
IN DEGREE PROJECT MATHEMATICS,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2018

Generative Models and Feature
Extraction on Patient Images and
Structure Data in Radiation
Therapy

HANNA GRUSELIUS

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ENGINEERING SCIENCES

Generative Models and Feature
Extraction on Patient Images and
Structure Data in Radiation Therapy

HANNA GRUSELIUS

Degree Projects in Mathematical Statistics (30 ECTS credits)
Degree Programme in Industrial Engineering and Management (120 credits)
KTH Royal Institute of Technology year 2018
Supervisors at RaySearch Laboratories: Fredrik Löfman, Mats Holmström
Supervisor at KTH: Henrik Hult
Examiner at KTH: Henrik Hult

TRITA-SCI-GRU 2018:232
MAT-E 2018:40

Royal Institute of Technology
School of Engineering Sciences
KTH SCI
SE-100 44 Stockholm, Sweden
URL: www.kth.se/sci

Abstract

This Master thesis focuses on generative models for medical patient data
for radiation therapy. The objective with the project is to implement and
investigate the characteristics of a Variational Autoencoder applied to this
diverse and versatile data. The questions this thesis aims to answer are: (i)
whether the VAE can capture salient features of medical image data, and
(ii) if these features can be used to compare similarity between patients.
Furthermore, (iii) if the VAE network can successfully reconstruct its input
and lastly (iv) if the VAE can generate artificial data having a reasonable
anatomical appearance. The experiments carried out conveyed that the VAE
is a promising method for feature extraction, since it appeared to ascertain
similarity between patient images. Moreover, the reconstruction of training
inputs demonstrated that the method is capable of identifying and preserving
anatomical details. Regarding the generative abilities, the artificial samples
generally conveyed fairly realistic anatomical structures. Future work could
be to investigate the VAEs ability to generalize, with respect to both the
amount of data and probabilistic considerations as well as probabilistic as-
sumptions.

Keywords: Variational Autoencoder, Feature extraction, Deep learning on
medical images, Computed tomography, Radiation therapy

Sammanfattning

Fokuset i denna masteruppsats är generativa modeller för patientdata från
strålningsbehandling. Syftet med projektet är att implementera och under-
söka egenskaperna som en “Variational Autoencoder” (VAE) har på denna
typ av mångsidiga och varierade data. Frågorna som ska besvaras är: (i)
kan en VAE fånga särdrag hos medicinsk bild-data, och (ii) kan dessa sär-
drag användas för att jämföra likhet mellan patienter. Därutöver, (iii) kan
VAE-nätverket återskapa sin indata väl och slutligen (iv) kan en VAE skapa
artificiell data med ett rimligt anatomiskt utseende. De experiment som ut-
fördes pekade på att en VAE kan vara en lovande metod för att extrahera
framtydande drag hos patienter, eftersom metoden verkade utröna likheter
mellan olika patienters bilder. Dessutom påvisade återskapningen av trän-
ingsdata att metoden är kapabel att identifiera och bevara anatomiska detal-
jer. Vidare uppvisade generellt den artificiellt genererade datan, en realistisk
anatomisk struktur. Framtida arbete kan bestå i att undersöka hur väl en
VAE kan generalisera, med avseende på både mängd data som krävs och
sannolikhetsteorietiska avgränsningar och antaganden.

Acknowledgements

First and foremost I would like to thank my supervisors Henrik, Fredrik and
Mats for their invaluable support and input during the work of this thesis. I
would also like to express my gratitude to my colleagues Marcus and Jonas at
RaySearch Laboratories, without your eagerness and commitment to discuss
and ponder on questions, this thesis would not have been as giving and
exciting as it has been. Furthermore, I extend thanks to my parents and
grandparents, for their incessant assistance of my education and for teaching
me to have diligence in all matters regarding knowledge. Lastly, I would like
to thank my husband for introducing me to the field of engineering and for
his inestimable support and cheers in everything I take on, life would not be
the same without you.

Stockholm, Juni 2018

Hanna

Contents

1 Introduction 1
1.1 Problem Statement . 4
1.2 Purpose . 5
1.3 Methodology . 5
1.4 Questions . 5

2 Statistical learning 7
2.1 Supervised vs unsupervised learning 7
2.2 Training and testing in statistical learning 8

3 Neural Networks 9
3.1 Feedforward Neural Networks 9

3.1.1 Training of a Neural Network 11
3.1.2 Activation functions 15

3.2 Convolutional Neural Networks 18
3.2.1 Backpropagation in Convolutional Neural Networks . . 20
3.2.2 Padding in a Convolutional layer 22
3.2.3 Max pooling layer . 23
3.2.4 Dropout layer . 24
3.2.5 General structure of a CNN 25
3.2.6 Transpose convolution 26

4 Autoencoders 27
4.1 Introduction to Autoencoders 27
4.2 Variational Autoencoders . 29

4.2.1 Deep learning interpretation 29
4.2.2 Probability model interpretation 30
4.2.3 VAE in a strictly Gaussian case 32

4.3 Reconstruction with decoder network 34
4.4 Learned manifold . 35
4.5 Evaluation of encoder . 36

4.5.1 Gaussian encoder . 37
4.5.2 Data augmentation by approximate prior 37

4.6 Feature extraction . 38

5 Data 39
5.1 CT-scans . 39
5.2 Structure data . 40
5.3 Preprocessing . 41

6 Implementation 43
6.1 Architecture of network . 43

6.1.1 RT-Structure data in the VAE framework 45
6.1.2 Special considerations for 3-dimensional inputs 46

6.2 Stochastic considerations . 46
6.3 Deep learning library and applied algorithms 47

7 Results 49
7.1 CT-scans . 49

7.1.1 2 dimensional case . 49
7.1.2 3 dimensional case . 57

7.2 CT scans and RT structure data 59
7.3 Evaluation of encoder . 61

7.3.1 Data augmentation by approximate prior 62
7.4 Investigation of loss . 65
7.5 Investigation of feature extraction 67

8 Discussion 69
8.1 Reflection upon results . 69
8.2 Future work . 70
8.3 Conclusion . 70

Chapter 1

Introduction

The occurrence of cancer is increasing globally. In the World Cancer Report,
compiled by WHO, it is reported that in industrialized countries more than
one in four will pass away due to the disease [54]. And by 2030, major can-
cers 1, are expected to have risen by 68% relative to the levels 2012; given
that current trends are sustained globally [8, 17]. Consequently, each and
every one of us will most likely encounter pain and other implications follow-
ing cancer, either by being a patient or knowing a person ill of the disease.
This presents increasingly great challenges for healthcare worldwide, since
resources must meet a growing need for specialized care. The treatment of
cancer can be either curative, adjuvant, neo-adjuvant or palliative [38]. The
curative treatment aims at curing the disease whilst the palliative aims at
relieving the patient from the effects of the illness. The adjuvant treatment
aims at preventing illness recurrence, whilst the neo-adjuvant aims at reduc-
ing tumor size prior to other types of treatment. The nature of the cancer
as well as the objective of the treatment determines the measures taken to
care for the patient. Commonly, treatment will be comprised of a number
of different actions, such as: surgery, hormone therapy, chemotherapy and
radiation therapy (RT).

In 1895 Röntgen’s discovery of X-rays drastically changed the landscape of
medical care for both malignant and benign disorders [18, 51]. As a result,
RT-treatment was enabled and has thence been used for cancer treatment
in over a century [18]. Nowadays, approximately 50% of cancer patients at-
tain RT as part of their treatment [12]. The RT consists of administration
of ionizing radiation. The objective is to damage or kill malignant cells.
This ultimately reduces the number of such cells and the pace of their future
growth [57].

1cancers that are fatal if left untreated

1

Good RT-treatment plans are essential for the patient since the radiation
may come with side effects directly related to the distributed dose. How-
ever, the time consuming and intricate task of designing RT plans presents
difficulties, such as competing clinical priorities. For instance, one might
wish to deliver a higher dose to the malignant cells than the healthy sur-
rounding tissue can cope. A cancer tumor is usually referred to as target
and surrounding organs which may be effected by the radiation as organs at
risk (OARs). Conventionally, a specialist examines the patient image and
depicts the biological structures of special interest in RT, usually referred to
as the RT structure set, consisting of e.g. these OARs and target. This is
however a task requiring not only time but also the resources of an expert
medical professional. Furthermore, the RT planning process includes not
only the oncologist, but also the dosimetrists and medical physicist, which
illuminates some of the challenges that RT planning presents [38]. Addition-
ally, both between and within institutions the planning procedure varies.
This results in a variability in practice and quality of RT [41]. As a conse-
quence, patients may be treated with sub-optimal RT plans [43]. As a result
of these challenges and the growing burden, there is an increasing need for
standardized and automated health care methods; resulting in development
of statistical and machine learning (ML) applications that automatically in-
fer new RT plans based on historical treatment plans or automatically creates
a RT structure set from a patient image. The objective is that these auto-
mated schemes will save both time and resources, as well as enabling better
and more equal treatment.

A cornerstone of this development is statistical methods and their progress.
Let us contemplate the customary ML techniques applied in RT-treatment.
Considering previously developed “[RT] planning pipelines [they] have tra-
ditionally incorporated historical treatment planning data with algorithms
to estimate dose-volume objectives based on a limited number of features”2

[37]. These dose-volume objectives (DVOs), characterize what dose of ra-
diation that is to be accumulated in the patient’s volumes of interest, and
it is related to the Dose Volume Histogram (DVH), which conveys the dose
level achieved in a fraction of a volume. In [1] they propose a statistical
method that “improve[s] treatment plan quality using mathematical models
that predict achievable organ-at-risk [...] dose volume histograms [...] based
on individual patient anatomy” 3. And in [58] they investigate an application
for automatic treatment planning for head-and-neck cancer based on volume
histograms. Moreover, in [37] they propose a method that predicts a spatial
dose volume objective, i.e. a dose to be administered in each specific vol-
ume element, as supposed to a certain amount in a volume. This procedure

2[] denotes that the quote has been altered with this entity
3[...] denotes that part of the quote is omitted

2

predicts a RT dose, based on the Computed Tomography scan (CT-scan), of
the novel patient. This is achieved by means of regression forest and con-
ditional random fields. Now considering previously developed schemes for
automatic segmentation, some works have applied a Markov Random Field
(MRF) model [46] while more novel approaches applies e.g. the classical
Expectation Maximization (EM) algorithm [48]. Moreover, in [11] they have
used non-parametric classifiers for brain tissue. Hence, classical statistical
methods are a common practice in these automated applications. Recently
more modern applications has however been developed. As in [61] where
they “propose to combine deep learning and marginal space learning (MSL)
[...] for robust kidney detection and segmentation”. Or as in [42] where they
“have modified a convolutional deep network model, U-net [...], for predicting
[RT] dose from patient image contours”.

Let us now consider this statistical learning in more detail. In the 1960’s
statistical learning was first introduced, initially “it was a purely theoreti-
cal analysis of the problem of function estimation from a given collection of
data” [56]. During the following decades the concept evolved from theory to
algorithms, rendering the area applicable in both analysis and algorithmic es-
timation of functions [56]. Today the field of statistical learning is commonly
multidisciplinary with applications in almost any field; such as finance, bi-
ology, health care, military, law enforcement, public policy and astrophysics
[23]. The overall principle is to make use of data and knowledge in the field,
to perform inference using some mathematical tool or reasoning, and ulti-
mately gain insight and understanding of the data in question [23]. One may
wish to predict outcomes, reduce dimensions or to classify, using frequentist-
or Bayesian methods. Including regression, tree based methods, neural nets,
kernel methods, sampling, principal component methods or expectation maxi-
mization and approximate inference. The last couple of years “the techniques
developed from deep learning research have [...] been impacting [...] key as-
pects of machine learning and artificial intelligence”[13]. The concept of deep
learning stems from the fact that the logic behind the class of methods is to
render understanding by hierarchies of concepts. Where simpler concepts are
connected successively to more abstract ones. Considering this structure in
a graph, many layers will yield a deep structure, hence the name [19]. Appli-
cations built on deep learning have enabled large improvements in domains
such as speech recognition, visual object recognition, object detection and ge-
nomics [32]. One key aspect in this development could be that deep learning
“discovers intricate structure[s] in large data sets” [32]. Consequently, deep
learning is assumed to gain ground and progress in new learning algorithms
[32]. This presents promising new opportunities for development of cutting
edge methods in health care and more specifically in applications regarding
RT-planning and rendering of RT-structure sets.

3

1.1 Problem Statement

A common characteristic of the data used for ML in radiation therapy is that
it is quite high dimensional. Feature extraction by dimensional reduction is
commonplace regarding high dimensional data, and it is a common prac-
tice prior to inference. Considering this concept in relation to automation
of methods in RT-treatment it is a fact that one vital aspect of automated
RT-planning is the choice of data used to infer a new plan for a patient. In
order to derive a plan one must be able to compare a novel patient with
previous patients, and thence infer the plan based on the RT treatments for
the historical patients with characteristics most favourable for prediction.
This is achievable by comparison of the features of the patient images and
the structure data; i.e. data for organ segmentation, consisting of an entity
that demonstrates if a volume element in a patient image is within an organ
or not. This image could come from Magnetic Resonance Imaging (MRI)
or CT as in this thesis. The patient data is however high dimensional and
quite extensive; the CT-scan is conventionally comprised of approximately
100 slices, where each slice has (512, 512) pixels. Subsequently, the image
data of a patient is of order 107 pixels. Thus, in order for comparison to
be feasible one must extract prominent features somehow and thence reduce
the dimension prior to inference. Some classical statistical methods for di-
mension reduction are e.g. various Gaussian filters such as the Leung-Malik
filter [33] or Principal Component Analysis (PCA) [26]. However, the de-
velopment of new methods has enabled usage of other techniques involving
deep-learning for this purpose.

The characteristics chosen for this comparison of patient data will directly
influence the quality of the inferred plans. And to derive a treatment plan
of high quality one must extract the most salient features of the data and
use these to choose the patients used in the inference. This presents two
challenges: (i) how is one to derive the features of the patient data, and
(ii) what metric should be used for the comparison of the features between
patients?

Lastly, the amount of data available to train the ML models will have an
effect on the predictive strength in the inference. If one is to automate gen-
eration of the RT structure set, by using deep learning applications, this
will probably demand large amounts of training data. Hence, access to data
for training is vital for both the treatment planning process and automatic
generation of segmented data. And this matter is not trivial, since there are
ethical and legal considerations regarding handling of patient data. Hence,
the acquisition of training sets can present numerous challenges for the usage
of ML models in health care.

4

1.2 Purpose

The purpose of this thesis is to implement and investigate probabilistic char-
acteristics of deep generative models on medical patient data. Namely by
considering the ability to extract prominent features of high dimensional data
and to generate artificial patient data. This is done by applying probabilistic
generalizations of autoencoders on CT-scans as well as organ segmentation
data. This thesis may constitute a contribution towards enabling usage of
these cutting edge methods in health care and more specifically in future
applications for treatment of cancer.

1.3 Methodology

In this thesis the twofold purpose of both extracting salient features of high
dimensional data and generating artificial data is made achievable by the
deep learning application called a Variational Autoencoder (VAE). In some
aspects this tool can be seen as a powerful stochastic generalization of PCA.
Moreover, the VAE is a versatile and powerful technique where one can design
and modulate the level of complexity in the architecture of the method.
Hence the VAE is chosen for the investigation and work in this thesis.

1.4 Questions

The questions this thesis investigates are

1. How well can a VAE reconstruct an input consisting of medical data,
such as a CT-scan?

2. How well can a VAE capture the salient features of a CT-scan and its
adherent segmented organs?

3. How well can the representation of the patient data attained with a
VAE be used for identifying similarity between patients?

4. How well can new artificial patient data be created by sampling from
the decoder in the VAE network?

The outline of this thesis goes as follows: Chapter 2 is comprised of some
basic aspects of Statistical learning. In Chapter 3 Neural Networks and
adherent methods and concepts are discussed, as a theoretical prelude to the
network structure of the VAE. This is followed by Autoencoders and related
topics in Chapter 4. Data and Implementation are elaborated on in Chapter
5 and 6. Lastly, Chapter 7 and 8 are comprised of Results and Discussion.

5

6

Chapter 2

Statistical learning

The multidisciplinary field of statistical learning has as previously mentioned
contributed immensely to a variety of fields. The notion of “[s]tatistical learn-
ing refers to a vast set of tools for understanding data” [23]. And this is highly
central since a wave of data has swept into virtually all industries and it has
become a key aspect along with capital and labour [36]. To exemplify this
phenomenon, US healthcare alone could create more than $300 billion in
value yearly simply by adopting a creative and efficient usage of big data
[36]. And since the amount of data is constantly increasing a need for au-
tomation of data analysis techniques come along with this shift [40].

A few central elements of this statistical learning will be discussed in this
Chapter, for future reference. Namely, supervised and unsupervised learning,
as well as considerations regarding generalization connected to training and
testing statistical learning models.

2.1 Supervised vs unsupervised learning

In statistical learning the setting can be either supervised, unsupervised or
semi-supervised. In the supervised case data D = {xk, yk}Kk=1 is given, where
there is a function f : x→ y; entailing that both predictors xk ∈ RN and a
response variable, or key, yk is prevalent. The response could be categorical
or nominal s.t. yk ∈ {1, . . . , C}, or it could be a scalar s.t. yk ∈ R [40]. Here
quantitative or qualitative prediction is often of interest, e.g. to extrapolate
in regression to predict the value of a real valued scalar response or to assign
categorical labels yk according to the predictors using e.g. support vector
machines. For the unsupervised case on the other hand, the data available
will be comprised of only D = {xk}Kk=1, entailing that no response variable
yk is provided. Consequently, the objective of the inference is ambiguous,
unlike in the supervised setting. In other words, “[in] contrast to supervised
learning, the objective of unsupervised learning is to discover patterns or

7

features in the input data with no help” [16]. Consequently, prediction is
not of interest, but the objective is rather to identify salient features and in-
teresting qualities of the data. One such pattern of interest could be whether
there are subsets of the data D that have similar characteristics and what
features these groups demonstrate; this is usually called clustering of the
input. One additional application may be dimensionality reduction by PCA
[16]. The semi-supervised case has some predictors with response variables
given. This entails that “[s]emi-supervised learning uses both labeled and
unlabeled data to perform an otherwise supervised learning or unsupervised
learning task” [62]. The setting of this thesis is unsupervised, since inference
is to be performed on patient data from RT- therapy, with no response is
given.

2.2 Training and testing in statistical learning

Some statistical methods can be powerful enough to identify and subse-
quently learn details unique for a specific data set. This phenomena is called
overfitting, since the model will inherently encode the noise prevalent in the
data. And as a consequence the model fits the training data “too well” and
thence it will not perform as well on new unseen data, entailing that the
method does not generalize. Conventionally this problem is counteracted
with regularization, extensive and diverse data sets for training, early stop-
ping during training or choice of less flexible models. A method of verifying
whether a method has overfitted is to hold out some data during training,
referred to as the test set. And then apply the model on this unseen data, if
the training performance is superior to that of the test, one can expect that
overfitting has occurred. If there is data enough one could also create a sepa-
rate validation set, in this setting the test set can be used for hyperparameter
modulation and model selection following training and the validation set can
then quantify the chosen models ability to generalize.

8

Chapter 3

Neural Networks

3.1 Feedforward Neural Networks

Feedforward Neural Networks (FNNs) are an essential building block in many
applications of ML. However, they were initially developed in the quest of
modelling the neural system of the brain. These networks are comprised of
a set of neurons entwined in a type of Directed Acyclic Graph, (DAG) [19].
This DAG is an ordered graph consisting of a number of vertices, whose
edges are connected from the start of the graph to later in the sequence, i.e.
the vertices have a topological sorting [55]. The Feedforward notion springs
from the fact that the input x of the FNN is pushed forward thought the
network, starting at the input nodes and thence rendering the output by
the computations applied in the network [19]. Generally, in a supervised
setting a FNN has the objective of estimating some mapping f : x → y,
given training data D = {x, y}. This is achieved by deriving the parameters
γ of an approximate mapping fγ yielding the best estimate of f , e.g. in the
least squares sense. In Figure 3.1 one can see in a DAG how such a mapping
fγ can be comprised in a network with three hidden layers.

x

Input

f1

Layer 1

f2

Layer 2

f3

Layer 3

f3 ◦ f2 ◦ f1(x) = y

Output

Figure 3.1: A visualization of a FNN with three hidden layers. The output is
derived with the mapping fγ = f3 ◦ f2 ◦ f1(x) = y, where ◦ denotes how the
functions operate s.t. h ◦ g = h(g).

9

In a network setting the FNN shown in Figure 3.1 can have the architecture
demonstrated in Figure 3.2. This network has tree hidden layers that are
fully connected, i.e. all nodes in layer {l − 1} are connected to the nodes in
{l}.

Input

Layer 1 Layer 2 Layer 3

Output

Figure 3.2: A fully connected FNN with three hidden layers.

Moreover, let the following entities be defined according to,

pl number of vertices in layer l,

blj bias for layer l, vertex j,

wl
j = {wlj1, . . . , wljpl−1

} weights for layer l, vertex j,

al = {al1, . . . , alpl} outputs for layer l.

In our network the n-dimensional input x is transformed in the neuron by
the weight vector w and bias b. The input layer is initialized by setting that
the outputs equals the input data, i.e. a0

j = xj ,∀j ∈ {1, 2, . . . , N}. The
transformation in perceptron i is then performed according to

zlj = wl
j · al−1 + blj , ∀j ∈ {1, 2, . . . , pl}.

An activation function gl(·) is then applied and the neuron outputs the entity

alj = gl(z
l
j), ∀j ∈ {1, 2, . . . , pl}

to the subsequent vertices. In Figure 3.3 it is visualized how the input is
weighted and subsequently summed with the node bias, thereafter the acti-
vation function is applied and the output is attained. This transformation
occurs at all vertices in the hidden layers of the FNN. The output layer of
the network will thereafter yield aL, which in the supervised setting dis-
cussed earlier would correspond to the estimate fγ(x) ≈ y. And where the
parameters γ are given by the weights and biases {w, b} of the network.

10

x2 w2 Σ g

Activation
function

a

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 3.3: A visualization of the transformations in a neuron. The inputs are
weighted, bias is added and the activation is subsequently applied.

3.1.1 Training of a Neural Network

Let us now consider the training or a FNN with {L − 1} hidden layers. As
previously presented, the parameters {wl, bl}Ll=1, will in conjunction with the
activation functions {gl(·)}Ll=1 and the adherent architecture, characterize
the output of the network. The problem at hand is to derive {wl, bl}Ll=1 such
that the network performs its intended task well. This can be achieved by
means of Gradient descent, (GD).

Loss function

In order to measure how well the FNN performs, one defines a loss function
L(w, b). Supposing we have a supervised setting, we could compare the
output aL = fγ(x) of the FNN for input x with corresponding response y.
If the network renders an output close to the true value the objective is
achieved. A loss function capturing this relation could be the Mean Square
Error (MSE), defined according to

L(w, b) =
1

2K

K∑
k=1

∥∥yk − aL(xk)
∥∥2
. (3.1)

Above it is assumed that there are K training pairs of data available, i.e.
{xk, yk}Kk=1 and that aL(xk) = fγ(xk) is the network’s output for data xk.

Gradient descent

Now assume the network parameters are given by v ∈ RH , then the loss
function L(v) can be thought of as a billowy surface in the H-dimensional
parameter space. The objective when training the network is to find the set
of v ∈ RH that minimizes L(v). Hence, from a topological reasoning we wish

11

to find the point in the parameter space yielding the lowest loss, positionally
corresponding to the deepest valley of the ”functional landscape” given by
L(v) [44]. One method of rendering the location of this point is gradient
descent. The idea is that you start somewhere on the surface, you find the
local shape around the current position and move in a direction that reduces
the size of the loss function mostly. This is then repeated until either a local
or global minimum is reached. In Figure 3.4 such a minimizing trajectory is
visualized on level curves for v ∈ R2.

v0

v1

v2

v3

v4

Figure 3.4: A visualization of level curves of the loss function L(v) for v ∈ R2.
The initial parameters are given by v0, the parameters are then iteratively updated
as the parameter position moves downhill in the level curves, thence minimizing
L(v).

Formally, gradient descent entails computation of derivatives of L(v) w.r.t.
v and motion in the direction of the largest negative change.

Let ∆v denote the change in the parameters such that

∆v = (∆v1,∆v2, . . . ,∆vH)T.

Furthermore, let the gradient of the loss be defined according to

∇L(v) =

(
∂L(v)

∂v1
,
∂L(v)

∂v2
, . . . ,

∂L(v)

∂vH

)T

, (3.2)

this entity will convey how a change in a parameter relates to a change in
the loss. One can approximate the change of the loss according to

∆L(v) ≈ ∇L(v)∆v =
H∑
h=1

∂L(v)

∂vh
∆vh,

i.e. as a decomposition of the change in loss with respect to each parameter
and the change for each respective parameter. One method of identifying a

12

direction in which the loss is reduced is to set

∆v = −η∇L → ∆L = −η∇L∇L = −η ‖∇L‖2 ,

where ‖∇L‖2 ≥ 0, and η is refereed to as the learning rate [44]. An alteration
of the parameters according to ∆v would entail a reduction in the objective
function ∀ ‖∇L‖2 > 0. Thus, the parameters are updated iteratively accord-
ing to

vi+1 = vi − η∇L(vi)

until a minimum is reached [44]. One can discern that the hyperparameter η
will modulate the step size taken by the optimization algorithm and as such
it will influence the pace at which the parameters are learned, it has thence
earned its epithet. Consequently, for weights and biases of the network one
updates the parameters according to

wi+1 = wi − η
∂L
∂wi

and bi+1 = bi − η
∂L
∂bi

.

Stochastic gradient descent

Let us now reconsider the loss function (3.1), upon inspection it is evident
that L(w, b) can be decomposed according to

L(w, b) =
1

K

K∑
k=1

Lxk(w, b) where Lxk(w, b) ,
1

2

∥∥yk − aL(xk)
∥∥2
. (3.3)

Consequently, the derivation of the gradient (3.2) will involve computation
of

∇Lxk(w, b) ∀ xk ∈ {x1, . . . ,xK},
and subsequently the gradient is computed by averaging over the gradient of
each training input. IfK is large this involves computations of a considerable
number of gradients for one iteration in the GD algorithm. This can be
computationally unfeasible, hence to remedy this issue Stochastic Gradient
Descent (SGD) may instead be applied. This version of GD will not utilize
the entire training data set for the computation of the gradients, it will rather
choose a mini batch of S samples {x1, . . . ,xS} that are randomly drawn from
the training set and approximate the gradient

∇L(w, b) ≈ 1

S

S∑
s=1

∇Lxs(w, b).

Thence, the network parameters can be updated according to,

wi+1 = wi −
η

S

∑
s

∂Lxs
∂wi

,

bi+1 = bi −
η

S

∑
s

∂Lxs
∂bi

.

13

A new mini batch is subsequently chosen, and the procedure is repeated until
all samples in the training data set have been used once; then one epoch of
training is said to have been executed. Generally, in the SGD algorithm
training is comprised of a large number of epochs. If one however has data
of an extensive dimension, such that a number of samples S would entail too
large of a set for the computations, incremental learning is an option. Here
one simply sets S = 1 and perform SGD on one training sample at a time
[44].

Backpropagation

One cornerstone of the presented GD algorithms is the computation of the
gradients of the loss w.r.t. to parameters, one method of deriving these
entities is backpropagation (BP). The loss function Lmust fulfill the following
two conditions in order to make backpropagation feasible [44]

1. The loss must be a function of the output aL of the network.

2. One must be able to decompose the loss as a sum over the loss Lxk , of
individual training data.

If one studies the loss (3.3) it is evident that the function is comprised
of contributions given by each training input, and furthermore the loss is
a function of aL(xk). Hence, both requirements for back propagation are
fulfilled in this supervised setting and for the chosen loss function.

Error in layer l

Let us begin with contemplating the error in each layer of the network, i.e.
the extension of the loss in each part of FNN. Suppose the error in layer l
and neuron j is given by

δlj =
∂L
∂zlj

, (3.4)

i.e. a measure on how the loss changes with respect to the weighted input
to the vertex. If the layer in question is the output s.t. l = L, one can
re-express (3.4) with the chain rule according to

δLj =
∂L
∂aLj

∂aLj

∂zLj
=

∂L
∂aLj

∂g(zLj)

∂zLj
=

∂L
∂aLj

g′(zLj).

Which can be written in vector form

δL = ∇aL � g′(zL) for ∇aL =

(
∂L
∂aL1

, . . . ,
∂L
∂aLpL

)
.

14

Where � denotes the Hadamard product. By propagating δL back through
the network the error in an arbitrary layer l can be derived according to

δl = ((wl+1)Tδl+1)� g′(zl). (3.5)

Entailing that the weights that interconnect layer l→ (l+1) will reflect how
the error evolves through the network, in conjunction with the change in
the activation for the weighted input of the layer [44]. The error quantities
hereby defined will, as a matter a fact, characterize the gradient of the loss
with respect to the parameters of the network, according to

∂L
∂blj

= δlj and
∂L
∂wljk

= al−1
k δlj .

Consequently, the gradient with respect to any parameter in the network can
be computed with (3.5), and GD can subsequently be applied. In Algorithm
1, BP can be seen, comprised of a forward pass where the weighted inputs
and outputs to each vertex is derived, followed by the backward pass where
the gradients are computed.

Result: Backpropagation for computation of gradients
For each update of parameters {w, b} in GD algorithm;
Set activation for input layer → a0

for l = 1 : L do
zl = wlal−1 + bl

end
Compute δL = ∇aL � g′(zL);
for l = (L− 1) : 1 do

δl = (wl+1)Tδl+1 � g′(zl)
end
Compute ∂L

∂blj
= δlj and

∂L
∂wljk

= al−1
k δlj .

Algorithm 1: Backpropagation in a FNN.

3.1.2 Activation functions

Let us now consider activation functions gl(·). These operators will modulate
the extent to which each weighted input in a vertex is propagated further
through the network, i.e. they will decide whether each neuron fires or not,
in addition to the strength of the signal.

15

Heaviside step function

One activation function is the Heaviside step function

H(z) =

{
1 if z > 0

0 else .

The neuron will consequently be activated and fire only for positive values
of the weighted input. However, the application of the FNN might require
more nuances than this binary activation. Additionally, GD which is conven-
tionally used to find the optimal network parameters γ of a FNN, generally
requires a differentiable activation. The gradient of the Heaviside step func-
tion gives rise to problems with learning since ∂H(z)/∂z = 0 ∀ z 6= 0.

Sigmoid

One alternative is the sigmoid σ(·), characterized by

σ(z) =
1

1 + e−z
.

This activation is differentiable ∀z and will render outputs in [0, 1]. One
might think of the function as a saturating force on the input of the vertex.
Nonetheless, the sigmoid, which may be seen in Figure 3.5, can cause slow
learning of the network parameters. Due to the fact that saturated neurons
with weighted input z far from the origin, will reduce the gradients of the
sigmoid w.r.t. z i.e. ∂σ(z)/∂z ≈ 0 ∀ |z| ≥ 10. This will cause problems
when applying GD for learning.

Hyperbolic tangent

Yet another activation is the hyperbolic tangent tanh(·), given by

tanh(z) =
ez + e−z

ez − e−z
.

This activation will instead render outputs ∈ [−1, 1]. This zero-centered
characteristic is beneficial since the gradients may then have variable signs
for inputs where all data is either positive or negative; which enables faster
learning with GD. However the issue with saturated neurons “killing” gradi-
ents is still occurring, in Figure 3.5 one can see how inputs |z| ≥ 2 renders
a near non-existing gradient of the activation w.r.t. the input z, since the
function becomes almost constant.

16

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.5 1.0 1.5 2.0 2.5 3.0

−1.0

1.0

2.0

z

g(z)
g1(z) = 1

1+e−z

g2(z) = tanh(z)

g3(z) = max(0, z)

g5(z) = max(z, αz)

Figure 3.5: Visualization of activation functions commonly used in feed forward
networks.

Rectified Linear Unit

Conversely, an activation that does not saturate in R+ is the computationally
efficient Rectified Linear Unit (ReLU) given by

ReLU(z) = max
(
0, z
)
.

This function will enable fast convergence of network parameters, since the
gradients are not killed by the activation in large regions of the plausible
input space. Nonetheless, in the region R− the problem stills stands, which
can be clearly seen in Figure 3.5, since the activation is constant for all values.
This will practically implicate that data ∈ R− will belong to “dead” ReLU
nodes, that will not contribute to updates of the weights during training.
This activation is differentiable ∀z 6= 0.

Leaky Rectified Linear Unit

One function that can remedy the problem occuring in the ReLU is the leaky
ReLU activation

leaky ReLU(z) = max(z, αz).

Where α usually is a small positive number, commonly 0.01. As one can
see in Figure 3.5 this will entail some leakage for z ∈ R− which counteracts
nodes being inactive ∈ R−, as with the ReLU.

Furthermore, it is noteworthy that the activation function gl(·) is gener-
ally chosen to be non linear. Since if the activations were linear, the output
would be comprised of linear combinations of the input; meaning that several
hidden layers in the FNN could be replaced with a single layer.

17

3.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a FNN specialized in handling
data with a grid structured topology. They enable architectural encoding of
these properties which presents computational advantages [19]. More specif-
ically, inputs such as images or time series are well suitable for these net-
works. There are several important factors that are characterizing for a
CNN, namely sparse interactions, parameter sharing and equivariant repre-
sentations [19]. In a traditional FNN every input node will interact with the
final outputs, whilst a CNN will interact sparsely which entails that certain
subsets of the input data will render some of the outputs. Moreover, in the
ordinary FNN the weights of the network are all applied once in the prop-
agation; whilst in a CNN, the network applies the weights of the kernel at
all inputs in a layer. The FNN will hence have to learn a substantial set of
unique parameters for each position of the input, when a CNN only has to
render one set. Furthermore, the CNN is equivariant in its representation,
which entails that a displacement of the input will render the equivalent
displacement in the output. However, there are transformations such as ro-
tations or scaling that convolution is not equivariant to, hence these actions
must be handled in another manner [19].

Convolutional layer

A convolutional layer will replace the matrix multiplication from the ordinary
FNN with a convolution. Mathematically, discrete convolution of an input
x(i) and a kernel w(a) is performed according to

s(i) = (x ∗ w)(i) =

∞∑
a=−∞

x(a)w(i− a),

resulting in a feature map s(i). One feature map will reflect where in the
input a certain feature is prevalent. Hence the kernel for one specific map will
become a detector for that one characteristic. For a two dimensional input,
such as an image I ∈ RH×W×C , where C is the number of color channels,
H the height and W the width; the discrete convolution is performed with
a kernel K ∈ Rk1×k2×C and bias b ∈ R1 according to

s(i, j) = (I ∗K)(i, j) =

k1−1∑
m=0

k2−1∑
n=0

Km,nIi−m,j−n + b. (3.6)

For ease of notation in (3.6) it is supposed that I is in gray scale i.e. that
the channel C = 1. In Figure 3.6 such a convolution is visualized in a small
scale example. For an image I ∈ RH×W and weight kernel K ∈ Rk1×k2 the
resulting feature map fulfills s ∈ R(H−k1+1)×(W−k2+1).

18

Kernel K

Input I

Feature map s

Figure 3.6: A visualization of a convolution between the kernel and input. Each
element in the feature map is rendered as the kernel sweeps over the input, analogous
to how the first element of the map is found, indicated by the arrows. In this
example the stride St equals one.

When performing the convolution numerically, cross correlation with a flipped
kernel is conventionally applied, entailing that the kernel is rotated 180 de-
grees and the Hadamard product of a subset of I and the flipped kernel is
computed. Then the entries in the matrix are summed to derive an entry in
the feature map, yielding the subsequent form of (3.6), where K is assumed
to have been rotated

s(i, j) = (I ∗K)(i, j) =

k1−1∑
m=0

k2−1∑
n=0

Km,nIi+m,j+n + b. (3.7)

Moreover, let the following entities be defined according to,

bl bias for layer l,

wlm,n filters connecting layer l and l − 1,

zlij weighted input to layer l,

alij outputs for layer l.

Where the weighted input and output are derived according to,

zlij =
∑
m

∑
n

wlm,na
l−1
i+m,j+n + bl, (3.8)

alij = g(zlij) and a0
ij = I. (3.9)

In Figure 3.6 it can be seen how the kernel sweeps over the first subset
of I which renders the first entry in the feature map. This is successively
repeated as the kernel moves along the input, with a motion characterized
by the strides. In Figure 3.6 the stride St is one, which entails that the kernel
moves one index to derive the next element in the feature map, according to
the visualization in Figure 3.7.

19

Figure 3.7: A visualization of how the next element in the feature map is generated,
relative to Figure 3.6.

Furthermore, “strides constitute a form of subsampling [...] [they modulate]
how much of the output [that] is retained” [15]. Namely, one may increase
the strides and attain an analogous feature map with a unit stride where only
some of the outputs are kept. The nodes in the input where the kernel sweeps
and renders an element in the feature map, is called the local receptive field
for that element [44]. Subsequent convolutional layers will be comprised of
a combination of the receptive fields of the earlier layers, since it is rendered
from the previous nodes. Thence, the deeper layers of a CNN will learn more
abstract features of the input. Generally, one wants the latter feature maps
to intake as much as possible from the previous receptive fields in its vertices,
since this will entail that much of the information is preserved between the
convolutional layers, much like in a fully connected FNN. In Figure 3.6 it is
apparent that the interactions of a convolutional layer is indeed sparse, as
only some of the nodes interconnect with each vertex in the next layer. How-
ever, this sparsity does not entail that deeper layers do not connect to the
input, as there are indirect connections between most nodes with the input I.

When applying convolution to images one generally wishes to identify the
most salient features, i.e. several of the localized features predominant in the
input data. Since one feature map will reflect but one image characteristic,
this entails that numerous maps ought to be rendered in order for several
features to be captured. As a result, convolutional layers are commonly
comprised of a set of different kernels, rendering a set of varying feature
maps.

3.2.1 Backpropagation in Convolutional Neural Networks

To derive optimal filters and biases for a CNN, GD can be used like in a fully
connected FNN; where BP can compute the gradients in the GD algorithm.
In order to derive the gradients one must contemplate the error in each layer
of the network. Let the error in neuron {i, j} and layer l correspond to

δlij =
∂L
∂zlij

. (3.10)

20

Entailing that the change of the loss L w.r.t. weights in the kernel is given
by

∂L
∂wlm̃,ñ

=

H−k1∑
i=0

W−k2∑
j=0

∂L
∂zlij

∂zlij

∂wlm̃,ñ
=

H−k1∑
i=0

W−k2∑
j=0

δlij
∂zlij

∂wlm̃,ñ
. (3.11)

Considering (3.8), the partial derivative of the weighted input and the filter
can be expressed according to

∂zlij

∂wlm̃,ñ
=

∂

∂wlm̃,ñ

(∑
m

∑
n

wlm,na
l−1
i+m,j+n + bl

)

=
∂

∂wlm̃,ñ

(
wlm̃,ña

l−1
i+m̃,j+ñ + bl

)
= al−1

i+m̃,j+ñ.

Inserting this in (3.11) yields

∂L
∂wlm̃,ñ

=

H−k1∑
i=0

W−k2∑
j=0

δlija
l−1
i+m̃,j+ñ. (3.12)

Let us now consider δlij further. In order to compute this derivative, given
by (3.10), one must know where in the subsequent layer {l+1} the entity zlij
has an effect. For a filter K ∈ Rk1×k2 the pixel {i, j} in layer l will influence
parts of the feature map given by {(i− k1 + 1, i), (j− k2 + 1, j)}. Thence δlij
can be decomposed in the subsequent manner

δlij =
∂L
∂zlij

=

k1−1∑
m=0

k2−1∑
n=0

∂L
∂zl+1

i−m,j−n

∂zl+1
i−m,j−n

∂zli,j
=

k1−1∑
m=0

k2−1∑
n=0

δl+1
i−m,j−n

∂zl+1
i−m,j−n

∂zli,j
.

Where the partial derivative of the weighted inputs can be expressed using
(3.8)

∂zl+1
i−m,j−n

∂zli,j
=

∂

∂zli,j

(∑
m̃

∑
ñ

wl+1
m̃,ña

l
i−m+m̃,j−n+ñ + bl+1

)

=
∂

∂zli,j

(∑
m̃

∑
ñ

wl+1
m̃,ñg(zli−m+m̃,j−n+ñ) + bl+1

)

=
∂

∂zli,j

(
wl+1
m,ng(zli,j)

)
= wl+1

m,ng
′(zli,j)

Consequently,

δlij =

k1−1∑
m=0

k2−1∑
n=0

δl+1
i−m,j−n

∂zl+1
i−m,j−n

∂zli,j
=

k1−1∑
m=0

k2−1∑
n=0

δl+1
i−m,j−nw

l+1
m,ng

′(zli,j),

21

which can be inserted in (3.12) in order for the gradient to be derived. 1

The gradient with respect to the bias can be derived according to

∂L
∂blij

=

H−k1∑
i=0

W−k2∑
j=0

δ
(l+1)
i,j .

Generalization to more channels and dimensions

The so far discussed convolution operations in neural networks can be gen-
eralized to inputs I ∈ RH×W×D×C , where D is the depth of the image and
C > 1; the same methods and principles still prevail. When several channels
occur, each channel is given a separate k1 × k2 × k3 dimensional filter in
K ∈ Rk1×k2×k3×C , answering to the dimension of I.

3.2.2 Padding in a Convolutional layer

The dimension attained after convolution might not coincide with the sought
one, to modulate the dimension of the output feature map one can apply
zero padding. This entails that the input I is altered by padding with zeros
around its borders, yielding a new input Ĩ. Subsequently, the kernel will
sweep over Ĩ, comprised of the trivial inputs as well as the regular I. Hence,
the spatial dimension will be altered according to the amount of padding.
Let P correspond to the depth of the padded rows around the input. In
Figure 3.8 a convolution with a zero-padded input can be seen.

padded input Ĩ

feature map

Figure 3.8: Visualization of convolution with zero half padding [15] and unit stride,
with a kernel K ∈ R3×3 and where I ∈ R5×5 is seen as the gray nodes in the center
of Ĩ. The arrows indicates how the kernel sweeps over the input, thence rendering
each element in the resulting feature map. The padded zeros are seen in the weakly
colored edges of Ĩ, here P = 1.

The padding seen in Figure 3.8 maintains the spatial dimension of I. In
many applications this is desirable, since several convolutions then can be
applied on an input of unaltered dimension, and consequently the receptive
field can be expanded between convolutional layers whilst preserving the size
of the input. This practically implies that deeper network structures can be
built. That the depth matches the complexity of its task is actually crucial

1A large portion of the derivations were found in the tutorial on CNN and backporpa-
gation by Jefkine Kafunah, Backpropagation In Convolutional Neural Networks.

22

http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

in learning, since “an architecture with insufficient depth can require many
more computational elements, potentially exponentially more [...] than ar-
chitectures whose depth is matched to the task” [2].

If one contrastingly wishes to extend the dimension of I one can apply full-
padding [15], which entails that the output feature map will be dimension-
ally greater than the input as an effect of the padding. If one assumes that
H = W , i.e. that the image height is analogous to the width, and that
k = k1 = k2, i.e. that the kernel is symmetric, the dimension of the output
feature map s ∈ RF×F corresponds to

F =
W − k + 2P + St

St
.

3.2.3 Max pooling layer

In order to further reduce the size of the input in a CNN, in addition to the
spatially decreasing effect of the convolutional layers, pooling may be applied.
This type of layer “provide[s] invariance to small translations of the input”
[15]. Which may be regarded as a consequence of applying an infinitely
strong prior on the function constituted by the layer, to achieve translational
invariance [19]. Moreover, the number of parameters is lessened and over
fitting is counteracted. This layer, in contrast to a convolution layer, does not
require any learning. Instead it is obtained by applying a predefined function,
and thence locally aggregate the data [15]. One usual pooling function is
max-pooling. In this type of pooling the input is commonly divided into
disjoint subsets, then the max of each subset is propagated further to the
next layer.

Input I

Pooled layer

Figure 3.9: Visualization of a max-pooling layer, each pixel in I is divided into sub-
sets, from which the maximum entity is propagated to the next layer. The varying
colors in the inputs indicates the division into subsets, and the arrow demonstrates
the propagation for the first patch.

In Figure 3.9 one can see max-pooling, where the input is divided into disjoint
patches indicated by the colors. One entity in each such patch is propagated
to the next layer, namely the maximum entity in each subset. This entails
that the most salient features in each local part of the image is extracted

23

and preserved between layers. There are other types of non-linearities than
the max-operation that may be applied in pooling layers, such as average
pooling, where an average over each subset is propagated instead of the max.
Nonetheless, max-pooling is found to be superior to average pooling in a
variety of settings [6].

3.2.4 Dropout layer

When training neural networks the expressive strength of the method may
entail that intricate relationships are learned from the training data. How-
ever, these may not be present in other data, and as a result the network will
not generalize properly and perform well with unseen data. This impediment
in machine learning is as previously mentioned known as overfitting. In or-
der to counteract this problem the network can be regularized in a range of
manners, one method that is presented in [21] is the dropout neural network.
In this type of network one samples a thinned version of the original network
for each training input and then train on each such specific architecture.
Hence, for a network with n units or vertices, there are 2n unique thinned
versions of the network, over which the weights are shared [53]. This dropout
network is formed by setting

rlj ∼ Bernoulli(p), 0 ≤ p ≤ 1 and rlj ∈ {0, 1},
ãl = rl � al,

zl+1 = wl+1
j ãl + bl+1

j .

Consequently, parts of the network is rendered inactive by rlj = 0, subse-
quently the thinned architecture is formed. In Figure 3.10 a thinned version
of the network in Figure 3.2 can be seen.

Input

Layer 1 Layer 2 Layer 3
Output

Figure 3.10: A dropout neural network, i.e. a thinned version of a fully con-
nected FNN with three hidden layers. The white vertices are dropped out from the
network.

Even though there are exponentially many thinned versions of the network,
the number of utilized thinned networks in training will correspond to m · e,
where e is the number of epochs and m corresponds to dimension of the

24

training set [59]. In a CNN the parameter sharing and sparse interactions
make the network less inclined to over fit [59]. Nonetheless it is shown in [53]
that dropout convolutional neural networks can outperform ordinary CNNs,
hence such networks can also benefit from further regularization.

In contrast to a fully dropout neural network, one can incorporate dropout
in some chosen layers of a network. These dropout layers will regularize the
architecture in an analogous manner. Here one commonly places a separate
layer which propagates an input with probability p and a trivial output “0”
with probability (1−p). Moreover the expected value of the input is usually
preserved, by re-scaling the propagated inputs by the inverse propagation
probability.

3.2.5 General structure of a CNN

A convolutional neural network is generally comprised of a variety of com-
ponents, parametric as well as non parametric. In addition to the purely
convolutional layers the previously discussed: (i) activation layers, (ii) pool-
ing layers as well as (iii) dropout layers are commonplace. Conventionally,
the convolution layer is followed by an activation layer such as a ReLU.
Thence pooling is usually applied [19], s.t. the most prominent features of
the map is extracted. If the network has dropout regularization this layer
usually follows the pooling. In Figure 3.11 an example of this architecture
can be seen.

input image
l = 0

convolutional layer
& ReLU activation l = 1

maxpooling layer
l = 2

dropout layer
l = 3

Figure 3.11: A visualization of the common architecture of layers in a CNN. Here
the number of feature maps in the convolution corresponds to 6.

Furthermore, the network might also contain fully connected layers. Nonethe-
less, these entail such an extensive amount of parameters, such that in order
to make it computationally feasible, these layers are usually applied on an
input of quite reduced dimension, entailing that they are applied after e.g.
the convolution operation or max pooling have spatially reduced I.

25

3.2.6 Transpose convolution

According to [52], the deconvolutional network, and its inherent transpose
convolutional layer, was first proposed in [60]. Since then the layer has been
applied in a variety of applications, such as semantic segmentation [34], and
generative modeling [50]. The transpose convolution solves the problem of
going in the opposite direction of an ordinary convolution, i.e. the output
of the layer is the input to the traditional layer. This is accomplished “while
maintaining a connectivity pattern that is compatible with said convolution”
[15]. This operation reconstructs the shape of the input to a convolutional
layer, consequently it does not act as the inverse to the convolutional operand
[15]; it could however retain the input. In Figure 3.12 a convolution can be
seen, and in Figure 3.13 a visualization of a transpose convolution to said
convolution can be seen.

Figure 3.12: A convolution between an input I ∈ R4×4, and a kernel K ∈ R3×3

yielding with a one-stride convolution, the gray 2× 2 feature map. The generation
of the second element in the feature map is seen in the visualization.

padded input Ĩ

feature map

Figure 3.13: Visualization of transpose convolution. The original convolution is
seen in Figure 3.12, the gray 2 × 2 feature map generated is visible in the center
of the padded input Ĩ here. The transpose convolution is then applied on a P = 2
zero padded input Ĩ, with a kernel K ∈ R3×3 and unit stride. This produces a
feature map of the same dimension as I.

To up-sample, i.e. enlarge a feature map, one may use various interpola-
tion methods or transpose convolution. Since the transpose convolution has
learnable parameters one attains an up-sampling modulated to the task by
using this method.

26

Chapter 4

Autoencoders

4.1 Introduction to Autoencoders

An Autoencoder (AE) is essentially a type of neural network that consists of
two parts: an encoder and a decoder. The objective of the AE is to encode
a set of data x in a representation referred to as code z, and then be able to
use this representation to reconstruct the data, thence attaining x̃. Hence,
the autoencoder will map x 7→ x̃ through the encoder f(x) → z and the
decoder g(z)→ x̃. In Figure 4.1 a simple visualization of the architecture of
an AE can be seen.

x

z

f

x̃

g

Figure 4.1: A visualization of an AE. The encoder receives data x and creates
the representation z through f(x). The decoder then creates a reconstruction x̃
through g(z).

Dimensionality reduction as well as feature learning are two applications
where the AE is conventionally used [19]. The essential AE task, of copying
the input to the output might appear odd, however one is usually not that
interested in the decoder output, x̃. The entity of focus is rather the code
z produced by the encoder; the objective being that the AE will capture
salient features of the data in the representation z [19]. This may occur as
a bi-product of being able to perform the copying task x 7→ x̃ well. The AE
framework is unsupervised since no keys yk are given. Moreover, the process
of learning for the AE can essentially be described as minimizing the loss
function,

L(x, g ◦ f(x)) = L(x, x̃).

27

Since the training objective is that the AE learns to copy the input x to the
output x̃, this loss function could e.g. be the MSE between these entities.
Considering that the AE is principally a type of FNN, they can be trained
with the techniques used to train standard FNNs, such as GD and BP [19].
Moreover, there are connections between the AE and classical representa-
tion learning techniques, namely Principal Component Analysis. If the AE
network is trained with the MSE criterion and is comprised of one linear
hidden layer with p units, the encoder will project the input onto the span of
the p first principal components of the data [7]. Non-linearity in the hidden
layer will however yield quite different characteristics, including an ability to
convey other aspects of the input distribution [20]. We can thence achieve
“a more powerful nonlinear generalization of PCA” [19]. Furthermore, more
abstract and deep representations can be rendered by stacking AEs, i.e. in-
terconnecting several autoencoders in a network structure [3].

The dimension of the entities included in the AE will render quite differ-
ent characteristics of the network. If the code z is of smaller dimension than
the data x, the AE is referred to as undercomplete. An undercomplete AE
can be successful in capturing key features of the data in its code, since the
network is forced to reconstruct the data by using a representation in a lower
dimension. A too large capacity of the AE can limit the usefulness of the
features learned, in the sense that the AE can perform the task x 7→ x̃ well,
but is unable to capture characterizing features from the data [19]. Fur-
thermore, if the dimension of the code is larger then that of the data we
have an overcomplete AE. In the overcomplete case we can also encounter
the problem of a code unable to reflect important features of the data, even
though the AE can excel in the copying task. These implications, connected
to the dimension, illuminates that one have to be considerate when design-
ing the architecture of any AE; in order to attain a network that functions
well according to its intended task. Consequently, the capacity and dimen-
sions must be modulated according to the characteristics of the data at hand.

There is a certain type of AE that, in addition to being able to perform
the copying task well, can handle the tradeoffs regarding capacity and di-
mension, called the Regularized Autoencoder. This AE is attained by altering
the loss function L such that the AE gains characteristics such as robustness
to noise and sparsity of representation [19]. To render a Sparse Autoencoder
the loss function has an additional penalty term Ω(z) which encourages spar-
sity of the code, hence the loss function for this type of regularized AE is
given by

L(x, g(z)) + Ω(z).

There are additional types of AEs, such as the denoising Autoencoder, the
contractive Autoencoder and the Variational Autoencoder (VAE) [19].

28

4.2 Variational Autoencoders

4.2.1 Deep learning interpretation

A VAE is essentially a stochastic generalization of the AE. Here the encoder
and decoder are instead comprised of stochastic mappings. The analogue
to the encoding function f(x) is an encoding distribution qφ(z | x), and
the analogue to the decoding function g(z) is a decoding distribution pθ(x |
z), where φ denotes the recognition model parameters and θ denotes the
generative model parameters [28]. A visualization of the structure of a VAE
can be seen in Figure 4.2.

x

z

qφ(z | x)

x̃

pθ(x | z)

Figure 4.2: A visualization of a variational autoencoder. The encoder receives data
x and creates the representation z through qφ(z | x). The decoder then creates a
reconstruction x̃ through pθ(x | z).

Imposing a prior on the code z will regularize the VAE, a typical choice of
such distribution is a multivariate isotropic Gaussian pθ(z) = N (0, I) [30].
Note that this particular prior has no parameters θ.

In a VAE the loss function LVAE used to train the neural network is com-
prised of the reconstruction error, given by the expected log-likelihood term,
as well as a regularization term imposed by the chosen prior [30]. Specifically
we have

LVAE = −Eqφ(z|x)

[
log

pθ(x | z)pθ(z)

qφ(z | x)

]
= −Eqφ(z|x) [log pθ(x | z)] +Eqφ(z|x) [log qφ(z | x)− log pθ(z)]

= −Eqφ(z|x)[log pθ(x | z)] +DKL(qφ(z | x) || pθ(z))

= Llogl + Lprior.

Where DKL denotes the Kullback-Leibler divergence [29], hence we have that
Lprior enforces the prior pθ(z) by penalizing divergence from this distribu-
tion. Effectively, this entails that the encoding distribution is encouraged to
follow the distributional encoding of the prior. Furthermore, the reconstruc-
tion term Llogl is actually the cross entropy between qφ(z | x) and pθ(x | z).

29

4.2.2 Probability model interpretation

One can also interpret the VAE as a certain type of probability model, on
which joint inference is applied, by “perform[ing] maximum likelihood (ML)
or maximum a posteriori (MAP) inference on the (global) parameters, and
variational inference (VI) on the latent variables” [28]. This inference pro-
cedure can be applicable in spite of intractable inherent distributions. The
probabilistic framework is characterized by two stochastic entities

X : Ωx → R,
Z : Ωz → R.

Where x ∈ Ωx is an N -dimensional observable random variable and z ∈ Ωz

its adherent J-dimensional latent correspondence. The joint distribution of
these variables corresponds to

pθ(x, z) = pθ(x | z)pθ(z),

where the prior is usually an isotropic centered Gaussian

pθ(z) = p(z) = N (0, I).

This framework provides a generative process,

Draw zk ∼ pθ(z),

Draw xk ∼ pθ(x | zk).

Hence draws from the prior characterizes the likelihood from which data can
be generated. We can represent the process by the graphical model seen in
Figure 4.3. This graph conveys the dependence structure in the probabilistic
model.

zk xk

θ

K

Figure 4.3: Directed graph visualizing the Autoencoder probabilistic model, where
θ are the generative model parameters, xk is the observed data and zk the latent
variable.

Consequently, a generative process is the foundation of the setting, where
the true parameter values as well as the latent variables are unknown [28].
Hence, ML or MAP inference regarding θ could be of interest. Furthermore,
approximate posterior inference: where the connection between the latent

30

z given data x, for a specific value of θ, may also be relevant concerning
e.g. data representation tasks [28]; in settings where the true posterior is
intractable. According to Bayes’ theorem the posterior pθ(z | x) is given by

pθ(z | x) =
pθ(x | z)pθ(z)

pθ(x)
.

Where the evidence pθ(x) can be attained by marginalization of the joint
distribution

pθ(x) =

∫
Ωz

pθ(x, z)dz =

∫
Ωz

pθ(x | z)pθ(z)dz.

However, evaluation of this integral is computationally expensive, and may
require exponential time [10]. Moreover, intractability for the posterior or
integrals inherent in inference procedures, could render the EM algorithm
as well as the mean-field Variational Bayes (VB) algorithm inapplicable in
this setting [28]. This illuminates the need for a more general inference
procedure, as the VAE which essentially is “ a stochastic variational inference
and learning algorithm that scales to large datasets and, under some mild
differentiability conditions, even works in the intractable case” [28]. Firstly,
the posterior ought to be approximated in order for this inference to be
computationally feasible in some cases. Let qφ(z | x) be such an estimate.
Here the parameters φ do not have to be derived by a closed form expectation,
and the density does not have to factorize, as supposed to the setting in
mean-filed VB [28]. A metric conveying the quality of this approximation is
the Kullback-Leibler divergence

DKL(qφ(z | x) || pθ(z | x)) = Eqφ [log qφ(z | x)− log pθ(x, z)] + log pθ(x),

which effectively reflects how congruent the estimate is with the true poste-
rior, i.e. it is “ a measure of the inefficiency of assuming that the distribution
is q when the true distribution is p” [49]. Consequently, we wish to find an
optimal qφ(z | x) such that the divergence is minimized i.e.

q̂φ(z | x) = arg min
φ

DKL(qφ(z | x) || pθ(z | x)).

Minimizing DKL exactly is however unfeasible in most cases, since the in-
tractable evidence is included. The tractable measure Evidence Lower Bound
(ELBO) is however analogous to DKL up to a specific constant; hence, to
minimize the Kullback-Leibler Divergence one can study this evidence in-
stead, which is the procedure in the VAE inference. Let us look at the
marginal likelihood pθ(x), we have that

log pθ(x) = log
∫

Ωz

pθ(x, z)dz = log
∫

Ωz

pθ(x, z)
qφ(z | x)

qφ(z | x)
dz

= log Eqφ

[
pθ(x, z)

qφ(z | x)

]
≥ Eqφ [log pθ(x, z)− log qφ(z | x)] .

31

Where Jensen’s inequality [24] has been been used in the last step. The RHS
of the inequality corresponds to the ELBO, which upon inspection is related
to the Kullback-Leibler divergence DKL according to

DKL(qφ(z | x) || pθ(z | x)) = −ELBO(φ) + log pθ(x).

Consequently, the constant in the relation between these entities is not de-
pendent on φ, thence we can disregard it and simply set

q̂φ(z | x) = arg max
φ

ELBO(φ) = arg max
φ

Eqφ [log pθ(x, z)− log qφ(z | x)] .

Thus, the recognition model parameters, or variational parameters φ are
simultaneously optimized with the recognition model parameters θ in the
quest of maximizing this lower bound [28]. Where an encoder can be trained
to parameterize the posterior, i.e. take data as input and yield optimal pa-
rameter estimates φ. Thence, a decoder can parameterize the likelihood and
yield data parameters θ. Moreover, in the VAE framework each data point
has its own unique latent correspondence. As a result, one can decompose
ELBO(φ) such that it is comprised of a sum over the data set, i.e.

ELBO(φ) =

K∑
k=1

ELBOk(φ) = Eqφ [log pθ(xk, z)− log qφ(z | xk)] .

Furthermore, note that the ELBO can be written according to

ELBO(φ) = Eqφ [log pθ(x, z)− log qφ(z | x)]

= Eqφ [log pθ(x | z)pθ(z)− log qφ(z | x)]

= Eqφ [log pθ(x | z)]−Eqφ [log qφ(z | x)− log pθ(z)]

= Eqφ [log pθ(x | z)]−DKL(qφ(z | x) || pθ(z))

= − LVAE

Hence, by studying the VAE from a probabilistic perspective we have found
that the objective function for inference of an optimal posterior or maximiza-
tion of the ELBO in a latent variable model, is analogous to the negative of
the loss function, LVAE, used when training the VAE network.

4.2.3 VAE in a strictly Gaussian case

Now, suppose the stochastic entities all follow a Gaussian distribution, ac-
cording to

p(z) = N (0, I), (4.1)

pθ(x | z) = N (µ(z),σ2(z)I), (4.2)

qφ(z | x) = N (µ(x),σ2(x)I). (4.3)

32

In Figure 4.4 the network and its adherent parameters, for this Gaussian
case, can be seen in a schematic graph.

x

Input

Encoder

µ(x)

σ(x)

z

Code

Decoder

µ(z)

σ(z)

x̃

Output

Figure 4.4: Visualization of the architecture of a Gaussian VAE.

The loss function for a VAE with these distributions corresponds to

LVAE =−Eqφ [log pθ(x | z)] +DKL(qφ(z | x) || p(z))

=−Eqφ [logN (µ(z),σ(z)2I)] +DKL(N (µ(x),σ(x)2I) || N (0, I)).

Suppose that z ∈ RJ and let k denote the data point at which evaluation
occurs, in [28] it is shown that the Kullback-Leibler divergence for these
Gaussians reduces to

DKL
(
qφ
(
z | x(k)

)
|| p(z)

)
= DKL(N

(
µ(x(k)

)
,σ2

(
x(k)

)
I) || N (0, I))

=− 1

2

J∑
j=1

(
1 + 2 log

(
σ

(k)
j

)
−
(
µ

(k)
j

)2 − (σ(k)
j

)2)
.

Reparameterization trick

Moreover, one can sample from the posterior qφ(z | x) with a reparameteri-
zation trick, by a “ differentiable transformation [...] of an (auxiliary) noise
variable ε” [28], i.e.

z(k) ∼ qφ
(
z | x(k)

)
according to

z(k,u) = µ
(
x(k)

)
+ σ

(
x(k)

)
� ε(u), where ε(u) ∼ N (0, I).

and u ∈ {1, U} conveys the number of samples drawn [28]. Monte Carlo
integration can subsequently be used to estimate the expected value in LVAE
since by the LNN we have that

1

U

U∑
u=1

f
(
z(u)

) a.s.−−→ E[f(Z)] as U →∞.

Consequently, the cross entropy of the posterior and the likelihood can be
estimated according to,

Eqφ(z|x)

[
log pθ

(
x(k) | z(k)

)]
≈ 1

U

U∑
u=1

log pθ
(
x(k) | z(k,u)

)
,

33

for large enough U . If we now consider that the likelihood is Gaussian as
defined in (4.2), the above expectation can be decomposed according to,

Eqφ(z|x)

[
logN (µ(z),σ2(z)I)

]
≈ 1

U

U∑
u=1

logN (µ
(
z(u)

)
,σ2

(
z(u)

)
I)

∝ 1

U

U∑
u=1

−1

2

(
log

N∏
n=1

(
σn(z(u))

)2
+

1

σ(z(u))2

(
x− µ

(
z(u)

))T(
x− µ

(
z(u)

)))
.

Where, temporarily the notation 1
σ(z(u))2

=
(
σ(z(u))2I

)−1 is applied.

Fixed variance Variational Autoencoders

To simplify inference and reduce the number of parameters to infer in the
framework, fixed variance VAEs are commonplace. Here it is assumed that
σ(z)2 = σ2 and σ2

n = σ2, hence the variance is assumed equal ∀ n ∈ {1, N}
and predefined as supposed to inferred by the generative network [14]. In
addition to reduction of sought parameters this renders a more simplistic
form of reconstruction loss, since

Eqφ

[
logN (µ(z), σ2I)

]
∝ − 1

U

U∑
u=1

1

2

(
1

σ2
(x− µ(z))T(x− µ(z))

)
when the variance is known. As such it will not influence the maximization
of the expected value, more than as a simple scaling factor. In Figure 4.5 a
fixed variance VAE can be seen in a schematic graph.

x

Input

Encoder

µ(x)

σ(x)

z

Code

Decoder µ(z) x̃

Output

Figure 4.5: Visualization of the architecture of a VAE with fixed variance.

4.3 Reconstruction with decoder network

Samples z from the latent variables can be mapped to the observation space
Ωx by the decoder, entailing that new data is artificially generated. Suppos-
ing the likelihood is given by (4.2) new data can be rendered by

x̃ = µ(z) + ξ(z),

34

where ξ(z) ∼ N (0,σ(z)2I) or ξ(z) ∼ N (0, σ2I). Nonetheless, in the recon-
struction from the decoder, ξ(z) and its adherent variance is rarely used [14].
This is because the addition of noise in the outer layer of the decoder simply
adds white noise to the reconstruction [14]. Thence, artificially generated
data is often comprised of a deterministic mapping of the latent z according
to

x̃ = µ(z).

In Figure 4.5 a schematic graph of this reconstruction in the VAE framework
can be seen.

4.4 Learned manifold

To investigate how the latent space Ωz relates to the image space Ωx one
can study the learned data manifold. This “manifold is a connected region
[consisting of] a set of points associated with a neighborhood around each
point” [19]. Moreover, there is a resemblance to a Euclidean space in a lo-
cal neighborhood of each point on the manifold. In machine learning one
conventionally refers to a manifold as a “connected set of points that can be
approximated well by considering only a small number of degrees of freedom,
or dimensions, embedded in a higher-dimensional space” [19]. In the VAE
application, the low-dimensional latent space Ωz will be related to the high
dimensional Ωx image space, which can be characterized in terms of a mani-
fold. By moving in the latent space and finding the equivalence in the image
space one can get a grip of what latent representation the VAE has rendered.

One method of finding the subspace of Ωz that gives rise to non trivial de-
coded representations is to use the Cumulative Distribution Function (CDF),
Fz of the prior

Fz(y) = P(Z ≤ y) =

∫
z∈Ωz|z≤y

P (z)dz.

This function fulfills 0 ≤ Fz ≤ 1, and reflects the distribution of probability
in Ωz. In Figure 4.6 the CDF of a standard one dimensional Gaussian can
be seen.

35

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

z

cd
f(
z
)

Figure 4.6: CDF of N (0, 1).

In the Figure it is evident that the majority of the probability mass is situ-
ated in |z| ≤ 2.

Hence, to find the subspace in the Ωz where probability mass of the prior is
situated one can use the inverse of the CDF: F−1

z . More specifically, if we
consider a latent space Ωz ⊂ R2 we can form an equidistant grid on the unit
square {(c1, c2) : 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1} ; map each coordinate {(i, j)}
on the grid by the inverse CDF to its equivalent z-position. Then a grid of
latent variables has been formed, over a subset of Ωz which holds probability
mass. Subsequently, one may decode each

{
z

(i,j)
1 , z

(i,j)
2

}
on the latent grid,

and study how the latent space relates to the image space.

4.5 Evaluation of encoder

One method of evaluating the performance of the encoder (4.3) is to see how
well this density estimates the prior distribution. This is since

p(z) =

∫
Ωx

p(x, z)dx =

∫
Ωx

pθ(z | x)p(x)dx = Ep(x)[pθ(z | x)],

which can subsequently be estimated via Monte Carlo integration together
with the encoder distribution according to

Ep(x)[pθ(z | x)] ≈ 1

K

K∑
k=1

pθ(z | xk) ≈
1

K

K∑
k=1

qφ(z | xk) = p̃(z).

Hence, if the chosen estimate qφ(z | x) of the posterior distribution pθ(z | x)
is sufficient, and {xk}Kk=1 is diverse and extensive enough; one expects the

36

MC estimate p̃(z) of the prior to be approximately distributed according to
p(z), entailing that

p̃(z)
d.−−→ p(z).

4.5.1 Gaussian encoder

For an encoder distribution

qφ(z | xk) = N
(
µ(xk),σ

2(xk)I
)
,

the estimation of the prior consequently fulfills

p̃(z) =
1

K

K∑
k=1

qφ(z | xk) =

K∑
k=1

πk N
(
µ(xk),σ

2(xk)I
)
,

where πk =
1

K
hence

K∑
k=1

πk = 1.

As a result p̃(z) is a mixture of Gaussians where the mixing coefficients πk
are uniformly distributed over each Gaussian yielding the distribution.

4.5.2 Data augmentation by approximate prior

Let us now suppose that the data D = {xk}Kk=1 is not sufficient for the
approximation of the prior. One way of counteracting this is to use data
augmentation, which essentially entails that D is extended with additional
data in some manner. In this instance one may use the estimation of the
prior to this end. Namely, one can sample {z̃a}Aa=1 from p̃(z) and push those
samples through the decoder, rendering {x̃a}Aa=1. Subsequently, D can be
extended with {x̃a}Aa=1, and the network can approximate the prior by the
encoder once more. This can then be repeated in an iterative fashion and
the behaviour of the approximate prior can be studied. In Algorithm 2 it
is demonstrated how one samples from a mixture of Gaussians, i.e. the ap-
proximate prior for a Gaussian encoder.

Result: Sampling from a mixture of Gaussians
Sample A indices Ia from categorical distribution yielding
{1, . . . ,K} according to {πk}Kk=1

for a = 1 : A do
draw z̃a ∼ N

(
µ(xIa),σ2(xIa)I

)
end

Algorithm 2: Sampling for data augmentation.

37

4.6 Feature extraction

The latent representation z of the data x will, as previously elaborated on,
hopefully capture prominent features. Subsequently, one may compare the
potentially high dimensional x in the latent space Ωz using various proba-
bilistic distance metrics. One potential measure is the previously mentioned
Kullback-Leibler divergence. Suppose one wants to compare the similarity
of x1 and x2, this can be quantified by

DKL(pθ1(z | x1) || pθ2(z | x2)) = Epθ1 [log pθ1(z | x1)− log pθ2(z | x2)]

=

∫
Ωz

[log pθ1(z | x1)− log pθ2(z | x2)]pθ1(z1 | x1)dz.

Let us now consider the approximate posterior, where

qi = qφi(z | xi) = N (µ(xi),Σ(xi)) for i ∈ {1, 2}

and where we hereby denote µ(xi) = µi and Σ(xi) = Σi. Then the following
holds

log qi = log

[
1

(2π)
J
2 |Σi|

1
2

exp
(
− 1

2
(z − µi)TΣ−1

i (z − µi)
)]

= − log(2π)
J
2 |Σi|

1
2 − 1

2
(z − µi)TΣ−1

i (z − µi).

As a consequence, the first factor, Glog = log q1 − log q2, in the Kullback-
Leibler integral can be reduced to

Glog =
1

2

[
log
|Σ2|
|Σ1|

+ (z − µ2)TΣ−1
2 (z − µ2)− (z − µ1)TΣ−1

1 (z − µ1)

]
.

If we now consider the separate terms in Glog∫
Ωz

log
|Σ2|
|Σ1|

q1dz = log
|Σ2|
|Σ1|

∫
Ωz

q1dz = log
|Σ2|
|Σ1|∫

Ωz

(z − µi)TΣ−1
i (z − µi)q1 = Eq1

[
(z − µi)TΣ−1

i (z − µi)
]
.

Using proprieties from [47] one can express the expected value according to

Eq1

[
(z − µi)TΣ−1

i (z − µi)
]

= (µ1 − µi)TΣ−1
i (µ1 − µi) + Tr(Σ−1

i Σ1),

hence

DKL(q1 || q2) =
1

2

[
log
|Σ2|
|Σ1|

− J + (µ1 − µ2)TΣ−1
2 (µ1 − µ2) + Tr(Σ−1

2 Σ1)

]
Since Tr(Σ−1

1 Σ1) = Tr(IJ) = J , where IJ denotes a J-dimensional identity
matrix. The above expression can subsequently be applied as a similarity
metric for data x in the lower dimensional z, by parameterizing the approx-
imate posterior using the encoder network.

38

Chapter 5

Data

The data constituting the basis for the experiments in this thesis is given
by The Cancer Imaging Archive [5]. It is yielded by a “randomized phase
III Trial of Radiation Therapy and Chemotherapy for stage III and IV Head
and Neck carcinomas” [5]. Entailing that the patients have a head-neck can-
cer sprung from epithelial cells, i.e. cells lining outer or inner surfaces in the
head-neck area [35]. Both CT-scans and RT structure data will be of interest
hence these entities and adherent subjects will be discussed in this Chapter.

5.1 CT-scans

The X-ray is an electromagnetic wave [9], and when it passes through bi-
ological tissue different amounts of radiation will be absorbed according to
the characteristics of the impacted radiated matter. As a consequence, vary-
ing amounts of the rays are propagated through the tissue, all according to
this absorption. And by measuring the amount of radiation that is emitted
after piercing the tissue, i.e. the attenuation, one attains a radiograph. This
image will be a projection of the internal appearance of the radiated entity,
where organs and other structures are visible. The CT-scan is rendered by
using a set of X-ray measurements and it produces a cross-sectional image
of the scanned entity. This image is constructed by making use of X-rays
taken over a range of different angles, over the cross section in question.
One may render a number of such cross sectional scans along the same axis
and subsequently produce an image volume which conveys a 3-dimensional
view of the internal structure. This is of great use in a range of medical
practises and disciplines. Moreover, this rendered volume can be divided in
3-dimensional units refereed to as voxels. The intensity of each voxel in the
image volume can then be measured in Hounsfield units. This metric is a
relative scale with densities yielded by the CT-scan, in the sense that it is

39

given by a linear transformation of the attenuation coefficients attained when
scanning. Voxel-wise this unit is defined as the prevalent attenuation value
from the radiation, subtracted and then divided with the attenuation of dis-
tilled water, and lastly multiplied by the value 103 [25]. The span of the unit
differs depending on the body part. In the thorax the range is: (−800, 700),
which “is wider than in any other part of the body” [45]. Different windows
of Hounsfield units will display matters with an attenuation answering to
that range, as a consequence the units chosen will display specific anatomi-
cal features. Furthermore, let CT data be denoted Dct. In Figure 5.1 chosen
slices of a Head-Neck CT-scan can be seen.

Figure 5.1: Slices of a CT scan for one patient from [5].

5.2 Structure data

The purpose of taking scans of a patient can be e.g. therapeutic or diagnostic.
These applications commonly require that organs and internal structures are
depicted in the patient image, such that their spatial location in the anatomy
is evident. This spatial structural information is called structural data, and
in radiation therapy several entities are of special interest for the treatment,

40

these constitute the RT Structure Set. Where more specifically, the “RT
Structure Set [...] defines a set of areas of significance in radiation therapy,
such as body contours, tumor volumes [...], OARs, and other ROI” [31]. Let
this structure data be denoted Drt.

5.3 Preprocessing

The CT data is given in DICOM format, which is shorthand of Digital Imag-
ing and Communication in Medicine [39]. This format and system of commu-
nication has become a standard in medicine [39] for handling, transmitting
and printing patient images and data 1. This image data is firstly trans-
formed to Hounsfield units, subsequently the data is caped into the unit
window of interest, in this case the entities ranging over biological tissue.

The RT data is given in the DICOM files along with the CT scan; where the
ROIs are depicted either manually by a specialist or with support of some
image processing tool. Prior to inference of the segmented data, each ROI
is given its own image volume, where an entity 6= 0 in a pixel indicates that
the area belongs to one of the segmented regions. The structures are treated
such that each pixel can belong exclusively to a ROI or to the complement
or those subsets. In Figure 5.2 the CT-slice of a patient’s torso, as well as
the contour of segmentation of the skin, can be seen.

Figure 5.2: Left: Slice of CT- scan of a torso. Right: Contour of segmentation of
the skin can be seen as a colored line.

1About DICOM in the DICOM Library

41

https://www.dicomlibrary.com/dicom/

42

Chapter 6

Implementation

6.1 Architecture of network

Let us now characterize the network structure designed for the VAE frame-
work. The purpose of the network is outlined in Chapter 4 and the data D,
is described in Chapter 5.1 and 5.2. The network will be a FFN comprised
mainly of convolutional layers, since the inputs are images of an extensive
size. The entire network consists of two connected structures: (i) the en-
coder network and (ii) the decoder network. As previously elaborated on,
the encoder will take an image I as input and yield a latent representation
z. Subsequently, z will be fed as an input to the decoder and the output will
be a reconstruction of I. Since the latent z is of lower dimension than I the
encoder network will successively reduce the spatial dimension of the input
and thence render its output. On the other hand the decoder network will
have to enlarge its input to attain the reconstruction of I. Entailing that the
encoder will be built by convolutional layers as well as pooling layers, whilst
the decoder network will have transpose convolutional layers. In Figure 6.1
a schematic graph of the encoder network can be seen.

Input

I

N convolutional layers

with f feature maps

& leaky ReLU g

half padding & St = 1

max pooling layer

& dropout layer

P = 2 & St = 2

Reduces the size to half of the inputs, repeat

block until certain dimension is attained.

FC layer

µ

FC layer

σ
Output

z

Figure 6.1: Encoder network consisting of two blocks: (i) convolutional block,
which reduces the spatial dimension of I. This block is repeated until a sought
dimension of its output is attained. (ii) Fully connected block, here the output of
the first block is fed through one FC layer, then it is separated into two FC-layers
to yield the parameters {µ, σ}.

43

In Figure 6.1 one can see that the encoder firstly convolves the input N
times, followed by max pooling and dropout. In this scheme the padding in
the convolution preserves the dimension and the max pooling reduces it to
half its input size; all according to the strides St, the pool size P and ker-
nel size K. To attain a dimension that is computationally sensible for fully
connected layers, this first block is repeated until the spatial dimension is
significantly reduced, e.g. suppose I ∈ R512×512 then 6 stacked such convo-
lutional blocks yield an output ∈ R8×8; which would yield a fully connected
layer with 8 · 8 = 64 input nodes. In addition to being computationally
feasible, this deep structure with repeated convolutions entails that more
abstract and meaningful features of the images can be captured.

The decoder network consists mainly of transpose convolutional layers. With
a certain stride St, kernel K and pooling, these layers will yield an enlarged
version of its input. To preserve as much as possible, from the latent z, the
decoder network starts with two fully connected layers, consequently each
pixel of the input to the first convolutional layer will inherently reflect the
characteristics of z. In Figure 6.2 a schematic graph of the decoder network
can be seen.

Input

z
FC-layer

leaky ReLU g

FC-layer
N transpose
convolution

f filters & ReLU g

dropout layer
transpose

convolution
f filters & ReLU g

half padding & St = 1 half padding & St = 2

Doubles the size of the inputs, repeat
block until half dimension of I is attained.

Output

Ĩ

transpose
convolution
Sigmoid g

half padding
& St = 2

Figure 6.2: Decoder network consisting of two blocks: (i) fully connected block,
here the output of the encoder is fed through two FC layers, then it is propagated.
(ii) The convolutional block, which enlarges the spatial dimension of I. This block
is repeated until a sought dimension of its output is attained. Lastly, a transpose
convolutional layer will yield the reconstruction Ĩ.

In Figure 6.2 it is evident that the decoder initiates with fully connected
layers, followed by transpose convolutional layers and dropout layers. Much
like the encoder network, this network has a convolutional block that is
repeated until a dimensional constraint is fulfilled. The number of filters
as well as the ReLU activation is equal for all layers in this block. When
half the dimension of the input I is attained the output is fed to the last
convolutional layer, this entity has one filter and a stride that doubles its
input, Ĩ is subsequently generated. The hereby described architecture is
applicable on D ∈ R2 and D ∈ R3, i.e. on individual slices of CT as well as
on a stack of slices.

44

6.1.1 RT-Structure data in the VAE framework

When the data also contains RT structure data, s.t. D = Dct ∪Drt, the net-
work structure is altered, firstly by adding channels C for Drt. Entailing that
one channel will contain the CT-data, and the remaining channels structure
data. Each ROI is given one channel and an additional channel comprised of
the complement to the ROIs is also included, implying that each pixel can
be either in one of the ROIs or in their complement. In reality this might
not be the case, since e.g. target could intertwine with organs, and there
might be volume elements where several ROIs are adjacent. Secondly, the
framework is altered by adding an entropy component to the loss function.
In Chapter 4.2 the loss function LVAE was characterized according to

LVAE = Llogl + Lprior,

where Llogl reflects the level of similarity attained between I and Ĩ for
D = Dct, and Lprior quantifies how well the posterior follows the distribution
of the prior. When this framework is extended to include structure data, the
level of similarity for CT-data and RT-structure data will be treated differ-
ently. Like before, the discrepancy of the CT-data will be measured as the
difference between two continuous gray scale values, whilst the deviance for
RT- structure data will be given by how well the network assigns each pixel
to the prevalent classes. Hence, the output of the channels with structure
data will be a ROI-wise probability distribution over the possible classes. In
the table below an example of this is given, where

∑4
r=1 pr = 1 and the pixel

is from the ROI: lung.

Considered ROI Target Lung External Complement
Input pixel (i, j) q1 = 0 q2 = 1 q3 = 0 q4 = 0
Output pixel (i, j) p1 p2 p3 p4

Ultimately, the network assigns high probability to p2 for pixel (i, j). To
make the RT-structure output from the network a valid probability distri-
bution a softmax function σ is applied; defined as,

σ : RR →

{
p ∈ RR | pr > 0,

R∑
r=1

pr = 1

}

where σ(zj) =
ezj∑R
r=1 e

zr
for j ∈ (1, . . . , R).

Subsequently, {pr}Rr=1 is attained. The similarity between input membership
between classes q and output p can be measured with cross entropy H, where

H(p, q) = −
R∑
r=1

pr log qr.

45

This entity will constitute the loss contribution from the RT-structure data
to the VAE framework. Entailing that

Lcre(Drt) = H(p, q) = −
R∑
r=1

pr log qr

and that the entire loss is given by

LVAE = Llogl(Dct) + Lprior(D) + Lcre(Drt).

Where Llogl(Dct), as before reflects the similarity between input and output
of the CT-data, Lprior(D) the divergence of the posterior from a standard
Gaussian and Lcre(Drt) the discussed entropy for the RT-structure data.

Furthermore, the decoder network will also be altered somewhat to cater
for ROI channels. This is done by dividing the network at some point in the
convolutional block, and thence having a number of separate network layers
for the CT-data and RT-structure data respectively.

6.1.2 Special considerations for 3-dimensional inputs

The 3-dimensional input D ∈ R3 is commonly of spatial extension {H×W×
D} = {512×512×100}. Hence, for ease in the implementation the dimension
can be altered by interpolation, such that H = W = D. This commonly en-
tails that the CT-stacks are interpolated in their respective depth direction.
Subsequently, the network acts on a symmetrical entity which simplifies the
handing of the data in the successive reduction or magnification of the di-
mension. This interpolation constitutes a form of upsampling, i.e. a manner
to increase the dimension of an entity.

6.2 Stochastic considerations

The probabilistic setting characterized in Section 4.2.3 will be applied in
the architecture of the VAE. Where all inherent distributions are spherical
Gaussians and where the VAE has fixed variance, entailing that the decoder
will reconstruct the network input in a deterministic fashion, according to
reasoning in Section 4.3.

46

6.3 Deep learning library and applied algorithms

The numerical implementation was constructed with TensorFlow 1.5.0, which
is an open source library developed by Google Brain “for high performance
numerical computation” 1. Where the Adam algorithm is applied to op-
timize the network parameters, this algorithm is similar to SGD, here the
learning rates are however adaptive. “The method computes individual adap-
tive learning rates for different parameters from estimates of first and second
moments of the gradients” [27]. Consequently, it is appropriate for large
scale problems [27].

1About TensorFlow

47

https://www.tensorflow.org/
https://www.tensorflow.org/

48

Chapter 7

Results

There are several results and metrics of interest for evaluation of the VAE
network’s performance. Firstly, one evident measure is visual inspection of
the input to the encoder versus reconstruction from the decoder network,
optimally these entities are alike. Secondly, one can look at the convergence
of training- and test error during training. Moreover, the samples from the
decoder can also be inspected, to see whether they have the anatomical
appearance of a CT-scan. One can also investigate how the latent space
Ωz relates to the image space Ωx in a range of manners. All these evalua-
tion methods can be applied for various latent dimensional spaces, varying
configuration of the network as well as different hyper parameter setups; ad-
ditionally, the specific data set used for inference is also a matter of choice.
Hence, results rendered from several aspects, data sets as well as setups will
be presented, to convey the effects on the result of all these factors.

7.1 CT-scans

7.1.1 2 dimensional case

Let us study the performance of the VAE for latent z ∈ R12. The network
architecture characterized in Section 6 is applied, with a dropout probability
of p = 0.7 for regularization and 24 filters in each convolutional layer. The
data is comprised of CT-slices from 40 patients, where two nearly situated
images in proximity of the heart have been chosen for each patient and the
(128, 128) pixels in the center are selected. The objective when choosing
this set and pixel size is to verify whether the framework can extract details
from these images and properly reconstruct them, since this is more evident
in small scale images. Larger structures will be examined later on. In Figure
7.1 the average of the loss function can be seen, as a function of the number
of epochs run, for this initial experiment.

49

2000 4000 6000 8000 10000
epoch

40

50

60

70

80

90

100

110

los
s

Average loss function during training

Figure 7.1: Investigation of loss elaborated on in Section 4.2.1, derived on training
images.

In Figure 7.1 it is evident that the error monotonically decreases as the
epochs increases, which constitutes a sought converging behaviour. In Figure
7.2 one can see a VAE training input and the network reconstruction, at each
of the points where the average loss is derived during training.

epoch 1000 epoch 3000 epoch 5000 epoch 7000 epoch 9000

epoch 2000 epoch 4000 epoch 6000 epoch 8000 epoch 10000

Figure 7.2: Training input and output of VAE network at certain epochs. The
upper figure for each epoch constitutes the network input and the lower figure is
the reconstruction from the network.

50

In Figure 7.2 it is evident that the VAE gradually increases its performance
as the epochs are run, as the input and reconstruction becomes more and
more alike. This is congruent with the decrease of loss apparent in Figure
7.1. To further study the behaviour of the VAE, a set of training images and
their respective reconstruction at the last epoch, is presented in Figure 7.3.

Figure 7.3: Training input to encoder in upper row, and their respective outputs
from the decoder in lower row. Taken at last epoch of training.

In Figure 7.3 the network’s ability to capture and reconstruct details can
be seen. The quality of these training reconstructions indicates that the
VAE has the ability to reconstruct medical images. Moreover, to investigate
the network’s ability to generalize to unseen data, following training on few
images, test images are also studied. These images are held out during
training, thence the performance on this data will indicate how well the
network fares with new CT-scans. In Figure 7.4 two test images and their
decoded reconstructions can be seen.

Figure 7.4: Test data, Left: patient 1, input to the left and output to the right.
Right: patient 2, input to the left and output to the right.

In Figure 7.4 It is apparent that the performance of the network is not as
good as on training data, since the output images are not as similar to the

51

input as with training data. This is however an expected result since some
level of overfitting can render a better performance on training, and on this
modest data set this will likely occur; even though measures to counteract
over fitting is taken. In 7.25 the trade off between training and test error is
conveyed.

If one considers the appearance of the anatomical CT-data, the images are
evidently quite varied, both in overall structure and in the inherent details.
This makes the learning and subsequent test reconstruction intricate. Hence,
to get a better sense of how well the network fares test-wise on data with an
overall structure that is known to the network, one additional test experi-
ment was carried out. This experiment consists of training on 40 CT-slices
and subsequently testing on 40 slices situated quite close to those trained
on, examples of this data can be seen in Figure 7.27. This experimental
construction will entail that the network has seen at least one image with
an overall structure prevailing in the test images. In Figure 7.5 the result of
the experiment can be seen, the network had 24 filters, a latent z ∈ R2 and
no dropout.

Figure 7.5: After 1000 epochs of training, the input to the network is situated
above the output for both rows of examples shown.

52

In 7.5 it can be seen that the network generalizes better, when early stopping
at 1000 epochs during training is applied and when the network has seen
something similar to the images tested. This illuminates some considerations
regarding training on VAEs and their ability to generalize. To compare the
test- with the training performance after 1000 epochs, a training input and
output after 1000 epochs of training can be seen in Figure 7.6.

Figure 7.6: After 1000 epochs of training, training input in upper row and output
in lower. The data and experimental setup is analogous to the setting described in
Section 7.1.1.

If one compares Figure 7.5 with 7.6 it is evident that the train versus test
performance appear to be similar, which indicates that special care must be
taken regarding representation in the training set, of the anatomy apparent
in the test set.

Let us now return to the experiment characterized in Section 7.1.1. To
verify how well the network can generate artificial data, samples were drawn
and these can be inspected in Figure 7.7.

Figure 7.7: Samples drawn from decoder.

53

In Figure 7.7 it is apparent that some samples are distorted yet they have
anatomical structures, since gross anatomy is clearly evident 1. This leads
us to conclude that the VAE-framework may be applied for generation of
artificial patient data, for applications such as augmentation in ML.

The relation between the latent space Ωz and the image space Ωx can be
investigated by drawing two samples {z1, z2} from the prior, and interpolate
between these points. Subsequently, the motion between these latent points
can be visualized in the image space, by decoding each such latent position.
In Figure 7.8 such a motion in the image space can be seen, where the un-
derlying connection between the images is the described interpolation in the
latent space.

Figure 7.8: Decoded latent points, interpolated in Ωz between the latent positions
yielding the outermost images.

One can also study how the patient images are related to the latent space,
by encoding two patient images {x1,x2}, thence attaining their latent rep-
resentations {z1, z2}. Then one can interpolate between these encoded rep-
resentations in the latent space, and decode these coordinates to see how
the latent grid and its image representation is altered between patients. In
Figure 7.9 the inputs {x1,x2} can be seen and in Figure 7.10 the decoded
interpolation is shown, where the outermost images correspond to {z1, z2}.

Figure 7.9: Two patient images, x1 and x2 respectively.

1comments regarding how realistic the samples are comes from consultation with a
radiologist

54

Figure 7.10: Decoded latent points, interpolated in Ωz between the latent positions
yielded by the outermost images.

In both Figure 7.8 and 7.10 a successive alteration in the decoded images
can be seen, this implies that the latent space has related specific anatomical
behaviours of x to certain subsets of Ωz. This constitutes sought behaviour
since this enables inference in the latent space, regarding x ∈ Ωx. To more
fully comprehend how the latent space relates to the patient images one can
visualize the learned manifold, which is elaborated on in Section 4.4. For a
z ∈ R2 and an architectural setup analogous to that of the experiment with
z ∈ R12, but with 2000 epochs, yielded the manifold seen in Figure 7.11.

Figure 7.11: Learned manifold, 2000 epochs, latent space Ωz ⊂ R2, 0.7 dropout
and 24 filters.

In the manifold above one can see how some anatomical features are related
to parts of the latent space. And yet again one can note how the represen-

55

tation is gradually altered as one moves in Ωz. The proximity of the various
anatomical structures seen in this manifold demonstrates how the VAE ap-
prehend these biological entities and how close they relate to one another.

To investigate how well the VAE can extract and reconstruct larger struc-
tures as well as the inherent details, one can study how the network fares for
images of dimension (256, 256) pixels. The data in the previous experiment
is chosen, but here with the enlarged (256, 256) pixel dimension. The net-
work setup is analogous to that in Section 7.1.1, but the dropout probability
is now set to p = 0.95. In Figure 7.12 examples of the test input and output
of the network can be seen. In the Figure it is apparent that the overall
structure of the anatomy is captured.

Figure 7.12: Test data, input in upper row and output from network in lower.

Now let us study the behaviour of the latent space for these larger struc-
tures. In Figure 7.13 interpolated points in latent space and their decoded
representations can be seen.

Figure 7.13: Decoded latent points, interpolated in Ωz between the latent positions
yielding the outermost images.

56

Like before one can see a gradual alteration of the decoded representation
in Figure 7.13. Now consider the ability to create new artificial data of this
larger dimension. In Figure 7.14 draws from the decoder can be seen.

Figure 7.14: Samples drawn from decoder.

In Figure 7.14 it can be seen that the anatomical structural behaviour is
quite realistic with body like gross anatomy rendered by the network.

Comparing the networks performance for the smaller I ∈ R(128,128) images
to those of I ∈ R(256,256) pixels, one can note that the test performance ap-
pear to have been somewhat heightened, which can be seen when comparing
Figure 7.4 to 7.12. The overall structure seems to have been better captured
in the larger dimension. One reason for this might be that the anatomi-
cal structure in the larger images is more coherent between patients than
in the smaller case, since the rib-cage and heart is apparent in all samples
x ∈ R(256×256), whilst various diverse parts of the heart region is prevalent
in the smaller x ∈ R(128×128) images. Much like the better test performance
attained in Figure 7.5 relative to 7.4, where the network had seen similar
structures prior to testing.

7.1.2 3 dimensional case

Let us now consider entire CT-images, i.e. stacks of individual CT-slices
which renders a 3-dimensional VAE setting. For this experiments 10 sub-
sequent slices in proximity of the heart and with extension (128, 128) pix-
els, are extracted from each of 40 patient images. Prior to inference these
stacks are interpolated in their depth directions, such that 10× (128, 128)→
128 × (128, 128). Thereafter, the VAE network is trained on the data and
the results can be seen in Figure 7.15.

57

(a) Patient 1. (b) Patient 2. (c) Patient 3.

Figure 7.15: Training input and output after 5000 epochs of training. Every 16:th
slice of the 128 available is shown. The left column for each patient constitutes the
input and right column the reconstructions for the image on the same row.

In Figure 7.15 it can be seen that the overall structure is captured in the
network output. Moreover the nuances and changes from input slice 1 to
slice 128 is also apparent in the 8 reconstructions for all patients. Indicating
that a VAE may be applicable on 3-dimensional medical image data. The
performance of a VAE in a 3-dimensional framework is comparable to that of
the 2-dimensional. The network reconstructions appear to have successfully
captured the anatomical structures, much like in the lower dimensional case.
The inherent details in the images is however not preserved in the same
detail, which is somewhat expected since fewer epochs of training was run
and the larger structure and increased dimension presents a tougher learning
problem.

58

7.2 CT scans and RT structure data

The framework is extended to include RT-structure data as well. The ar-
chitectural implications of this is elaborated on in Chapter 6.1.1. Moreover,
the basis for the subsequent experiment is data from 40 patients, where both
CT images Dct and RT-structure data Drt from ROI: skin and spinal cord,
(256, 256) pixels are included. The network is comprised of 24 filters, a 12
dimensional latent space, no dropout and a network separation in the de-
coder at size 32 × 32 in the convolutional block. In Figure 7.16 the results
during training for one ROI and the CT can be seen.

Figure 7.16: Training input and output of network after 4000 epochs. The top image
is the input CT-image and the one below the output. On the third row the complement
to the RT-structure data can be seen, and on the subsequent row its network output. On
the last two rows the input contour for skin and output can be seen, respectively.

59

In Figure 7.16 it is apparent that both input of CT and RT-structure data
has a close likeness to the network output. The segmentation of the spinal
cord was omitted since the results were that no ROI was identified by the
network. The reason for this is probably that this ROI has such a modest
amount of pixels in relation to skin or complement, which may render the
cross entropy loss negligible for this ROI compared to the others. One way to
remedy this can be to use weighted cross entropy, here the contributions to
the loss from different ROIs can be modulated. To investigate this further,
one more CT- and RT structure experiment was carried out. The network
setup is analogous to that of the previous experiment. Here CT-slice from
the head was extracted, along with the ROIs skin and brain stem. In Figure
7.17a the result with ordinary cross entropy can be seen and in Figure 7.17b
the result by applying weighted cross entropy is shown.

(a) Ordinary cross entropy loss. (b) Weighted cross entropy loss.

Figure 7.17: Training input and output of network. The top images constitutes the
input CT-image and the ones below the output. On the third row the complement to the
RT-structure data is seen, and on the following row its network output. The subsequent
two rows shows brain stem input and output. And on the last two rows the input contour
for skin and output can be seen.

60

In Figure 7.17 one can see that the small ROI brain stem is not identified
by the network when the cross entropy in not weighted. When the weights
are applied however, the network identifies that a ROI is somehow present
in the picture. The training was nonetheless less robust when the entropy
was weighted and hence diverged more often. Further experiments could be
carried out to investigate this matter, e.g. by looking at ROIs with slightly
more equal extension. The reason this is not performed here is that the data
set did not appear to have a moderately sized common ROI for all patients.

Moreover, these preliminary results demonstrates that the VAE may very
well be applicable on not only CT-data but also segmented data. This shows
promise towards VAE applications concerning RT structure data as well as
general segmentation.

7.3 Evaluation of encoder

The relationship between the prior distribution and the chosen approximate
posterior can be investigated by evaluation of the encoder, according to the
reasoning in Section 4.5. In Figure 7.18 p̃(z) for a Gaussian encoder and
z ∈ R2 can be seen. It is evident that the probability mass of p̃(z) is centered
around the origin, and it has the appearance of a mixture of Gaussians.
The variance of the density exceeds that of the true prior p(z) = N (0, I)
somewhat.

z1

6 4 2 0 2 4 6 z2
6 4 2 0 2 4 6

0.00
0.05
0.10
0.15
0.20

Estimated density of prior using encoder distribution

Figure 7.18: Estimated density of prior, derived after 5000 epochs for the 40
patients characterized in Section 7.1.1.

61

Let us now study the characteristics of p̃(z) when the data is augmented,
according to the reasoning in Section 4.5.2; this can be seen in Figure 7.19.
This augmentation was derived with {x̃a}10

a=1 every hundredth epoch, the
previous augmented data was exchanged with new draws every round. It is
evident that the data augmentation sharpens the probability-peaks and re-
inforces the disconnection between the separate clusters of probability mass.

z1

6
4

2
0

2
4

6

z2

6
4

2
0

2
4

6

0.0

0.2

0.4

0.6

0.8

Figure 7.19: Estimated density of prior using encoder distribution. Derived after
500 epochs for the 40 patients characterized in 7.1.1, with augmentation executed
every hundredth epoch.

The behaviour of the estimated prior can be a result of the few training
examples available, each of the patient images appear to be related to isolated
parts in the latent space, thence rendering one separate probability peak
each, apparent in Figure 7.18 and 7.19. The reason behind this could be that
each image has a quite specific characteristic appearance, that is isolated in
its own subset of Ωz. If the set was more extensive these subsets will probably
have more overlap, thence rendering a better estimate of the prior.

7.3.1 Data augmentation by approximate prior

Let us now study the characteristics of the encoder and decoder under aug-
mentation. The latent space is set to z ∈ R2 and 24 filters are prevalent in
the networks. After 10000 epochs of training the network demonstrates the
test behaviour seen in Figure 7.20

62

Figure 7.20: Test slice run after last epoch of training, input to the left and output
to the right.

In Figure 7.20 it is apparent that the details are not preserved but that the
overall structures are captured. Now consider the samples drawn from a
decoder trained with this augmented data, this can be seen in Figure 7.21.

Figure 7.21: Samples drawn from decoder trained with augmentation.

The samples seen in Figure 7.21 hold the structural appearance of anatomi-
cal data, the inherent details of such data is however not apparent.

Let us now study how the representation changes as one interpolates in
the latent space Ωz, and decode the points; this can be seen in Figure 7.22.
It is evident that the decoded representation gradually alters, and that the
structure of the samples demonstrates somewhat anatomical features.

63

Figure 7.22: Decoded latent points, interpolated in Ωz between the latent positions
yielding the outermost images.

To further examine how the augmentation effects the VAE performance one
can investigate the learned manifold resulting from this training. In Figure
7.23 this manifold can be seen; evidently there is a successive change as
one moves in Ωz, and in parts of the space the decoded latent positions
yields anatomically looking structures. There is however parts where the
representation is quite distorted and has a non-anatomical appearance.

Figure 7.23: Learned manifold over the latent space Ωz ⊂ R2 yielded with aug-
mentation.

64

The augmentation by the approximate prior did not appear to heighten
the performance of the VAE. The less detailed samples and reconstructions
may be an effect of the augmented samples missing these entities. Hence,
encoding of those features is not encouraged by those training examples.
Upon inspection of the manifold in Figure 7.23 one can see that parts of the
latent space has encoded structures that are non anatomical. A reason for
this may be the small amount of data available, rendering parts of the latent
space none-related to anatomical structures. Since the framework seems to
have mapped anatomical structures to a small local neighborhood around
each z point in the latent space, leaving parts of Ωz near unrelated to the
input. Subsequently, these subsets will yield a curious decoded appearance.

7.4 Investigation of loss

Now let us consider how different entities will influence the loss during train-
ing. One evident quantity of interest is the dimension of the latent space
z ∈ RJ . In Figure 7.24 this can be seen for 5000 epochs and varying J .

1000 2000 3000 4000 5000
epoch

50

75

100

125

150

175

200

los
s

Average loss function during training
2D
8D
12D
18D
24D
32D

Figure 7.24: Loss during training, for varying dimension of latent space, no
dropout and 24 filters, (128, 128) pixels.

In Figure 7.24 it is apparent that the dimension of the latent space does
not have a dramatic effect on the convergence of the loss. However the
low dimensional z ∈ R2 does seem to be somewhat superior to the other
dimensions in this specific regard. Moreover, one additional property of
interest is the train- versus test error, since this will indicate how well the
network can generalize on small data sets. In Figure 7.25 this loss comparison
can be seen.

65

0 200 400 600 800 1000
epoch

500

1000

1500

2000

2500

3000

lo
ss

test
train

Figure 7.25: Average loss during training, on both training set and test set. The
experiment is run on images from 40 patients, where 10 CT-slices are extracted
from each patient. This yields 400 images, 200 for test and 200 for training. A
dropout of 0.9, 32 filters, and (128, 128) pixels are applied.

The train- versus test loss in Figure 7.25 demonstrates that the test loss starts
to increase quite early during training, which may indicate that over fitting is
commenced, even though it is counteracted with dropout. The comparatively
small data set to train on may be the reason for this. Furthermore, let us
now consider how the entropy of the prior influences the loss during training.
In Figure 7.26 the loss for various prior variance, and hence also entropy, can
be seen.

1000 1500 2000 2500 3000 3500 4000 4500 5000
epoch

40

60

80

100

120

140

160

180

200

los
s

Average loss function during training for z 2

2
z

0.5
1
2

Figure 7.26: Loss during training, for varying prior variance, no dropout and 32
filters, (128, 128) pixels for the 40 patients described in 7.1.1.

In Figure 7.26 one can see that the variance and resulting entropy of the
prior effects the loss notably. For the variances σ2

z tested, a higher variance
leads to a lower loss.

66

7.5 Investigation of feature extraction

Let us consider the feature extracting ability of the VAE framework. The
basis of the subsequent experiment is 20 CT-slices chosen from each of the
CT-scans of 10 patients, where the first and third slices where extracted from
each patient. In Figure 7.27 examples of this data can be seen.

(a) Patient 1. (b) Patient 2. (c) Patient 3.

Figure 7.27: 2 slices of a CT-scan for 3 patients. The upper slice is the first one
in the image stack and the lower the third slice.

The network is trained on the first image from all 10 patients, thence the
resulting parameters {µ(x1i)),σ(x1i)}10

i=1 are rendered. Next, the 10 third
images in the slices are pushed through the encoder and the resulting param-
eters {µ(x3i)),σ(x3i)}10

i=1 are obtained. Ultimately, the distribution charac-
terized by {µ(x1i)),σ(x1i)} is similar to that of {µ(x3i)),σ(x3i)}. Since
this entails that the encoder maps similar images to similar distributions in
the latent space. One may measure how congruent the distributions are by
using Kullback-Leibler divergence, according to the reasoning in Section 4.6.
This toy experiment demonstrated that the images from the same patient
had an average divergence of D̄KL ≈ 1749 and that the images from differ-
ent patients rendered an average divergence of D̄KL ≈ 117854. Furthermore
nine out of ten patients had the lowest divergence between its own respective
images. A slightly larger experiment with 20 patients and hence 20 images
from each respective slice, demonstrated a divergence of D̄KL ≈ 10074 for
pictures from the same patient, versus D̄KL ≈ 225168 for pictures from dif-
ferent patients. This further supports the feature extracting ability of the
VAE.

67

68

Chapter 8

Discussion

8.1 Reflection upon results

Let us now discuss and reflect upon the attained results and the exhibited
behaviour of the VAE network. If one begins with beholding the ability of the
VAE to reconstruct an input consisting of medical images, it is evident that
the method is proficient and quite precise on training data; thus demonstrat-
ing that the method has the potential to capture the versatile and intricate
details of medical images. Moreover, by considering the feature extracting
ability of the VAE one can establish that the quality of the training recon-
structions indicates that the network indeed finds salient features of the data.
Since there is a distinct similarity between the reconstruction and the input,
the network must be successful in encoding the features that are prevalent in
the reconstruction. Furthermore, let us reflect upon the ability of using the
code for feature comparison between patients. The result of the performed
toy experiment demonstrates that the approximate posterior and resulting
code indeed seem to reflect likeness between patient data; since the closely
situated CT-slices from the same patient had a generally lower divergence
than other images. Additionally, inspection of the artificial patient data gen-
erated by the decoder, conveys that the samples indeed exhibit anatomical
characteristics. This shows promise toward the possibility of generating new
artificial patient data using the VAE framework.

The various test performances have conveyed the strength and flexibility of
the method, since few epochs of training yield a strong connection between
the latent space and specific inputs of data; yielding a superior training ver-
sus test performance. Hence, to attain a VAE that generalizes well, large
amounts of diverse data, additional regularization methods or augmentation
could be beneficial. And especially, one must make sure that the network has
seen examples of the anatomical structure in question, in order to perform
better during testing.

69

8.2 Future work

There is a plenitude of aspects of the VAE that could be considered and in-
vestigated in the future. Firstly one could consider other types of covariance
structures on both likelihood, prior and posterior, as supposed to the spher-
ical assumed throughout this work. Considering computational limitations
where inference of a full covariance matrix may be unfeasible, one could e.g.
have a covariance between pixels in proximity to each other in both encoder
and decoder, such that local structures and patters in the image are poten-
tially enhanced and better preserved. Moreover one could test other types
of more flexible distributions, in both encoder decoder and prior. Regarding
the posterior this would enable that the approximate inference becomes more
precise. Unlike flexibility in other senses in machine learning, the flexibility
of the approximate posterior can not yield overfitting but rather improve pre-
cision [10]. Moreover, application of a more dynamic prior can have a larger
importance than previously emphasized, it “ has been shown that a simple
prior over-regularizes the latent space leading to poor reconstructions” [4] in
work by Hoffman and Johnson [22]. Additionally, one may consider other in-
ference approaches in the VAE framework, than optimizing on approximate
distributions as in approximate inference. One could e.g. consider applying
Markov Chain Monte Carlo (MCMC) methods, i.e. methods that deduce
an exact limit distribution by constructing a Markov Chain with an ergodic
distribution p̃x that coincides with the true sought distribution px. I.e. one
constructs a stochastic process where dependence is only inherent between
xn and xn−1 and where p̃x(n)→ px as n→∞. And this inference procedure
could potentially replace e.g. the decoder network.

8.3 Conclusion

Reflection on the presented results leads me to conclude that the VAE may
very well be a new addition to the statistical tools applied in automation of
health care applications, since it demonstrates great promise in the various
aspects considered in this thesis. Future work can possibly strengthen these
hopes further.

70

Bibliography

[1] Lindsey M Appenzoller et al. “Predicting dose-volume histograms for
organs-at-risk in IMRT planning”. In: Medical physics 39.12 (2012),
pp. 7446–7461.

[2] Yoshua Bengio et al. “Learning deep architectures for AI”. In: Founda-
tions and trends R© in Machine Learning 2.1 (2009), pp. 1–127.

[3] Yoshua Bengio, Guillaume Alain, and Salah Rifai. “Implicit density
estimation by local moment matching to sample from auto-encoders”.
In: arXiv preprint arXiv:1207.0057 (2012).

[4] Erik Bodin et al. “Nonparametric Inference for Auto-Encoding Varia-
tional Bayes”. In: arXiv preprint arXiv:1712.06536 (2017).

[5] Walter R Bosch et al. Data From Head-Neck Cetuximab. http://http:
//doi.org/10.7937/K9/TCIA.2015.7AKGJUPZ.com. The Cancer
Imaging Archive, 2015.

[6] Y-Lan Boureau et al. “Learning mid-level features for recognition”.
In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on. IEEE. 2010, pp. 2559–2566.

[7] Hervé Bourlard and Yves Kamp. “Auto-association by multilayer per-
ceptrons and singular value decomposition”. In: Biological cybernetics
59.4-5 (1988), pp. 291–294.

[8] Freddie Bray et al. “Global cancer transitions according to the Human
Development Index (2008–2030): a population-based study”. In: The
lancet oncology 13.8 (2012), pp. 790–801.

[9] Quinn B Carroll. Radiography in the digital age. Charles C Thomas,
2011.

[10] M Bishop Christopher. Pattern Recognition and Machine Learning.
Springer-Verlag New York, 2016.

[11] Chris A Cocosco, Alex P Zijdenbos, and Alan C Evans. “A fully auto-
matic and robust brain MRI tissue classification method”. In: Medical
image analysis 7.4 (2003), pp. 513–527.

[12] Geoff Delaney et al. “The role of radiotherapy in cancer treatment”.
In: Cancer 104.6 (2005), pp. 1129–1137.

71

http://http://doi.org/10.7937/K9/TCIA.2015.7AKGJUPZ.com
http://http://doi.org/10.7937/K9/TCIA.2015.7AKGJUPZ.com

[13] Li Deng, Dong Yu, et al. “Deep learning: methods and applications”. In:
Foundations and Trends R© in Signal Processing 7.3–4 (2014), pp. 197–
387.

[14] Garoe Dorta et al. “Structured Uncertainty Prediction Networks”. In:
arXiv preprint arXiv:1802.07079 (2018).

[15] Vincent Dumoulin and Francesco Visin. “A guide to convolution arith-
metic for deep learning”. In: arXiv preprint arXiv:1603.07285 (2016).

[16] Andries P. Engelbrecht. Computational intelligence : an introduction.
John Wiely Sons, Ltd, 2007.

[17] Jacques Ferlay et al. “Cancer incidence and mortality worldwide: sources,
methods and major patterns in GLOBOCAN 2012”. In: International
journal of cancer 136.5 (2015).

[18] Serena Gianfaldoni et al. “An Overview on Radiotherapy: From Its
History to Its Current Applications in Dermatology”. In: Open access
Macedonian journal of medical sciences 5.4 (2017), p. 521.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[20] Nathalie Japkowicz Stephen Jos ée Hanson and Mark A Gluck. “Non-
linear autoassociation is not equivalent to pca”. In: ().

[21] Geoffrey E Hinton et al. “Improving neural networks by preventing co-
adaptation of feature detectors”. In: arXiv preprint arXiv:1207.0580
(2012).

[22] Matthew D Hoffman and Matthew J Johnson. “Elbo surgery: yet an-
other way to carve up the variational evidence lower bound”. In: Work-
shop in Advances in Approximate Bayesian Inference, NIPS. 2016.

[23] Gareth James et al. An introduction to statistical learning. Vol. 112.
Springer, 2013.

[24] Johan Ludwig William Valdemar Jensen. “Sur les fonctions convexes
et les inégalités entre les valeurs moyennes”. In: Acta mathematica 30.1
(1906), pp. 175–193.

[25] Shervin Kamalian, Michael H Lev, and Rajiv Gupta. “Computed to-
mography imaging and angiography–principles”. In: Handbook of clin-
ical neurology. Vol. 135. Elsevier, 2016, pp. 3–20.

[26] Ada Rajneet Kaur. “Feature extraction and principal component anal-
ysis for lung cancer detection in CT scan images”. In: International
Journal of Advanced Research in Computer Science and Software En-
gineering 3.3 (2013).

[27] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

72

http://www.deeplearningbook.org

[28] Diederik P Kingma and MaxWelling. “Auto-encoding variational bayes”.
In: arXiv preprint arXiv:1312.6114 (2013).

[29] Solomon Kullback and Richard A Leibler. “On information and suffi-
ciency”. In: The annals of mathematical statistics 22.1 (1951), pp. 79–
86.

[30] Anders Boesen Lindbo Larsen et al. “Autoencoding beyond pixels us-
ing a learned similarity metric”. In: arXiv preprint arXiv:1512.09300
(2015).

[31] Maria YY Law and Brent Liu. “DICOM-RT and its utilization in ra-
diation therapy”. In: Radiographics 29.3 (2009), pp. 655–667.

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”.
In: nature 521.7553 (2015), p. 436.

[33] Thomas Leung and Jitendra Malik. “Representing and recognizing the
visual appearance of materials using three-dimensional textons”. In:
International journal of computer vision 43.1 (2001), pp. 29–44.

[34] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convo-
lutional networks for semantic segmentation”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015,
pp. 3431–3440.

[35] David Lowe.General Pathology Vivas. Greenwich Medical Media, 2001.

[36] James Manyika et al. “Big data: The next frontier for innovation, com-
petition, and productivity”. In: (2011).

[37] Chris McIntosh and Thomas G Purdie. “Voxel-based dose prediction
with multi-patient atlas selection for automated radiotherapy treat-
ment planning”. In: Physics in Medicine & Biology 62.2 (2016), p. 415.

[38] Chris McIntosh et al. “Fully automated treatment planning for head
and neck radiotherapy using a voxel-based dose prediction and dose
mimicking method”. In: Physics in Medicine & Biology 62.15 (2017),
p. 5926.

[39] Peter Mildenberger, Marco Eichelberg, and Eric Martin. “Introduction
to the DICOM standard”. In: European radiology 12.4 (2002), pp. 920–
927.

[40] Kevin P. Murphy. Machine Learning, A probabilistic Perspective. The
MIT press, 2012.

[41] Benjamin E Nelms et al. “Variation in external beam treatment plan
quality: an inter-institutional study of planners and planning systems”.
In: Practical radiation oncology 2.4 (2012), pp. 296–305.

[42] Dan Nguyen et al. “Dose Prediction with U-net: A Feasibility Study for
Predicting Dose Distributions from Contours using Deep Learning on
Prostate IMRT Patients”. In: arXiv preprint arXiv:1709.09233 (2017).

73

[43] Hanne Melgaard Nielsen et al. “Audit of the radiotherapy in the DBCG
82 b&c trials - A validation study of the 1538 patients randomised
to postmastectomy radiotherapy”. In: Radiotherapy and oncology 76.3
(2005), pp. 285–292.

[44] Michael A. Nielsen. Neural Networks and Deep Learning. http://
neuralnetworksanddeeplearning.com/. Determination Press, 2015.

[45] Simon PG Padley and David M Hansell. “Imaging techniques”. In:
Clinical Respiratory Medicine (Fourth Edition). Elsevier, 2012, pp. 63–
121.

[46] Nikhil R Pal and Sankar K Pal. “A review on image segmentation
techniques”. In: Pattern recognition 26.9 (1993), pp. 1277–1294.

[47] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. “The matrix
cookbook”. In: Technical University of Denmark 7.15 (2008), p. 510.

[48] Kilian M Pohl et al. “Anatomical guided segmentation with non-stationary
tissue class distributions in an expectation-maximization framework”.
In: Biomedical Imaging: Nano to Macro, 2004. IEEE International
Symposium on. IEEE. 2004, pp. 81–84.

[49] Pantelimon G Popescu et al. “Bounds for Kullback-Leibler divergence”.
In: Electronic Journal of Differential Equations 2016 (2016).

[50] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised repre-
sentation learning with deep convolutional generative adversarial net-
works”. In: arXiv preprint arXiv:1511.06434 (2015).

[51] WK Röntgen. “Über eine neue Art von Strahlen: vorläufige Mitteilung”.
In: Sitzungsber. Phys. Med. Gesell. (1895).

[52] Wenzhe Shi et al. “Is the deconvolution layer the same as a convolu-
tional layer?” In: arXiv preprint arXiv:1609.07009 (2016).

[53] Nitish Srivastava et al. “Dropout: A simple way to prevent neural net-
works from overfitting”. In: The Journal of Machine Learning Research
15.1 (2014), pp. 1929–1958.

[54] BWKP Stewart, Christopher PWild, et al. “World cancer report 2014”.
In: Health (2017).

[55] K Thulasiraman and MNS Swamy. “5.7 acyclic directed graphs”. In:
Graphs: Theory and Algorithms 118 (1992).

[56] Vladimir Naumovich Vapnik. “An overview of statistical learning the-
ory”. In: IEEE transactions on neural networks 10.5 (1999), pp. 988–
999.

[57] M Veness and S Richards. “Radiotherapy”. In: Dermatology 2 (2012),
pp. 2291–2301.

74

http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

[58] Binbin Wu et al. “Using overlap volume histogram and IMRT plan
data to guide and automate VMAT planning: a head-and-neck case
study”. In: Medical physics 40.2 (2013).

[59] Haibing Wu and Xiaodong Gu. “Towards dropout training for convo-
lutional neural networks”. In: Neural Networks 71 (2015), pp. 1–10.

[60] Matthew D Zeiler et al. “Deconvolutional networks”. In: Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on.
IEEE. 2010, pp. 2528–2535.

[61] Yefeng Zheng et al. “Deep Learning Based Automatic Segmentation of
Pathological Kidney in CT: Local Versus Global Image Context”. In:
Deep Learning and Convolutional Neural Networks for Medical Image
Computing. Springer, 2017, pp. 241–255.

[62] Xueyuan Zhou and Mikhail Belkin. “Semi-supervised learning”. In:
Academic Press Library in Signal Processing. Vol. 1. Elsevier, 2014,
pp. 1239–1269.

75

TRITA -SCI-GRU 2018:232

www.kth.se

	Omslag Gruselius
	Inlägg framsida Gruselius
	Inlägg backsida Hanna
	thesis-hanna-gruselius
	Introduction
	Problem Statement
	Purpose
	Methodology
	Questions

	Statistical learning
	Supervised vs unsupervised learning
	Training and testing in statistical learning

	Neural Networks
	Feedforward Neural Networks
	Training of a Neural Network
	Activation functions

	Convolutional Neural Networks
	Backpropagation in Convolutional Neural Networks
	Padding in a Convolutional layer
	Max pooling layer
	Dropout layer
	General structure of a CNN
	Transpose convolution

	Autoencoders
	Introduction to Autoencoders
	Variational Autoencoders
	Deep learning interpretation
	Probability model interpretation
	VAE in a strictly Gaussian case

	Reconstruction with decoder network
	Learned manifold
	Evaluation of encoder
	Gaussian encoder
	Data augmentation by approximate prior

	Feature extraction

	Data
	CT-scans
	Structure data
	Preprocessing

	Implementation
	Architecture of network
	RT-Structure data in the VAE framework
	Special considerations for 3-dimensional inputs

	Stochastic considerations
	Deep learning library and applied algorithms

	Results
	CT-scans
	2 dimensional case
	3 dimensional case

	CT scans and RT structure data
	Evaluation of encoder
	Data augmentation by approximate prior

	Investigation of loss
	Investigation of feature extraction

	Discussion
	Reflection upon results
	Future work
	Conclusion

	Omslag Gruselius
	Blank Page
	Blank Page
	Blank Page

