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Prognostisering av kundbortfall inom

iGaming-industrin med användning av övervakad

maskininlärning

Sammanfattning

Mr Green är en av de ledande onlinespelsleverantörerna på den europeiska mark-
naden. Deras mission är att erbjuda underhållning och en överlägsen användarup-
plevelse till sina kunder. För att bättre kunna förstå sina kunder och deras livs-
cykel är kundbortfall ett ytterst viktigt koncept. Det är också ett viktigt mått
för att kunna utvärdera resultaten av marknadsföring. Denna rapport analyserar
möjligheten att, med 24 timmars data över kundbeteende, kunna avgöra vilka kun-
der som kommer att lämna siten. Detta görs genom att undersöka olika modeller
inom övervakad maskininlärning för att avgöra vilken som bäst fångar kundernas be-
teende. Modellerna som undersöks är logistisk regression, random forest och en linjär
diskriminantanalys, samt två olika sammansättningsmodeller som använder sig av
stacking och voting. Resultatet av denna studie är att en sammansättningsmodell
som väger modellerna logistisk regression, random forest och en linjär diskriminan-
tanalys ger den högsta förklaringsgraden på 75.94 %.
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Abstract

Mr Green is one of the leading online game providers in the European market. Their
mission is to o�er entertainment and a superior user experience to their customers.
To be able to better understand each individual customer and the entire customer
life cycle the concept of churn rate is essential, which is also an important input value
when calculating the return on marketing e�orts. This thesis analyzes the feasibility
to use 24 hours of initial data on player characteristics and behaviour to predict the
probability of each customer churning or not. This is done by examining various
supervised machine learning models to determine which model best captures the
customer behaviour. The evaluated models are logistic regression, random forest
and linear discriminant analysis, as well as two ensemble methods using stacking
and voting classifiers. The main finding is that the best accuracy is obtained using
a voting ensemble method with the three base models logistic regression, random
forest and linear discriminant analysis weighted as w = (0.005, 0.80, 0.015). With
this model the attained accuracy is 75.94 %.
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1. INTRODUCTION

1 Introduction

With an increasing interest in data and the ability to analyze it, many companies
today hold a vast amount of data which, by the use of machine learning, enables
new business opportunities. There are many applications within the area of machine
learning and the overall objective is often to use existing data and learn from it to
adapt to future behaviour (Kotsiantis, 2007). The iGaming company Mr Green has
a complete digital product o�ering and thus possesses a large amount of data which
could be used to better understand the player and enhance the user experience. An
important area of implementation is marketing, where the goal is to become more
relevant in the marketing strategies by understanding which customers to target and
at what time.

1.1 Problematization and Research Questions

Mr Green has noticed that the first couple of days after a player has validated his or
her account are crucial when it comes to creating a loyal customer, as a substantial
amount of all customers churn during these days. Thus, being able to determine
which customers are likely to churn as fast as possible is essential. This insight can
facilitate personalized marketing, with the objective of increasing customer satisfac-
tion and aiming for a more e�cient use of marketing resources.

Therefore, this thesis focuses on investigating how player churn rate could be pre-
dicted using supervised machine learning. This is done by answering the following
research questions:

• To what extent is it possible to predict the probability of each customer churn-
ing, using data from the first 24 hours after the player’s first deposit?

• Which supervised machine learning model explains the player’s churn be-
haviour the best?

1



1. INTRODUCTION

1.2 Purpose

To be able to compete in a highly competitive industry it is important to under-
stand the customers and their demands. Considering the wide range of games that
Mr Green o�ers, in terms of di�erent volatility and winning characterizations, this
becomes even more essential. Machine learning enables Mr Green to get to know
its customers, and to make data driven decisions, which becomes crucial in creating
a more personalized gaming experience. A part of this movement towards a more
data driven business strategy is to attract and retain customers at the site. This
study’s purpose is therefore to use a mathematical approach to develop and evaluate
a model which can be used by Mr Green to enhance its marketing e�ciency and
decrease the customer churn rate.

1.3 Scope

The scope of this paper includes creating and training a machine learning model to
predict which customers will churn. More specific, this thesis covers various super-
vised machine learning algorithms where the goal is to solve a binary classification
problem. The implemented algorithms are logistic regression, random forest and
linear discriminant analysis. Additionally, two di�erent ensemble methods analyz-
ing di�erent combinations of the above mentioned base models are implemented.
Furthermore, areas that might be of interest to the analysis, but lie outside of the
scope of this paper, are presented as future work in Section 7.3.

1.4 Terminology

The term iGaming is a rather modernistic definition of the online gaming industry
with a refreshed and more responsible touch. In this thesis, churning is defined as a
customer not returning to the website within 30 days after her or his first deposit.
A customer who does not churn is labeled as a 1 or positive, and a customer who
churns is labeled as a 0 or negative. The di�erent terms will be used interchangeably
throughout this paper.

2



1. INTRODUCTION

1.5 Outline

In section two we discuss the background to the problem by giving a brief introduc-
tion to Mr Green and the iGaming industry, as well as explaining how our thesis work
will be a part of the business and impact the way Mr Green wishes to move forward.
In section three we will present the data that was used as well as the data handling
and data preparation. In section four we give the reader the essential mathematical
theory and definitions to be able to follow the subsequent sections. Section five will
cover a brief explanation of the methods used and the results are then presented in
section six. Finally, section seven concludes the paper by discussing the problem,
results and implementations.
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2. BACKGROUND

2 Background

2.1 Mr Green

Mr Green has been a leading actor in the European online gaming industry since it
was founded in 2007. The mission is to o�er first class entertainment and a superior
user experience. Mr Green views its product as a type of entertainment where the
players play for the sake of having fun (Mr Green & Co, 2017 Annual Report 2018).
Therefore, Mr Green focuses on creating a safe and trustful environment where the
players are in control of their own gaming behaviour. Due to the strong competition
within the iGaming industry it is of great importance to combine a strong brand
and unique product o�ering with social responsibility to secure long term financial
growth.

Mr Green possesses a broad spectrum of products. This includes casino games,
sportsbook, number games and the world’s first virtual casino called Live Beyond
Live, as well as their Green Gaming tool, to help players keep track of their own
gaming behaviour (ibid.). In 2017, Mr Green acquired Dansk Underholdning and
Evoke Gaming to enter new geographical markets as well as increasing its product
o�ering with brands like Redbet, Vinnarum Casino, Bertil and Mamma Mia Bingo.
Mr Green is present in twelve di�erent markets: Sweden, Denmark, Finland, Nor-
way, Ireland, the Netherlands, Switzerland, United Kingdom, Germany, Italy, Malta
and Austria, as well as an international web domain with players from around the
world.

2.2 The iGaming Industry

In 2017, the European iGaming industry had sales of 970 billion Swedish crowns
(ibid.). The industry is fast growing, and includes numerous of sub fields, rang-
ing from the traditional casino-like features and sports betting to e-sports betting.
There is however an important feature to the industry, namely that it is still in some
sense an oligopoly in Sweden. AB Svenska Spel, including Casino Cosmopol and slot
machines, ATG and Riksgäldens Premieobligationer are currently the only actors
that have been authorized by the Swedish government to run betting and gaming
services in Sweden (Om tillstånd 2017). The government, and the authority Lotteri

4



2. BACKGROUND

inspektionen, issue licenses to actors who wish to run any type of gaming or betting
service, both physically and online. The laws Lotterilagen (1994:1000), Kasinolagen
(1999:355) and Automatspelslagen (1982:636) together stipulate to whom a license
should be given and how, along with regulations those actors must comply with. A
license to run online poker, for instance, is issued by the Swedish government directly
(Tillstånd och spelformer 2017). Despite this, due to the European Union article of
free movement of services (Article 56) and the freedom of establishment (Article 49),
companies can establish themselves within the EU and o�er their services to the Eu-
ropean population. Consequently, other companies than the ones mentioned above
can o�er their services in Sweden, often referred to as o�shore companies. However,
in the fall of 2015, the Swedish government decided to conduct an investigation on
the possibilities of opening the Swedish online gaming industry to new actors, allow-
ing them to apply for a license in Sweden (Omreglering av Spelmarknaden 2017). In
March 2017, the investigation was presented, proposing to introduce a new system
for licenses open for applications by actors in the industry, which will be in place
late 2018 or early 2019. Along with many other iGaming companies, Mr Green is
preparing to apply for a Swedish license.

The iGaming industry is characterized by heavy competition among the many actors
in the market, since customers tend to play interchangeably between di�erent casi-
nos and betting sites. Consequently, the concept of churn and customer retention
becomes vital. An important area of application is marketing, where e�orts could
be focused on customers predicted to churn to increase the return on marketing re-
sources (Coussement and De Bock, 2013). A way to approach this issue is to look at
past customer behaviour, as it has been suggested that it reflects future behaviour,
that is a customer churning or not (Jolley et al., 2006).

2.3 Contribution

Mr Green works intensively with monitoring its customers, and the so called player
life cycle. This enables Mr Green to target the customers at the right time, in terms
of marketing e�orts. It is thus the hope that this thesis work at Mr Green will
provide useful insight in customer behavior and the corresponding churn rate.

5



3. DATA

3 Data

The data on which the analysis was performed was made anonymous by Mr Green
by assigning fictional customer ID-numbers to the customers, to ensure customer
data privacy. Any sensitive information was also removed. As it was not possible
for Mr Green to give out access to its data warehouse, specific data sets used in the
analysis were extracted by our supervisors.

Two of the most essential components in data analysis is to understand the data,
or having some sort of domain knowledge, along with securing the quality of the
data. Building an analysis, and training a model on incorrect data would lead to
errors in classifying new data, which could potentially lead to severe consequences.
As for domain knowledge, it is often useful as an initial way of performing manual
feature selection or even as an input to the model after manually clustering features.
Moreover, this knowledge might also bring additional colour when analyzing the re-
sults. Hence, a substantial amount of time was spent understanding the product,
the company and all the available features.

3.1 Mr Green’s database

To perform this analysis, data on both a customer and transactional level was used.
As the analysis was performed on a customer level, i.e one customer representing
one observation, the transactional data had to be summarized to fit the customer
level data. On a customer level, data is stored in terms of demographics, such as
gender, age and country, and so called event information. The event information
includes the first game played, the most played channel out of web, mobile web, iOS
or Android and the date and time when they made their first deposit et cetera. On
a transactional level, the data is stored in terms of logical transactions, consisting of
multiple events, as opposed to real transactions which by definition is the equivalent
of a single event or transaction. An example of this is a customer making a bet in a
slot machine game, which together make up the real transaction. The corresponding
logical transaction would then consist of the events of the customer making a bet,
the transaction being processed, the outcome of the bet and the settlement of the
bet. For this particular analysis, it is the real transactions that were of interest.

6



3. DATA

3.2 Features

To a large extent, transactional data is related to monetary transactions. This in-
cludes features such as the total number and the average size of deposits, number of
bets and withdrawals et cetera. A natural consequence from storing transactional
data is correlation in the data set. For instance, a player who has made a lot of
bets will by definition have made a substantial amount of bets in at least one of
the channels web, mobile web, iOS or Android, as all bets go through one of these
categories. It is also likely that this player spent a rather high amount on bets in
total, given that her or his average bet size is not materially small. In order to avoid
bringing this correlation into the model, many of the variables were constructed to
reflect an average over all of the customer’s bets. For instance, the number of total
bets was included as a feature as it is, whereas attributes such as the total money
spent on or won from bets, the number of losses or gains, the bets made on di�erent
channels or di�erent game categories were recorded as averages to the number of
bets made. Likewise, the bets made during the day were divided in shares between
four 6-hour long intervals, starting at midnight.

In addition, to summarize all transactional data into customer-level data, there is
also a time dimension in the transactional level data, that is not so easily translated
to a customer level. For instance, instead of simply looking at the total number
of games played, one might be interested in how often a player switches between
games, or what happens after their balance has reached zero, as opposed to looking
at the total number of times that this happens. A way to achieve this is to look at
online sessions, and summarize key statistics from this time period. After consult-
ing with people at Mr Green, it was decided to define an online session as a session
of continuous activity, with no break longer than 20 minutes. This also allows for
analysis of the activity during the day, in terms of how many online sessions each cus-
tomer had, and how the outcome, in terms of betting result, varied with the sessions.

As the data set contained observations (customers) from di�erent countries, it is
reasonable to expect that the bet size would di�er between the countries. To ac-
count for this, all monetary variables were normalized using a coe�cient reflecting
the disposable income per country, as to make those variables directly comparable.

7



3. DATA

3.3 Data Processing

The data processing, in terms of modifying relevant features from the data set, was
done using the software R, using packages such as plyr, dplyr, tidyr and zoo.
Using R, data objects are stored as so called dataframes, which have the structure
of a relational database. The output from the data processing in R was a data
set on customer-level, including all relevant features. This of course includes a
denormalization of existing databases, when joining di�erent sub-tables together.

8



4. THEORY

4 Theory

4.1 Supervised Machine Learning

Machine learning comprises a set of techniques to better understand large amounts
of complex data (James et al., 2013). The aim is to find patterns and relations in
the data to provide useful insights to a problem.

Machine learning algorithms are normally divided into three di�erent categories: su-
pervised machine learning, unsupervised machine learning and reinforcement learn-
ing. Supervised learning can then be divided further into regression and classifica-
tion problems. This thesis will focus on the latter, that is a supervised classification
problem. We start by defining this concept. In supervised machine learning a model
is trained on a set of observations with the correct responses already provided, to
eventually be able to predict these responses for previously unseen data (Marsland,
2012). The training often consists of numerically minimizing some cost function.
In other words, supervised machine learning seeks to model the relation between
the predictor variables, used interchangeably with the names features or attributes,
and the outcome, or response variable. Mathematically, this is represented by the
relation below

Y = f(X) (1)

where Y is the response variable that we want to predict, X represents the features
impacting the outcome and f() is the function mapping the features to the response
variable (James et al., 2013). In reality however, this relation might be di�cult to
model, and there is almost always an error term present, although very small in a
good model. In classification problems, the response variable Y has a qualitative
value, rather than a quantitative value, as is the case in regression problems. More
precisely, each observation (xi, yi) belongs to a specific class k, which we try to find
in supervised machine learning. To decide which class a certain observation belongs
to, there exists di�erent techniques, or models, estimating so called decision lines,
to separate the di�erent classes. In most cases it is the data and the problem itself
that decide which model works best for those specific circumstances. In supervised
machine learning, these models can be divided into two categories, parametric and

9



4. THEORY

non-parametric models (James et al., 2013).

Parametric models assume that the relation Y = f(X), and thus the decision line,
have a specific form, for instance linear, quadratic, log-linear or radial. The problem
of estimating the relation is thus reduced to estimating a set of parameters.

Non-parametric models on the other hand do not make any assumptions about
the relation between the predictors and the response variable. As such, they do
not reduce the problem of estimating the relation Y = f(X) to estimating a set of
parameters, as is the case with parametric models. Consequently, more observations
are required to train a non-parametric model than a parametric model (ibid.).

As previously stated, a model should be chosen based on the data and the problem
definition. There are however some advantages and disadvantages to both paramet-
ric and non-parametric models. As parametric models assume a specific relation
between the predictors and the response, they tend to better fit the data if this re-
lation actually corresponds to the relation assumed. However, if the data cannot be
modeled according to a specific relation, a parametric model will perform worse, as
it forces a relation that does not actually exist. Parametric models are therefore less
flexible, as they model the reality according to some template. When the relation
in the data is di�cult to estimate, non-parametric models often perform better, as
they are more flexible, and can thus be adjusted to better fit the actual relation in
the data (ibid.). Generally, the optimal model is neither too flexible nor too strict,
as both are prone to errors. This phenomenon, known as the bias-variance trade
o�, will be discussed further in Section 4.2.1.

4.2 Model Evaluation

4.2.1 The Bias-Variance Trade o�

When training a model on a data set with the goal of being able to make predictions
and classify unseen data, we want to be as accurate as possible, and minimize the
error. A measure of the prediction error is the mean squared error, or the MSE.
Although it is mainly used in regression problems, the principle can be generalized
to classification problems as well. As a fact, the MSE can be broken down into three
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components, as shown below

E

1
y0 ≠ f̂(x0)

22
= V ar(f̂(x0)) + [Bias(f̂(x0))]2 + V ar(‘) (2)

That is, the error consists of the variance of the prediction f̂(x0), the squared bias
of f̂(x0) and the variance of the error term ‘. The variance of the prediction is by
how much the function f̂ would change if it were estimated on a di�erent training
dataset, and the bias is the error that occurs from approximating a complex problem
with a model that is too simple (James et al., 2013). The two go hand in hand, in
the sense that if one of them is minimized, the other will grow. If a model is made
very complex, and fit very well to the training data to reduce the bias, then that
model will incorporate a lot of the randomness in that specific data set. This means
that it will perform poorly when classifying unseen data, as that data might not
have the same individual randomness as that of the training data. This problem is
known as overfitting and will increase the variance in the model. On the other hand,
if a model is made very simple, and not fit as well to the data, in order to reduce
the variance, it is likely that this model too will perform worse in classifying new
data, as a consequence of simplifying a more complex problem. In general, models
that are more flexible will have a high variance and low bias, and models that are
less flexible will have a high bias and low variance (ibid.).

Overfitting may also occur as a consequence of small datasets. A remedy to this is
to use cross-validation, which is a type of resampling technique. Cross validation
means splitting the training data into two or more subsets, and then training the
model on all but one subset at a time, using the left out subset as a validation set,
to estimate the test error. As cross-validation fits the model to multiple datasets
and then averages the error, it can also be used as a validation technique, which can
be compared to the actual test error, to ensure robustness of the model. A common
approach is to use k-fold cross validation, which involves splitting the data into k

di�erent subsets. The model is then trained on k ≠ 1 subsets, leaving one subset
out as validation set (ibid.). This step is repeated for all k subsets, and test error is
then computed as the average of the classification errors for all k left out samples,
called the holdout in Figure 1 (Marsland, 2012). In k-fold cross validation, the test
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error is computed as

CV(k) = 1
k

kÿ

i=1
MSEi (3)

Figure 1: The process of cross validation

4.2.2 The Confusion Matrix

In addition to training a model to be as accurate as possible, which represents the
absolute error rate, one might also be interested in analyzing the misclassifications
further. Classifying an observation as negative when it is actually positive is known
as a false negative (FN), and likewise, classifying an observation as positive which
is actually negative is referred to as false positives (FP). Observations that are cor-
rectly classified are simply referred to as true positives (TP) or true negatives (TN)
(Marsland, 2012). Depending on the problem, the two types of misclassifications
may have more or less severe consequences. For instance, when classifying diseases
among patients, one wants to keep the false negative rate as low as possible, to
avoid sick patients being diagnosed as healthy. In the problem examined in this
paper however, we want to keep the false positive rate as low as possible, as the aim
is to identify players who will churn.

Due to the discussion above, a key feature in selecting the best model is to find
one, which not only produces a high test accuracy, but also manages to keep the
rate of some specific false prediction low, whether it be false positives or false neg-
atives. A common approach in evaluating di�erent models based on this aspect is
the usage of the confusion matrix. The confusion matrix provides a convenient il-
lustration of how many of the observations are classified correctly. If we let k be the
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number of classes in a classification problem then the confusion matrix is a k-by-k
square matrix. The predicted classes are shown along the horizontal axis and the
vertical axis show the actual target values (Marsland, 2012). The diagonal elements
show the number of correct predictions. See Table 1.

Actual
value

Prediction outcome

0 1 total

0
True
Negative

False
Positive N

1
False
Negative

True
Positive P

total NÕ PÕ

Table 1: The confusion matrix for a binary response variable

When assigning an observation to a certain class based on the computed class prob-
ability, the default threshold is p = 0.5 in the case of a binary response variable.
That is, if an observation has a probability greater than 0.5 of belonging to a certain
class, say class 1, then that observation will be classified as a 1. Mathematically, if
P (Y = 1) > p where p = 0.5 we will classify Y as being from class 1. By adjusting
this threshold, one can adjust the number of false positives and false negatives. By
setting the threshold p larger than 0.5, the model will be stricter in terms of assign-
ing observations to class 1, and thus decreasing the number of false positives. It is
important to note however, that whereas we decrease the number of FPs, we will
increase the number of FNs, as more observations will be labeled as negatives.

4.2.3 Feature Selection

Feature selection, or dimensionality reduction is the process of reducing the number
of dimensions in the model, where each predictor represents one dimension. De-
pending on the data, this can be an important procedure. As previously discussed
in Section 4.2.1, a model that is too complex runs the risk of being overfitted to the
data, thus increasing the variance. Having too many predictor variables increases
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the complexity of the model, and accordingly, the variance might also increase. Fur-
thermore, having many predictors often decreases the interpretability of the model,
making it less useful in practice (James et al., 2013). Therefore, it is a common
approach to select a subset of the best features.

There exists a number of techniques to reduce the dimensions. Some techniques,
such as principal component analysis (PCA) involve projecting the p predictors onto
an D-dimensional subspace, where D < p. This is done by finding D linear combina-
tions of the p predictors, and thus creating a new set of predictors. Other techniques,
so called regularization or shrinkage techniques train the model using all predictors,
but then shrinks all coe�cients, making some close to or equal to zero. In other
words, the least important predictors, that is those whose coe�cients are small, will
be removed from the model. Finally, there are techniques to select the best subset
of features, repeatedly fitting the model to di�erent subsets of the predictors and
evaluating the test accuracy to find the best subset (ibid.). The latter approach will
be used in this thesis project.

Ideally, to find the best subset, one would have to fit the model to all combinations
of predictors. In practice however, this becomes impossible, as there are approxi-
mately 2p di�erent combinations of predictors, for a model containing p predictors.
An alternative to this technique is to use a greedy approach, such as forwards or
backwards stepwise selection. Forward stepwise selection starts with a model with-
out any predictors, and then adds one predictor at a time to the model. At each
step, all remaining predictors are considered and the one that results in the best fit
of the model is added. This means that for each model containing i predictors M(i),
the model obtained will have the best fit, using i = 1, ..., p predictors. The p models
are then evaluated against each other, using the cross-validated prediction error, to
find the best model. An important drawback of forward stepwise selection is that it
does not evaluate all possible models. For instance, the variable that constitutes the
best 1-variable model will be in all of the subsequent models, which will a�ect the
impact on the goodness of fit that the next variables added will have. The variable
that is in the best 1-variable model might not actually be in the best k-variable
model, but since that variable has already been included in the model, it will stay
in the k-variable model. Backwards stepwise selection works the same way, only
the process is backwards, starting with a model containing all predictors, and then
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removing one at a time (James et al., 2013).

4.3 Logistic Regression

4.3.1 Single Predictor

Logistic regression is derived from linear regression, as an alternative approach in
order to predict qualitative output values (ibid.). Logistic regression captures the
probability that the response variable, denoted Y , belongs to a particular class. It is
a parametric approach, which assumes a linear relation between the predictors and
the log-odds of the response variable. Logistic regression builds on linear regression,
although the model is modified to create probabilities as outputs, that is outputs
that lie in the interval [0, 1]. Thus, in the case of a single predictor, the logistic
function is used to model probabilities

p(X) = e

—0+—1X

1 + e

—0+—1X
(4)

The logistic regression produces an S-shaped curve, ensuring that the output lies in
the required interval. Re-writing the model as below, we obtain the odds, which is
the ratio of probabilities between classes (left-hand side of the equation below).

p(X)
1 ≠ p(X) = e

—0+—1X (5)

Taking the logarithm of both sides, the log-odds is obtained, which has a linear
relation to the predictors.

log

Q

a p(X)
1 ≠ p(X)

R

b = —0 + —1X (6)

Due to the linear relation in equation 6, a one-unit change in X will change the
log-odds by —1. The size of the change in the actual probability, p(X) however, will
depend on the size of X, since the relation between p(X) and X is not linear (equa-
tion 4). Additionally, if —1 has a positive value, then an increase in X will lead to an
increase in p(X), and if —1 is negative an increase in X will lead to a decrease in p(X).
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The parameters —0 and —1 are estimated using maximum likelihood. The betas
—̂ are estimated so that they maximize the maximum likelihood function below

l(—) =
Ÿ

i:yi=1
p(xi)

Ÿ

iÕ:yÕ
i=0

(1 ≠ p(xiÕ)) (7)

where p(xi) is the probability of Y = 1 for the ith observation and p(xiÕ) is the prob-
ability of Y = 0, for the same observation. Once the betas have been estimated, the
model can be used to make predictions on test data (James et al., 2013).

4.3.2 Multiple Predictors

In the case of more than one predictor, the probability p(X) is defined as

p(X) = e

—0+—1X1+...+—pXp

1 + e

—0+—1X1+...+—pXp
(8)

where X = (X1, ..., Xp) is a vector consisting of p predictors. The log-odds ratio
then becomes

log

Q

a p(X)
1 ≠ p(X)

R

b = —0 + —1X1 + ... + —pXp (9)

Just like in the single-predictor case, maximum likelihood is used to fit the model
to the data and estimate the betas. It is important to note however, that in the
multiple-predictor case, the model risks being exposed to correlation between the
predictors, which might impact the predictions. It is therefore important to per-
form a correlation analysis of the predictors, and remove those that are too heavily
correlated (ibid.).
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4.4 Linear Discriminant Analysis

4.4.1 Univariate Gaussian for One Predictor

Linear discriminant analysis, LDA, assumes a linear relation between the predictors
and the response variable, and thus it produces a linear decision line, or decision
boundary. Specifically, LDA seeks to model the distribution of the predictors, X,
for each possible class, and then uses Bayes theorem to estimate the conditional
probability of an observation belonging to each class, given its predictors (James
et al., 2013). This conditional probability is defined as

P (Y = k|X = x) (10)

The observation is then assigned to the class for which the conditional probability
above is the largest. Bayes theorem uses the prior probability of an observation
belonging to the k-th class, deonted fik, along with the estimated density function
of X, denoted fk(X) © P (X = x|Y = k), for an observation from the k-th class,
to estimate the posterior conditional probability stated above, that an observation
belongs to the k-th class (ibid.). This relation is shown below

P (Y = k|X = x) = fikfk(x)
qK

l=1 filfl(x)
(11)

In order to estimate fk(X) we need to make some assumption about its form. A
conventional assumption is that it follows a normal or Gaussion distribution. In the
case of a single predictor, p = 1, the normal density is defined as

fk(x) = 1Ô
2fi‡k

exp

A

≠ 1
2‡

2
k

(x ≠ µk)2
B

(12)

where µk and ‡

2
k are the mean and variance of the k-th class. Often ‡

2
k is assumed

to be equal for all k, and is thus denoted ‡

2. By plugging equation 12 into equation
11, we get

pk(x) =
fik

1Ô
2fi‡

exp(≠ 1
2‡2 (x ≠ µk)2)

�K
l=1fil

1Ô
2fi‡

exp(≠ 1
2‡2 (x ≠ µl)2) (13)
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where pk(x) = P (Y = k|X = x) (James et al., 2013). Taking the log of the above
equation, and rearranging the terms we obtain

”k(x) = x

µk

‡

2 ≠ µ

2
k

2‡

2 + log(fik) (14)

LDA then approximates the parameters fik, µk and ‡

2 and plugs these into Bayes
classifier, and then assigns the observation to the class for which ”k(x) is the largest.
The estimation of the prior probability fik is simply computed as the fraction of
the (training) observations that belong to the k-th class, for any random sample of
observations from a population. The estimations of the parameters follow below

fîk = nk

n

(15)

µ̂k = 1
nk

ÿ

i:yi=k

xi (16)

‡̂

2 = 1
n ≠ K

Kÿ

k=1

ÿ

i:yi=k

(xi ≠ µ̂k)2 (17)

4.4.2 Multivariate Gaussian for Multiple Predictors

In the case of more than one predictor variable, p > 1, that is X = (X1, X2, ..., Xp),
we assume thus that each observation is drawn from a multivariate Gaussian distri-
bution, that is X ≥ N(µ, �), where E(X) = µ is the mean of X and Cov(X) = �
is the covariance matrix of X. µk is class-specific whereas � is common for all K

classes (ibid.). The multivariate Gaussian distribution is then defied as

f(x) = 1
(2fi) p

2 |�| 1
2
exp

A

≠ 1
2(x ≠ µ)T �≠1(x ≠ µ)

B

(18)

We then plug the density function for the k-th class into equation 11 and simplify,
to get the below equation,

”k(x) = x

T �≠1
µk ≠ 1

2µ

T
k �≠1

µk + logfik (19)
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where Bayes theorem assigns each observation to the class for which ”k(x) is the
largest. The estimation of the parameters µk and � are done in a similar way as in
the univariate case, and fik is computed in the same way. These estimations are then
plugged into the above equation, to estimate Bayes theorem (James et al., 2013).

4.5 Decision Trees and Random Forests

Tree-Based models, also called decision trees, are methods that involve arranging and
segmenting the predictor space into a number of separable regions. Decision trees
are non-parametric models, which means that they do not make any assumption
about the form of the relation between the predictors and response variable. As a
consequence, trees tend to su�er from high variance, and they are easily overfitted
to the training data, making them perform worse than other supervised learning
models. There are however some techniques, that involve some form of resampling,
to improve the prediction accuracy of the trees. If these resampling techniques are
used the tree-based models are comparable to other models. Decision trees can be
used in both regression and classification problems, and this section will focus on
the latter (ibid.).

4.5.1 Decision Trees

Simple decision trees make classification by stratifying the observations into di�er-
ent regions, depending on their value for some features. Starting from the top of
the tree (which is actually the trunk), observations are split into two sub spaces, or
nodes, according to some variable threshold. The nodes are then split into new sub
spaces according to some other variable threshold, and so on, until some stopping
criterion has been reached. The higher the impact a predictor variable has on the
response variable, the earlier the tree will split the observations based on that vari-
able. The nodes are connected via branches and the end nodes are referred to as
terminal nodes or leaves, whereas the inner nodes are referred to as internal nodes.
To make a prediction for a new observation, we simply pass it through the tree and
check all splitting criterion, starting at the top, and eventually end up in an end
node. The observation is then assigned to the class that represents the majority in
that end node (ibid.).

19



4. THEORY

The goal with the splitting of the observations is to create sub spaces, or end nodes,
such that the classification error rate is minimized. The classification error rate is
defined as the fraction of training observations in an end node that do not belong
to the most commonly occurring class in that node, defined as

E = 1 ≠ max
k

(p̂mk) (20)

p̂mk is the proportion of training observations in the m-th region that are from the
k-th class. In practice however, two other measures are often used, one of which is
the Gini index, defined as

G =
Kÿ

k=1
p̂mk(1 ≠ p̂mk) (21)

The Gini Index measures the total variance across the K classes. The cross-entropy
measure is an alternative to the Gini index, as defined below

D = ≠
Kÿ

k=1
p̂mklogp̂mk (22)

Both the Gini-index and the cross-entropy measure are minimized when p̂mk is close
to 0 or 1, resulting in measures of so called node purity. Node purity is important,
as it makes classifications more certain.

Thus, the tree is split at each node, starting at the top when all observations belong
to the same node, evaluating which variable split will result in the greatest decrease
in the classification error rate, and then makes that split. That is, at a given node,
we select the predictor Xj and a threshold s, such that the split of the observations
into the sub spaces {X|Xj < s} and {X|Xj Ø s} yields to the largest reduction
in the classification error rate. This method is known as recursive binary splitting,
which is a greedy approach. It is greedy since at each node, it only considers the
next split, and which predictor Xj and threshold s will lead to the greatest reduction
in the classification error rate, without taking future splits into account. Although
evaluating all possible combination of orders of the variables would have ensured
finding the best tree, this approach becomes impossible with a large number of fea-
tures (James et al., 2013).
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A problem with the above approach is that the trees are easily overfitted, and
thus su�er from high variance. Fitting smaller trees, i.e stopping the splitting ear-
lier, often instead leads to a higher bias. A solution to this is to grow a large tree,
and then to prune it back into a smaller subtree. As with the process of growing
the tree, considering every possible subtree is impossible, and we therefore use cost
complexity pruning, and select a small number of subtrees to consider. The subtrees
are chosen as a function of a tuning parameter –, which controls the bias-variance
tradeo� of the subtrees. The best subtree is chosen based on an estimation of the
test error, from cross validation. That tree is then chosen as the final classifier
(James et al., 2013).

4.5.2 Random Forests

As previously stated, a major disadvantage of decision trees is that they often suf-
fer from high variance, and are thus not able to perform classifications with high
accuracy. A remedy for this problem is random forests. Random forests use a form
of bootsrapping, to reduce the overall variance, by fitting a decsion tree to each of
the bootstrapped datasets and then averaging them. It is important to note that
this method relies on the trees not being too correlated, because if they are, then
averaging will not lower the total variance (ibid.). This could happen if for instance
there is one or multiple predictors with a high impact on the response variable.
Then each time those variables are picked from bootstrapping, they will naturally
be split high up in the tree, making those trees similar, or correlated. To tackle this,
random forests only pick a fraction of the predictors when bootstrapping, in order
to produce di�erent datasets, which will result in less correlated trees. The number
of predictors that are used in the bootstrapping m is usually m ¥ Ô

p, where p is
the number of predictors (ibid.).

4.6 Ensemble Methods

The idea behind ensemble methods is to use multiple learning algorithms to achieve
a higher predictive performance than one could obtain with a single learning al-
gorithm. By applying several di�erent learning algorithms with slightly di�erent
results it is possible to create a model that captures the individual strengths of
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each algorithm. This kind of learning is called ensemble learning and the challenge
consists of determining which learners to use and how to ensure that multiple learn-
ers learn di�erent things, otherwise it would not make sense to try to enhance the
performance by combining them (James et al., 2013). Some of the most common
ensemble methods are presented below

• Voting — This ensemble method is one of the easiest to understand and im-
plement. The technique is based on creating multiple classification models,
called base models. Each base model could be created on the same data set
with di�erent algorithms, or the same algorithm is used but on di�erent splits
of the training data. The models’ predictions are then compared, and the
ensemble classification is computed as the most common class among the base
model predictions (ibid.).

• Stacking - When using stacking the idea is to first create several separate
base models and thereafter let the results from these base models be the input
values/features to a new meta learning algorithm (A Kaggler’s Guide to Model
Stacking in Practice 2018)

• Boosting - The most common boosting method used today is called adaptive
boosting, or simply AdaBoost. This algorithm feeds weights to each data point
based on how successful it has been classified in previous runs. The AdaBoost
algorithm is conceptually very simple and it will not be applied in this thesis,
hence the reader is referred to chapter 13 in An Introduction to Statistical
Learning by James et al., 2013 for further reading.

• Bagging - Bagging is a variance reducing algorithm and most commonly used
with decision tress. The name Bagging stands for bootstrap aggregating and
got its name from the idea of creating a classifier by bootstraping samples from
the original data set, i.e sampling with replacement. The benefit of doing this
is to receive di�erent learners with slightly di�erent performance, and then
averaging the models to a single model. As an example, this method is used in
random forests to create one of two forms of randomness in the random forest
algorithm (ibid.).
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4.6.1 Voting

Voting is used for classification problems and as explained above, the idea is to cre-
ate several learning algorithms called based models and compare these to find the
most likely prediction. For a binary classification problem, let ŷ

m
i be the predicted

outcome of the i-th observation with base model m and the probability of observa-
tion i belonging to class 0 and 1 are denoted p

m
i,0 and p

m
i,1, respectively.

One of the ways to combine the base models’ predicitons is by using Majority
Voting. In this approach every model makes a prediction for each observation and
the final ensemble prediction is the one that receives the majority of the votes. For
example, if ŷ

1
i = 0, ŷ

2
i = 0 and ŷ

3
i = 1 then the majority voting would predict the

i-th observation to be a 0. However, if none of the predictions receive more than
half of the votes, the ensemble method cannot make a stable prediction for that
observation. Therefore it makes sense to use an odd number of base classifiers. If
we assume that each individual classifier has a success rate of p, the probability of
the ensemble getting the correct answer is a binomial distribution of the form

Mÿ

m=M/2+1

A
M

m

B

p

m(1 ≠ p)M≠m (23)

where M is the number of base models. Due to this, there is a lot of prediction power
behind the voting classifier. Even if the single base model only classifies about half
of the observations correct, with several classifiers together, the probability of cor-
rectly classifying an observation will land closer to 1 since the sum in the equation
above approaches 1 for large values of M (James et al., 2013).

Another approach to a voting ensemble algorithm is to take the weighted average
probabilities, also called soft voting. In contrast to majority voting, soft voting
returns the label which has the highest average probability, see Table 2.
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Base model class 0 class 1

classifier 1 w1p
1
i,0 w1p

1
i,1

classifier 2 w2p
2
i,0 w2p

2
i,1

classifier 3 w3p
3
i,0 w3p

3
i,1

weighted average
qT =3

k=1 wkpk
i,0

3

qT =3
k=1 wkpk

i,1
3

Table 2: Probability overview for a soft voting classifier

4.6.2 Stacking

When using stacking as an ensemble method the idea is to first train multiple ma-
chine learning algorithms, L1, L2, ..., LM on a data set S1, ..., SM , which consists of
feature vectors xi,j and their labels yi. The output from the base classifiers denoted
C1, C2, ..., CM where Ci = Li(Si) are then used to generate a new data set as the
input to a meta classifier. The meta classifier could be trained on either the pre-
dicted class labels or the class probabilities from the base classifiers. A convenient
attribute to stacking is that the base classifiers can be fit to di�erent subsets of the
feature space in the training data set (Zenko and Dzeroski, 2004).

4.7 Confidence Intervals

In order to generalize the results obtained from this analysis, confidence intervals
could be created for some of the computed statistics, such that the results hold
for any given data set. In terms of the model accuracy, a confidence interval was
obtained as per below (Blom et al., 2005). Note that the test accuracy refers to
the share of correct classifications. If n is the number of observations, and r is the
number of correct classifications, then r is a random variable with an approximate
binomial distribution with

r ≥ Bin(p, n) ¥ N

1
np, np(1 ≠ p)

2
(24)
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where we approximate p̂ as

p̂ = r

n

¥ N

A

p,

p(1 ≠ p)
n

B

(25)

A confidence interval for the test accuracy statistic is then defined as

p̂ ± 1.96‡ = r

n

± 1.96
Û

p̂(1 ≠ p̂)
n

(26)

We can see that as n æ Œ we have that ‡ æ 0. We can thus apply the results, i.e.
the test accuracy, for new datasets with the above confidence interval.
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5 Methodology

5.1 Methodology Setting

Given the structure of the data set, with historical data with correct labels being
available, the problem was recognized as a supervised machine learning problem.
Since the final model is to be implemented in an actual business environment, the
method and solution were carefully agreed upon with stakeholders at Mr Green, to
ensure feasibility.

In terms of data processing and an initial feature selection, the latter was done
in close collaboration with people at Mr Green, who all posses a wide knowledge
within the area of customer behaviour. As described in Section 3, the data process-
ing consisted of cleaning up the data set, creating new features on customer level as
opposed to transactional level as well as managing categorical features using one-hot
encoding.

For the implementation the programming language Python was used, together with
packages such as NumPy and Pandas which are used for scientific computing and
handling and Scikit Learn which is used for data analysis and machine learning.
An illustration of the process of supervised machine learning is shown in Figure 2.
The version control program Github was used to facilitate the process of creating
and sharing code between the two authors of this thesis.

Several new features were created from the extracted data set by grouping and
creating clusters of the variables. An example of this is the two age groups labeled
age_group1 and age_group2, illustrated in Table 3 for a selection of the grouping.

age age_group1 age_group2

18 <20 18-20

24 20-30 20-25

59 50-60 55-60

Table 3: Examples of the two new age groups created
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Figure 2: The process of supervised machine learning

5.2 Base Models

The idea of training di�erent models is that the models would capture di�erent
attributes of the data set. As previously mentioned, the model performance will
depend on the structure of the data set, and so a logistic regression, which assumes
a linear relation between the predictors and the log odds, a random forest which
assumes no specific relation at all, along with an LDA model, which assumes a linear
relation between the predictors and the response variable, were thought to capture
di�erent aspects of the data. To strengthen this hypothesis, an initial compari-
son between di�erent models was made, training models on the full data set with
all the available features, and then comparing the test accuracy. The models that
were tested were a K-nearest neighbours (KNN) model, with di�erent values of K,
quadratic discriminant analysis (QDA), naive Bayes, and a support vector machine
(SVM), with di�erent kernels. These models produced a lower test accuracy, and
thus they were not chosen. In addition to this, the SVM took a long time to train,
making it impractical to use.

The three models were then optimized, by performing both feature selection and
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hyperparameter tuning. For the logistic regression and the LDA, recursive feature
elimination (RFE) was used, which is the Python implementation of step wise fea-
ture selection. For the random forest, a univariate method was used, evaluating
model accuracy for di�erent thresholds of the gini value. In addition to this, a prin-
cipal component analysis (PCA) was considered, to reduce dimensionality, before
training the model. However, this was not implemented, due to the loss of inter-
pretability which may occur, when mapping the features space to a lower dimension
(James et al., 2013). The tuning of the hyper parameters was then performed on
the best feature subset model, for all three base models. It turned out however,
that for most of the hyperparameters, there was practically no di�erence in model
performance. The three models, optimized individually, were then used as inputs
for the meta models.

5.3 Ensemble Models

When analyzing and comparing the results from the base models, two di�erent
ensemble models were used with di�erent approaches, to attempt to improve the
accuracy of the model. By merging the separate base models’ outcome the risk of
misclassifications is decreased.

With the voting classifier approach the three base models were first trained and
then the final classification was determined using weighted soft voting. The base
models were trained on the same data set, with a large amount of features without
any specific feature selection. To be able to find the weight vector w = (w1, w2, w3)
which resulted in the highest model accuracy the classifier was trained 60 times with
di�erent weight distributions.

When creating the stacking classifier the base models were trained on di�erent data
sets, chosen to optimize the individual models’ test accuracy. Thereafter, the prob-
ability of each observation either belonging to class 0 or 1 for all three models was
stored in a dataframe with 3 ú 2 columns. This dataframe was then used as the
input data when training the stacking classifier, with a logistic regression model as
the aggregating classifier.
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6 Results

The original data set consisted of 101 features, out of which 80 were continuous and
21 were categorical. After one-hot encoding of the categorical variables the full data
set consisted of 234 features. The continuous variables were scaled when used in
the logistic regression and linear discriminant analysis, by removing the mean and
scaling to unit variance. The reason for this was to avoid the absolute size of the
feature values a�ecting the sizes of the —̂ values. In this chapter the results from
each model is presented separately in the subsequent subsections.

Some of the techniques used were common for either two or more models. In the
feature selection process, RFE is used for both the logistic regression and the linear
discriminant analysis. In terms of accuracy evaluation, an assessment of how the
models perform using di�erent probability thresholds is done, as discussed in Section
4.2.1. This assessment is the same for all three base models, and the two meta mod-
els. Tables of threshold levels, the share of positive and negative misclassifications
along with confidence intervals for these shares will be presented in the respective
subsection. The confidence interval is computed to make the results applicable to
new data sets, in terms of the classification error, given an estimated probability
of an observation belonging to a certain class. The classification error is computed
as the share of false positives or negatives out of all observations being classified
as positive or negatives respectively. This analysis is performed on the best model
for each base model, that is after performing feature selection and tuning any hy-
perparameters. The best final test accuracy for each model is presented in Table
4.

Model name Accuracy for best model

Logistic regression 0.7336

Random forest 0.7540

Linear discriminant analysis 0.7269

Stacking classifier 0.7523

Voting classifier 0.7595

Table 4: Test accuracy for the three base models and two ensemble models
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6.1 Logistic Regression

6.1.1 Feature Selection

Logistic regression is sensitive to interdependence between the features. That is the
model should have little or no multicollinearity. Therefore, the first step was to
decrease the number of features to reduce the dependencies between features. To
analyze how the features correlate to each other a correlation matrix was created,
see Figure 3. The features that are highly correlated to other features, represented
by yellow and dark blue in the correlation matrix, express the same underlying
behaviour as another feature and were therefore removed from the data set.

Figure 3: Correlation matrix for the features in the data set

Through the correlation analysis the data set was reduced to 51 features that are
relatively uncorrelated to each other (106 with dummies). The model was then cre-
ated with recursive feature elimination (RFE). For each specified number of features
the model was trained and the model scores were compared to determine what the
optimal numbers of feature was. The result of a small selection of the RFE analysis
with a five-step interval is presented in Table 5.
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Number of features Test accuracy

65 0.7289

70 0.7305

75 0.7309

80 0.7304

85 0.7306

88 0.7336

90 0.7311

95 0.7309

100 0.7310

105 0.7310

Table 5: Test accuracy related to number of features using logistic regression when
applying RFE

For logistic regression the best model was attained with 88 features with a test ac-
curacy of 0.7336. This result was validated using 10-fold cross validation, where the
mean of the evaluated 10 fold’s accuracy was 0.7310. Hence, the model generalizes
well to the data set. The top ten features with the greatest e�ect on the outcome
are shown in Table 6.
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Rank Feature — coe�cient

1 hours_between_start_end 1.4255

2 bon_win_ge_bet_share -1.0751

3 bon_small_win_share -1.0295

4 game_minutes 0.5161

5 first_deposit_vertical_game_sportsbook 0.2882

6 cluster_7_rtp_vol_jack_hitfreq_rank_7 0.2851

7 most_frequent_category_sportsbook -0.2685

8 game_sessions 0.2667

9 category_sb_share -0.2197

10 operator_1 -0.2064

Table 6: Top ten features for the best model with logistic regression

6.1.2 Probability Threshold

As explained in chapter 1, the long term purpose of this thesis is to retain customers
at the website by predicting which customers are likely to churn. Consequently, it
is important for the model to classify the positive observations correctly, thus min-
imizing the amount of false positives is more important than minimizing the false
negatives. A false negative classification will in theory result in Mr Green targeting
that customer with promotions, while in fact, that might not have been necessary,
as that customer probably would have returned to the site either way, resulting in
unnecessary marketing costs. On the other hand, a false positive classification could
in theory lead to Mr Green missing out on targeting that customer, who is then
likely to churn. Due to this reasoning, an analysis of the e�ect of changing the prob-
ability threshold is essential. We define the threshold as the value p for which we let
an observation be classified as 1 or 0 if P (Y = 1) > p, respectively P (Y = 0) Ø 1≠p.

As is seen the Tables 7 and 8, setting a large value on p for P (Y = 1) results
in a very small percentage of misclassifications on the label 1 with the trade o�
being that the percentage of misclassification on the label 0 is large. The choice of
the value p depends on the trade o� between the marketing cost for false negatives
misclassifications versus the importance of retaining customers.
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P (Y = 1) > p Share FP Conf. int. Positive classifications FP

0.9 0.0297 0.0045 5377 160

0.8 0.0593 0.0056 6788 403

0.7 0.0926 0.0063 8138 754

0.6 0.1368 0.0067 9854 1349

0.5 0.2030 0.0070 12640 2567

0.4 0.2769 0.0068 16221 4492

0.3 0.3245 0.0067 18733 6080

0.2 0.3346 0.0067 19204 6427

0.1 0.3369 0.0066 19284 6497

Table 7: Share of false positives for each probability threshold for the logistic re-
gression classifier

P (Y = 0) Ø 1 ≠ p Share FN Conf. int. Negative classifications FN

0.1 0.5443 0.0083 13910 7571

0.2 0.5123 0.0088 12499 6403

0.3 0.4847 0.0093 11149 5404

0.4 0.4540 0.0100 9433 4283

0.5 0.4085 0.0118 6647 2715

0.6 0.3454 0.0168 3066 1059

0.7 0.2437 0.0358 554 135

0.8 0.1325 0.0729 83 11

0.9 0.3333 0.5334 3 1

Table 8: Share of false negatives for each probability threshold for the logistic re-
gression classifier

6.1.3 Hyperparameters

To optimize the logistic regression model even further a hyperparameter analysis
was performed. With the logistic regression classifier from scikit-learn the model
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can be modified by changing the solver and the penalize term of the algorithm. For
small data sets the default solver liblinear is usually a good choice, whereas for
large data sets the sag and saga are preferred. However, the fast convergence of
sag and saga is only guaranteed when the features in the data set are scaled. The
results of this analysis is presented in Table 9. As one might tell from the results
Table 9, when scaling the data set changing the hyperparameter does not a�ect the
accuracy of the model. However, when using unscaled data the accuracy di�ers. The
penalty L1 together with the solver liblinear and the L2 penalty with the newton

cg solver result in the highest accuracy, where L1 and liblinear are chosen due to
their substantially shorter running time.

Penalty Solver Scaled dataset Unscaled dataset

L1 liblinear 0.7270 0.7270

L1 saga 0.7266 0.6824

L2 lbfgs 0.7265 0.7135

L2 newton-cg 0.7266 0.7271

L2 sage no convergence 0.6825

Table 9: Hyper parameter analysis for the logistic regression classifier

6.2 Random Forest

6.2.1 Feature selection

As previously explained, the method used for feature selection for the random for-
est model was a gini threshold model, only including features whose gini values are
above some threshold. The di�erent thresholds were based on the mean gini value
of all features, which was computed as rand_forest_full_variables_gini_mean

0.00813. The test accuracy was then evaluated for each model after applying the
threshold, and the model with the highest test accuracy was chosen as the best
model. Table 10 below shows the gini threshold, along with the number of selected
features as well as the test accuracy.
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Gini threshold Number of features Test accuracy

0.0 · mean 123 0.7532

0.05 · mean 104 0.7533

0.1 · mean 96 0.7531

0.2 · mean 83 0.7540

0.3 · mean 71 0.7535

0.4 · mean 55 0.7526

0.5 · mean 50 0.7529

0.75 · mean 37 0.7494

1.0 · mean 32 0.7481

1.25 · mean 31 0.7413

1.5 · mean 27 0.7395

2.0 · mean 22 0.7385

2.5 · mean 17 0.7357

3.0 · mean 14 0.7375

Table 10: Number of features and corresponding test accuracy for each gini threshold
level

As is seen in the table, the test accuracy is fairly similar for all thresholds. The
highest test accuracy, as highlighted in bold, of 0.7540 is obtained when the model
consists of 83 features, which is the case when the gini threshold is set to 0.2 ·mean.
To validate these results, a k-fold cross validation, with k = 10 was performed using
the best model, resulting in a mean cross-fold accuracy of 0.7544, which is very
similar to the test accuracy. A table of the top ten features, based on their gini
value is shown in Table 11 .
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Rank Feature Gini value

1 hours_between_start_end 0.0844

2 rm_deposit_euro 0.0431

3 rm_result_euro 0.0428

4 age 0.0393

5 rm_bet_euro 0.03670

6 ol_sessions 0.0363

7 end_ol_sessions_with_0_euro_share 0.0340

8 game_minutes 0.0339

9 max_session_length_minutes 0.0290

10 rm_win_euro 0.0280

Table 11: Top ten most important features and their respective gini value

6.2.2 Probability threshold

The two tables below show the share of misclassifications, positives in the first
table and negative in the second table, where p indicates the probability threshold
presented in the first column.

P (Y = 1) > p Share FP Conf. int. Positive classifications FP

0.9 0.0148 0.0033 5148 76

0.8 0.0391 0.0046 6808 266

0.7 0.0814 0.0057 8699 708

0.6 0.1391 0.0065 10996 1529

0.5 0.2016 0.0068 13513 2724

0.4 0.2583 0.0068 15953 4120

0.3 0.2982 0.0067 17749 5293

0.2 0.3216 0.0067 18760 6034

0.1 0.3310 0.0067 19120 6329

Table 12: Share of false positives for each probability threshold with the random
forest classifier
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Table 12 above shows the positive misclassification rate for each probability thresh-
old, and a corresponding confidence interval. As expected, the number of false
positives increase as we lower the threshold, or more simply, become less strict in
terms of classifying an observation as a 1, or positive. The default threshold of 0.5
results in a misclassification rate of approximately 20%.

P (Y = 0) Ø 1 ≠ p Share FN Conf. int. Negative classifications FN

0.1 0.5473 0.0082 14139 7738

0.2 0.5023 0.0088 12479 6268

0.3 0.4551 0.0095 10588 4819

0.4 0.4032 0.0106 8291 3343

0.5 0.3500 0.0123 5774 2021

0.6 0.2930 0.0154 3334 977

0.7 0.2302 0.0210 1538 354

0.8 0.1594 0.0313 527 84

0.9 0.1138 0.0482 167 19

Table 13: Share of false negatives for each probability threshold with the random
forest classifier

Table 13 above shows the negative misclassification rate for each threshold. Compar-
ing the equivalent threshold between the two tables, the negative misclassification
rate is consistently slightly higher than the positive one, indicating that the model
is better at classifying positive observations.

6.2.3 Hyperparameters

Hyperparameters were tuned one at a time, evaluating the resulting test accuracy,
to find the optimal value of the parameters. The Python implementation of some
of the hyperparamters for which tuning was tested are shown in the table below.
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Tuning paramteter Implementation Python default Optimal value

n_estimators Number of trees in
the forest

10 300

min_samples_leaf Minimum number
of samples in a
node

2 2

max_leaf_nodes Maximum number
of leaf nodes

None None

min_impurity_decrease Minimum impurity
decrease required
to split a node

0 0

Table 14: Hyperparameter tuning for random forest

As is seen in the table, the only hyperparameter for which the optimal value was
di�erent than the default one was the number of trees in the forest. The other
parameters did not improve the test accuracy significantly when changed, and so
the default value was used. Note that the parameter deciding the number of features
to be considered for each split is by default m = Ô

p, which as explained in Section
4.5.2, is the recommended size, and thus it was not tuned. Figure 4 below illustrates
the test accuracy associated with the di�erent number of trees in the forest.

Figure 4: Test accuracy for di�erent number of trees
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6.3 Linear Discriminant Analysis

6.3.1 Feature Selection

As in the logistic regression model, recursive feature elimination was used in the fea-
ture selection. The model was then constructed repeatedly and the worst performing
feature based on the — coe�cient was removed each iteration. This process was re-
peated until all the features had been ranked according to their contribution. Since
the model needs to be re-trained each iteration this becomes rather time consuming.
A table of the number of chosen features for the RFE, with the corresponding test
accuracy is shown below.

Number of features Test accuracy

65 0.7168

70 0.7215

75 0.7208

80 0.7257

85 0.7244

90 0.7249

95 0.7268

100 0.7266

105 0.7269

Table 15: Test accuracy related to number of features using LDA

As is seen in the table, the test accuracy varies across the di�erent number of features
included in the model. The best test accuracy, as highlighted in bold, of 0.7269, was
obtained with all 105 features. Using 10-fold cross validation one can conclude that
the model generalizes well since the mean of the 10-fold evaluations is 0.7240. The
top ten features are presented below in table 16.
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Rank Feature — coe�cient

1 rm_bet_count_18_23 13.3096

2 rm_bet_count_12_17 13.0515

3 rm_bet_count_06_11 10.4382

4 rm_bet_count_00_05 7.8879

5 bon_win_ge_bet_share -2.3873

6 bon_small_win_share -2.3873

7 rm_bet_count_share_of_last_day -1.2633

8 cluster_7_rtp_vol_jack_hitfreq_rank_99 1.2633

9 most_freq_category_no_category 1.2633

10 hours_between_start_end 0.9879

Table 16: Top ten most important features and their respective — value with LDA

6.3.2 Probability Thresholds

After having identified the best LDA model, it was assessed based on the distribution
of misclassifications, in terms of false positives and false negatives, for di�erent
probability thresholds. The probability thresholds and resulting misclassifications
are illustrated in Table 17 and 18.

P (Y = 1) > p Share FP Conf. int. Positive classifications FP

0.9 0.0169 0.0030 4131 70

0.8 0.0425 0.0050 6208 264

0.7 0.0843 0.0061 7924 668

0.6 0.1435 0.0068 10119 1453

0.5 0.2108 0.0070 12967 2734

0.4 0.2865 0.0068 16600 4757

0.3 0.3267 0.0067 18772 6133

0.2 0.3358 0.0067 19207 6450

0.1 0.3379 0.0067 19286 6518

Table 17: Share of false positives for each probability threshold with LDA classifier
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Table 17 shows the share of positive misclassifications, out of all observations that
were classified as positive. The default threshold of 0.5 generates a positive misclas-
sification rate of approximately 21%.

P (Y = 0) Ø 1 ≠ p Share FN Conf. int. Negative classifications FN

0.1 0.5744 0.0079 15156 8707

0.2 0.5217 0.0086 13079 6824

0.3 0.4850 0.0092 11363 5512

0.4 0.4474 0.0101 9168 4102

0.5 0.4011 0.0120 6320 2535

0.6 0.3442 0.0180 2687 925

0.7 0.2504 0.0374 515 129

0.8 0.1375 0.0755 80 11

0.9 0.0000 0.0000 1 0

Table 18: Share of false negatives for each probability threshold with LDA classifier

Table 18 shows the share of negative misclassifications for each probability thresh-
old. It is important to note, that as we become more strict in terms of classifying an
observation as negative, less observations will pass that threshold. The uncertainty
as we move to more extreme thresholds is also reflected in the increasing confi-
dence interval. In the last row of the table, when an observation is only classified
as negative if its probability of being negative is greater than 0.9, there was only
one observation classified as negative, which was correctly classified, resulting in a
misclassification rate of 0 %.

6.3.3 Hyperparameters

As LDA has no hyperparameters, the best model was simply based on the feature
selection.
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6.4 Meta model: Stacking Classifier

The inputs to the stacking classifier are the outputs of the three base models, that is
the computed class probabilities from the logistic regression, the random forest and
the linear discriminant analysis, for a total of six features. Due to this nature, no
further feature selection was performed. As for the base models, each was optimized
individually, in terms of the number of features and any potential hyperparameters.
The obtained test accuracy was 0.7523, which is slightly higher than that of the
logistic regression and the linear discriminant analysis but slightly lower than that
of the random forest.

6.4.1 Probability Thresholds

An assessment of the misclassification distribution was performed for the stacking
model as well. The two tables below show the share of positive and negative mis-
classifications for each probability threshold.

P (Y = 1) > p Share FP Conf. int. Positive classifications FP

0.9 0.3365 0.0089 10765 3622

0.8 0.3368 0.0086 11728 3950

0.7 0.3370 0.0083 12400 4179

0.6 0.3363 0.0081 12955 4357

0.5 0.3382 0.0080 13453 4550

0.4 0.3388 0.0068 13965 4732

0.3 0.3396 0.0077 14504 4925

0.2 0.3399 0.0075 15174 5157

0.1 0.3383 0.0073 16062 5434

Table 19: Share of false positives for each probability threshold for the stacking
classifier

Table 19 above shows the share of positive misclassifications. Unlike previous mod-
els, this share stays relatively constant across the di�erent thresholds. However the
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number of positive classifications increase as we lower the threshold, i.e. become
less strict to classify an observation as positive, as expected.

P (Y = 0) Ø 1 ≠ p Share FN Conf. int. Negative classifications FN

0.1 0.6639 0.0100 8522 5685

0.2 0.6645 0.0106 7559 5023

0.3 0.6650 0.0111 6887 4580

0.4 0.6638 0.0116 6332 4203

0.5 0.6682 0.0121 5834 3898

0.6 0.6704 0.0127 5322 3568

0.7 0.6736 0.0133 4783 3222

0.8 0.6769 0.0143 4113 2784

0.9 0.6738 0.0162 3225 2173

Table 20: Share of false negatives for each probability threshold for the stacking
classifier

Table 20 above shows the share of negative misclassifications for the di�erent thresh-
olds. Just as the share of positive misclassifications, the share of negative misclassifi-
cations do not change by much across the probability thresholds. They are however
significantly higher than the positive ones, and one can conclude that the stacking
model performs worse in terms of classifying negative observations, compared to the
positives.

6.5 Meta model: Voting Classifier

When creating the voting classifier the three base models were first trained separately
with the complete data set without any initial feature selection. The reason for this
was that the voting classifier function in scikit-learn uses the same data set for all
base models. The probability of each outcome, for each observation, for all three
models was then stored. The voting classifier then calculated the average weighted
probability and determined the most likely class out of {0, 1}. To identify the
voting classifier with the highest accuracy the process was repeated for di�erent
weight distributions. A selection of the iterations and results is presented in Table
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21, where w1 is the weight for logistic regression, w2 for random forest and w3 for
LDA. The best result is obtained when the weight for the random forest classifier,
w2, is large and the ratio of the remaining weight is greater for the LDA classifier
than the logistic regression.

w1 w2 w3 Accuracy

0.0500 0.95 0.0000 0.7552

0.0125 0.95 0.0375 0.7578

0.0000 0.95 0.0500 0.7583

0.0500 0.90 0.0500 0.7561

0.0250 0.90 0.0750 0.7576

0.0000 0.90 0.1000 0.7590

0.1500 0.85 0.0000 0.7540

0.1125 0.85 0.0375 0.7556

0.0750 0.85 0.0750 0.7567

0.0375 0.85 0.1125 0.7579

0.0000 0.85 0.1500 0.7590

0.2000 0.80 0.0000 0.7505

0.1500 0.80 0.0500 0.7540

0.0100 0.80 0.1000 0.7562

0.0500 0.80 0.1500 0.7595

0.0000 0.80 0.2000 0.7594

0.0625 0.75 0.1875 0.7590

0.0000 0.75 0.2500 0.7589

0.0000 0.70 0.3000 0.7588

0.0000 0.65 0.3500 0.7593

Table 21: Test accuracy for di�erent weights between the three base models where
w1 is the weight for logistic regression, w2 for random forest and w3 for LDA
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6.5.1 Probability Thresholds

Much like previous models, a higher probability threshold results in a lower rate of
false positive misclassifications, which is preferable.

P (Y = 1) > p Share FP Conf. int. Positive classifications FP

0.9 0.0107 0.0034 3456 37

0.8 0.0374 0.0051 5484 205

0.7 0.0846 0.0064 7209 610

0.6 0.1430 0.0071 9213 1317

0.5 0.2049 0.0074 11449 2346

0.4 0.2720 0.0074 13767 3744

0.3 0.3120 0.0073 15229 4751

0.2 0.3321 0.0073 15876 5273

0.1 0.3385 0.0073 16064 5438

Table 22: Share of false positives for each probability thresholds for the voting
classifier

P (Y = 0) Ø 1 ≠ p Share FN Conf. int. Negative classifications FN

0.1 0.5705 0.0086 12635 7208

0.2 0.5041 0.0095 10607 5348

0.3 0.4535 0.0103 8882 4028

0.4 0.3971 0.0115 6878 2731

0.5 0.3283 0.0135 4642 1524

0.6 0.2590 0.0178 2324 604

0.7 0.1728 0.0252 862 149

0.8 0.1116 0.0420 215 24

0.9 0.0370 0.0712 27 1

Table 23: Share of false negatives for each probability thresholds for the voting
classifier
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7 Discussion

7.1 Findings

After performing the analysis presented in this report, the research questions can
be answered.

• To what extent is it possible to predict the probability of each customer churn-
ing, using data from the first 24 hours after the player’s first deposit?

The highest test accuracy of 75% is obtained using the voting classifier, which is one
of the meta models. A natural consequence of the voting is that the meta model will
perform at least as good as the best base model, since it will weigh better models
greater. The di�erence however in test accuracy between the random forest, which
was the best performing base model and the voting model is rather small. One could
however still argue that it is preferable to use the voting classifier as a final model,
since it incorporates the behavior of multiple models. It is also possible that as the
accuracy of the base models improve, the accuracy of the voting model will improve
by even more.

• Which supervised machine learning model explains the players’ churn be-
haviour the best?

Out of the base models it is random forest that performs the best in terms of test
accuracy, albeit only marginally compared to the logistic regression and the LDA.
A potential reason for this could be that the non-parametric approach captures the
characteristics of the data set the best, as opposed to the other two models, both
assuming a type of linear relation. Another reason to why random forest performs
the best could be the fact that it incorporates a type of ensemble technique when
building multiple trees.

In addition to the answers to the research questions, an interesting finding is that
the base models all choose slightly di�erent features to be included in the models,
especially for the top ten highest rated features. A potential reason for this could be
that the data does not su�ciently explain the actual churn behaviour. Had the data
set been able to capture the churn behaviour of the customers to a larger extent, one
would expect the features selected for the three models to have a greater overlap.
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However, it is also natural to expect that the models would choose di�erent features,
as they assume di�erent relations in the data, that is between the predictors and
the response variable.

Another interesting finding is that the test accuracy is approximately the same
for all models, both the base models and the meta models. Since the models all
capture di�erent aspects of the data set, as previously mentioned, and they have
all been optimized individually, one can assume that the test accuracy is related to
the quality of the data set. The data set mainly consists of demographical or mon-
etary features, for instance bet size or winnings. There are a few variables related
to the player activity, such as online sessions, the channel used or the top cate-
gory of games. After discussions with colleagues at Mr Green, we have found that
the latter category usually play an important role in terms of customer behavior.
Consequently, it is reasonable to assume that the model accuracy could have been
improved, had that category of the variables been more extensive. An example would
be more data on the website interface and how the player browses around on the site.

Moreover, human behavior incorporates a high amount of randomness. For in-
stance, two players might have the same demographics and exhibit a similar gaming
pattern, however one might choose to leave whereas the other one chooses to stay.
No matter the data set, this factor will always be di�cult to model. Nonetheless, a
more extensive data set is more likely to result in an accurate model.

7.2 The Contribution of the Findings

7.2.1 The feasibility of the model

Since the overall goal with this thesis is to create a model that is easily implemented,
the running time is an essential part of the evaluation. Collecting and creating the
data set for 24 hours takes about 5 hours. Although this might appear long, it is
important to keep in mind that this part of the execution is only performed when
re-training the model. The model itself should then be run on a daily basis, to be
able to instantly target customers predicted to churn. The running time for making
predictions is approximately 10 minutes, making it manageable on a daily basis.
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7.2.2 Marketing implementations

One of the objectives with the model is to optimize the marketing strategy at Mr
Green. Before implementing the model it is impossible to predict which customers
will churn. Consequently, Mr Green needs to target all their customers. By imple-
menting the model, Mr Green would be able to predict which customers are likely to
churn, and focus their marketing accordingly. To analyze this concept, we assume
that Mr Green would only target customers who are predicted to churn. The false
positives will thus not be targeted, and could in theory represent customers who
could have been converted, had Mr Green had a chance to target them. Analo-
gously, the number of all positive classifications could then be seen as the amount
of customers that Mr Green will not have to target. Looking at marketing costs,
one could then view the positive classifications times the average marketing cost
per customer as costs saved compared to today, when marketing is directed to all
customers. To further analyze savings, one should subtract the equivalent cost for
the false negative classifications, assuming that these customers would have stayed
even without the marketing e�ort. Lastly, one should assess the cost of losing the
customers, which the model predicted to be false positives.

Of course, the false predictions will be impossible to know beforehand. Even af-
ter the 30 days, when the actual outcome will be known it will be impossible to tell
if the customers churning or staying was impacted by the marketing e�ort, which
was based on the initial predictions. The tables showing the number of positive and
negative misclassifications for various probability thresholds then become useful. As
the results are made generic with the use of confidence intervals, one could assess
the average error rate of an observation, given its estimated probability. Studying
the tables, it is clear that an observation with a high class probability will have a
lower error rate on average. This could be a fruitful insight when looking at which
customers to target.

7.3 Future Improvements

One hypothesis is that it is possible to increase the accuracy by collecting data for
a longer time interval than 24 hours. The data on the customer behaviour then
contains more information, making it easier to predict the true outcome {0, 1}.
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Therefore, a proposed model improvement is to run the model with data for 1-8
days (24 h, 48 h, 72 h, 96 h, 120 h, 144 h, 168 h, 192 h) after the customer’s first
deposit. Since many people have strong weekly habits the authors of this thesis
believe that 8 days is an important time interval to examine closer. For example,
if a player starts playing on Thursday night it is likely that she or he will return
next Thursday night. Accordingly, using 192 hours of data to train the model might
capture a behaviour that shorter time intervals fail to capture.

Another future improvement would be to try to collect more data on each customer
and their behaviour on the website to better capture the likelihood of a customer
churning. This is motivated with the words from one of the supervisors Jiri Pallas,
"The model only is as good as the data". For example, an interesting feature to an-
alyze is if the customer at any time chooses to click on the help button, which could
indicate that the customer is relatively new to online gaming. Another potential
feature is information about the customers’ interaction with customer service.

7.4 Conclusion

We conclude that it is indeed possible to predict the customer churn rate, at an
accuracy of approximately 75%. The model that performed the best was the meta
model using voting to combine the three base models logistic regression, random
forest and LDA. We also concluded that in order to make an even more accurate
classification, a more detailed data set would have been necessary.
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