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Abstract

In this thesis we prove existence and uniqueness for reflected stochastic dif-
ferential equation on a specific non-smooth, time-dependent domain. The
domain is the intersection of a finite number of smooth domains that are
allowed to vary in time. The reflection is oblique to the domain and at the
corners more than one direction of reflection is allowed.

The time restrictions on the domain is firstly the existence of a semi-
concave family of sets that are C1,+ in time. Secondly that the distance
function to the domain is in W1,p.

The first part of the proof is to construct of three kinds of test functions
with desired properties. Using these test functions, existence is proved to the
Skorokhod problem. Finally uniqueness is proved for the reflected stochastic
differential equation.

Keywords: Reflected stochastic differential equations, non-smooth, time-
dependent, Skorokhod problem





Sammanfattning

I den här mastersuppsatsen så bevisar vi existens och entydighet för reflekte-
rade stokastiska differentialekvation på ett icke slätt, tidsberoende område.
Området är snittet mellan ett ändligt antal släta områden som tillåts variera
i tiden. Reflektionen är ej nödvändigtvis vinkelrät till området och i hörnen
finns det mer än en tillåten riktning.

Tidsrestriktionen på området är dels existensen av en familj av semi-
konkava mängder som är C1,+ i tiden. Dessutom att avståndet till området
är W1,p i tiden.

Första delen av beviset är att konstruera tre hjälp funktioner med efter-
sökta egenskaper. Med hjälp av de här funktionerna så bevisas sedan existens
av lösningar till Skorokhod problemet. Slutligen så bevisas entydighet av den
reflekterade stokastiska differentialekvationen.

Keywords: Reflekterande stokastiska differentialekvationer, icke-slät, tidsbe-
roende, Skorokhod problemet
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Nomenclature

B(a, b) Closed ball around a with radius b

S(a, b) Sphere around a with radius b

|λ|(t) The total variation of the process λ(s) at the time t

|λ(t)| The norm of λ(s) at the time t

〈·, ·〉 The inner product

a.e Almost everywhere

a.s Almost surely

C(A) Continuous functions on A

Cp(A) Functions on A with p continous derivatives

Cp,1(A) Functions on A which p derivatives is Lipschitz

IA Indicator function on the set A
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Chapter 1

Introduction

In this master thesis we prove the existence and uniqueness of a strong solu-
tion to a stochastic differential equation (SDE) with an oblique reflection, on
a non-smooth time dependent domain. Dupius and Ishii[1] proved existence
and uniqueness for SDE for two different kinds of non-smooth time indepen-
dent domain with oblique reflection, denoted Case 1 and Case 2 in. Önskog
and Lundström later generalized the results in Case 1 to a time dependent
domain in [2]. This thesis will generalize the result for Case 2 to a time-
dependent domain. The approach, which is similar to [2] and [1], rely on the
Skorokhod problem (SP). This approach was first used by Tanaka in [3] to
solve SDE with reflection in convex regions. The method was later used by
Lions and Sznitman in [4] to generalize the proof to non-smooth domains.
This proof will also make use of a series of functions adapted to the domain
and reflection. A time-independent variant of these functions are used in [1]
and their existence is verified in [5], where they are used to prove existence
and uniqueness of a viscosity solution to certain partial differential equation
on a non-smooth domain.
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Chapter 2

Background

2.1 Mathematical theory

2.1.1 Stochastic calculus

We begin our treatise of stochastic calculus by defining Wiener process and
Ito integral which are vital parts of the SDE theory. First we define the
Wiener process, sometimes called Brownian motion, given a filtered proba-
bility space (Ω,F , (Ft), P ).

Definition 2.1. A Wiener process, denoted W (s), is an Ft-adapted stochas-
tic process with the following properties

W0 = 0 a.s,
W (t)−W (s) ∼ N(0, t− s) and independent of Fs.

Now we move to the construction of the Ito integral. We will first define the
integral for simple processes, defined belove.

Definition 2.2. A stochastic process Xn(s) on [0, T ] is simple if there exist
times 0 = t0 < t1 < t2 < · · · < tn = T and stochastic variables Y1, Y2, · · ·Yn
such that

Xn(s) =
n−1∑
i=0

YiI[ti,ti+1](t).

Definition 2.3. Let Xn(s) be a simple process and W (s) a Wiener process.
Then we define the Ito integral of Xn(s) with respect to W (s) to be

I(Xn(s))(t) =

∫ t

0
Xn(s)dW (s) =

n−1∑
i=0

Yi(W (ti+1 −W (ti)).

Next we define the Ito integral for bounded processes by approximating the
process with a simple one. The following theorem, Theorem 2.4 in [6], will
therefore be important.
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Theorem 2.4. Let Xt be a bounded process. Then there exists a series of
simple processes Xn

t such that

lim
n→∞

∫ t

0
E
[
|X(s)−Xn(s)|2

]
ds = 0. (2.1)

Definition 2.5. Let Xt be a process and Xn
t be a series of simple processes

satisfying (2.1). Then the Ito integral of Xt with respect to the Wiener process
Wt is defined as follows

I(X(t)) =

∫ t

0
X(s)dW (s) = lim

n→∞

∫ t

0
X(s)ndW (s).

Although the Ito integral is constructed in a similar manner as the Riemann
integral, the Ito integral does not behave exactly the same. For example∫ t

0
W (s)dW (s) =

W 2(t)

2
− t

2
.

2.1.2 Stochastic differential equation

Given a filtered probability space (Ω,F , (Ft), P ) and a Wiener process W,
an equation on the form

X(t) = x+

∫ t

0
b(s,X(s))ds+

∫ t

0
σ(s,X(s))dW (s),

where b(t, x) and σ(t, x) are Borel measurable functions, is called a Stochastic
differential equation (SDE).

Definition 2.6. A strong solution to a SDE with coefficients b(t, x) and
σ(t, x), driven by a wiener process W (t) is a (Ft) adapted stochastic process
X(t) satisfying

X(t) = x+

∫ t

0
b(s,X(s))ds+

∫ t

0
σ(s,X(s))dW (s), (2.2)

a.s.

Usually a strong solution is hard to explicitly found. The following theorem
gives existence and uniqueness for solutions to SDE

Theorem 2.7. If the functions b(t, x) and σ(t, x) fulfills the Lipschitz con-
dition

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| < K|x− y|, (2.3)

for some constant K and fulfills the linear growth condition

|b(t, x)|2 + |σ(t, x)|2 < C(1 + |x|2), (2.4)

for some constant C, then there exists a unique strong solution to (2.2).
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A useful Lemma that can be used as a change of variable formula in stochastic
calculus is Ito’s Lemma

Lemma 2.8. Let f(t, x) be a twice differentiable function and X(t) a stochas-
tic process on the following form

X(t) = x0 +

∫ t

0
b(t,X(t))dt+

∫ t

0
σ(t,X(t))dW (s).

Then we have

f(t,X(t)) = f(0, x0) +

∫ t

0

(
∂f

∂t
+ b(s,X(s))

∂f

∂x
+
σ(s,X(s))

2

∂2f

∂x2

)
ds+∫ t

0
σ(s,X(s))

∂f

∂x
dW (s).

.

2.1.3 Reflected Stochastic differential equation

Now consider an SDE confined in a domain Ω with a reflecting boundary.
The solution should be reflected along a certain direction when the solution
is on the boundary of the domain but should otherwise behave ordinary. To
resolve this we add a reflection term to equation (2.2) which only increases
when the solution is at the boundary.

Definition 2.9. A strong solution to a reflected stochastic differential equa-
tion (RSDE) with coefficients b(t, x) and σ(t, x), on a domain Ω driven by
a Wiener process W (t), reflected along γ is a pair of stochastic processes
(X(t),Λ(t)) satisfying

X(t) = x+

∫ t

0
b(s,X(s))ds+

∫ t

0
σ(s,X(s))dW (s) + Λ(t), (2.5)

where X(t) ∈ Ω and

|Λ|(t) =

∫ t

0
I{X(s)∈∂Ω}d|Λ|(s), (2.6)

Λ(t) =

∫ t

0
γ(s)d|Λ|(s). (2.7)

We will assume that the functions b(t, x) and σ(t, x) satisfy the Lipschitz
continuity condition (2.3). The Λ function compensates so that X stays
within the domain. Equation (2.6) means that the compensation function
only increases when X is at the boundary and equation (2.7) means that
Λ pushes X along the direction of the reflection γ. In this thesis Ω will
time-dependent. This means that the boundary ∂Ω and γ will not be fixed
in time. Closely related to RSDE is the Skorokhod problem.
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Definition 2.10. Given a function ψ, a pair of functions (φ, λ) is solution
to the Skorokhod problem (SP) on a domain Ω with directions of reflection
r(x) ⊂ S(0, 1), ∀x ∈ ∂Ω, if

φ(t) = ψ(t) + λ(t), (2.8)

φ(t) ∈ Ω, (2.9)
|λ|(t) <∞, (2.10)

|λ|(t) =

∫ t

0
I{φ(s)∈∂Ω}d|λ|(s), (2.11)

λ(t) =

∫ t

0
γ(s)d|λ|(s), (2.12)

where γ(t) = γ(t, φ(t)) ∈ r(x) a.s.

We see that a solution to an RSDE (X,Λ) should solve the SP with ψ =
x+

∫ t
0 b(s,X(s))ds+

∫ t
0 σ(s,X(s))dW (s) on a path-wise basis almost surely.

For more information on RSDE and the connection to SP see [6].

2.1.4 Axillary theorems

Here we define and state theorems and definitions that will be useful in the
rest of this thesis. First we define Hilbert, Lp and Sobolev spaces

Definition 2.11 (Hilbert space). A Hilbert space is a complete real or com-
plex vector space with an inner product, here denoted 〈·, ·〉. The inner product
induces a norm ‖x‖ =

√
〈x, x〉 and a metric d(x, y) =

√
〈x− y, x− y〉.

Definition 2.12 (Lp). An Lp(Ω) space is the vector space of functions on a
domain Ω, with finite p-norm i.e.

‖f‖p =

(∫
Ω
|f |pdx

) 1
p

<∞.

Definition 2.13 (Wk,p). A Sobolev space, denoted Wk,p, is the vector space
of functions, whose k:th order derivatives are in Lp. Function in Wk,p have
the norm

‖f‖ =

k∑
i=0

∥∥Dif
∥∥
p
.

Definition 2.14. A sequence xn in a Hilbert space H with inner product
< ·, · > converges weakly to x ∈ H if

< xn, u >→< x, u > ∀u ∈ H. (2.13)
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Definition 2.15 (Precompact). A subset X ⊂ Y is precompact, or relative
compact, if the closure X is compact.

Theorem 2.16. If a subset F ⊂ C(X) is equicontinuous i.e ∀ε > 0 ∃δ > 0
such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε ∀x, y ∈ X, ∀f ∈ F,

and all f ∈ F are bounded, then F is precompact.

Definition 2.17 (Martingale). A stochastic process X(s), on [0, T ], adapted
to a filtration Ft is called a martingale if

E[|X(t)|] <∞,
E[X(t)|Fs] = X(s) 0 ≤ s ≤ t ≤ T.

Lemma 2.18 (Doob’s Martingale inequality). Let M(t) be a martingale
satisfying M(t) ≥ 0 a.s and E[M(t)] <∞ then

E

[(
sup

0≤s≤t
M(s)

)p]
≤
(

p

p− 1

)p
E [Mp(s)] . (2.14)

Theorem 2.19 (Gronwall’s inequality). Let α, β and u be real valued func-
tions on the interval [a, b]. Let β be non-negative and u satisfy

u(t) ≤ α(t) +

∫ t

a
β(s)u(s)ds ∀t ∈ [a, b].

Then we have the following inequality

u(t) ≤ α(t) +

∫ t

0
α(s)β(s)e

∫ t
s β(r)drds ∀t ∈ [a, b].

2.1.5 Superdifferential

Since the domain we will define the RSDE on is non-smooth we will have
to introduce superdifferentials for the test functions and for the definition of
the domain.

Definition 2.20. The superdifferentials of first order to a function f : Rn →
R at the point x are

D+f(x) = {p ∈ Rn : f(x+ h) ≤ f(x)+ < p, h > +o(|h|) as h→ 0} .

The superdifferentials of second order are

D2,+f(x) =
{

(p,A) ∈ Rn × Sn : f(x+ h) ≤

f(x)+ < p, h > +
1

2
< Ah, h > +o(|h|2) as h→ 0

}
,

where Sn is the set of all symmetric n× n matrices.
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We next define the sets of functions C1,+ and C2,+

Definition 2.21. A function f : Ω→ Rn is in C1,+ if D+f(x) is nonempty
∀x ∈ Ω.

Definition 2.22. A function f is in C2,+ if for each compact set K there
exists a constant C < ∞ such that (p, CI) ∈ D2,+f(x) ∀x ∈ K for some p,
depending on x, where I is the identity matrix.

We also define what it means for a family of sets to be in class C2,+.
This will be necessary for the definition of the domain.

Definition 2.23. A family of sets {B(x) : x ∈ U ⊂ Rn} is of class C2,+

if for all y ∈ Rn the distance function to the set B, defined as d(x,B) =
inf(|x− y| : y ∈ B) satisfy d(y,B(x))2 ∈ C2,+(U × Rn).

2.2 Domain

We consider the domain in Case 2 in [1] but the domain is here allowed to
vary in time. Let I be a finite index set, and for each i ∈ I, let Gi be an
open bounded subset of Rn+1 and let Ωi = Gi ∩ [0, T ] × Rn. The domain Ω
is then defined as

Ω =
⋂
i∈I

Ωi.

We define Ωt and Ωi,t to be the time sections of the domain, e.g Ωt = {x ∈
Rn : (t, x) ∈ Ω}. We assume that for each time the boundary ∂Ωi,t is of class
C1. We define I(t, x) = {i ∈ I : x /∈ Ωi,t}, so the set I(t, x) corresponds to
those ∂Ωi,t on which x is located at time t. I(t, x) will be assumed to be
upper semi-continuous which means that ∀x ∈ ∂Ωt and ∀t ∈ [0, T ] there exist
a neighborhood V surrounding x and a interval W surrounding t, such that
I(s, y) ⊂ I(t, x) ∀y ∈ V and ∀s ∈ W . To define the directions of reflections
r(t, x) we assume that there exist vector fields γi(t, x) ∈ C0,1([0, T ]×Rn,Rn),
where C0,1 is the space of continuous Lipschitz functions. Let ηi(t, x) denote
the inward normal to ∂Ωi,t. Then we assume that

〈γi(t, x), ηi(t, x)〉 > 0 ∀x ∈ ∂Ωi,t, ∀t ∈ [0, T ], ∀i ∈ I(t, x),

implying that γi points inwards. We also assume that at the corners of the
domain the convex hull of {γi(t, x) : i ∈ I(t, x)} does not contain the origin.
Now we are ready to define the directions of reflections as

r(t, x) =

 ∑
i∈I(t,x)

aiγ(t, x), ai ≥ 0 : |
∑

i∈I(t,x)

aiγ(t, x)| = 1

 . (2.15)
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We will also assume there exists a γ ∈ r(t, x) such that γ points inward to
Ωt, that is

〈γ(t, x), ηi(x, t)〉 > 0 ∀i ∈ I(t, x), ∀x ∈ ∂Ωt, ∀t ∈ [0, t]. (2.16)

Our final assumption is that for each t ∈ (0, T ), x ∈ ∂Ωt, there exist a
neighborhood V to x and a neighborhood W to t, and a family of compact
convex subsets {B(s, y) : y ∈ Ωs} containing the origin, such that for ∀y ∈
V ∩ ∂Ωs, s ∈W and p ∈ ∂B(s, y) the following holds

〈γ(t, y), n〉

{
≥ 0 If 〈p, ηi(s, y) ≥ −1,

≤ 0 If 〈p, ηi(s, y) ≤ 1,
(2.17)

where n is the inward normal to B(s, y) at p. The family of sets is jointly
C1,+ in time and space and C2,+ for fixed a time.

Remark 2.24. Condition (2.17) and its consequences is discussed further
in [5] and [7]. In [7] Lipschitz continuity is proved for the mapping φ = Γ(ψ)
where (φ, φ− ψ) solves the SP for ψ. The following sufficient condition for
(2.17) is proved in [5]

Lemma 2.25. If there for each x ∈ ∂Ωt, t ∈ [0, T ], exist a set of positive
numbers bi, i ∈ I(t, x), such that

bj〈γi(t, x), ni(t, x)〉 >
∑

j∈I(t,x)\{i}

bj(t, x)|〈γj(t, x), ni(t, x)〉| ∀i ∈ I(t, x),

then (2.17) holds.

For the time variation we require that there exists a p such that for all fixed
x ∈ Rn the following holds

f(t) = d(x,Ωi,t) ∈ W1,p([0, T ], [0,∞]), (2.18)

meaning that the distance function to each set Ωi,t, for fixed x, should have
a weak first derivative in time that is in Lp([0, T ], [0,∞]). This also implies
that the distance function to the domain Ωt is in W1,p([0, T ], [0,∞]).

Remark 2.26. Property (2.18) implies that there exists a Hölder exponential
α and a constant K such that

|d(x,Ωs)− d(x,Ωt)| ≤ K|s− t|α. (2.19)

Remark 2.27. The regularity of ∂Ωt implies that there exists a δ > 0 and
a θ > 0 such that for all x ∈ ∂Ωt, y ∈ Ωt, t ∈ [0, T ], it holds that

|x− y| ≤ δ ⇒ 〈y − x, ni〉 ≥ −θ|x− y|.

See Remark 3.3 in [1].
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Chapter 3

Outline

The Theorem we want to prove is

Theorem 3.1. Assume that Ω and γ are domain and directions of reflections
as described in Section 2.2. Then there exists a unique solution (φ,Λ) to the
RSDE on the domain Ω with reflection γ.

The proof will follow the following outline

• Prove existence of solutions to the SP for C1 functions by a penalty
method

• Prove that the solutions to the SP are of bounded variation and is a
relatively compact set.

• Prove existence of solutions to the SP for C functions. This is done by
approximating the continuous function by a series of C1 functions and
use the previous result

• Prove uniqueness for solutions to the RSDE.

• The solutions to the SP problem makes it possible to prove existence
of a solution to the RSDE by a fix point iteration

The first three steps are carried out in Section 5 and the final two are done in
Section 6. A key ingredient in these proofs will be a series of test functions,
which will be stated and constructed in Section 4.

9



Chapter 4

Test functions

4.1 g and f functions

In this section we will state and construct the test functions g and f used in
Lemma 5.3 and 6.1. The test functions are similar to those in [5] but with a
time-dependence.

Theorem 4.1. There exists a function g(t, x, r) : [0, T ] ×W × Rn → Rn,
where W is a open set containing Ωt for all t ∈ [0, T ], with the following
properties

g(t, x, r) is C1,+, (4.1)

For fixed time t g(t, ·, ·) is C2,+, (4.2)

For fixed time t and x g(t, x, ·) is C1, (4.3)
g(t, x, 0) = 0, (4.4)

g(t, x, r) ≥ |r|2, (4.5)
〈Drg(t, x, r), γi(t, x)〉 ≥ 0, if 〈r, ni(t, x)〉 ≥ −θ|r|, (4.6)

|u| ≤ C|r|2, |p| ≤ C|r|2, |q| ≤ C|r|, for (u, p, q) ∈ D+g(t, x, r), (4.7)

and for fixed time t there exists (p, q) ∈ D+g(t, x, r) such that(
(p, q), C

[
|r|2I 0

0 I

])
∈ D2,+g(t, x, r). (4.8)

To prove the rest we use the following lemmas. They are the C1,+ variants
of Lemma 4.2 and Lemma 4.3 in [5]

Lemma 4.2. Let U be a subset of Rn and V an open interval. H ∈ C1,+(U×
V ) and f : U → V is C0,1 so that H(x, f(x)) = 0. Assume also that for
each compact set K ⊂ U there exists a δ > 0 such that if x ∈ K and
(p, q) ∈ D+H(x, f(x)) then q ≤ −δ. Then f(x) ∈ C1,+

10



Proof. Let (p, q) ∈ D+H(x, f(x)). Then we have as h→ 0

H(x+ h, f(x+ h))−H(x, f(x)) ≤
〈p, h〉+ q(f(x+ h)− f(x)) + o(|f(x+ h)− f(x)|).

Using the fact that H(x, f(x)) = 0 and rearranging gives us

−q(f(x+ h)− f(x)) ≤ 〈p, h〉+ o(|f(x+ h)− f(x)|)⇒
f(x+ h)− f(x) ≤ 〈δ−1p, h〉+ o(h),

where we used that q ≤ −δ and f is Lipschitz in the ordo term. This proves
that f ∈ C1,+.

Lemma 4.3. Let g(x) ∈ C1,+ and f(x) ∈ C0,1. Then g(f(x)) ∈ C1,+.

Proof. Let p ∈ D+g(f(x)) and let C be the Lipschitz constant to f . Then

g(f(x+ h))− g(f(x)) ≤ 〈p, f(x+ h)− f(x)〉+ o(|f(x+ h)− f(x)|) ≤
〈Cp, h〉+ o(|h|).

This proves that g(f(x)) ∈ C1,+.

Now we can prove Theorem 4.1

Proof of Lemma 4.1. The properties (4.2), (4.3),(4.5),(4.6) are (4.8) are time-
independent so the proof of those statements follows Lemma 4.4 in [5]. Here
we will prove (4.1), (4.4) and the time part of (4.7). First we will construct
g satisfying (4.1) with the help from the sets defined in (2.17) on the punc-
tured space. Then extending the functions to include the origin will let us
prove (4.4). Let {B(t, x)} be the family of sets defined in (2.17) and define
the function d(t, x, ξ) = (dist(ξ,B(s, x)))2 on [0, T ] × Ω × Rn. We know
from the definition of the domain that the family of sets {B(t, x)} is C1,+

and for fixed time is C2,+. This means that d(t, x, ξ) is C1,+ and for fixed
time is C2,+. We refer to [5] Lemma 3.2 for the proof that for fixed t and x
the function ξ → d(t, x, ξ)2 is in C1,1 with derivative

Dξd(t, x, ξ) = 2(ξ − PB(t,x)(ξ)),

where PB(t,x)(ξ) is the closest point on B(t, x) to ξ. W first define the
functions on the punctured plane. Let U = Rn\{0},δ > 0 and define the
function g(t, x, ξ) = r where r is the scalar satisfying d(t, x, r−1/2ξ) = −δ2.
First lets prove that g is well defined, e.g. that r exists and is unique. Since
d(t, x, sξ) → ∞ as s → ∞ and d(t, x, 0) = 0, r exists. To check uniqueness
we look at the derivative of d(t, x, sξ)

Dsd(t, x, sξ) = 2〈sξ − PB(t,x)(sξ), ξ〉 =

2

s
〈sξ − PB(t,x)(sξ), PB(t,x)(sξ)〉+

2

s
d(t, x, sξ) ≥ 2

s
d(t, x, sξ) ≥ 0,
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where we have used the fact that B(t, x) is convex and contains the origin.
This means that when d(t, x, sξ) is larger than zero it is a strictly increasing
function in s. This implies that r is unique and therefore g is well defined.
To prove (4.2) we define the function H(t, x, ξ, r) = d(t, x, r−1/2ξ)−δ2. Since
d is a C1,+ function and (t, x, ξ, r) → (t, x, r−1/2ξ) is smooth (for r > 0),
H is a C1,+ function by Lemma 4.3. To show that g is a C1,+ function
we use Lemma 4.2. So we need to show that g is continuous, Lipschitz
continuous and that q ≤ −δ where (s, p, q) ∈ D+(t, x, ξ, g(t, x, ξ)). Since H
is differentiable in r we calculate the derivative

∂H

∂r
= −r

−3/2

2
〈ξ,Dξd(t, x, r−1/2ξ)〉 ≤ −r−1d(t, x, r−1/2ξ) = −δ

2

r
.

Now since r → −r−1d(t, x, r−1/2ξ) is a increasing function we get for 0 <
r ≤ g(t, x, ξ)

∂H

∂r
≤ − δ2

g(t, x, ξ)
.

Since in Lemma 4.2 the bound is necessary for all compact sets K, so if g
is continuous and therefore bounded on each K the bound holds in Lemma
4.2. So the only thing left to prove is that g is continuous and Lipschitz
continuous. Continuity follows from the uniqueness of r. To see this let
(tn, xn, ξn)→ (t, x, ξ) then

d(tn, xn, g(tn, xn, ξn)−1/2ξn)→ d(t, x, g(t, x, ξ)−1/2ξ),

since d(t, x, g(t, x, ξ)−1/2ξ) is constant. But since r is unique then g(tn, xn, ξn)→
g(t, x, ξ). So g is continuous. To prove Lipschitz continuity we fix an
a ∈ (0, T ) ×W × U and an ε > 0 such that

δ2

g(x)
≥ ε, ∀x ∈ B(a, ε).

Let L be the compact image by g of B(a, ε). Since H is C1,+ it is Lipschitz
continuous on the compact domain B(a, ε) × L. Let x, y ∈ B(a, ε) and
without loss of generality assume that g(x) ≥ g(y)

0 = H(x, g(x))−H(y, g(y)) =

H(x, g(x))−H(y, g(x)) +H(y, g(x))−H(y, g(y)),

then by Lipschitz continuity of H and mean value theorem

H(x, g(x))−H(y, g(x)) +H(y, g(x))−H(y, g(y)) ≤

M |x− y|+ ∂H

∂r
|g(x)− g(y)| ≤

M |x− y| − δ2

g(x)
|g(x)− g(y)| ≤

M |x− y| − ε|g(x)− g(y)|.

12



Rearranging gives us Lipschitz for g on B(a, ε). Since B(a, ε) creates an open
cover for every compact set K ⊂ (0, T ) ×W × U then there exists a finite
subcover and therefore g is Lipschitz for every compact set K. Applying
Lemma 4.2 we get that g ∈ C1,+ and we have proved (4.1). Next we want to
prove (4.4), we do this by extend g when ξ = 0. We observe that for s > 0

d(t, x, (s2g(t, x, ξ)−1/2sξ) = δ2 ⇒ s2g(t, x, ξ) = g(t, x, sξ). (4.9)

Then it is clear that g(t, x, 0) = 0 gives a continuous extension and (4.4) is
proved. To prove the time part of (4.7), we first assume ξ 6= 0. From the
definition of C1,+ we have

g(t+ j, x+ h, ξ+ |ξ|k) ≤ g(t, x, ξ) + uj + 〈p, h〉+ 〈q, |ξ|k〉+ o(|j|+ |h|+ |k|).

Now multiplying the above with |ξ|−2 and using (4.9) we get

g(t+ j, x+ h, |ξ|−1ξ + k) ≤
g(t, x, |ξ|−1ξ) + |ξ|−2uj + 〈|ξ|−2p, h〉+ 〈ξ−1q, k〉+ o(|j|+ |h|+ |k|),

which proves that (|ξ|−2u, |ξ|−2p, ξ−1q) ∈ D+g(t, x, |ξ|−1ξ). This means that
the above must hold for j < 0, h = 0, k = 0. Together with the Lipschitz
continuity for g, we obtain

g(t+ j, x, |ξ|−1ξ) ≤ |ξ|−2uj + o(|j|)⇒ |ξ|−2u+ o(|j|) ≤
1

j
(g(t+ j, x, |ξ|−1ξ)− g(t, x, |ξ|−1ξ)) ≤ C.

Multiplying by |ξ|2 and sending j → 0 proves (4.7). The rest of the proof is
the same as the time independent part and we refer to [5].

Next we define the family of functions {fε(t, x, y) : ε > 0}

Theorem 4.4. There exists a family of functions {fε(t, x, r) : ε > 0} and
constants C, θ > 0 with the following properties

f(t, x, y) is C1,+, (4.10)

For fixed time t f(t, ·, ·) is C2,+, (4.11)

f(t, x, y) ≥ |x− y|
2

ε
, (4.12)

f(t, x, y) ≤ C |x− y|
2

ε
, (4.13)

for (u, p, q) ∈ D1,+fε(t, x, y)

〈p, γi(t, x)〉 ≥ 0 if 〈y − x,ni(t, x)〉 ≥ −θ|x− y|, (4.14)
〈q, γi(t, x)〉 ≥ 0 if 〈x− y,ni(t, x)〉 ≥ −θ|x− y|, (4.15)

|u| ≤ C |x− y|
2

ε
, |p+ q| ≤ C |x− y|

2

ε
, max(|p|, |q|) ≤ C |x− y|

ε
. (4.16)
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For fixed t, ∀x, y ∃(p, q) ∈ D1,+fε(t, x, y)(
(p, q),

C

ε

[
I −I
−I I

]
+
C|x− y|2

ε

[
I 0
0 I

])
∈ D2,+fε(t, x, y). (4.17)

The functions fε are constructed by setting fε(t, x, y) = εg(t, x, x−yε ). So we
omit the proof that is identical to the proof of Theorem 4.1 in [5].

4.2 h function

We also need a function h(t, x) in the proof of Lemma 6.1. The function is
constructed so that its derivative is aligned with the reflection.

Lemma 4.5. There exists a function h(t, x) ≥ 0 defined on Ω which is C1

in time and C2 in space and fulfills

〈Dxh(t, x)γ(t, x)〉 ≥ 1.

The main part of the proof will follow the same idea as Lemma 3.2 in [5]. For
the time extension we will prove that the functions in [5] are robust to small
changes in time and this will able us to define the time-dependent functions.
We will need the following Lemma, for proof see Lemma A.3 in [5]

Lemma 4.6. Let q =
∑

i βiγi with βi ≥ 0. Then maxi〈ni, q〉 > 0.

This Lemma follows from Lemma A.1 in [5] which we state here

Lemma 4.7. Let B(t, x) be a set from the family of sets defined in (2.17).
Let p ∈ B(t, x) satisfy 〈p, ni(t, x)〉 < 1. Then there exist a ε such that
p+ εγi(t, x) ∈ B(t, x).

This Lemma follows from the properties of the family of sets {B(t, x)} defined
in Section 2.2.

Proof of Lemma 4.5. Since Ωt and [0, T ] is compact it is enough to prove
that for each s ∈ [0, T ] and z ∈ ∂Ωs there exists a function u with the
following properties

〈Dxu(t, x), γi(t, x)〉 > 0 for |x− z| < ε1, |t− s| < ε2 and i ∈ I(s, z).
(4.18)

〈Dxu(t, x), γi(t, x)〉 ≥ 0 for x ∈ ∂Ωt and i ∈ I(t, x). (4.19)

Define the following compact convex set

K =

− ∑
i∈I(s,z)

βiγi(s, z), βi ≥ 0
∑

i∈I(s,z)

βi = 1

 .
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Using Lemma 4.6, we see that

min
i∈I(s,z)

〈ni(s, z), p〉 < 0 ∀p ∈ K.

Next we define the following sets from K

Kε = {p ∈ Rn : dist(p,K) ≤ ε} and Lε =
⋃
t≥0

tKε.

From the above we get that there exists a δ > 0 such that

min
i∈I(s,z)

〈ni(s, z), p〉 < 0 ∀p ∈ K2δ.

This means that 0 /∈ K2δ and that L2δ is a closed, convex cone with 0 as
vertex. The above inequality implies that there exists a constant θ such that

min
i∈I(s,z)

〈ni(s, z), p〉 ≤ −θ|p| ∀p ∈ L2δ. (4.20)

Now due to the upper semi-continuity of I(t, x), the regularity of γi and ∂Ωi

and (2.18), there exists a open neighborhood V around z and open interval
W around s with the following properties

I(t, x) ⊂ I(s, z), ∀x ∈ V ∩ ∂Ωt, ∀t ∈W, (4.21)
−γi(t, x) ∈ Kδ ∀x ∈ V, ∀t ∈W, (4.22)

Ωs ∩ V ⊂
{
z + p : p ∈ Rn : min

i∈I(s,z)
〈ni(s, z), p〉 ≥ −

θ

2
|p|
}
. (4.23)

Combining (4.20) and (4.23) we get

(z + L2δ) ∩ Ωs ∩ V = {z}.

This means that there exists an ε such that

{x : dist(x, z + L2δ) ≤ 3ε} ∩ Ωs ∩ ∂V = ∅.

Define the setM = z+q+L2δ for q ∈ L2δ∩∂B(o, ε) andMη = {p : p ∈ Rn, dist(x,M) ≤ η}.
From the above we notice that

M ∩ Ωs ∩ V = ∅,
M3ε ∩ Ωs ∩ ∂V = ∅.

Define a function h1(x) = dist(x,M), on Rn\M h1 ∈ C1,1 with derivative

Dh1(x) =
x− PM (x)

|x− PM (x)|
.
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Next we prove that

〈DH1(x), p〉 < 0 ∀x ∈ Rn\M, ∀p ∈ Kδ.

Notice that 〈x − PM (x), q − PM (x)〉 ≤ 0 for q ∈ M . Then from the con-
struction of Lδ and M we see that p+PM (x) ∈M for p ∈ K2δ, which yields
〈x − PM (x), p〉 ≤ 0. Now choosing p ∈ Kδ we get that 〈x − PM (x), p〉 < 0,
since p + PM (x) will be an internal point to M . This proves the state-
ment above. Now take a function ζ ∈ C1(R) with the following properties,
ζ ′(x) ≥ 0 x ∈ Rn, ζ ′(x) > 0 for x ≤ ε and ζ(x) = 0 for x ≥ 2ε. Set
h2(x) = ζ(h1(x)). We conclude that for p ∈ Kδ

〈Dxh2(z), p〉 < 0,

〈Dxh2(x), p〉 ≤ 0 ∀x ∈ Rn\M,

And that supp(h2) ⊂M2ε. Set η such that η < dist(Ωs ∩ V ,M), observe
that η < ε, and then an approximation argument yields that there exists a
function h3 ∈ C2(Rn), supp h3 ⊂M3ε which fulfills

〈Dxh3(z), p〉 < 0,

〈Dxh3(x), p〉 ≤ 0 ∀x ∈ V \Mη.

Combining the above with (4.22) yields

〈Dxh3(z), γi(t, x)〉 > 0 for i ∈ I(s, x),

〈Dxh3(x), γi(t, x)〉 ≥ 0 for x ∈ V \Mη, i ∈ I(s, z).

Define a function α ∈ C2(Rn) with the following properties

supp α ⊂ V,
α = 1 on Ωs ∩ V ∩ supp h3.

Finally set u(t, x) = h3(x)α(x). It is easy to check that u(s, ·) fulfills (4.18)
and (4.19) for the spatial variables with ε1 = η because of the Lipschitz
continuity on γi and Dxu. The idea for the time variable is that if −γi(t, z) ∈
Kδ for t in some small interval W around s the above proof works for all
times in that interval. Since we have upper semi continuous for I(t, x) we
can assume that for t ∈W , I(t, z) ⊂ I(s, z). Then we want to prove that− ∑

i∈I(t,z)

tiγi(t, z), ti ≥ 0
∑

i∈I(t,z)

βi = 1

 ⊂ Kδ.

This is the same as to prove that there exists a p ∈ K such that

| −
∑

i∈I(t,z)

βiγi(t, z)− p| ≤ δ. (4.24)
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From the definition of K and the semi upper continuity of I(t,x) we can
represent p by −

∑
i∈I(t,z) βiγi(s, z). This and the Lipschitz continuity of γi

yields

| −
∑

i∈I(t,z)

βiγi(t, z) +
∑

i∈I(t,z)

βiγi(s, z)| ≤
∑

i∈I(t,z)

βi|γi(t, z)− γi(s, z)| ≤∑
i∈I(t,z)

Cβi|t− s| = C|I(t, z)||t− s| ≤ C|I(s, z)||t− s|.

Setting εs = δ
C|I(s,z)| and then choosing the interval t ∈ (s − εs, s + εs) we

have that −γi(t, z) ∈ Kδ. Now (4.18) and (4.19) holds. This means that we
can find an open cover for Ω with functions that fulfills (4.18) and (4.19).
Since Ω is compact, due to Tychonoff’s theorem, there exists a finite open
cover. This together with a partition of unity argument, adding and scaling
with some constants yields the function h.
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Chapter 5

Skorokhod Problem

In this sections we will prove the existence of a solution to the SP for con-
tinuous functions under our assumptions on the domain and direction of
reflection.

5.1 SP for C1 functions

The first part of this will be to prove the existence of a solution to the SP
for C1 functions. To do this we first need a Lemma.

Lemma 5.1. Let b > 0 be chosen so that d(x,Ωi,t) < b, i ∈ I(t, x), implies
that d(x,Ωi,t) ∈ C1. Then there exists a constant c > 0 and functions
ai(t, x) ∈ Ci satisfying ai ≥ 0 and ai(t, x) = 0 ∀x /∈ I(x). Such that〈∑

i∈I
ai(t, x)γi(t, x), Dxd(x,Ωi,t)

〉
< −ν ∀j ∈ I(t, x), (5.1)

for all x satisfying
∑

i∈I d(x,Ωi,t) < c.

Lemma 5.1 follows from (2.15), (2.16) the compactness of Ω and a partition
of unity argument, see [1]. Now we are ready to prove the following theorem.

Theorem 5.2. Let ψ ∈ C1([0, T ],Rn) with ψ(0) ∈ Ω0. Then there exists a
solution (φ, λ) ∈ W1,p([0, T ],Rn)×W1,p([0, T ],Rn) to the Skorokhod problem
for (Ω, r, ψ)

The proof is based on a penalty method similar to the one used in [1], [2]
and [4].

Proof. Set ε > 0 and consider the ordinary differential equations

φ̇ε(t) =
1

ε
d̃(t, φε(t))

(∑
i∈I

ai(t, φε(t))γi(t, φε(t)

)
+ψ̇(t) φε(0) = ψ(0), (5.2)
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where d̃(t, x) =
∑

i∈I d(x,Ωi,t) and ai(t, x) are the functions in Lemma 5.1.
The ordinary differential equation have a penalty term that pushes the solu-
tion φε back into Ω in the direction of reflection. The idea is then to prove
that φε → φ as ε→ 0. We define a function ζ(t) with the following properties

ζ ∈ C∞ ζ(t) =

{
t t < c

3
2c
3 t > c

0 ≤ ζ̇(t) ≤ 1 ∀t ∈ R+, (5.3)

where c is the constant in Lemma 5.1. Then define ṽ(t, x) = d̃(t, x)p and
V (t) = ζ(ṽ(t, φε(t))). Note that if d̃(t, φε(t)) > c1/p then ζ ′(ṽ(t, φε(t))) = 0.
Next we look at the derivative to V (t) and note that the weak derivative
Dtd̃(t, x) exists due to (2.18). We get

V̇ (t) = ζ̇(ṽ(t, φε(t)))
(
Dtṽ(t, φε(t)) + 〈Dxṽ(t, φε(t)), φ̇ε(t)〉

)
.

We have that Dxṽ(t, φε(t)) = pd̃(t, φε(t))
p−1Dxd̃(t, φε(t)). With this, (5.2),

Lemma 5.1 and the Cauchy-Schwartz inequality we have the following

V̇ (t) = ζ̇(ṽ(t, φε(t)))(Dtṽ(t, φε(t))

+

〈
Dxṽ(t, φε(t)),

1

ε
d̃(t, φε(t))

(∑
i∈I

ai(t, φε(t))γi(t, φε(t)) + ψ̇(t)

)〉
)

≤ ζ̇(ṽ(t, φε(t)))(Dtṽ(t, φε(t)) + |Dxṽ(t, φε(t))||ψ̇(t)| − pν

ε
ṽ(t, φε(t))).

Next, we rearrange and integrate

V (t)− V (0) +
ν

ε

∫ t

0
ζ̇(ṽ(s, φε(s)))ṽ(s, φε(s))ds ≤∫ t

0
ζ̇(ṽ(s, φε(s)))Dtṽ(s, φε(s))ds︸ ︷︷ ︸

I1

+

∫ t

0
ζ̇(ṽ(s, φε(s)))|Dxṽ(s, φε(s))||ψ̇(s)|ds︸ ︷︷ ︸

I2

.

We first consider I1 and notice that

|Dtṽ(s, φε(s))| = pd̃(s, φε(s))
p−1|Dtd̃(s, φε(s))| =

pṽ(s, φε(s))
p−1
p |Dtd̃(s, φε(s))|.

Using this and Hölder’s inequality we get

I1 ≤ p
(∫ t

0
ζ̇(ṽ(s, φε(s)))ṽ(s, φε(s))ds

) p−1
p
(∫ t

0
ζ̇(ṽ(s, φε(s)))|d̃(s, φε(s))|p

) 1
p

.

Now since d̃(t, x) ∈ W1,p and ζ̇(t) ≤ 1 the second integral on the right hand
side is bounded by a constant C(T ). For the I2 integral we notice that the
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derivative |Dxd(t, x,Gi)| ≤ 1 a.e. This means that |Dxd̃(t, x)| ≤ k, where k is
the size of the finite index set I. Using this we get |Dxṽ(t, x)| ≤ pkd̃(t, x)p−1.
Applying Hölder’s inequality again

I2 ≤ pk
(∫ t

0
ζ̇(ṽ(s, φε(s)))ṽ(s, φε(s))ds

) p−1
p
(∫ t

0
ζ̇(ṽ(s, φε(s)))|ψ̇(t)|p

) 1
p

.

Since ψ ∈ C1, and ζ̇(t) ≤ 1 so the second integral is bounded by a constant
C(T ). Collecting the terms, we obtain

V (t) +
ν

ε

∫ t

0
ζ̇(ṽ(s, φε(s)))ṽ(s, φε(s))ds ≤

C(t)

(∫ t

0
ζ̇(ṽ(s, φε(s)))ṽ(s, φε(s))ds

) p−1
p

. (5.4)

Since both terms on the left hand side are positive, both are bounded by the
constant and hence

ν

ε

(∫ t

0
ζ̇(ṽ(s, φε(s)))ṽ(s, φε(s))ds

) 1
p

≤ C(T ). (5.5)

Substituting (5.5) into (5.4) we get

V (t) +
ν

ε

∫ t

0
ζ̇(ṽ(s, φε(s)))ṽ(s, φε(s))ds ≤ C(T )εp−1. (5.6)

Choosing ε so small that V (t) = ζ(ṽ(s, φε(s)))) = ṽ(s, φε(s)) and ζ̇(ṽ(s, φε(s))) =
1, we obtain

1

εp−1
d̃(t, φε(t))

p +
ν

εp

∫ t

0
d̃(s, φε(s))

pds ≤ C(T ). (5.7)

Now define the functions

lε(t) =
1

ε
d̃(t, φε(t)), (5.8)

λi,ε(t) =

∫ t

0
lε(s)ai,ε(t, φε(t))γi,ε(s, φε(t))ds, (5.9)

λε(t) =
∑
i∈I

λi,ε(t). (5.10)

We can assume that the functions ai,ε from Lemma 5.1 fulfills |
∑

i∈I ai,εγi,ε| =
1. Now by (5.7) lε is bounded in Lp and λi,ε, λε are bounded inW1,p. There-
fore they converge weakly to l, λi, λ in Lp and W1,p, respectively, as ε → 0.
We see from (5.2) that φε = ψ +λε which means that φε converges weakly
to φ = ψ+ λ. This proves (2.8). (2.9) follows from (5.7) since the first term
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must be bounded as ε → 0. (5.9) implies that λ̇i,ε = lεai,εγi,ε and therefore
λ̇i = laiγi hence

|λ|(t) =

∫ t

0
|
∑
i∈I

λ̇i(s)|ds =

∫ t

0
|
∑
i∈I

l(s)ai(φ(s))γi(φ(s))|ds =

∫ t

0
lds <∞,

(5.11)
which proves (2.10). To prove that (2.12) holds, we look at

λ(t) =

∫ t

0

∑
i∈I

l(s)ai(φ(s))γi(φ(s))ds =

∫ t

0

∑
i∈I

ai(φ(s))γi(φ(s))d|λ|(s).

(5.12)
From Lemma 5.1 we have that ai ≥ 0 and ai > 0 implies that i ∈ I(t, x).
Since we also have that |

∑
i∈I aiγi| = 1 we see that

∑
i∈I aiγi ∈ r(x) and

therefore (2.12) holds. To prove (2.11) we look at (5.8). For φ(t) ∈ ∩Gi
d̃(t, φ(t)) = 0 so l(t) = 0. This means that

|λ|(t) =

∫ t

0
l(s)ds =

∫ t

0
I{φ(s)∈∂Ω}l(s)ds =

∫ t

0
I{φ(s)∈∂Ω}d|λ|(s). (5.13)

This proves that (φ, λ) solves the Skorokhod problem.

5.2 Compactness of solutions for SP

To go from continuous differentiable functions to only continuous functions
we prove that the solution set to the SP is compact and bounded. This will
also come in handy in Section 6 when we prove tightness of the solutions to
the RSDE. The following lemma is a generalization of Lemma 4.7 in [1] Case
2 and the time-dependent approach is similar in [2].

Lemma 5.3. Let A be a compact subspace of C([0, T ],Rn) Then the following
holds for the set {(φ, λ) : (φ, λ) solves the SP for (Ω, r, ψ), ψ ∈ A}

1. |λ|(T ) < L for a constant L <∞

2. The set {φ : (φ, λ) solves the SP for (Ω, r, ψ), ψ ∈ A} is relative com-
pact

First we define the modulus of continuity of a function.

Definition 5.4. The modulus of continuity of a function f is defined as

‖f‖s,t = sup
s≤t1≤t2≤t

|f(t1)− f(t2)|. (5.14)
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Proof. There exists a vector field v(t, x) such that for some constant c > 0
the following holds

〈γ(s, y), v(t, x)〉 > c ∀y) ∈ ×B(x, c) ∩ ∂Ωs, ∀s ∈ [t, t+ c], ∀γ ∈ r(s, y).
(5.15)

Next for a solution (φ, λ) to the SP for ψ ∈ A, we define T1 as the smallest
of c and inf{t ∈ [0, T ] : φ(t) /∈ B(φ(0), c)}. In other words at the time T1

the solution φ have moved a distance less than c from the initial value and
T1 < c. Define Tm analogously, as Tm = min(T, Tm−1 + c, inf{t ∈ [Tm−1, T ] :
φ(Tm−1) /∈ B(φ(Tm−1), c)}). Now we will show that |λ| is bounded on
[Tm−1, Tm] by looking at the inner product with respect to the vector field
v.

〈φ(Tm)− φ(Tm−1), v(Tm−1, φ(Tm−1))〉
− 〈ψ(Tm)− ψ(Tm−1), v(Tm−1, φ(Tm−1))〉 =∫ Tm

Tm−1

〈γ(s, φ(s)), v(Tm−1, φ(Tm−1))〉d|λ|(s) ≥ c(|λ|(Tm)− |λ|(Tm−1)).

In the first equality we use (2.12) and the fact that d|λ| is zero unless φ ∈ ∂Ω.
The left hand side is bounded since A is bounded and φ ∈ Ω. Therefore we
get that

|λ|(Tm)− |λ|(Tm−1) < M, (5.16)

for some constant M < ∞. Now we will show a bound to the modulus of
continuity for λ for all τ ∈ [Tm−1, Tm]

‖λ‖Tm−1,τ
≤ R(‖ψ‖

1
2
Tm−1,τ

+ ‖ψ‖
3
2
Tm−1,τ

+ (τ − Tm−1)
α
2 ), (5.17)

where ψ ∈ A and α is the Hölder coefficient in (2.19). Since we only look at
one time-step [Tm−1, Tm] we simplify the notation by setting φ(Tm−1) = z
and Tm−1 = 0. To prove the bound we define some help functions. We use
the function g in Theorem 4.1 but use a sub-convolution to define functions
gβ which have more regularity

gβ(t, x, r) = sup{g(s, y, w)− 1

2β
(|t− s|2 + |x− y|2 + |r − w|2) :

(s, y, w) ∈ [0, T ] ×W ×B(0, R+ 1)}. (5.18)

We refer to [1] that the following properties holds for β sufficiently small

gβ ∈ C1,1([0, T ] × Ω ×B(0, R)), (5.19)

gβ → g in C, (5.20)

(u, p, q) = Dgβ(t, x, r)⇒ (u, p, q) ∈ D+g(t+ βu, x+ βp, r + βq), (5.21)

|u| ≤ 4C|r|2, |p| ≤ 4C|r|2, |q| ≤ 2C|r|. (5.22)
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C1,1 is the space of once differentiable functions with Lipschitz continuous
derivatives. Now we define the functions Bβ

ε (t) and E(t) as follow

Bβ
ε (t) = εgβ(t, z,−λ(t)/ε),

E(t) = e−C(2|λ|(t))+4t).

Since gβ(t, x, 0) = 0, we get

Bβ
ε (τ)E(τ) = Bβ

ε (0)E(0) +

∫ τ

0
E(s)dBβ

ε (s) +

∫ τ

0
Bβ
ε (s)dE(s)

=

∫ τ

0
E(s)dBβ

ε (s)− 2C

∫ τ

0
Bβ
ε (s)E(s)d|λ|(s)− 4C

∫ τ

0
Bβ
ε (s)E(s)ds.

Now we look at the first integral and use (5.22) and (4.5)

∫ τ

0
E(s)dBβ

ε (s) =

∫ τ

0
E(s)εDtg

β
ε (s, z,−λ(s)/ε)ds

−
∫ τ

0
E(s)〈Drg

β(s, z,−λ(s)/ε), dλ(s)〉 ≤ 4C

∫ τ

0
E(s)ε|λ(s)/ε|2ds

−
∫ τ

0
E(s)〈Drg

β(s, z,−λ(s)/ε), dλ(s)〉

≤ 4C

∫ τ

0
E(s)Bβ

ε (s)ds−
∫ τ

0
E(s)〈Drg

β(s, z,−λ(s)/ε), dλ(s)〉.

For the second integral on the right hand side we must be careful because
of the time-dependent domain. Since the domain changes over time it is not
certain that z ∈ Ωs∀s. If z /∈ Ωs we define ys as the point in Ωs which fulfills
|ys − z| = d(s, z). In the integrals below if z ∈ Ωs then we can replace ys
with z. We decompose the integral in three parts

−
∫ τ

0
E(s)〈Drg

β(s, z,−λ(s)/ε), dλ(s)〉 = I1 + I2 + I3,

I1 = −
∫ τ

0
E(s)〈Drg

β(s, φ(s), (ys − φ(s))/ε), γ(s, φ(s))〉d|λ|(s),

I2 =

∫ τ

0
E(s)〈Drg

β(s, φ(s),−λ(s)/ε)−Drg
β(s, z,−λ(s)/ε), dλ(s)〉,

I3 =

∫ τ

0
E(s)〈Drg

β(s, φ(s), (ys − φ(s))/ε)−Drg
β(s, φ(s),−λ(s)/ε), dλ(s)〉.

We first consider I1, and from (5.21) we get

I1 = −
∫ τ

0
E(s)〈Drg(s+βu, φ(s)+βp, (ys−φ(s))/ε+βq), γ(s, φ(s))〉d|λ|(s),
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Where

u = Dtg
β(s, φ(s), (ys − φ(s))/ε),

p = Dxg
β(s, φ(s), (ys − φ(s))/ε),

q = Drg
β(s, φ(s), (ys − φ(s))/ε).

Now we want to use (4.6), and notice that

∫ τ

0
E(s)〈Drg(s+βu, φ(s)+βp, (ys−φ(s))/ε+βq), γ(s+βu, φ(s)+βp)〉d|λ|(s) ≥ 0.

Adding this term to I1

I1 ≤ −
∫ τ

0
E(s)〈Drg(s+ βu, φ(s) + βp, (ys − φ(s))/ε+ βq),

γ(s, φ(s))− γ(s+ βu, φ(s) + βp)〉d|λ|(s).

But since γ is continuous γ(s, φ(s))− γ(s+ βu, φ(s) + βp) tends to zero
as β → 0 and therefore I3 ≤ 0 as β → 0. For I2 and I3 we will use the
Lipschitz property of the derivatives and (5.22). For fixed r we can choose
2C|r| as a Lipschitz constant for Drg

β(t, x, r) and for fixed x we can choose
4C as a Lipschitz constant. Using this, the Cauchy-Schwartz inequality and
the fact that |γ| = 1 when φ ∈ ∂Ωs and d|λ| = 0 when φ /∈ ∂Ωs, we obtain

I2 ≤∫ τ

0
E(s)|Drg

β(s, φ(s),−λ(s)

ε
)−Drg

β(s, z,−λ(s)/ε)||γ(s, φ(s))|d|λ|(s) ≤∫ τ

0

2C

ε
E(s)|λ(s)||z − φ(s)|d|λ|(s) ≤∫ τ

0

2C

ε
E(s)|λ(s)|(|z − ψ(s)|+ |λ(s)|)d|λ|(s) ≤∫ τ

0
2CE(s)ε|λ(s)

ε
|2d|λ|(s) +

∫ τ

0

2C

ε
E(s)|z − ψ(s)||λ(s)|d|λ|(s) ≤∫ τ

0
2CE(s)Bβ

ε (s)d|λ|(s) +

∫ τ

0

2C

ε
E(s)|z − ψ(s)||λ(s)|d|λ|(s) ≤∫ τ

0
2CE(s)Bβ

ε (s)d|λ|(s) +

∫ τ

0

2C

ε
E(s)|z − ψ(s)|2d|λ|(s).
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The same argument for I3 yields

I3 ≤∫ τ

0
E(s)|Drg

β(s, φ(s),
(ys − φ(s))

ε
)−Drg

β(s, φ(s),−λ
ε

)||γ(s, φ(s))|d|λ|(s) ≤∫ τ

0

4C

ε
E(s)|ys − φ(s) + λ(s)|d|λ|(s) =∫ τ

0

4C

ε
E(s)|ys − ψ(s)|d|λ|(s) ≤∫ τ

0

4C

ε
E(s)(|z − ψ(s)|+ |z − ys|)d|λ|(s) =∫ τ

0

4C

ε
E(s)(|z − ψ(s)|+ d(s, z)d|)λ|(s).

Collecting all the terms and letting β → 0

Bε(τ)E(τ) ≤ 2C

ε

∫ τ

0
E(s)(|z − ψ(s)|2 + 2|z − ψ(s)|+ 2d(s, z))d|λ|(s).

Now with the modulus of continuity and using (2.19) we get

Bε(τ)E(τ) ≤ 4C

ε

∫ τ

0
E(s)(‖ψ‖20,τ + ‖ψ‖0,τ +Kτα)d|λ|(s).

Only E(s) is dependent of s in the integral and it can be estimated easily∫ τ

0
E(s)d|λ|(s) ≤

∫ τ

0
e−2C|λ|(s)d|λ|(s) ≤ 1

2C
.

Now we get

Bε(τ) ≤ 2

ε
(‖ψ‖20,τ + ‖ψ‖0,τ +Kτα)eC(2|λ|(τ)+4t).

A use of the inequality

x ≤ 1

2
(ε+

1

ε
x2),

and (4.5) gives us

|λ(τ)| ≤ 1

2
(ε+

1

ε
|λ(τ)|2) ≤ 1

2
(ε+Bε) ≤

ε

2
+

1

ε
(‖ψ‖20,τ+‖ψ‖0,τ+Kτα)eC(2M+4T ),

where in the exponential we have used (5.16) and τ ≤ T . Now set ε =

min(‖ψ‖1/20,τ , τ
α/2), which implies that ε < ‖ψ‖1/20,τ + τα/2 and 1

ε ≤ ‖ψ‖
−1/2
0,τ

and 1
ε ≤ τ−α/2. With this we get (5.17) since the above hold for all τ ∈

[Tm−1, Tm]. Since A is compact we know that ‖ψ‖ is bounded. This implies
there exists a time τ̂ > 0 such that

max(‖ψ‖Tm−1,Tm−1+τ̂ , ‖λ‖Tm−1,Tm−1+τ̂ ) ≤ c

3
.
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By the definition of SP this implies that ‖φ‖Tm−1,Tm−1+τ̂ ≤
2c
3 . From the

definition of Tm we now have a lower bound on the time partition Tm −
Tm−1 ≥ min(c, τ̂). From (5.16) we have a bound of λ for each time step
so with the bound on the time step we get that |λ(T )| < M( T

min(c,τ̂) + 1)
which proves 1 in Lemma 5.3. To prove 2 we use the Arzela-Ascoli theorem.
Since φ(t) is bounded by Ωt and (5.16) together with the lower bound of the
time partition gives us that the set {φ : (φ, λ) is a solution to SP for ψ ∈ A}
is equicontinuous. Since we have a bounded and equicontinuous set, the
Arzela-Ascoli theorem implies that the set is relatively compact.

5.3 SP for continuous functions

Now we are ready to prove the main lemma of this section.

Lemma 5.5. Let ψ ∈ C[0, T ] with ψ(0) ∈ Ω0. Then there exists a solution
(φ, λ) to the SP for ψ.

The proof is the same as for Theorem 4.8 in [1], and is similar to the proof
of Theorem 3.1 in [8] and Theorem 5.1 in [9]. For completeness we include
the proof

Proof. Let ψn ∈ C1([0, T ]) be a series of functions that converge uniformly to
ψ. By Lemma 5.2 there exists a solution to the SP for ψn denoted (φn, λn).
From Lemma 5.3 we know that λn is bounded for all n and that λn is
equicontinuous, therefore by Arzela-Ascoli theorem there exists a convergent
subsequence which converges to λ. Set φ = ψ + λ and the pair (φ, λ) fulfills
(2.8), (2.9) and (2.10) in the Skorokhod problem. To show (2.11) and (2.12)
we define the measures µn on Ω × S(0, 1) as

µn([0, t] ×A) =

∫
[0,t]

I(s,φn(s),γ(s,φn(s))∈A)d|λn|(s),

for every Borel set A ⊂ Ω × S(0, 1). Define Ω[0,t] = Ω ∩ ([0, t] × Rn) and
Ω[0,t] = Ω ∩ ([0, t] × Rn). This means that

|λn|(t) = µn(Ω[0,t] × S(0, 1)),

which together with the definition of a solution to the SP gives

λn =

∫
Ω[0,t]×S(0,1)

γdµn.

Since |λn|(T ) < ∞, we have, by the Banach-Alaoglu theorem that µn con-
verges to a measure µ in the weak∗-topology. By the weak∗ convergence we
have that

λ(t) =

∫
Ω[0,t]×S(0,1)

γdµ. (5.23)
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Next we define the following sets

Σ1 = Ω[0,T ] × S(0, 1),

Σ2 = {(s, x, y)s ∈ [0, T ], x ∈ ∂Ωs, y /∈ r(s, x)},
Σδ

3 = {(s, x), s ∈ [0, T ], |x− φ(s)| > δ}× S(0, 1),

Σ3 = {(s, x), s ∈ [0, T ], x 6= φ(s)}× S(0, 1).

From the definition of µn and (2.11) we conclude that for large enough n

µn(Σ1) = µn(Σ2) = µn(Σδ
3) = 0.

From the weak∗ convergence we then have

µ(Σ1) = µ(Σ2) = µ(Σ3) = 0. (5.24)

We define a new measure ν on [0, T ] by

ν([0, t]) = µ(Ω[0,t] × S(0, 1))).

Combining (5.23) and (5.24) yields

λ(t) =

∫
(s,x,y)φ(s)∈∂Ωs,y∈r(s,φ(s))

γdµ =

∫ t

0
Iφ(s)∈∂Ωs

∫
r(s,φ(s))

γp(s, dγ)dν,

(5.25)
where p(·, A) is a non-negative ν-measurable function for all Borel sets A.
From (5.23) we see that λ is of bounded variation and therefore

λ(t) =

∫ t

0
γ̃(s)d|λ|(s). (5.26)

From (5.25) and (5.26) we conclude that |λ| is absolutely continuous with
respect to ν. This fact and (5.25) gives us (2.11). The absolute continuity of
|λ| w.r.t ν, (5.25) and the Radon-Nikodym theorem gives that the existence
of a positive function l(t) such that

l(s)γ̃(s) =

∫
r(s,φ(s))

γp(s, dγ). (5.27)

Then using the fact that the set {αγ, α ≥ 0, γ ∈ r(s, x)} is convex for x ∈ ∂Ωs

allows us to conclude that γ̃(s, φ(s)) ∈ r(s, φ(s)). This fact and (5.26) finally
gives us (2.12).
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Chapter 6

Stochastic differential equation

6.1 Uniqueness of RSDE

Now we will prove the existence and uniqueness of solutions to RSDE by
using the existence of solutions to the SP problem and a Picard iteration
scheme, see [10]. The only thing left to prove is then uniqueness for the
RSDE, Assume the following

Y (t) = x+

∫ t

0
b(s,X(s))ds+

∫ t

0
σ(s,X(s))dW + Λ(t), (6.1)

X(t) ∈ Ω Y (t) ∈ Ω,

|Λ|(t) =

∫
0,t
IY (s)∈∂Ωd|Λ|(s) <∞, Λ(t) =

∫
0,t
γ(s, Y (s))d|Λ|(s),

where b, σ is Lipschitz continuous. Now let Y ′ be defined as the above but
with x replaced by x′, X replaced with X ′ and γ′ = γ(s, Y ′(s)), then we
have the following lemma

Lemma 6.1. Let Y (s) and Y ′(s) be defined as (6.1). Then we have the
following inequality

E

[
sup

0≤s≤t
|Y (s)− Y ′(s)|2

]
≤ C

(
|x− x′|2 +

∫ t

0
E

[
sup

0≤s≤t
|X(s)−X ′(s)|2ds

])
.

The main tool in the proof of Lemma 6.1 is a function v which will be a
time extension of the function v in [1] with the correction [11]. Let φ(x, r) =
(|x|2 +A)|r|2 and choose B large enough so that

h(t, x, r) = g(t, x, r)−Bφ(x, r),
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is convex in the spatial variables. Now to get required smoothness we sub-
convolute h

hβ(t, x, r) = sup
(s,z,w)∈[0,T ]×W×W

{
h(s, y, w)− 1

2β
(|t− s|2 + |x− y|2 + |r − w|2)

}
,

and then gβ(t, x, r) = hβ(t, x, r) +Bφ(x, r). We set fβε = εg(t, x, (x−y)
ε ) and

see that fβε → fε in C([0, T ] ×W ×W ). As in the proof of Lemma 5.3 we
have that for (u, p, q) ∈ Dfβε (t, x, y)

fβε ∈ C1,1([0, T ] × Ω × Ω, (6.2)

|u| ≤ 4C

ε
|x− y|2, |p+ q| ≤ C |x− y|

2

ε
, max(|p|, |q|) ≤ C |x− y|

ε
(6.3)

We also know since fβε is Lipschitz continuous and W is compact that (p, q)
are bounded independently from x, y. In the proof we will use Ito’s lemma
and for that we require the functions to be twice differentiable in space. To
achieve this we define the mollifier ρα

ρα ≥ 0 supp ρα = B(0, α)

∫
Rn
ρα = 1 ρα ∈ C∞,

and the convolution fβ,αε = fβε ∗ ρα. For fixed time t we refer to [11] for the
following inequality

D2fβ,αε (t, x, y) ≤ C

ε

[
I −I
−I I

]
+
C|x− y|2

ε

[
I 0
0 I

]
. (6.4)

Now using the function h defined in Lemma 4.2 we define the function
u(t, x, y) = e−λ(h(t,x)+h(t,y)), λ > 0 constant, and then define

vβ,αε (t, x, y) = u(t, x, y)fβ,αε (t, x, y).

We will specify λ later, until then we will denote C(λ) a constant that
depends on λ. Before we prove Lemma 6.1 we state a lemma that will be
helpful.

Lemma 6.2. For fixed time t we have that the second derivative of the spatial
variables satisfies

D2vβ,αε (t, x, y) = C(λ)

(
1

ε

[
I −I
−I I

]
+
|x− y|2

ε

[
I 0
0 I

])
.

The proof is identical to the proof of Lemma 5.7 in [1] with fε exchanged for
fβ,αε . An easy extension of Lemma 6.2, using the Lipschitz continuity of σ is[

σ(ν)
σ(ξ)

]T
D2vβ,αε (t, x, y)

[
σ(ν)
σ(ξ)

]
≤ C(λ)

ε

(
(|ν − ξ|2 + |x− y|2)

)
I. (6.5)
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Now we are ready to prove Lemma 6.1. We will denote vβ,αε (s, Y (s), Y ′(s)) =

vβ,αε and the same with u and fβ,αε .

Proof of Lemma 6.1. We prove the Lemma for t < τ where τ is a stopping
time defined as

τ = inf{s ∈ [0, T ], |Y (s)− Y ′(s)| < δ},

and δ is the constant in Remark 2.27. This is without loss of generality since

E

[
sup

0≤s≤t
|Y (s)− Y ′(s)|2

]
≤
(
B

δ

)4

E

[
sup

0≤s≤τ
|Y (s)− Y ′(s)|2

]
,

where B is the diameter of the smallest ball containing Ωt for all t. An
application of Ito’s lemma yields

vβ,αε (t, Y (t), Y ′(t)) = vβ,αε (0, x, x′) +

∫ t

0
Dsv

β,α
ε ds

+

∫ t

0
〈Dxv

β,α
ε , b(s,X(s))〉ds+

∫ t

0
〈Dyv

β,α
ε , b(s,X ′(s))〉ds

+

∫ t

0
〈Dxv

β,α
ε , σ(s,X(s))dW (s)〉+

∫ t

0
〈Dyv

β,α
ε , σ(s,X ′(s))dW (s)〉

+

∫ t

0
〈Dxv

β,α
ε , γ(s, Y (s))〉d|Λ|(s) +

∫ t

0
〈Dyv

β,α
ε , γ(s, Y ′(s))〉d|k|(s)

+

∫ t

0
tr

([
σ(X(s))
σ(X ′(s))

]T
D2fβ,αε (t, x, y)

[
σ(X(s))
σ(X ′(s))

])
ds.

Now using (6.5) to get rid of the second order derivative, we get

vβ,αε (t, Y (t), Y ′(t)) ≤ vβ,αε (0, x, x′) +

∫ t

0
Dsv

β,α
ε ds

+

∫ t

0
〈Dxv

β,α
ε , b(s,X(s))〉ds+

∫ t

0
〈Dyv

β,α
ε , b(s,X ′(s))〉ds

+

∫ t

0
〈Dxv

β,α
ε , σ(s,X(s))dW (s)〉+

∫ t

0
〈Dyv

β,α
ε , σ(s,X ′(s))dW (s)〉

+

∫ t

0
〈Dxv

β,α
ε , γ(s, Y (s))〉d|Λ|(s) +

∫ t

0
〈Dyv

β,α
ε , γ(s, Y ′(s))〉d|k|(s)

+

∫ t

0

C(λ)

ε

(
(|X(s)−X ′(s)|2 + |Y (s)− Y ′(s)|2)

)
ds.

Now since fβε ∈ C1, the function vβ,αε and its first derivatives converge to vβε
and its first derivatives when we let α in the mollifier go to zero. Since we
no longer have the second derivative on the right hand side we let α → 0.
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So we drop the α from vβ,αε . Now we look at the integrals and bound them.
First the time derivative part is evaluated∫ t

0
Dsv

β
ε ds =

∫ t

0
fβε Dsuds+

∫ t

0
uDsf

β
ε ds. (6.6)

For first term in (6.6) we use the regularity of u to bound the derivative and
use (4.13) for β small enough. For the second term in (6.6) we use (6.3) and
the fact that u ≤ 0, to conclude that∫ t

0
Dsv

β
ε ds ≤ C(λ)

|Y (s)− Y ′(s)|2

ε
.

Next we look at the integrals involving b(s,X(s)), and get∫ t

0
〈Dxv

β
ε , b(s,X(s))〉ds+

∫ t

0
〈Dyv

β
ε , b(s,X

′(s))〉ds =∫ t

0
〈uDxf

β
ε + fβε Dxu, b(s,X(s))〉ds+

∫ t

0
〈uDyf

β
ε + fβε Dyu, b(s,X(s))〉ds =∫ t

0
〈u(Dxf

β
ε +Dyf

β
ε ), b(s,X ′(s))〉ds+

∫ t

0
〈uDyf

β
ε , b(s,X

′(s))− b(s,X(s))〉ds

+

∫ t

0
fβε (〈Dxu, b(s,X(s))〉+ 〈Dyu, b(s,X

′(s))〉)ds. (6.7)

Du and b are continuous on a compact domain and can therefore be bounded
by a constant C(λ). Then setting β small enough to use (4.13), using (6.3)
and the Lipschitz continuity on b, we obtain

∫ t

0
〈Dxv

β
ε , b(s,X(s))〉ds+

∫ t

0
〈Dyv

β
ε , b(s,X

′(s))〉ds ≤

C(λ)

∫ t

0

(
|Y (s)− Y ′(s)|2

ε
+
|X(s)−X ′(s)||Y (s)− Y ′(s)|

ε

)
ds.

Now for the integrals with respect to d|Λ|, we start by expanding Dvβε as in
the previous cases∫ t

0
〈Dxv

β
ε , γ(s, Y (s))〉d|Λ|(s) +

∫ t

0
〈Dyv

β
ε , γ(s, Y ′(s))〉d|Λ′|(s) =∫ t

0
〈uDxf

β
ε , γ(s, Y (s))〉d|Λ|(s) +

∫ t

0
〈fβε Dxu, γ(s, Y (s))〉d|Λ|(s)

+

∫ t

0
〈uDyf

β
ε , γ(s, Y ′(s))〉d|Λ′|(s) +

∫ t

0
〈fβε Dyu, γ(s, Y ′(s))〉d|Λ′|(s) =∫ t

0
〈uDxf

β
ε , γ(s, Y (s))〉d|Λ|(s) +

∫ t

0
〈uDyf

β
ε , γ(s, Y ′(s))〉d|Λ′|(s)

− λ
∫ t

0
〈fβε uDxh, γ(s, Y (s))〉d|Λ|(s)− λ

∫ t

0
〈fβε uDyh, γ(s, Y ′(s))〉d|Λ′|(s).
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For sufficiently small β we can use (4.12), this and Lemma 4.2 yields

−λ
∫ t

0
〈fβε uDxh, γ(s, Y (s))〉d|Λ|(s)−λ

∫ t

0
〈fβ,αε uDyh, γ(s, Y ′(s))〉d|Λ′|(s) ≤

− λ
∫ t

0
u
|Y (s)− Y ′(s)|2

ε
d|Λ|(s)− λ

∫ t

0
u
|Y (s)− Y ′(s)|2

ε
d|Λ′|(s).

We now state a lemma that is Lemma 2 in [11]

Lemma 6.3. There exists a τ > 0 and a function wR(x), w(0) = 0, such
that for all R > 0

〈Drg
β(t, x, r), γi(t, x)〉 > −wR(β),

for x ∈ ∂Ω, i ∈ I(t, x), |r| < R, 〈r, ni〉 > −τ |r|

Choosing R = B
ε and by Remark 2.27, the assumptions in Lemma 6.3 is

fulfilled. Applying this to the term 〈Dyf
β
ε (s, Y (s), Y ′(s)), γ(s, Y ′(s))〉 yields

〈Dyf
β
ε (s, Y (s), Y ′(s)), γ(s, Y ′(s))〉

= −Drg
β(s, Y (s), Y ′(s)), γ(s, Y ′(s))〉

= −〈Drg
β(s, Y (s), Y ′(s)), γ(s, Y ′(s))− γ(s, Y (s))〉

− 〈Drg
β(s, Y (s), Y ′(s)), γ(s, Y (s))〉

≤ C |Y (s)− Y ′(s)|2

ε
+ C2wR(β),

where we also have used the Lipschitz condition of γ and that |Drg| ≤ C|r|.
For the Dx term, we see that to use Lemma 6.3, 〈r, ni〉 > −τ |r|must hold.
The assumptions in Lemma 6.3 is fulfilled with r = Y ′(s)−Y (s)

ε , since we have
r = Y (s)−Y ′(s)

ε we define r1 = −r and get

〈Dxf
β
ε (s, Y (s), Y ′(s)), γ(s, Y (s))〉

= 〈εDxg
β(s,

Y (s)− Y ′(s)
ε

)〉+ 〈Drg
β(s,

Y (s)− Y ′(s)
ε

)〉

≤ C |Y (s)− Y ′(s)|2

ε
− 〈Dr1g

β(s,
Y (s)− Y ′(s)

ε
)〉

≤ C |Y (s)− Y ′(s)|2

ε
+ C2wR(β).

Collecting all the d|Λ| terms, we obtain

(C − λ)

∫ t

0

|Y (s)− Y ′(s)|2

ε
d|Λ|(s) + (C − λ)

∫ t

0

|Y (s)− Y ′(s)|2

ε
d|Λ′|(s)

+ C2wR(β)|Λ|(t) + C2wR(β)|Λ′|(t). (6.8)
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Setting λ = C and letting β → 0, the terms in (6.8) disappears. The terms
containing dW define a martingale which we denote by N(t), that is

N(t) =

∫ t

0
〈Dxv

β
ε , σ(s,X(s))dW (s)〉+

∫ t

0
〈Dyv

β
ε , σ(s,X ′(s))dW (s)〉.

Collecting all terms and using (4.12), we obtain

|Y (t)− Y ′(t)|2

ε
≤ vε(t, Y (t), Y ′(t)) ≤

v(0, Y (0), Y ′(0)) +N(t) + C

∫ t

0

(
|Y (s)− Y ′(s)|2

ε
+
|X(s)−X ′(s)|2

ε

)
ds.

Next we multiply by ε, square, applying Hölder’s inequality, take supremum,
use (4.12) and take expectation, which yields

E

[
sup

0≤s≤t

(
|Y (s)− Y ′(s)|4

)]
≤ C

(
|x− x′|4 + ε2E

[
sup

0≤s≤t

(
N(t)2

)]
+

∫ t

0

(
E
[(
|Y (s)− Y ′(s)|4

)
+
(
|X(s)−X ′(s)|4

)])
ds

)
.

For the martingale term we use Doob’s maximal inequality

E

[
sup

0≤s≤t

(
N(t)2

)]
≤ 4E

[(
N(t)2

)]
.

Now using the same method as in (6.7) we get

ε2E
[(
N(t)2

)]
≤ C

∫ t

0

(
E
[(
|Y (s)− Y ′(s)|4

)
+
(
|X(s)−X ′(s)|4

)])
ds.

Finally we apply Gronwall’s inequality and get the desired inequality

E

[
sup

0≤s≤t

(
|Y (s)− Y ′(s)|4

)]
≤ C

(
|x− x′|4 +

∫ t

0

(
E
[(
|X(s)−X ′(s)|4

)])
ds

)
.

6.2 Existence and Uniqueness of RSDE

Now we are ready to prove Theorem 3.1. The proof follows the outline of
the proof of Corollary 5.2 in [1] which is based on the proof of Theorem 4.3
in [4].

Proof of Theorem 3.1. Assume that for a continuous Ft adapted martingale
Xt there are continuous Ft adapted processes (Yt,Λ) that fulfills (2.2). Then
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a Picard iteration scheme, see [10], converges to a fix-point and with the
uniqueness Lemma 6.1 we have existence and uniqueness for the RSDE. So
the only thing to check is the existence of Yt and Λ. Since strong uniqueness
and weak existence implies strong existence [12] and since we have strong
uniqueness for Yt from Lemma 6.1, we only need to prove existence for Yt in
distribution. Set

ψ = x+

∫ t

0
b(s,X(s))ds+

∫ t

0
σ(s,X(s))dW,

and then let ψn be a continuous, bounded variation, Ft-adapted semimartin-
gales converging uniformly to ψ. Let (Yn,Λn) be the solution to the SP
for ψn, which exists due to Lemma 5.2. Since ψn is of bounded variation,
Lemma (5.3) gives us that the solution (Yn,Λn) have bounded variation.
Since bounded variation implies measurably we have that Yn is Ft-adapted.
Finally from Lemma 5.3 we know that (Yn) is relatively compact and by
Prokhorov’s theorem tight. This together with the fact that Sn converges to
S gives us that Yn → Y in distribution where Y fulfills the SP for S. But
this is what we required and concludes the proof of Theorem 3.1.
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