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Abstract

Topological data analysis has been shown to provide novel insight in
many natural sciences. To our knowledge, the area is however rela-
tively unstudied on financial data. This thesis explores the use of topo-
logical data analysis on one dimensional financial time series. Takens
embedding theorem is used to transform a one dimensional time series
to an m-dimensional point cloud, where m is the embedding dimen-
sion. The point cloud of the time series represents the states of the
dynamical system of the one dimensional time series. To see how the
topology of the states differs in different partitions of the time series,
sliding window technique is used. The point cloud of the partitions is
then reduced to three dimensions by PCA to allow for computation-
ally feasible persistent homology calculation. Synthetic examples are
shown to illustrate the process. Lastly, persistence landscapes are used
to allow for statistical analysis of the topological features. The topo-
logical properties of financial data are compared with quantum noise
data to see if the properties differ from noise. Complexity calculations
are performed on both datasets to further investigate the differences
between high-frequency FX data and noise. The results suggest that
high-frequency FX data differs from the quantum noise data and that
there might be some property other than mutual information of finan-
cial data which topological data analysis uncovers.
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Sammanfattning

Topologisk dataanalys har visat sig kunna ge ny insikt i många natur-
vetenskapliga discipliner. Till vår kännedom är tillämpningar av meto-
den på finansiell data relativt ostuderad. Uppsatsen utforskar topolo-
gisk dataanalys på en endimensionell finanstidsserie. Takens inbädd-
ningsteorem används för att transformera en endimensionell tidsserie
till ett m-dimensionellt punktmoln, där m är inbäddningsdimensio-
nen. Tidsseriens punktmoln representerar tillstånd hos det dynamiska
systemet som associeras med den endimensionella tidsserien. För att
undersöka hur topologiska tillstånd varierar inom tidsserien används
fönsterbaserad teknik för att segmentera den endimensionella tidsse-
rien. Segmentens punktmoln reduceras till 3D med PCA för att gö-
ra ihållande homologi beräkningsmässigt möjligt. Syntetiska exempel
används för att illustrera processen. En jämförelse mellan topologis-
ka egenskaper hos finansiell tidseries och kvantbrus utförs för att se
skillnader mellan dessa. Även komplexitetsberäkningar utförs på des-
sa dataset för att vidare utforska skillnaderna mellan kvantbrus och
högfrekventa FX-data. Resultatet visar på att högfrekvent FX-data skil-
jer sig från kvantbrus och att det finns egenskaper förutom gemensam
information hos finansiella tidsserier som topologisk dataanalys visar
på.
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Chapter 1

Introduction

1.1 Background

Topological data analysis (TDA) is an emerging field in which topo-
logical properties of data are analyzed. These topological properties
have been shown to be able to provide novel insights in data, which
traditional statistics cannot. Traditional techniques of data analysis
have not always been able to keep up with the increasing quantity and
complexity of data since they may at times apply to many simplistic
assumptions [1]. TDA is an attempt to address this problem by the
idea that data have shape which could have meaning. The field has
century-old mathematical foundation stemming from topological and
computation geometry. Early contributions to the field of TDA were
made by Edelbrunner et al. [2]. Zomorodian and Carlsson used the
foundation laid by Edelbrunner et al. to develop the early TDA tech-
nique: Persistent homology [3]. The area was then made popular by
an overview paper by Carlsson in 2009 [4].

TDA analyzes point clouds in metric spaces (often Euclidean spaces).
It has been successfully applied to give new insight to complex prob-
lems related to neuroscience, biology, medicine and social sciences
amongst others [5–19]. Combining topological methods with statis-
tical methods have been proven to be a valuable method for under-
standing and visualizing data. TDA has been made considerably more
accessible to the general data scientists public recent years by open
source software and library packages as Dionysus, GUDHI [20], PHAT
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CHAPTER 1. INTRODUCTION 3

[21, 22] as well as R TDA interface bindings to these efficient C++ li-
braries provided by Fasy et al. [23].

Analyzing the quantitative properties of financial data has long been
studied by both financial professionals as well as the academical com-
munity. Researchers have applied all kind of different mathematical
modeling, machine learning, artificial intelligence and data analysis
methods to a myriad of different areas in finance [24–77]. Further-
more, much of the current academic interest in mathematical finance
still lies in quantitative approach in analyzing financial data [78]. Tra-
ditional techniques for data analysis of financial data are therefore a
well-studied area. Meanwhile, the emerging subfield of TDA pro-
vides an exceptional opportunity for a fresh approach to financial data
mining. While the existing studies concerning topological aspects of
financial data. The area of TDA in finance has to our knowledge re-
ceived limited attention by the academic community. Studies focus-
ing on topological aspects of financial data, but does not directly use
TDA, use other methods which could contain information in the topol-
ogy, such as network reconstruction or geometry-based methods. For
example, Vandewalle et al. studied the topology exhibited by min-
imum spanning trees to detect correlation structures between stocks
[79] and Phoa used diffusion maps to study the geometry of stock co-
movements [80]. To our knowledge only Gidea and Gidea et al. has
provided studies in this area to this date. Gidea used persistent homol-
ogy to detect early signs of critical transition in financial data [81] and
Gidea et al. studied return point clouds between indices using persis-
tent homology [82]. Gidea et al. claim that certain persistence patterns
in the homology groups give an early indication of a financial crisis.
Although, the area of TDA applied to financial markets has received
limited attention, relevant areas such as TDA for time series and sig-
nals have been previously studied. Kasawneh et al. have proposed
the use of Takens’ embedding to reconstruct a time series into a point
cloud [13, 83–85]. They used Takens’ embedding in combination with
maximum persistence to measure the stability of stochastic delay sys-
tems. Lastly, Perea and Harer suggested that maximum persistence in
combination with a sliding window technique could be used to quan-
tify periodicity of a signal [12]. These studies will be further explained
in the literature review and previous studies chapter 2.

Financial markets are information-driven and a highly competitive en-
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vironment where any additional information could be of value. In
addition, alpha return opportunities are only prevalent to those seek-
ing unique and unexploited strategies and methods. TDA is to our
knowledge relatively unstudied as a tool for financial analysis and has
shown to be able to uncover useful information in other areas of sci-
ence [5–19]. Therefore, an investigation of how TDA could be used for
extracting knowledge from financial data is highly relevant. Takens’
embedding has been shown to be able to convert time series data to
meaningful point clouds for persistent homology computation. In ad-
dition, the use of sliding window technique allows for segmentation
of a long time-series into chunks, which makes the topological features
more comparable within and between datasets. Also, as both methods
have proven to be useful in conjunction with TDA in other areas we
believe that they are good starting points to investigate.

1.2 Problem

Noise in data has been shown to pose a challenge for the research
community [86, 87]. Many of the scientific communities contributions
to quantitative forecasting models have very little practical utility be-
cause often the improvements made to models would have been dwarfed
by the variance in real data [86].This indicates the need for a method
that shows other aspects of data.

Financial data have complicated variance and dependencies. How-
ever, it is not completely random [88–91]. Researchers have found that
traditional financial analytics which utilizes low-level price data as an
analytical basis are not reliable due to the complex character of the
data. However, using higher level representation models of the data
can reduce the noise in the data and thus make it more appropriate
for traditional financial analytics [92]. By using such representation
two things are done; 1) certain characteristics of the higher level repre-
sentation are predetermined, and 2) certain aspects of the information
contained in noise is disregarded. As TDA has shown potential to un-
cover novel insight about data in other areas of natural science [8], it
is relevant to investigate whether or not it is possible to use TDA to
extract information from financial data.
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1.3 Preliminary Aim

This thesis aims to use topological data analysis to investigate if there
exist distinguishable topological features in different segments of a fi-
nancial time series.

1.4 Preliminary Research Question

This thesis aims to investigate the following questions:

• Is it possible to use topological data analysis to infer knowledge
about one-dimensional financial time series?

• What kind of insight does topological data analysis provide?

1.5 Limitations

This thesis is intended to investigate the use of topological data anal-
ysis for analyzing one-dimensional financial data. It is solely done for
academic purposes and not intended to be viewed as any financial or
investment advice. Further, the thesis is limited by the availability of
open source topological data analysis packages and libraries.

1.6 Contributions to Science

To our knowledge, the only published works on analyzing financial
data with TDA are Gidea and Gidea et al. [81, 82]. This thesis di-
rectly addresses the lack of research conducted in using topological
data analysis for one-dimensional financial data. As such the thesis
can be viewed as an attempt to apply theoretical knowledge about
topological data analysis to a real-world problem in the financial mar-
kets and thus generalize the use area of the method. It also shows
how to approach the problem of analyzing the topological properties
of one-dimensional time series using TDA.



Chapter 2

Literature Review and Previous
Studies

2.1 Topology and Financial Markets

2.1.1 Topology to analyze groups of assets

There exists previous work studying the topology of financial mar-
kets without using TDA methods. These studies often analyze rela-
tionships of groups of stocks or assets. For example analysis of the
topology of minimal spanning trees constructed using stock correla-
tions [79]. This section outlines studies conducted in this manner and
is presented to give the reader a brief overview of non-TDA related
methods where topological analysis can be used. However, this thesis
has a significantly different approach than these studies, as it is using
TDA to analyze financial data. In addition, this thesis focuses on ana-
lyzing the topological features of one dimensional financial time series
as opposed to multidimensional objects.

Vandewalle et al. researched the topology of stock markets as early as
2000s’ [79]. They analyzed the cross-correlation of daily fluctuations
for all US stocks during the year of 1999 by using a minimum span-
ning tree and looking at the topology exhibited by the minimal span-
ning tree. The main features observed by was the nodes, links and
dangling endpoints. It was emphasized that these features had differ-

6
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ent qualitative meanings and they seemed stable over time.

Phoa studied the geometry of co-movement in a set of stocks [80].
More specifically Phoa analyzed monthly total return for January 2002
to April 2012 for index constituents of the S&P 100 and S&P 500. Al-
though, this study did not directly use topological data analysis on
financial data, it did highlight the fact that geometry can be used effi-
ciently at looking at the correlation structure of the stock market. Phoa
used diffusion maps to project high-dimensional stock correlation ma-
trix (100x100 and 500x500 matrix) to a 3D hyperplane. The closer two
assets were in the hyperplane, the higher their correlation. In other
words, the diffusion map contains information in the distances. Phoa
further motivated that diffusion map was a suitable method for stock
data because it was robust to noise, i.e. small perturbations in the data
did not have a large effect on the results, unlike some other dimen-
sionality reduction methods. The property of robustness was very
helpful when dealing with real financial data, which often were noisy.
However, Phoa highlighted that a disadvantage of this methods was
that the coordinates did not have an intuitive economic meaning. An-
other aspect that Phoa highlighted was that projection to 2D or 3D hy-
perplane allowed for good and intuitive visualization. However, the
eigenvalues indicated that there was relevant geometric information
in the fourth and fifth coordinate. In addition, Phoa noted that while
the diffusion map contained information in distances, they were quite
hard to read and thus it would have been beneficial with additional
quantitative information that measured the assets’ global tendency to
move together - i.e. the size or compactness of the cloud as a whole
- as well as the ability to identify the most significant local concentra-
tion within the cloud. In the study Phoa suggested using a quantita-
tive summary called global concentration measure, which was defined
as (tr ⌃)

� 1
2 , to measure the concentrations. However, the global con-

centration measure did not capture information about how the overall
concentration changed, which in this case had to be visually read from
the diffusion maps. The benefit of the geometric approach was two-
fold 1) that it could compare portfolio concentration against a bench-
mark and 2) that it could identify local concentrations that were of
interest. Such local concentration could be relevant in the case of id-
iosyncratic shocks, which affect only localized regions in the abstract
asset space.
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2.2 Topological data analysis on financial data

This section outlines studies using TDA methods on financial data.
The studies in this section use a similar methodology as used in this
thesis.

Gidea has recently researched the use of TDA of critical transitions
in financial networks [81]. In this study TDA was used as a method
to detect early signs for critical transition in financial data. By criti-
cal transition the author referred to an abrupt change in the behaviour
of a complex system, which arose due to small perturbations in the
external conditions. This effects of this critical transistion caused the
system to switch from one steady state to some other steady state.
The author stated that examples of critical transitions were market
crashes, abrupt shifts in ocean circulation and climate, regime changes
in ecosystems, asthma attacks and epileptic seizures etc. As such, this
study was an attempt at using TDA for change point detection in time-
series data. Gidea used price time-series of multiple stocks to build
time-dependent correlation networks, which exhibit topological struc-
tures. Persistent homology was then used to analyze these structures in
order to track changes in topology when approaching a critical tran-
sition. The information of the topological structure was encoded in
persistence diagrams, which provide a robust summary of the topologi-
cal information on the network.

As a case study, Gidea used a portfolio of stocks consisting of the
DJIA stocks listed as of February 19, 2008. The data was restricted
to the time period between January 2004 to September 2008 (when
Lehman Brothers filed for bankruptcy). The focus of the case study
was the critical transition during a period prior to the financial crisis
of 2007-2008. A weighted network was constructed using correlation
distances. For correlation distance calculations Gidea used arithmetic
return as opposed to standard log return. The use of arithmetic re-
turn was motivated by [93]. Gidea used persistent homology in these
correlation networks to quantify changes when approaching a critical
transition. Gidea chose not to consider higher-dimensional homology
groups because the correlation network was small and therefore the
presence of higher dimensional structures would likely be accidental.
The findings of this study were that there were significant topological
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changes of the correlation network in the period prior to the onset of
the 2007-2008 financial crisis. The changes could be characterized by
an increase in the cross-correlation between various stocks, as well as
by the emergence of sub-networks of cross-correlated stocks. Lastly,
the authors stated that the findings were coherent with other studies
[93–96]. The studies by Nobi et al. [94, 95] focused on the analysis
correlation network topology during crises without the use of TDA.
The studies used correlation network constructed using the standard
log return r

i

(t) =

ln(r(t))�ln(r(t�1)
�

as opposed to Gideas arithmetic re-
turn. The study by Scheffer et al. [96] focuses on early-warning sig-
nals.

Another recent research is a study on using TDA on financial time se-
ries during financial crash periods by Gidea and Katz [82]. This study
focuses on the technology crash of 2000 as well as the great financial
crisis 2007-2009. The method was similar to the previous study i.e.
It used persistent Homology to detect and quantify topological pat-
terns in multidimensional time series, limiting to 1-dimensional ho-
mology. The authors used sliding window technique and extracted
time-dependent point cloud datasets to associate a topological space.
The topological features was encoded in persistence landscapes and the
temporal changes in the persistence landscapes was quantified via Lp-
norms. The findings was that in the vicinity of financial crashes the
Lp-norm exhibit strong growth prior to primary peak, which ascended
during a crash. More specifically, the Lp-norm of the persistence land-
scapes exhibited a strong rising trend 250 trading days prior to both
the dotcom-boom 03-10-2000 and the Lehman-bankruptcy 09-15-2008.
This study proved that TDA provides a new type of econometric anal-
ysis, which could complement other statistical measures. In this study
four major US stock indices; S&P 500, DJIA, NASDAQ, and Russel
2000 between 23-12-1998 and 08-12-2016 was analyzed, using daily log
return as data points. The point cloud to be analyzed thus became a
wxd-matrix where d = 4 and w was the size of a sliding window. Each
dimension was analyzed individually to form a 4-dimensional point
cloud.

The first study by Gidea [81] focused on groups of stocks. The dif-
ference from the studies in section 2.1.1 is that Gidea used persistent
homology to identify topological features as opposed to visual inspec-
tion. The study viewed the financial market as a complex system with
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different states similar to this thesis. This showed that TDA for low
dimensional topological analysis could potentially be used to obtain
useful information about dynamical systems. The first study used net-
work reconstructions of the time series. The second study by Gidea
and Katz [82] worked with time series similar to this thesis. It also
studied low-dimensional topological features with persistent homol-
ogy, similar to this thesis. One interesting aspect of this study was the
construction of 2D point cloud by plotting return data of two differ-
ent indices against each other. The fact that this study only investi-
gated low dimensional topological features means that it was essen-
tially looking at return spreads across assets. Holes in these point
clouds typically represents that the assets do not move similarly, and
thus the finding of this study essentially is a strong divergence in cor-
relation 250 trading days prior to the financial booms.

2.3 Topological Data Analysis for time se-
ries and signals

Time series do not have immediately obvious point cloud representa-
tion. Therefore, using topology to analyze it is not straightforward.
Previous studies on applying topological methods for analyzing time
series data will be presented in this section.

2.3.1 Takens embedding and persistence for Time-delay
systems

Fourier and power spectrum analysis have been used when time series
and signals are periodic. When the time series are non-periodic how-
ever the methods often yield faulty results [97]. Also, these methods
do not manage to appropriately account for systems evolution through
time [98].

Kasawneh et al. used a combination of Takens’ embedding and TDA
(maximal persistence and persistent homology) to analyze stochas-
tic delay equations [13, 83–85]. More specifically, in [85] they used
maximal persistence to analyze Hayes equation and stochastic version
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Mathieu’s equation i.e. equations wherein states evolve through time.
Point clouds of these equations were obtained via Takens’ embedding.
These point clouds were then analyzed with TDA. Their results in-
dicated that using Takens’ embedding in combination with TDA was
a valid tool for analyzing the stability of stochastic delay equations.
More specifically, it has been shown to be able to analyze the stabil-
ity of stochastic delay systems. In [83] datasets were simulated from
Euler-Maryuama method and the dataset was converted to a point
cloud via Takens embedding. The points cloud was then used to study
the equilibrium and periodic solutions using persistent homology. The
study was very similar to the previously mentioned study. However,
using persistent homology instead of maximal persistent did not al-
low for multidimensional analysis. The other studies conducted by
Khasawneh et al. are also similar [13, 84].

These studies show TDA can be used for analyzing dynamical systems
associated with time series by using Takens embedding. Both studies
are conducted on simulated data. The time series are processed in a
similar manner in this thesis. However, it is conducted on real data as
opposed to simulated data.

2.3.2 Sliding windows of time series for persistent ho-
mology

When analyzing time series it is often relevant whether or not anal-
ysis is conducted on segments or the whole time series. Looking at
segments is interesting for financial data because it is often taught that
financial markets move in regimes. A clear example of regime change
in financial data is when important financial news impacts assets [99].
This section outlines studies that have used TDA on sliding windows
technique on time series data to draw conclusions about both the seg-
ments and the whole time series by looking at continuous segments of
it.

Perea and Harer developed a method for topological study of time se-
ries data using sliding window and time-delay embedding [12]. Time-
delay embedding was used to transform windowed time series into
point clouds. They suggested that maximum persistence of these point-
clouds could be used to quantify periodicity at the signal. In other
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words, they used maximum persistence to measure "roundness" of
the point cloud. In the paper, they further pointed out that period-
icity, in this case, was defined as repetitions of patterns and quantified
the recurrence as the degree of circularity or roundness of the point-
cloud.

Berwald et al. claimed that detailed descriptions of complex high-
dimensional and chaotic systems were difficult or impossible to obtain
in many cases. They suggested that a more reasonable approach to an-
alyzing this kind of system was to recognize and mark transitions of
a system between qualitatively different regimes of behavior [11]. In
this paper, they developed a framework with a high degree of success
in picking out a cyclically orbiting regime from a stationary equilib-
rium regime in high-dimensional stochastic dynamical systems. This
was done by combining persistent homology with machine learning
techniques. To obtain the dynamical system description from observa-
tional time series Berwald et al. used the same sliding window method
as Perea and Harer. The point of interest in this paper was to detect
if the system underwent a bifurcation process with the use of persis-
tent homology. Lastly, classification algorithms were implemented to
check whether or not the system actually underwent bifurcation from
the persistence barcode constructed.

The first study of this section showed the possibility to find recur-
rences of a time series using time-delay embedding on sliding win-
dows in combination with persistent homology, showcasing the pos-
sibility to find structure in time series. However, Berwald et al. [11]
pointed out the difficulty in finding a good structure for complex sys-
tems. In the best case this thesis could hope to find clear structures
as described in Perea and Harer [12], but due to the complexity of fi-
nancial time series, this thesis instead investigates if it is possible to
use TDA to infer some knowledge about the property of financial time
series. The study by Berwald et al. [11] also showed the possibility of
combining machine learning and quantitative models with TDA. This
fact does not directly relate to the work in this thesis. However, it is
interesting to point out to highlight the added value of TDA.



Chapter 3

Theory Section

3.1 Topological Data Analysis for time se-
ries analysis

Topological data analysis (TDA) uses topology to find structure in
data. The methods include mapper and persistent homology [100,
101]. They are often used to extract information from noisy and com-
plex datasets and for comprehension of high dimensional data without
loss of information.

Many methods of dimensionality reductions also allow for compre-
hension of high dimensional data. These methods often reduce the
dimension by feature extraction, meaning that information not incor-
porated in the extracted features is lost in the process. TDA, on the
other hand, uses the topological abstractions to get a complete view of
the qualitative aspect of the data.

3.1.1 Homology

The geometry presented by data in a metric space is not always rele-
vant, sometimes more basic properties such as the number of compo-
nents, holes or voids are of interest. Algebraic topology captures these
properties by counting them or associating vector spaces or algebraic
structures to them. Homology of field coefficients associates a vec-

13
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tor space H
i

(X) to space X for each natural number i 2 {0, 1, 2, . . . }
such that dim(H0(X)) is the number of connected components in X ,
dim(H1(X)) is the number of holes in X , dim(H2(X)) is the number of
voids in X and dim(H

k

(X)) is the k-th homology group in X . The k-th
homology group describes the k-dimensional holes in X .

3.1.2 Persistent Homology

Persistent Homology is a method commonly associated with TDA. It
studies the qualitative aspects of data by computing its topological fea-
tures. It is robust to perturbations, independent of embedding dimen-
sions and coordinates and can thus provide a compact representation
of qualitative features of data [101]. As it based on homology it uses al-
gebraic topology, which has a well established theoretical foundation
for studying qualitative aspects of data with complex structure. As in-
put a point cloud on a metric space is used, such as X = {x1, . . . , xn

}
in an Euclidean Space Rd. To associate a topological space, simplicial
complexes for filtration values " 2 R (which for alpha complexes are
distances " > 0) are constructed.

3.1.3 Simplicial Complexes

A simplex is a n-dimensional counterpart to a triangle or tetrahedron.
The n-simplex is the n-dimensional polytope created by the convex
hull of its n + 1 vertices. Let � be an n-simplex. The vertex of � is each
of the n+ 1 points used to define � and the face of � is the convex hull
of any subset of the vertices of �. The definition of simplicial complex is:

Definition 3.1.1. A simplicial complex is a topological space realized as a
union of any collection of simplices ⌃ which has the following two properties:

• Any face of a simplex ⌃ is also in ⌃.

• The intersection of any two simplices of ⌃ is also a simplex.

A Voronoi decomposition can be used to define a simplicial complex.
Let S be a finite set of points in Rd, " > 0 and let S

"

denote the union
of balls

S
s2S B(s, "), where B are balls. Given the Voronoi diagram of

s 2 S, the Delaunay triangulation is obtained by connecting points at
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the intersection of the balls and Voronoi regions around s: V
s

T
B(S, ").

Two points are connected using edges and three points are connected
using triangles etc. The resulting complex created is called the alpha
complex of S at scale ", and is denoted A(S

"

)

After computing the simplicial complexes the features are prevalent
in the space S

✏

composed of vertices, edges, and other higher dimen-
sional polytopes. Using homology it is then possible to measure fea-
tures such as components, holes, voids and other higher dimensional
equivalent features. The persistence of these features are presented in
persistence Diagrams or persistence barcodes. However, the interpretation
of results is not straight-forward from a statistical point of view. The
space in which the persistence diagrams and barcodes resides in lacks
the geometric properties that would otherwise make it easy to define
basic concepts such as mean, median etc. [101].

A more detailed explanation of the methods is given by [102]. The
figures below show the construction of an alpha complex.

Figure 3.1: Construction of an alpha complex for random data points.

3.1.4 Persistence Diagram

Persistent homology captures how long topological features persists.
The ranks of the persistent homology groups are presented in persis-
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tence diagrams. It is a multiset of points in R2 and is defined as [101]:

Definition 3.1.2. A persistence diagram is a multiset that is the union of
a finite multiset of points in R2 with the multiset of points on the diagonal
� = {(x, y) 2 R2|x = y}, where each point on the diagonal has infinite
multiplicity.

A finite persistence diagram is a set of real intervals {(b
i

, d
i

)}
i2I , where

I is a finite set and b
i

is the birth of the i-th feature and d
i

is the death
of the i-th feature. An example of a birth-death diagram is shown in
fig. 3.2

Figure 3.2: Illustration of a birth-death diagram.

3.1.5 Maximum Persistence

The maximum persistence gives an indication of circularity and non-
circularity in a point cloud for i-th homology. It is the radius of the
most persistent homology group defined as:

maxPers(D
i

) = max(birth,death)2Di (death � birth).

D
i

is the persistence diagram for i-th homology. As a point cloud be-
come more circular, the persistence diagram has a more prominent off-
diagonal point [85].
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3.1.6 Persistence Landscape

Persistence Landscape is a piecewise linear function which is a sum-
marization of a persistence diagram. It is introduced by Bubenik and
is a useful vectorization for statistical analysis of persistence diagrams
[103, 104]. In essence, the persistence landscape rotates the persistence
diagram so that the diagonal becomes the new x-axis. The i-th order
of persistence landscapes creates a piecewise linear function from the
i-th largest value of the points in the persistence diagram after the ro-
tation. For a birth-death pair p = (b, d) 2 D, where D is the persistence
diagram, the piecewise linear functions, ⇤

p

(t) : R ! [0,1], are

⇤

p

(t) =

8
><

>:

t� b, t 2 [b, b+d

2 ],

d� t, t 2 [

b+d

2 , d],

0 otherwise.

The persistence landscape is then F : R ! R

{F (t) = sup

p2D
(⇤

p

(t))}.

Figures presenting persistence landscapes will be presented in the method
section.

3.2 Dynamical Systems

Dynamical systems are constructed from an abstract phase state or
state space. The coordinates of the space represent the states avail-
able. The system is considered dynamical because states can change
depending on time. Dynamical systems can be both deterministic and
stochastic. A dynamical system can therefore formally be described
as a phase or state space, S, a temporal space, T and an evolutionary
function �, where � : S⇥T ! S. In other words the state x

t+1 is given
by �(x

t

), where time t = 0, 1, 2, . . . . When the variables are discrete it
is called a state space, whereas when the variables are continuous the
equivalent space is called phase space.
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3.2.1 Takens embedding

To understand Takens embedding it is vital to understand what dy-
namical systems manifolds and embeddings are.

Dynamical systems are mathematical objects used to model phenom-
ena with states that vary over time. These systems are often used to
predict, explain or understand phenomena. The state at time t is a
description of the system and the evolution of the system is a trajec-
tory through the space of possible system states. Attractors are points
in the space that the trajectory is drawn towards. These possible sys-
tem states are called the state space or phase space of the dynamical
system. A time series can be projections of observed states from such
a dynamical system. The manifold of these dynamical systems can,
therefore, contain information which is useful for understanding the
underlying phenomena [105]. An underlying assumption in this the-
sis is that financial time series are dynamical systems.

An n-dimensional manifold is a topological space, M, for which every
point x 2 M has a neighborhood homeomorphic to Euclidean space
Rn [106]. I.e. it is a space that is locally Euclidean, but globally might
be complicated topological structures. A smooth map � : M1 ! M2,
where M1 and M2 are smooth manifolds, is an embedding of M1 in
M2 if � is a diffeomorphism from M1 to a smooth submanifold of M2.
M2 is then the embedding space with embedding dimension dim(M2).
Another way to express this is that �(M1) is a realization of M1 as a
submanifold of M2.

Takens delay coordinate embedding makes it possible to reconstruct
a time series into a higher dimensional space so that the topology of
the original manifold which generates the time series values are pre-
served. The point cloud reconstructed from a time-series has the same
topology as the attractor of the dynamical system. Whitney’s embed-
ding theorem states that all n-dimensional manifolds can be embedded
in 2d+1-dimensional Euclidean space [107]. Takens extended this the-
orem by proposing that an d-dimensional manifold which contains the
attractor A could be embedded in R2n+1 [108]. Takens theorem finds
the function � which maps M1 ! M2, where dim(M2) is the embed-
ding dimension which can be R2n+1.

So the Takens embedding gives the possibility to obtain a continuous
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transformation from the original manifold M to X 2 Rd where d is the
embedding dimension and X is the trajectory matrix defined as

Definition 3.2.1. Let x = {x1, x2, . . . , xN

} be a time series and X be a
trajectory matrix consisting of sequence of state variable observations with
d-dimensions and ⌧ time lag i.e.

X =

2

6664

X1+(d�1)⌧

X2+(d�1)⌧
...

X
N

3

7775
=

2

6664

x1+(d�1)⌧ . . . x1+⌧

x1

x2+(d�1)⌧ . . . x2+⌧

x2
...

...
...

...
x
N

. . . x
N�(d�2)⌧ x

N�(d�1)⌧

3

7775
.

where each point in space is represented by a row. This is our state space
reconstruction.

An attractor is then the pattern created by the points X in space. A
more formal definition is given by [109] as:

Definition 3.2.2. Suppose x(t) = v
j

(y) for some j = 1, . . . , n where v(t) =
(v1(y), . . . , vn(t)) is a curve on a manifold ⌦. Suppose v(t) visits each part of
⌦ which means that v(t) is dense in ⌦ under its topology. Then there exists
⌧ > 0, K 2 Z, where Z denotes the real numbers, such that the correspond-
ing vectors (x(t), x(t + ⌧), . . . , x(t + K

⌧

)) are on a manifold topologically
equivalent to ⌦.

Takens embedding assumes that the time series data is not contami-
nated by noise [19], as such noise get amplified according to the largest
Lyapunov exponent in the process and can greatly affect the recon-
structed attractor [110]. Takens embedding requires the choice of em-
bedding dimension, m, and time delay, ⌧ . There is no generic opti-
mal method for choosing embedding parameters [111]. The parameter
choices are important for a good quality attractor reconstruction when
time series have finite length and are noisy. Below some methods for
choosing parameters are presented.

Determination of dimension

A d-dimensional topological space can be embedded in 2d + 1 Eu-
clidean space [107]. The problem with this approach is that the orig-
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inal attractor dimension d is not always known. A tighter boundary
is given by Sauer who showed that the required dimension could be
d > 2d0, where d0 is the box-counting dimension of the attractor of
the underlying system [112]. Another approach is the False nearest
neighbors approach proposed by Kennel et al. [113]. A property when
embedding is that when m embedding dimensions are too low, distant
points in the original phase space are close points in the reconstructed
phase space. These points are called false neighbors. When calculat-
ing the false nearest neighbor for each point x

i

look for the nearest
neighbor x

j

in an m-dimensional space. Then a ratio

R
i

=

|x
i+1 � x

j+1|
|x

i

� x
j

|

is calculated. If the ratio R
i

exceeds a given threshold R, then the point
is marked as a false neighbor. If the embedding dimension is high
enough the ratio R

i

is zero. One way to calculate this is to embed the
time series x with lag ⌧ on a range of different embedding dimensions
m. Find all nearest neighbors and compute the percentage of neigh-
bors that remain when additional dimensions are unfolded [114].

Another method for determining m is to use singular value decompo-
sition as used in [109]. A sufficient m should be given by the same
number of linearly independent vectors derived from a trajectory ma-
trix [115, 116].

Determination of time-delay

Two criteria are important when estimating time delay ⌧ . 1) ⌧ has to
be large enough so that the information from the value of x at time
n + ⌧ is significantly different from information already known from
observing values of x at time n. 2) ⌧ should not be large enough so that
the system loses memory of its initial state [117]. In the case that the
dataset is infinite and noise free the time delay ⌧ is not relevant, and
any value chosen should suffice. As most data does not follow these
properties choosing a good ⌧ is important in most cases. If ⌧ is too
small the attractor becomes only a diagonal in the reconstructed space
because of high correlation among coordinates. If ⌧ is too large then
components will be uncorrelated, which means that the reconstructed
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attractor does not represent the true dynamics of the system. Further,
⌧ should not be close to an integer multiple of a periodicity of the
system. There is currently no general way of determining optimal ⌧
[118]. The methods often used to determine ⌧ is based on autocorrela-
tion or mutual information. Two common autocorrelation approaches
are when the autocorrelation first approaches 0 or 1/e. Lastly, esti-
mations of correlation dimension have also been used to determine ⌧

[111].

3.3 Properties of Financial Time Series

Financial time series can be viewed through different resolutions. Com-
mon data resolutions are 1-min, 3-min, 5-min, 10-min, 15-min, 30-min,
60-min, 1-hour, 2-hour, daily, week, month, quarter time series. Finan-
cial time series are results of complex interactions caused by supply
and demand of assets and capital. Relative to other economic time
series the financial time series have some characteristic properties and
shapes caused by the micro structure of the financial market [119]. The
complex underlying dynamics causes these time series to have high
volatility which change through time. Systematic factors can cause
these time series to have trend and cycle part. However, any seasonal
part often does not play any significant role [119]. It is often assumed
that financial time series are martingales, meaning that only the lat-
est price influence the current price [119]. This is mathematically ex-
pressed as:

E[P
t+1|Pt

, P
t�1, . . . ] = P

t

,

i.e. The conditional expectation of the next price, given all the past
prices, is equal to the most recent price. It assumes that all non-overlapping
price changes are linearly independent. Another way to express this
is

P
t

= P
t+1 + a

t

,

where a
t

is called the martingale difference and is typically assumed
to be a

t

⇠ N(0, �2
).
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The asset price cannot be smaller than zero. Therefore, the minimal
asset net return is

R
t

=

P
t

� P
t�1

P
t�1

= �1.

Conventionally it is assumed that the asset distribution is normally
distributed. The gross return for k period’s from time t � k to time t

can be expressed as the products of the periods returns:

R
t

(k) + 1 = (R
t

+ 1) · (R
t�1 + 1) · · · · · (R

t�k+1 + 1) =

=

P
t

P
t�1

· P
t

P
t�1

. . .
P
t�k+1

P
t�k

=

P
t

P
t�k

.

These returns terms are normally distributed, but the product of them
is not. To overcome this a logarithmic transform is used so that log-
normal distribution is obtained. The logarithmic transform of random
variable with log-normal distribution is normally distributed,

X ⇠ Lognormal(µ, �2
),

Y = lnX ⇠ N(µ, �2
).

Therefore, by applying logarithmic transformation to the log-normally
distributed gross returns one obtains normally distributed log-normal
returns, which we can take the sum of,

R
t

+ 1 =

P
t

P
t+1

⇠ lognormal(µ, �2
),

r
t

= lnR
t

+ 1 = lnP
t

� lnP
t�1 ⇠ N(µ, �2

).

The return for k periods from t� k to time t is expressed

r
t

(k) = r
t

+ r
t�1 + r

t�2 + · · ·+ r
t�k+1 =

tX

i=t�k+1

r
i

.

An example is shown of financial time series and corresponding log-
normal return is also shown in figure 3.3 and figure 3.4:
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Figure 3.3: Financial time series of the Swedish Autoliv stock in
OMXS30 between 1997 - 2017.

.

Figure 3.4: Log-normal return plot corresponding to figure 3.3.
.

Normality of log-return is a common assumption in quantitative fi-
nancial studies [119]. The distribution is symmetric so the skewness
and kurtosis are expressed as:

SK
r

= E


(r

t

� µ)3

�3

�
= 0,
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K
r

= E


(r

t

� µ)4

�4

�
= 3.

However, empirical studies have shown that market estimates of skew-
ness are negative and the point estimates of return means are close to
zero, which means that the return distribution is skewed to make big
negative returns more probable than big positive returns. The kurto-
sis has been empirically shown to be consistently bigger than 3, indi-
cating that empirical distributions are more peaked than a theoretical
normal distribution. This means that low positive and negative re-
turns are more probable than suggested by a theoretical normal distri-
bution. Fig. 3.5 shows the theoretical and empirical log-normal return
distribution of Autoliv stock.

Figure 3.5: Theoretical normal distribution and Empirical Log-normal
return distribution of Autoliv.

.

The fact that the empirical distributions are skewed and more peaked
than theoretical distribution has been well known for a long time and
have been described as far back as the 1960s by Mandelbrot and Fama
[120, 121]. Some studies suggest that the Laplace distribution is a more
suitable distribution for financial returns [122].
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Figure 3.6: Theoretical Laplace distribution and Empirical Log-normal
return distribution of Autoliv

.

Fig. 3.6 show that Laplace distribution does seem to fit the empirical
log-return distribution better. QQ-plots show their fitness to respective
distributions.

Figure 3.7: (Left) ALIV normal QQ plot, sum of squared error SSE =

0.1645, (Right) and Laplace QQ plot, SSE = 0.0268.

The parameters for the QQ-plot is found using least-squares regres-
sion. The fitted Laplace distribution is La(µ = 0, b = 0.15). The SSE for
laplacian QQ-plot is lower than the normal QQ-plot indicating that
Laplace distribution has a better fit for financial returns and is a vi-
able alternative to a normal distribution. Further, the QQ-plot shows
that the empirical distributions have heavy tails in comparison to a
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normal distribution and only heavy left tail in relation to Laplace dis-
tribution.

Lastly, it is often assumed that log-returns are independent, identically
distributed with zero mean and constant variance i.e. financial time
series are often assumed to be strict white noise processes. However,
empirical studies have shown that these time series often are more
complex than this [119]. None of the conditions are fulfilled in reality.
In fact, the volatility has been shown to be constantly changing over
time. This phenomenon studied as early as the 1960s by Mandelbrot
[120].

3.4 Time Series and Signal De-noising

Financial time series inherently are quite jittery, which might affect
Takens state space reconstruction. Smoothing might remove some of
the jitters and make Takens state space reconstruction more efficient.
Below are some basic smoothing methods.

3.4.1 Moving Average

The moving average (or rolling average) is a smoothing method for
time series. It is created by averaging different subsets of fixed size of
the data. The moving average is created by shifting forward the subset
window along the time series. I.e. given a data sequence {a

i

}N
i=1 an n-

moving average is a sequence {s
i

}N�n+1
i=1 defined from a

i

by taking the
arithmetic mean of subsequences of b terms.

s
i

=

1

n

i+n�1X

j=1

a
j

.

The sequences of S
n

giving n-moving averages are

s2 =
1

2

(a1 + a2, a2 + a3, . . . , an�1 + a
n

),
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s3 =
1

3

(a1 + a2 + a3, a2 + a3 + a4, . . . , an�2 + a
n1 + a

n

).

The method is often used as a technical analysis indicator for financial
data.

3.5 Time Series Point Cloud Representation

Many different approaches can be used to represent a financial time se-
ries as a point cloud. This section will go through some of the methods
available.

3.5.1 Sliding Window

Sliding window technique can be used to get different sets of point
clouds from a single time series. Using this method time series data
f(T ) are segmented into SW

M,tau

= {f(t), f(t + ⌧), . . . , f(t + M
⌧

} i.e.
M + 1 partitions, where M depends on our time series length T , win-
dow size M

⌧

and step size ⌧ . An illustration of the procedure is shown
in figure 3.8.

Figure 3.8: Illustration of Sliding window procedure, see also Parea
and Harer [12].

.
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3.6 Principal component analysis

The computational time for construction of alpha complexes on high
dimensions can be prohibitively high because of the complexity of the
Delaunay triangulation. For n points in Rd the complexity for Delau-
nay triangulation can be O(n

dde
2
) [123, 124]. In practice the complex-

ity is much lower in R3, as the complexity is bound to O(n log n)) for
points distributed on generic smooth surfaces in R3 [125]. Therefore,
dimensionality reduction can be performed to reduce the dimensions,
which makes computations for large datasets more feasible. Princi-
pal component analysis makes it possible to summarize variables with
a smaller number of components. These components collectively ac-
count for the most of variance of the original data. The principal com-
ponents are normalized linear combinations of the original data fea-
tures that are uncorrelated to each other [126],

Z
k

= �1kX1 + �2kX2 + · · ·+ �
pk

X
p

,

where Z
k

is the k-th principal component, X1, . . . , Xp

are p different
features of the data and �1k, . . . ,�pk

are the loadings or weights for Z
k

,
where

P
p

j=1 �
2
jk

= 1.

The variance or proportion of variance of the PCA can be used as a
diagnostics tool for PCA. The variance for k-th principal component
is

1

n

nX

i=1

Z2
ik

=

1

n

nX

i=1

pX

j=1

(�
jm

x
ij

)

2,

and the proportion of variance explained by k-th principal component
is obtained by dividing the k-th principal component by the number
of features,

1
n

P
n

i=1 Z
2
ikP

p

j=1 V ar(X
j

)

=

1
n

P
n

i=1

P
p

j=1(�jm

x
ij

)

2

1
n

P
p

j=1

P
n

i=1 x
2
ij

=

P
n

i=1

P
p

j=1(�jm

x
ij

)

2

P
p

j=1

P
n

i=1 x
2
ij

.

A bar chart representing the variations or proportion of variance of
each principal component is called a scree plot. These PCA variations
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are proportional to the eigenvalues and can be used as diagnostics
tools for PCA. It is desirable that the first few principal components
account for most of the variation of the data.

3.7 Entropy

3.7.1 Shannon Entropy

Shannon entropy H is defined as

H = �
X

i

p
i

log

b

p
i

,

where p
i

is the probability of a certain occurrence. It is an estimate
of the average minimum number of bits required to encode a piece of
information.

3.7.2 Gzip compress-to-ratio

Gzip compress-to-ratio is the ratio of a file compressed with gzip against
the original file i.e. how much entropy there is in a piece of informa-
tion in practice.

Gzip compress-to-ratio =

Original file size
Gzip compressed file size

.
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Method

This section outlines the methodology used in this thesis.

4.1 Data pre-processing

The data used consisted of a financial time series of nanosecond FX
data and quantum noise, QN, reference data. The datasets were pro-
vided by Marcello Paris from the investment bank UniCredit. For this
thesis, the ask price was used simply because it is the price used for
spot purchases. To make the FX data stationary log-return transforma-
tion was used i.e.

r
i

= lnP
t

� lnP
t�1.

The FX dataset was then standardized to get it to unit variance by set-
ting

X
standardized

=

X
raw

� µ

�
.

The unit variance was required to make it comparable with other datasets.
Standardization was used instead of normalization because the pro-
cedure was unbounded. This was necessary because extreme values
could contain important information in financial data.

30
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An investigation of the probability distribution of the FX dataset was
then performed to know what type of distribution on the random data
would make the fairest reference. The investigation was conducted
using empirical distributions and QQ-plots. The quantum noise data
were normalized to the open interval (0, 1) with

X
normalized

=

X
raw

�X
min

X
max

�X
min

.

The normalization was required to make it more practical as a tool
for random variable generation from different distributions. As the-
ory section 3.3 has stated it is often assumed that financial data re-
turns are normally distributed. Also, there are studies claiming that a
Laplacian distribution is a better fit than a normal distribution[122]. To
obtain normally distributed N(0, 1) random variables from U(0, 1) dis-
tributed data inverse transform sampling was used. Inverse transform
sampling is defined as:

Y = µ+

p
2�erf�1

(2 ⇤X � 1), X 2 U(0, 1), Y 2 N(µ, �),

where the right side of the equation is the inverse CFD of N(µ, �). If
N(µ, �) = N(0, 1) then normally distributed random variables can be
used get Laplace distributed L(0, b) random variables. The inverse
transform sampling was used to sample N(0, 1) distributed random
variables Z

k

, k 2 {1, · · · , 4}. Then following formula gives L(0, b) ran-
dom variables from N(0, 1) random variables:

V =

Z1 · Z2 � Z3 · Z4

b
, Z1, Z2, Z3, Z4 2 N(0, 1), V 2 La(0, b),

where setting the scaling factor b = 1 gives La(0, 1) samples from the
N(0, 1) samples. All random variables were standardized.

Lastly because of truncation error and the fine granularity of the nanosec-
ond FX data, the return-values from the financial time series were dis-
crete. To make the datasets comparable in with respect to complexity,
the QN data was quantized. To quantize the QN data, the number of
unique log-returns was calculated. The QN was then multiplied by
scaling factor s, rounded to nearest integer after scaling, and rescaled
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to original scale by dividing by the scaling factor s to keep the stan-
dardization properties µ = 0 and � = 1 as good as possible. The
formula for quantization is presented below:

QN
discrete

=

kQN · sk
s

.

4.2 Analysis process description

This section gives an overview of the analysis process.

4.2.1 Sliding window

To analyze if different segments of the time series have different topo-
logical features sliding window first used to partition the time series
into different windows. The sliding window was presented above in
theory section 3.5.1. There are two parameters which need to be cho-
sen; window size w and the step or gap size g. The choice of param-
eters should be viewed as looking at the data with different scaling.
Choices were made for computational reasons and different parame-
ters were chosen to verify results experimentally.

4.3 Point cloud representation of time series
using Takens embedding

A State space reconstruction was then performed using Takens embed-
ding on each sliding window partition. The method was presented in
the theory section 3.2.1. It constructs a state space from time series
values and requires two parameters; time delay ⌧ and embedding di-
mension m. This transforms a time series X = {x1, x2, . . . , xN

} to a
trajectory matrix f(X) = {X1+(d�1)⌧ , X2+(d�1)⌧ , . . . , XN

}, where each
X

n+(d�1)⌧ are windows of the original time series X containing m data
points. Each window X

n+(d�1)⌧ then represents a point in the state
space reconstruction and the points reside in a m dimensional space.
When Takens embedding did not yield any successful reconstructions,
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the specific window was discarded. These cases are prevalent when
windows contain only single value i.e. W = {0, 0, . . . , 0}. As men-
tioned in the theory section 3.2.1 there are no universal method for
selecting optimal ⌧ and m. However, there are some standards for pa-
rameter selection. For the sake of comparability and computational re-
sources, same parameters were used throughout. The choice of param-
eters should be seen in this case purely as motivated heuristics.

⌧ has to be large enough so that the information from values of the time
series, X , at time n + ⌧ is significantly different from what is already
contained in X

n

and ⌧ should not be large enough to lose memory of
its initial state[117]. It should also not be large be an integer multiple
of a periodicity of the system [118]. The periodicity can be detected as
peaks in the spectral density [127]. For the selection of ⌧ a qualitative
analysis of the data based on the properties of financial time series
was used in conjunction with the more formal methods of first zero
and first 1/e decay of the autocorrelation function [111]. To check for
periodicity in the system power spectral density estimation by Welch
method was used.

The embedding dimension of a d-dimensional topological space can
be 2d + 1 in Euclidean space [107]. However, the original dimension
d is not known in the FX dataset. A common problem when having a
low embedding dimension m is that distant points in the original state
space are close in the reconstructed space. The false nearest neighbors
(FNN) approach addresses this problem and is therefore used to find
the embedding dimension m [113]. Details of the method are found
in theory section 3.2.1. Ideally, zero FNNs would be preferred. How-
ever, the dataset had FNN with very long convergence towards zero
or asymptotic convergence above zero which would make it either
impossible or require unfeasible computational power to reach zero
FNN. To make the computations feasible a the embedding dimension
m was selected to be the mean of the derivative of the FNN lower than
an arbitrary set threshold ✏,

m = E[dFNN], dFNN
i

 ✏, i 2 1, 2, 3, . . . , N,

where dFNN is the derivative of FNN and N is the number of embed-
ding dimensions in FNN.
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It should be noted to the reader that Takens embedding is not the
only available method for point cloud representation of time series.
Gidea et al. use a return point-cloud, whereby a point cloud is created
by having different return time series as features [81, 82]. Using this
method means that an analysis of topology in volatility is conducted.
The method does not allow for topological data analysis of one di-
mensional time series. Other methods that can be used for include
circular coordinate representation of time series, network representa-
tions (such as recurrence network [128] and complex networks [129])
and visibility graphs [130]. Takens embedding was chosen because it
shows properties of the dynamical system of time series.

4.4 Dimensionality reduction of Reconstructed
state space

The choice of embedding dimension m � 3 made the reconstructed
state space high dimensional. To make the extraction of topological
features computationally feasible for m dimensions PCA was used to
reduce the dimensions from Rm ! R3. The reason PCA was chosen
was that it represents the dimensional directions with most variations
and thus contains most useful information. PCA spree plots are used
as diagnostics tools for the PCA. A drawback of this method or any
other dimensionality reduction method is that information is lost in
the reduction of dimensions.

4.5 Topological data analysis of dimension-
ality reduced reconstructed state space

It is deceivingly hard to detect topological features by visual inspec-
tion even in low dimensions. To extract the topological features per-
sistent homology was employed. The point cloud resided in R3 and
had a large amount of data points. Alpha complexes were fastest to
construct and were therefore used to represent the topological fea-
tures.
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The birth-death diagrams resulting from persistent homology was then
used to construct persistence landscapes. The use of persistence land-
scape was two-fold. Firstly the birth-death diagrams can be hard to
interpret when there is a lot of features. More importantly, it does
not reside in a vector space, but rather in a Polish space and therefore
common statistical procedures are not efficient at analyzing the out-
puts [131]. The persistence landscape, on the other hand, resides in
a vector space and are easily combined with common statistical tools
[103]. One way to make it possible to use statistics on the persistence
diagrams is to use Wasserstein distance [131]. However, the Wasser-
stein distance was computationally unfeasible for this thesis. The con-
struction of persistence landscapes can also be quite computationally
expensive if there are a lot of topological features in the birth-death
diagram. As a speedup noisy topological features can be eliminated
from the birth-death diagram before constructing the persistence land-
scapes. This can be done by specifying a cut-off value ✏ and removing
all topological feature below this radius threshold but was not needed
in this thesis.

Since the persistence landscape resides in the vector space statistical
procedures can aid in their interpretation [103]. In this thesis, the mean
landscape was used to summarize the persistence landscape. Integral
of the persistence landscapes and maximum persistence was used for
window-by-window comparison with complexity calculations. The
persistence landscape integrals and maximum persistence were com-
pared against Shannon entropy and gzip compress-to-ratio. Lastly,
comparisons of the distribution of the persistence landscape integrals
for the FX data and reference data was also performed.
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Synthetic examples of topolog-
ical data analysis of reconstructed
state spaces

This section provides synthetic examples of topological data analysis
of reconstructed state spaces to give the reader an intuitive under-
standing of the process used in this thesis. Takens embedding allows
for reconstructing a time series into a m-dimensional point cloud. The
topological features in the point cloud then resemble some property of
a time series. To give an understanding of what these topological fea-
tures represented in a time series this section will use simulated data
and their corresponding state space reconstruction to demonstrate. Fur-
ther, the effect of noise and quantized data on the reconstructed state
space will also be shown.

5.1 Pure models

The first example presented is a simple sine-wave simulated with 1000
data points

y = sin(x), 0  x  16⇡.

Using m = 2 following state space reconstructions are recreated using

36
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different ⌧ .

Figure 5.1: (Left) The sin-plot, (middle) reconstructed state space ⌧ = 1

(right) and ⌧ = 100.

A smaller ⌧ yield a more collapsed representation almost becoming
a diagonal. However, both figures are homotopy equivalent as both
form loops. Their topological features have different persistence in the
persistence diagram.

Figure 5.2: (Left) Persistence diagram (right) and landscape for ⌧ = 1.

Figure 5.3: (Left) Persistence diagram (right) and landscape for H1 ⌧ =

100.

Fig 5.2 and 5.3 show the persistence diagrams and landscapes for the
sin-wave simulated values. The landscape summarizes the H1 com-
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ponents (red components). Notice that they indicate the same homol-
ogy. The homological persistence differs when changing ⌧ . A smaller
⌧ gives a smaller persistence, meaning that noise could more easily
"hide" the true topology in the case of smaller ⌧ . This is because a
smaller ⌧ incorporates less information to the state space reconstruc-
tion. This phenomenon will be further investigated further down in
section 5.2.

The second model is composed of high and low-frequency part and a
linear component. The example is simulated with 1000 data points.

y = k · sin(x) · sin(ax) + a · x, 0  x  ⇡, k = 4, a = 32.

Using m = 3 allows each of the three components gets an own axis
representation on the phase state reconstruction.

Figure 5.4: (Left) Plot of the second equation, (middle) reconstructed
state space ⌧ = 1 (right) and ⌧ = 20.

The case when ⌧ = 20 yields an oval with a void. The spiraling loops
are composed by the high-frequency part sin(ax), the radius compo-
nent is composed by the low-frequency part sin(X) and the length is
composed of the linear component x in the equation. k is only a scal-
ing component. Since ⌧ = 1 yielded a collapse result only ⌧ = 20

persistence diagram will be presented.
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Figure 5.5: Persistence for ⌧ = 20(Left) Birth-death diagram, (right)
landscape for H2.

The landscape in fig 5.6 shows the summary of H2 components instead
(the blue components).

The phenomenon of state space reconstruction collapsing to the diag-
onal due to low ⌧ is shown in the case when ⌧ = 1 in fig 5.4[117].
Interestingly applying PCA to the collapsed reconstruction state space
with ⌧ = 1 in 5.4, gives an "enhanced" representation of the topology
of the figure.

Figure 5.6: True topology of the collapsed state space reconstruction
when ⌧ = 1 is spanned up by PCA.

This property can be attributed to the fact that the principal compo-
nents span up the basis that accounts for most of the variation. The
collapsed representation is not completely collapsed and only visually
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obscuring the topological properties in this case. However, it is possi-
ble that other cases can completely obscure the topological properties.
Therefore, PCA should only be seen as an enhancement of topologi-
cal properties in an environment when the topology of the point cloud
is more discernible than the noise in the data. More importantly, the
PCA does not change the underlying topology in the case when the di-
mensions Rk ! Rk. The same cannot be necessarily be said for when
Rk ! Rn, where n < k.

5.2 Noisy models

Now noise is added to

y = k · sin(x) · sin(ax) + a · x+ ✏, 0  x  ⇡, k = 4, a = 32.

The noise component is

✏ = f · (max(x)�min(x))

50

,

where f is a scaling factor. A low noise example f = 1 and high noise
example f = 10 is presented.

Figure 5.7: Model with noise added (left) f = 1 and (right) f = 10.

When ⌧ = 1 following state space reconstruction of low noise model
and PCA for it is given



CHAPTER 5. SYNTHETIC EXAMPLES OF TOPOLOGICAL DATA
ANALYSIS OF RECONSTRUCTED STATE SPACES 41

Figure 5.8: (left) State space reconstruction ⌧ = 1 and (right) PCA of
the results.

When the noise is larger than the small variation caused by a collapsed
state space reconstruction, the PCA in combination with persistent ho-
mology is no longer available to recover the true topology. Now the
dominating factor becomes the noise which hides the true topology of
the data. The persistence diagram shows that the same as mentioned
and is therefore left out. As it did not manage to uncover the low noise
model. The high noise model for ⌧ = 1 is omitted.

Now using the low-noise for ⌧ = 20 gives the following result.
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Figure 5.9: (left) State space reconstruction (⌧ = 20, f = 1) and (right)
PCA of the results.

Figure 5.10: (left) Persistence diagram of state space reconstruction ⌧ =

20 and (right) its corresponding landscape of H2 groups.

The results in fig 5.6 and 5.10 are similar. This indicates that adding
a small amount of noise to a reconstructed state space do not signifi-
cantly impact the topological properties when the reconstruction is not
collapsed to the diagonal. Now the following results are obtained for
the high noise case f = 10 with ⌧ = 20.



CHAPTER 5. SYNTHETIC EXAMPLES OF TOPOLOGICAL DATA
ANALYSIS OF RECONSTRUCTED STATE SPACES 43

Figure 5.11: (left) State space reconstruction (⌧ = 20, f = 10) and
(right) PCA of the results.

Visually inspection does not show any clear H2 groups in the high
noise model. Applying persistent homology to analyze the data fol-
lowing was obtained.

Figure 5.12: (left) Persistence diagram of state space reconstruction
(⌧ = 20, f = 10) and (right) its corresponding landscape of H2 groups.

H2 is considerably less prominent but persistent homology still man-
ages to detect it. The noisy features are also much more prominent in
this case as seen in fig 5.12.



44 CHAPTER 5. SYNTHETIC EXAMPLES OF TOPOLOGICAL DATA
ANALYSIS OF RECONSTRUCTED STATE SPACES

5.3 Smoothing noisy data

Smoothing the noise makes the values contain less jitter. By removing
this the topology of the manifold generated by state space reconstruc-
tion becomes much clearer. To show this the high noise model with
f = 10 is reconstructed with ⌧ = 20 and then smoothed using mov-
ing averages with window size M = 20. The following results are
obtained

Figure 5.13: (left) State space reconstruction of smoothed model with
(⌧ = 20, f = 10) and (right) corresponding PCA.

Figure 5.14: (left) Persistence diagram of state space reconstruction of
smoothed model with (⌧ = 20, f = 10) and (right) its corresponding
landscape of H2 groups.

Now comparing fig 5.14, 5.12 and 5.5 it is evident that smoothing



CHAPTER 5. SYNTHETIC EXAMPLES OF TOPOLOGICAL DATA
ANALYSIS OF RECONSTRUCTED STATE SPACES 45

data can improve topological features prominence. Smoothing did not
manage to uncover the void when ⌧ = 1.

5.4 Effect of quantization of data

The data is quantized using

Y
discrete

=

kY · sk
s

,

where s = 0.5 is chosen, to get quantization fewer steps than rounding
to integers. The following pure model is quantized:

y = k · sin(x) · sin(ax) + a · x, 0  x  ⇡, k = 4, a = 32,

and the noisy model. The models are presented below.

y = k · sin(x) · sin(ax) + a · x+ ✏, 0  x  ⇡, k = 4, a = 32.

Figure 5.15: (left) Quantized pure model and (right) quantized noise
model with f = 10.

First looking at the pure model, the topological properties of the man-
ifold reconstructed are clear without smoothing techniques.
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Figure 5.16: (left) Reconstructed state space of the quantized pure
model ⌧ = 20 and (right) corresponding persistence diagram.

Adding low noise to the model does not significantly affect the re-
sults and figures of them are therefore omitted. Adding high noise
f = 10 makes the topological features hidden in the reconstructed state
space.

Figure 5.17: (left) Reconstructed state space of the quantized noisy
model ⌧ = 20 and (right) corresponding persistence diagram.



CHAPTER 5. SYNTHETIC EXAMPLES OF TOPOLOGICAL DATA
ANALYSIS OF RECONSTRUCTED STATE SPACES 47

Now by smoothing the quantized data, we can again recover the topol-
ogy.

Figure 5.18: (left) Smoothed quantized noisy model (M = 20, ⌧ = 20),
(middle) its reconstructed state space and (right) corresponding per-
sistence diagram.

The noisy model f = 10 was smoothed with window size M = 20,
and as fig 5.18 show, the reconstructed state space manages to recover
the same topology as the pure model. While topological features can
be detected in noisy data they are much less persistent. When this low
persistent is coupled with quantized data, the topological features can
disappear. To counteract the effect of quantization, smoothing can be
used.

5.5 Higher dimension

Previous sections presented the models that could be reconstructed
perfectly using 3 dimensions. This section presents an example of a
model requiring 4 dimensions to be presented using only 3 dimen-
sions. The following model used is

y = (k · sin(x) · sin(ax)+ a ·x) · sin(4x), 0  x  ⇡, k = 4, a = 32.

This is the same model as above model containing the H2 group but
multiplied by another sinus function. This sinus function should be
represented by an additional dimension. As it is a sinus function with
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two periods, it should be represented as a high dimensional loop. How-
ever, it is not possible to visualize such a case. Performing PCA on a
state space reconstructed using the models with ⌧ = 20 and m = 4 to
get the dimension down to 3 yields the following result.

Figure 5.19: (left) PCA of Reconstructed state space of the 4D model
⌧ = 20, (middle) corresponding PCA scree plot and (right) persistence
diagram.

The PCA of a higher dimensional structure does not necessarily re-
trieve the topology of the higher dimensional structure. Instead, it
shows the topological feature of the principal components. Now adding
noise with noise factor f = 10 and quantizing the data with scaling
factor s = 0.5 the same procedure yields

Figure 5.20: (left) PCA of Reconstructed state space of the noisy quan-
tized 4D model ⌧ = 20, (middle) corresponding PCA scree plot and
(right) persistence diagram.

It is evident that having quantized noisy data the topological features
easily become obscured. Now using the moving average with window
size M = 20. The following results are obtained.
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Figure 5.21: (left) PCA of Reconstructed state space of the smoothed
noisy quantized 4D model ⌧ = 20, (middle) corresponding PCA scree
plot and (right) persistence diagram.

Using the moving average with window size M = 20, can completely
recover the topological features obscured by quantizing noisy data.

Interestingly when taking the PCA the topological features are mainly
H1 in this case.
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Results

6.1 Data and pre-processing

The datasets consisted of nanosecond EURUSD and quantum noise,
QN, provided by UniCredit. The nanosecond EURUSD had approx-
imately 8.26 million data points between 2017-08-14 and 2017-08-18.
The dataset was composed of Unix time stamp, bid and ask data. All
values were denoted to the fifth decimal point. The data is presented
below:

Figure 6.1: Sample raw data of 2000 data points with bid, ask (left) and
corresponding log-returns for ask (right).

The data is then standardized to get it to unit variance and the result-
ing log-return plot becomes:

50
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Figure 6.2: (Left) standardized log-return ask prices with µ = 0 and
� = 1. (Right) Empirical and best fitted laplace distribution L(0, 0.92)

of standardized log-return ask prices.

The QN data is used as a reference of randomness. It is provided in
binary format but is converted to 4-byte integers to get integer rep-
resentation of the randomness. The data is normalized to the open
interval (0, 1). This made the QN data uniformly distributed U(0, 1).
The plots below show the normalized QN data.

Figure 6.3: (Left) Sample of 20000 QN data points, (middle) distribu-
tion of the data, (right) Uniform QQ-plot showing U(0, 1) fit.

It was desirable to have the reference data properties as close to the
EURUSD data as possible, therefore an investigation of the properties
of EURUSD data was conducted. QQ-plot was performed with nor-
mal, Laplace and uniform distribution. The plots of the results are
shown below.
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Figure 6.4: Best fitting QQ-plot (Left) Sample of 2000 of EURUSD QQ-
plot for N(0, 1.15) ⇡ N(0, 1) , SSE = 1824.2428, (middle) QQ-plot for
La(0, 0.92) ⇡ La(0, 1), SSE = 1124.2149 (right) and Uniform QQ-plot
for U(�1.6, 1.6), SSE = 8078.1710.

From the QQ-plot it was evident that the empirical distribution had
heavier tails than both the normal and Laplace distribution. The left
tail was heavier than the right tail, which indicated that negative draw-
downs were more likely than positive gains as extreme events. The
results SSE

uniform

> SSE
normal

> SSE
laplace

indicated that Laplace
distribution, La(0, 1), was a more suitable distribution than N(0, 1) for
standardized EURUSD log-return data.

As the EURUSD data was shown to be La(0, 1), the QN data was used
to sample random variables from La(0, 1) distribution. This was done
by first sampling N(0, 1) random variables from U(0, 1) distributed
QN data by means of inverse transform sampling. Then Laplace ran-
dom variables was sampled with scaling factor b = 1 to obtain La(0, 1)

distributed random variables. The Laplace QN data was then stan-
dardized to get it to the same order of magnitude as EURUSD data
for comparability. The standardized Laplace QN data is shown be-
low.

Figure 6.5: 2000 standardized Laplace samples generated with U(0, 1)

normalized QN data.

The distribution of the standardized Laplace samples got slightly changed
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scaling factor b from the standardization. However, it was La(0, 0.8) ⇡
La(0, 1)-distributed. As the standardized EURUSD data were best fit-
ted with La(0, 0.92) ⇡ La(0, 1), the standardized Laplace QN were
now in both same order of magnitude and from a similar distribution
as the standardized EURUSD data.

The EURUSD data had discrete values, therefore quantization was
performed on the QN data. The EURUSD data had 77 unique log-
returns. Scaling factor s = 4.22 was chosen in the quantization pro-
cedure QN

discrete

=

kQN ·sk
s

, so that the standardized Laplace QN data
also had 77 unique values. The resulting data is shown below.

Figure 6.6: 2000 discrete standardized Laplace samples with 77 unique
values generated with U(0, 1) normalized QN data.

6.2 Takens Embedding

This section shows the results and motivations for parameter selec-
tions in the Takens embedding. The same parameter choice is made
for both EURUSD and QN data to make both datasets reconstructed
to a state space in a similar manner.

6.2.1 Selection of time delay

The choice of ⌧ = 1 was made based on qualitative properties of the
dataset as well as ACF calculations. It is commonly assumed that fi-
nancial time series follow the Martingale property E[X

n+1|Xt

, X
t�1, . . . ] =

X
t

meaning that it loses memory after ⌧ = 1. To check the validity of
the choice ⌧ = 1, autocorrelation function method with the constraints
first zero and first 1/e decay was also used. The autocorrelation func-
tion of 5 randomly selected windows are presented below.
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Figure 6.7: ACF plot of 5 different windows with 2000 dp.

Fig 6.7 shows the quick drop-off of ACF below 1 and 1/e at time t = 1,
also suggesting a choice of ⌧ = 1. Fig 6.7 shows only ACF calculations
for five windows. However, iterative calculations through all sliding
windows show that the ACF behaved roughly the same on all win-
dows. Moreover, Zaldivar et al. have pointed out that ⌧ should not
be an integer multiple of a periodicity of the system [118]. As ⌧ = 1 is
a multiple integers of all periodic systems, it was important to check
that the system was non-periodic. This was done with power spec-
tral density estimation using Welch method. The results for the power
spectral density estimation is shown below.

Figure 6.8: Welch estimate of power spectral density of EURUSD data.
Spikes at a certain frequency indicates the periodicity p =

1
Hz. The

Power spectral density shows no spikes.

Fig 6.8 shows no peaks indicating that there is no periodicity in the sig-
nal. Therefore, the choice of ⌧ = 1 was supported by both martingale
property and ACF method and did not violate the multiple integers of
periodicity constraint.
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6.2.2 Selection of embedding dimension

The false nearest neighbor computations five random windows of the
EURUSD data is shown below.

Figure 6.9: False nearest neighbors plot of 5 different samples for 2000
dp.

The result is presented to highlight the drop-off and convergence above
zero of the false nearest neighbors. For the actual results sliding win-
dows of the EURUSD with a window size of 2000 data points and a
gap size of 200 000 was constructed yielding {X1, X2, . . . , X41} win-
dow items. The selection of embedding dimension was then based
on when the mean of the derivative of the false nearest neighbors
lower than an arbitrary set threshold of 0.002 i.e. when an additional
embedding dimension makes very little difference to the amount of
false nearest neighbors. This embedding dimension was found to be
m = 35. The summary results for the sliding windows are shown be-
low.
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Figure 6.10: (left) derivative of FNN less than 0.002. (right) lowest
FNN between 0 and 200 embedding dimensions of sliding window
with 2000 dp window size and 200 000 dp gap size. X-axis indicating
window item i = {1, . . . , 41}.

6.3 Examples of TDA on state space recon-
structions

In this section TDA of reconstructed state space examples are shown
to provide an understanding of the result summaries. First examples
of how the non-PCA Takens embedding looked geometrically is pro-
vided. Four windows will be shown; EURUSD data random window,
EURUSD window with low complexity, EURUSD window with the
high complexity, and QN random window. The gzip-compress-to-
ratio and Shannon entropy is provided for each window. Secondly,
PCA results of above window are shown. Lastly, persistence diagrams
and landscapes of the windows are also provided.

6.3.1 Non-PCA State space reconstruction

The state space reconstruction was constructed using embedding di-
mension m = 35 as it was found to be the dimension where an addi-
tional dimension did not add much to reducing false neighbors. As
visual inspection of high dimensions is restricted, a 3D plot of the first
three embedding dimensions is provided.
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Figure 6.11: Takens embedding with m = 35 and ⌧ = 1 (left) EU-
RUSD 2000 dp sample (gzip G = 0.0637, Shannon entropy, S = 1.9800

). (right) EURUSD 2000 dp window of minimum complexity (G =

0.0103, S = 0.0486).

Figure 6.12: Takens embedding with m = 35 and ⌧ = 1 (left) EURUSD
2000 dp window of high complexity (G = 0.1166 S = 3.6322). (right)
standardized Laplace QN 2000 dp sample (G = 0.1508, S = 4.0728).

It is possible to see that the point cloud of the QN data is spanned
over a smaller volume (data between [�6, 6])than the EURUSD data
(data between [�8, 8]), however, it is much denser. The embedding
of the windows in fig 6.11 are quite similar. The (left) window show
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some points further away from the main point cloud than the (right)
window with lowest gzip compress-to-ratio and Shannon entropy. In
fig 6.12 The window with highest gzip compress-to-ratio and high en-
tropy have flairs coming out of the main point cloud. The QN data
embedding has subtle flairs coming out of the main point cloud.

6.3.2 PCA state space reconstruction

The embedding dimension m = 35 was used for state space recon-
struction. PCA was used so that R35 ! R3. The PCA of state space
reconstruction is shown below.

Figure 6.13: PCA Takens embedding with m = 35 and ⌧ = 1 (left)
EURUSD 2000 dp sample (G = 0.0637, S = 1.9800). (right) EURUSD
2000 dp window of minimum complexity (G = 0.0103, S = 0.0486).
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Figure 6.14: PCA Takens embedding with m = 35 and ⌧ = 1 (left)
EURUSD 2000 dp window of high complexity (G = 0.1166, S = 3.6322)
(right) standardized Laplace QN 2000 dp sample (G = 0.1508, S =

4.0728).

The EURUSD spans a larger volume than PCA of QN data similar to
above non-PCA 3D point clouds. The point clouds in fig 6.13 are quite
similar. They have a large point cloud mass in the middle and some
sparse points on the outskirts. The EURUSD point cloud in (left) fig
6.14 have much more distinct patterns of points extending towards
the outskirts than the point clouds in fig 6.13. The QN point cloud in
(right) fig 6.13 is much more concentrated than the other point clouds.
Below PCA spree plots are presented.

Figure 6.15: PCA scree plot for PCA Takens embedding with m = 35

and ⌧ = 1 (left) EURUSD 2000 dp sample (G = 0.0637, S = 1.9800).
(right) EURUSD 2000 dp window of minimum complexity (G =

0.0103, S = 0.0486).
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Figure 6.16: PCA scree plot for PCA Takens embedding with m = 35

and ⌧ = 1 (left) EURUSD 2000 dp window of high complexity (G =

0.1166, S = 3.6322) (right) standardized Laplace QN 2000 dp sample
(G = 0.1508, S = 4.0728).

The PCA spree plots for the EURUSD value have a quick drop-off of
variation. However, it does also indicate that a significant amount
of variation is beyond the three first principal component. The slow
drop-off on the QN-data shows that the principal components account
for approximately the same amount of variation. As the variations
should be quite uniform among the dimensions, random data should
be expected to have principal components with approximately equal
variation.

6.3.3 Topological Data Analysis

Persistent Homology

Persistent homology results of windows are presented as birth-death
diagrams below.
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Figure 6.17: Birth-Death diagrams of PCA Takens results (left) EU-
RUSD 2000 dp sample (G = 0.0637, S = 1.9800). (right) EURUSD
2000 dp window of minimum complexity (G = 0.0103, S = 0.0486).

Figure 6.18: Birth-Death diagrams of PCA Takens results (left) EU-
RUSD 2000 dp window of high complexity (G = 0.1166, S = 3.6322)
(right) standardized Laplace QN 2000 dp sample (G = 0.1508, S =

4.0728).

Fig. 6.18 show that the topological features for the high entropy win-
dow are more similar to the QN features than the low entropy and
random window.

Persistence Landscape

Persistence landscapes summaries of the persistence diagrams are shown
below.
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Figure 6.19: Persistence landscapes of H1 (left) EURUSD 2000 dp
sample with integral I = 8.231. (right) EURUSD low complexity
I = 10.595.

Figure 6.20: Persistence landscapes of H1 (left) EURUSD high com-
plexity I = 3.951. (right) Quantum noise 2000 dp sample I = 4.434.

The H1 landscapes are summaries of the H1 groups in the persistence
diagrams. Below is also one example of noise reduced landscape, to
show that H2 features are mostly noise feature.

Figure 6.21: ✏ = 0.15 cut-off (left) Birth-death diagram of EURUSD
2000 dp sample (right) corresponding persistence landscape I = 7.901.
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In this case, ✏ = 0.15 cut-off value is chosen to be the maximum of
the persistence of quantum noise diagrams, because any topological
features exhibited by the quantum noise are noise features. As seen
in fig 6.19 and 6.21 the integral of the persistence landscapes do not
significantly differ. Also, comparing the EURUSD birth-death diagram
on 6.17 and 6.21 notice the lack of H2 groups in the ✏ noise adjusted
birth-death diagram. However, in the results below it is set to ✏ = 0, so
that statistics can be performed without inducing any bias.

6.4 Statistical analysis of Topological features

This section presents the main findings of the thesis. First, a more thor-
ough results description of one window size is presented, then figures
for all experimental cases are provided in the next section.

6.4.1 Mean landscapes

Below a mean landscape for sliding window with window size M =

2000 and gap size G = 2000 is shown.

Figure 6.22: (left) mean of H1 landscape of EURUSD and (right) laplace
QN.

Above the mean landscapes for H1 are shown. It was constructed with
95 % bootstrap confidence band. The mean persistence landscapes
showed that EURUSD data have a lot more persistent H1 than the
Laplace QN. This indicated that the EURUSD data have some prop-
erties that differ from randomly generated variables.
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6.4.2 Persistence and complexity

The persistence landscape integrals and maximum persistence were
also generated for the same windows. This method allowed for com-
parison between persistence of each window. The results are shown
below.

Figure 6.23: (left) EURUSD integrals of persistence landscapes of H1

and (right) laplace QN. Note that laplace QN only have 500 windows.

Figure 6.24: (left) EURUSD maximum persistence of H1 and (right)
laplace QN. Note that laplace QN only have 500 windows.

The persistence landscapes integrals and maximum persistence for EU-
RUSD was an order of magnitude larger than the Laplace QN data.
The theory is that persistence in topological features indicates the pres-
ence of some global property[132]. It was, therefore, relevant to com-
pare these values with the complexity of the corresponding windows.
The complexity of each window was therefore calculated.
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Figure 6.25: (left) Shannon entropy of EURUSD data and (right)
laplace QN. Note that laplace QN only have 500 windows.

Figure 6.26: (left) Gzip-compress-to-ratio of EURUSD data and (right)
laplace QN. Note that laplace QN only have 500 windows.

Fig. 6.22 and 6.24 show that the QN topological features are less per-
sistent than EURUSD indicating the presence of some property in the
EURUSD data. At the same time fig. 6.25 and 6.26 show that QN
has more entropy than EURUSD indicating that there is more order in
EURUSD data than QN. By taking the correlation of the values it was
possible to compare the relation among the entropy’s and persistence
landscape integrals.
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PI MP Gzip Shannon
PI 1
MP 0.8984 1
Gzip -0.0501 -0.368 1
Shannon -0.0639 -0.0484 0.9390 1

Table 6.1: Correlation matrix of the persistence landscape integrals
(PI), maximum persistence (MP), gzip compress-to-ratio and Shannon
entropy of EURUSD.

The correlation matrix shows high correlation between persistence in-
tegral and maximum persistence, and between Shannon entropy and
Gzip compress-to-ratio. It also shows low correlation between per-
sistence and entropy calculations. This indicated that the persistence
in homology groups accounts for other features in the data than en-
tropy.

6.5 Empirical distribution of topological fea-
tures

Lastly, distributions of persistence integrals were calculated to be able
to understand its probabilistic properties.

Figure 6.27: (left) EURUSD persistence landscape integral distribution,
(middle) Laplace QN distributions and (right) empirical distribution
of EURUSD and QN for comparison.

Fig. 6.27 show that the persistence integrals are distributed by some
right-skewed distribution. For reference theoretical normal- and Rayleigh
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distribution is fitted. The right-skew can be explained by noise fea-
tures.

6.6 Results from other windows

This section shows the results obtained from performing calculations
on window size 1000 and 2000. All gap size used are the same as the
window size G = W . The gap size was chosen so that there was as
much disjunct information as possible. In addition, because theoretical
models showed that moving average helps to uncover the underlying
topology, moving average with window size 1000 is also calculated for
both sliding window sizes. Only a small subset of relevant figures will
be presented in this section. A full disclosure of the figures is presented
in the appendix 9.1.

6.6.1 Mean Landscapes

Figures for non-smoothed and smoothed window size W = 1000 is
presented. For the non-smoothed landscapes, the EURUSD data showed
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more persistence in both W = 1000 and W = 2000 cases. However,
when the data was smoothed prior to constructing the landscapes the
persistence became very similar.

6.6.2 Persistence integral

This section shows the calculated persistence integrals.

Figures for non-smoothed and smoothed window size W = 1000 is
presented. In EURUSD W

ma1000 = 1000 the highest persistence was
✏ = 994.4698, but for scaling and overview reasons the y-axis was kept
smaller. The persistence integrals for EURUSD was higher for all win-
dows. For W

ma1000 = 1000 QN had higher persistence integral than
the other QN windows and remarkably smoothing the QN data gave
higher persistence integral.
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6.6.3 Maximum persistence

This section shows the calculated maximum persistence.

Figures for non-smoothed and smoothed window size W = 1000 is
presented. The maximum persistence increased when taking the mov-
ing average but the difference in the relationship between EURUSD
and QN is preserved. EURUSD has higher maximum persistence for
all windows.

6.6.4 Shannon Entropy

This section shows the calculated Shannon entropy.
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Figures for non-smoothed and smoothed window size W = 1000 is
presented. EURUSD Shannon entropy was lower for all windows.
Smoothing the data gave higher entropy for all cases. Smoothing the
QN data also made the variance for the entropy increase.

6.6.5 Gzip Compress-to-ratio

This section shows the calculated Gzip-compress-to-ratios for various
window sizes.
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Figures for non-smoothed and smoothed window size W = 1000 is
presented. The gzip-compress-to-ratio had a very high correlation
with Shannon entropy. The results for gzip-compress-to-ratio indicate
same results as above presented Shannon entropy results.

6.6.6 Empirical Distribution of Persistence Integral

This section shows the calculated empirical distributions of the persis-
tence integrals.
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Figures for non-smoothed window size W = 1000 is presented. All
empirical distributions were right-skewed. The EURUSD data showed
distributions with higher kurtosis than QN data.
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Discussion

To the best of our knowledge, the area of applied topological data anal-
ysis of financial data is relatively unstudied in the academic commu-
nity. Contribution in this field has been made by Gidea et al. [81,
82]. The studies by Gidea focus on topological structures prevalent in
point clouds representing interrelationships between assets with the
purpose to achieve an early indicator of a crash event. This thesis
provides a practical investigation of topological data analysis of one-
dimensional financial time series. The investigation is conducted by
looking at the persistence of H1 groups in the dimensionality-reduced
reconstructed state space of the time series. In essence, the manifold
generating the one-dimensional financial time series is embedded in
a R35 embedding space. The embedded manifold is then projected to
a PCA feature space in R3. This is done in an attempt to detect some
property of a one-dimensional time series rather than attempting to
detect regime shifts as Gidea at al. [81, 82].

The procedure used is quite extensive and include many areas which
could be further investigated. To use persistent homology on one-
dimensional financial time series, it needed to be represented as a
point cloud. To do this Takens embedding was used. This means that
the persistent homology was essentially used to analyze the dynamical
system of the time series. The parameter choices used for Takens em-
bedding, in this case, was motivated using the properties of financial
time series as well as quantitative methods commonly associated with
them. It must be noted that there is no fixed theorem for how these
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parameters should be chosen, therefore the choices made in this thesis
should be viewed as heuristics. The choice of point cloud representa-
tion of one-dimensional time series impacts what is actually studied
with TDA. Therefore the use of any other point cloud representations
would also implicate studying other properties of the data. Investigat-
ing other point cloud representations of one-dimensional time series
could therefore also be interesting.

Another interesting aspect of the process was the impact of dimen-
sionality reduction method on the topological structures. PCA was
used to get Rm ! R3 for feasible computational time. In the synthetic
examples chapter 5 the topological features of the PCA are shown
to differ significantly from the topology of the embedded space in
higher dimensions. As such persistent homology analyze the topolog-
ical features of a dimensionality reduced embedding rather than the
embedded time series. Different methods of dimensionality reduction
are likely to exhibit different topological features as they use different
forms of feature extractions.

Furthermore, to our knowledge, the effects of quantization of data on
persistent homology is a challenge not yet addressed in the research
community. As evident from the synthetic examples chapter 5 quanti-
zation in combination with noise can significantly alter the persistence
calculation.

The results showed that EURUSD had both lower entropy and higher
persistence in topological features than QN data. This suggests that
EURUSD data have properties that differ from random noise. The low
correlation among the entropy calculations and persistence of topolog-
ical features suggests that the persistence of H1 features tells us about
a different feature than mutual information. The difference in persis-
tence of H1 features between EURUSD and QN suggest that there is
some additional useful information in the topological features. An in-
vestigation of what these topological features actually implies could
be useful to further understand this topic.

Interestingly, the maximum persistence and persistence integral is higher
for QN when taking the moving average of the datasets, while the
other statistics keep the same relations as the non-moving average
counterpart. A possible explanation for this is the quantization effects.
While the EURUSD data has many equivalent values in succession, the
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QN data has considerably more variance in the quantized data. Taking
the moving average of these datasets thus makes the EURUSD contain
a broader range of values than the QN data.

Another interesting aspect is that persistence integrals exhibit peaks
at roughly the same areas irrespective of window size, whereas max-
imum persistence differs. The maximum persistence has been shown
by Khasawne et al. to give an indication of the stability of a stochas-
tic system [13, 83–85]. Low maximum persistence has been shown to
indicate stable regions, as the Takens’ point cloud gets centered as a
mass. This means that high persistence could indicate instability and
unboundedness in the time series system, as the point clouds are more
scattered. The figures for maximum persistence W = 1000 exhibits
more tops than W = 2000 indicating that systems are more unstable
when looking at shorter windows.

Further, from the empirical distribution of the results, it is possible to
see that the persistence integral follow similar distributions. The QN
has much higher kurtosis, which means that the persistence integrals
of the QN data are much more homogenous. When moving average is
applied both distributions kurtosis increases, indicating that the per-
sistence integrals are more varying in this case. This effect again can
be attributed to broader value range for EURUSD data and narrower
value range of QN data.
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Conclusion

In conclusion, this thesis has investigated the use of topological data
analysis on one-dimensional time series and shown that TDA might
be able to uncover some properties that warrant further research. The
process used in this thesis is extensive with many alternation possibil-
ities in parameter choices and sub-method choices. Using this process
to analyze one-dimensional time series it can be shown that EURUSD
nanosecond data differs from quantum noise data. Also, the fact that
the persistence of topological features has low correlation with en-
tropy calculations indicate that topological data analysis manages to
uncover other property of non-randomness than mutual information
theory.

Lastly, a brief summary of the some of the research question posed in
section 1.4, as well as some interesting points are presented:

Is it possible to use topological data analysis to infer knowledge about the
financial markets?

Persistent homology can show some property of financial time se-
ries. This property differs from mutual information.

What constraints and implications does the processing and pre-processing of
the datasets impose?

The process used in this thesis converted the financial time series
to a point cloud representing the states of its dynamical system. To
do this Takens embedding was used. To make the computational cost
feasible PCA was used on the high dimensional embedded time series
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yielded by Takens embedding. PCA on high dimensional embedding
space essentially means that we are looking at the topology of embed-
ding space on the PCA feature space. For a more topological analysis
of the embedding space rather than the PCA feature space other com-
plexes than alpha complex would need to be used.

What are the benefits of topological data analysis for financial markets?

As the persistent homology statistics differs from entropy calcula-
tions they could potentially be used as an alternative metric for any
other machine learning algorithm, such as clustering.

What are the limitations, pros, and cons of using the data and method sug-
gested?

Pros of the extensive methodology used is that it is computation-
ally feasible even for large datasets. However, cons include that the
precise nature of what is explained is not entirely clear.
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Appendices

9.1 Results from other windows

This appendix section will present all the results from section 6.6.

9.1.1 Mean Landscapes
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9.1.2 Persistence Integrals
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9.1.3 Maximum persistence
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9.1.4 Shannon Entropy
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9.1.5 Gzip Compress-to-ratio
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9.1.6 Empirical Distribution of Persistence Integral
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