictor variable by the same
manner as described by (11), i.e.

X33 =

{
1, if they have a common account ownership,
−1, otherwise.

(7)

Gender

The attribute gender should be coded in an analogous way as previously described
above. However, in this case, since opposite gender more likely imply a household
relationship than having the same gender, following our convention that a positive
number on the attribute variable imply positive impact on the probability of a
household relationship, let

X34 =

{
1, if they have opposite gender,
−1, otherwise.

(8)

Age

Age is a quantitative attribute and we are mostly interested in the age difference
between the paired individuals (low age difference likely increases the probability of
a household relationship). Therefore, for two paired individuals j and `, j 6= ` the
corresponding predictor variable is defined as

X35 = |age of individual j − age of individual `|. (9)

12

We may also have an interest in different spans of age difference, therefore we also
define the categorical variable

X36 =

0, if |age of individual j − age of individual `| ≤ 5,
1, if 6 ≥ |age of individual j − age of individual `| ≤ 7,
2, if 8 ≥ |age of individual j − age of individual `| ≤ 10,
3, otherwise,

(10)

Marital Status

For marital status we have only access to information on whether the individuals
are married or not. Therefore, the predictor variable for marital status, for two
paired individuals j, j = 1, ...m and `, ` = 1, ...m, j 6= `, is defined as

X37 =

{
1, if both j and ` are married,
−1, otherwise.

(11)

Following the data preprocessing steps of sections 2.1-2.3, we have final sample con-
sisting of n observations (x1, y1), (x2, y2), ..., (xn, yn) with xi ∈ Rp and yi ∈ {1, 0},
with p = 37 and n = 400000. Each observation (xi, yi) corresponds to the paring of
two individuals into a ”fictive” household. The vector of predictors x tell us which
attributes these two individuals have in common (or age difference) and the target
y answer the question whether the hypothesis H0 is true or not, i.e. if they share a
real household relationship. The structure of the final sample can be seen in table
5.

Y X1 X2 · · · Xp

y1 x11 x21 · · · xp1
y2 x12 x22 · · · xp2
...

...
...

...
...

Table 5: Table structure of the final sample.

2.4 Training, Validation and Testing

Statistical machine learning methods are generally applicable to many different kind
of problems and must thus be tuned to perform well for the household prediction
problem at hand. Logistic regression has no tuning parameters to set, the support
vector machine has some, whereas artificial neural networks are very flexible and
the whole structure of the models determined by the settings on the tuning param-
eters. Also, one wants to evaluate the performance of the model, both to make a
comparison study as is the goal of this thesis, but also to certify that the models
are preforming well and the predicted results from them can be trusted.

13

There are several approaches in statistics and machine learning to achieve this.
Many of them are formed with the assumption that the data available is limited,
which is often the case, and evaluation should be done without sacrificing to much
data for fitting, e.g. cross-validation. However, in our case the dataset is very large,
and this problem does not exist. The simplest way for evaluation is then to the
divide the sample of n observations into three separate sets: training, validation
and testing. First the training set is used to fit the parameters of model, thereafter
the validation set is used to validate and tune model. Using background knowledge
and experience, start values on the tuning parameters can be set and then the val-
idation set is used to evaluate the performance of the current setting, the model is
re-tuned, and one may again evaluate whether performance has improved. In this
manner the model can be tuned to maximize performance. Finally, the third data
set, testing, is used to evaluate the real performance of the fitted and tuned model.
It is the results from testing is what certifies that the model predicts sufficiently
well. Note that these data sets are completely separated, no data used for training
may be used for validation and no data for testing may have been used in training
or validation. Then the whole idea of this process would be lost.

One of the most important aspects of dividing the data set in to three parts is
to ensure the obtained solution is not overfitted. In the training process there is
a risk that the fitted model will capture small irregularities in training data, not
general to the whole data set and probably not present in any new data the models
should be applied on later. If the model is adapted to these irregularities, predic-
tion performance would decrease since consideration is taken to completely random
aspects in the data that have no real general effect on the relationship between the
predictors X and the target Y , e.g. outliers. By separating the data in these three
parts, the fitted and tuned model’s performance is evaluated on a completely new
data set, i.e. the training set, and one can check that the model performs well on
this new data set as well. Since this set has not been used to fit and tune the model,
testing the model on this set gives a good indication on whether the model perform
well when applied on new data or if it has been over-fitted and have been adapted
too much to the data it was trained on. This issue is discussed further in section 3

There exists unfortunately no general rule on how to choose the number of observa-
tions in each of these data sets, since this depends on the so-called signal-to-noise
ratio, i.e. the level of the desired output compared to the level of background dis-
turbance in the data, and the number of available training observations. A common
split is 50% for training, and 25% each for validation and testing ([1],p.222). This
is also the chosen split in this thesis since we have a very large data set and have
no limitations due to sample size.

2.4.1 Error Evaluation

Here is a more detailed description on how these three data sets are used to fit and
tune the models. Denote the set of parameters to be directly fitted in respective

14

model by ω and denote the set of tuning parameters (if existing for the model)
by ψ. The division into three data sets yields three corresponding kinds of clas-
sification/prediction errors to consider. The training error Etr gives a measure on
how much the fitted model deviates from the training data. In the training step
the tuning parameters ψ are first fixed and the model fitted on the training set
by choosing the set of parameters ω which results in a small (optimal) training
error Etr. Observe that it is not necessarily optimal to find the global minimum
of the training error since will likely consider outliers in the data and this will
risk overfitting as just discussed. Therefore the optimal parameters ω∗ should be
chosen such that Etr becomes as small as possible but without overfitting the model.

The validation error Eva is obtained from the validation set. This error is used
to tune the model, i.e. finding the optimal settings on ψ. The tuning parameters ψ
are fixed, ω∗ found from the training data and then the corresponding validation er-
ror Eva is evaluated on the validation set. ψ is modified and the procedure repeated
once again which will yield a new Eva for new parameters ω∗ and ψ. Then one can
evaluate if Eva has decreased and thereby improved the predictive performance of
the model. This should be done until no significant decrease on Eva can be seen, if
one wish to find the optimal tuning parameters ψ∗. The validation error also gives
an indication on whether model has been overfitted. If Eva is significantly larger
than Etr the model is likely overfitted and the parameters ω should be refitted
(perhaps modifying the fitting procedure).

Finally, the test error Ete is obtained from the test set and the real goal is to
train and tune the model such that Ete is minimized. This error gives a measure on
the true performance of the model and a small Ete serves as a confirmation that for
chosen parameters ω and ψ the model predicts well. In an overfitted solution, the
test error might be much larger than the training error, but with a small test error
there is minor risk of an overfitted solution. The test error will be the main mea-
sure to compare the predictive performance between the three supervised learning
models and the validation error will evaluate respective model’s performance for
different settings on the tuning parameters. In fact, Eva also serves as a good esti-
mation of Ete.

Both Eva and Ete will be evaluated by the misclassification rate Rm, defined as

Rm =
1

n

n∑
i=1

Iyi 6=ŷi . (12)

where I denotes the indicator function, (ŷi = f̂(xi) is the predicted classification
of the target and yi is the true observation of the target). It is rate measure of
how many individuals that have been classified correctly. This rate error is however
not as suitable for training the models since it does not give a measure on how
well a data point have been classified. When fitting the models, it is a significant
difference if a data point just falls within the decision boundary for the classification

15

rule or well inside with good margin. Therefore, other error measures are used for
evaluating the training error Etr. Choice of error measure for training depend on
the supervised learning model and is therefore defined for each of them separately
in their respective section, in section 3.

16

3 Mathematical Background

3.1 Logistic Regression

This section is based on the layout given in ([2],p.130-137) and ([1],p.119-120) about
the theory and fitting of the logistic regression model.

For classification problems with a categorical target, logistic regression is perhaps
one of the most common approaches. It can be seen as an expansion of normal lin-
ear regression into the classification setting. When the target Y is not quantitative,
but qualitative, we may not directly regress the output from the input predictors
X. Instead in logistic regression we construct a regression model for the probability
P (Y = y|X = x), i.e. the probability of the outcome (category) y of the target vari-
able Y , given the predictors X = x. We must thus choose a function which maps
the outcome from the regression of the input predictors X strictly into the interval
[0, 1]. There are potentially a couple of possible choices but in logistic regression we
use the logistic function. For a binary target Y ∈ {0, 1} and p multiple predictors
X = (X1, ..., Xp) the logistic model for Y = 1 can be written

log

(
P (Y = 1|X = x)

1− P (Y = 1|X = x)

)
= β0 + β1x1 + ...+ βpxp (13)

where the left-hand side is the so-called log-odds for Y = 1. Equivalently we have

P (Y = 1|X = x) =
eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp
(14)

where the right-hand side forms the logistic function. Thus, we also have for Y = 0

P (Y = 0|X = x) = 1− P (Y = 1|X = x) =
1

1 + eβ0+β1x1+...+βpxp
. (15)

β0, β1, ..., βp are parameters to be estimated. We regress on the log-odds which
inverse is the logistic function, mapping the regression in the interval [0, 1], yielding
a prediction for the sought probability. Define p(x) := P (Y = 1|X = x) and
introduce a threshold of 0.5 and the classifier G(x) becomes

G(x) =

{
1, p(x) ≥ 0.5,
0, p(x) < 0.5.

(16)

If p(x) ≥ 0.5, paired individuals are classified as: H0 is true, and if p(x) < 0.5 they
are classified as: H0 is false. If the target variable has more than two categories, this
model is not valid and has to be modified, however this is of no interest in this thesis.
When the target Y has only two categories and can be coded as binary, standard
linear regression is a possible approach as well. It can be shown that Xβ obtained
from the linear regression would be an estimate of the probability P (Y = 1|X = x).
However in normal regression the predicted response on the target can be hard to
interpret as a probability measure since the estimate might fall outside the [0, 1]
interval ([2],p.130). Thus, logistic regression is the method of choice also in this
case.

17

3.1.1 Fitting the Logistic Regression Model

The parameters β0,β = (β1, ..., βp) can be estimated from the constructed training
set using Maximum likelihood. Given the set of n pairs of training observations
(x1, y1), (x2, y2), ..., (xn, yn), we have

p(xi;β0,β) := P (Y = 1|X = xi;β0,β) =
eβ0+βT xi

1 + eβ0+βxi
, i = 1, ..., n. (17)

For a binary output the Bernoulli distribution is appropriate to model the proba-
bility. The likelihood function can thus be written

L(β) =
∏

j:yj=1

p(xj ;β0,β)
∏

j∗:yj∗=−1
(1− p(xj∗ ;β0,β)), (18)

where j are all training observations with outcome yj = 1 and j∗ are all training
observations with outcome yj∗ = 1, in total n observations. With the coding Y ∈
{0, 1} and using (17) we may derive a simplified version of the log-likelihood as

`(β0,β) :=log(L(β0,β))

=
∑
j:yj=1

log(p(xj ;β0,β)) +
∑

j∗:yj∗=−1
log(1− p(xj∗ ;β0,β))

=

n∑
i=1

1 + yi
2

log(p(xi;β0,β)) +
1− yi

2
log(1− p(xi;β0,β))

=

n∑
i=1

1 + yi
2

(β0 + βTxi − log(1 + β0 + βTxi))

+
1− yi

2
(− log(1 + eβ0+βTxi))

=

n∑
i=1

1 + yi
2

(β0 + βTxi)− log(1 + eβ0+βTxi)

(19)

The estimates β̂0, β̂1, ..., β̂p are chosen such that the log-likelihood function `(β0,β)
is maximized over all training observations (equivalent to maximizing L(β0,β)). We
do so by taking the derivative of `(β0,β) w.r.t. β0,β an setting it to zero. It yields
a set of p+ 1 non-linear equations on the form

∂`(β0,β)

∂β0
=

n∑
i=1

1 + yi
2
− p(xi;β0,β),

∂`(β0,β)

∂β
=

n∑
i=1

xi

(
1 + yi

2
− p(xi;β0,β)

)
,

(20)

which we solve to find the parameters β0,β. The equation system is usually solved
numerically by the Newton-Raphson algorithm (other approaches are also possible),

18

requiring us to take the second derivatives as well to find the Hessian. This is the
algorithm used by SAS. For an introduction to the Newton-Raphson algorithm,
see e.g. [6].

19

3.2 Artificial Neural Networks

This section is based on the layout given in ([1],p.392-401) about the background
theory, fitting and training of artificial neural networks. Observe that this section
first aims to provide a general description of the three supervised learning methods,
thus the notation X = (X1, ..., Xp), refer to a general vector of predictor variables,
Y or Yk, k = 1, ...,K refer to a general target variable or the target categories for
K-class classification. The notation Zm, m = 1, ...M are used to denote hidden
layers in a ANN and have no relation with the previous usage of Z1, ..., Zp to denote
the individuals attributes before coding them in to predictor variables.

Figure 1: Illustration of a neural network with five inputs X1, . . . , X5, one hidden
layer with six units Z1, . . . , Z6 and an output layer with two output units Y1, Y2.
Note that sometimes an extra bias unit of 1, symbolizing α0, β0, is included in the
input and hidden layers in the network illustration, we have chosen not to do so
here.

An artificial neural network (ANN) is a regression or classification model in sev-
eral stages. It is often represented by a network diagram ([1],p.392) as in figure
1 and is originally inspired from attempting to mimic brain activity ([3], p.316).
In this thesis we are only interested in classification and therefore focus is on this
application, however the network described below is general and applicable for re-
gression as well. A network consists of an input layer of p nodes for the input
variables X = (X1, ..., Xp), an output layer with K nodes for the target measure-
ments Yk, k = 1, ...,K and one or several middle layer(s), called the hidden layer(s)
since the values on its hidden nodes are never observed directly ([1],p.393). For a
network with one hidden layer we denote its nodes by Zm, m = 1, ...M . For
regression we have usually have K = 1 and only one output node. For K-class clas-
sification, there are K nodes in the right output layer, with the k’th unit modeling

20

the probability of class k. Each of the targets measurements Yk are being coded as
a binary variable, 1 for belonging to class k, 0 if not ([1],p.392). The target variable
is thus modeled as complete layer where each node represents each class or equally
each node represent each possible outcome the target variable.

The number of hidden layers in the network is a somewhat subjective choice that
is set before the fitting procedure. On one hand more layers may yield better pre-
dictions but on the other hand also yields more complexity, less interpret-ability,
the risk of over-fitting increases and more computations are required. Therefore,
it seems unnecessary to set multiple hidden layers at the start rather we may in-
crease the number hidden layers in the validation process to see if predictions can
be improved this way. Also, the number of units in each hidden layer is a subjective
choice that must be determined and evaluated by a similar procedure.

In a single hidden layer neural network the hidden nodes Zm are modeled as linear
combinations of the input variables X = (X1, ..., Xp), and then the target Yk is
modeled as a function of linear combinations of the Zm as

Zm = σ(α0m +αTmX), m = 1, ...,M,

Tk = β0k + βTk Z, k = 1, ...,K,

fk(X) = gk(T), k = 1, ...,K,

(21)

where the value on the k’th output node can be expressed as

Yk = fk(X) + εk. (22)

We have Z = (Z1, Z2, ..., ZM) for a choice of M hidden units and T = (T1, ..., TK)
for K classes. α0, α = (α1, ..., αp) and β0, β = (β1, ..., βM) are unknown param-
eters to be estimated. σ(v) is the activation function which makes the non-linear
transformation of the inputs X into the hidden units Z. There are a number of
choices on σ but the most common one is the sigmoid/logistic σ(v) = 1/(1 + e−v)
([1],p.392), which makes the first transformation a logistic regression. Different
choices of activation functions can be seen in table 6.

Activation Function σ(u) Range of Values
Identity u R
Sigmoid/Logistic (1 + e−u)−1 (0, 1)

Hyperbolic tangent eu−e−u

eu+e−u (−1, 1)

Exponential eu (0,∞)

Table 6: Table of common activation functions in artificial neural networks.

g(T) is the output function which makes a final transformation of the outputs T
from the hidden units Z into a suitable form for the output of interest Y . For
K-class classification the most common transformation is by the softmax function

21

gk(T) =
eTk∑K
l=1 e

Tl

, k = 1, ...,K (23)

where K is the number of output units Yk. It has the property
∑K
k=1 gk(T) = 1

and the output from gk(T) can thus be interpreted as a probability measure of class
k. However for multiple regression with only one single output node we instead use
the identity function g(T) = T ([1],p.393).

fk(X) is a function which takes the vector of inputs X as argument and then
gives the corresponding numerical output value from the output function gk(T) on
each output node k. εk is the corresponding error on node k. In the case of K-class
classification with the soft-max output function we would have fk(X) ∈ [0, 1] and

εk ∈ [0, 1], such that Yk ∈ {0, 1}, k = 1, ...,K, and
∑K
k=1 fk(X) = 1.

For a network with two hidden layers with M units in the first Z = (Z1, ..., ZM)
and N units in the second V = (V1, ..., VN), (21) would be expanded to

Zm = σ(α0m +αTmX), m = 1, ...,M,

Vn = σ(β0n + βTnZ), n = 1, ..., N,

Tk = γ0k + γTk V, k = 1, ...,K,

fk(X) = gk(T), k = 1, ...,K,

(24)

where α0, α, β0, β and γ0, γ are the unknown parameters to be estimated. In
the same manner more hidden layers can be added to the model. The unknown
parameters are called weights as they tell how much weight each variable from
one node should have in the link to the next node in the network. Notice how
the number of parameters to be estimated increases as another layer is added and
therefore large networks require much computational power. With p input variables
X there are M(p + 1) + K(M + 1) weights to be estimated in (21) and the added
layer in (24) increases the number to M(p+ 1) +N(M + 1) +K(N + 1) weights.

3.2.1 The Special Case of a Two-Categorical Target

Our classification problem where the target variable has only two categories is a
special case for artificial neural networks. There are two possibilities to build a
network for this particular case. Either one uses the general setup for K-class
classification as described above and let K = 2 i.e. two output nodes. Each node is
being coded as a ”dummy” variable where the output of the first node corresponds
to the probability of the class: H0 is true, i.e. Y = 1, and the second the probability
of the class: H0 is false, i.e. Y = 0. Thus, the classifier would be

G(x) = argmax
k

(fk(x)), k = 1, 2. (25)

The other possibility is using only one output node (K = 1), as in in the case of
standard regression with neural networks, and introducing a threshold. We form

22

pairs under the hypothesis H0, i.e. that Y = 1 for each pair, and this single node
corresponds to the probability: p(x) := P (Y = 1|X = x). If the network predicts a
value in this single output of p(x) > 0.5, the pair is classified as being true under
H0, i.e. Y = 1, otherwise as false, i.e. Y = 0. The classifier is thus

G(x) =

{
1, p(x) ≥ 0.5,
0, p(x) < 0.5.

(26)

Choice of output function is crucial for these two approaches. For the first approach
with two output nodes the softmax function (refSmax) is clearly most suitable for
the corresponding classifier as the outputs of the two nodes sum to one. The second
approach requires an output function which strictly maps the outputs from the last
hidden layer into the interval [0, 1], just as in logistic regression. Thus the logistic
function, see table 6, is the natural choice. These approaches are in fact equivalent
but the second one is (mathematically) simpler [5] and therefore the choice of this
thesis.

3.2.2 Fitting Neural Networks

Using the training set of n sample of pairs (x1, y1), (x2, y2), ..., (xn, yn) constructed
in (2) we want to find the optimal values on all the weights that makes the model
fit the training set well. Let ω denote the set of weights to be fitted, i.e. for a single
hidden layer network ω = {α0,α, β0,β}. The fitting procedure thus aims to find
the optimal ω. Introduce the cross-entropy loss function

R(ω) = −
n∑
i=1

K∑
k=1

yik log(fk(xi)) (27)

which is the common loss-function for K-classification. In the regression case we
normally use MSE as loss function which is a possible choice for classification,
however not as efficient since it tends to penalize outliers excessively [7]. In the
article [8], Golik P, Doetsch P and Ney H presents a study comparing squared
error and cross-entropy as loss function when training ANNs, concluding that cross-
entropy is preferable. Thus, for a more thorough motivation of why cross-entropy
is used, we refer to [8]. In the case the softmax function (23) is used as activation
function and cross-entropy (27) as error function, the neural network corresponds
exactly to a linear logistic regression model in the hidden units. In that case all the
parameters are suitably estimated by maximum likelihood ([1],p.395), see section
3.1.1. Otherwise the standard approach is by gradient decent methods and so called
back-propagation described in the following section.

3.2.3 The Back Propagation Algorithm

Back-propagation is an algorithm to compute the gradient for minimizing the error
function in a neural network and can be used for various gradient based optimization
methods. In iteration j, for a fixed set of training observations (xi, yi), i = 1, ...n
and a fixed collection of weights ωj , the output fk(xi), i = 1, ..., n is calculated

23

from (21), (if we have one hidden layer, (24) if two etc.). This is the forward pass.
Thereafter errors are calculated for the output layer by the chosen loss-function,
comparing the computed output fk(xi) and the true output yi for each of the ob-
servations i = 1, ...n. The error is then back propagated through the network in
order to calculate the corresponding error on all the nodes, matching their contribu-
tion to the error difference between the computed output fk(xi) and the true output
yi, i = 1, ..., n. This is the so called backward pass. These errors are then used to
calculate the gradient of the loss-function, fed into the gradient decent optimization
method to the update of the collection of weights ωj+1 for a new iteration in order
to minimize the loss-function. The initial weight is often set at random, see section
3.2.4.

Here is a more detailed description for a network with one hidden layer, used for
classification, with cross-entropy as loss-function and a single output node. For a
training observation i, i = 1, ...n, the cross-entropy loss-function (27) simplifies to

Ri(ω) = −yi log(fk(xi)). (28)

By taking the derivative of Ri with respect to each parameter in ω we may find
the contribution each weight in the network has to the total error. Using (21) let
zmi = σ(α0m +αTmxi) and z = (z1i, ..., zMi). The derivatives become

∂Ri
∂βm

= − yi
f(xi)

g′(β0 + βT zi)zmi,

∂Ri
∂αml

= − yi
f(xi)

g′(β0 + βT zi)βmσ
′(α0m +αTmxi)xil,

(29)

for i = 1, ..., n, m = 1, ...,M, l = 1, ..., p. Now define

δi := − yi
f(xi)

g′(β0 + βT zi),

smi := − yi
f(xi)

g′(β0 + βT zi)βmσ
′(α0m +αTmxi),

(30)

where δi is the ”error”/sensitivity at the output and smi is the ”error”/sensitivity at
the hidden layer for training observation i. The gradients (29) can then be written

∂Ri
∂βm

= δizmi,

∂Ri
∂αml

= smixil.

(31)

By their definitions the errors δi and smi satisfy

smi = σ′(αTmxi)βmδi, (32)

called the back-propagation equations. For fixed weights ω and every training
observation i the prediction f̂(xi) is calculated by (21) in the forward pass. In

24

the backward pass the errors δi are first computed and then back-propagated by
(32) which yields the errors smi. Through both these errors the gradients (31) may
be computed for the updates in the gradient decent optimization algorithm. In a
gradient descent, for iteration (j+ 1) from (j) the weight updates would commonly
have the form (over all training observations)

βj+1
m = βjm + ηj

n∑
i=1

∂Ri

∂βjm
,

αj+1
lm = αjlm + ηj

n∑
i=1

∂Ri

∂αjml
,

(33)

where ηj is the learning rate, often a constant, determining how far to move in
the gradients direction. If it is chosen to large the algorithm might miss the
minimum and jump over it by taking to large iteration steps, whereas if it is to
small it could require a very large amount of iterations to reach even near a min-
imum ([3],p.338). It should satisfy ηj → 0 as the iteration j → ∞ ([1],p.397). In
SAS two alternatives of gradient decent algorithms can be chosen for the learn-
ing process, namely Stochastic Gradient Decent (SGD) and the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS). Both of these methods
are more refined gradient decent methods and use the calculated gradients in their
iterations. See e.g. [9] and [10].

3.2.4 Training and Tuning Neural Networks

As seen in the sections above the theory behind neural networks is quite straight-
forward, however the possibilities in tuning the network are almost infinite. There
are many aspects to consider and thus training neural network is far from a simple
task. In practice it the tuning and training process that is determining the actual
performance of the network. In this section we summarize some of these important
aspects, how to approach this procedure and later in the thesis, in the result section,
application on real data is presented.

Starting Values To start the optimization algorithm to find the proper weights
for the network, suitable starting values must be provided. Usually they are chosen
to be random values near zero ([1],p.397). The sigmoid/logistic function is nearly
linear around zero and therefore, if this is the chosen activation function, and we
set the starting weights near zero, the neural network starts as an approximately
linear model. The network then gradually turns more nonlinear as non-linearities
are introduce where it is needed by the optimization process ([1],p.397). If we would
let the starting weights be exactly zero though, we would have zero derivatives and
perfect symmetry in the gradient updates, causing the algorithm to never move. On
the other hand too large weights at the start often leads to poor solutions ([1],p.398).
Thus, we let the starting weights be random values near zero.

25

Overfitting A neural network is a rather complex model with a large amount
of weights introduced to be fitted. Often there are more weights then needed.
Thus the global minimum of the error function (27) will likely lead to an overfitted
solution ([1],p.398), yielding a large test error even though the training error is small.
Therefore we rather seek a local minimum of the error function ([1],p.398) and there
are several tricks to achieve this. Firstly, if we use a network which is not larger
than necessary, i.e. just large enough to provide an adequate fit, this automatically
tends to avoid overfitting. A larger network can create more (unnecessary) complex
functions whereas a smaller network does not have the power to overfit data [4].
However, to predict well the network must be complex enough to capture the various
aspects of the data, where for example a linear model would unlikely predict well
on non-linear data. Therefore, it is very difficult to set the correct size of the
network from the start. Two other approaches is earlystopping, where the algorithm
is stopped well before it reaches its global minimum, or regularization, where
an penalty, penalizing a to complex network, is added to the error function [4].
However, in our case where we have access to a large amount of data, we may
instead divide data into a training, validation and test set as described in section
2.4. The number of training data points is much larger the number of weights to
be fitted and therefore there is minor risk of overfitting [4]. With such a large
data set the model is forced to find general patterns and may not memorize small
irregularities in the training data. With sufficient validation, necessary measures
have been taken to avoid overfitting and ensuring that the network is constructed
to predict well.

Scaling of the Inputs In many cases it may be suitable to standardize the inputs
such that they have mean zero and standard deviation one[1]. Otherwise if the range
of different inputs varies heavily, inputs with a larger range will dominate so much
that those with a smaller range have little or no contribution to the prediction of
the output [5]. Unless you know beforehand that some inputs should be given more
weight, it is recommended to standardize the inputs such that they will be treated
equally in the fitting process [5], ([1],p.400). It is also preferable to code binary
inputs as [−1, 1], instead of the classical [0, 1], see [5]. It may seem that this would
make no difference, however, this is due to geometrical reasons. For neural networks
with a binary target Y , in geometrical perspective, a hyperplane is the separator
of data into the two target classes, i.e. the decision boundary, compare to SVM’s
in section 3.3. Initially planes will be set close to the origin to pass through data
in many different directions. In the optimization process we train the network by
searching for the hyperplane separating data in the best way. If data is offset from
the origin, as with [0, 1] coding, there is a risk that the initial planes will completely
miss data and also the range of directions initialized will be too limited. Thus, it
will be hard for the algorithm to find an appropriate solution [5].

Number of Hidden Units and Layers How to construct a network of correct
size the proper number of hidden layers and proper number of units in each layer
is far from obvious. This was somewhat discussed in section (3.2) and in section

26

(3.2.4) in the aspect of overfitting. Here we discuss it a bit further. Even though one
wants to avoid a too large network to decrease the risk of overfitting and decrease
the computational cost, it is generally better to have too many hidden units than
too few ([1],p.400). If the hidden units are too few the model might not have enough
flexibility to capture the nonlinearities in the data whereas with too many hidden
units, the extra weights will shrink to zero if proper regularization is used ([1],
p.400) or if the number of observations for training are much larger the number
than parameters to be fitted. As mentioned earlier we can create such a large
training set and preform proper validation. Therefore, we may initially set a size
which we believe is suitable and then both decrease and increase it and evaluate
its effects on the validation data. The network size should be chosen so large that
the validation error does not decrease notably if the size is increased further. The
number of hidden units is typically chosen somewhere in the range of 5 to 100,
where a higher number is chosen as the number of inputs and number of training
cases increases ([1],p.400). I our case the network will be within a limited size, 1-5
hidden layers, and thus both the proper number of layers and the proper number
of nodes in each layer can be tested individually through the validation process.

Multiple Minima Since the error function R() is non-convex, there may be mul-
tiple local minima and therefore the fitted network is much dependent on the start-
ing values on the weights. To accommodate for this, it is recommended to try a
couple of starting configurations to see which one yields lowest error. Then to one
may then use an average of the predictions generated from a collection of networks
as the final prediction ([1],p.401). One might also consider directly averaging the
weights instead which only will yield one prediction. However, since the network
is a non-linear model, it is much preferred to average the predictions rather than
the weights. A network is fitted for every start configuration, where each fitted
collection of weights together tries to capture a complex non-linear behavior. The
weights are thus dependent on each other, making an average over these fitted col-
lections will in some respect ignore this complexity and thus probably lead to quite
a poor solution ([1],p.401).

27

3.3 The Support Vector Machine

This section is based on the layout in ([1], p.417-436).

The Support Vector Machine (SVM) is a supervised classifier for a target vari-
able with exactly two categories. The model may be extended to include a target
with multiple categories but that is of no interests of this thesis since we have a tar-
get on binary form Y ∈ {0, 1}. However, the SVM require a binary target variable
with different coding based on sign. Therefore, when using the SVM we redefine
the target with new coding as

Y =

{
1, if H0 is true,
−1, if H0 is false.

(34)

With the new coding of the target, we have a training set of n observations, making
up the sample (x1, y1), (x2, y2), ..., (xn, yn, with xi ∈ Rp and yi ∈ {−1, 1}, i =
1, ..., n. The idea of the SVM is to use the training data to find a separator which
separates all these training points into two classes, yi = 1 and yi = −1, in the space
spanned by the predictors X = (X1, ..., Xp). If the predictor space can be separated
in this manner, the separator forms a simple classification rule and every pair of
individuals i can be directly classified based on the predictors xi for that pair. The
separator can then be applied on new data as a classifier.

Figure 2: Simplified illustration of separating hyperplanes. Note that the space is
multidimensional and spanned by the attributes X as base vectors. The solid blue
line is the decision boundary. Red dots symbolize data points with y = 1, green
y = −1. To the left: perfectly separable data with no overlap. To the right: overlap
due to the data points ξ

′

i, i = 1, ..., 5 fall on the wrong side of the margin with an

amount ξ
′

i = ∆ξi, points on the correct side have ξ
′

i = 0. The total amount is
bounded by a constant as

∑
ξi ≤ constant and the total distance of points on the

wrong side of the margin is given by
∑
ξ
′

i.

We start with a linear separator in the form of a hyperplane and assume that the
two classes are perfectly linearly separable. Define a hyperplane by:

28

x : f(x) = xTβ + β0 = 0, (35)

where β is the unit normal vector to the hyperplane, ‖β‖2 = 1. ‖β‖2 denotes the
L2-norm of β defined as

‖β‖2 :=

(p∑
j=1

|βj |2
)1/2

. (36)

Naturally, a classifier would then be

G(x) = sign(xTβ + β0), (37)

determining which side of the hyperplane the data point is located. We want to
find the hyperplane f(x) with the largest margin ∆ between the training points in
respective class and f(x), such that all training points fall outside the margin on
each side, see figure 2. Thus, the problem is to find the parameters β0,β, which
defines the separating hyperplane f(x), such that the margin ∆ is maximized. It
can be formulated as the following optimization problem

max
β,β0,‖β‖=1

‖∆‖2

s.t.

{
f(xi) = xTi β + β0 ≤ ∆ when yi = 1,
f(xi) = xTi β + β0 ≥ ∆ when yi = −1,

(38)

for all training points (xi, yi), i = 1, ..., n. It may be simplified to

max
β,β0,‖β‖=1

‖∆‖2

s.t. yi(x
T
i β + β0) ≥ ∆, i = 1, ..., n

(39)

We may drop the norm constraint ‖β‖ = 1 by reformulating the constraints as

1

‖β‖2
yi(x

T
i β + β0) ≥ ∆, i = 1, ..., n

⇔ yi(x
T
i β + β0) ≥ ∆‖β‖2, i = 1, ..., n,

(40)

(redefining β0 and making β/‖β‖2 a unit vector). We may then arbitrarily set
∆ = 1/‖β‖2 (we may equally define the margin in terms of β) and (40) can more
conveniently be reformulated to the standard quadratic convex optimization prob-
lem

min
β,β0

‖β‖2

s.t. yi(x
T
i β + β0) ≥ 1, i = 1, ..., n

(41)

where finding the optimal β0 and β is equivalent to maximize the margin ∆.

If the data is not perfectly separable, where some points fall on the wrong side

29

of the margin and the classes overlap in the predictor space, we may modify the
model to accommodate for this. We still maximize ∆ but allow for some points to
fall on the wrong side of the margin. Define the slack variables ξ = (ξ1, ξ2, ..., ξn)
and modify the constraint in (41) to

yi(x
T
i β + β0) ≥ ∆(1− ξ), i = 1, ..., n, ξi ≥ 0,

n∑
i=1

ξi ≤ constant . (42)

The idea is that every ξi corresponds to the amount, in proportion to the margin
∆, the predicted classification f(xi) = βxi + β0 of a data point i, falls on the
wrong side of the margin. By bounding the total sum of these slack variables, we
also bound the total proportional amount the predicted classifications may fall on
the wrong side of the margin. A data point is misclassified when ξi > 1, so by
bounding the sum

∑n
i=1 ξi at some constant value, we bound the total number of

miss-classifications in the training set at that value ([1],p.419). With this formu-
lation the optimization problem remains convex. Finally, by introducing the cost
parameter C the optimization problem can more conveniently be re-expressed as

min
β,β0

1

2
‖β‖2 + C

n∑
i=1

ξi

s.t. ξi ≥ 0, yi(x
T
i β + β0) ≥ ∆(1− ξi), i = 1, ..., n.

(43)

where C replaces the constant in (42).

3.3.1 Non-Linearity

The classification rule described above is based on a linear separator in form of a hy-
perplane. If data is not linearly separable this classifier will not preform sufficiently.
The trick here is rather then abandoning the idea of a separating hyperplane, which
is linear by construction, we make a transformation of the predictor space, in which
the hyperplane is defined, to an enlarged predictor space by basis expansions. If
data is non-linear in the space spanned by the predictors X = (X1, ..., Xp), a new
space may be constructed by making a non-linear transformation of the predictor
base vectors by transformation functions, h(X) = (h1(X), ..., hp(X)), into a new
space where the data is indeed (more) linear. In this new space we can define a
linear hyperplane, forming the non-linear function f(x) = hT (x)β+ β0 in the orig-
inal space. We use the same classifier G(x) = sign(f(x)) = sign(hT (x)β + β0) as
before. Thus, the hyperplane technique stays intact, but the data setting is instead
transformed. The only problem remaining is finding the transformation functions
hi.

To do this we would like to show the solution form of the estimation of the un-
known parameter β and thus we must show the start of the solution process. The

30

minimization problem (43) is convex since it is quadratic with linear inequality con-
straints. To solve it we may use quadratic programming and Lagrange multipliers.
Let the Lagrange primal function be defined as follows

LP :=
1

2
‖β‖2 + C

n∑
i=1

ξi −
n∑
i=1

αi[yi(x
T
i β + β0)− (1− ξi)]−

n∑
i=1

µiξi,, (44)

where P denotes primal. We wish to minimize (44) w.r.t. β0, β and ξi. Thus
setting the derivatives ∂LP

∂β0
, ∂LP

∂β , ∂LP

∂ξ to zero yields

β =

n∑
i=1

αiyixi

0 =

n∑
i=1

αiyi

αi = C − µi, ∀i

. (45)

and the positive constraints αi, µi, ξi ≥ 0, ∀i. Note in particular the solution form
of β. The original space is spanned by X = (X1, ..., Xp) and the new transformed
space is spanned by h(X) = (h1(X), ..., hp(X)), thus the solution form of β is

β =

n∑
i=1

αiyih(xi) (46)

in the new space. The solution function f(x) can thus be written

f(x) = h(x)Tβ + β0 =

n∑
i=1

αiyi〈h(x),h(xi)〉+ β0, (47)

in the new space. 〈·, ·〉 denotes the inner-product, defined as

〈h(xi),h(xj)〉 :=

p∑
`=1

h`(xi)h`(xj), (48)

for the two observations xi and xj . We see that the solution to the minimization
problem (43) can be represented in such a way that the transformation function
h(x) only occur as an inner product. Therefore, it is not necessary to specify it
at all. In fact we do not have to define the transformation properly, we only need
to define h(x) in terms of inner products. We use the so-called kernel trick and
introduce the kernel function

K(xi,xj) = 〈h(xi),h(xj)〉, (49)

which computes the inner-product in the transformed space [1]. The inner-product
is simply replaced with a chosen kernel-function in the calculations for the fitting

31

procedure. It should be a positive (semi-) definite function ([1],p.424), where some
common kernel-functions can be seen in table 7.
Choice of kernel function depend on data available and the problem at hand. Re-
member that the purpose of them is to transform non-linear data into a new space
such that it becomes (approximately) linear, so the choice should be made to achieve
this goal, see more in section 3.3.3.

3.3.2 Fitting the Support Vector Machine

Given f(x) = h(x)Tβ + β0, introduce the hinge-loss function

L(y, f) = [1− yf(x]+, (50)

where + denotes positive part, and consider the optimization problem

min
β,β0

n∑
i=1

L(yi, f(xi)) +
1

2C
‖β‖22. (51)

In words, for an observation (xi, yi) the hinge-loss function L(yi, f(xi)) takes the
value zero for points well inside the margin and for points outside and far away
from the margin it linearly increases as the point’s distance to the margin increases.
We may thus see that the solution to (51) is in fact equal to the solution to (43)
when L(y, f) given by (50), and we may equally solve (51) to find the separating
hyperplane with the largest margin. In practice we thus solve (51) and hinge-loss
is the loss function usually chosen for the SVM classifier.

In the previous non-linearity section we started the solution process of the opti-
mization problem (43) by quadratic programming and Lagrangian multipliers to
show the solution form of β. In practice this is however not the solution approach
used to fit the SVM. In SAS primal and dual interior point methods are used to fit
the SVM and thus the natural choice in this thesis, see e.g. [11] for more information
about these methods.

3.3.3 Tuning the Support Vector Machine

The cost parameter C is the regularization parameter for the SVM classifier and
have a considerable influence on how well the model predict. A high value on C
limits the amount of data points in training data to fall on the wrong side of the

Kernel K(xi,xj) Parameters
Polynomial (1 + 〈xi,xj〉)d d
Radial Basis Function exp(−γ‖xi − xj‖2) γ
Sigmoid tanh(κ1〈xi,xj〉+ κ2) κ1, κ2

Table 7: Table of common kernel functions for the support vector machine.

32

margin by discourage positive ξi ([1],p.424) and thus imply a quite restrictive clas-
sifier. The complete separable case corresponds to C = ∞ [1]. Thus, a high value
classifies training data very well but may instead lead to an overfitted solution when
applied on new data. If a non-linear transformation of the attribute space is made,
a large value on C will yield a very un-smooth boundary ([1],p.424). A lower value
allows for more data points to fall on the wrong side of the margin and is not
so restrictive. We get a smoother boundary and the risk of over-fitting decreases,
but on the other hand when we allow for more misclassification in the training
process, we will likely have several misclassifications when tested on new data as
well. The general approach is to set C quite high even though this will cause the
risk of overfitting ([1],p.432). Through validation we may tune a suitable value on C.

As mentioned above there are several choices of kernel-function. If data is lin-
ear we of course have no need of a non-linear transformation and no kernel-function
have to be set i.e. we use a polynomial kernel function and let d = 1, see table
(7). Otherwise we choose any of the options in table 7 and specify the correspond-
ing parameter(s). The radial basis function is perhaps the most common choice
for non-linear data and often works well. The parameter(s) for respective kernel
function can be chosen through cross validation or by standard validation, as is our
approach since we have been able to reserve enough data for validation due to the
large size of the original sample.

33

4 Results

The objective of this thesis was to explore the three supervised learning methods,
logistic regression (LR), artificial neural networks (ANN) and the support vector
machine (SVM), ability to predict household relationships. This was done in two
parts. The first part was to derive the target Y , predictors X = (X1, ..., Xp) and
generate a sample of observations (x1, y1), ..., (xn, yn). The second part, using the
constructed sample, was to train the LR-model, ANNs and the SVM, evaluate and
validate their predictive performance for different settings on corresponding tuning
parameters and finally test and compare the three models in their ability to identify
household relationships. In this section we first conclude the solution to the first
part and thereafter for the second part, the results of tuning and comparison the
three supervised learning methods, LR, ANN and SVM are presented.

Regarding the first part of the objective. We have presented a technique to predict
household links between individuals by forming pairs of individuals under the hy-
pothesis H0 that they share a household relationship, and then tests if this hypoth-
esis H0 holds true or not. This idea enable us to define a binary target Y ∈ {0, 1},
with coding, 1 if H0 is true and 0 if H0 is false, which transforms the initially vague
and intangible problem to a much more tangible problem in the form of standard
binary classification. Instead of the very difficult task of trying to find links between
individuals in a vast population, tying them together according to their household
affiliation, they are just tested two and two against each other and classical su-
pervised learning methods are thereby applicable. Initially the attributes of the
individuals are also on an intangible form for prediction, e.g. address. However,
with this pairing solution, the predictors X = (X1, ..., Xp) can easily be coded ac-
cording to which attributes the paired individuals have in common or how the differ
i.e. if address is the same or not, their age difference etc. Individuals, for which H0

is not predicted to be true for any tested pair, would be predicted to live in a single
household and not share a household relationship with anyone else in the data set.
Hence single households can be predicted from this idea as well. Since the data
records used in this study only contains individuals living in single households or
households consisting of two individuals, only these cases are tested. However, this
pairing idea holds for larger household constellations as well. This is discussed more
in section 5. In section 2 a through description of this pairing idea was presented.

For the second part of the objective, two cases have been considered to train,
validate and test the three supervised learning models. First the full sample of
n = 400000 observations was used, divided such that 50% of the observations were
used for training and 25% were used for validation and testing respectively. This is
henceforth referred to as the full sample. Thereafter a smaller subsample of 10000
observations was extracted from the full sample. 300 observations were reserved for
training and the rest were split equally for validation and testing of the models, i.e.
4850 observations respectively. This is henceforth referred to as the small sample.

34

In the sample generation algorithm described in section 2.2.1 the observations where
finally reorder randomly by the U(0, 1) distribution. Hence the splitting of the sam-
ple into training, validation and testing and the extraction of the small sample is
completely random. Also, the distribution of outcomes on Y is uniform and equal
between the two sample sizes. This random extraction has thus ensured that there
is sufficient distribution of outcomes also in the small sample. It should also be
noted that a large majority of the observations have a low classification complexity,
e.g. observed pairs with target, y = 1 and where most of the predictors x are 1
as well, i.e. real household pairs where the individuals have the same address, last
name, etc. The pairs with high classification complexity are a smaller minority but
also the ones most interesting to investigate. Using the full sample with so many
observations, in combination of having considered multiple predictor attributes, the
idea is to be able to sort out even those difficult cases when there is a subtler house-
hold link between two individuals. With the small sample the idea is to investigate
how the sample size and kind of observations affects the prediction results. Also,
we are interested to see if the difference in prediction ability increase between the
three supervised models in this case.

The results using the two sample sizes are presented as follows. In Section 4.1
the validation results for LR are presented, in section 4.2 the validation results for
ANN are presented and in section 4.3 the results from validating the support vector
machine are presented. For LR and the SVM the results for the to sample sizes are
presented simultaneously, whereas, due to the vast number of tuning parameters,
for ANN the results for the two sample sizes are presented separately. First comes
the validation on the full sample in section 4.2.1 and then follows the validation on
the small sample with comparison of the results w.r.t. sample size in section 4.2.2.
In the validation procedure the models are first fitted on the training set and the
validation results are from validation on the validation set. Finally in section 4.4
optimal settings on the tuning parameters are determined and the test results from
comparing the three supervised learning models are presented. The three tuned
models are trained on the training set and the comparison results are from testing
on the test set which has been unused in the validation analysis. Note that the
misclassification rate, defined in (12), is used as error measure for both validation
error Eva and test error Ete.

4.1 Validation of Logistic Regression

For logistic regression there are no tuning parameters to set. A comparison of
validation error for the full large sample and the small sample is made and this can
be seen in table 8.

35

Full Sample Small Sample
Eva 0.000766 0.00411

Table 8: Logistic Regression - Table over comparison of validation error, Eva, for
the two sample sizes.

Most notable is the extremely low misclassification rate, suggesting that the classes
are far away from each other in the space spanned by the predictors X. This makes
it easy to find the decision boundary, separating the classes, and thus also easy to
classify the observations. The validation error is slightly larger, almost a factor 10,
when only 300 observations are used for training. An increase is much expected.
However, considering the overall low magnitude of the misclassification rate, the
variation is actually very small and conclusively there is no significant difference
when a smaller sample size is used for training.

In appendices tables over the estimated parameters β = (β1, ..., βp) for the cor-
responding predictors X = (X1, ..., Xp), can be seen. The table in Appendix A the
estimates fitted on the full sample, the table in Appendix B the estimates have been
fitted on the small sample. Note the sign on the estimates, negative sign indicates
less likelihood of a pair of individuals sharing a household relationship and positive
the opposite. Those predictors with p-value> 0.05, or equally, whose confidence
limits do not cover zero, are considered insignificant for predicting Y at the 95%
confidence level. In other words, not all predictors used in the LR-model are signif-
icant for predicting household relationships and could potentially be removed from
the model without decreasing predictive performance. When the LR-model is fitted
on the full sample we see that it is the predictors related to the individuals address
and the non-official last name that are insignificant in the model. Official last name,
gender, age difference etc. are all significant for predicting household relationships.
It is generally the non-official address predictor or those not very specific such as
city and country that are insignificant. Note however, that no estimate is zero when
fitted on the full sample and thus all predictor variables have an influence on the
prediction results. The results seen in table in Appendix B show that no predictor
is considered significant when the model is fitted on the small sample. With a small
training set the LR-model seems only capable to estimate very large confidence in-
tervals, resulting in all predictors being insignificant. Also notable, a couple of the
estimates are zero and the corresponding predictor has no influence on the predic-
tion results. Thus, it seems that the model puts relatively more weight on a couple
of predictors and fewer predictors are used for predicting household relationships
when the LR-model is fitted on a small training sample.

4.2 Validation of Artificial Neural Networks

For ANN’s there are multiple tuning parameters to set, the number of hidden layers,
the number of hidden nodes on these layers and a suitable activation function. We

36

also have two different optimization algorithms to choose from, LBFGS and SGD.
In this section these tuning parameters effect on the validation error are evaluated
for both the full sample and the small sample.

4.2.1 Validation with the Full Sample

First the results from when the full sample are presented. Figure 3 shows how the
validation error varies with the number of hidden of layers. 50 hidden nodes on
each hidden layer and the logistic activation function is used in this study, (on all
layers). A comparison between the optimization algorithms is also made. Table
9 shows the number of iterations required for the two optimization algorithms to
reach convergence versus number of hidden layers. Observed that the maximum
number of iterations has been set to 500 and if this is reached, the algorithm may
have never converged.

Figure 3: Artificial Neural Network - Validation error, Eva, vs. number of hidden
layers for the two optimization algorithms, LBFGS and SGD, fitted on the full
sample. Blue is LBFGS and yellow is SGD.

37

of Hidden Layers # of Iterations, LBFGS # of Iterations, SGD
1 66 500
2 51 500
3 28 500
4 7 500
5 7 500
6 7 500

Table 9: Artificial Neural Network - Table over the number of iterations required
by the LBFGS-algorithm and the SGD-algorithm until convergence or reaching
maximum allowed number of iterations versus number of hidden layers, fitted on
the full sample.

The results in figure 3 show that for an ANN there is no clear difference in valida-
tion error for 1, 2 or 3 layers and that the misclassification rate is extremely small
in this case, which also corresponds with the results obtained for LR. However, for
LBFGS, from 4 layers and upwards, and for SGD, for 5 and 6 layers, there is a
sudden significant increase in the validation error, suggesting that using multiple
hidden layers for prediction of household relationships worsen the predictive perfor-
mance. This increase is a very surprising and unexpected result since theoretically
the error should decrease or at least remain approximately constant as more hidden
layers are used. Also notable, it is not just an increase in validation error, but a
significant jump, where the error goes from a low relatively constant level to a much
higher but also relatively constant level. After the jump the error does not increase
further as more layers are added. From table 9 it can be seen that for LBFGS the
number of iterations are significantly lower for 4 hidden layers and upwards, which
might explain this strange jump in validation error. We discuss this more section
5.2. Conclusively we see that there seems to be no need for more than one hidden
layer in our case.

The results in figure 3 show that the validation error is similar for LBFGS and
SGD, with the exception that the jump in validation error occurs one step later
for SGD, i.e. at 4 versus 5 hidden layers. In this perspective one might consider
SGD to be a better optimization algorithm than LBFGS. However, if studying
table 9, one see that the number of iterations is significantly higher for SGD than
LBFGS, and therefore SGD requires much longer computational time. It is also
important to note that, no matter the number of hidden layers used, the number
of iterations is constantly 500 for SGD. Remember that this is the set maximum
allowed number of iterations and therefore this implies that the solution obtained
by SGD has never really converged. Although, it should be empathized that for up
to 4 hidden layers, the validation error is still very small for the obtained solution
even if the SGD-algorithm has not converged. Conclusively though, due to signif-
icantly shorter computational time, effectiveness and SGD’s lack of convergence,
henceforth only LBFGS is used when fitting ANNs in this thesis.

38

In figure 4, the results of how the validation error varies with the number of hidden
nodes, on each hidden layer, are presented. We have seen that there is no need to
use multiple hidden layers and thus only the results for 1 and 2 hidden layers are
evaluated. In the case of two layers we use the same number of nodes on each layer,
i.e. if 10 on the first then also 10 on the second. The logistic function serves as
activation function also in this case. Table 10 shows the number of iterations used
by the LBFGS-algorithm versus the number of hidden nodes, for 1 and 2 hidden
layers respectively.

Figure 4: Artificial Neural Network - Validation error, Eva, vs. number of hidden
nodes for 1 respectively 2 hidden layers, fitted on the full sample. Blue is 1 layer,
yellow is 2 layers.

of Hidden Nodes # of Iterations, # of Iterations,
1 Hidden Layer 2 Hidden Layers

2 247 151
5 136 189
7 88 78
10 86 73
20 76 83
30 103 56
50 66 51
70 70 54
100 61 51

Table 10: Artificial Neural Network - Table over the number of iterations required
by the LBFGS-algorithm until convergence versus number of hidden nodes for 1
and 2 hidden layers respectively, fitted on the full sample.

39

The results in figure 4 show that the number of hidden nodes seems to have very
little influence on the validation error. Considering the magnitude of the error the
variation seen is insignificant. Probably, with such a small misclassification rate, it
is sufficient with a small number of hidden nodes and the error does not decrease
when increasing the number. Table 10 indicate that the number of iterations goes
down as the number of hidden nodes increases. Particularly there is a larger num-
ber of iterations required for the algorithm to converge when there are very few
hidden nodes, i.e. 2 and 5. For 7 and upwards the number of iterations is more
constant. This suggests that it might be more computationally effective to use at
least 7 nodes and there seems to be a certain risk that the optimization algorithm
will have more difficulty to obtain a converged solution if too few nodes are used.
However, a large number of nodes does not yield a lower misclassification rate and
even though the number of iterations goes down slightly, each iteration probably
requires longer computational time. Conclusively 7− 20 hidden nodes seems most
appropriate.

In figure 5, the case of how the validation error varies with choice of activation
function is presented. 1 hidden layer is used, and the effect of activation function is
evaluated on 5, 10 and 50 hidden nodes respectively. The results show that the lo-
gistic, hyperbolic tangents and identity activation function almost perform equally
well. However, the exponential function has a significantly larger validation error
and seems not to be suitable for the prediction problem at hand. Note that there
is much lower relative difference in misclassification rate between the exponential
activation function and the other activation functions when 50 hidden nodes are
used, compared to 5 and 10 nodes. Thus, a larger number of hidden nodes seems
to in some sense compensate for the bad performance of the exponential activation
function.

40

Figure 5: Artificial Neural Network - Validation error, Eva, vs. activation function
for 1 hidden layer with 5, 10 and 50 hidden nodes respectively, fitted on the full
sample. Left panel: 5 hidden nodes. Middle panel: 10 hidden nodes. Right panel:
50 hidden nodes.

4.2.2 Validation with the Small Sample

For the smaller sample, the study of evaluating validation error versus number
hidden layers, number of hidden nodes and choice of activation function, was done in
the same manner as for the full sample with the same setup. However, we do not care
to evaluate effect of optimization algorithm for this subsample and LBFGS is used
in all cases. In figure 6 the case of evaluating the effect of number of hidden layers
is presented and table 11 shows the corresponding number of iterations required
by LBFGS to converge. Just as for the full sample we use the logistic activation
function and 50 hidden nodes on each hidden layer.

41

Figure 6: Artificial Neural Network - Validation error, Eva, vs. number of hidden
layers, fitted on the small sample.

of Hidden Layers # of Iterations, LBFGS
1 19
2 27
3 28
4 8
5 7
6 8

Table 11: Artificial Neural Network - Table over the number of iterations required
by the LBFGS-algorithm until convergence versus number of hidden layers, fitted
on the small sample.

From figure 6 we see that when fitting ANN on the small sample, the same surpris-
ing results can be seen when it comes to number of layers as when fitting on the full
sample. When increasing from 3 to 4 hidden layers the validation error significantly
increases and remain on this higher level as the number of hidden layers is increased
further. As expected, the magnitude of the error is larger for the small sample for 1
and 2 hidden layers, however, for 3 and upwards there is no clear difference. Table
11 shows that the number of iterations required by LBFGS is significantly lower
than before which is expected when the amount of training data is significantly
lower as well. We can also note how the number of iterations go down when 4 or
more hidden layers are used, just as was seen when the full sample was used for
fitting. This strengthens the believe that is a part of explaining why the jump in
validation error occurs. We discuss this more in section 5.2.

In figure 7 presents the significance of number of hidden nodes on each hidden layer
and table 12 shows the corresponding number of iterations required by LBFGS to

42

reach convergence. Just as for the full sample we use the logistic activation function.

Figure 7: Artificial Neural Network - Validation error, Eva, vs. number of hidden
nodes for 1 and 2 hidden layers respectively, fitted on the small sample. Blue is 1
layer, yellow is 2 layers.

of Hidden Nodes # of Iterations, # of Iterations,
1 Hidden Layer 2 Hidden Layers

2 18 21
5 17 21
7 19 18
10 18 19
20 16 12
30 24 29
50 19 27
70 35 23
100 22 30

Table 12: Artificial Neural Network - Table over the number of iterations required
by the LBFGS-algorithm until convergence versus number of hidden nodes for 1
and 2 hidden layers respectively, fitted on the small sample.

Figure 7 shows that there is a higher magnitude on the validation error and larger
variations for different number of nodes for the small sample, compare to the full
sample in figure 4. The larger variations probably depend on the small size of the
training set, where the resulting validation error is more dependent on each single
observation being used for training. A few observations close to the decision bound-
ary can heavily impact the result. Observe though, with respect to the magnitude
of the error, the variations are small. Considering how low the magnitude of the
error is and the fact that the variations seems almost random due to the size of

43

the training set, we cannot draw any other conclusion than that the number of
hidden nodes seems to have very little influence on our problem, no matter sample
size. Table 12 show that that the number of iterations used by LBFGS has overall
decreased when a small sample of data is used for training compared to a large
sample. The much smaller amount of data requires less iterations. We also see that
there is minor variation in number of iterations w.r.t. to both number of hidden
nodes and for both 1 and 2 hidden layers. Hence there is not the same indication
of few nodes yielding more iterations as for the full sample. With a much smaller
amount of data for training, it also become more random which observations are
used to fit the model and the results might vary due to which observations that
have been extracted from the full sample. In this case there are likely quite few
training pairs which are difficult to classify, i.e. close to the decision boundary,
and then few hidden nodes and few iterations are required to find an appropriate
solution. It can be that if a new training sample of 300 is extracted, with a more
complex set of observations, the results might be different. In section 6 we discuss
more on how the sample size and the kind of observations obtained affect the results.

Finally figure 8 presents the case of validation error versus choice of activation
function. Just as for the full sample, 1 hidden layer is used, and the effect of acti-
vation function is evaluated on 5, 10 and 50 hidden nodes. The results show that
also for the small sample the exponential activation function has a larger validation
error than the logistic and tangents hyperbolic activation function, even though the
difference is not as dramatic. The error decreases as more nodes are used which also
coincide with the results from the full sample. Here however, the identity function
also has a slightly larger validation error than the logistic and tangent hyperbolic
activation function which also decreases as more nodes are used. Thus, the results
might be more sensitive to a linear activation function when a small amount of
training data is used.

44

Figure 8: Artificial Neural Network - Validation error, Eva, vs. activation function
for 1 hidden layer with 5, 10 and 50 hidden nodes respectively, fitted on the small
sample. Left panel: 5 hidden nodes. Middle panel: 10 hidden nodes. Right panel:
50 hidden nodes.

Conclusively the validation error becomes larger as a significantly smaller sample
size is used for training, but considering the low magnitude of the validation error
the difference is in fact small. The same conclusions hold on suitable number of
hidden layers and nodes, where a smaller number seems to yield best performance,
for both sample sizes. We have also seen that the exponential activation function
performs significantly worse in both cases but the otherwise there is no significant
difference between the other activation functions.

4.3 Validation of the Support Vector Machine

The support vector machine has two main tuning parameters to set, penalty C and
kernel function. Due to limitations in SAS only interior point methods are available
as optimization algorithm and thus is the only optimization algorithm used. Also,
only linear and polynomial kernels of 2nd and 3rd degree are available. In figure
9 validation error versus penalty C is presented for the three possible choices of
kernel function for the full sample. In figure 10 the same results are presented
but for the small sample. For SVM there actually a third tuning parameter to
consider, namely, investigating how threshold affect the results. Unfortunately,
this was not possible for LR and ANN due to limitations induced by SAS and
that is the reason why this has not been done in those cases as well. Instead
of using the sign function as classifier, as seen in 37, we model the hyperplane
f(x) = h(x)Tβ + β0 =

∑n
i=1 αiyiK(xi, xj) + β0 such that the classifier becomes

G(x) =

{
1, f(x) ≥ t,
0, f(x) < t,

(52)

and vary the threshold t in the interval [−1, 1]. In figure 11, ROC curves (true

45

positive classification rate versus false positive classification rate) are presented for
the three possible choices of kernel function, with threshold t ∈ [−1, 1] as varying
parameter. We show the results for both the full sample and for the small sample.
Table 13 show the number of iterations required for the interior point method to
fit the SVM. Results are presented for both the full and the small sample and
for polynomial kernel functions of 1st, 2nd and 3rd degree. C = 50. 500 is the
set maximum allowed number of iterations and reaching this value thus not imply
convergence.

Figure 9: Support Vector Machine - Validation error, Eva, vs. penalty parameter
C for three different kernels, linear, 2nd degree and 3rd degree polynomial, fitted on
the full sample.

Figure 10: Support Vector Machine - Validation error, Eva, vs. penalty parameter
C for three different kernels, linear, 2nd degree and 3rd degree polynomial, fitted on
the small sample.

46

Figure 11: Support Vector Machine - ROC curve for three different kernels, linear,
2nd degree and 3rd degree polynomial. Left: ROC curve fitted on the full sample.
Right: ROC curve fitted on the small sample.

Polynomial Kernel Degree Full Sample Small Sample
1 256 83
2 378 101
3 403 114

Table 13: Support Vector Machine - Table over the number of iterations required
to reach convergence when fitting the SVM using the interior point optimization
method, on the full and small sample respectively, for linear, 2nd degree and 3rd
degree polynomial kernels.

The results in figure 9 and in figure 10 show that the validation error is, as for
LR and ANN, very small but also slightly larger when a smaller sample is used for
training. The results also indicate that kernel function have negligible effect on the
validation error although, for the small sample, for a very low value on C, the 3rd
degree polynomial kernel performs slightly worse than the others. However, even if
there is a factor 4 in difference compared to the 2nd degree polynomial kernel, the
magnitude on the validation error is so low that the difference must be considered
insignificant. Conclusively this suggest the data is linear and there is no need to
use a non-linear transformation. Studying figure 9 it seems that increasing penalty
C has no effect on the validation error for the full sample. Figure 10 show that for
the small sample one can argue that the error decreases slightly with a larger C for
a 3rd degree polynomial kernel, but once again one must consider that the error
is so small that the difference is insignificant. Conclusively a linear kernel is most
suitable, and we may set C quite low. The ROC curves in figure 11 are very similar
w.r.t. kernel function, i.e. the curves almost coincide. There is not a significant
difference w.r.t. sample size either, even though the curves are slightly closer to the

47

top left corner, with a shaper turn, when the full sample is used for training. The
ideal ROC curves should have a curvature as far up the top left corner as possible,
with a near perpendicular turn in this corner. We see that this is almost the case
when the full sample is used but not quite for the smaller sample. The top left
corner corresponds to t ≈ 0 in both cases and thus the sign function is suitable as
classifier. The results in table 13 show that just as for the LR-model and ANNs the
number of iterations is clearly higher as the full sample is used which corresponds
to the significant larger amount of data used in the fitting process. It can also be
noted that the number of iterations is much higher for the SVM compared tom
ANN for both sample sizes, no matter settings on tuning parameters. Conclusively
there is no significant difference in validation error due to different sample sizes for
training, neither does tuning setting depend on sample size.

4.4 Comparison of the Supervised Learning Methods

Finally, the results from a comparison of the three supervised learning methods’
performance on the test set, for corresponding chosen configuration on the tuning
parameters, are presented.

For the ANN obviously 1 hidden layer is the optimal choice since there is no gain
in predictive performance by adding more layers. 7 hidden nodes are set on this
layer. We have seen that the validation error is extremely small and the setting on
number of hidden nodes seems insignificant w.r.t. to the error. Thus, even though
the validation error is almost equally as low for both 2 and 5 nodes, for both sam-
ple sizes, we have seen that there seems to be no significant increase in number of
iterations required to fit the model and thus no increase in computational time if
7 nodes are used, arguably the opposite. Using the larger choice of 7 nodes, the
model is potentially more robust to handle future more complex data, where per-
haps observations are not so easily classifiable. However, it is not suitable to choose
more hidden nodes than necessary and therefore there is no need for more than
7. Activation function is chosen to be the logistic function. Even though the sim-
pler identity function performs well, the logistic function will handle non-linearities
in the data better. Thus, if the model should predict well on new data, which
potentially contains non-linearities, it seems more suitable to choose a non-linear
activation function. We also saw how the relative predictive performance decreased
slightly for the identity function when only 300 observations was used for training.
The exponential function has does not perform well and should of course not be
used. The non-linear tangents hyperbolic activation function performs equally as
good as the logistic function and could be an alternative as well. However, the
logistic function suitably maps the input in to the interval (0, 1) and is also the
standard activation function in ANNs.

For SVM then linear kernel seems to be the most natural choice as data used for
validation seems linear. However, just as for ANN, if the model is applied on new
data, which potentially contains non-linearities, a polynomial kernel of 2nd or 3rd

48

degree could be considered as well. In this case though, we choose the linear kernel.
A high C does not decrease the validation error significantly, so setting it high seems
unnecessary, especially since the risk of over-fitting increases. We let C = 50, which
also corresponds to the lowest validation error for the smaller sample. Threshold
is set to t = 0, corresponding to the standard sign-function as classifier. For the
linear kernel and for both sample sizes, this threshold approximately corresponds
to the point in the top left corner on the ROC curve, which is the point yielding
optimal predictive performance. The testing results are presented in figure 12 for
both the full sample and the small sample.

Figure 12: Comparison - Artificial Neural Network (ANN), Logistic Regression (LR)
and the Support Vector Machine (SVM). Testing error, Ete, vs. method, for chosen
optimal configuration on the tuning parameters. Left figure: fitted on full sample.
Right figure: fitted on small sample.

The results in figure 12 show that the three supervised leaning methods have very
similar predictive performance, with a very low test error, for both sample sizes.
ANNs have a slightly higher test error when the smaller sample is used for fitting
but considering the low magnitude of the error the difference is not significant. As
has been discussed previously this is probably a random occurrence due to the small
training sample and the increased significance of each single training observation
and the randomness of how each gets classified. If only considering which model
yields the lowest test error, it is not possible to conclude that one is better than the
other. We discuss more about which one to choose in section 5.

49

5 Discussion

5.1 Derivation of Target and Predictors

The objective of this thesis was to explore the three supervised learning meth-
ods, logistic regression (LR), artificial neural networks (ANN) and the support vec-
tor machine (SVM), ability to predict household relationships To apply supervised
learning methods, we have presented a technique which pairs individuals under
the hypothesis H0, and then construct a test of significance. The target Y and
predictors X = (X1, ..., Xp) could be coded, transforming the problem into a bi-
nary classification problem. Using this technique, a sample, for fitting, tuning,
evaluation and comparison could be generated by random pairing of individuals.
Since the available data only contain information about individuals living i single
households and households consisting of two individuals, only these this case has
been tested. However, this pairing idea holds for larger household constellations as
well. All candidates that are suspected to share a household relationship should
be paired with each other. All pairs predicted to be true, are also predicted to
share a household relationship. For instance, if one individual is predicted to have
a household link towards three other individuals they would together be predicted
to form a household of four individuals. A potential problem when one individual
can be predicted to share a household relationship with multiple other individu-
als, is that the risk of predicting false non-existing household relationships might
increase. A solution to this can be to increase the threshold for when H0 should
be predicted true, however then the risk of missing household links increases as well.

The main difficulty of this pairing approach is that the number of possible pairs
may rapidly become computational intractable when considering practical imple-
mentation of the method. If we have a large data set of individuals and wish to
sort them into their household affiliation, the number of pairs to be tested would
be very large. If households consisting of more than two individuals are consid-
ered the complexity of the problem increase even further. In this case, it would
be suitable to first sort individuals into larger groups. This could for example be
based on one or several common attributes considered necessary to share a house-
hold relationship i.e. first sorting individuals by e.g. zip-code and the apply the
pairing method on those with same zip-code. However, those cases not fulfilling
the requirements would be neglected and we would risk missing some less appar-
ent relationships using this approach. Another alternative is to use the fact that
for many individuals, the classification complexity is very low, and they are easily
sorted into their household affiliation with high probability. Paired individuals ful-
filling a few criteria, such as having the same address (street name, street number,
city, zip-code, etc,) same last name, different gender, small age difference, common
account ownership, would already be considered to have a very high probability of
sharing a household relationship. Thus, they can be directly classified accordingly
without applying any statistical machine learning models. The opposite holds as
well, i.e. paired individuals sharing almost no attributes can be directly classified

50

as not sharing a household relationship. These two groups of individuals would be
separated from the data set and only the much smaller remaining group would with
much higher classification complexity would be classified by the pairing method.
Clearly, a combination of both approaches can be used as well if necessary.

In all cases, no matter the size of the possible household constellations, a sam-
ple to train the models must be generated. The idea presented in section 2.2, where
a mixture of random pairings and parings based on household affiliation forms one
sample, would normally always be applicable. There could be other ways to generate
a sample, but the resulting structure should be the same.

5.2 Performance of the Supervised Learning Methods

The results in section 4.4 have shown that both LR, ANNs and the SVM perform
well in predicting household relationships. There are also relatively small variations
in performance when modifying the settings on the corresponding tuning parame-
ters. They all have extremely low misclassification rate and only considering this
aspect it is not possible to conclude which one is preferable. Therefore, the fo-
cus of performance evaluation was shifted to the computational complexity aspect.
The SVM is a complex method, requiring significantly longer computational time
and more computational power than the others. Therefore, this method is con-
sidered least attractive to use and directly excluded as a method for predicting
household relationships. ANN is also a complex method, but it does not require
the same computational time and power as the SVM. It is theoretically a quite
simple method but has the power to handle non-linear complex problem well. LR is
the least complex method, significantly requiring the least computational time and
power. This method also gives an exact form on f , the function relating predictors
X = (X1, ..Xp) and target Y , and also gives an interpretation on the predictors.
Each predictor has an estimated weight and one can analyze the predictor variable’s
significance for predicting Y . This is a clear advantage compared to ANNs. The
network structure and the estimated weights in an ANN is difficult to interpret
and the form of f is unknown. With more layers and nodes, the network becomes
even harder to understand. However, the idea with an ANN is only to give a good
prediction, not to estimate the significance of each predictor. Given multiple input
predictors and enough training data, the network has the power to optimally fit all
the weights to find the most accurate prediction of the target, even if data is com-
plex and non-linear. This yield good predictive power, but no concrete knowledge
on how target and predictors are related. Conclusively, for data of the kind use in
this thesis, logistic regression seems to be the best method of choice for predicting
household relationships. However, for future data, on which the model should be
applied, there might be a risk that it is more complex and has a non-linear behavior.
In that case the artificial neural network should be considered as well. If possible, it
would be suitable to test both methods on a smaller test set to see which performs
best.

51

Regarding the small magnitude of the misclassification rate, for both sample sizes
and for all three supervised learning methods. As mentioned earlier, this suggests
that the classes are infinitely far away from each other and they are easily sepa-
rable. A very large number of individuals has been used in the study, resulting
in a very large sample of paired individuals. Of these pairs, a large majority are
either individuals who have been randomly paired and share few attributes and no
household relationship, or individuals sharing a household relationship and having
multiple attributes in common. It is only a minority of the observed pairs who
either share no household relationship but still have several attributes in common
or share a household relationship but does not have multiple attribute in common.
Conclusively the classification complexity is very low. Considering this, most ob-
servations are easily classifiable, and one might almost directly classify a large part
of the observations by studying the predictors X, without applying any statisti-
cal machine learning methods. Those observations that are much more difficult to
classify are in such small minority and the total number of observations is so large,
that the misclassification rate becomes extremely small. Since the small sample is
extracted from the full large sample, the distribution of difficult and non-difficult
observations to classify will be almost the same, i.e. the structural pattern of the
underlying population distribution is preserved. Thus, the misclassification rate is
very small in this case as well. To see any significant difference on the misclassi-
fication rate, one would have to manually identify pairs who would be considered
difficult to classify and apply the methods on these.

One might also note that since the underlying population distribution of the sample
sizes is equal, and the misclassification rate is so small, this leads to no difference
in optimal settings on tuning parameters between the sample sizes. Even though
there are more fluctuations in validation error as tuning configurations are modified
in the small sample, compared to the full sample where tuning configurations in
most cases have no effect at all (expect w.r.t. number of hidden layers in ANN), the
variations seen are generally insignificant considering the small magnitude of the
misclassification rate. For a small training set the fitting is much more dependent
on each single observation and therefore the results might vary, and we would see
fluctuations in misclassification rate depending on which observations are extracted.
However, for ANNs there is a small difference for the sample sizes when the identity
activation function is used which is interesting to discuss. Probably it is only a ran-
dom occurrence. However, it could be that the smaller data set small non-linearities
becomes more apparent and a non-linear activation function does not perform as
well in that case. Conclusively though, the same configuration is suitable indepen-
dently of sample size for training, neither is it significant for prediction performance
for any of the supervised learning models.

Regarding the significance of the estimates for the LR-model, seen in Appendix
A and Appendix B. It is quite expected that non-specific predictors such as city
and country are not significant in the model. Almost all individuals are from the
same country and many individuals may live in the same city no matter if they share

52

a household relationship or not. Hence knowledge of these attributes does not help
to predict household relationships. Since for a large majority of the individuals in
the data set, official and non-official attributes, such as last name, are equal and
thus it is very natural that the corresponding predictors are not significant. The
results have shown that more estimates are zero as the model is fitted on the small
sample compared to the full sample. This give an indication that with less data for
training, the model might consider fewer predictors and a couple of predictors have
more influence in predicting household relationships. In the aspect of attempting
to predict more subtle household relationships between individuals, where perhaps
last name, address etc. are not equal, one would want to consider many predictors.
In that case it would be necessary to use a sufficient size on the training sample
including multiple observations of these subtler relationships. An important and
interesting remark: removing insignificant predictors have been attempted as well
but this does not notable affect the misclassification rate.

Regarding the significant jump in misclassification rate when expanding a ANN
from 3 to 4 layers (4 to 5 for SGD), as is seen for both the full sample in and for
the smaller subsample. This is very surprising since theoretically the error should
decrease, or if the data is very linear and easy to classify, remain at a low rela-
tive constant level as the number of layers increase. One could consider overfitting
as possible explanation, however the amount of data is very large and there exist
no real difference between the training error and the validation error. Therefore,
the possibility of over-fitting due to a too complex network with too many hid-
den layers is almost non-existing. Another explanation for this behavior might be
the optimization algorithm or how the optimization in SAS is programmed. The
convergence occurs extremely fast when there are several hidden layers, and this
suggest that the convergence criteria in the optimization algorithm or defined by
SAS is inappropriate, making the algorithm find a local minimum and not the
sought global minimum corresponding to the best solution (not overfitted). When
multiple hidden layers are used the optimization, algorithm seems unable to find it.
How to avoid this premature convergence have not been investigated since clearly
there is no need for multiple hidden layers, but could be an issue for future research.

For ANN’s the number of hidden nodes seems to be almost insignificant for the
accuracy of predicting household relationships w.r.t. the data set available. How-
ever, we have seen that when the exponential activation function is used, there is
some indication that the number of nodes have some effect though. Primarily, the
exponential activation function yields a much higher error than the other activation
functions, but we can also see that the difference in misclassification rate compared
to the other activation functions becomes much smaller when 50 hidden nodes are
used compared to 5 or 10. Thus, with a larger number of hidden nodes, the negative
effects of the exponential function significantly decrease, and this result indicates
that perhaps a network with a larger number of hidden nodes has the power to
compensate for a bad choice of activation function. This may also suggest that the
risk of bad predictive performance decreases if a larger number of hidden nodes is

53

used.

Concerning the fact that both the value on penalty parameter C and choice of
kernel function have very little influence on the validation error and thereby the
predictive performance for the SVM. Theoretically, increasing C should decrease
both the training error and the validation error up to a certain point, from which
the training error continue to decrease whereas the validation error starts to in-
crease. In fact, C regulates how much the decision boundary should adapt to the
observations in the training set and thereby a high value on C should make the so-
lution fit the training data very well, but also probable cause overfitting and yield a
higher validation error. We should thus see a minimum of the validation error for a
certain value on C. However, if data is approximately linear and we use low degree
polynomial kernel functions (d ∈ {1, 2, 3}), C only regulates the slope or a small
curvature of the hyperplane separating the data. On the other hand, for highly
non-linear data, using a non-linear more complex kernel such as radial basis, C
would have a much larger impact on how the hyperplane curves around the data (in
the non-linear space). Conclusively value on C will have small impact on validation
error when data is linear and when low-degree polynomials are used. Remember
also that out data is very separable and thus most observations are not close to the
decision boundary, making choice of kernel and C almost insignificant.

5.3 Suggestions For Future Research

The main interesting aspect which has not been investigated in this thesis is to
investigate how well the models predict household relationships when on applied on
new fresh data. In this thesis, the data records available contain detailed informa-
tion about each individual, e.g. exact address, last name and account ownership.
These are all factors, which for a large majority of individuals, can imply a strong
household link, i.e. if this information is available, most individuals’ household
relationship is easily predictable. Therefore, for such a big population, the mis-
classification rate is very small as a large majority of the observations can be well
separated into the two classes. It would be interesting to see what happens of some
of this information is lacking, for instance if address in terms of street name and
number is not available. How well would the models perform then? Also, one would
like to increase the classification complexity by investigating a smaller population
of individuals who belong to the minority of individuals whose household relation-
ship is not as easy to predict. This would be individuals who share a household
relationship but do not have the same address or last name etc. It might not be
possible to predict their household relationships with accuracy if they do not share
the same address or last name. The misclassification rate would most definitely
increase in this case. Also, only households consisting of one or two individuals
have been investigated in this thesis. Therefore, it would be interesting to use a
data set where household relationships can consist of more than two individuals
and the complexity of the problem increases. As previously mentioned, the paring
idea, where individuals are tested against each other two and two, holds for larger

54

household constellations as well. However, from the results in this thesis, it is not
known what happens with the predictions when H0 can be true for several different
pairs including the same individual.

Notable is that a household relationship s is in fact a dynamical constellation,
changing over time. Most people do share living expenses with the same partner
or remain in the same household constellation during their whole live span. In this
thesis no time aspect has been considered, and these dynamical constellations have
been modeled as static w.r.t time. However, if one truly wants to predict a house-
hold relationship a certain point in time i.e. ensure that the prediction is valid at
the time it is made and not only at the time the data has been collected, the time
aspect must be considered. Then we would have some kind of time series. However,
the solution idea presented in this thesis is perhaps not applicable anymore or it
may very well not be possible to consider this time aspect at all. This is something
to consider though when attempting to predict household relationships.

Finally, it would be interesting to see what happens if more than one possible
household relationship is allowed for an individual. We have only investigated indi-
viduals who belong to one household constellation. Usually people have one main
partner who they share living expenses with. However, it is possible that an indi-
vidual has separate household relationships with separate partners. For instance,
an individual could be married with one partner and they jointly own an apartment.
The same individual might also own a separate summer house together with a friend
and the married partner is not part of this ownership. In this case the individual
would belong to two different household relationships in some sense and it would be
interesting to see if it possible to predict both by using the pairing idea presented
in this thesis. Perhaps only the strongest relationship can be identified.

55

6 Conclusions

This thesis objective was to explore the ability of logistic regression (LR), artificial
neural networks (ANN) and the support vector machine (SVM) to predict house-
hold relationships between individuals. Data records over a limited population of
individuals, where household affiliation and several attributes were registered, were
available for this task. In order to apply these methods for predicting household re-
lationships, a target Y and a vector of p input predictor variables X = (X1, ..., Xp),
based on the set of p attributes registered on each individual, had to be defined.
We have presented a solution idea which forms pairs of individuals that are hy-
pothesized to share a household relationship, and then tests if this hypothesis H0

holds true or not. This idea enable us to define a binary target Y ∈ {0, 1}, with
coding, 1 if H0 is true and 0 if H0 is false, which transforms the initially vague and
intangible problem to a much more tangible problem in the form of standard binary
classification. A sample for fitting the methods could be generated by randomly
pair individuals and using the information form the data records to code the cor-
responding outcome on Y and X for the random pairs. For evaluation and tuning
of the three supervised learning methods, the sample was split into a training set,
a validation set and a test set.

The validation error has proven to be very small and the two classes, H0 is true
and H0 is false, are far away from each other and thereby the observations are very
easy to classify. For LR there is no tuning to be made. For the ANN we have seen
that there is no need for multiple hidden layers and performance decrease as the
more are used. We have also seen that the number of hidden nodes have insignifi-
cant effect on the validation error. All activation functions have proven to perform
well, except the exponential function. In the end we have concluded that 1 hidden
layer, with 7 hidden nodes and the logistic activation function is most suitable for
the prediction task. Data has proven to be linear and thus for the SVM a linear
kernel is most suitable. The penalty C has shown to have no significant impact on
the validation error and the most suitable threshold is t = 0. We have has thus
set a linear kernel, with C = 50 and the sign-function as classifier as optimal tuning.

Comparing the three supervised learning methods we have seen that w.r.t. test
error, in term of misclassification rate, there is no significant difference between the
methods performance and the all predict very well. However, due to complexity,
computational time and power, we have concluded that SVM is the least suitable
method to use whereas LR most suitable. LR also have the advantage to give an
interpretation on the significance each input predictor/attribute has for predicting
household relationships. However, the ANN handles complex and non-linear data
better than LR, therefore, for future application of the model, we find it suitable
to consider ANN as well. If possible, we recommend using a small test set and test
both the ANN model and the LR model and compare their performance. Then
one can see the complexity of the data and see if there is non-linear behavior and
thereafter chose between the two methods accordingly.

56

References

[1] Hastie T, Tibshirani R, Friedman J, The elements of Statistical Learning (2nd
edition), Springer-Verlag, 2009, 12th printing.

[2] James G, Witten D, Hastie T, Tibshirani R, Introduction to Statistical Learning
(2nd edition), Springer-Verlag, 2015, 6th printing.

[3] Izenman A.J, Modern Multivariate Statistical Techniques, Springer-Verlag, Tem-
ple University, 2008.

[4] Improve Neural Network Generalization and Avoid Overfitting
https://se.mathworks.com/help/nnet/ug/improve-neural-network-
generalization-and-avoid-overfitting.html

[5] Sarle, W.S., ed. (1997), Neural Network FAQ, part 2 of 7: Learning, periodic
posting to the Usenet newsgroup comp.ai.neural-nets
ftp://ftp.sas.com/pub/neural/FAQ2.html

[6] The Newton-Raphson Method
http://web.mit.edu/10.001/Web/Course Notes/NLAE/node6.html

[7] Why You Should Use Cross-Entropy Error Instead Of Classification Error Or
Mean Squared Error For Neural Network Classifier Training
https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-
entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-
network-classifier-training/

[8] Golik P, Doetsch P and Ney H, Cross-Entropy vs. Squared Error Training: a
Theoretical and Experimental Comparison, 2013
https://www-i6.informatik.rwth-aachen.de/publications/download/861/
GolikPavelDoetschPatrickNeyHermann–CrossEntropyvs.SquaredErrorTraining
aTheoreticalExperimentalComparison–2013.pdf

[9] SGD
terminus.sdsu.edu/SDSU/Math693a/Lectures/18/lecture.pdf

[10] LBFGS
ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent

[11] Wright.J.S, Primal-Dual Interior-Point Methods, SIAM, 1997

57

Appendices

Appendix A

58

m å n d a g e n d e n 1 1 : e s e p t e m b e r 2 0 1 7 k l . 1 1 : 2 8 : 5 3 3

F i t S t a t i s t i c s

D e s c r i p t i o n T r a i n i n g V a l i d a t i o n T e s t i n g

M i s c l a s s i f i c a t i o n R a t e 0 . 0 0 0 7 1 7 9 4 0 . 0 0 0 7 6 5 9 6 0 . 0 0 0 7 1 7 6 7

D i f f e r e n c e o f M e a n s 0 . 9 9 3 4 0 0 . 9 9 2 8 6 0 . 9 9 3 3 0

P a r a m e t e r E s t i m a t e s

P a r a m e t e r D F E s t i m a t e
S t a n d a r d

E r r o r C h i - S q u a r e P r > C h i S q 9 5 % C o n f i d e n c e L i m i t s

I n t e r c e p t 1 7 7 . 4 9 3 3 8 0 1 2 . 1 6 7 9 8 4 4 0 . 5 5 9 4 < . 0 0 0 1 5 3 . 6 4 4 5 7 1 0 1 . 3 4 2 1 9

h h _ l a s t n a m e _ o f f _ d u - 1 1 - 6 . 7 2 1 3 2 5 1 . 0 1 3 0 1 4 4 4 . 0 2 3 0 < . 0 0 0 1 - 8 . 7 0 6 8 0 - 4 . 7 3 5 8 6

h h _ l a s t n a m e _ o f f _ d u 1 0 0

h h _ l a s t n a m e _ k v _ d u - 1 1 1 . 6 2 3 6 6 5 1 . 0 1 4 9 3 5 2 . 5 5 9 3 0 . 1 0 9 6 - 0 . 3 6 5 5 7 3 . 6 1 2 9 0

h h _ l a s t n a m e _ k v _ d u 1 0 0

h h _ g e n _ d u - 1 1 - 1 . 5 9 6 3 8 3 0 . 0 8 8 3 9 1 3 2 6 . 1 8 2 6 < . 0 0 0 1 - 1 . 7 6 9 6 3 - 1 . 4 2 3 1 4

h h _ g e n _ d u 1 0 0

h h _ m a r s t a t _ d u - 1 1 0 . 7 0 6 9 9 2 0 . 0 9 2 3 6 2 5 8 . 5 9 3 0 < . 0 0 0 1 0 . 5 2 5 9 7 0 . 8 8 8 0 2

h h _ m a r s t a t _ d u 1 0 0

a b s _ d i f f _ y e a r s 5 7 1 0 0 1 1 4 . 1 5 0 3 0 1 3 . 8 2 4 4 3 3 1 3 . 6 8 9 8 0 . 0 0 0 2 6 . 6 5 4 5 5 2 1 . 6 4 6 0 5

a b s _ d i f f _ y e a r s 5 7 1 0 1 1 1 . 6 4 9 1 2 0 0 . 0 8 3 7 7 5 3 8 7 . 5 0 2 1 < . 0 0 0 1 1 . 4 8 4 9 2 1 . 8 1 3 3 2

a b s _ d i f f _ y e a r s 5 7 1 0 2 1 0 . 9 3 4 1 6 2 0 . 1 3 5 8 4 9 4 7 . 2 8 6 0 < . 0 0 0 1 0 . 6 6 7 9 0 1 . 2 0 0 4 2

a b s _ d i f f _ y e a r s 5 7 1 0 3 1 0 . 6 3 9 7 9 7 0 . 1 2 9 8 8 6 2 4 . 2 6 3 9 < . 0 0 0 1 0 . 3 8 5 2 3 0 . 8 9 4 3 7

a b s _ d i f f _ y e a r s 5 7 1 0 4 0 0

h h _ g e m k o n t _ d u - 1 1 - 1 0 . 8 3 2 6 4 2 0 . 2 7 0 3 6 6 1 6 0 5 . 3 3 2 6 < . 0 0 0 1 - 1 1 . 3 6 2 5 5 - 1 0 . 3 0 2 7 3

h h _ g e m k o n t _ d u 1 0 0

h h _ a d r e s s _ o f f _ d u - 1 1 - 6 . 6 1 3 1 0 4 1 . 0 1 4 3 5 7 4 2 . 5 0 4 0 < . 0 0 0 1 - 8 . 6 0 1 2 1 - 4 . 6 2 5 0 0

h h _ a d r e s s _ o f f _ d u 1 0 0

h h _ a d r e s s _ k v _ d u - 1 1 1 . 8 9 0 8 4 5 1 . 0 2 9 0 0 8 3 . 3 7 6 6 0 . 0 6 6 1 - 0 . 1 2 5 9 7 3 . 9 0 7 6 6

h h _ a d r e s s _ k v _ d u 1 0 0

h h _ a d r e s s _ a n _ d u - 1 1 - 8 . 1 4 9 9 7 4 6 . 5 0 1 2 9 8 1 . 5 7 1 5 0 . 2 1 0 0 - 2 0 . 8 9 2 2 8 4 . 5 9 2 3 3

h h _ a d r e s s _ a n _ d u 1 0 0

h h _ c i t y _ o f f _ d u - 1 1 - 1 . 9 8 4 3 0 1 0 . 3 5 4 3 1 7 3 1 . 3 6 4 0 < . 0 0 0 1 - 2 . 6 7 8 7 5 - 1 . 2 8 9 8 5

h h _ c i t y _ o f f _ d u 1 0 0

h h _ c i t y _ k v _ d u - 1 1 - 1 . 3 3 3 7 9 3 0 . 3 5 6 2 4 1 1 4 . 0 1 8 1 0 . 0 0 0 2 - 2 . 0 3 2 0 1 - 0 . 6 3 5 5 7

h h _ c i t y _ k v _ d u 1 0 0

h h _ c i t y _ a n _ d u - 1 1 - 0 . 5 9 8 3 9 1 0 . 7 1 8 2 3 5 0 . 6 9 4 1 0 . 4 0 4 8 - 2 . 0 0 6 1 1 0 . 8 0 9 3 2

h h _ c i t y _ a n _ d u 1 0 0

h h _ p s t a d d r c n t r y _ o f f _ d u - 1 1 0 . 6 1 0 6 8 8 2 . 1 0 0 0 8 7 0 . 0 8 4 6 0 . 7 7 1 2 - 3 . 5 0 5 4 1 4 . 7 2 6 7 8

h h _ p s t a d d r c n t r y _ o f f _ d u 1 0 0

h h _ p s t a d d r c n t r y _ k v _ d u - 1 1 - 0 . 9 9 6 3 9 8 0 . 4 1 1 5 1 0 5 . 8 6 2 8 0 . 0 1 5 5 - 1 . 8 0 2 9 4 - 0 . 1 8 9 8 5

h h _ p s t a d d r c n t r y _ k v _ d u 1 0 0

h h _ p s t a d d r c n t r y _ a n _ d u - 1 1 0 . 4 7 4 2 8 4 0 . 2 7 0 7 5 5 3 . 0 6 8 5 0 . 0 7 9 8 - 0 . 0 5 6 3 9 1 . 0 0 4 9 6

h h _ p s t a d d r c n t r y _ a n _ d u 1 0 0

m å n d a g e n d e n 1 1 : e s e p t e m b e r 2 0 1 7 k l . 1 1 : 2 8 : 5 3 4

P a r a m e t e r E s t i m a t e s

P a r a m e t e r D F E s t i m a t e
S t a n d a r d

E r r o r C h i - S q u a r e P r > C h i S q 9 5 % C o n f i d e n c e L i m i t s

h h _ g a t u n a m n _ o f f _ d u - 1 1 0 . 9 8 8 3 3 8 0 . 8 5 9 0 0 4 1 . 3 2 3 8 0 . 2 4 9 9 - 0 . 6 9 5 2 8 2 . 6 7 1 9 5

h h _ g a t u n a m n _ o f f _ d u 1 0 0

h h _ g a t u n a m n _ k v _ d u - 1 1 - 2 . 2 3 4 2 2 5 0 . 8 3 5 1 8 7 7 . 1 5 6 3 0 . 0 0 7 5 - 3 . 8 7 1 1 6 - 0 . 5 9 7 2 9

h h _ g a t u n a m n _ k v _ d u 1 0 0

h h _ g a t u n a m n _ a n _ d u - 1 1 2 . 5 5 3 1 8 0 6 . 4 5 4 3 0 8 0 . 1 5 6 5 0 . 6 9 2 4 - 1 0 . 0 9 7 0 3 1 5 . 2 0 3 3 9

h h _ g a t u n a m n _ a n _ d u 1 0 0

h h _ g a t u n r _ o f f _ d u - 1 1 - 0 . 8 9 5 5 3 0 0 . 3 0 0 5 9 9 8 . 8 7 5 4 0 . 0 0 2 9 - 1 . 4 8 4 6 9 - 0 . 3 0 6 3 7

h h _ g a t u n r _ o f f _ d u 1 0 0

h h _ g a t u n r _ k v _ d u - 1 1 - 0 . 3 0 3 9 4 1 0 . 3 1 0 7 4 7 0 . 9 5 6 7 0 . 3 2 8 0 - 0 . 9 1 2 9 9 0 . 3 0 5 1 1

h h _ g a t u n r _ k v _ d u 1 0 0

h h _ g a t u n r _ a n _ d u - 1 1 - 1 . 2 8 8 2 3 9 0 . 9 4 3 1 6 5 1 . 8 6 5 6 0 . 1 7 2 0 - 3 . 1 3 6 8 1 0 . 5 6 0 3 3

h h _ g a t u n r _ a n _ d u 1 0 0

h h _ e x t _ o f f _ d u - 1 1 - 1 . 8 6 7 7 3 9 0 . 2 6 8 3 5 0 4 8 . 4 4 2 7 < . 0 0 0 1 - 2 . 3 9 3 7 0 - 1 . 3 4 1 7 8

h h _ e x t _ o f f _ d u 1 0 0

h h _ e x t _ k v _ d u - 1 1 - 2 . 0 4 1 5 2 8 0 . 2 6 8 4 8 5 5 7 . 8 1 8 9 < . 0 0 0 1 - 2 . 5 6 7 7 5 - 1 . 5 1 5 3 1

h h _ e x t _ k v _ d u 1 0 0

h h _ e x t _ a n _ d u - 1 1 - 2 . 8 7 1 5 5 0 0 . 8 0 8 5 5 2 1 2 . 6 1 3 0 0 . 0 0 0 4 - 4 . 4 5 6 2 8 - 1 . 2 8 6 8 2

h h _ e x t _ a n _ d u 1 0 0

h h _ t r _ o f f _ d u - 1 1 - 2 . 2 7 8 9 2 7 8 . 9 0 1 1 7 9 0 . 0 6 5 5 0 . 7 9 7 9 - 1 9 . 7 2 4 9 2 1 5 . 1 6 7 0 6

h h _ t r _ o f f _ d u 1 0 0

h h _ t r _ k v _ d u - 1 1 - 5 . 5 8 6 9 0 5 8 . 8 5 6 3 4 8 0 . 3 9 8 0 0 . 5 2 8 1 - 2 2 . 9 4 5 0 3 1 1 . 7 7 1 2 2

h h _ t r _ k v _ d u 1 0 0

h h _ t r _ a n _ d u - 1 1 - 1 . 8 4 2 3 7 6 1 . 6 6 6 1 1 4 1 . 2 2 2 8 0 . 2 6 8 8 - 5 . 1 0 7 9 0 1 . 4 2 3 1 5

h h _ t r _ a n _ d u 1 0 0

h h _ l g h n r _ o f f _ d u - 1 1 - 2 . 7 1 1 6 4 9 0 . 2 2 2 4 1 6 1 4 8 . 6 4 0 0 < . 0 0 0 1 - 3 . 1 4 7 5 8 - 2 . 2 7 5 7 2

h h _ l g h n r _ o f f _ d u 1 0 0

h h _ l g h n r _ k v _ d u - 1 1 - 2 . 2 2 4 1 7 5 0 . 2 2 4 2 0 2 9 8 . 4 1 4 3 < . 0 0 0 1 - 2 . 6 6 3 6 0 - 1 . 7 8 4 7 5

h h _ l g h n r _ k v _ d u 1 0 0

h h _ l g h n r _ a n _ d u - 1 1 - 4 . 3 1 4 2 9 0 1 1 . 5 1 8 5 8 4 0 . 1 4 0 3 0 . 7 0 8 0 - 2 6 . 8 9 0 3 0 1 8 . 2 6 1 7 2

h h _ l g h n r _ a n _ d u 1 0 0

h h _ o t h e r _ o f f _ d u - 1 1 - 7 . 0 7 4 0 3 4 2 . 8 2 4 1 0 9 6 . 2 7 4 4 0 . 0 1 2 2 - 1 2 . 6 0 9 1 9 - 1 . 5 3 8 8 8

h h _ o t h e r _ o f f _ d u 1 0 0

h h _ o t h e r _ k v _ d u - 1 1 - 5 . 1 9 3 1 0 1 2 . 8 1 7 8 9 9 3 . 3 9 6 3 0 . 0 6 5 3 - 1 0 . 7 1 6 0 8 0 . 3 2 9 8 8

h h _ o t h e r _ k v _ d u 1 0 0

h h _ o t h e r _ a n _ d u - 1 1 - 7 . 6 1 8 4 8 7 1 . 7 7 1 5 8 2 1 8 . 4 9 3 3 < . 0 0 0 1 - 1 1 . 0 9 0 7 2 - 4 . 1 4 6 2 5

h h _ o t h e r _ a n _ d u 1 0 0

h h _ z i p c o d e _ o f f _ d u - 1 1 - 2 . 3 0 1 7 3 7 0 . 5 7 8 7 9 3 1 5 . 8 1 4 8 < . 0 0 0 1 - 3 . 4 3 6 1 5 - 1 . 1 6 7 3 2

h h _ z i p c o d e _ o f f _ d u 1 0 0

h h _ z i p c o d e _ k v _ d u - 1 1 - 0 . 6 5 1 0 8 4 0 . 5 7 8 1 3 6 1 . 2 6 8 3 0 . 2 6 0 1 - 1 . 7 8 4 2 1 0 . 4 8 2 0 4

m å n d a g e n d e n 1 1 : e s e p t e m b e r 2 0 1 7 k l . 1 1 : 2 8 : 5 3 5

P a r a m e t e r E s t i m a t e s

P a r a m e t e r D F E s t i m a t e
S t a n d a r d

E r r o r C h i - S q u a r e P r > C h i S q 9 5 % C o n f i d e n c e L i m i t s

h h _ z i p c o d e _ k v _ d u 1 0 0

h h _ z i p c o d e _ a n _ d u - 1 1 - 4 . 6 2 0 9 8 5 1 . 0 8 4 7 7 1 1 8 . 1 4 6 5 < . 0 0 0 1 - 6 . 7 4 7 1 0 - 2 . 4 9 4 8 7

h h _ z i p c o d e _ a n _ d u 1 0 0

a b s _ d i f f _ y e a r s 1 0 . 0 0 1 9 6 8 0 . 0 0 0 9 6 4 4 . 1 6 8 6 0 . 0 4 1 2 0 . 0 0 0 0 7 8 7 9 0 . 0 0 3 8 6

T a s k T i m i n g

T a s k S e c o n d s P e r c e n t

S e t u p a n d P a r s i n g 0 . 0 5 0 . 0 9 %

L e v e l i z a t i o n 2 . 4 4 4 . 0 9 %

M o d e l I n i t i a l i z a t i o n 0 . 0 3 0 . 0 5 %

S S C P C o m p u t a t i o n 1 . 2 3 2 . 0 6 %

M o d e l F i t t i n g 5 2 . 3 0 8 7 . 6 6 %

C r e a t i n g O u t p u t D a t a 3 . 5 9 6 . 0 1 %

P r o d u c i n g S c o r e C o d e 0 . 0 0 0 . 0 0 %

C l e a n u p 0 . 0 0 0 . 0 0 %

T o t a l 5 9 . 6 6 1 0 0 . 0 0 %

O u t p u t C A S T a b l e s

C A S
L i b r a r y N a m e

N u m b e r
o f R o w s

N u m b e r
o f C o l u m n s

H H L O G I S T I C _ R E G R E S S I O N 2 5 7 0 3 0 7 4 9

Appendix B

62

f r e d a g e n d e n 2 9 : e s e p t e m b e r 2 0 1 7 k l . 1 5 : 4 2 : 0 9 3

F i t S t a t i s t i c s

D e s c r i p t i o n T r a i n i n g V a l i d a t i o n T e s t i n g

M i s c l a s s i f i c a t i o n R a t e 0 0 . 0 0 3 4 6 0 . 0 0 3 7 6

D i f f e r e n c e o f M e a n s 1 . 0 0 0 0 0 0 . 9 6 7 8 7 0 . 9 6 6 7 5

P a r a m e t e r E s t i m a t e s

P a r a m e t e r D F E s t i m a t e
S t a n d a r d

E r r o r C h i - S q u a r e P r > C h i S q 9 5 % C o n f i d e n c e L i m i t s

I n t e r c e p t 1 6 . 1 9 1 8 7 5 1 3 2 0 2 0 . 0 0 0 0 0 . 9 9 9 6 - 2 5 8 6 9 2 5 8 8 1

h h _ l a s t n a m e _ o f f _ d u - 1 1 0 . 1 4 6 2 1 9 1 0 9 5 7 0 . 0 0 0 0 1 . 0 0 0 0 - 2 1 4 7 5 2 1 4 7 5

h h _ l a s t n a m e _ o f f _ d u 1 0 0

h h _ l a s t n a m e _ k v _ d u - 1 0 0

h h _ l a s t n a m e _ k v _ d u 1 0 0

h h _ g e n _ d u - 1 1 - 1 . 6 9 2 2 6 6 2 4 4 5 . 0 5 2 9 7 9 0 . 0 0 0 0 0 . 9 9 9 4 - 4 7 9 3 . 9 0 8 0 4 4 7 9 0 . 5 2 3 5 1

h h _ g e n _ d u 1 0 0

h h _ m a r s t a t _ d u - 1 1 0 . 4 2 1 5 8 7 8 8 6 . 9 9 2 5 1 5 0 . 0 0 0 0 0 . 9 9 9 6 - 1 7 3 8 . 0 5 1 8 0 1 7 3 8 . 8 9 4 9 7

h h _ m a r s t a t _ d u 1 0 0

a b s _ d i f f _ y e a r s 5 7 1 0 0 1 0 . 6 1 2 0 4 2 5 0 5 3 . 9 4 6 7 3 1 0 . 0 0 0 0 0 . 9 9 9 9 - 9 9 0 4 . 9 4 1 5 3 9 9 0 6 . 1 6 5 6 1

a b s _ d i f f _ y e a r s 5 7 1 0 1 1 2 . 7 5 3 9 0 6 5 5 0 6 . 6 2 3 8 4 6 0 . 0 0 0 0 0 . 9 9 9 6 - 1 0 7 9 0 1 0 7 9 6

a b s _ d i f f _ y e a r s 5 7 1 0 2 1 - 0 . 1 5 6 2 6 7 1 1 7 8 0 0 . 0 0 0 0 1 . 0 0 0 0 - 2 3 0 8 9 2 3 0 8 9

a b s _ d i f f _ y e a r s 5 7 1 0 3 1 0 . 3 0 2 0 6 1 3 9 2 9 . 8 2 4 7 0 0 0 . 0 0 0 0 0 . 9 9 9 9 - 7 7 0 2 . 0 1 2 8 2 7 7 0 2 . 6 1 6 9 4

a b s _ d i f f _ y e a r s 5 7 1 0 4 0 0

h h _ g e m k o n t _ d u - 1 1 - 2 . 5 6 8 5 8 1 1 0 9 8 2 0 . 0 0 0 0 0 . 9 9 9 8 - 2 1 5 2 8 2 1 5 2 3

h h _ g e m k o n t _ d u 1 0 0

h h _ a d r e s s _ o f f _ d u - 1 1 - 4 . 1 8 3 8 4 6 1 2 6 3 2 0 . 0 0 0 0 0 . 9 9 9 7 - 2 4 7 6 3 2 4 7 5 5

h h _ a d r e s s _ o f f _ d u 1 0 0

h h _ a d r e s s _ k v _ d u - 1 1 - 1 . 6 8 5 2 9 1 1 2 6 1 9 0 . 0 0 0 0 0 . 9 9 9 9 - 2 4 7 3 4 2 4 7 3 1

h h _ a d r e s s _ k v _ d u 1 0 0

h h _ a d r e s s _ a n _ d u - 1 1 0 . 3 6 0 6 3 2 1 3 7 4 8 0 . 0 0 0 0 1 . 0 0 0 0 - 2 6 9 4 5 2 6 9 4 6

h h _ a d r e s s _ a n _ d u 1 0 0

h h _ c i t y _ o f f _ d u - 1 1 - 4 . 4 5 8 8 9 0 3 3 2 3 4 0 . 0 0 0 0 0 . 9 9 9 9 - 6 5 1 4 2 6 5 1 3 3

h h _ c i t y _ o f f _ d u 1 0 0

h h _ c i t y _ k v _ d u - 1 1 - 4 . 0 3 6 5 1 2 3 3 6 5 9 0 . 0 0 0 0 0 . 9 9 9 9 - 6 5 9 7 4 6 5 9 6 6

h h _ c i t y _ k v _ d u 1 0 0

h h _ c i t y _ a n _ d u - 1 1 0 . 2 6 0 0 4 8 1 5 5 1 1 0 . 0 0 0 0 1 . 0 0 0 0 - 3 0 4 0 0 3 0 4 0 1

h h _ c i t y _ a n _ d u 1 0 0

h h _ p s t a d d r c n t r y _ o f f _ d u - 1 0 0

h h _ p s t a d d r c n t r y _ o f f _ d u 1 0 0

h h _ p s t a d d r c n t r y _ k v _ d u - 1 1 0 . 3 9 1 8 6 2 3 1 0 1 0 0 . 0 0 0 0 1 . 0 0 0 0 - 6 0 7 7 8 6 0 7 7 9

h h _ p s t a d d r c n t r y _ k v _ d u 1 0 0

h h _ p s t a d d r c n t r y _ a n _ d u - 1 1 0 . 2 5 8 1 4 8 8 3 3 3 . 9 3 6 6 4 4 0 . 0 0 0 0 1 . 0 0 0 0 - 1 6 3 3 4 1 6 3 3 4

h h _ p s t a d d r c n t r y _ a n _ d u 1 0 0

f r e d a g e n d e n 2 9 : e s e p t e m b e r 2 0 1 7 k l . 1 5 : 4 2 : 0 9 4

P a r a m e t e r E s t i m a t e s

P a r a m e t e r D F E s t i m a t e
S t a n d a r d

E r r o r C h i - S q u a r e P r > C h i S q 9 5 % C o n f i d e n c e L i m i t s

h h _ g a t u n a m n _ o f f _ d u - 1 1 - 1 2 . 7 5 1 6 4 8 3 5 2 4 . 9 3 1 8 1 2 0 . 0 0 0 0 0 . 9 9 7 1 - 6 9 2 1 . 4 9 1 0 5 6 8 9 5 . 9 8 7 7 5

h h _ g a t u n a m n _ o f f _ d u 1 0 0

h h _ g a t u n a m n _ k v _ d u - 1 0 0

h h _ g a t u n a m n _ k v _ d u 1 0 0

h h _ g a t u n a m n _ a n _ d u - 1 0 0

h h _ g a t u n a m n _ a n _ d u 1 0 0

h h _ g a t u n r _ o f f _ d u - 1 1 - 5 . 6 7 3 3 1 5 3 9 3 6 . 2 1 1 5 9 6 0 . 0 0 0 0 0 . 9 9 8 8 - 7 7 2 0 . 5 0 6 2 8 7 7 0 9 . 1 5 9 6 5

h h _ g a t u n r _ o f f _ d u 1 0 0

h h _ g a t u n r _ k v _ d u - 1 1 - 3 . 5 1 9 1 5 5 4 1 2 9 . 0 2 5 0 8 1 0 . 0 0 0 0 0 . 9 9 9 3 - 8 0 9 6 . 2 5 9 6 0 8 0 8 9 . 2 2 1 2 9

h h _ g a t u n r _ k v _ d u 1 0 0

h h _ g a t u n r _ a n _ d u - 1 1 0 . 4 0 3 4 5 9 1 0 7 0 7 0 . 0 0 0 0 1 . 0 0 0 0 - 2 0 9 8 5 2 0 9 8 6

h h _ g a t u n r _ a n _ d u 1 0 0

h h _ e x t _ o f f _ d u - 1 1 2 . 8 8 6 7 4 0 4 0 5 3 . 3 5 7 3 1 1 0 . 0 0 0 0 0 . 9 9 9 4 - 7 9 4 1 . 5 4 7 6 1 7 9 4 7 . 3 2 1 0 9

h h _ e x t _ o f f _ d u 1 0 0

h h _ e x t _ k v _ d u - 1 0 0

h h _ e x t _ k v _ d u 1 0 0

h h _ e x t _ a n _ d u - 1 1 0 . 9 5 9 1 7 7 1 1 5 5 1 0 . 0 0 0 0 0 . 9 9 9 9 - 2 2 6 3 9 2 2 6 4 1

h h _ e x t _ a n _ d u 1 0 0

h h _ t r _ o f f _ d u - 1 0 0

h h _ t r _ o f f _ d u 1 0 0

h h _ t r _ k v _ d u - 1 0 0

h h _ t r _ k v _ d u 1 0 0

h h _ t r _ a n _ d u - 1 1 3 . 1 2 2 6 5 8 1 1 7 1 3 0 . 0 0 0 0 0 . 9 9 9 8 - 2 2 9 5 4 2 2 9 6 0

h h _ t r _ a n _ d u 1 0 0

h h _ l g h n r _ o f f _ d u - 1 1 1 . 5 5 9 2 9 8 3 2 4 7 . 4 8 0 6 0 2 0 . 0 0 0 0 0 . 9 9 9 6 - 6 3 6 3 . 3 8 5 7 2 6 3 6 6 . 5 0 4 3 2

h h _ l g h n r _ o f f _ d u 1 0 0

h h _ l g h n r _ k v _ d u - 1 0 0

h h _ l g h n r _ k v _ d u 1 0 0

h h _ l g h n r _ a n _ d u - 1 0 0

h h _ l g h n r _ a n _ d u 1 0 0

h h _ o t h e r _ o f f _ d u - 1 0 0

h h _ o t h e r _ o f f _ d u 1 0 0

h h _ o t h e r _ k v _ d u - 1 0 0

h h _ o t h e r _ k v _ d u 1 0 0

h h _ o t h e r _ a n _ d u - 1 0 0

h h _ o t h e r _ a n _ d u 1 0 0

h h _ z i p c o d e _ o f f _ d u - 1 0 0

h h _ z i p c o d e _ o f f _ d u 1 0 0

h h _ z i p c o d e _ k v _ d u - 1 0 0

f r e d a g e n d e n 2 9 : e s e p t e m b e r 2 0 1 7 k l . 1 5 : 4 2 : 0 9 5

P a r a m e t e r E s t i m a t e s

P a r a m e t e r D F E s t i m a t e
S t a n d a r d

E r r o r C h i - S q u a r e P r > C h i S q 9 5 % C o n f i d e n c e L i m i t s

h h _ z i p c o d e _ k v _ d u 1 0 0

h h _ z i p c o d e _ a n _ d u - 1 0 0

h h _ z i p c o d e _ a n _ d u 1 0 0

a b s _ d i f f _ y e a r s 1 0 . 0 2 6 5 2 8 2 0 5 . 3 6 6 0 5 1 0 . 0 0 0 0 0 . 9 9 9 9 - 4 0 2 . 4 8 3 5 4 4 0 2 . 5 3 6 5 9

T a s k T i m i n g

T a s k S e c o n d s P e r c e n t

S e t u p a n d P a r s i n g 0 . 0 1 0 . 1 9 %

L e v e l i z a t i o n 0 . 0 3 0 . 9 4 %

M o d e l I n i t i a l i z a t i o n 0 . 0 0 0 . 0 2 %

S S C P C o m p u t a t i o n 0 . 0 2 0 . 5 9 %

M o d e l F i t t i n g 3 . 5 0 9 7 . 3 3 %

C r e a t i n g O u t p u t D a t a 0 . 0 3 0 . 7 0 %

P r o d u c i n g S c o r e C o d e 0 . 0 0 0 . 0 8 %

C l e a n u p 0 . 0 1 0 . 1 4 %

T o t a l 3 . 5 9 1 0 0 . 0 0 %

O u t p u t C A S T a b l e s

C A S L i b r a r y N a m e
N u m b e r

o f R o w s
N u m b e r

o f C o l u m n s

C A S U S E R (c a s) L O G I S T I C _ R E G R E S S I O N 1 0 0 0 0 4 9

	Introduction
	Problem Statement
	Motivation of Solution Approach
	Limitations and Prerequisites
	Thesis Structure

	Data preparation and Problem Setup
	The Target Variable
	Sample Generation Procedure
	Sample Generation Algorithm

	The Attributes
	Training, Validation and Testing
	Error Evaluation

	Mathematical Background
	Logistic Regression
	Fitting the Logistic Regression Model

	Artificial Neural Networks
	The Special Case of a Two-Categorical Target
	Fitting Neural Networks
	The Back Propagation Algorithm
	Training and Tuning Neural Networks

	The Support Vector Machine
	Non-Linearity
	Fitting the Support Vector Machine
	Tuning the Support Vector Machine

	Results
	Validation of Logistic Regression
	Validation of Artificial Neural Networks
	Validation with the Full Sample
	Validation with the Small Sample

	Validation of the Support Vector Machine
	Comparison of the Supervised Learning Methods

	Discussion
	Derivation of Target and Predictors
	Performance of the Supervised Learning Methods
	Suggestions For Future Research

	Conclusions
	Appendices

